]> rtime.felk.cvut.cz Git - hubacji1/rrts.git/blob - api/rrts.h
Make rrtnode bicycle car independent
[hubacji1/rrts.git] / api / rrts.h
1 #ifndef RRTS_H
2 #define RRTS_H
3
4 #include <chrono>
5 #include <functional>
6 #include <jsoncpp/json/json.h>
7 #include <random>
8 #include <vector>
9 #include "bcar.h"
10
11 #define ETA 1.0 // for steer, nv
12 #define GAMMA(cV) ({ \
13         __typeof__ (cV) _cV = (cV); \
14         pow(log(_cV) / _cV, 1.0 / 3.0); \
15 })
16
17 /*! \brief Possible type of RRT node.
18
19 \param cusp The node that is cusp (change in direction).
20 \param connected The node that branches generated steered path.
21 */
22 class RRTNodeType {
23         public:
24                 static const unsigned int cusp = 1 << 0;
25                 static const unsigned int connected = 1 << 1;
26 };
27
28 /*! \brief RRT node basic class.
29
30 \param c Cumulative cost from RRT data structure root.
31 \param p Pointer to parent RRT node.
32 \param t Type of the RRT node (RRTNodeType).
33 // -- from BicycleCar
34 \param x Horizontal coordinate of rear axle center.
35 \param y Vertical coordinate of rear axle center.
36 \param h Heading of the car in the interval [-pi,+pi] radians.
37 \param sp Speed of the car.
38 \param st Steering of the car.
39 */
40 class RRTNode {
41         private:
42                 double c_ = 0;
43                 RRTNode *p_ = nullptr;
44                 unsigned int t_ = 0;
45                 // -- from BicycleCar
46                 // coordinates
47                 double x_ = 0;
48                 double y_ = 0;
49                 double h_ = 0;
50                 // moving
51                 double sp_ = 0;
52                 double st_ = 0;
53         public:
54                 // getters, setters
55                 double c() const { return this->c_; }
56                 void c(double c) { this->c_ = c; }
57
58                 RRTNode *p() const { return this->p_; }
59                 void p(RRTNode *p) { this->p_ = p; }
60
61                 bool t(unsigned int flag) { return this->t_ & flag; }
62                 void set_t(unsigned int flag) { this->t_ |= flag; }
63                 void clear_t(unsigned int flag) { this->t_ &= ~flag; }
64
65                 // -- from BicycleCar
66                 // getters, setters
67                 double x() const { return this->x_; }
68                 void x(double x) { this->x_ = x; }
69
70                 double y() const { return this->y_; }
71                 void y(double y) { this->y_ = y; }
72
73                 double h() const { return this->h_; }
74                 void h(double h)
75                 {
76                         while (h < -M_PI)
77                                 h += 2 * M_PI;
78                         while (h > +M_PI)
79                                 h -= 2 * M_PI;
80                         this->h_ = h;
81                 }
82
83                 double sp() const { return this->sp_; }
84                 void sp(double sp) { this->sp_ = sp; }
85
86                 double st() const { return this->st_; }
87                 void st(double st) { this->st_ = st; }
88
89                 RRTNode();
90                 RRTNode(const BicycleCar &bc);
91                 bool operator==(const RRTNode& n);
92 };
93
94 /*! \brief Polygon obstacle basic class.
95
96 \param poly Border polygon of the obstacle.
97 */
98 class Obstacle {
99         private:
100                 std::vector<std::tuple<double, double>> poly_;
101         public:
102                 // getters, setters
103                 std::vector<std::tuple<double, double>> &poly()
104                 {
105                         return this->poly_;
106                 }
107
108                 Obstacle();
109 };
110
111 /*! \brief RRT* algorithm basic class.
112
113 \param icnt RRT algorithm iterations counter.
114 \param goals The vector of goal nodes.
115 \param nodes The vector of all nodes in RRT data structure.
116 \param samples The vector of all samples of RRT algorithm.
117 \param sample_dist_type Random distribution type for sampling function (0 -
118 normal, 1 - uniform)
119 */
120 class RRTS {
121         private:
122                 unsigned int icnt_ = 0;
123                 std::chrono::high_resolution_clock::time_point tstart_;
124                 double scnt_ = 0;
125                 double pcnt_ = 0;
126                 bool gf_ = false;
127                 int sample_dist_type_ = 0;
128
129                 std::vector<RRTNode> goals_;
130                 std::vector<RRTNode> nodes_;
131                 std::vector<Obstacle> obstacles_;
132                 std::vector<RRTNode> samples_;
133                 std::vector<RRTNode> steered_;
134
135                 /*! \brief Update and return elapsed time.
136                 */
137                 double elapsed();
138                 /*! \brief Set normal distribution for sampling.
139                 */
140                 void set_sample_normal(
141                         double x1, double x2,
142                         double y1, double y2,
143                         double h1, double h2
144                 );
145                 /*! \brief Set uniform distribution for sampling.
