]> rtime.felk.cvut.cz Git - hercules2020/kcf.git/commitdiff
Merge branch 'master' into rotation
authorShanigen <32431880+Shanigen@users.noreply.github.com>
Thu, 13 Sep 2018 19:02:50 +0000 (21:02 +0200)
committerGitHub <noreply@github.com>
Thu, 13 Sep 2018 19:02:50 +0000 (21:02 +0200)
1  2 
main_vot.cpp
src/CMakeLists.txt
src/kcf.cpp

diff --combined main_vot.cpp
index 528d263e678a3fc3110856a1ae5bd53c13cc1530,38aa35d28818aae3560f644ff335f80e0cd6e16e..711a00045065ae9060ca9e9a55135ef315777246
@@@ -2,6 -2,7 +2,7 @@@
  #include <getopt.h>
  #include <libgen.h>
  #include <unistd.h>
+ #include <iomanip>
  
  #include "kcf.h"
  #include "vot.hpp"
  double calcAccuracy(std::string line, cv::Rect bb_rect, cv::Rect &groundtruth_rect)
  {
      std::vector<float> numbers;
 -    std::istringstream s( line );
 +    std::istringstream s(line);
      float x;
      char ch;
  
 -    while (s >> x){
 +    while (s >> x) {
          numbers.push_back(x);
          s >> ch;
      }
      double y1 = std::min(numbers[1], std::min(numbers[3], std::min(numbers[5], numbers[7])));
      double y2 = std::max(numbers[1], std::max(numbers[3], std::max(numbers[5], numbers[7])));
  
 -    groundtruth_rect = cv::Rect(x1, y1, x2-x1, y2-y1);
 +    groundtruth_rect = cv::Rect(x1, y1, x2 - x1, y2 - y1);
  
      double rects_intersection = (groundtruth_rect & bb_rect).area();
      double rects_union = (groundtruth_rect | bb_rect).area();
 -    double accuracy = rects_intersection/rects_union;
 +    double accuracy = rects_intersection / rects_union;
  
      return accuracy;
  }
  
  int main(int argc, char *argv[])
  {
 -    //load region, images and prepare for output
 +    // load region, images and prepare for output
      std::string region, images, output;
      int visualize_delay = -1, fit_size_x = -1, fit_size_y = -1;
      KCF_Tracker tracker;
  
      while (1) {
          int option_index = 0;
 -        static struct option long_options[] = {
 -            {"debug",     no_argument,       0,  'd' },
 -            {"help",      no_argument,       0,  'h' },
 -            {"output",    required_argument, 0,  'o' },
 -            {"visualize", optional_argument, 0,  'v' },
 -            {"fit",       optional_argument, 0,  'f' },
 -            {0,           0,                 0,  0 }
 -        };
 -
 -        int c = getopt_long(argc, argv, "dhv::f::o:",
 -                        long_options, &option_index);
 -        if (c == -1)
 -            break;
 +        static struct option long_options[] = {{"debug", no_argument, 0, 'd'},
 +                                               {"visualDebug", no_argument, 0, 'p'},
 +                                               {"help", no_argument, 0, 'h'},
 +                                               {"output", required_argument, 0, 'o'},
 +                                               {"visualize", optional_argument, 0, 'v'},
 +                                               {"fit", optional_argument, 0, 'f'},
 +                                               {0, 0, 0, 0}};
 +
 +        int c = getopt_long(argc, argv, "dphv::f::o:", long_options, &option_index);
 +        if (c == -1) break;
  
          switch (c) {
          case 'd':
              tracker.m_debug = true;
              break;
 +        case 'p':
 +            tracker.m_visual_debug = true;
 +            visualize_delay = 500;
 +            break;
          case 'h':
 -            std::cerr << "Usage: \n"
 -                      << argv[0] << " [options]\n"
 -                      << argv[0] << " [options] <directory>\n"
 -                      << argv[0] << " [options] <path/to/region.txt or groundtruth.txt> <path/to/images.txt> [path/to/output.txt]\n"
 -                      << "Options:\n"
 -                      << " --visualize | -v[delay_ms]\n"
 -                      << " --output    | -o <output.txt>\n"
 -                      << " --debug     | -d\n"
 -                      << " --fit       | -f[WxH]\n";
 +            std::cerr
 +                << "Usage: \n"
 +                << argv[0] << " [options]\n"
 +                << argv[0] << " [options] <directory>\n"
 +                << argv[0]
 +                << " [options] <path/to/region.txt or groundtruth.txt> <path/to/images.txt> [path/to/output.txt]\n"
 +                << "Options:\n"
 +                << " --visualize | -v[delay_ms]\n"
 +                << " --output    | -o <output.txt>\n"
 +                << " --debug     | -d\n"
 +                << " --visualDebug | -p\n"
 +                << " --fit       | -f[WxH]\n";
              exit(0);
              break;
          case 'o':
@@@ -88,7 -85,7 +89,7 @@@
              sizes.erase(0, pos + delimiter.length());
  
