Functions |
| vykresleni primek | figure (3) |
| | plot (edges(1,:), edges(2,:), 'r') |
| grid | title ('lin2spline') |
| | xlabel ('x') |
| | ylabel ('y') |
| | if (absVect0 > absVect1) vect0 |
| | if (vect0(2)< 0) angle0 |
| vypocet | polynomu (to uz dela plotspline, ale ja nevim, jak to z toho dostat po dobehu fminsearch) p |
| | cos (angle1/180 *pi) sin(angle1/180 *pi) |
| for | plot (polyval(px, t), polyval(py, t), '.b') |
| end | figure (4) title('Curvature') |
| | xlabel ('t') |
| | plot (t, kappa, '+m') |
Variables |
complete trajectory algorithm
aproximace rohu splinem | radu |
complete trajectory algorithm
aproximace rohu splinem spline
zacina v pulce kratsiho ze
dvou navazujicich useku clear | all |
| | clc |
| zadani libovolneho poctu bodu | edges = [0 5 1 1 6 0 6 |
| hold on aproximace rohu for | i |
| | vect1 = edges(:, i+1) - edges(:, i) |
| polovina useku | vect0 = vect0 / 2 |
| | absVect0 = sqrt(vect0(1)^2 + vect0(2)^2) |
| | absVect1 = sqrt(vect1(1)^2 + vect1(2)^2) |
| | distance = absVect1 |
| end pocatecni a koncovy bod | X0 = edges(:, i) + vect0 |
| | X1 = edges(:, i) + vect1 |
| uhly segmentu | angle0 = acos((vect0(1)) /(distance)) /pi * 180 |
| end | angle1 = acos((vect1(1)) /(distance)) /pi * 180 |
end optimalizace i s absolutni
vzdalenosti | m = fminsearch(@(m)plotspline(angle0,angle1,distance,m), 1) |
NYNI VYCHYTAVKA APROXIMACE
POMOCI ELIPSY | A = 6860 |
| | B = 4.4 |
| | alpha = abs(angle0 - angle1) |
| | x0 = X0(1) |
| | y0 = X0(2) |
| | x1 = X1(1) |
| | y1 = X1(2) |
| | xx0 = m*(p(2,1) - p(1,1)) |
| | yy0 = m*(p(2,2) - p(1,2)) |
| | xx1 = m*(p(3,1) - p(2,1)) |
| | yy1 = m*(p(3,2) - p(2,2)) |
| | px |
| | py |
| for | t = 0:0.01:1 |
| grid on hold on for | kappa = ((5*(-3*xx1-3*xx0-6*x0+6*x1)*t^4+4*(7*xx1+8*xx0+15*x0-15*x1)*t^3+3*(-4*xx1-6*xx0-10*x0+10*x1)*t^2+xx0)*(20*(-3*yy1-3*yy0-6*y0+6*y1)*t^3+12*(7*yy1+8*yy0+15*y0-15*y1)*t^2+6*(-4*yy1-6*yy0-10*y0+10*y1)*t)-(5*(-3*yy1-3*yy0-6*y0+6*y1)*t^4+4*(7*yy1+8*yy0+15*y0-15*y1)*t^3+3*(-4*yy1-6*yy0-10*y0+10*y1)*t^2+yy0)*(20*(-3*xx1-3*xx0-6*x0+6*x1)*t^3+12*(7*xx1+8*xx0+15*x0-15*x1)*t^2+6*(-4*xx1-6*xx0-10*x0+10*x1)*t))/((5*(-3*xx1-3*xx0-6*x0+6*x1)*t^4+4*(7*xx1+8*xx0+15*x0-15*x1)*t^3+3*(-4*xx1-6*xx0-10*x0+10*x1)*t^2+xx0)^2+(5*(-3*yy1-3*yy0-6*y0+6*y1)*t^4+4*(7*yy1+8*yy0+15*y0-15*y1)*t^3+3*(-4*yy1-6*yy0-10*y0+10*y1)*t^2+yy0)^2)^(3/2) |