]> rtime.felk.cvut.cz Git - eurobot/public.git/blob - src/robofsm/common-states.cc
Fine tune loading
[eurobot/public.git] / src / robofsm / common-states.cc
1 #define FSM_MAIN
2 #include <robodata.h>
3 #include <robot.h>
4 #include <fsm.h>
5 #include <unistd.h>
6 #include <math.h>
7 #include <movehelper.h>
8 #include <map.h>
9 #include <sharp.h>
10 #include <robomath.h>
11 #include <string.h>
12 #include <robodim.h>
13 #include <error.h>
14 #include "corns_configs.h"
15 #include "actuators.h"
16 #include <trgen.h>
17 #include "match-timing.h"
18 #include "eb2010misc.h"
19 #include <stdbool.h>
20
21 #include "common-states.h"
22
23 /************************************************************************
24  * Functions used in and called from all the (almost identical)
25  * "wait for start" states in particular strategies.
26  ************************************************************************/
27
28 #undef DBG_FSM_STATE
29 #define DBG_FSM_STATE(name)     do { if (fsm->debug_states) printf("fsm %s %.1f: %s(%s)\n", \
30                                                                    fsm->debug_name, robot_current_time(), \
31                                                                    name, fsm_event_str(fsm->events[fsm->ev_head])); } while(0)
32
33
34 static void set_initial_position()
35 {
36         robot_set_est_pos_trans(ROBOT_AXIS_TO_FRONT_M,
37                                 PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2),
38                                 DEG2RAD(180));
39 }
40
41 static void actuators_home()
42 {
43         static int tmp = 0;
44         act_vidle(VIDLE_UP - tmp, VIDLE_FAST_SPEED);
45         tmp = 1 - tmp;          // Force movement (we need to change the target position)
46 }
47
48 void start_entry()
49 {
50         pthread_t thid;
51         robot.check_turn_safety = false;
52         pthread_create(&thid, NULL, timing_thread, NULL);
53         start_timer();
54 }
55
56 // We set initial position periodically in order for it to be updated
57 // on the display if the team color is changed during waiting for
58 // start.
59 void start_timer()
60 {
61         set_initial_position();
62         if (robot.start_state == START_PLUGGED_IN)
63                 actuators_home();
64 }
65
66 void start_go()
67 {
68         sem_post(&robot.start);
69         actuators_home();
70         set_initial_position();
71 }
72
73 void start_exit()
74 {
75         robot.corns = get_all_corns(robot.corns_conf_side, robot.corns_conf_center);
76         act_camera_off();
77 }
78
79 /************************************************************************
80  * Trajectory constraints used; They are  initialized in the main() function in competition.cc
81  ************************************************************************/
82
83 struct TrajectoryConstraints tcFast, tcSlow, tcVerySlow;
84
85 #define VIDLE_TIMEOUT 2000
86
87 /************************************************************************
88  * States that form the "collect some oranges" subautomaton. Calling automaton
89  * SHOULD ALWAYS call the "approach_the_slope" state.
90  ************************************************************************/
91
92 bool inline is_ready_to_climb_the_slope(enum which_side which_slope, double x, double y) {
93         bool ret;
94         if (which_slope == MINE) {
95                 ret = x < 0.5 && y > PLAYGROUND_HEIGHT_M - 0.5;
96         } else if (which_slope == OPPONENTS) {
97                 ret = x > 0.5 && y > PLAYGROUND_HEIGHT_M - 0.5;
98         } else {
99                 printf("ERROR: unknown side;");
100 #warning Remove the next line
101                 robot_exit();
102         }
103         return ret;
104 }
105
106 static struct slope_approach_style *slope_approach_style_p;
107
108 /* assures that the robot is near the slope rim; if outside our starting area, approach the slope first */
109 FSM_STATE(approach_the_slope)
110 {
111         switch(FSM_EVENT) {
112                 case EV_ENTRY: {
113                                 slope_approach_style_p = (struct slope_approach_style *) FSM_EVENT_PTR;
114                                 if (slope_approach_style_p == NULL) {
115                                         printf("\n\nit is not allowed to call the approach_the_slope state  with NULL data!!\n\n");
116 #warning remove the next line
117                                         robot_exit();
118                                 }
119                                 double x, y, phi;
120                                 robot_get_est_pos_trans(&x, &y, &phi);
121                                 /* decide */
122                                 bool ready_to_climb_the_slope = is_ready_to_climb_the_slope(slope_approach_style_p->which_side, x, y);
123                                 /* if necessary, approach the slope */
124                                 if (ready_to_climb_the_slope) {
125                                         FSM_TRANSITION(climb_the_slope);
126                                 } else {
