]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - kernel/events/core.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[zynq/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905
906         /*
907          * cpuctx->cgrp is NULL until a cgroup event is sched in or
908          * ctx->nr_cgroup == 0 .
909          */
910         if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911                 cpuctx->cgrp = event->cgrp;
912         else if (!add)
913                 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921         return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929         return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934         return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946                                          struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951                                         struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956                                       struct perf_event_attr *attr,
957                                       struct perf_event *group_leader)
958 {
959         return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964                           struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980         return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990                          struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996                          struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012         struct perf_cpu_context *cpuctx;
1013         int rotations = 0;
1014
1015         WARN_ON(!irqs_disabled());
1016
1017         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018         rotations = perf_rotate_context(cpuctx);
1019
1020         raw_spin_lock(&cpuctx->hrtimer_lock);
1021         if (rotations)
1022                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023         else
1024                 cpuctx->hrtimer_active = 0;
1025         raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032         struct hrtimer *timer = &cpuctx->hrtimer;
1033         struct pmu *pmu = cpuctx->ctx.pmu;
1034         u64 interval;
1035
1036         /* no multiplexing needed for SW PMU */
1037         if (pmu->task_ctx_nr == perf_sw_context)
1038                 return;
1039
1040         /*
1041          * check default is sane, if not set then force to
1042          * default interval (1/tick)
1043          */
1044         interval = pmu->hrtimer_interval_ms;
1045         if (interval < 1)
1046                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052         timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057         struct hrtimer *timer = &cpuctx->hrtimer;
1058         struct pmu *pmu = cpuctx->ctx.pmu;
1059         unsigned long flags;
1060
1061         /* not for SW PMU */
1062         if (pmu->task_ctx_nr == perf_sw_context)
1063                 return 0;
1064
1065         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066         if (!cpuctx->hrtimer_active) {
1067                 cpuctx->hrtimer_active = 1;
1068                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070         }
1071         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079         if (!(*count)++)
1080                 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086         if (!--(*count))
1087                 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106         list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!irqs_disabled());
1112
1113         WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115         list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125         struct perf_event_context *ctx;
1126
1127         ctx = container_of(head, struct perf_event_context, rcu_head);
1128         kfree(ctx->task_ctx_data);
1129         kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134         if (atomic_dec_and_test(&ctx->refcount)) {
1135                 if (ctx->parent_ctx)
1136                         put_ctx(ctx->parent_ctx);
1137                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138                         put_task_struct(ctx->task);
1139                 call_rcu(&ctx->rcu_head, free_ctx);
1140         }
1141 }
1142
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()    [ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()                   [ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()         [ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event() [ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *      task_struct::perf_event_mutex
1198  *        perf_event_context::mutex
1199  *          perf_event::child_mutex;
1200  *            perf_event_context::lock
1201  *          perf_event::mmap_mutex
1202  *          mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207         struct perf_event_context *ctx;
1208
1209 again:
1210         rcu_read_lock();
1211         ctx = ACCESS_ONCE(event->ctx);
1212         if (!atomic_inc_not_zero(&ctx->refcount)) {
1213                 rcu_read_unlock();
1214                 goto again;
1215         }
1216         rcu_read_unlock();
1217
1218         mutex_lock_nested(&ctx->mutex, nesting);
1219         if (event->ctx != ctx) {
1220                 mutex_unlock(&ctx->mutex);
1221                 put_ctx(ctx);
1222                 goto again;
1223         }
1224
1225         return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231         return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235                                   struct perf_event_context *ctx)
1236 {
1237         mutex_unlock(&ctx->mutex);
1238         put_ctx(ctx);
1239 }
1240
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251         lockdep_assert_held(&ctx->lock);
1252
1253         if (parent_ctx)
1254                 ctx->parent_ctx = NULL;
1255         ctx->generation++;
1256
1257         return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262         /*
1263          * only top level events have the pid namespace they were created in
1264          */
1265         if (event->parent)
1266                 event = event->parent;
1267
1268         return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273         /*
1274          * only top level events have the pid namespace they were created in
1275          */
1276         if (event->parent)
1277                 event = event->parent;
1278
1279         return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288         u64 id = event->id;
1289
1290         if (event->parent)
1291                 id = event->parent->id;
1292
1293         return id;
1294 }
1295
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305         struct perf_event_context *ctx;
1306
1307 retry:
1308         /*
1309          * One of the few rules of preemptible RCU is that one cannot do
1310          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311          * part of the read side critical section was irqs-enabled -- see
1312          * rcu_read_unlock_special().
1313          *
1314          * Since ctx->lock nests under rq->lock we must ensure the entire read
1315          * side critical section has interrupts disabled.
1316          */
1317         local_irq_save(*flags);
1318         rcu_read_lock();
1319         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320         if (ctx) {
1321                 /*
1322                  * If this context is a clone of another, it might
1323                  * get swapped for another underneath us by
1324                  * perf_event_task_sched_out, though the
1325                  * rcu_read_lock() protects us from any context
1326                  * getting freed.  Lock the context and check if it
1327                  * got swapped before we could get the lock, and retry
1328                  * if so.  If we locked the right context, then it
1329                  * can't get swapped on us any more.
1330                  */
1331                 raw_spin_lock(&ctx->lock);
1332                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         rcu_read_unlock();
1335                         local_irq_restore(*flags);
1336                         goto retry;
1337                 }
1338
1339                 if (ctx->task == TASK_TOMBSTONE ||
1340                     !atomic_inc_not_zero(&ctx->refcount)) {
1341                         raw_spin_unlock(&ctx->lock);
1342                         ctx = NULL;
1343                 } else {
1344                         WARN_ON_ONCE(ctx->task != task);
1345                 }
1346         }
1347         rcu_read_unlock();
1348         if (!ctx)
1349                 local_irq_restore(*flags);
1350         return ctx;
1351 }
1352
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361         struct perf_event_context *ctx;
1362         unsigned long flags;
1363
1364         ctx = perf_lock_task_context(task, ctxn, &flags);
1365         if (ctx) {
1366                 ++ctx->pin_count;
1367                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368         }
1369         return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374         unsigned long flags;
1375
1376         raw_spin_lock_irqsave(&ctx->lock, flags);
1377         --ctx->pin_count;
1378         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386         u64 now = perf_clock();
1387
1388         ctx->time += now - ctx->timestamp;
1389         ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394         struct perf_event_context *ctx = event->ctx;
1395
1396         if (is_cgroup_event(event))
1397                 return perf_cgroup_event_time(event);
1398
1399         return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407         struct perf_event_context *ctx = event->ctx;
1408         u64 run_end;
1409
1410         lockdep_assert_held(&ctx->lock);
1411
1412         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414                 return;
1415
1416         /*
1417          * in cgroup mode, time_enabled represents
1418          * the time the event was enabled AND active
1419          * tasks were in the monitored cgroup. This is
1420          * independent of the activity of the context as
1421          * there may be a mix of cgroup and non-cgroup events.