              fit_size_x = stol(first_argument);
 -          fit_size_y = stol(sizes);
 +            fit_size_y = stol(sizes);
              break;
          }
      }
      case 0:
          region = access("groundtruth.txt", F_OK) == 0 ? "groundtruth.txt" : "region.txt";
          images = "images.txt";
 -        if (output.empty())
 -            output = "output.txt";
 +        if (output.empty()) output = "output.txt";
          break;
      case 2:
          // Fall through
  
      cv::Mat image;
  
 -    //img = firts frame, initPos = initial position in the first frame
 +    // img = firts frame, initPos = initial position in the first frame
      cv::Rect init_rect = vot_io.getInitRectangle();
      vot_io.outputBoundingBox(init_rect);
      vot_io.getNextImage(image);
      cv::Rect bb_rect;
      double avg_time = 0., sum_accuracy = 0.;
      int frames = 0;
-     while (vot_io.getNextImage(image) == 1) {
+     std::cout << std::fixed << std::setprecision(2);
+     while (vot_io.getNextImage(image) == 1){
          double time_profile_counter = cv::getCPUTickCount();
          tracker.track(image);
          time_profile_counter = cv::getCPUTickCount() - time_profile_counter;
-          std::cout << "  -> speed : " <<  time_profile_counter/((double)cvGetTickFrequency()*1000) << "ms. per frame, "
+          std::cout << "  -> speed : " <<  time_profile_counter/((double)cvGetTickFrequency()*1000) << "ms per frame, "
                        "response : " << tracker.getFilterResponse();
          avg_time += time_profile_counter/((double)cvGetTickFrequency()*1000);
          frames++;
  
          bb = tracker.getBBox();
 -        bb_rect = cv::Rect(bb.cx - bb.w/2., bb.cy - bb.h/2., bb.w, bb.h);
 +        bb_rect = cv::Rect(bb.cx - bb.w / 2., bb.cy - bb.h / 2., bb.w, bb.h);
          vot_io.outputBoundingBox(bb_rect);
  
          if (groundtruth_stream.is_open()) {
  
              cv::Rect groundtruthRect;
              double accuracy = calcAccuracy(line, bb_rect, groundtruthRect);
 -            if (visualize_delay >= 0)
 -                cv::rectangle(image, groundtruthRect, CV_RGB(255, 0,0), 1);
 +            if (visualize_delay >= 0) cv::rectangle(image, groundtruthRect, CV_RGB(255, 0, 0), 1);
              std::cout << ", accuracy: " << accuracy;
              sum_accuracy += accuracy;
          }
          std::cout << std::endl;
  
          if (visualize_delay >= 0) {
 -            cv::rectangle(image, bb_rect, CV_RGB(0,255,0), 2);
 +            cv::Point pt(bb.cx, bb.cy);
 +            cv::Size size(bb.w, bb.h);
 +            cv::RotatedRect rotatedRectangle(pt, size, bb.a);
 +
 +            cv::Point2f vertices[4];
 +            rotatedRectangle.points(vertices);
 +
 +            for (int i = 0; i < 4; i++)
 +                cv::line(image, vertices[i], vertices[(i + 1) % 4], cv::Scalar(0, 255, 0), 2);
 +            //             cv::rectangle(image, cv::Rect(bb.cx - bb.w/2., bb.cy - bb.h/2., bb.w, bb.h), CV_RGB(0,255,0),
 +            //             2);
 +            std::string angle = std::to_string(bb.a);
 +            angle.erase(angle.find_last_not_of('0') + 1, std::string::npos);
 +            angle.erase(angle.find_last_not_of('.') + 1, std::string::npos);
 +            cv::putText(image, "Frame: " + std::to_string(frames) + " " + angle + " angle",
 +                        cv::Point(0, image.rows - 1), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 0), 2);
              cv::imshow("output", image);
              int ret = cv::waitKey(visualize_delay);
 -            if (visualize_delay > 0 && ret != -1 && ret != 255)
 -                break;
 +            if (visualize_delay > 0 && ret != -1 && ret != 255) break;
          }
  
