]> rtime.felk.cvut.cz Git - lincan.git/blob - embedded/app/usbcan/lpc17xx_can.c
383b6c7ca0924a4a9a2f316d72c4b00e8ad49536
[lincan.git] / embedded / app / usbcan / lpc17xx_can.c
1 #include "can/lpc17xx_can.h"
2
3 static void CAN_configPin();
4 static void CAN_setBusTiming(struct canchip_t *chip);
5
6 extern struct canhardware_t *hardware_p;
7
8 //---------------------------------------------------------------------------------
9 //---------------------------------------------------------------------------------
10
11
12 static inline void can_write_register(struct canchip_t *chip, uint32_t data, uint32_t reg_offs){
13
14         uint32_t address = chip->chip_base_addr + reg_offs;
15         (*(volatile uint32_t*)(address)) = data;
16
17 }
18
19 static inline uint32_t can_read_register(struct canchip_t *chip, uint32_t reg_offs){
20
21         uint32_t address = chip->chip_base_addr + reg_offs;
22         return (*(volatile uint32_t*)(address));
23
24 }
25
26 //---------------------------------------------------------------------------------
27 //---------------------------------------------------------------------------------
28
29
30 // interrupt handler
31 // for transmitting - irq when one message was transmitted (for check if another message is pending in can msg queue)
32 // for receiving - irq when message was received and is available in Receive buffer
33
34 void CAN_IRQHandler(){
35
36         uint32_t i;
37
38         struct canchip_t *chip;
39         chip = hardware_p->candevice[0]->chip[0];
40
41         i = can_read_register(chip, CAN_ICR_o);
42
43         if(i & (CAN_ICR_TI1 | CAN_ICR_RI))
44                 lpc17xx_irq_handler(0, chip);
45
46         if(i & CAN_ICR_DOI)
47                 can_write_register(chip, CAN_CMR_CDO, CAN_CMR_o);
48         
49         
50 }
51
52 //---------------------------------------------------------------------------------
53 //---------------------------------------------------------------------------------
54
55
56 // board can-lmc1 specific functions:
57
58 int can_lmc1_register(struct hwspecops_t *hwspecops){
59
60         hwspecops->request_io = can_lmc1_request_io;
61         hwspecops->reset = can_lmc1_reset;
62         hwspecops->init_hw_data = can_lmc1_init_hw_data;
63         hwspecops->init_chip_data = can_lmc1_init_chip_data;
64         hwspecops->init_obj_data = can_lmc1_init_obj_data;
65         hwspecops->write_register = can_lmc1_write_register;
66         hwspecops->read_register = can_lmc1_read_register;
67
68         return 0;
69 }
70
71 int can_lmc1_init_hw_data(struct candevice_t *candev){
72
73         candev->res_addr=0;
74         candev->nr_82527_chips=0;
75         candev->nr_sja1000_chips=0;
76         candev->nr_all_chips=1;
77         candev->flags |= 0;
78
79         return 0;
80 }
81
82 int can_lmc1_init_chip_data(struct candevice_t *candev, int chipnr){
83         
84         lpc17xx_fill_chipspecops(candev->chip[chipnr]);
85
86         candev->chip[chipnr]->flags|= CHIP_IRQ_CUSTOM;
87
88         //debug
89         candev->chip[chipnr]->chip_base_addr = CAN1_REGS_BASE;
90
91         candev->chip[chipnr]->chip_data=(void *)malloc(sizeof(struct can_lmc1_chip_data));
92         if (candev->chip[chipnr]->chip_data==NULL)
93                 return -ENOMEM;
94
95         return 0;
96 }
97
98 int can_lmc1_init_obj_data(struct canchip_t *chip, int objnr){
99         
100         return 0;
101 }
102
103 void can_lmc1_write_register(unsigned data, unsigned long address){
104         (*(volatile uint32_t*)(address)) = data;
105 }
106
107 unsigned can_lmc1_read_register(unsigned long address){
108         return (*(volatile uint32_t*)(address));
109 }
110
111 int can_lmc1_request_io(struct candevice_t *candev)
112 {
113         return 0;
114 }
115
116 int can_lmc1_reset(struct candevice_t *candev)
117 {
118         return 0;
119 }
120
121