1422          *
1423          * That is why we treat cgroup events differently
1424          * here.
1425          */
1426         if (is_cgroup_event(event))
1427                 run_end = perf_cgroup_event_time(event);
1428         else if (ctx->is_active)
1429                 run_end = ctx->time;
1430         else
1431                 run_end = event->tstamp_stopped;
1432
1433         event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435         if (event->state == PERF_EVENT_STATE_INACTIVE)
1436                 run_end = event->tstamp_stopped;
1437         else
1438                 run_end = perf_event_time(event);
1439
1440         event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449         struct perf_event *event;
1450
1451         update_event_times(leader);
1452         list_for_each_entry(event, &leader->sibling_list, group_entry)
1453                 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459         if (event->attr.pinned)
1460                 return &ctx->pinned_groups;
1461         else
1462                 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472
1473         lockdep_assert_held(&ctx->lock);
1474
1475         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476         event->attach_state |= PERF_ATTACH_CONTEXT;
1477
1478         /*
1479          * If we're a stand alone event or group leader, we go to the context
1480          * list, group events are kept attached to the group so that
1481          * perf_group_detach can, at all times, locate all siblings.
1482          */
1483         if (event->group_leader == event) {
1484                 struct list_head *list;
1485
1486                 event->group_caps = event->event_caps;
1487
1488                 list = ctx_group_list(event, ctx);
1489                 list_add_tail(&event->group_entry, list);
1490         }
1491
1492         list_update_cgroup_event(event, ctx, true);
1493
1494         list_add_rcu(&event->event_entry, &ctx->event_list);
1495         ctx->nr_events++;
1496         if (event->attr.inherit_stat)
1497                 ctx->nr_stat++;
1498
1499         ctx->generation++;
1500 }
1501
1502 /*
1503  * Initialize event state based on the perf_event_attr::disabled.
1504  */
1505 static inline void perf_event__state_init(struct perf_event *event)
1506 {
1507         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508                                               PERF_EVENT_STATE_INACTIVE;
1509 }
1510
1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 {
1513         int entry = sizeof(u64); /* value */
1514         int size = 0;
1515         int nr = 1;
1516
1517         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518                 size += sizeof(u64);
1519
1520         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521                 size += sizeof(u64);
1522
1523         if (event->attr.read_format & PERF_FORMAT_ID)
1524                 entry += sizeof(u64);
1525
1526         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527                 nr += nr_siblings;
1528                 size += sizeof(u64);
1529         }
1530
1531         size += entry * nr;
1532         event->read_size = size;
1533 }
1534
1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 {
1537         struct perf_sample_data *data;
1538         u16 size = 0;
1539
1540         if (sample_type & PERF_SAMPLE_IP)
1541                 size += sizeof(data->ip);
1542
1543         if (sample_type & PERF_SAMPLE_ADDR)
1544                 size += sizeof(data->addr);
1545
1546         if (sample_type & PERF_SAMPLE_PERIOD)
1547                 size += sizeof(data->period);
1548
1549         if (sample_type & PERF_SAMPLE_WEIGHT)
1550                 size += sizeof(data->weight);
1551
1552         if (sample_type & PERF_SAMPLE_READ)
1553                 size += event->read_size;
1554
1555         if (sample_type & PERF_SAMPLE_DATA_SRC)
1556                 size += sizeof(data->data_src.val);
1557
1558         if (sample_type & PERF_SAMPLE_TRANSACTION)
1559                 size += sizeof(data->txn);
1560
1561         event->header_size = size;
1562 }
1563
1564 /*
1565  * Called at perf_event creation and when events are attached/detached from a
1566  * group.
1567  */
1568 static void perf_event__header_size(struct perf_event *event)
1569 {
1570         __perf_event_read_size(event,
1571                                event->group_leader->nr_siblings);
1572         __perf_event_header_size(event, event->attr.sample_type);
1573 }
1574
1575 static void perf_event__id_header_size(struct perf_event *event)
1576 {
1577         struct perf_sample_data *data;
1578         u64 sample_type = event->attr.sample_type;
1579         u16 size = 0;
1580
1581         if (sample_type & PERF_SAMPLE_TID)
1582                 size += sizeof(data->tid_entry);
1583
1584         if (sample_type & PERF_SAMPLE_TIME)
1585                 size += sizeof(data->time);
1586
1587         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588                 size += sizeof(data->id);
1589
1590         if (sample_type & PERF_SAMPLE_ID)
1591                 size += sizeof(data->id);
1592
1593         if (sample_type & PERF_SAMPLE_STREAM_ID)
1594                 size += sizeof(data->stream_id);
1595
1596         if (sample_type & PERF_SAMPLE_CPU)
1597                 size += sizeof(data->cpu_entry);
1598
1599         event->id_header_size = size;
1600 }
1601
1602 static bool perf_event_validate_size(struct perf_event *event)
1603 {
1604         /*
1605          * The values computed here will be over-written when we actually
1606          * attach the event.
1607          */
1608         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610         perf_event__id_header_size(event);
1611
1612         /*
1613          * Sum the lot; should not exceed the 64k limit we have on records.
1614          * Conservative limit to allow for callchains and other variable fields.
1615          */
1616         if (event->read_size + event->header_size +
1617             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618                 return false;
1619
1620         return true;
1621 }
1622
1623 static void perf_group_attach(struct perf_event *event)
1624 {
1625         struct perf_event *group_leader = event->group_leader, *pos;
1626
1627         /*
1628          * We can have double attach due to group movement in perf_event_open.
1629          */
1630         if (event->attach_state & PERF_ATTACH_GROUP)
1631                 return;
1632
1633         event->attach_state |= PERF_ATTACH_GROUP;
1634
1635         if (group_leader == event)
1636                 return;
1637
1638         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
1640         group_leader->group_caps &= event->event_caps;
1641
1642         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643         group_leader->nr_siblings++;
1644
1645         perf_event__header_size(group_leader);
1646
1647         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648                 perf_event__header_size(pos);
1649 }
1650
1651 /*
1652  * Remove a event from the lists for its context.
1653  * Must be called with ctx->mutex and ctx->lock held.
1654  */
1655 static void
1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657 {
1658         WARN_ON_ONCE(event->ctx != ctx);
1659         lockdep_assert_held(&ctx->lock);
1660
1661         /*
1662          * We can have double detach due to exit/hot-unplug + close.
