]> rtime.felk.cvut.cz Git - hubacji1/bcar.git/blobdiff - src/bcar.cc
Add car frame point and side getters
[hubacji1/bcar.git] / src / bcar.cc
index 9bf58213aa58d669908daa0d6050a57e376f2176..32b2b8869ded7e6a1ec7ea3dcae717e1198ef43e 100644 (file)
 #include <cmath>
-#include "bcar.h"
+#include "bcar.hh"
 
-// car frame
-double BicycleCar::lfx()
+namespace bcar {
+
+Point::Point(double x, double y) : x_(x), y_(y)
+{
+}
+
+Point::Point() : Point::Point(0.0, 0.0)
+{
+}
+
+double
+Point::x() const
+{
+       return this->x_;
+}
+
+void
+Point::x(double x)
+{
+       this->x_ = x;
+}
+
+double
+Point::y() const
+{
+       return this->y_;
+}
+
+void
+Point::y(double y)
+{
+       this->y_ = y;
+}
+
+double
+Point::min_angle_between(Point const& p1, Point const& p2) const
+{
+       double d1x = p1.x() - this->x();
+       double d1y = p1.y() - this->y();
+       double d2x = p2.x() - p1.x();
+       double d2y = p2.y() - p1.y();
+
+       double dot = d1x*d2x + d1y*d2y;
+       double d1 = sqrt(d1x*d1x + d1y*d1y);
+       double d2 = sqrt(d2x*d2x + d2y*d2y);
+
+       double delta = acos(dot / (d1 * d2));
+       return std::min(delta, M_PI - delta);
+}
+
+bool
+Point::inside_of(std::vector<Point> const& poly) const
+{
+       unsigned int num = poly.size();
+       unsigned int j = num - 1;
+       bool c = false;
+       for (unsigned int i = 0; i < num; i++) {
+               if (this->x() == poly[i].x() && this->y() == poly[i].y()) {
+                       return true;
+               }
+               if ((poly[i].y() > this->y()) != (poly[j].y() > this->y())) {
+                       auto slope1 = this->x() - poly[i].x();
+                       slope1 *= poly[j].y() - poly[i].y();
+                       auto slope2 = poly[j].x() - poly[i].x();
+                       slope2 *= this->y() - poly[i].y();
+                       auto slope = slope1 - slope2;
+                       if (slope == 0.0) {
+                               return true;
+                       }
+                       if ((slope < 0.0) != (poly[j].y() < poly[i].y())) {
+                               c = !c;
+                       }
+               }
+               j = i;
+       }
+       return c;
+}
+
+bool
+Point::on_right_side_of(Line const& li) const
+{
+       auto x1 = li.fp().x();
+       auto y1 = li.fp().y();
+       auto x2 = li.lp().x();
+       auto y2 = li.lp().y();
+       auto x3 = this->x_;
+       auto y3 = this->y_;
+       if (sgn((x3 - x1) * (y2 - y1) - (y3 - y1) * (x2 - x1)) < 0.0) {
+               return false;
+       } else {
+               return true;
+       }
+}
+
+void
+Point::rotate(Point const& c, double const angl)
+{
+       double px = this->x();
+       double py = this->y();
+       px -= c.x();
+       py -= c.y();
+       double nx = px * cos(angl) - py * sin(angl);
+       double ny = px * sin(angl) + py * cos(angl);
+       this->x(nx + c.x());
+       this->y(ny + c.y());
+}
+
+double
+Point::edist(Point const& p) const
+{
+       return sqrt(pow(p.x() - this->x_, 2.0) + pow(p.y() - this->y_, 2.0));
+}
+
+std::ostream&
+operator<<(std::ostream& out, Point const& p)
+{
+       out << "[" << p.x() << "," << p.y() << "]";
+       return out;
+}
+
+Line::Line(Point const& fp, Point const& lp): first(fp), last(lp),
+               intersection1(Point(0.0, 0.0)), intersection2(Point(0.0, 0.0))
+{
+}
+
+Point
+Line::fp() const&
+{
+       return this->first;
+}
+
+Point
+Line::lp() const&
+{
+       return this->last;
+}
+
+Point
+Line::in1() const&
+{
+       return this->intersection1;
+}
+
+Point
+Line::in2() const&
+{
+       return this->intersection2;
+}
+
+bool
+Line::intersects_with(Line const& li)
+{
+       auto x1 = this->fp().x();