 -//        std::stringstream s;
 -//        std::string ss;
 -//        int countTmp = frames;
 -//        s << "imgs" << "/img" << (countTmp/10000);
 -//        countTmp = countTmp%10000;
 -//        s << (countTmp/1000);
 -//        countTmp = countTmp%1000;
 -//        s << (countTmp/100);
 -//        countTmp = countTmp%100;
 -//        s << (countTmp/10);
 -//        countTmp = countTmp%10;
 -//        s << (countTmp);
 -//        s << ".jpg";
 -//        s >> ss;
 -//        //set image output parameters
 -//        std::vector<int> compression_params;
 -//        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
 -//        compression_params.push_back(90);
 -//        cv::imwrite(ss.c_str(), image, compression_params);
 +        //        std::stringstream s;
 +        //        std::string ss;
 +        //        int countTmp = frames;
 +        //        s << "imgs" << "/img" << (countTmp/10000);
 +        //        countTmp = countTmp%10000;
 +        //        s << (countTmp/1000);
 +        //        countTmp = countTmp%1000;
 +        //        s << (countTmp/100);
 +        //        countTmp = countTmp%100;
 +        //        s << (countTmp/10);
 +        //        countTmp = countTmp%10;
 +        //        s << (countTmp);
 +        //        s << ".jpg";
 +        //        s >> ss;
 +        //        //set image output parameters
 +        //        std::vector<int> compression_params;
 +        //        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
 +        //        compression_params.push_back(90);
 +        //        cv::imwrite(ss.c_str(), image, compression_params);
      }
  
-     std::cout << "Average processing speed: " << avg_time/frames <<  "ms (" << 1./(avg_time/frames)*1000 << " fps)";
+     std::cout << "Average processing speed: " << avg_time / frames << "ms (" << 1. / (avg_time / frames) * 1000 << " fps)";
      if (groundtruth_stream.is_open()) {
          std::cout << "; Average accuracy: " << sum_accuracy/frames << std::endl;
          groundtruth_stream.close();
diff --combined src/CMakeLists.txt
index 901f0dcae82048da05644889a0e8a338a58e1152,f2c7a18cbec443449c25ed92f7715e94b833c2f3..56ff3008229adae7d2e67bc35c2b1e456cbd003c
@@@ -71,7 -71,13 +71,13 @@@ IF(use_cuda
    include_directories ( ${CUDA_INCLUDE_DIRS} )
    set(CUDA_SEPARABLE_COMPILATION ON)
    set(CUDA_PROPAGATE_HOST_FLAGS OFF)
-   list( APPEND CUDA_NVCC_FLAGS -O3 --gpu-architecture sm_62 -std=c++11)
+   if(NOT COMMAND CUDA_SELECT_NVCC_ARCH_FLAGS)
+     include(${CMAKE_SOURCE_DIR}/cmake/FindCUDA/select_compute_arch.cmake)
+   endif()
+   CUDA_SELECT_NVCC_ARCH_FLAGS(ARCH_FLAGS Auto)
+   list( APPEND CUDA_NVCC_FLAGS -O3 -std=c++11 ${ARCH_FLAGS}) # --gpu-architecture sm_62 )
    find_cuda_helper_libs(cufftw)
    IF(FFT STREQUAL "cuFFT")
    add_subdirectory(cuda)
@@@ -91,9 -97,9 +97,9 @@@ set_target_properties(kcf PROPERTIES VE
  IF(FFT STREQUAL "fftw")
    target_link_libraries(kcf ${FFTW_LDFLAGS})
    IF(OPENMP)
 -    target_link_libraries(kcf fftw3_omp)
 +    target_link_libraries(kcf fftw3f_omp)
    ELSEIF(NOT ASYNC)
 -    target_link_libraries(kcf fftw3_threads)
 +    target_link_libraries(kcf fftw3f_threads)
    ENDIF()
  ENDIF() #FFTW
  
diff --combined src/kcf.cpp
index b32532766901e76e536e9d7d7ca5f08e10518c03,fa2aa5c1c6f9518f7dfb602e4d1c3480a2b9ac31..57a7447410463b449d8b70eb314953a0c5310b16
@@@ -19,7 -19,7 +19,7 @@@
  #endif // OPENMP
  
  #define DEBUG_PRINT(obj)                                                                                               \
 -    if (m_debug) {                                                                                                     \
 +    if (m_debug || m_visual_debug) {                                                                                   \
          std::cout << #obj << " @" << __LINE__ << std::endl << (obj) << std::endl;                                      \
      }
  #define DEBUG_PRINTM(obj)                                                                                              \
@@@ -122,31 -122,24 +122,31 @@@ void KCF_Tracker::init(cv::Mat &img, co
      p_roi.width = p_windows_size.width / p_cell_size;
      p_roi.height = p_windows_size.height / p_cell_size;
  