1663          */
1664         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665                 return;
1666
1667         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
1669         list_update_cgroup_event(event, ctx, false);
1670
1671         ctx->nr_events--;
1672         if (event->attr.inherit_stat)
1673                 ctx->nr_stat--;
1674
1675         list_del_rcu(&event->event_entry);
1676
1677         if (event->group_leader == event)
1678                 list_del_init(&event->group_entry);
1679
1680         update_group_times(event);
1681
1682         /*
1683          * If event was in error state, then keep it
1684          * that way, otherwise bogus counts will be
1685          * returned on read(). The only way to get out
1686          * of error state is by explicit re-enabling
1687          * of the event
1688          */
1689         if (event->state > PERF_EVENT_STATE_OFF)
1690                 event->state = PERF_EVENT_STATE_OFF;
1691
1692         ctx->generation++;
1693 }
1694
1695 static void perf_group_detach(struct perf_event *event)
1696 {
1697         struct perf_event *sibling, *tmp;
1698         struct list_head *list = NULL;
1699
1700         /*
1701          * We can have double detach due to exit/hot-unplug + close.
1702          */
1703         if (!(event->attach_state & PERF_ATTACH_GROUP))
1704                 return;
1705
1706         event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708         /*
1709          * If this is a sibling, remove it from its group.
1710          */
1711         if (event->group_leader != event) {
1712                 list_del_init(&event->group_entry);
1713                 event->group_leader->nr_siblings--;
1714                 goto out;
1715         }
1716
1717         if (!list_empty(&event->group_entry))
1718                 list = &event->group_entry;
1719
1720         /*
1721          * If this was a group event with sibling events then
1722          * upgrade the siblings to singleton events by adding them
1723          * to whatever list we are on.
1724          */
1725         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726                 if (list)
1727                         list_move_tail(&sibling->group_entry, list);
1728                 sibling->group_leader = sibling;
1729
1730                 /* Inherit group flags from the previous leader */
1731                 sibling->group_caps = event->group_caps;
1732
1733                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1734         }
1735
1736 out:
1737         perf_event__header_size(event->group_leader);
1738
1739         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740                 perf_event__header_size(tmp);
1741 }
1742
1743 static bool is_orphaned_event(struct perf_event *event)
1744 {
1745         return event->state == PERF_EVENT_STATE_DEAD;
1746 }
1747
1748 static inline int __pmu_filter_match(struct perf_event *event)
1749 {
1750         struct pmu *pmu = event->pmu;
1751         return pmu->filter_match ? pmu->filter_match(event) : 1;
1752 }
1753
1754 /*
1755  * Check whether we should attempt to schedule an event group based on
1756  * PMU-specific filtering. An event group can consist of HW and SW events,
1757  * potentially with a SW leader, so we must check all the filters, to
1758  * determine whether a group is schedulable:
1759  */
1760 static inline int pmu_filter_match(struct perf_event *event)
1761 {
1762         struct perf_event *child;
1763
1764         if (!__pmu_filter_match(event))
1765                 return 0;
1766
1767         list_for_each_entry(child, &event->sibling_list, group_entry) {
1768                 if (!__pmu_filter_match(child))
1769                         return 0;
1770         }
1771
1772         return 1;
1773 }
1774
1775 static inline int
1776 event_filter_match(struct perf_event *event)
1777 {
1778         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779                perf_cgroup_match(event) && pmu_filter_match(event);
1780 }
1781
1782 static void
1783 event_sched_out(struct perf_event *event,
1784                   struct perf_cpu_context *cpuctx,
1785                   struct perf_event_context *ctx)
1786 {
1787         u64 tstamp = perf_event_time(event);
1788         u64 delta;
1789
1790         WARN_ON_ONCE(event->ctx != ctx);
1791         lockdep_assert_held(&ctx->lock);
1792
1793         /*
1794          * An event which could not be activated because of
1795          * filter mismatch still needs to have its timings
1796          * maintained, otherwise bogus information is return
1797          * via read() for time_enabled, time_running:
1798          */
1799         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800             !event_filter_match(event)) {
1801                 delta = tstamp - event->tstamp_stopped;
1802                 event->tstamp_running += delta;
1803                 event->tstamp_stopped = tstamp;
1804         }
1805
1806         if (event->state != PERF_EVENT_STATE_ACTIVE)
1807                 return;
1808
1809         perf_pmu_disable(event->pmu);
1810
1811         event->tstamp_stopped = tstamp;
1812         event->pmu->del(event, 0);
1813         event->oncpu = -1;
1814         event->state = PERF_EVENT_STATE_INACTIVE;
1815         if (event->pending_disable) {
1816                 event->pending_disable = 0;
1817                 event->state = PERF_EVENT_STATE_OFF;
1818         }
1819
1820         if (!is_software_event(event))
1821                 cpuctx->active_oncpu--;
1822         if (!--ctx->nr_active)
1823                 perf_event_ctx_deactivate(ctx);
1824         if (event->attr.freq && event->attr.sample_freq)
1825                 ctx->nr_freq--;
1826         if (event->attr.exclusive || !cpuctx->active_oncpu)
1827                 cpuctx->exclusive = 0;
1828
1829         perf_pmu_enable(event->pmu);
1830 }
1831
1832 static void
1833 group_sched_out(struct perf_event *group_event,
1834                 struct perf_cpu_context *cpuctx,
1835                 struct perf_event_context *ctx)
1836 {
1837         struct perf_event *event;
1838         int state = group_event->state;
1839
1840         perf_pmu_disable(ctx->pmu);
1841
1842         event_sched_out(group_event, cpuctx, ctx);
1843
1844         /*
1845          * Schedule out siblings (if any):
1846          */
1847         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848                 event_sched_out(event, cpuctx, ctx);
1849
1850         perf_pmu_enable(ctx->pmu);
1851
1852         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853                 cpuctx->exclusive = 0;
1854 }
1855
1856 #define DETACH_GROUP    0x01UL
1857
1858 /*
1859  * Cross CPU call to remove a performance event
1860  *
1861  * We disable the event on the hardware level first. After that we
1862  * remove it from the context list.
1863  */
1864 static void
1865 __perf_remove_from_context(struct perf_event *event,
1866                            struct perf_cpu_context *cpuctx,
1867                            struct perf_event_context *ctx,
1868                            void *info)
1869 {
1870         unsigned long flags = (unsigned long)info;
1871
1872         event_sched_out(event, cpuctx, ctx);
1873         if (flags & DETACH_GROUP)
1874                 perf_group_detach(event);
1875         list_del_event(event, ctx);
1876
1877         if (!ctx->nr_events && ctx->is_active) {
1878                 ctx->is_active = 0;
1879                 if (ctx->task) {
1880                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881                         cpuctx->task_ctx = NULL;
1882                 }
1883         }
1884 }
1885
1886 /*
1887  * Remove the event from a task's (or a CPU's) list of events.
1888  *
1889  * If event->ctx is a cloned context, callers must make sure that
1890  * every task struct that event->ctx->task could possibly point to
1891  * remains valid.  This is OK when called from perf_release since
1892  * that only calls us on the top-level context, which can't be a clone.
1893  * When called from perf_event_exit_task, it's OK because the
1894  * context has been detached from its task.