127                                         robot_goto_trans(
128                                                 /*
129                                                 x_coord(SLOPE_TO_RIM_M - ROBOT_AXIS_TO_BACK_M - 0.3, slope_approach_style_p->which_side),
130                                                 PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.05,
131                                                 ARRIVE_FROM(DEG2RAD(0),0.05),
132                                                 */
133                                                 x_coord(0.3, slope_approach_style_p->which_side),
134                                                 PLAYGROUND_HEIGHT_M - ROBOT_WIDTH_M/2 - 0.03,
135                                                 ARRIVE_FROM(DEG2RAD(0), 0.02),
136                                                 &tcFast);
137                                 }
138                                 break;
139                         }
140                 case EV_MOTION_DONE:
141                         FSM_TRANSITION(climb_the_slope);
142                         break;
143                 case EV_START:
144                 case EV_TIMER:
145                 case EV_RETURN:
146                 case EV_VIDLE_DONE:
147                 case EV_MOTION_ERROR:
148                 case EV_SWITCH_STRATEGY:
149                         DBG_PRINT_EVENT("unhandled event");
150                 case EV_EXIT:
151                         break;
152         }
153 }
154
155 void inline enable_switches(bool enabled)
156 {
157         robot.use_left_switch = enabled;
158         robot.use_right_switch = enabled;
159         robot.use_back_switch = enabled;
160 }
161
162 FSM_STATE(climb_the_slope)
163 {
164         struct TrajectoryConstraints tc;
165         switch(FSM_EVENT) {
166                 case EV_ENTRY: {
167                                 // disables using side switches on bumpers when going up
168                                 enable_switches(false);
169                                 act_vidle(VIDLE_LOAD_PREPARE, 5);
170                                 robot.ignore_hokuyo = true;
171                                 /* create the trajectory and go */
172                                 tc = tcSlow;
173                                 tc.maxacc = 0.4;
174                                 robot_trajectory_new_backward(&tc);
175                                 if (slope_approach_style_p->which_oranges == NEAR_PLAYGROUND_BOUNDARY) {
176                                         robot_trajectory_add_point_trans(
177                                                 x_coord(SLOPE_TO_RIM_M + SLOPE_LENGTH_M - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
178                                                 PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) +0.01);
179                                         robot_trajectory_add_final_point_trans(
180                                                 x_coord(SLOPE_TO_RIM_M + SLOPE_LENGTH_M - ROBOT_AXIS_TO_BACK_M + 0.07, slope_approach_style_p->which_side),
181                                                 PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) +0.01,
182                                                 NO_TURN());
183                                 } else if (slope_approach_style_p->which_oranges == NEAR_PLAYGROUND_CENTER) {
184                                         robot_trajectory_add_point_trans(
185                                                 x_coord(SLOPE_TO_RIM_M + SLOPE_LENGTH_M - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
186                                                 1.85 - (PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) + 0.01 - 1.85));
187                                         robot_trajectory_add_final_point_trans(
188                                                 x_coord(SLOPE_TO_RIM_M + SLOPE_LENGTH_M - ROBOT_AXIS_TO_BACK_M + 0.07, slope_approach_style_p->which_side),
189                                                 1.85 - (PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) + 0.01 - 1.85),
190                                                 NO_TURN());
191                                 }
192                                 break;
193                         }
194                 case EV_MOTION_DONE:
195                         SUBFSM_TRANSITION(load_oranges, NULL);
196                         break;
197                 case EV_RETURN:
198                         FSM_TRANSITION(sledge_down);
199                         break;
200                 case EV_TIMER:
201                 case EV_START:
202                 case EV_VIDLE_DONE:
203                 case EV_MOTION_ERROR:
204                 case EV_SWITCH_STRATEGY:
205                         DBG_PRINT_EVENT("unhandled event");
206                 case EV_EXIT:
207                         break;
208         }
209 }
210
211 /* subautomaton to load oranges in two stages */
212 FSM_STATE_DECL(load_oranges2);
213 FSM_STATE_DECL(load_oranges3);
214 FSM_STATE(load_oranges)
