]> rtime.felk.cvut.cz Git - socketcan-devel.git/blob - kernel/2.6/drivers/net/can/mcp251x.c
this patch corrects:
[socketcan-devel.git] / kernel / 2.6 / drivers / net / can / mcp251x.c
1 /*
2  *
3  * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
4  *
5  * MCP2510 support and bug fixes by Christian Pellegrin
6  * <chripell@evolware.org>
7  *
8  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
9  * Written under contract by:
10  *   Chris Elston, Katalix Systems, Ltd.
11  *
12  * Based on Microchip MCP251x CAN controller driver written by
13  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
14  *
15  * Based on CAN bus driver for the CCAN controller written by
16  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
17  * - Simon Kallweit, intefo AG
18  * Copyright 2007
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the version 2 of the GNU General Public License
22  * as published by the Free Software Foundation
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  *
34  *
35  * Your platform definition file should specify something like:
36  *
37  * static struct mcp251x_platform_data mcp251x_info = {
38  *         .oscillator_frequency = 8000000,
39  *         .board_specific_setup = &mcp251x_setup,
40  *         .model = CAN_MCP251X_MCP2510,
41  *         .power_enable = mcp251x_power_enable,
42  *         .transceiver_enable = NULL,
43  * };
44  *
45  * static struct spi_board_info spi_board_info[] = {
46  *         {
47  *                 .modalias      = "mcp251x",
48  *                 .platform_data = &mcp251x_info,
49  *                 .irq           = IRQ_EINT13,
50  *                 .max_speed_hz  = 2*1000*1000,
51  *                 .chip_select   = 2,
52  *         },
53  * };
54  *
55  * Please see mcp251x.h for a description of the fields in
56  * struct mcp251x_platform_data.
57  *
58  */
59
60 #include <linux/device.h>
61 #include <linux/kernel.h>
62 #include <linux/module.h>
63 #include <linux/interrupt.h>
64 #include <linux/platform_device.h>
65 #include <linux/netdevice.h>
66 #include <linux/can.h>
67 #include <linux/spi/spi.h>
68 #include <linux/can/dev.h>
69 #include <linux/can/core.h>
70 #include <linux/if_arp.h>
71 #include <linux/dma-mapping.h>
72 #include <linux/delay.h>
73 #include <linux/completion.h>
74 #include <linux/freezer.h>
75 #include <linux/uaccess.h>
76 #include <linux/io.h>
77 #include <linux/can/platform/mcp251x.h>
78
79 /* SPI interface instruction set */
80 #define INSTRUCTION_WRITE               0x02
81 #define INSTRUCTION_READ                0x03
82 #define INSTRUCTION_BIT_MODIFY  0x05
83 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85 #define INSTRUCTION_RESET               0xC0
86
87 /* MPC251x registers */
88 #define CANSTAT       0x0e
89 #define CANCTRL       0x0f
90 #  define CANCTRL_REQOP_MASK        0xe0
91 #  define CANCTRL_REQOP_CONF        0x80
92 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
93 #  define CANCTRL_REQOP_LOOPBACK    0x40
94 #  define CANCTRL_REQOP_SLEEP       0x20
95 #  define CANCTRL_REQOP_NORMAL      0x00
96 #  define CANCTRL_OSM               0x08
97 #  define CANCTRL_ABAT              0x10
98 #define TEC           0x1c
99 #define REC           0x1d
100 #define CNF1          0x2a
101 #define CNF2          0x29
102 #  define CNF2_BTLMODE  0x80
103 #define CNF3          0x28
104 #  define CNF3_SOF      0x08
105 #  define CNF3_WAKFIL   0x04
106 #  define CNF3_PHSEG2_MASK 0x07
107 #define CANINTE       0x2b
108 #  define CANINTE_MERRE 0x80
109 #  define CANINTE_WAKIE 0x40
110 #  define CANINTE_ERRIE 0x20
111 #  define CANINTE_TX2IE 0x10
112 #  define CANINTE_TX1IE 0x08
113 #  define CANINTE_TX0IE 0x04
114 #  define CANINTE_RX1IE 0x02
115 #  define CANINTE_RX0IE 0x01
116 #define CANINTF       0x2c
117 #  define CANINTF_MERRF 0x80
118 #  define CANINTF_WAKIF 0x40
119 #  define CANINTF_ERRIF 0x20
120 #  define CANINTF_TX2IF 0x10
121 #  define CANINTF_TX1IF 0x08
122 #  define CANINTF_TX0IF 0x04
123 #  define CANINTF_RX1IF 0x02
124 #  define CANINTF_RX0IF 0x01
125 #define EFLG          0x2d
126 #  define EFLG_EWARN    0x01
127 #  define EFLG_RXWAR    0x02
128 #  define EFLG_TXWAR    0x04
129 #  define EFLG_RXEP     0x08
130 #  define EFLG_TXEP     0x10
131 #  define EFLG_TXBO     0x20
132 #  define EFLG_RX0OVR   0x40
133 #  define EFLG_RX1OVR   0x80
134 #define TXBCTRL(n)  ((n * 0x10) + 0x30)
135 #  define TXBCTRL_ABTF  0x40
136 #  define TXBCTRL_MLOA  0x20
137 #  define TXBCTRL_TXERR 0x10
138 #  define TXBCTRL_TXREQ 0x08
139 #define RXBCTRL(n)  ((n * 0x10) + 0x60)
140 #  define RXBCTRL_BUKT   0x04
141 #  define RXBCTRL_RXM0   0x20
142 #  define RXBCTRL_RXM1   0x40
143
144 /* Buffer size required for the largest SPI transfer (i.e., reading a
145  * frame). */
146 #define CAN_FRAME_MAX_DATA_LEN  8
147 #define SPI_TRANSFER_BUF_LEN    (2*(6 + CAN_FRAME_MAX_DATA_LEN))
148 #define CAN_FRAME_MAX_BITS      128
149
150 #define DEVICE_NAME "mcp251x"
151
152 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
153 module_param(mcp251x_enable_dma, int, S_IRUGO);
154 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
155
156 static struct can_bittiming_const mcp251x_bittiming_const = {
157         .tseg1_min = 3,
158         .tseg1_max = 16,
159         .tseg2_min = 2,
160         .tseg2_max = 8,
161         .sjw_max = 4,
162         .brp_min = 1,
163         .brp_max = 64,
164         .brp_inc = 1,
165 };
166
167 struct mcp251x_priv {
168         struct can_priv    can;
169         struct net_device *net;
170         struct spi_device *spi;
171
172         struct mutex spi_lock; /* SPI buffer lock */
173         u8 *spi_tx_buf;
174         u8 *spi_rx_buf;
175         dma_addr_t spi_tx_dma;
176         dma_addr_t spi_rx_dma;
177
178         struct sk_buff *tx_skb;