+       auto y1 = this->fp().y();
+       auto x2 = this->lp().x();
+       auto y2 = this->lp().y();
+       auto x3 = li.fp().x();
+       auto y3 = li.fp().y();
+       auto x4 = li.lp().x();
+       auto y4 = li.lp().y();
+       double deno = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
+       if (deno == 0.0) {
+               return false;
+       }
+       double t = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4);
+       t /= deno;
+       double u = (x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3);
+       u *= -1.0;
+       u /= deno;
+       if (t < 0.0 || t > 1.0 || u < 0.0 || u > 1.0) {
+               return false;
+       }
+       this->intersection1.x(x1 + t * (x2 - x1));
+       this->intersection1.y(y1 + t * (y2 - y1));
+       return true;
+}
+
+bool
+Line::intersects_with(Point const& c, double const r)
+{
+       auto x1 = this->fp().x();
+       auto y1 = this->fp().y();
+       auto x2 = this->lp().x();
+       auto y2 = this->lp().y();
+       auto cx = c.x();
+       auto cy = c.y();
+       x2 -= cx;
+       x1 -= cx;
+       y2 -= cy;
+       y1 -= cy;
+       if (y1 == y2) {
+               y1 += 0.00001;
+       }
+       double dx = x2 - x1;
+       double dy = y2 - y1;
+       double dr = sqrt(dx*dx + dy*dy);
+       double D = x1*y2 - x2*y1;
+       if (r*r * dr*dr - D*D < 0.0) {
+               return false;
+       }
+       // intersection coordinates
+       double ix1 = (D*dy + sgn(dy)*dx*sqrt(r*r * dr*dr - D*D)) / (dr*dr);
+       ix1 += cx;
+       double ix2 = (D*dy - sgn(dy)*dx*sqrt(r*r * dr*dr - D*D)) / (dr*dr);
+       ix2 += cx;
+       double iy1 = (-D*dx + std::abs(dy)*sqrt(r*r * dr*dr - D*D)) / (dr*dr);
+       iy1 += cy;
+       double iy2 = (-D*dx - std::abs(dy)*sqrt(r*r * dr*dr - D*D)) / (dr*dr);
+       iy2 += cy;
+       this->intersection1.x(ix1);
+       this->intersection1.y(iy1);
+       this->intersection2.x(ix2);
+       this->intersection2.y(iy2);
+       return true;
+}
+
+double
+Line::len() const
+{
+       double dx = this->lp().x() - this->fp().x();
+       double dy = this->lp().y() - this->fp().y();
+       return sqrt(dx * dx + dy * dy);
+}
+
+std::ostream&
+operator<<(std::ostream& out, Line const& li)
+{
+       out << "[" << li.first << "," << li.last << "]";
+       return out;
+}
+
+Pose::Pose() : Point()
+{
+}
+
+Pose::Pose(double x, double y, double h) : Point(x, y), h_(h)
 {
-        double lfx = this->x();
-        lfx += (this->w() / 2) * cos(this->h() + M_PI / 2);
-        lfx += this->df() * cos(this->h());
-        lfx += this->sd() * cos(this->h());
-        return lfx;
 }
 
-double BicycleCar::lfy()
+double
+Pose::h() const
 {
-        double lfy = this->y();
-        lfy += (this->w() / 2) * sin(this->h() + M_PI / 2);
-        lfy += this->df() * sin(this->h());
-        lfy += this->sd() * sin(this->h());
-        return lfy;
+       return this->h_;
 }
 
-double BicycleCar::lrx()
+void
+Pose::h(double h)
 {
-        double lrx = this->x();
-        lrx += (this->w() / 2) * cos(this->h() + M_PI / 2);
-        lrx += -this->dr() * cos(this->h());
-        lrx += -this->sd() * cos(this->h());
-        return lrx;
+       while (h < -M_PI) {
+               h += 2 * M_PI;
+       }
+       while (h > +M_PI) {
+               h -= 2 * M_PI;
+       }
+       this->h_ = h;
 }
 
-double BicycleCar::lry()
+void
+Pose::set_pose(Pose const& p)
 {
-        double lry = this->y();
-        lry += (this->w() / 2) * sin(this->h() + M_PI / 2);
-        lry += -this->dr() * sin(this->h());
-        lry += -this->sd() * sin(this->h());
-        return lry;
+       this->x(p.x());
+       this->y(p.y());
+       this->h(p.h());
 }
 
-double BicycleCar::rrx()
+void
+Pose::rotate(Point const& c, double const angl)