1895  */
1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897 {
1898         lockdep_assert_held(&event->ctx->mutex);
1899
1900         event_function_call(event, __perf_remove_from_context, (void *)flags);
1901 }
1902
1903 /*
1904  * Cross CPU call to disable a performance event
1905  */
1906 static void __perf_event_disable(struct perf_event *event,
1907                                  struct perf_cpu_context *cpuctx,
1908                                  struct perf_event_context *ctx,
1909                                  void *info)
1910 {
1911         if (event->state < PERF_EVENT_STATE_INACTIVE)
1912                 return;
1913
1914         update_context_time(ctx);
1915         update_cgrp_time_from_event(event);
1916         update_group_times(event);
1917         if (event == event->group_leader)
1918                 group_sched_out(event, cpuctx, ctx);
1919         else
1920                 event_sched_out(event, cpuctx, ctx);
1921         event->state = PERF_EVENT_STATE_OFF;
1922 }
1923
1924 /*
1925  * Disable a event.
1926  *
1927  * If event->ctx is a cloned context, callers must make sure that
1928  * every task struct that event->ctx->task could possibly point to
1929  * remains valid.  This condition is satisifed when called through
1930  * perf_event_for_each_child or perf_event_for_each because they
1931  * hold the top-level event's child_mutex, so any descendant that
1932  * goes to exit will block in perf_event_exit_event().
1933  *
1934  * When called from perf_pending_event it's OK because event->ctx
1935  * is the current context on this CPU and preemption is disabled,
1936  * hence we can't get into perf_event_task_sched_out for this context.
1937  */
1938 static void _perf_event_disable(struct perf_event *event)
1939 {
1940         struct perf_event_context *ctx = event->ctx;
1941
1942         raw_spin_lock_irq(&ctx->lock);
1943         if (event->state <= PERF_EVENT_STATE_OFF) {
1944                 raw_spin_unlock_irq(&ctx->lock);
1945                 return;
1946         }
1947         raw_spin_unlock_irq(&ctx->lock);
1948
1949         event_function_call(event, __perf_event_disable, NULL);
1950 }
1951
1952 void perf_event_disable_local(struct perf_event *event)
1953 {
1954         event_function_local(event, __perf_event_disable, NULL);
1955 }
1956
1957 /*
1958  * Strictly speaking kernel users cannot create groups and therefore this
1959  * interface does not need the perf_event_ctx_lock() magic.
1960  */
1961 void perf_event_disable(struct perf_event *event)
1962 {
1963         struct perf_event_context *ctx;
1964
1965         ctx = perf_event_ctx_lock(event);
1966         _perf_event_disable(event);
1967         perf_event_ctx_unlock(event, ctx);
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_disable);
1970
1971 void perf_event_disable_inatomic(struct perf_event *event)
1972 {
1973         event->pending_disable = 1;
1974         irq_work_queue(&event->pending);
1975 }
1976
1977 static void perf_set_shadow_time(struct perf_event *event,
1978                                  struct perf_event_context *ctx,
1979                                  u64 tstamp)
1980 {
1981         /*
1982          * use the correct time source for the time snapshot
1983          *
1984          * We could get by without this by leveraging the
1985          * fact that to get to this function, the caller
1986          * has most likely already called update_context_time()
1987          * and update_cgrp_time_xx() and thus both timestamp
1988          * are identical (or very close). Given that tstamp is,
1989          * already adjusted for cgroup, we could say that:
1990          *    tstamp - ctx->timestamp
1991          * is equivalent to
1992          *    tstamp - cgrp->timestamp.
1993          *
1994          * Then, in perf_output_read(), the calculation would
1995          * work with no changes because:
1996          * - event is guaranteed scheduled in
1997          * - no scheduled out in between
1998          * - thus the timestamp would be the same
1999          *
2000          * But this is a bit hairy.
2001          *
2002          * So instead, we have an explicit cgroup call to remain
2003          * within the time time source all along. We believe it
2004          * is cleaner and simpler to understand.
2005          */
2006         if (is_cgroup_event(event))
2007                 perf_cgroup_set_shadow_time(event, tstamp);
2008         else
2009                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2010 }
2011
2012 #define MAX_INTERRUPTS (~0ULL)
2013
2014 static void perf_log_throttle(struct perf_event *event, int enable);
2015 static void perf_log_itrace_start(struct perf_event *event);
2016
2017 static int
2018 event_sched_in(struct perf_event *event,
2019                  struct perf_cpu_context *cpuctx,
2020                  struct perf_event_context *ctx)
2021 {
2022         u64 tstamp = perf_event_time(event);
2023         int ret = 0;
2024
2025         lockdep_assert_held(&ctx->lock);
2026
2027         if (event->state <= PERF_EVENT_STATE_OFF)
2028                 return 0;
2029
2030         WRITE_ONCE(event->oncpu, smp_processor_id());
2031         /*
2032          * Order event::oncpu write to happen before the ACTIVE state
2033          * is visible.
2034          */
2035         smp_wmb();
2036         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037
2038         /*
2039          * Unthrottle events, since we scheduled we might have missed several
2040          * ticks already, also for a heavily scheduling task there is little
2041          * guarantee it'll get a tick in a timely manner.
2042          */
2043         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044                 perf_log_throttle(event, 1);
2045                 event->hw.interrupts = 0;
2046         }
2047
2048         /*
2049          * The new state must be visible before we turn it on in the hardware:
2050          */
2051         smp_wmb();
2052
2053         perf_pmu_disable(event->pmu);
2054
2055         perf_set_shadow_time(event, ctx, tstamp);
2056
2057         perf_log_itrace_start(event);
2058
2059         if (event->pmu->add(event, PERF_EF_START)) {
2060                 event->state = PERF_EVENT_STATE_INACTIVE;
2061                 event->oncpu = -1;
2062                 ret = -EAGAIN;
2063                 goto out;
2064         }
2065
2066         event->tstamp_running += tstamp - event->tstamp_stopped;
2067
2068         if (!is_software_event(event))
2069                 cpuctx->active_oncpu++;
2070         if (!ctx->nr_active++)
2071                 perf_event_ctx_activate(ctx);
2072         if (event->attr.freq && event->attr.sample_freq)
2073                 ctx->nr_freq++;
2074
2075         if (event->attr.exclusive)
2076                 cpuctx->exclusive = 1;
2077
2078 out:
2079         perf_pmu_enable(event->pmu);
2080
2081         return ret;
2082 }
2083
2084 static int
2085 group_sched_in(struct perf_event *group_event,
2086                struct perf_cpu_context *cpuctx,
2087                struct perf_event_context *ctx)
2088 {
2089         struct perf_event *event, *partial_group = NULL;
2090         struct pmu *pmu = ctx->pmu;
2091         u64 now = ctx->time;
2092         bool simulate = false;
2093
2094         if (group_event->state == PERF_EVENT_STATE_OFF)
2095                 return 0;
2096
2097         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098
2099         if (event_sched_in(group_event, cpuctx, ctx)) {
2100                 pmu->cancel_txn(pmu);
2101                 perf_mux_hrtimer_restart(cpuctx);
2102                 return -EAGAIN;
2103         }
2104
2105         /*
2106          * Schedule in siblings as one group (if any):
2107          */
2108         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109                 if (event_sched_in(event, cpuctx, ctx)) {
2110                         partial_group = event;
2111                         goto group_error;
2112                 }
2113         }
2114
2115         if (!pmu->commit_txn(pmu))
2116                 return 0;
2117
2118 group_error:
2119         /*
2120          * Groups can be scheduled in as one unit only, so undo any
2121          * partial group before returning:
2122          * The events up to the failed event are scheduled out normally,
2123          * tstamp_stopped will be updated.