179         struct workqueue_struct *wq;
180         struct work_struct tx_work;
181         struct work_struct irq_work;
182         struct completion awake;
183         int wake;
184         int force_quit;
185         int after_suspend;
186 #define AFTER_SUSPEND_UP 1
187 #define AFTER_SUSPEND_DOWN 2
188 #define AFTER_SUSPEND_POWER 4
189         int restart_tx;
190 };
191
192 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
193 {
194         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
195         struct spi_transfer t = {
196                 .tx_buf = priv->spi_tx_buf,
197                 .rx_buf = priv->spi_rx_buf,
198                 .len = 3,
199                 .cs_change = 0,
200         };
201         struct spi_message m;
202         u8 val = 0;
203         int ret;
204
205         mutex_lock(&priv->spi_lock);
206
207         priv->spi_tx_buf[0] = INSTRUCTION_READ;
208         priv->spi_tx_buf[1] = reg;
209
210         spi_message_init(&m);
211
212         if (mcp251x_enable_dma) {
213                 t.tx_dma = priv->spi_tx_dma;
214                 t.rx_dma = priv->spi_rx_dma;
215                 m.is_dma_mapped = 1;
216         }
217
218         spi_message_add_tail(&t, &m);
219
220         ret = spi_sync(spi, &m);
221         if (ret < 0)
222                 dev_dbg(&spi->dev, "%s: failed: ret = %d\n", __func__, ret);
223         else
224                 val = priv->spi_rx_buf[2];
225
226         mutex_unlock(&priv->spi_lock);
227
228         dev_dbg(&spi->dev, "%s: read %02x = %02x\n", __func__, reg, val);
229         return val;
230 }
231
232 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
233 {
234         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
235         struct spi_transfer t = {
236                 .tx_buf = priv->spi_tx_buf,
237                 .rx_buf = priv->spi_rx_buf,
238                 .len = 3,
239                 .cs_change = 0,
240         };
241         struct spi_message m;
242         int ret;
243
244         mutex_lock(&priv->spi_lock);
245
246         priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
247         priv->spi_tx_buf[1] = reg;
248         priv->spi_tx_buf[2] = val;
249
250         spi_message_init(&m);
251
252         if (mcp251x_enable_dma) {
253                 t.tx_dma = priv->spi_tx_dma;
254                 t.rx_dma = priv->spi_rx_dma;
255                 m.is_dma_mapped = 1;
256         }
257
258         spi_message_add_tail(&t, &m);
259
260         ret = spi_sync(spi, &m);
261
262         mutex_unlock(&priv->spi_lock);
263
264         if (ret < 0)
265                 dev_dbg(&spi->dev, "%s: failed\n", __func__);
266 }
267
268 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
269                                u8 mask, uint8_t val)
270 {
271         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
272         struct spi_transfer t = {
273                 .tx_buf = priv->spi_tx_buf,
274                 .rx_buf = priv->spi_rx_buf,
275                 .len = 4,
276                 .cs_change = 0,
277         };
278         struct spi_message m;
279         int ret;
280
281         mutex_lock(&priv->spi_lock);
282
283         priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
284         priv->spi_tx_buf[1] = reg;
285         priv->spi_tx_buf[2] = mask;
286         priv->spi_tx_buf[3] = val;
287
288         spi_message_init(&m);
289
290         if (mcp251x_enable_dma) {
291                 t.tx_dma = priv->spi_tx_dma;
292                 t.rx_dma = priv->spi_rx_dma;
293                 m.is_dma_mapped = 1;
294         }
295
296         spi_message_add_tail(&t, &m);
297
298         ret = spi_sync(spi, &m);
299
300         mutex_unlock(&priv->spi_lock);
301
302         if (ret < 0)
303                 dev_dbg(&spi->dev, "%s: failed\n", __func__);
304 }
305
306 static int mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
307                           int tx_buf_idx)
308 {
309         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
310         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
311         u32 sid, eid, exide, rtr;
312
313         dev_dbg(&spi->dev, "%s\n", __func__);
314
315         exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
316         if (exide)
317                 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
318         else
319                 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
320         eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
321         rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
322
323         if (pdata->model == CAN_MCP251X_MCP2510) {
324                 int i;
325
326                 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 1, sid >> 3);
327                 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 2,
328                                   ((sid & 7) << 5) | (exide << 3) |
329                                   ((eid >> 16) & 3));
330                 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 3,
331                                   (eid >> 8) & 0xff);
332                 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 4, eid & 0xff);
333                 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 5,
334                                   (rtr << 6) | frame->can_dlc);
335
336                 for (i = 0; i < frame->can_dlc ; i++) {
337                         mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + 6 + i,
338                                           frame->data[i]);
339                 }
340         } else {
341                 struct spi_transfer t = {
342                         .tx_buf = priv->spi_tx_buf,
343                         .rx_buf = priv->spi_rx_buf,