215 {
216         switch(FSM_EVENT) {
217                 case EV_ENTRY:
218                         FSM_TIMER(1000);
219                         act_vidle(VIDLE_MIDDLE, VIDLE_MEDIUM_SPEED);
220                         break;
221                 case EV_VIDLE_DONE:
222                         FSM_TIMER(1000);
223                         break;
224                 case EV_TIMER:
225                         FSM_TRANSITION(load_oranges2);
226                         break;
227                 case EV_MOTION_DONE:
228                 case EV_START:
229                 case EV_RETURN:
230                 case EV_MOTION_ERROR:
231                 case EV_SWITCH_STRATEGY:
232                         DBG_PRINT_EVENT("unhandled event");
233                 case EV_EXIT:
234                         break;
235         }
236 }
237
238 FSM_STATE(load_oranges2)
239 {
240         switch(FSM_EVENT) {
241                 case EV_ENTRY:
242                         act_vidle(VIDLE_UP, VIDLE_MEDIUM_SPEED);
243                         FSM_TIMER(1000);
244                         break;
245                 case EV_VIDLE_DONE:
246                         FSM_TRANSITION(load_oranges3);
247                         //SUBFSM_RET(NULL);
248                         break;
249                 case EV_TIMER:
250                         FSM_TRANSITION(load_oranges3);
251                         //SUBFSM_RET(NULL);
252                         break;
253                 case EV_MOTION_DONE:
254                 case EV_START:
255                 case EV_RETURN:
256                 case EV_MOTION_ERROR:
257                 case EV_SWITCH_STRATEGY:
258                         DBG_PRINT_EVENT("unhandled event");
259                 case EV_EXIT:
260                         act_vidle(VIDLE_UP-1, VIDLE_FAST_SPEED);
261                         break;
262         }
263 }
264
265 FSM_STATE(load_oranges3)
266 {
267         switch(FSM_EVENT) {
268                 case EV_ENTRY:
269                         act_vidle(VIDLE_MIDDLE+50, 0);
270                         FSM_TIMER(500);
271                         break;
272                 case EV_VIDLE_DONE:
273                         SUBFSM_RET(NULL);
274                         break;
275                 case EV_TIMER:
276                         SUBFSM_RET(NULL);
277                         break;
278                 case EV_MOTION_DONE:
279                 case EV_START:
280                 case EV_RETURN:
281                 case EV_MOTION_ERROR:
282                 case EV_SWITCH_STRATEGY:
283                         DBG_PRINT_EVENT("unhandled event");
284                 case EV_EXIT:
285                         act_vidle(VIDLE_UP, VIDLE_FAST_SPEED);
286                         break;
287         }
288 }
289
290 FSM_STATE(sledge_down)
291 {       
292         struct TrajectoryConstraints tc;
293         switch(FSM_EVENT) {
294                 case EV_ENTRY:
295                         tc = tcFast;
296                         tc.maxe = 0.5;
297                         robot_trajectory_new(&tc);
298
299                         if (slope_approach_style_p->which_oranges == NEAR_PLAYGROUND_BOUNDARY) {
300                                 robot_trajectory_add_point_trans(
301                                         x_coord(1.2 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
302                                         PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2)+0.01);
303                                 robot_trajectory_add_point_trans(
304                                         x_coord(1.0 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
305                                         PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.01);
306                                 robot_trajectory_add_point_trans(
307                                         x_coord(0.8 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
308                                         PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.05);
309                                 robot_trajectory_add_point_trans(
310                                         x_coord(0.6 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
311                                         PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.10);
312                                 robot_trajectory_add_final_point_trans(
313                                         x_coord(0.5 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
314                                         PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.17,
315                                         NO_TURN());
316                         } else if (slope_approach_style_p->which_oranges == NEAR_PLAYGROUND_CENTER) {
317                                 robot_trajectory_add_point_trans(
318                                         x_coord(1 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
319                                         1.85 - (PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2)+0.01 - 1.85));