 -    p_num_of_feats = 31;
 -    if (m_use_color) p_num_of_feats += 3;
 -    if (m_use_cnfeat) p_num_of_feats += 10;
 -
      p_scales.clear();
 -    if (m_use_scale)
 +    if (m_use_scale) {
          for (int i = -int(p_num_scales) / 2; i <= int(p_num_scales) / 2; ++i)
              p_scales.push_back(std::pow(p_scale_step, i));
 -    else
 +    } else {
          p_scales.push_back(1.);
 +        p_num_scales = 1;
 +    }
 +
 +    if (m_use_angle) {
 +        for (int i = p_angle_min; i <= p_angle_max; i += p_angle_step)
 +            p_angles.push_back(i);
 +    } else {
 +        p_angles.push_back(0);
 +        p_num_angles = 1;
 +    }
  
  #ifdef CUFFT
      if (p_roi.height * (p_roi.width / 2 + 1) > 1024) {
          std::cerr << "Window after forward FFT is too big for CUDA kernels. Plese use -f to set "
                       "the window dimensions so its size is less or equal to "
                    << 1024 * p_cell_size * p_cell_size * 2 + 1
 -                  << " pixels . Currently the size of the window is: " << p_windows_size.width << "x" << p_windows_size.height
 -                  << " which is  " << p_windows_size.width * p_windows_size.height << " pixels. " << std::endl;
 +                  << " pixels . Currently the size of the window is: " << p_windows_size.width << "x"
 +                  << p_windows_size.height << " which is  " << p_windows_size.width * p_windows_size.height
 +                  << " pixels. " << std::endl;
          std::exit(EXIT_FAILURE);
      }
  
          std::cerr << "cuFFT supports only Gaussian kernel." << std::endl;
          std::exit(EXIT_FAILURE);
      }
 +
      CudaSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
 +
      p_rot_labels_data = DynMem(p_roi.width * p_roi.height * sizeof(float));
      p_rot_labels = cv::Mat(p_roi, CV_32FC1, p_rot_labels_data.hostMem());
 -#else
 -    p_xf.create(p_roi.height, p_roi.height / 2 + 1, p_num_of_feats);
  #endif
  
  #if defined(CUFFT) || defined(FFTW)
      p_yf.create(p_roi.height, width, 1);
      p_xf.create(p_roi.height, width, p_num_of_feats);
  
 -    int max = m_use_big_batch ? 2 : p_num_scales;
 -    for (int i = 0; i < max; ++i) {
 -        if (m_use_big_batch && i == 1)
 -            p_threadctxs.emplace_back(p_roi, p_num_of_feats * p_num_scales, 1, p_num_scales);
 -        else
 -            p_threadctxs.emplace_back(p_roi, p_num_of_feats, p_scales[i], 1);
 +    int max1 = m_use_big_batch ? 2 : p_num_scales;
 +    int max2 = m_use_big_batch ? 1 : p_num_angles;
 +    for (int i = 0; i < max1; ++i) {
 +        for (int j = 0; j < max2; ++j) {
 +            if (m_use_big_batch && i == 1)
 +                p_threadctxs.emplace_back(p_roi, p_num_of_feats * p_num_scales * p_num_angles, 1, 0, p_num_scales,
 +                                          p_num_angles);
 +            else
 +                p_threadctxs.emplace_back(p_roi, p_num_of_feats, p_scales[i], p_angles[j]);
 +        }
      }
  
      p_current_scale = 1.;
      p_min_max_scale[0] = std::pow(p_scale_step, std::ceil(std::log(min_size_ratio) / log(p_scale_step)));
      p_min_max_scale[1] = std::pow(p_scale_step, std::floor(std::log(max_size_ratio) / log(p_scale_step)));
  
-     std::cout << "init: img size " << img.cols << " " << img.rows << std::endl;
-     std::cout << "init: win size. " << p_windows_size.width << " " << p_windows_size.height << std::endl;
+     std::cout << "init: img size " << img.cols << "x" << img.rows << std::endl;
+     std::cout << "init: win size " << p_windows_size.width << "x" << p_windows_size.height << std::endl;
+     std::cout << "init: FFT size " << p_roi.width << "x" << p_roi.height << std::endl;
      std::cout << "init: min max scales factors: " << p_min_max_scale[0] << " " << p_min_max_scale[1] << std::endl;
  
      p_output_sigma = std::sqrt(p_pose.w * p_pose.h) * p_output_sigma_factor / static_cast<double>(p_cell_size);
  
 -    fft.init(p_roi.width, p_roi.height, p_num_of_feats, p_num_scales, m_use_big_batch);
 +    fft.init(p_roi.width, p_roi.height, p_num_of_feats, p_num_scales * p_num_angles, m_use_big_batch);
      fft.set_window(cosine_window_function(p_roi.width, p_roi.height));
  