344                         .cs_change = 0,
345                         .len = 6 + CAN_FRAME_MAX_DATA_LEN,
346                 };
347                 struct spi_message m;
348                 int ret;
349                 u8 *tx_buf = priv->spi_tx_buf;
350
351                 mutex_lock(&priv->spi_lock);
352
353                 tx_buf[0] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
354                 tx_buf[1] = sid >> 3;
355                 tx_buf[2] = ((sid & 7) << 5) | (exide << 3) |
356                   ((eid >> 16) & 3);
357                 tx_buf[3] = (eid >> 8) & 0xff;
358                 tx_buf[4] = eid & 0xff;
359                 tx_buf[5] = (rtr << 6) | frame->can_dlc;
360
361                 memcpy(tx_buf + 6, frame->data, frame->can_dlc);
362
363                 spi_message_init(&m);
364
365                 if (mcp251x_enable_dma) {
366                         t.tx_dma = priv->spi_tx_dma;
367                         t.rx_dma = priv->spi_rx_dma;
368                         m.is_dma_mapped = 1;
369                 }
370
371                 spi_message_add_tail(&t, &m);
372
373                 ret = spi_sync(spi, &m);
374
375                 mutex_unlock(&priv->spi_lock);
376
377                 if (ret < 0) {
378                         dev_dbg(&spi->dev, "%s: failed: ret = %d\n", __func__,
379                                 ret);
380                         return -1;
381                 }
382         }
383         mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
384         return 0;
385 }
386
387 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
388 {
389         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
390         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
391         struct sk_buff *skb;
392         struct can_frame *frame;
393
394         dev_dbg(&spi->dev, "%s\n", __func__);
395
396         skb = dev_alloc_skb(sizeof(struct can_frame));
397         if (!skb) {
398                 dev_dbg(&spi->dev, "%s: out of memory for Rx'd frame\n",
399                         __func__);
400                 priv->net->stats.rx_dropped++;
401                 return;
402         }
403         skb->dev = priv->net;
404         frame = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
405
406         if (pdata->model == CAN_MCP251X_MCP2510) {
407                 int i;
408                 u8 rx_buf[6];
409
410                 rx_buf[1] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + 1);
411                 rx_buf[2] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + 2);
412                 rx_buf[3] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + 3);
413                 rx_buf[4] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + 4);
414                 rx_buf[5] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + 5);
415
416                 if ((rx_buf[2] >> 3) & 0x1) {
417                         /* Extended ID format */
418                         frame->can_id = CAN_EFF_FLAG;
419                         frame->can_id |= ((rx_buf[2] & 3) << 16) |
420                           (rx_buf[3] << 8) | rx_buf[4] |
421                           (((rx_buf[1] << 3) | (rx_buf[2] >> 5)) << 18);
422                 } else {
423                         /* Standard ID format */
424                         frame->can_id = (rx_buf[1] << 3) | (rx_buf[2] >> 5);
425                 }
426
427                 if ((rx_buf[5] >> 6) & 0x1) {
428                         /* Remote transmission request */
429                         frame->can_id |= CAN_RTR_FLAG;
430                 }
431
432                 /* Data length */
433                 frame->can_dlc = rx_buf[5] & 0x0f;
434                 if (frame->can_dlc > 8) {
435                         dev_warn(&spi->dev, "invalid frame recevied\n");
436                         priv->net->stats.rx_errors++;
437                         dev_kfree_skb(skb);
438                         return;
439                 }
440
441                 for (i = 0; i < frame->can_dlc; i++) {
442                         frame->data[i] = mcp251x_read_reg(spi,
443                                                           RXBCTRL(buf_idx) +
444                                                           6 + i);
445                 }
446         } else {
447                 struct spi_transfer t = {
448                         .tx_buf = priv->spi_tx_buf,
449                         .rx_buf = priv->spi_rx_buf,
450                         .cs_change = 0,
451                         .len = 14, /* RX buffer: RXBnCTRL to RXBnD7 */
452                 };
453                 struct spi_message m;
454                 int ret;
455                 u8 *tx_buf = priv->spi_tx_buf;
456                 u8 *rx_buf = priv->spi_rx_buf;
457
458                 mutex_lock(&priv->spi_lock);
459
460                 tx_buf[0] = INSTRUCTION_READ_RXB(buf_idx);
461
462                 spi_message_init(&m);
463
464                 if (mcp251x_enable_dma) {
465                         t.tx_dma = priv->spi_tx_dma;
466                         t.rx_dma = priv->spi_rx_dma;
467                         m.is_dma_mapped = 1;
468                 }
469
470                 spi_message_add_tail(&t, &m);
471
472                 ret = spi_sync(spi, &m);
473
474                 if (ret < 0) {
475                         dev_dbg(&spi->dev, "%s: failed: ret = %d\n",
476                                 __func__, ret);
477                         priv->net->stats.rx_errors++;
478                         mutex_unlock(&priv->spi_lock);
479                         return;
480                 }
481
482                 if ((rx_buf[2] >> 3) & 0x1) {
483                         /* Extended ID format */
484                         frame->can_id = CAN_EFF_FLAG;