146                 */
147                 void set_sample_uniform(
148                         double x1, double x2,
149                         double y1, double y2,
150                         double h1, double h2
151                 );
152         protected:
153                 /*! \brief Store RRT node to tree data structure.
154                 */
155                 virtual void store_node(RRTNode n);
156
157                 // RRT procedures
158                 std::tuple<bool, unsigned int, unsigned int>
159                 collide(std::vector<std::tuple<double, double>> &poly);
160                 virtual std::tuple<bool, unsigned int, unsigned int>
161                 collide_steered_from(RRTNode &f);
162                 virtual std::tuple<bool, unsigned int, unsigned int>
163                 collide_two_nodes(RRTNode &f, RRTNode &t);
164                 void sample();
165                         std::default_random_engine gen_;
166                         std::normal_distribution<double> ndx_;
167                         std::normal_distribution<double> ndy_;
168                         std::normal_distribution<double> ndh_;
169                         std::uniform_real_distribution<double> udx_;
170                         std::uniform_real_distribution<double> udy_;
171                         std::uniform_real_distribution<double> udh_;
172                 virtual RRTNode *nn(RRTNode &t);
173                 virtual std::vector<RRTNode *> nv(RRTNode &t);
174                 void steer(RRTNode &f, RRTNode &t);
175                 /*! \brief Join steered nodes to RRT data structure
176
177                 \param f RRT node to join steered nodes to.
178                 */
179                 void join_steered(RRTNode *f);
180                 virtual bool goal_found(RRTNode &f);
181                 // RRT* procedures
182                 bool connect();
183                 void rewire();
184         public:
185                 /*! \brief Initialize RRT algorithm if needed.
186                 */
187                 virtual void init();
188                 /*! \brief Deinitialize RRT algorithm if needed.
189                 */
190                 virtual void deinit();
191                 /*! \brief Return path found by RRT*.
192                 */
193                 virtual std::vector<RRTNode *> path();
194                 /*! \brief Return ``true`` if algorithm should stop.
195
196                 Update counters (iteration, seconds, ...) and return if
197                 the current iteration should be the last one.
198                 */
199                 bool should_stop();
200                 /*! \brief Return ``true`` if the algorithm should finish.
201
202                 Finish means that the algorithm will not be resumed.
203                 */
204                 bool should_finish();
205                 /*! \brief Return ``true`` if the algorithm shoud break.
206
207                 Break means that the algorithm can be resumed.
208                 */
209                 bool should_break();
210                 /*! \brief Return ``true`` if algorithm should continue.
211
212                 `pcnt_` is set to `scnt_`, so the difference is 0 and it can
213                 start from scratch. After the `should_continue` is called,
214                 there must be `while (rrts.next()) {}` loop.
215                 */
216                 bool should_continue();
217                 /*! \brief Run next RRT* iteration.
218                 */
219                 bool next();
220                 /*! \brief Set sampling info.
221
222                 Based on `sample_dist_type`, set proper distribution
223                 parameters. The distribution parameters are relative to `front`
224                 node in `nodes` (init).
225
226                 For normal sampling:
227                 \param x1 Mean x value.
228                 \param x2 Standard deviation of x.
229                 \param y1 Mean y value.
230                 \param y2 Standard deviation of y.
231                 \param h1 Mean h value.
232                 \param h2 Standard deviation of h.
233
234                 For uniform sampling:
235                 \param x1 Minimum x value.
236                 \param x2 Maximum x value.
237                 \param y1 Minimum y value.
238                 \param y2 Maximum y value.
239                 \param h1 Minimum h value.
240                 \param h2 Maximum h value.
241                 */
242                 void set_sample(
243                         double x1, double x2,
244                         double y1, double y2,
245                         double h1, double h2
246                 );
247                 /*! \brief Generate JSON output.
248                 */
249                 Json::Value json();
250                 /*! \brief Load JSON input.
251                 */
252                 void json(Json::Value jvi);
253
254                 // RRT procedures
255                 virtual double cost_build(RRTNode &f, RRTNode &t);
256                 virtual double cost_search(RRTNode &f, RRTNode &t);
257
258                 // getters, setters
259                 unsigned int icnt() const { return this->icnt_; }
260                 double scnt() const { return this->scnt_; }
261                 bool gf() const { return this->gf_; }
262                 void gf(bool f) { this->gf_ = f; }
263                 int sample_dist_type() const { return this->sample_dist_type_;}
264                 void sample_dist_type(int t) { this->sample_dist_type_ = t; }
265                 std::vector<RRTNode> &goals() { return this->goals_; }
266                 std::vector<RRTNode> &nodes() { return this->nodes_; }
267                 std::vector<Obstacle> &obstacles() { return this->obstacles_; }
268                 std::vector<RRTNode> &samples() { return this->samples_; }
269                 std::vector<RRTNode> &steered() { return this->steered_; }
270
271                 RRTS();
272 };
273
274 /*! \brief Compute cumulative cost of RRT node.
275
276 \param t RRT node to compute cumulative cost to.
277 */
278 double cc(RRTNode &t);
279
280 #endif /* RRTS_H */