320                                 robot_trajectory_add_final_point_trans(
321                                         x_coord(SLOPE_TO_RIM_M - ROBOT_AXIS_TO_BACK_M - 0.2, slope_approach_style_p->which_side),
322                                         1.85 - (PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2)+0.01 - 1.85),
323                                         NO_TURN());
324                         }
325                         /* robot_trajectory_add_point_trans(
326                                 x_coord(1 - ROBOT_AXIS_TO_BACK_M, slope_approach_style_p->which_side),
327                                 y_coord(PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2)+0.01, slope_approach_style_p->which_oranges));
328                         robot_trajectory_add_point_trans(
329                                 x_coord(SLOPE_TO_RIM_M - ROBOT_AXIS_TO_BACK_M - 0.20, slope_approach_style_p->which_side),
330                                 y_coord(PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.08, slope_approach_style_p->which_oranges));
331                         robot_trajectory_add_final_point_trans(
332                                 x_coord(SLOPE_TO_RIM_M - ROBOT_AXIS_TO_BACK_M - 0.26, slope_approach_style_p->which_side),
333                                 y_coord(PLAYGROUND_HEIGHT_M - (ROBOT_WIDTH_M/2) - 0.14, slope_approach_style_p->which_oranges),
334                                 NO_TURN()); */
335                         break;
336                 case EV_MOTION_DONE:
337                         /* just for sure, try to close it one more time */
338                         act_vidle(VIDLE_UP, VIDLE_FAST_SPEED);
339                         SUBFSM_RET(NULL);
340                         delete(slope_approach_style_p);
341                         break;
342                 case EV_START:
343                 case EV_TIMER:
344                 case EV_RETURN:
345                 case EV_VIDLE_DONE:
346                 case EV_MOTION_ERROR:
347                 case EV_SWITCH_STRATEGY:
348                         DBG_PRINT_EVENT("unhandled event");
349                         break;
350                 case EV_EXIT:
351                         // enables using side switches on bumpers
352                         enable_switches(true);
353                         robot.ignore_hokuyo = false;
354                         robot.check_turn_safety = true;
355
356                         break;
357         }
358 }
359
360 /************************************************************************
361  * The "unload our oranges" subautomaton
362  ************************************************************************/
363
364 FSM_STATE(to_cntainer_and_unld)
365 {
366         switch(FSM_EVENT) {
367                 case EV_ENTRY:
368                         /*
369                         if (slope_approach_style_p->which_side == MINE) {
370                                 robot_trajectory_new(&tcFast);
371                                 // face the rim with front of the robot
372                                 //robot_trajectory_add_final_point_trans(PLAYGROUND_WIDTH_M-0.35, 0.12, ARRIVE_FROM(DEG2RAD(-90), 0.10));
373                                 // face the rim with back of the robot
374                                 robot_trajectory_add_point_trans(PLAYGROUND_WIDTH_M-0.6, 0.35);
375                                 robot_trajectory_add_final_point_trans(PLAYGROUND_WIDTH_M-0.35, 0.45, ARRIVE_FROM(DEG2RAD(90),0.05));
376                         } else { */
377                                 robot_goto_trans(PLAYGROUND_WIDTH_M-0.35, 0.45, ARRIVE_FROM(DEG2RAD(90),0.05), &tcFast);
378                         //}
379                         break;
380                 case EV_MOTION_DONE:
381                         FSM_TIMER(3000); // FIXME: test this
382                         act_vidle(VIDLE_DOWN, VIDLE_FAST_SPEED);
383                         break;
384                 case EV_TIMER:
385                         act_vidle(VIDLE_UP, VIDLE_FAST_SPEED);
386                         SUBFSM_RET(NULL);
387                         break;
388                 case EV_START:
389                 case EV_RETURN:
390                 case EV_VIDLE_DONE:
391                 case EV_MOTION_ERROR:
392                 case EV_SWITCH_STRATEGY:
393                         DBG_PRINT_EVENT("unhandled event");
394                 case EV_EXIT:
395                         break;
396         }
397 }
398
399 /************************************************************************
400  * The "collect corns" subautomaton
401  ************************************************************************/
402
403 static enum where_to_go {
404         CORN,
405         TURN_AROUND,
406         CONTAINER,
407         NO_MORE_CORN
408 } where_to_go = CORN;
409
410 static struct corn *corn_to_get;
411
412 FSM_STATE(rush_corns_decider)
413 {
414         switch(FSM_EVENT) {
415                 case EV_ENTRY:
416                         if (where_to_go == CORN) {