      // window weights, i.e. labels
 -    fft.forward(
 -        gaussian_shaped_labels(p_output_sigma, p_roi.width, p_roi.height), p_yf,
 -        m_use_cuda ? p_rot_labels_data.deviceMem() : nullptr, p_threadctxs.front().stream);
 +    fft.forward(gaussian_shaped_labels(p_output_sigma, p_roi.width, p_roi.height), p_yf,
 +                m_use_cuda ? p_rot_labels_data.deviceMem() : nullptr, p_threadctxs.front().stream);
      DEBUG_PRINTM(p_yf);
  
      // obtain a sub-window for training initial model
      p_threadctxs.front().patch_feats.clear();
 -    get_features(input_rgb, input_gray, p_pose.cx, p_pose.cy, p_windows_size.width, p_windows_size.height,
 -                 p_threadctxs.front());
 +
 +    int size_x_scaled = floor(p_windows_size.width);
 +    int size_y_scaled = floor(p_windows_size.height);
 +
 +    cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +    geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, 0, false);
 +
 +    cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
 +    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
 +        patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +        geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, 0, false);
 +    }
 +
 +    get_features(patch_rgb, patch_gray, p_threadctxs.front());
      fft.forward_window(p_threadctxs.front().patch_feats, p_model_xf, p_threadctxs.front().fw_all,
                         m_use_cuda ? p_threadctxs.front().data_features.deviceMem() : nullptr,
                         p_threadctxs.front().stream);
      DEBUG_PRINTM(p_model_xf);
 +
  #if !defined(BIG_BATCH) && defined(CUFFT) && (defined(ASYNC) || defined(OPENMP))
      p_threadctxs.front().model_xf = p_model_xf;
      p_threadctxs.front().model_xf.set_stream(p_threadctxs.front().stream);
@@@ -295,7 -273,6 +296,7 @@@ BBox_c KCF_Tracker::getBBox(
      BBox_c tmp = p_pose;
      tmp.w *= p_current_scale;
      tmp.h *= p_current_scale;
 +    tmp.a = p_current_angle;
  
      if (p_resize_image) tmp.scale(1 / p_downscale_factor);
      if (p_fit_to_pw2) {
@@@ -313,7 -290,7 +314,7 @@@ double KCF_Tracker::getFilterResponse(
  
  void KCF_Tracker::track(cv::Mat &img)
  {
 -    if (m_debug) std::cout << "NEW FRAME" << '\n';
 +    if (m_debug || m_visual_debug) std::cout << "\nNEW FRAME" << std::endl;
      cv::Mat input_gray, input_rgb = img.clone();
      if (img.channels() == 3) {
          cv::cvtColor(img, input_gray, CV_BGR2GRAY);
              cv::resize(input_rgb, input_rgb, cv::Size(0, 0), p_scale_factor_x, p_scale_factor_y, cv::INTER_LINEAR);
          }
      }
 -
      max_response = -1.;
      ThreadCtx *max = nullptr;
      cv::Point2i *max_response_pt = nullptr;
          });
      for (auto const &it : p_threadctxs)
          it.async_res.wait();
 -
  #else  // !ASYNC
 -    // FIXME: Iterate correctly in big batch mode - perhaps have only one element in the list
      NORMAL_OMP_PARALLEL_FOR
 -    for (uint i = 0; i < p_threadctxs.size(); ++i)
 +    for (uint i = m_use_big_batch ? 1 : 0; i < p_threadctxs.size(); ++i)
          scale_track(p_threadctxs[i], input_rgb, input_gray);
  #endif
  