485                         frame->can_id |= ((rx_buf[2] & 3) << 16) |
486                           (rx_buf[3] << 8) | rx_buf[4] |
487                           (((rx_buf[1] << 3) | (rx_buf[2] >> 5)) << 18);
488                 } else {
489                         /* Standard ID format */
490                         frame->can_id = (rx_buf[1] << 3) | (rx_buf[2] >> 5);
491                 }
492
493                 if ((rx_buf[5] >> 6) & 0x1) {
494                         /* Remote transmission request */
495                         frame->can_id |= CAN_RTR_FLAG;
496                 }
497
498                 /* Data length */
499                 frame->can_dlc = rx_buf[5] & 0x0f;
500                 if (frame->can_dlc > 8) {
501                         dev_warn(&spi->dev, "invalid frame recevied\n");
502                         priv->net->stats.rx_errors++;
503                         dev_kfree_skb(skb);
504                         mutex_unlock(&priv->spi_lock);
505                         return;
506                 }
507
508                 memcpy(frame->data, rx_buf + 6, CAN_FRAME_MAX_DATA_LEN);
509
510                 mutex_unlock(&priv->spi_lock);
511         }
512
513         priv->net->stats.rx_packets++;
514         priv->net->stats.rx_bytes += frame->can_dlc;
515
516         skb->protocol = __constant_htons(ETH_P_CAN);
517         skb->pkt_type = PACKET_BROADCAST;
518         skb->ip_summed = CHECKSUM_UNNECESSARY;
519         netif_rx(skb);
520 }
521
522 static void mcp251x_hw_sleep(struct spi_device *spi)
523 {
524         mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
525 }
526
527 static void mcp251x_hw_wakeup(struct spi_device *spi)
528 {
529         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
530
531         priv->wake = 1;
532
533         /* Can only wake up by generating a wake-up interrupt. */
534         mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
535         mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
536
537         /* Wait until the device is awake */
538         if (!wait_for_completion_timeout(&priv->awake, HZ))
539                 dev_err(&spi->dev, "MCP251x didn't wake-up\n");
540 }
541
542 static int mcp251x_hard_start_xmit(struct sk_buff *skb, struct net_device *net)
543 {
544         struct mcp251x_priv *priv = netdev_priv(net);
545         struct spi_device *spi = priv->spi;
546
547         dev_dbg(&spi->dev, "%s\n", __func__);
548
549         if (priv->tx_skb) {
550                 dev_warn(&spi->dev, "hard_xmit called with not null tx_skb\n");
551                 return NETDEV_TX_BUSY;
552         }
553
554         if (skb->len != sizeof(struct can_frame)) {
555                 dev_dbg(&spi->dev, "dropping packet - bad length\n");
556                 dev_kfree_skb(skb);
557                 net->stats.tx_dropped++;
558                 return 0;
559         }
560
561         netif_stop_queue(net);
562         priv->tx_skb = skb;
563         net->trans_start = jiffies;
564         queue_work(priv->wq, &priv->tx_work);
565
566         return NETDEV_TX_OK;
567 }
568
569 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
570 {
571         struct mcp251x_priv *priv = netdev_priv(net);
572         struct spi_device *spi = priv->spi;
573
574         dev_dbg(&spi->dev, "%s (unimplemented)\n", __func__);
575
576         switch (mode) {
577         default:
578                 return -EOPNOTSUPP;
579         }
580
581         return 0;
582 }
583
584 static void mcp251x_set_normal_mode(struct spi_device *spi)
585 {
586         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
587         unsigned long timeout;
588
589         /* Enable interrupts */
590         mcp251x_write_reg(spi, CANINTE,
591                 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
592                 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
593
594         if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
595                 /* Put device into loopback mode */
596                 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
597         } else {
598                 /* Put device into normal mode */
599                 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
600
601                 /* Wait for the device to enter normal mode */
602                 timeout = jiffies + HZ;
603                 while (mcp251x_read_reg(spi, CANSTAT) & 0xE0) {
604                         udelay(10);
605                         if (time_after(jiffies, timeout)) {
606                                 dev_err(&spi->dev, "MCP251x didn't"
607                                         " enter in normal mode\n");
608                                 break;
609                         }
610                 }
611         }
612 }
613
614 static int mcp251x_do_set_bittiming(struct net_device *net)
615 {
616         struct mcp251x_priv *priv = netdev_priv(net);
617         struct can_bittiming *bt = &priv->can.bittiming;
618         struct spi_device *spi = priv->spi;
619         u8 state;
620
621         dev_dbg(&spi->dev, "%s: BRP = %d, PropSeg = %d, PS1 = %d,"
622                 " PS2 = %d, SJW = %d\n", __func__, bt->brp,
623                 bt->prop_seg, bt->phase_seg1, bt->phase_seg2,
624                 bt->sjw);
625
626         /* Store original mode and set mode to config */
627         state = mcp251x_read_reg(spi, CANCTRL);
628         state = mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
629         mcp251x_write_bits(spi, CANCTRL, CANCTRL_REQOP_MASK,
630                            CANCTRL_REQOP_CONF);
631
632         mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << 6) | (bt->brp - 1));
633         mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