122 //---------------------------------------------------------------------------------
123 //---------------------------------------------------------------------------------
124
125
126 // lpc17xx can chip specific functions:
127
128
129 int lpc17xx_chip_config(struct canchip_t *chip){
130
131         CAN_init(chip);
132
133         return 0;
134 }
135
136 int lpc17xx_pre_write_config(struct canchip_t *chip, struct msgobj_t *obj,
137                                                         struct canmsg_t *msg)
138 {
139         
140         CAN_send(chip, msg);
141
142         return 0;
143 }
144
145 int lpc17xx_send_msg(struct canchip_t *chip, struct msgobj_t *obj,
146                                                         struct canmsg_t *msg)
147 {
148         
149         // write transmission request
150         can_write_register(chip, (CAN_CMR_TR | CAN_CMR_STB1), CAN_CMR_o); 
151
152         return 0;
153 }
154
155 int lpc17xx_wakeup_tx(struct canchip_t *chip, struct msgobj_t *obj)
156 {
157
158         can_preempt_disable();
159
160         can_msgobj_set_fl(obj,TX_PENDING);
161         can_msgobj_set_fl(obj,TX_REQUEST);
162
163         while(!can_msgobj_test_and_set_fl(obj,TX_LOCK)){
164                 can_msgobj_clear_fl(obj,TX_REQUEST);
165
166                 if (can_read_register(chip, CAN_SR_o) & CAN_SR_TBS1){
167                         obj->tx_retry_cnt=0;
168                         lpc17xx_irq_write_handler(chip, obj);
169                 }
170
171                 can_msgobj_clear_fl(obj,TX_LOCK);
172                 if(!can_msgobj_test_fl(obj,TX_REQUEST)) break;
173
174         }
175
176         can_preempt_enable();
177
178         return 0;
179 }
180
181 int lpc17xx_irq_handler(int irq, struct canchip_t *chip)
182 {
183
184         struct msgobj_t *obj;   
185         obj = chip->msgobj[0];
186
187         if(can_read_register(chip, CAN_SR_o) & CAN_SR_RBS) {
188                         lpc17xx_read(chip,obj);
189                         obj->ret = 0;
190         }
191         
192         
193         if ((can_msgobj_test_fl(obj,TX_PENDING)) || (can_msgobj_test_fl(obj,TX_REQUEST))) {
194                         
195                 can_msgobj_set_fl(obj,TX_REQUEST);
196
197                 while(!can_msgobj_test_and_set_fl(obj,TX_LOCK)){
198
199                         obj->ret=0;
200                         can_msgobj_clear_fl(obj,TX_REQUEST);
201
202                         if (can_read_register(chip, CAN_SR_o) & CAN_SR_TBS1){
203                                 obj->tx_retry_cnt=0;
204                                 lpc17xx_irq_write_handler(chip, obj);
205                         }
206
207                         can_msgobj_clear_fl(obj,TX_LOCK);
208                         if(!can_msgobj_test_fl(obj,TX_REQUEST)) break;
209
210                 }       
211         }
212
213
214         return CANCHIP_IRQ_HANDLED;
215
216 }
217
218 void lpc17xx_irq_write_handler(struct canchip_t *chip, struct msgobj_t *obj)
219 {
220         int cmd;
221
222         if(obj->tx_slot){
223                 /* Do local transmitted message distribution if enabled */
224                 if (processlocal){
225                         /* fill CAN message timestamp */
226                         can_filltimestamp(&obj->tx_slot->msg.timestamp);
227
228                         obj->tx_slot->msg.flags |= MSG_LOCAL;
229                         canque_filter_msg2edges(obj->qends, &obj->tx_slot->msg);
230                 }
231                 /* Free transmitted slot */
232                 canque_free_outslot(obj->qends, obj->tx_qedge, obj->tx_slot);
233                 obj->tx_slot=NULL;
234         }
235
236         can_msgobj_clear_fl(obj,TX_PENDING);
237         cmd=canque_test_outslot(obj->qends, &obj->tx_qedge, &obj->tx_slot);
238         if(cmd<0)
239                 return;
240         can_msgobj_set_fl(obj,TX_PENDING);
241