          }
      }
  #else
 -    // FIXME: Iterate correctly in big batch mode - perhaps have only one element in the list
 -    for (uint j = 0; j < p_scales.size(); ++j) {
 -        if (p_threadctxs[0].max_responses[j] > max_response) {
 -            max_response = p_threadctxs[0].max_responses[j];
 -            max_response_pt = &p_threadctxs[0].max_locs[j];
 -            max_response_map = &p_threadctxs[0].response_maps[j];
 -            max = &p_threadctxs[0];
 +    for (uint j = 0; j < p_num_scales; ++j) {
 +        for (uint k = 0; k < p_num_angles; ++k) {
 +            if (p_threadctxs.back().max_responses[j + k] > max_response) {
 +                max_response = p_threadctxs.back().max_responses[j + k];
 +                max_response_pt = &p_threadctxs.back().max_locs[j + k];
 +                max_response_map = &p_threadctxs.back().response_maps[j + k];
 +            }
          }
      }
 +    max = &p_threadctxs.back();
  #endif
 +    if (m_visual_debug) {
 +        cv::Mat all_responses(cv::Size(p_num_angles* p_debug_image_size, p_num_scales * p_debug_image_size),
 +                              p_debug_scale_responses[0].type(), cv::Scalar::all(0));
 +        cv::Mat all_subwindows(cv::Size(p_num_angles* p_debug_image_size, p_num_scales* p_debug_image_size),
 +                               p_debug_subwindows[0].type(), cv::Scalar::all(0));
 +        for (size_t i = 0; i < p_num_scales; ++i) {
 +            for (size_t j = 0; j < p_num_angles; ++j) {
 +                cv::Mat in_roi(all_responses, cv::Rect(j * p_debug_image_size, i * p_debug_image_size,
 +                                                       p_debug_image_size, p_debug_image_size));
 +                p_debug_scale_responses[5 * i + j].copyTo(in_roi);
 +                in_roi = all_subwindows(
 +                    cv::Rect(j * p_debug_image_size, i * p_debug_image_size, p_debug_image_size, p_debug_image_size));
 +                p_debug_subwindows[5 * i + j].copyTo(in_roi);
 +            }
 +        }
 +        cv::namedWindow("All subwindows", CV_WINDOW_AUTOSIZE);
 +        cv::imshow("All subwindows", all_subwindows);
 +        cv::namedWindow("All responses", CV_WINDOW_AUTOSIZE);
 +        cv::imshow("All responses", all_responses);
 +        cv::waitKey();
 +        p_debug_scale_responses.clear();
 +        p_debug_subwindows.clear();
 +    }
  
      DEBUG_PRINTM(*max_response_map);
      DEBUG_PRINT(*max_response_pt);
          new_location = sub_pixel_peak(*max_response_pt, *max_response_map);
      DEBUG_PRINT(new_location);
  
 +    if (m_visual_debug) std::cout << "Old p_pose, cx: " << p_pose.cx << " cy: " << p_pose.cy << std::endl;
 +
      p_pose.cx += p_current_scale * p_cell_size * double(new_location.x);
      p_pose.cy += p_current_scale * p_cell_size * double(new_location.y);
 +
 +    if (m_visual_debug) std::cout << "New p_pose, cx: " << p_pose.cx << " cy: " << p_pose.cy << std::endl;
 +
      if (p_fit_to_pw2) {
          if (p_pose.cx < 0) p_pose.cx = 0;
          if (p_pose.cx > (img.cols * p_scale_factor_x) - 1) p_pose.cx = (img.cols * p_scale_factor_x) - 1;
      if (p_current_scale < p_min_max_scale[0]) p_current_scale = p_min_max_scale[0];
      if (p_current_scale > p_min_max_scale[1]) p_current_scale = p_min_max_scale[1];
  
 +    p_current_angle = (p_current_angle + max->angle) < 0
 +                          ? -std::abs(p_current_angle + max->angle) % 360
 +                          : (p_current_angle + max->angle) % 360;
 +
      // obtain a subwindow for training at newly estimated target position
 +    int size_x_scaled = floor(p_windows_size.width * p_current_scale);
 +    int size_y_scaled = floor(p_windows_size.height * p_current_scale);
 +
 +    cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +    geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, p_current_angle, false);
 +
 +    cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
 +    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
 +        patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +        geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, p_current_angle, false);
 +    }
 +
      p_threadctxs.front().patch_feats.clear();
 -    get_features(input_rgb, input_gray, p_pose.cx, p_pose.cy, p_windows_size.width, p_windows_size.height,
 -                 p_threadctxs.front(), p_current_scale);
 +    get_features(patch_rgb, patch_gray, p_threadctxs.front());
      fft.forward_window(p_threadctxs.front().patch_feats, p_xf, p_threadctxs.front().fw_all,
                         m_use_cuda ? p_threadctxs.front().data_features.deviceMem() : nullptr, p_threadctxs.front().stream);
  