634                           ((bt->phase_seg1 - 1) << 3) |
635                           (bt->prop_seg - 1));
636         mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
637                            (bt->phase_seg2 - 1));
638
639         /* Restore original state */
640         mcp251x_write_bits(spi, CANCTRL, CANCTRL_REQOP_MASK, state);
641
642         return 0;
643 }
644
645 static void mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
646                           struct spi_device *spi)
647 {
648         int ret;
649
650         /* Set initial baudrate. Make sure that registers are updated
651            always by explicitly calling mcp251x_do_set_bittiming */
652         ret = can_set_bittiming(net);
653         if (ret)
654                 dev_err(&spi->dev, "unable to set initial baudrate!\n");
655         else
656                 mcp251x_do_set_bittiming(net);
657
658         /* Enable RX0->RX1 buffer roll over and disable filters */
659         mcp251x_write_bits(spi, RXBCTRL(0),
660                            RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
661                            RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
662         mcp251x_write_bits(spi, RXBCTRL(1),
663                            RXBCTRL_RXM0 | RXBCTRL_RXM1,
664                            RXBCTRL_RXM0 | RXBCTRL_RXM1);
665
666         dev_dbg(&spi->dev, "%s RXBCTL 0 and 1: %02x %02x\n", __func__,
667                 mcp251x_read_reg(spi, RXBCTRL(0)),
668                 mcp251x_read_reg(spi, RXBCTRL(1)));
669 }
670
671 static void mcp251x_hw_reset(struct spi_device *spi)
672 {
673         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
674         int ret;
675
676         mutex_lock(&priv->spi_lock);
677
678         priv->spi_tx_buf[0] = INSTRUCTION_RESET;
679
680         ret = spi_write(spi, priv->spi_tx_buf, 1);
681
682         mutex_unlock(&priv->spi_lock);
683
684         if (ret < 0)
685                 dev_dbg(&spi->dev, "%s: failed: ret = %d\n", __func__, ret);
686         /* wait for reset to finish */
687         mdelay(10);
688 }
689
690 static int mcp251x_open(struct net_device *net)
691 {
692         struct mcp251x_priv *priv = netdev_priv(net);
693         struct spi_device *spi = priv->spi;
694         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
695
696         dev_dbg(&spi->dev, "%s\n", __func__);
697
698         if (pdata->transceiver_enable)
699                 pdata->transceiver_enable(1);
700
701         priv->force_quit = 0;
702         priv->tx_skb = NULL;
703         enable_irq(spi->irq);
704         mcp251x_hw_wakeup(spi);
705         mcp251x_hw_reset(spi);
706         mcp251x_setup(net, priv, spi);
707         mcp251x_set_normal_mode(spi);
708         netif_wake_queue(net);
709
710         return 0;
711 }
712
713 static int mcp251x_stop(struct net_device *net)
714 {
715         struct mcp251x_priv *priv = netdev_priv(net);
716         struct spi_device *spi = priv->spi;
717         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
718
719         dev_dbg(&spi->dev, "%s\n", __func__);
720
721         /* Disable and clear pending interrupts */
722         mcp251x_write_reg(spi, CANINTE, 0x00);
723         mcp251x_write_reg(spi, CANINTF, 0x00);
724
725         priv->force_quit = 1;
726         disable_irq(spi->irq);
727         flush_workqueue(priv->wq);
728
729         mcp251x_write_reg(spi, TXBCTRL(0), 0);
730         if (priv->tx_skb) {
731                 net->stats.tx_errors++;
732                 dev_kfree_skb(priv->tx_skb);
733                 priv->tx_skb = NULL;
734         }
735
736         mcp251x_hw_sleep(spi);
737
738         if (pdata->transceiver_enable)
739                 pdata->transceiver_enable(0);
740
741         return 0;
742 }
743
744 static int mcp251x_do_get_state(struct net_device *net, enum can_state  *state)
745 {
746         struct mcp251x_priv *priv = netdev_priv(net);
747         struct spi_device *spi = priv->spi;
748         u8 eflag;
749
750         eflag = mcp251x_read_reg(spi, EFLG);
751
752         if (eflag & EFLG_TXBO)
753                 *state = CAN_STATE_BUS_OFF;
754         else if (eflag & (EFLG_RXEP | EFLG_TXEP))
755                 *state = CAN_STATE_BUS_PASSIVE;
756         else if (eflag & EFLG_EWARN)
757                 *state = CAN_STATE_BUS_WARNING;
758         else
759                 *state = CAN_STATE_ACTIVE;
760
761         return 0;
762 }
763
764 static void mcp251x_tx_work_handler(struct work_struct *ws)
765 {
766         struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
767                                                  tx_work);
768         struct spi_device *spi = priv->spi;
769         struct can_frame *frame;;
770
771         dev_dbg(&spi->dev, "%s\n", __func__);
772
773         if (priv->tx_skb) {
774                 frame = (struct can_frame *)priv->tx_skb->data;
775                 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
776                         frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
777                 mcp251x_hw_tx(spi, frame, 0);
778         }
779 }
780
781 static void mcp251x_irq_work_handler(struct work_struct *ws)
782 {
783         struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
784                                                  irq_work);
785         struct spi_device *spi = priv->spi;
786         struct net_device *net = priv->net;
787         u8 intf;
788         u8 txbnctrl;
789         /* the next limitation is needed so we give some time to the
790          * tx workqueue */
791 #define MAX_LOOPS 10
792         int loops;
793
794         if (priv->after_suspend) {
795                 /* Wait whilst the device wakes up */
796                 mdelay(10);