242         if (chip->chipspecops->pre_write_config(chip, obj, &obj->tx_slot->msg)) {
243                 obj->ret = -1;
244                 canque_notify_inends(obj->tx_qedge, CANQUEUE_NOTIFY_ERRTX_PREP);
245                 canque_free_outslot(obj->qends, obj->tx_qedge, obj->tx_slot);
246                 obj->tx_slot=NULL;
247                 return;
248         }
249         if (chip->chipspecops->send_msg(chip, obj, &obj->tx_slot->msg)) {
250                 obj->ret = -1;
251                 canque_notify_inends(obj->tx_qedge, CANQUEUE_NOTIFY_ERRTX_SEND);
252                 canque_free_outslot(obj->qends, obj->tx_qedge, obj->tx_slot);
253                 obj->tx_slot=NULL;
254                 return;
255         }
256
257 }
258
259 void lpc17xx_read(struct canchip_t *chip, struct msgobj_t *obj) {
260
261
262                 CAN_recv(chip, &obj->rx_msg);
263                 
264                 // fill CAN message timestamp
265                 can_filltimestamp(&obj->rx_msg.timestamp);
266
267                 canque_filter_msg2edges(obj->qends, &obj->rx_msg);
268
269                 // release Receive buffer
270                 can_write_register(chip, CAN_CMR_RRB, CAN_CMR_o);
271
272 }
273
274 int lpc17xx_fill_chipspecops(struct canchip_t *chip){
275
276         chip->max_objects=1;
277         
278         lpc17xx_register(chip->chipspecops);
279
280         return 0;
281 }
282
283 int lpc17xx_register(struct chipspecops_t *chipspecops){
284
285         CANMSG("initializing lpc17xx can chip operations\n");
286
287         chipspecops->attach_to_chip = lpc17xx_attach_to_chip;
288         chipspecops->pre_read_config = lpc17xx_pre_read_config;
289         chipspecops->chip_config = lpc17xx_chip_config;
290         chipspecops->pre_write_config = lpc17xx_pre_write_config;
291         chipspecops->send_msg = lpc17xx_send_msg;
292         chipspecops->wakeup_tx = lpc17xx_wakeup_tx;
293         chipspecops->irq_handler = lpc17xx_irq_handler;
294
295         return 0;       
296
297 }
298
299
300 int lpc17xx_attach_to_chip(struct canchip_t *chip){
301
302         return 0;
303 }
304
305 int lpc17xx_pre_read_config(struct canchip_t *chip, struct msgobj_t *obj){
306
307         return 1;
308 }
309
310
311
312 //---------------------------------------------------------------------------------
313 //---------------------------------------------------------------------------------
314
315
316 static void CAN_configPin(){
317
318 //      CAN1 - select P0.0 as RD1. P0.1 as TD1
319
320         uint32_t pinsel0;
321         uint32_t pinmode0;
322         uint32_t pinmode_od0;
323         uint8_t pinsel0_val = 1;
324         uint8_t pinmode0_val = 0;
325         uint8_t pinmode_od0_val = 0;
326
327
328         pinsel0 = PINCON->PINSEL0;
329         pinsel0 &= ~CAN1_RX_MASK;
330         pinsel0 &= ~CAN1_TX_MASK;
331         pinsel0 |= __val2mfld(CAN1_RX_MASK, pinsel0_val);
332         pinsel0 |= __val2mfld(CAN1_TX_MASK, pinsel0_val);
333         PINCON->PINSEL0 = pinsel0;
334
335         pinmode0 = PINCON->PINMODE0;
336         pinmode0 &= ~CAN1_RX_MASK;
337         pinmode0 &= ~CAN1_TX_MASK;
338         pinmode0 |= __val2mfld(CAN1_RX_MASK, pinmode0_val);
339         pinmode0 |= __val2mfld(CAN1_TX_MASK, pinmode0_val);
340         PINCON->PINMODE0 = pinmode0;
341
342         pinmode_od0 = PINCON->PINMODE_OD0;
343         if (pinmode_od0_val){
344                 pinmode_od0 |= CAN1_RX_BIT;
345                 pinmode_od0 |= CAN1_TX_BIT;
346         }
347         else{
348                 pinmode_od0 &= ~CAN1_RX_BIT;
349                 pinmode_od0 &= ~CAN1_TX_BIT;
350         }
351         PINCON->PINMODE_OD0 = pinmode_od0;
352         
353
354 }
355
356 void CAN_recv(struct canchip_t *chip, canmsg_t* msg){
357
358         volatile uint32_t data;
359         uint32_t i;
360
361         // read data lenght
362         msg->length = (can_read_register(chip, CAN_RFS_o)>>16) & 0xF;
