]> rtime.felk.cvut.cz Git - hubacji1/psp.git/blob - src/psp.cc
Implement possible inits method
[hubacji1/psp.git] / src / psp.cc
1 #include <cmath>
2 #include <list>
3 #include <queue>
4 #include "psp.h"
5
6 bool PSPlanner::collide()
7 {
8         std::vector<std::tuple<double, double>> bc;
9         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
10         bc.push_back(std::make_tuple(this->cc().lrx(), this->cc().lry()));
11         bc.push_back(std::make_tuple(this->cc().rrx(), this->cc().rry()));
12         bc.push_back(std::make_tuple(this->cc().rfx(), this->cc().rfy()));
13         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
14         std::vector<std::tuple<double, double>> ps;
15         ps.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
16         ps.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
17         ps.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
18         ps.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
19         return std::get<0>(::collide(bc, ps));
20 }
21
22 bool PSPlanner::forward()
23 {
24         double heading = this->ps().heading();
25         while (heading < 0) heading += 2 * M_PI;
26         if (!this->ps().parallel())
27                 heading -= M_PI / 2;
28         double h = this->gc().h();
29         while (h < 0) h += 2 * M_PI;
30         if (-0.00001 < heading - h && heading - h < 0.00001)
31                 return true;
32         else
33                 return false;
34 }
35
36 void PSPlanner::guess_gc()
37 {
38         double x = this->ps().x1();
39         double y = this->ps().y1();
40         double h = this->ps().heading();
41         double dts = + M_PI / 2; // direction to slot
42         if (this->ps().right())
43                 dts = - M_PI / 2;
44         if (this->ps().parallel()) {
45                 x += (this->gc().w() + 0.01) * cos(h + dts);
46                 x += (this->gc().dr() + 0.01) * cos(h);
47                 y += (this->gc().w() + 0.01) * sin(h + dts);
48                 y += (this->gc().dr() + 0.01) * sin(h);
49         } else {
50                 x += (this->ps().x4() - this->ps().x1()) / 2;
51                 x += (this->gc().df() + 0.01) * cos(h + dts);
52                 y += (this->ps().y4() - this->ps().y1()) / 2;
53                 y += (this->gc().df() + 0.01) * sin(h + dts);
54                 if (this->ps().right())
55                         h += M_PI / 2;
56                 else
57                         h -= M_PI / 2;
58         }
59         while (h > M_PI)
60                 h -= 2 * M_PI;
61         while (h <= -M_PI)
62                 h += 2 * M_PI;
63         this->gc().x(x);
64         this->gc().y(y);
65         this->gc().h(h);
66 }
67
68 bool PSPlanner::left()
69 {
70         double lfx = this->cc().lfx();
71         double lfy = this->cc().lfy();
72         double lrx = this->cc().lrx();
73         double lry = this->cc().lry();
74         double rrx = this->cc().rrx();
75         double rry = this->cc().rry();
76         double rfx = this->cc().rfx();
77         double rfy = this->cc().rfy();
78         double lfs = sgn(
79                 (lfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
80                 - (lfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
81         );
82         double lrs = sgn(
83                 (lrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
84                 - (lry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
85         );
86         double rrs = sgn(
87                 (rrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
88                 - (rry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
89         );
90         double rfs = sgn(
91                 (rfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
92                 - (rfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
93         );
94         if (this->ps().parallel())
95                 return lfs == rfs && (lfs != lrs || lfs != rrs);
96         else if (!this->forward())
97                 return lfs == rfs && (lfs != lrs || lfs != rrs);
98         else
99                 return lrs == rrs && (lrs != lfs || lrs != rfs);
100 }
101
102 bool PSPlanner::parked()
103 {
104         std::vector<std::tuple<double, double>> slot;
105         slot.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
106         slot.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
107         slot.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
108         slot.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
109         return inside(this->gc().lfx(), this->gc().lfy(), slot)
110                 && inside(this->gc().lrx(), this->gc().lry(), slot)
111                 && inside(this->gc().rrx(), this->gc().rry(), slot)
112                 && inside(this->gc().rfx(), this->gc().rfy(), slot);
113 }
114
115 std::vector<BicycleCar> PSPlanner::possible_inits()
116 {
117         std::vector<BicycleCar> pi;
118         BicycleCar orig_cc(this->cc());