797                 mcp251x_hw_reset(spi);
798                 mcp251x_setup(net, priv, spi);
799                 if (priv->after_suspend & AFTER_SUSPEND_UP) {
800                         netif_device_attach(net);
801                         /* clear since we lost tx buffer */
802                         if (priv->tx_skb) {
803                                 net->stats.tx_errors++;
804                                 dev_kfree_skb(priv->tx_skb);
805                                 priv->tx_skb = NULL;
806                                 netif_wake_queue(net);
807                         }
808                         mcp251x_set_normal_mode(spi);
809                 } else
810                         mcp251x_hw_sleep(spi);
811                 priv->after_suspend = 0;
812                 return;
813         }
814
815         loops = 0;
816         while (!priv->force_quit && !freezing(current) && loops < MAX_LOOPS) {
817                 if (priv->restart_tx) {
818                         priv->restart_tx = 0;
819                         dev_warn(&spi->dev,
820                                  "timeout in txing a packet, restarting\n");
821                         mcp251x_write_reg(spi, TXBCTRL(0), 0);
822                         if (priv->tx_skb) {
823                                 net->stats.tx_errors++;
824                                 dev_kfree_skb(priv->tx_skb);
825                                 priv->tx_skb = NULL;
826                         }
827                         netif_wake_queue(net);
828                 }
829
830                 if (priv->wake) {
831                         /* Wait whilst the device wakes up */
832                         mdelay(10);
833                         priv->wake = 0;
834                 }
835
836                 intf = mcp251x_read_reg(spi, CANINTF);
837                 if (intf == 0x00)
838                         break;
839                 mcp251x_write_bits(spi, CANINTF, intf, 0x00);
840
841                 dev_dbg(&spi->dev, "interrupt:%s%s%s%s%s%s%s%s\n",
842                         (intf & CANINTF_MERRF) ? " MERR" : "",
843                         (intf & CANINTF_WAKIF) ? " WAK" : "",
844                         (intf & CANINTF_ERRIF) ? " ERR" : "",
845                         (intf & CANINTF_TX2IF) ? " TX2" : "",
846                         (intf & CANINTF_TX1IF) ? " TX1" : "",
847                         (intf & CANINTF_TX0IF) ? " TX0" : "",
848                         (intf & CANINTF_RX1IF) ? " RX1" : "",
849                         (intf & CANINTF_RX0IF) ? " RX0" : "");
850
851                 if (intf & CANINTF_WAKIF)
852                         complete(&priv->awake);
853
854                 if (intf & CANINTF_MERRF) {
855                         /* if there are no pending Tx buffers, restart queue */
856                         txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
857                         if (!(txbnctrl & TXBCTRL_TXREQ)) {
858                                 if (priv->tx_skb) {
859                                         net->stats.tx_errors++;
860                                         dev_kfree_skb(priv->tx_skb);
861                                         priv->tx_skb = NULL;
862                                 }
863                                 netif_wake_queue(net);
864                         }
865                 }
866
867                 if (intf & CANINTF_ERRIF) {
868                         struct sk_buff *skb;
869                         struct can_frame *frame = NULL;
870                         u8 eflag = mcp251x_read_reg(spi, EFLG);
871
872                         dev_dbg(&spi->dev, "EFLG = 0x%02x\n", eflag);
873
874                         /* Create error frame */
875                         skb = dev_alloc_skb(sizeof(struct can_frame));
876                         if (skb) {
877                                 frame = (struct can_frame *)
878                                         skb_put(skb, sizeof(struct can_frame));
879                                 frame->can_id = CAN_ERR_FLAG;
880                                 frame->can_dlc = CAN_ERR_DLC;
881
882                                 skb->dev = net;
883                                 skb->protocol = __constant_htons(ETH_P_CAN);
884                                 skb->pkt_type = PACKET_BROADCAST;
885                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
886
887                                 /* Set error frame flags based on bus state */
888                                 if (eflag & EFLG_TXBO) {
889                                         frame->can_id |= CAN_ERR_BUSOFF;
890                                 } else if (eflag & EFLG_TXEP) {
891                                         frame->can_id |= CAN_ERR_CRTL;
892                                         frame->data[1] |=
893                                           CAN_ERR_CRTL_TX_PASSIVE;
894                                 } else if (eflag & EFLG_RXEP) {
895                                         frame->can_id |= CAN_ERR_CRTL;
896                                         frame->data[1] |=
897                                           CAN_ERR_CRTL_RX_PASSIVE;
898                                 } else if (eflag & EFLG_TXWAR) {
899                                         frame->can_id |= CAN_ERR_CRTL;
900                                         frame->data[1] |=
901                                           CAN_ERR_CRTL_TX_WARNING;
902                                 } else if (eflag & EFLG_RXWAR) {
903                                         frame->can_id |= CAN_ERR_CRTL;
904                                         frame->data[1] |=
905                                           CAN_ERR_CRTL_RX_WARNING;
906                                 }