@@@ -505,41 -441,13 +506,41 @@@ void KCF_Tracker::scale_track(ThreadCt
      if (m_use_big_batch) {
          vars.patch_feats.clear();
          BIG_BATCH_OMP_PARALLEL_FOR
 -        for (uint i = 0; i < p_num_scales; ++i) {
 -            get_features(input_rgb, input_gray, this->p_pose.cx, this->p_pose.cy, this->p_windows_size.width,
 -                         this->p_windows_size.height, vars, this->p_current_scale * this->p_scales[i]);
 +        for (uint i = 0; i < this->p_scales.size(); ++i) {
 +            for (uint j = 0; j < this->p_angles.size(); ++j) {
 +                int size_x_scaled = floor(this->p_windows_size.width * this->p_current_scale * this->p_scales[i]);
 +                int size_y_scaled = floor(this->p_windows_size.height * this->p_current_scale * this->p_scales[i]);
 +
 +                cv::Mat patch_gray =
 +                    get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +                geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height,
 +                                          p_current_scale * this->p_scales[i], p_current_angle + this->p_angles[j]);
 +
 +                cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
 +                if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
 +                    patch_rgb =
 +                        get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +                    geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height,
 +                                              p_current_scale * this->p_scales[i], p_current_angle + this->p_angles[j]);
 +                }
 +                get_features(patch_rgb, patch_gray, vars);
 +            }
          }
      } else {
 -        get_features(input_rgb, input_gray, this->p_pose.cx, this->p_pose.cy, this->p_windows_size.width,
 -                     this->p_windows_size.height, vars, this->p_current_scale * vars.scale);
 +        int size_x_scaled = floor(this->p_windows_size.width * this->p_current_scale * vars.scale);
 +        int size_y_scaled = floor(this->p_windows_size.height * this->p_current_scale * vars.scale);
 +
 +        cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +        geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, p_current_scale * vars.scale);
 +
 +        cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
 +        if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
 +            patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
 +            geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, p_current_scale * vars.scale,
 +                                      p_current_angle + vars.angle);
 +        }
 +        vars.patch_feats.clear();
 +        get_features(patch_rgb, patch_gray, vars);
      }
  
      fft.forward_window(vars.patch_feats, vars.zf, vars.fw_all, m_use_cuda ? vars.data_features.deviceMem() : nullptr,
  
  // ****************************************************************************
  
 -void KCF_Tracker::get_features(cv::Mat &input_rgb, cv::Mat &input_gray, int cx, int cy, int size_x, int size_y,
 -                               ThreadCtx &vars, double scale)
 +void KCF_Tracker::get_features(cv::Mat &patch_rgb, cv::Mat &patch_gray, ThreadCtx &vars)
  {
 -    int size_x_scaled = floor(size_x * scale);
 -    int size_y_scaled = floor(size_y * scale);
 -
 -    cv::Mat patch_gray = get_subwindow(input_gray, cx, cy, size_x_scaled, size_y_scaled);
 -    cv::Mat patch_rgb = get_subwindow(input_rgb, cx, cy, size_x_scaled, size_y_scaled);
 -
 -    // resize to default size
 -    if (scale > 1.) {
 -        // if we downsample use  INTER_AREA interpolation
 -        cv::resize(patch_gray, patch_gray, cv::Size(size_x, size_y), 0., 0., cv::INTER_AREA);
 -    } else {
 -        cv::resize(patch_gray, patch_gray, cv::Size(size_x, size_y), 0., 0., cv::INTER_LINEAR);
 -    }
 -
      // get hog(Histogram of Oriented Gradients) features
      vars.patch_feats = FHoG::extract(patch_gray, 2, p_cell_size, 9);
  
      // get color rgb features (simple r,g,b channels)
      std::vector<cv::Mat> color_feat;
 -    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
 -        // resize to default size
 -        if (scale > 1.) {
 -            // if we downsample use  INTER_AREA interpolation
 -            cv::resize(patch_rgb, patch_rgb, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0.,
 -                       cv::INTER_AREA);
 -        } else {
 -            cv::resize(patch_rgb, patch_rgb, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0.,
 -                       cv::INTER_LINEAR);
 -        }
 -    }
  
 -    if (m_use_color && input_rgb.channels() == 3) {
 +    if (m_use_color && patch_rgb.channels() == 3) {
          // use rgb color space
          cv::Mat patch_rgb_norm;
          patch_rgb.convertTo(patch_rgb_norm, CV_32F, 1. / 255., -0.5);
          color_feat.insert(color_feat.end(), rgb.begin(), rgb.end());
      }
  
 -    if (m_use_cnfeat && input_rgb.channels() == 3) {
 +    if (m_use_cnfeat && patch_rgb.channels() == 3) {
          std::vector<cv::Mat> cn_feat = CNFeat::extract(patch_rgb);
          color_feat.insert(color_feat.end(), cn_feat.begin(), cn_feat.end());
      }
@@@ -779,9 -713,12 +780,9 @@@ cv::Mat KCF_Tracker::get_subwindow(cons
  
      if (x2 - x1 == 0 || y2 - y1 == 0)
          patch = cv::Mat::zeros(height, width, CV_32FC1);
 -    else {
 +    else
          cv::copyMakeBorder(input(cv::Range(y1, y2), cv::Range(x1, x2)), patch, top, bottom, left, right,
                             cv::BORDER_REPLICATE);
 -        //      imshow( "copyMakeBorder", patch);
 -        //      cv::waitKey();
 -    }
  
      // sanity check
      assert(patch.cols == width && patch.rows == height);
      return patch;
  }
  