363
364         // read identifier
365         msg->id = can_read_register(chip, CAN_RID_o);
366
367         // EXT frame
368         if(can_read_register(chip, CAN_RFS_o) & CAN_RFS_EXT)
369                 msg->flags |= MSG_EXT;
370         else
371                 msg->flags &= ~MSG_EXT;
372
373         
374         // RTR frame
375         if(can_read_register(chip, CAN_RFS_o) & CAN_RFS_RTR)
376                 msg->flags |= MSG_RTR;
377         else
378                 msg->flags &= ~MSG_RTR;
379
380
381         // read data            
382         data = can_read_register(chip, CAN_RDA_o);              
383         for(i=0; i<4; i++)
384                 msg->data[i] = (data>>(i*8)) & 0xFF;
385
386         data = can_read_register(chip, CAN_RDB_o);      
387         for(i=4; i<8; i++)
388                 msg->data[i] = (data>>((i-4)*8)) & 0xFF;
389
390 }
391
392 void CAN_send(struct canchip_t *chip, canmsg_t* msg){
393
394         volatile uint32_t data;
395         volatile uint32_t can_tfi1;
396         uint32_t i;
397
398         // check status of TB1
399         while (!(can_read_register(chip, CAN_SR_o) & CAN_SR_TBS1)){}    
400
401         can_tfi1 = can_read_register(chip, CAN_TFI1_o);
402
403         can_tfi1 &= ~0x000F0000;
404         can_tfi1 |= (msg->length)<<16;
405
406         // EXT frame
407         if(msg->flags & MSG_EXT)
408                 can_tfi1 |= CAN_TFI1_EXT;
409         else
410                 can_tfi1 &= ~CAN_TFI1_EXT;
411                 
412         // RTR frame
413         if(msg->flags & MSG_RTR)
414                 can_tfi1 |= CAN_TFI1_RTR;
415         else
416                 can_tfi1 &= ~CAN_TFI1_RTR;
417
418         can_write_register(chip, can_tfi1, CAN_TFI1_o);
419
420
421         // write CAN ID
422         can_write_register(chip, msg->id, CAN_TID1_o);
423
424
425         // write first 4 data bytes
426         data=0;
427         for(i=0; i<4; i++)
428                 data |= (msg->data[i])<<(i*8);
429
430         can_write_register(chip, data, CAN_TDA1_o);
431
432         // write second 4 data bytes
433         data=0;
434         for(i=4; i<8; i++)
435                 data |= (msg->data[i])<<((i-4)*8);
436         
437         can_write_register(chip, data, CAN_TDB1_o);
438
439 }
440
441 void CAN_setBusTiming(struct canchip_t *chip){
442
443         uint32_t PCLK_CAN;
444         uint32_t res;
445
446         uint8_t tq_numb; // number of time quantum
447         uint8_t TSEG1, TSEG2;
448         uint8_t BRP;
449         uint8_t SJW;
450         uint8_t SAM;
451         uint8_t div;
452
453         // 0 = the bus is sampled once
454         SAM = 0;
455
456         // the Synchronization Jump Width (this value plus one) 
457         SJW = 3;
458
459         // get clock divide for CAN1    
460         div = __mfld2val(PCLK_CAN1_MASK, SC->PCLKSEL0);
461         switch(div){
462                 case 0:
463                         div = 4;
464                         break;
465                 case 1:
466                         div = 1;
467                         break;
468                 case 2:
469                         div = 2;
470                         break;
471                 case 3:
472                         // only for CAN, for other peripherials '11' value means div=8
473                         div = 6;
474                         break;
475         }
476
477
478         PCLK_CAN = system_frequency / div;
479
480         res = PCLK_CAN / (chip->baudrate);
481
482
483         // calculation of tq_numb - number of time quantum (must be in <8,25>)
484         // tq_numb = TSEG1 + TSEG2 + 3
485
486         for(tq_numb=25; tq_numb>=8; tq_numb--){
487                 
488                 if ((res%tq_numb)==0){
489                 
490                         // Baud Rate Prescaler. The PCLK clock is divided by (this value plus one) to produce the CAN clock.