907                         }
908
909                         if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
910                                 if (eflag & EFLG_RX0OVR)
911                                         net->stats.rx_over_errors++;
912                                 if (eflag & EFLG_RX1OVR)
913                                         net->stats.rx_over_errors++;
914                                 if (frame) {
915                                         frame->can_id |= CAN_ERR_CRTL;
916                                         frame->data[1] =
917                                           CAN_ERR_CRTL_RX_OVERFLOW;
918                                 }
919                         }
920                         mcp251x_write_reg(spi, EFLG, 0x00);
921
922                         if (skb)
923                                 netif_rx(skb);
924                 }
925
926                 if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
927                         if (priv->tx_skb) {
928                                 net->stats.tx_packets++;
929                                 net->stats.tx_bytes +=
930                                         ((struct can_frame *)
931                                          (priv->tx_skb->data))->can_dlc;
932                                 dev_kfree_skb(priv->tx_skb);
933                                 priv->tx_skb = NULL;
934                         }
935                         netif_wake_queue(net);
936                 }
937
938                 if (intf & CANINTF_RX0IF)
939                         mcp251x_hw_rx(spi, 0);
940
941                 if (intf & CANINTF_RX1IF)
942                         mcp251x_hw_rx(spi, 1);
943
944                 loops++;
945         }
946
947         mcp251x_read_reg(spi, CANSTAT);
948
949         dev_dbg(&spi->dev, "interrupt ended\n");
950 }
951
952 static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
953 {
954         struct net_device *net = (struct net_device *)dev_id;
955         struct mcp251x_priv *priv = netdev_priv(net);
956
957         dev_dbg(&priv->spi->dev, "%s: irq\n", __func__);
958         /* Schedule bottom half */
959         if (!work_pending(&priv->irq_work))
960                 queue_work(priv->wq, &priv->irq_work);
961
962         return IRQ_HANDLED;
963 }
964
965 static void mcp251x_tx_timeout(struct net_device *net)
966 {
967         struct mcp251x_priv *priv = netdev_priv(net);
968
969         priv->restart_tx = 1;
970         queue_work(priv->wq, &priv->irq_work);
971 }
972
973 static struct net_device *alloc_mcp251x_netdev(int sizeof_priv)
974 {
975         struct net_device *net;
976         struct mcp251x_priv *priv;
977
978         net = alloc_candev(sizeof_priv);
979         if (!net)
980                 return NULL;
981
982         priv = netdev_priv(net);
983
984         net->open               = mcp251x_open;
985         net->stop               = mcp251x_stop;
986         net->hard_start_xmit    = mcp251x_hard_start_xmit;
987         net->tx_timeout         = mcp251x_tx_timeout;
988         net->watchdog_timeo     = HZ;
989
990         priv->can.bittiming_const = &mcp251x_bittiming_const;
991         priv->can.do_get_state    = mcp251x_do_get_state;
992         priv->can.do_set_mode     = mcp251x_do_set_mode;
993
994         priv->net = net;
995
996         return net;
997 }
998
999 static int __devinit mcp251x_can_probe(struct spi_device *spi)
1000 {
1001         struct net_device *net;
1002         struct mcp251x_priv *priv;
1003         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1004         int ret = -ENODEV;
1005
1006         if (!pdata) {
1007                 /* Platform data is required for osc freq */
1008                 goto error_out;
1009         }
1010
1011         /* Allocate can/net device */
1012         net = alloc_mcp251x_netdev(sizeof(struct mcp251x_priv));
1013         if (!net) {
1014                 ret = -ENOMEM;
1015                 goto error_alloc;
1016         }
1017
1018         priv = netdev_priv(net);
1019         dev_set_drvdata(&spi->dev, priv);
1020
1021         priv->spi = spi;
1022         mutex_init(&priv->spi_lock);
1023
1024         priv->can.bittiming.clock = pdata->oscillator_frequency / 2;
1025
1026         /* If requested, allocate DMA buffers */
1027         if (mcp251x_enable_dma) {
1028                 spi->dev.coherent_dma_mask = DMA_32BIT_MASK;
1029
1030                 /* Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1031                    that much and share it between Tx and Rx DMA buffers. */
1032                 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1033                         PAGE_SIZE, &priv->spi_tx_dma, GFP_DMA);
1034
1035                 if (priv->spi_tx_buf) {
1036                         priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
1037                                 (PAGE_SIZE / 2));
1038                         priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1039                                 (PAGE_SIZE / 2));
1040                 } else {
1041                         /* Fall back to non-DMA */
1042                         mcp251x_enable_dma = 0;
1043                 }
1044         }
1045
1046         /* Allocate non-DMA buffers */
1047         if (!mcp251x_enable_dma) {
1048                 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1049                 if (!priv->spi_tx_buf) {
1050                         ret = -ENOMEM;
1051                         goto error_tx_buf;
1052                 }
1053                 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1054                 if (!priv->spi_tx_buf) {
1055                         ret = -ENOMEM;
1056                         goto error_rx_buf;