2124          *
2125          * The failed events and the remaining siblings need to have
2126          * their timings updated as if they had gone thru event_sched_in()
2127          * and event_sched_out(). This is required to get consistent timings
2128          * across the group. This also takes care of the case where the group
2129          * could never be scheduled by ensuring tstamp_stopped is set to mark
2130          * the time the event was actually stopped, such that time delta
2131          * calculation in update_event_times() is correct.
2132          */
2133         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134                 if (event == partial_group)
2135                         simulate = true;
2136
2137                 if (simulate) {
2138                         event->tstamp_running += now - event->tstamp_stopped;
2139                         event->tstamp_stopped = now;
2140                 } else {
2141                         event_sched_out(event, cpuctx, ctx);
2142                 }
2143         }
2144         event_sched_out(group_event, cpuctx, ctx);
2145
2146         pmu->cancel_txn(pmu);
2147
2148         perf_mux_hrtimer_restart(cpuctx);
2149
2150         return -EAGAIN;
2151 }
2152
2153 /*
2154  * Work out whether we can put this event group on the CPU now.
2155  */
2156 static int group_can_go_on(struct perf_event *event,
2157                            struct perf_cpu_context *cpuctx,
2158                            int can_add_hw)
2159 {
2160         /*
2161          * Groups consisting entirely of software events can always go on.
2162          */
2163         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164                 return 1;
2165         /*
2166          * If an exclusive group is already on, no other hardware
2167          * events can go on.
2168          */
2169         if (cpuctx->exclusive)
2170                 return 0;
2171         /*
2172          * If this group is exclusive and there are already
2173          * events on the CPU, it can't go on.
2174          */
2175         if (event->attr.exclusive && cpuctx->active_oncpu)
2176                 return 0;
2177         /*
2178          * Otherwise, try to add it if all previous groups were able
2179          * to go on.
2180          */
2181         return can_add_hw;
2182 }
2183
2184 static void add_event_to_ctx(struct perf_event *event,
2185                                struct perf_event_context *ctx)
2186 {
2187         u64 tstamp = perf_event_time(event);
2188
2189         list_add_event(event, ctx);
2190         perf_group_attach(event);
2191         event->tstamp_enabled = tstamp;
2192         event->tstamp_running = tstamp;
2193         event->tstamp_stopped = tstamp;
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197                           struct perf_cpu_context *cpuctx,
2198                           enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201              struct perf_cpu_context *cpuctx,
2202              enum event_type_t event_type,
2203              struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                                struct perf_event_context *ctx)
2207 {
2208         if (!cpuctx->task_ctx)
2209                 return;
2210
2211         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212                 return;
2213
2214         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215 }
2216
2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218                                 struct perf_event_context *ctx,
2219                                 struct task_struct *task)
2220 {
2221         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222         if (ctx)
2223                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225         if (ctx)
2226                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227 }
2228
2229 static void ctx_resched(struct perf_cpu_context *cpuctx,
2230                         struct perf_event_context *task_ctx)
2231 {
2232         perf_pmu_disable(cpuctx->ctx.pmu);
2233         if (task_ctx)
2234                 task_ctx_sched_out(cpuctx, task_ctx);
2235         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236         perf_event_sched_in(cpuctx, task_ctx, current);
2237         perf_pmu_enable(cpuctx->ctx.pmu);
2238 }
2239
2240 /*
2241  * Cross CPU call to install and enable a performance event
2242  *
2243  * Very similar to remote_function() + event_function() but cannot assume that
2244  * things like ctx->is_active and cpuctx->task_ctx are set.
2245  */
2246 static int  __perf_install_in_context(void *info)
2247 {
2248         struct perf_event *event = info;
2249         struct perf_event_context *ctx = event->ctx;
2250         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252         bool activate = true;
2253         int ret = 0;
2254
2255         raw_spin_lock(&cpuctx->ctx.lock);
2256         if (ctx->task) {
2257                 raw_spin_lock(&ctx->lock);
2258                 task_ctx = ctx;
2259
2260                 /* If we're on the wrong CPU, try again */
2261                 if (task_cpu(ctx->task) != smp_processor_id()) {
2262                         ret = -ESRCH;
2263                         goto unlock;
2264                 }
2265
2266                 /*
2267                  * If we're on the right CPU, see if the task we target is
2268                  * current, if not we don't have to activate the ctx, a future
2269                  * context switch will do that for us.
2270                  */
2271                 if (ctx->task != current)
2272                         activate = false;
2273                 else
2274                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275
2276         } else if (task_ctx) {
2277                 raw_spin_lock(&task_ctx->lock);
2278         }
2279
2280         if (activate) {
2281                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2282                 add_event_to_ctx(event, ctx);
2283                 ctx_resched(cpuctx, task_ctx);
2284         } else {
2285                 add_event_to_ctx(event, ctx);
2286         }
2287
2288 unlock:
2289         perf_ctx_unlock(cpuctx, task_ctx);
2290
2291         return ret;
2292 }
2293
2294 /*
2295  * Attach a performance event to a context.
2296  *
2297  * Very similar to event_function_call, see comment there.
2298  */
2299 static void
2300 perf_install_in_context(struct perf_event_context *ctx,
2301                         struct perf_event *event,
2302                         int cpu)
2303 {
2304         struct task_struct *task = READ_ONCE(ctx->task);
2305
2306         lockdep_assert_held(&ctx->mutex);
2307
2308         if (event->cpu != -1)
2309                 event->cpu = cpu;
2310
2311         /*
2312          * Ensures that if we can observe event->ctx, both the event and ctx
2313          * will be 'complete'. See perf_iterate_sb_cpu().
2314          */
2315         smp_store_release(&event->ctx, ctx);
2316
2317         if (!task) {
2318                 cpu_function_call(cpu, __perf_install_in_context, event);
2319                 return;
2320         }
2321
2322         /*
2323          * Should not happen, we validate the ctx is still alive before calling.
2324          */
2325         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2326                 return;
2327
2328         /*
2329          * Installing events is tricky because we cannot rely on ctx->is_active
2330          * to be set in case this is the nr_events 0 -> 1 transition.
2331          */
2332 again:
2333         /*
2334          * Cannot use task_function_call() because we need to run on the task's
2335          * CPU regardless of whether its current or not.