491                         BRP = (res / tq_numb) - 1;
492
493                         // sync. segment allways 1 tq
494                         tq_numb--;
495
496                         // number of tq from the sample point to the next nominal Sync. point (this value plus one)                     
497                         TSEG2 = (tq_numb/3) - 1;
498
499                         // number of tq from Sync. point to the sample point (this value plus one)                      
500                         TSEG1 = tq_numb - (tq_numb/3) - 1;
501
502                         break;
503                 }
504         }
505
506         can_write_register(chip, ((SAM<<23)|(TSEG2<<20)|(TSEG1<<16)|(SJW<<14)|(BRP<<0)), CAN_BTR_o);
507
508 }
509
510 void CAN_init(struct canchip_t *chip){
511
512         uint32_t tmp;
513         uint32_t pclksel0;
514         uint32_t val;
515         uint32_t i;
516         
517         printf("CAN INIT, baudrate: %d\n", chip->baudrate);
518
519         // configure CAN1 pins 
520         CAN_configPin();
521
522         // turn on power and clock for CAN1 
523         SC->PCONP |= PCCAN1;
524         
525         // set clock divide for CAN1 
526
527         val = 0x00; // 00       PCLK_peripheral = CCLK/4 
528         pclksel0 = SC->PCLKSEL0;
529         pclksel0 &= ~PCLK_CAN1_MASK;
530         pclksel0 &= ~PCLK_CAN2_MASK;
531         pclksel0 &= ~PCLK_ACF_MASK;
532         pclksel0 |= __val2mfld(PCLK_CAN1_MASK, val);
533         pclksel0 |= __val2mfld(PCLK_CAN2_MASK, val);
534         pclksel0 |= __val2mfld(PCLK_ACF_MASK, val);
535         SC->PCLKSEL0 = pclksel0;
536         
537         // enter reset mode
538         can_write_register(chip, 1, CAN_MOD_o);
539
540         // disable all CAN interrupts
541         can_write_register(chip, 0, CAN_IER_o);
542
543         // reset value of Global Status Register (global controller status and error counters) 
544         can_write_register(chip, 0x3C, CAN_GSR_o);
545
546         // request command to release Rx, Tx buffer and clear data overrun 
547         can_write_register(chip, (CAN_CMR_AT | CAN_CMR_RRB | CAN_CMR_CDO), CAN_CMR_o);
548
549         // read to clear interrupt pending in Interrupt Capture Register 
550         tmp = can_read_register(chip, CAN_ICR_o);
551
552         // set bus timing 
553         CAN_setBusTiming(chip);
554
555         // return to normal operating 
556         can_write_register(chip, 0, CAN_MOD_o);
557
558
559         //--------------------------
560
561         // Acceptance Filter Off Mode
562         CANAF_AFMR = 0x01;
563
564         // clear RAM masks
565         for (i = 0; i < 512; i++) {
566                 CANAF_RAM->mask[i] = 0x00;
567         }
568
569         CANAF_SFF_sa = 0x00;
570         CANAF_SFF_GRP_sa = 0x00;
571         CANAF_EFF_sa = 0x00;
572         CANAF_EFF_GRP_sa = 0x00;
573         CANAF_ENDofTable = 0x00;
574
575         // Acceptance Filter Bypass Mode - all messages accepted
576         CANAF_AFMR = 0x02;
577
578         //--------------------------
579
580
581         // enable interrupt after transmit
582         // enable receive interrupt
583         // enable data overrun interrupt
584         can_write_register(chip, (CAN_IER_TIE1 | CAN_IER_RIE | CAN_IER_DOIE), CAN_IER_o);
585         
586         // enable CAN interrupt 
587         NVIC_EnableIRQ(CAN_IRQn);
588
589
590         
591 }
592