417                                 FSM_TRANSITION(approach_next_corn);
418                         } else if (where_to_go == CONTAINER) {
419                                 FSM_TRANSITION(rush_the_corn);
420                         } else if (where_to_go == TURN_AROUND) {
421                                 FSM_TRANSITION(turn_around);
422                         } else /* NO_MORE_CORN */ { 
423                         }
424                         break;
425                 case EV_START:
426                 case EV_TIMER:
427                 case EV_RETURN:
428                 case EV_VIDLE_DONE:
429                 case EV_MOTION_DONE:
430                 case EV_MOTION_ERROR:
431                 case EV_SWITCH_STRATEGY:
432                         DBG_PRINT_EVENT("unhandled event");
433                 case EV_EXIT:
434                         break;
435         }
436 }
437
438 static int cnt = 0;
439 FSM_STATE(approach_next_corn)
440 {
441         switch(FSM_EVENT) {
442                 case EV_ENTRY: {
443                                 double x, y, phi;
444                                 robot_get_est_pos(&x, &y, &phi);
445                                 printf("approach_next_corn: puck cnt: %d, est pos %.3f, %.3f, %.3f\n",
446                                         cnt, x, y, phi);
447
448                                 corn_to_get = choose_next_corn();
449                                 if (corn_to_get) {
450                                         Pos *p = get_corn_approach_position(corn_to_get);
451                                         corn_to_get->was_collected = true;
452                                         //robot_trajectory_new(&tcFast);
453                                         //robot_trajectory_add_final_point_trans(robot_trajectory_add_final_point_trans(p->x, p->y, TURN(p->phi));
454                                         robot_goto_trans(p->x, p->y, TURN(p->phi), &tcFast);
455                                         delete(p);
456                                         where_to_go = CONTAINER;
457                                 } else {
458                                         where_to_go = NO_MORE_CORN;
459                                 }
460                                 break;
461                         }
462                 case EV_MOTION_DONE:
463                         cnt++;
464                         FSM_TRANSITION(rush_corns_decider);
465                         break;
466                 case EV_START:
467                 case EV_TIMER:
468                 case EV_RETURN:
469                 case EV_VIDLE_DONE:
470                 case EV_MOTION_ERROR:
471                 case EV_SWITCH_STRATEGY:
472                         DBG_PRINT_EVENT("unhandled event");
473                 case EV_EXIT:
474                         break;
475         }
476 }
477
478 FSM_STATE(rush_the_corn)
479 {
480         switch(FSM_EVENT) {
481                 case EV_ENTRY:
482                         double x;
483                         if (robot.team_color == BLUE) {
484                                 x = corn_to_get->position.x;
485                         } else {
486                                 x = PLAYGROUND_WIDTH_M - corn_to_get->position.x;
487                         }
488                         remove_wall_around_corn(x, corn_to_get->position.y);
489                         robot_goto_trans(PLAYGROUND_WIDTH_M - 0.4, 0.15, ARRIVE_FROM(DEG2RAD(-90), 0.02), &tcFast);
490                         where_to_go = TURN_AROUND;
491                         break;
492                 case EV_MOTION_DONE:
493                         FSM_TRANSITION(rush_corns_decider);
494                         break;
495                 case EV_START:
496                 case EV_TIMER:
497                 case EV_RETURN:
498                 case EV_VIDLE_DONE:
499                 case EV_MOTION_ERROR:
500                 case EV_SWITCH_STRATEGY:
501                         DBG_PRINT_EVENT("unhandled event");
502                 case EV_EXIT:
503                         break;
504         }
505 }
506
507 // used to perform the maneuvre
508 FSM_STATE(turn_around)
509 {
510         switch(FSM_EVENT) {
511                 case EV_ENTRY:
512                         robot_trajectory_new_backward(&tcFast);
513                         robot_trajectory_add_final_point_trans(PLAYGROUND_WIDTH_M-0.35, 0.45, TURN_CCW(90));
514                         break;
515                 case EV_MOTION_DONE:
516                         where_to_go = CORN;
517                         FSM_TRANSITION(rush_corns_decider);
518                         break;
519                 case EV_START:
520                 case EV_TIMER:
521                 case EV_RETURN:
522                 case EV_VIDLE_DONE:
523                 case EV_MOTION_ERROR:
524                 case EV_SWITCH_STRATEGY:
525                         DBG_PRINT_EVENT("unhandled event");
526                 case EV_EXIT:
527                         break;
528         }
529 }