 {
-        double rrx = this->x();
-        rrx += (this->w() / 2) * cos(this->h() - M_PI / 2);
-        rrx += -this->dr() * cos(this->h());
-        rrx += -this->sd() * cos(this->h());
-        return rrx;
+       Point::rotate(c, angl);
+       this->h(this->h() + angl);
 }
 
-double BicycleCar::rry()
+std::ostream&
+operator<<(std::ostream& out, Pose const& p)
 {
-        double rry = this->y();
-        rry += (this->w() / 2) * sin(this->h() - M_PI / 2);
-        rry += -this->dr() * sin(this->h());
-        rry += -this->sd() * sin(this->h());
-        return rry;
+       out << "[" << p.x() << "," << p.y() << "," << p.h() << "]";
+       return out;
 }
 
-double BicycleCar::rfx()
+double
+PoseRange::b() const
 {
-        double rfx = this->x();
-        rfx += (this->w() / 2) * cos(this->h() - M_PI / 2);
-        rfx += this->df() * cos(this->h());
-        rfx += this->sd() * cos(this->h());
-        return rfx;
+       return this->h();
 }
 
-double BicycleCar::rfy()
+void
+PoseRange::b(double b)
 {
-        double rfy = this->y();
-        rfy += (this->w() / 2) * sin(this->h() - M_PI / 2);
-        rfy += this->df() * sin(this->h());
-        rfy += this->sd() * sin(this->h());
-        return rfy;
+       this->h(b);
 }
+
+double
+PoseRange::e() const
+{
+       return this->e_;
+}
+
+void
+PoseRange::e(double e)
+{
+       while (e < -M_PI) {
+               e += 2 * M_PI;
+       }
+       while (e > +M_PI) {
+               e -= 2 * M_PI;
+       }
+       this->e_ = e;
+}
+
+void
+PoseRange::rotate(Point const& c, double const angl)
+{
+       Pose::rotate(c, angl);
+       this->e(this->e() + angl);
+}
+
+std::ostream&
+operator<<(std::ostream& out, PoseRange const& p)
+{
+       out << "[" << p.x() << "," << p.y() << "," << p.b() << "," << p.e();
+       out << "]";
+       return out;
+}
+
+double
+CarSize::ctc() const
+{
+       return this->curb_to_curb;
+}
+
+void
+CarSize::ctc(double ctc)
+{
+       this->curb_to_curb = ctc;
+}
+
+double
+CarSize::wb() const
+{
+       return this->wheelbase;
+}
+
+void
+CarSize::wb(double wb)
+{
+       this->wheelbase = wb;
+}
+
+double
+CarSize::w() const
+{
+       return this->width;
+}
+
+void
+CarSize::w(double w)
+{
+       this->width = w;
+}
+
+double
+CarSize::len() const
+{
+       return this->length;
+}
+
+void
+CarSize::len(double len)
+{
+       this->length = len;
+}
+
+double
+CarSize::df() const
+{
+       return this->distance_to_front;
+}
+
+void
+CarSize::df(double df)
+{
+       this->distance_to_front = df;
+}
+
+double
+CarSize::dr() const
+{
+       return this->len() - this->df();
+}
+
+double
+CarSize::mtr() const
+{
+       auto ctc2 = pow(this->ctc() / 2.0, 2.0);
+       auto wb2 = pow(this->wb(), 2.0);
+       return sqrt(ctc2 - wb2) - this->w() / 2.0;
+}
+
+double
+CarSize::iradi() const
+{
+       return this->mtr() - this->w() / 2;
+}
+
+double
+CarSize::ofradi() const
+{
+       auto mtrw2 = pow(this->mtr() + this->w() / 2.0, 2.0);
+       auto df2 = pow(this->df(), 2.0);
+       return sqrt(mtrw2 + df2);
+}
+
+double
+CarSize::orradi() const
+{
+       auto mtrw2 = pow(this->mtr() + this->w() / 2.0, 2.0);
+       auto dr2 = pow(this->dr(), 2.0);
+       return sqrt(mtrw2 + dr2);
+}
+
+double
+CarSize::perfect_parking_slot_len() const
+{
+       auto r = this->ctc() / 2.0;
+       auto l = this->wb();
+       auto k = this->df() - this->wb();
+       auto w = this->w();
+       auto r2l2 = r * r - l * l;
+       auto s = r2l2 + pow(l + k, 2.0) - pow(sqrt(r2l2) - w, 2.0);
+       return this->len() + sqrt(s) - l - k;
+}
+
+double
+CarMove::sp() const
+{
+       return this->speed;
+}
+
+void
+CarMove::sp(double sp)
+{
+       this->speed = sp;
+}
+
+double