119         for (unsigned int i = 0; i < 20; i++) {
120                 this->cc().next();
121                 pi.push_back(BicycleCar(this->cc()));
122         }
123         this->cc() = BicycleCar(orig_cc);
124         return pi;
125 }
126
127 // find entry
128 void PSPlanner::fe()
129 {
130         if (this->ps().parallel())
131                 return this->fe_parallel();
132         else
133                 return this->fe_perpendicular();
134 }
135
136 void PSPlanner::fe_parallel()
137 {
138         // angle for distance from "entry" corner
139         double dist_angl = this->ps().heading() + M_PI;
140         dist_angl += (this->ps().right()) ? - M_PI / 4 : + M_PI / 4;
141         // set bicycle car `bci` basic dimensions and heading
142         BicycleCar bci = BicycleCar(this->gc());
143         BicycleCar bco = BicycleCar(this->gc());
144         bci.h(this->ps().heading());
145         // move 0.01 from the "entry" corner
146         bci.x(this->ps().x4() + 0.01 * cos(dist_angl));
147         bci.y(this->ps().y4() + 0.01 * sin(dist_angl));
148         // align with parking "top" of slot (move backward)
149         dist_angl = bci.h() + M_PI;
150         bci.x(bci.x() + bci.df() * cos(dist_angl));
151         bci.y(bci.y() + bci.df() * sin(dist_angl));
152         // align with "entry" to pakring slot (move outside)
153         dist_angl = this->ps().heading();
154         dist_angl += (this->ps().right()) ? + M_PI / 2 : - M_PI / 2;
155         bci.x(bci.x() + bci.w() / 2 * cos(dist_angl));
156         bci.y(bci.y() + bci.w() / 2 * sin(dist_angl));
157         // BFS - init all starts
158         // see https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bfs.html
159         double dist_diag = sqrt(pow(bci.w() / 2, 2) + pow(bci.df(), 2));
160         if (this->ps().right())
161                 dist_angl = atan2(bci.y() - bci.rfy(), bci.x() - bci.rfx());
162         else
163                 dist_angl = atan2(bci.y() - bci.lfy(), bci.x() - bci.lfx());
164         double DIST_ANGL = dist_angl;
165         std::queue<BicycleCar, std::list<BicycleCar>> q;
166         while (
167                 (
168                         this->ps().right()
169                         && dist_angl < DIST_ANGL + 3 * M_PI / 4
170                 )
171                 || (
172                         !this->ps().right()
173                         && dist_angl > DIST_ANGL - 3 * M_PI / 4
174                 )
175         ) {
176                 this->cc() = BicycleCar(bci);
177                 if (this->ps().right()) {
178                         this->cc().x(bci.rfx() + dist_diag * cos(dist_angl));
179                         this->cc().y(bci.rfy() + dist_diag * sin(dist_angl));
180                 } else {
181                         this->cc().x(bci.lfx() + dist_diag * cos(dist_angl));
182                         this->cc().y(bci.lfy() + dist_diag * sin(dist_angl));
183                 }
184                 this->cc().h(this->ps().heading() + dist_angl - DIST_ANGL);
185                 if (!this->collide()) {
186                         this->cc().st(this->cc().wb() / this->cc().mtr());
187                         if (!this->ps().right())
188                                 this->cc().st(this->cc().st() * -1);
189                         this->cc().sp(-0.01);
190                         q.push(BicycleCar(this->cc()));
191                 }
192                 dist_angl += (this->ps().right()) ? + 0.01 : - 0.01;
193         }
194         // BFS - find entry current car `cc` and corresponding goal car `gc`
195         unsigned int iter_cntr;
196         while (!q.empty() && iter_cntr < 9) {
197                 this->cc() = BicycleCar(q.front());
198                 q.pop();
199                 while (
200                         !this->collide()
201                         && (std::abs(
202                                 this->cc().h() - this->ps().heading()
203                         ) < M_PI / 2)
204                 )
205                         this->cc().next();
206                 this->cc().sp(this->cc().sp() * -1);
207                 this->cc().next();
208                 this->gc() = BicycleCar(this->cc());
209                 if (this->parked())
210                         goto successfinish;
211                 this->cc().st(this->cc().st() * -1);
212                 q.push(BicycleCar(this->cc()));
213                 if (sgn(this->cc().st()) == sgn(q.front().st()))
214                         iter_cntr++;
215         }
216         // fallback to fer
217         this->gc() = BicycleCar(bco);
218 successfinish:
219         return this->fer_parallel();
220 }
221
222 void PSPlanner::fe_perpendicular()
223 {
224         // TODO Try multiple angles when going from parking slot.
225         //
226         //      Do not use just the maximum steer angle. Test angles
227         //      until the whole current car `cc` is out of the parking
228         //      slot `ps`.