 -void KCF_Tracker::gaussian_correlation(struct ThreadCtx &vars, const ComplexMat &xf, const ComplexMat &yf,
 -                                       double sigma, bool auto_correlation)
 +void KCF_Tracker::geometric_transformations(cv::Mat &patch, int size_x, int size_y, int angle, bool allow_debug)
 +{
 +    if (m_use_angle) {
 +        cv::Point2f center((patch.cols - 1) / 2., (patch.rows - 1) / 2.);
 +        cv::Mat r = cv::getRotationMatrix2D(center, angle, 1.0);
 +
 +        cv::warpAffine(patch, patch, r, cv::Size(patch.cols, patch.rows), cv::INTER_LINEAR, cv::BORDER_REPLICATE);
 +    }
 +
 +    // resize to default size
 +    if (patch.channels() != 3) {
 +        if (patch.cols / size_x > 1.) {
 +            // if we downsample use  INTER_AREA interpolation
 +            cv::resize(patch, patch, cv::Size(size_x, size_y), 0., 0., cv::INTER_AREA);
 +        } else {
 +            cv::resize(patch, patch, cv::Size(size_x, size_y), 0., 0., cv::INTER_LINEAR);
 +        }
 +    } else {
 +        if (patch.cols / size_x > 1.) {
 +            // if we downsample use  INTER_AREA interpolation
 +            cv::resize(patch, patch, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0., cv::INTER_AREA);
 +        } else {
 +            cv::resize(patch, patch, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0., cv::INTER_LINEAR);
 +        }
 +        if (m_visual_debug && allow_debug) {
 +            cv::Mat input_clone = patch.clone();
 +            cv::resize(input_clone, input_clone, cv::Size(p_debug_image_size, p_debug_image_size), 0., 0.,
 +                       cv::INTER_LINEAR);
 +
 +            std::string angle_string = std::to_string(p_current_angle + angle);
 +
 +            cv::putText(input_clone, angle_string, cv::Point(1, input_clone.rows - 5), cv::FONT_HERSHEY_COMPLEX_SMALL,
 +                        0.5, cv::Scalar(0, 255, 0), 1);
 +
 +            p_debug_subwindows.push_back(input_clone);
 +        }
 +    }
 +}
 +
 +void KCF_Tracker::gaussian_correlation(struct ThreadCtx &vars, const ComplexMat &xf, const ComplexMat &yf, double sigma,
 +                                       bool auto_correlation)
  {
- #ifdef CUFFT
-     xf.sqr_norm(vars.xf_sqr_norm.deviceMem());
-     if (!auto_correlation) yf.sqr_norm(vars.yf_sqr_norm.deviceMem());
- #else
-     xf.sqr_norm(vars.xf_sqr_norm.hostMem());
+     xf.sqr_norm(vars.xf_sqr_norm);
      if (auto_correlation) {
          vars.yf_sqr_norm.hostMem()[0] = vars.xf_sqr_norm.hostMem()[0];
      } else {
-         yf.sqr_norm(vars.yf_sqr_norm.hostMem());
+         yf.sqr_norm(vars.yf_sqr_norm);
      }
- #endif
      vars.xyf = auto_correlation ? xf.sqr_mag() : xf.mul2(yf.conj());
      DEBUG_PRINTM(vars.xyf);
      fft.inverse(vars.xyf, vars.ifft2_res, m_use_cuda ? vars.data_i_features.deviceMem() : nullptr, vars.stream);
  #ifdef CUFFT
-     if (auto_correlation)
-         cuda_gaussian_correlation(vars.data_i_features.deviceMem(), vars.gauss_corr_res.deviceMem(), vars.xf_sqr_norm.deviceMem(), vars.xf_sqr_norm.deviceMem(),
-                                   sigma, xf.n_channels, xf.n_scales, p_roi.height, p_roi.width, vars.stream);
-     else
-         cuda_gaussian_correlation(vars.data_i_features.deviceMem(), vars.gauss_corr_res.deviceMem(), vars.xf_sqr_norm.deviceMem(), vars.yf_sqr_norm.deviceMem(),
-                                   sigma, xf.n_channels, xf.n_scales, p_roi.height, p_roi.width, vars.stream);
+     cuda_gaussian_correlation(vars.data_i_features.deviceMem(), vars.gauss_corr_res.deviceMem(),
+                               vars.xf_sqr_norm.deviceMem(), vars.xf_sqr_norm.deviceMem(), sigma, xf.n_channels,
+                               xf.n_scales, p_roi.height, p_roi.width, vars.stream);
  #else
      // ifft2 and sum over 3rd dimension, we dont care about individual channels
      DEBUG_PRINTM(vars.ifft2_res);