+CarMove::st() const
+{
+       return this->steer;
+}
+
+void
+CarMove::st(double st)
+{
+       this->steer = st;
+}
+
+bool
+BicycleCar::drivable(Pose const& p) const
+{
+       PoseRange pr;
+       pr.x(p.x());
+       pr.y(p.y());
+       pr.b(p.h());
+       pr.e(p.h());
+       return this->drivable(pr);
+}
+
+bool
+BicycleCar::drivable(PoseRange const& p) const
+{
+       double h = (p.b() + p.e()) / 2.0;
+       double a_1 = atan2(p.y() - this->y(), p.x() - this->x()) - this->h();
+       while (a_1 < -M_PI)
+               a_1 += 2 * M_PI;
+       while (a_1 > +M_PI)
+               a_1 -= 2 * M_PI;
+       double h_d = h - this->h();
+       while (h_d < -M_PI)
+               h_d += 2 * M_PI;
+       while (h_d > +M_PI)
+               h_d -= 2 * M_PI;
+       double a_2 = 0;
+       if (h_d == 0 && (a_1 == 0 || a_2 == M_PI || a_2 == -M_PI)) {
+               return true;
+       } else if (0 < a_1 && a_1 <= M_PI/2) { // left front
+               BicycleCar z(*this); // zone border
+               z.h(p.e());
+               h_d = h - this->h();
+               z.rotate(this->ccl(), h_d);
+               // assert z.h() == h
+               if (p.y() == z.y() && p.x() == z.x()) // p on zone border
+                       return true;
+               a_2 = atan2(p.y() - z.y(), p.x() - z.x());
+               while (a_2 < -M_PI)
+                       a_2 += 2 * M_PI;
+               while (a_2 > +M_PI)
+                       a_2 -= 2 * M_PI;
+               if (z.h() >= a_2 && a_2 >= this->h())
+                       return true;
+       } else if (M_PI/2 < a_1 && a_1 <= M_PI) { // left rear
+               BicycleCar z(*this); // zone border
+               z.h(p.e());
+               h_d = h - this->h();
+               z.rotate(this->ccl(), h_d);
+               // assert z.h() == h
+               if (p.y() == z.y() && p.x() == z.x()) // p on zone border
+                       return true;
+               a_2 = atan2(p.y() - z.y(), p.x() - z.x());
+               a_2 -= M_PI;
+               while (a_2 < -M_PI)
+                       a_2 += 2 * M_PI;
+               while (a_2 > +M_PI)
+                       a_2 -= 2 * M_PI;
+               if (this->h() >= a_2 && a_2 >= z.h())
+                       return true;
+       } else if (0 > a_1 && a_1 >= -M_PI/2) { // right front
+               BicycleCar z(*this); // zone border
+               z.h(p.b());
+               h_d = h - this->h();
+               z.rotate(this->ccr(), h_d);
+               // assert z.h() == h
+               if (p.y() == z.y() && p.x() == z.x()) // p on zone border
+                       return true;
+               a_2 = atan2(p.y() - z.y(), p.x() - z.x());
+               while (a_2 < -M_PI)
+                       a_2 += 2 * M_PI;
+               while (a_2 > +M_PI)
+                       a_2 -= 2 * M_PI;
+               if (this->h() >= a_2 && a_2 >= z.h())
+                       return true;
+       } else if (-M_PI/2 > a_1 && a_1 >= -M_PI) { // right rear
+               BicycleCar z(*this); // zone border
+               z.h(p.b());
+               h_d = h - this->h();
+               z.rotate(this->ccr(), h_d);
+               // assert z.h() == h
+               if (p.y() == z.y() && p.x() == z.x()) // p on zone border
+                       return true;
+               a_2 = atan2(p.y() - z.y(), p.x() - z.x());
+               a_2 -= M_PI;
+               while (a_2 < -M_PI)
+                       a_2 += 2 * M_PI;
+               while (a_2 > +M_PI)
+                       a_2 -= 2 * M_PI;
+               if (z.h() >= a_2 && a_2 >= this->h())
+                       return true;
+       } else {
+               // Not happenning, as ``-pi <= a <= pi``.