2336          */
2337         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2338                 return;
2339
2340         raw_spin_lock_irq(&ctx->lock);
2341         task = ctx->task;
2342         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2343                 /*
2344                  * Cannot happen because we already checked above (which also
2345                  * cannot happen), and we hold ctx->mutex, which serializes us
2346                  * against perf_event_exit_task_context().
2347                  */
2348                 raw_spin_unlock_irq(&ctx->lock);
2349                 return;
2350         }
2351         raw_spin_unlock_irq(&ctx->lock);
2352         /*
2353          * Since !ctx->is_active doesn't mean anything, we must IPI
2354          * unconditionally.
2355          */
2356         goto again;
2357 }
2358
2359 /*
2360  * Put a event into inactive state and update time fields.
2361  * Enabling the leader of a group effectively enables all
2362  * the group members that aren't explicitly disabled, so we
2363  * have to update their ->tstamp_enabled also.
2364  * Note: this works for group members as well as group leaders
2365  * since the non-leader members' sibling_lists will be empty.
2366  */
2367 static void __perf_event_mark_enabled(struct perf_event *event)
2368 {
2369         struct perf_event *sub;
2370         u64 tstamp = perf_event_time(event);
2371
2372         event->state = PERF_EVENT_STATE_INACTIVE;
2373         event->tstamp_enabled = tstamp - event->total_time_enabled;
2374         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2375                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2376                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2377         }
2378 }
2379
2380 /*
2381  * Cross CPU call to enable a performance event
2382  */
2383 static void __perf_event_enable(struct perf_event *event,
2384                                 struct perf_cpu_context *cpuctx,
2385                                 struct perf_event_context *ctx,
2386                                 void *info)
2387 {
2388         struct perf_event *leader = event->group_leader;
2389         struct perf_event_context *task_ctx;
2390
2391         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2392             event->state <= PERF_EVENT_STATE_ERROR)
2393                 return;
2394
2395         if (ctx->is_active)
2396                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2397
2398         __perf_event_mark_enabled(event);
2399
2400         if (!ctx->is_active)
2401                 return;
2402
2403         if (!event_filter_match(event)) {
2404                 if (is_cgroup_event(event))
2405                         perf_cgroup_defer_enabled(event);
2406                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2407                 return;
2408         }
2409
2410         /*
2411          * If the event is in a group and isn't the group leader,
2412          * then don't put it on unless the group is on.
2413          */
2414         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2415                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2416                 return;
2417         }
2418
2419         task_ctx = cpuctx->task_ctx;
2420         if (ctx->task)
2421                 WARN_ON_ONCE(task_ctx != ctx);
2422
2423         ctx_resched(cpuctx, task_ctx);
2424 }
2425
2426 /*
2427  * Enable a event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each as described
2433  * for perf_event_disable.
2434  */
2435 static void _perf_event_enable(struct perf_event *event)
2436 {
2437         struct perf_event_context *ctx = event->ctx;
2438
2439         raw_spin_lock_irq(&ctx->lock);
2440         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441             event->state <  PERF_EVENT_STATE_ERROR) {
2442                 raw_spin_unlock_irq(&ctx->lock);
2443                 return;
2444         }
2445
2446         /*
2447          * If the event is in error state, clear that first.
2448          *
2449          * That way, if we see the event in error state below, we know that it
2450          * has gone back into error state, as distinct from the task having
2451          * been scheduled away before the cross-call arrived.
2452          */
2453         if (event->state == PERF_EVENT_STATE_ERROR)
2454                 event->state = PERF_EVENT_STATE_OFF;
2455         raw_spin_unlock_irq(&ctx->lock);
2456
2457         event_function_call(event, __perf_event_enable, NULL);
2458 }
2459
2460 /*
2461  * See perf_event_disable();
2462  */
2463 void perf_event_enable(struct perf_event *event)
2464 {
2465         struct perf_event_context *ctx;
2466
2467         ctx = perf_event_ctx_lock(event);
2468         _perf_event_enable(event);
2469         perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_enable);
2472
2473 struct stop_event_data {
2474         struct perf_event       *event;
2475         unsigned int            restart;
2476 };
2477
2478 static int __perf_event_stop(void *info)
2479 {
2480         struct stop_event_data *sd = info;
2481         struct perf_event *event = sd->event;
2482
2483         /* if it's already INACTIVE, do nothing */
2484         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2485                 return 0;
2486
2487         /* matches smp_wmb() in event_sched_in() */
2488         smp_rmb();
2489
2490         /*
2491          * There is a window with interrupts enabled before we get here,
2492          * so we need to check again lest we try to stop another CPU's event.
2493          */
2494         if (READ_ONCE(event->oncpu) != smp_processor_id())
2495                 return -EAGAIN;
2496
2497         event->pmu->stop(event, PERF_EF_UPDATE);
2498
2499         /*
2500          * May race with the actual stop (through perf_pmu_output_stop()),
2501          * but it is only used for events with AUX ring buffer, and such
2502          * events will refuse to restart because of rb::aux_mmap_count==0,
2503          * see comments in perf_aux_output_begin().
2504          *
2505          * Since this is happening on a event-local CPU, no trace is lost
2506          * while restarting.
2507          */
2508         if (sd->restart)
2509                 event->pmu->start(event, 0);
2510
2511         return 0;
2512 }
2513
2514 static int perf_event_stop(struct perf_event *event, int restart)
2515 {
2516         struct stop_event_data sd = {
2517                 .event          = event,
2518                 .restart        = restart,
2519         };
2520         int ret = 0;
2521
2522         do {
2523                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2524                         return 0;
2525
2526                 /* matches smp_wmb() in event_sched_in() */
2527                 smp_rmb();
2528
2529                 /*
2530                  * We only want to restart ACTIVE events, so if the event goes
2531                  * inactive here (event->oncpu==-1), there's nothing more to do;
2532                  * fall through with ret==-ENXIO.
2533                  */
2534                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2535                                         __perf_event_stop, &sd);
2536         } while (ret == -EAGAIN);
2537
2538         return ret;
2539 }
2540
2541 /*
2542  * In order to contain the amount of racy and tricky in the address filter
2543  * configuration management, it is a two part process:
2544  *
2545  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2546  *      we update the addresses of corresponding vmas in
2547  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2548  * (p2) when an event is scheduled in (pmu::add), it calls
2549  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2550  *      if the generation has changed since the previous call.
2551  *
2552  * If (p1) happens while the event is active, we restart it to force (p2).
2553  *
2554  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2555  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2556  *     ioctl;
2557  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2558  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2559  *     for reading;
2560  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2561  *     of exec.