229         //
230         //      Another approach could be testing angles from the
231         //      beginning of the escape parkig slot maneuver.
232         return fer_perpendicular();
233 }
234
235 void PSPlanner::fer()
236 {
237         if (this->ps().parallel())
238                 return this->fer_parallel();
239         else
240                 return this->fer_perpendicular();
241 }
242
243 void PSPlanner::fer_parallel()
244 {
245         this->cc().st(this->cc().wb() / this->cc().mtr());
246         if (!this->ps().right())
247                 this->cc().st(this->cc().st() * -1);
248         this->cc().sp(0.01);
249         while (!this->left()) {
250                 while (!this->collide() && !this->left())
251                         this->cc().next();
252                 if (this->left() && !this->collide()) {
253                         break;
254                 } else {
255                         this->cc().sp(this->cc().sp() * -1);
256                         this->cc().next();
257                         this->cc().st(this->cc().st() * -1);
258                 }
259         }
260 }
261
262 void PSPlanner::fer_perpendicular()
263 {
264         bool delta_use[] = {true, true, true};
265         double cc_h = this->cc().h();
266         double x;
267         double y;
268         // check inner radius
269         if (this->forward()) {
270                 x = this->ps().x1();
271                 y = this->ps().y1();
272         } else {
273                 x = this->ps().x4();
274                 y = this->ps().y4();
275         }
276         double x1;
277         double y1;
278         if (this->ps().right()) {
279                 x1 = this->cc().ccr().x();
280                 y1 = this->cc().ccr().y();
281         } else {
282                 x1 = this->cc().ccl().x();
283                 y1 = this->cc().ccl().y();
284         }
285         double IR = this->cc().iradi();
286         double a = 1;
287         double b;
288         if (this->forward())
289                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
290         else
291                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
292         double c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
293         double D = pow(b, 2) - 4 * a * c;
294         double delta;
295         delta = -b - sqrt(D);
296         delta /= 2 * a;
297         double delta_1 = delta;
298         if (D < 0)
299                 delta_use[0] = false;
300         // check outer radius
301         if (this->forward()) {
302                 x = this->ps().x4();
303                 y = this->ps().y4();
304         } else {
305                 x = this->ps().x1();
306                 y = this->ps().y1();
307         }
308         IR = this->cc().ofradi();
309         a = 1;
310         if (this->forward())
311                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
312         else
313                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
314         c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
315         D = pow(b, 2) - 4 * a * c;
316         if (this->forward()) {
317                 delta = -b + sqrt(D);
318                 delta /= 2 * a;
319         }
320         double delta_2 = delta;
321         if (D < 0)
322                 delta_use[1] = false;
323         delta = -b - sqrt(D);
324         delta /= 2 * a;
325         double delta_3 = delta;
326         if (D < 0)
327                 delta_use[2] = false;
328         if (delta_use[0] && delta_use[1] && delta_use[22])
329                 delta = std::max(delta_1, std::max(delta_2, delta_3));
330         else if (delta_use[0] && delta_use[1])
331                 delta = std::max(delta_1, delta_2);
332         else if (delta_use[0] && delta_use[2])
333                 delta = std::max(delta_1, delta_3);
334         else if (delta_use[1] && delta_use[2])
335                 delta = std::max(delta_2, delta_3);
336         else if (delta_use[0])
337                 delta = delta_1;
338         else if (delta_use[1])
339                 delta = delta_2;
340         else if (delta_use[2])
341                 delta = delta_3;
342         else
343                 return;
344         // current car `cc` can get out of slot with max steer
345         this->cc().x(this->cc().x() + delta * cos(cc_h));
346         this->cc().y(this->cc().y() + delta * sin(cc_h));
347         this->cc().h(cc_h);
348         // get current car `cc` out of slot
349         if (this->forward())
350                 this->cc().sp(-0.1);
351         else
352                 this->cc().sp(0.1);
353         this->cc().st(this->cc().wb() / this->cc().mtr());
354         if (this->ps().right())
355                 this->cc().st(this->cc().st() * -1);
356         while (!this->left()) {
357                 while (!this->collide() && !this->left())
358                         this->cc().next();
359                 if (this->left() && !this->collide()) {
360                         break;
361                 } else {
362                         this->cc().sp(this->cc().sp() * -1);
363                         this->cc().next();
364                         this->cc().st(this->cc().st() * -1);
365                 }
366         }
367 }
368
369 PSPlanner::PSPlanner()
370 {
371 }