+       }
+       return false;
+}
+
+void
+BicycleCar::set_max_steer()
+{
+       this->st(atan(this->wb() / this->mtr()));
+}
+
+double
+BicycleCar::lfx() const
+{
+       double lfx = this->x();
+       lfx += (this->w() / 2.0) * cos(this->h() + M_PI / 2.0);
+       lfx += this->df() * cos(this->h());
+       return lfx;
+}
+
+double
+BicycleCar::lfy() const
+{
+       double lfy = this->y();
+       lfy += (this->w() / 2.0) * sin(this->h() + M_PI / 2.0);
+       lfy += this->df() * sin(this->h());
+       return lfy;
+}
+
+double
+BicycleCar::lrx() const
+{
+       double lrx = this->x();
+       lrx += (this->w() / 2.0) * cos(this->h() + M_PI / 2.0);
+       lrx += -this->dr() * cos(this->h());
+       return lrx;
+}
+
+double
+BicycleCar::lry() const
+{
+       double lry = this->y();
+       lry += (this->w() / 2.0) * sin(this->h() + M_PI / 2.0);
+       lry += -this->dr() * sin(this->h());
+       return lry;
+}
+
+double
+BicycleCar::rrx() const
+{
+       double rrx = this->x();
+       rrx += (this->w() / 2.0) * cos(this->h() - M_PI / 2.0);
+       rrx += -this->dr() * cos(this->h());
+       return rrx;
+}
+
+double
+BicycleCar::rry() const
+{
+       double rry = this->y();
+       rry += (this->w() / 2.0) * sin(this->h() - M_PI / 2.0);
+       rry += -this->dr() * sin(this->h());
+       return rry;
+}
+
+double
+BicycleCar::rfx() const
+{
+       double rfx = this->x();
+       rfx += (this->w() / 2.0) * cos(this->h() - M_PI / 2.0);
+       rfx += this->df() * cos(this->h());
+       return rfx;
+}
+
+double
+BicycleCar::rfy() const
+{
+       double rfy = this->y();
+       rfy += (this->w() / 2.0) * sin(this->h() - M_PI / 2.0);
+       rfy += this->df() * sin(this->h());
+       return rfy;
+}
+
+Point
+BicycleCar::lf() const
+{
+       return Point(this->lfx(), this->lfy());
+}
+
+Point
+BicycleCar::lr() const
+{
+       return Point(this->lrx(), this->lry());
+}
+
+Point
+BicycleCar::rr() const
+{
+       return Point(this->rrx(), this->rry());
+}
+
+Point
+BicycleCar::rf() const
+{
+       return Point(this->rfx(), this->rfy());
+}
+
+Line
+BicycleCar::left() const
+{
+       return Line(this->lr(), this->lf());
+}
+
+Line
+BicycleCar::rear() const
+{
+       return Line(this->lr(), this->rr());
+}
+
+Line
+BicycleCar::right() const
+{
+       return Line(this->rr(), this->rf());
+}
+
+Line
+BicycleCar::front() const
+{
+       return Line(this->rf(), this->lf());
+}
+
+double
+BicycleCar::ralx() const
+{
+       double lrx = this->x();
+       lrx += (this->w() / 2.0) * cos(this->h() + M_PI / 2.0);
+       return lrx;
+}
+double
+BicycleCar::raly() const
+{
+       double lry = this->y();
+       lry += (this->w() / 2.0) * sin(this->h() + M_PI / 2.0);
+       return lry;
+}
+
+double
+BicycleCar::rarx() const
+{
+       double rrx = this->x();
+       rrx += (this->w() / 2.0) * cos(this->h() - M_PI / 2.0);
+       return rrx;
+}
+
+double
+BicycleCar::rary() const
+{
+       double rry = this->y();
+       rry += (this->w() / 2.0) * sin(this->h() - M_PI / 2.0);
+       return rry;
+}
+
+Point
+BicycleCar::ccl() const
+{
+       return Point(
+               this->x() + this->mtr() * cos(this->h() + M_PI / 2.0),
+               this->y() + this->mtr() * sin(this->h() + M_PI / 2.0)
+       );
+}
+
+Point
+BicycleCar::ccr() const
+{
+       return Point(
+               this->x() + this->mtr() * cos(this->h() - M_PI / 2.0),
+               this->y() + this->mtr() * sin(this->h() - M_PI / 2.0)
+       );
+}
+
+void
+BicycleCar::next()
+{
+       this->x(this->x() + this->sp() * cos(this->h()));
+       this->y(this->y() + this->sp() * sin(this->h()));
+       this->h(this->h() + this->sp() / this->wb() * tan(this->st()));
+}
+
+} // namespace bcar