2562  */
2563 void perf_event_addr_filters_sync(struct perf_event *event)
2564 {
2565         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2566
2567         if (!has_addr_filter(event))
2568                 return;
2569
2570         raw_spin_lock(&ifh->lock);
2571         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2572                 event->pmu->addr_filters_sync(event);
2573                 event->hw.addr_filters_gen = event->addr_filters_gen;
2574         }
2575         raw_spin_unlock(&ifh->lock);
2576 }
2577 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2578
2579 static int _perf_event_refresh(struct perf_event *event, int refresh)
2580 {
2581         /*
2582          * not supported on inherited events
2583          */
2584         if (event->attr.inherit || !is_sampling_event(event))
2585                 return -EINVAL;
2586
2587         atomic_add(refresh, &event->event_limit);
2588         _perf_event_enable(event);
2589
2590         return 0;
2591 }
2592
2593 /*
2594  * See perf_event_disable()
2595  */
2596 int perf_event_refresh(struct perf_event *event, int refresh)
2597 {
2598         struct perf_event_context *ctx;
2599         int ret;
2600
2601         ctx = perf_event_ctx_lock(event);
2602         ret = _perf_event_refresh(event, refresh);
2603         perf_event_ctx_unlock(event, ctx);
2604
2605         return ret;
2606 }
2607 EXPORT_SYMBOL_GPL(perf_event_refresh);
2608
2609 static void ctx_sched_out(struct perf_event_context *ctx,
2610                           struct perf_cpu_context *cpuctx,
2611                           enum event_type_t event_type)
2612 {
2613         int is_active = ctx->is_active;
2614         struct perf_event *event;
2615
2616         lockdep_assert_held(&ctx->lock);
2617
2618         if (likely(!ctx->nr_events)) {
2619                 /*
2620                  * See __perf_remove_from_context().
2621                  */
2622                 WARN_ON_ONCE(ctx->is_active);
2623                 if (ctx->task)
2624                         WARN_ON_ONCE(cpuctx->task_ctx);
2625                 return;
2626         }
2627
2628         ctx->is_active &= ~event_type;
2629         if (!(ctx->is_active & EVENT_ALL))
2630                 ctx->is_active = 0;
2631
2632         if (ctx->task) {
2633                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2634                 if (!ctx->is_active)
2635                         cpuctx->task_ctx = NULL;
2636         }
2637
2638         /*
2639          * Always update time if it was set; not only when it changes.
2640          * Otherwise we can 'forget' to update time for any but the last
2641          * context we sched out. For example:
2642          *
2643          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2644          *   ctx_sched_out(.event_type = EVENT_PINNED)
2645          *
2646          * would only update time for the pinned events.
2647          */
2648         if (is_active & EVENT_TIME) {
2649                 /* update (and stop) ctx time */
2650                 update_context_time(ctx);
2651                 update_cgrp_time_from_cpuctx(cpuctx);
2652         }
2653
2654         is_active ^= ctx->is_active; /* changed bits */
2655
2656         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2657                 return;
2658
2659         perf_pmu_disable(ctx->pmu);
2660         if (is_active & EVENT_PINNED) {
2661                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2662                         group_sched_out(event, cpuctx, ctx);
2663         }
2664
2665         if (is_active & EVENT_FLEXIBLE) {
2666                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2667                         group_sched_out(event, cpuctx, ctx);
2668         }
2669         perf_pmu_enable(ctx->pmu);
2670 }
2671
2672 /*
2673  * Test whether two contexts are equivalent, i.e. whether they have both been
2674  * cloned from the same version of the same context.
2675  *
2676  * Equivalence is measured using a generation number in the context that is
2677  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2678  * and list_del_event().
2679  */
2680 static int context_equiv(struct perf_event_context *ctx1,
2681                          struct perf_event_context *ctx2)
2682 {
2683         lockdep_assert_held(&ctx1->lock);
2684         lockdep_assert_held(&ctx2->lock);
2685
2686         /* Pinning disables the swap optimization */
2687         if (ctx1->pin_count || ctx2->pin_count)
2688                 return 0;
2689
2690         /* If ctx1 is the parent of ctx2 */
2691         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2692                 return 1;
2693
2694         /* If ctx2 is the parent of ctx1 */
2695         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2696                 return 1;
2697
2698         /*
2699          * If ctx1 and ctx2 have the same parent; we flatten the parent
2700          * hierarchy, see perf_event_init_context().
2701          */
2702         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2703                         ctx1->parent_gen == ctx2->parent_gen)
2704                 return 1;
2705
2706         /* Unmatched */
2707         return 0;
2708 }
2709
2710 static void __perf_event_sync_stat(struct perf_event *event,
2711                                      struct perf_event *next_event)
2712 {
2713         u64 value;
2714
2715         if (!event->attr.inherit_stat)
2716                 return;
2717
2718         /*
2719          * Update the event value, we cannot use perf_event_read()
2720          * because we're in the middle of a context switch and have IRQs
2721          * disabled, which upsets smp_call_function_single(), however
2722          * we know the event must be on the current CPU, therefore we
2723          * don't need to use it.
2724          */
2725         switch (event->state) {
2726         case PERF_EVENT_STATE_ACTIVE:
2727                 event->pmu->read(event);
2728                 /* fall-through */
2729
2730         case PERF_EVENT_STATE_INACTIVE:
2731                 update_event_times(event);
2732                 break;
2733
2734         default:
2735                 break;
2736         }
2737
2738         /*
2739          * In order to keep per-task stats reliable we need to flip the event
2740          * values when we flip the contexts.
2741          */
2742         value = local64_read(&next_event->count);
2743         value = local64_xchg(&event->count, value);
2744         local64_set(&next_event->count, value);
2745
2746         swap(event->total_time_enabled, next_event->total_time_enabled);
2747         swap(event->total_time_running, next_event->total_time_running);
2748
2749         /*
2750          * Since we swizzled the values, update the user visible data too.
2751          */
2752         perf_event_update_userpage(event);
2753         perf_event_update_userpage(next_event);
2754 }
2755
2756 static void perf_event_sync_stat(struct perf_event_context *ctx,
2757                                    struct perf_event_context *next_ctx)
2758 {
2759         struct perf_event *event, *next_event;
2760
2761         if (!ctx->nr_stat)
2762                 return;
2763
2764         update_context_time(ctx);
2765
2766         event = list_first_entry(&ctx->event_list,
2767                                    struct perf_event, event_entry);
2768
2769         next_event = list_first_entry(&next_ctx->event_list,
2770                                         struct perf_event, event_entry);
2771
2772         while (&event->event_entry != &ctx->event_list &&
2773                &next_event->event_entry != &next_ctx->event_list) {
2774
2775                 __perf_event_sync_stat(event, next_event);
2776
2777                 event = list_next_entry(event, event_entry);
2778                 next_event = list_next_entry(next_event, event_entry);
2779         }
2780 }
2781
2782 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2783                                          struct task_struct *next)
2784 {
2785         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2786         struct perf_event_context *next_ctx;
2787         struct perf_event_context *parent, *next_parent;
2788         struct perf_cpu_context *cpuctx;
2789         int do_switch = 1;
2790
2791         if (likely(!ctx))
2792                 return;
2793
2794         cpuctx = __get_cpu_context(ctx);
2795         if (!cpuctx->task_ctx)
2796                 return;
2797
2798         rcu_read_lock();
2799         next_ctx = next->perf_event_ctxp[ctxn];
2800         if (!next_ctx)
2801                 goto unlock;
2802
2803         parent = rcu_dereference(ctx->parent_ctx);
2804         next_parent = rcu_dereference(next_ctx->parent_ctx);
2805
2806         /* If neither context have a parent context; they cannot be clones. */
2807         if (!parent && !next_parent)
2808                 goto unlock;
2809
2810         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2811                 /*
2812                  * Looks like the two contexts are clones, so we might be
2813                  * able to optimize the context switch.  We lock both
2814                  * contexts and check that they are clones under the
2815                  * lock (including re-checking that neither has been
2816                  * uncloned in the meantime).  It doesn't matter which
2817                  * order we take the locks because no other cpu could
2818                  * be trying to lock both of these tasks.