1057                 }
1058         }
1059
1060         if (pdata->power_enable)
1061                 pdata->power_enable(1);
1062
1063         /* Call out to platform specific setup */
1064         if (pdata->board_specific_setup)
1065                 pdata->board_specific_setup(spi);
1066
1067         SET_NETDEV_DEV(net, &spi->dev);
1068
1069         priv->wq = create_freezeable_workqueue("mcp251x_wq");
1070
1071         INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1072         INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
1073
1074         init_completion(&priv->awake);
1075
1076         /* Configure the SPI bus */
1077         spi->mode = SPI_MODE_0;
1078         spi->bits_per_word = 8;
1079         spi_setup(spi);
1080
1081         /* Register IRQ */
1082         if (request_irq(spi->irq, mcp251x_can_isr,
1083                         IRQF_TRIGGER_FALLING, DEVICE_NAME, net) < 0) {
1084                 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1085                 goto error_irq;
1086         }
1087         disable_irq(spi->irq);
1088
1089         mcp251x_hw_reset(spi);
1090         mcp251x_hw_sleep(spi);
1091
1092         if (pdata->transceiver_enable)
1093                 pdata->transceiver_enable(0);
1094
1095         ret = register_netdev(net);
1096         if (ret >= 0) {
1097                 dev_info(&spi->dev, "probed\n");
1098                 return ret;
1099         }
1100
1101         free_irq(spi->irq, net);
1102 error_irq:
1103         if (!mcp251x_enable_dma)
1104                 kfree(priv->spi_rx_buf);
1105 error_rx_buf:
1106         if (!mcp251x_enable_dma)
1107                 kfree(priv->spi_tx_buf);
1108 error_tx_buf:
1109         free_candev(net);
1110         if (mcp251x_enable_dma) {
1111                 dma_free_coherent(&spi->dev, PAGE_SIZE,
1112                         priv->spi_tx_buf, priv->spi_tx_dma);
1113         }
1114 error_alloc:
1115         dev_err(&spi->dev, "probe failed\n");
1116 error_out:
1117         return ret;
1118 }
1119
1120 static int __devexit mcp251x_can_remove(struct spi_device *spi)
1121 {
1122         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1123         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1124         struct net_device *net = priv->net;
1125
1126         free_irq(spi->irq, net);
1127         priv->force_quit = 1;
1128         flush_workqueue(priv->wq);
1129         destroy_workqueue(priv->wq);
1130
1131         if (mcp251x_enable_dma) {
1132                 dma_free_coherent(&spi->dev, PAGE_SIZE,
1133                         priv->spi_tx_buf, priv->spi_tx_dma);
1134         } else {
1135                 kfree(priv->spi_tx_buf);
1136                 kfree(priv->spi_rx_buf);
1137         }
1138
1139         unregister_netdev(net);
1140         free_candev(net);
1141
1142         if (pdata->power_enable)
1143                 pdata->power_enable(0);
1144
1145         return 0;
1146 }
1147
1148 #ifdef CONFIG_PM
1149 static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1150 {
1151         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1152         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1153         struct net_device *net = priv->net;
1154
1155         if (netif_running(net)) {
1156                 netif_device_detach(net);
1157
1158                 mcp251x_hw_sleep(spi);
1159                 if (pdata->transceiver_enable)
1160                         pdata->transceiver_enable(0);
1161                 priv->after_suspend = AFTER_SUSPEND_UP;
1162         } else
1163                 priv->after_suspend = AFTER_SUSPEND_DOWN;
1164
1165         if (pdata->power_enable) {
1166                 pdata->power_enable(0);
1167                 priv->after_suspend |= AFTER_SUSPEND_POWER;
1168         }
1169
1170         return 0;
1171 }
1172
1173 static int mcp251x_can_resume(struct spi_device *spi)
1174 {
1175         struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1176         struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1177
1178         if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1179                 pdata->power_enable(1);
1180                 queue_work(priv->wq, &priv->irq_work);
1181         } else {
1182                 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1183                         if (pdata->transceiver_enable)
1184                                 pdata->transceiver_enable(1);
1185                         queue_work(priv->wq, &priv->irq_work);
1186                 } else
1187                         priv->after_suspend = 0;
1188         }
1189         return 0;
1190 }
1191 #else
1192 #define mcp251x_can_suspend NULL
1193 #define mcp251x_can_resume NULL
1194 #endif
1195
1196 static struct spi_driver mcp251x_can_driver = {
1197         .driver = {
1198                 .name           = DEVICE_NAME,
1199                 .bus            = &spi_bus_type,
1200                 .owner          = THIS_MODULE,
1201         },
1202
1203         .probe          = mcp251x_can_probe,
1204         .remove         = __devexit_p(mcp251x_can_remove),
1205         .suspend        = mcp251x_can_suspend,
1206         .resume         = mcp251x_can_resume,
1207 };
1208
1209 static int __init mcp251x_can_init(void)
1210 {
1211         return spi_register_driver(&mcp251x_can_driver);
1212 }
1213
1214 static void __exit mcp251x_can_exit(void)
1215 {
1216         spi_unregister_driver(&mcp251x_can_driver);
1217 }
1218
1219 module_init(mcp251x_can_init);
1220 module_exit(mcp251x_can_exit);
1221
1222 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1223               "Christian Pellegrin <chripell@evolware.org>");
1224 MODULE_DESCRIPTION("Microchip 251x CAN driver");
1225 MODULE_LICENSE("GPL v2");