2819                  */
2820                 raw_spin_lock(&ctx->lock);
2821                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2822                 if (context_equiv(ctx, next_ctx)) {
2823                         WRITE_ONCE(ctx->task, next);
2824                         WRITE_ONCE(next_ctx->task, task);
2825
2826                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2827
2828                         /*
2829                          * RCU_INIT_POINTER here is safe because we've not
2830                          * modified the ctx and the above modification of
2831                          * ctx->task and ctx->task_ctx_data are immaterial
2832                          * since those values are always verified under
2833                          * ctx->lock which we're now holding.
2834                          */
2835                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2836                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2837
2838                         do_switch = 0;
2839
2840                         perf_event_sync_stat(ctx, next_ctx);
2841                 }
2842                 raw_spin_unlock(&next_ctx->lock);
2843                 raw_spin_unlock(&ctx->lock);
2844         }
2845 unlock:
2846         rcu_read_unlock();
2847
2848         if (do_switch) {
2849                 raw_spin_lock(&ctx->lock);
2850                 task_ctx_sched_out(cpuctx, ctx);
2851                 raw_spin_unlock(&ctx->lock);
2852         }
2853 }
2854
2855 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2856
2857 void perf_sched_cb_dec(struct pmu *pmu)
2858 {
2859         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2860
2861         this_cpu_dec(perf_sched_cb_usages);
2862
2863         if (!--cpuctx->sched_cb_usage)
2864                 list_del(&cpuctx->sched_cb_entry);
2865 }
2866
2867
2868 void perf_sched_cb_inc(struct pmu *pmu)
2869 {
2870         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2871
2872         if (!cpuctx->sched_cb_usage++)
2873                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2874
2875         this_cpu_inc(perf_sched_cb_usages);
2876 }
2877
2878 /*
2879  * This function provides the context switch callback to the lower code
2880  * layer. It is invoked ONLY when the context switch callback is enabled.
2881  *
2882  * This callback is relevant even to per-cpu events; for example multi event
2883  * PEBS requires this to provide PID/TID information. This requires we flush
2884  * all queued PEBS records before we context switch to a new task.
2885  */
2886 static void perf_pmu_sched_task(struct task_struct *prev,
2887                                 struct task_struct *next,
2888                                 bool sched_in)
2889 {
2890         struct perf_cpu_context *cpuctx;
2891         struct pmu *pmu;
2892
2893         if (prev == next)
2894                 return;
2895
2896         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2897                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2898
2899                 if (WARN_ON_ONCE(!pmu->sched_task))
2900                         continue;
2901
2902                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2903                 perf_pmu_disable(pmu);
2904
2905                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2906
2907                 perf_pmu_enable(pmu);
2908                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2909         }
2910 }
2911
2912 static void perf_event_switch(struct task_struct *task,
2913                               struct task_struct *next_prev, bool sched_in);
2914
2915 #define for_each_task_context_nr(ctxn)                                  \
2916         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2917
2918 /*
2919  * Called from scheduler to remove the events of the current task,
2920  * with interrupts disabled.
2921  *
2922  * We stop each event and update the event value in event->count.
2923  *
2924  * This does not protect us against NMI, but disable()
2925  * sets the disabled bit in the control field of event _before_
2926  * accessing the event control register. If a NMI hits, then it will
2927  * not restart the event.
2928  */
2929 void __perf_event_task_sched_out(struct task_struct *task,
2930                                  struct task_struct *next)
2931 {
2932         int ctxn;
2933
2934         if (__this_cpu_read(perf_sched_cb_usages))
2935                 perf_pmu_sched_task(task, next, false);
2936
2937         if (atomic_read(&nr_switch_events))
2938                 perf_event_switch(task, next, false);
2939
2940         for_each_task_context_nr(ctxn)
2941                 perf_event_context_sched_out(task, ctxn, next);
2942
2943         /*
2944          * if cgroup events exist on this CPU, then we need
2945          * to check if we have to switch out PMU state.
2946          * cgroup event are system-wide mode only
2947          */
2948         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2949                 perf_cgroup_sched_out(task, next);
2950 }
2951
2952 /*
2953  * Called with IRQs disabled
2954  */
2955 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2956                               enum event_type_t event_type)
2957 {
2958         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2959 }
2960
2961 static void
2962 ctx_pinned_sched_in(struct perf_event_context *ctx,
2963                     struct perf_cpu_context *cpuctx)
2964 {
2965         struct perf_event *event;
2966
2967         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2968                 if (event->state <= PERF_EVENT_STATE_OFF)
2969                         continue;
2970                 if (!event_filter_match(event))
2971                         continue;
2972
2973                 /* may need to reset tstamp_enabled */
2974                 if (is_cgroup_event(event))
2975                         perf_cgroup_mark_enabled(event, ctx);
2976
2977                 if (group_can_go_on(event, cpuctx, 1))
2978                         group_sched_in(event, cpuctx, ctx);
2979
2980                 /*
2981                  * If this pinned group hasn't been scheduled,
2982                  * put it in error state.
2983                  */
2984                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2985                         update_group_times(event);
2986                         event->state = PERF_EVENT_STATE_ERROR;
2987                 }
2988         }
2989 }
2990
2991 static void
2992 ctx_flexible_sched_in(struct perf_event_context *ctx,
2993                       struct perf_cpu_context *cpuctx)
2994 {
2995         struct perf_event *event;
2996         int can_add_hw = 1;
2997
2998         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2999                 /* Ignore events in OFF or ERROR state */
3000                 if (event->state <= PERF_EVENT_STATE_OFF)
3001                         continue;
3002                 /*
3003                  * Listen to the 'cpu' scheduling filter constraint
3004                  * of events:
3005                  */
3006                 if (!event_filter_match(event))
3007                         continue;
3008
3009                 /* may need to reset tstamp_enabled */
3010                 if (is_cgroup_event(event))
3011                         perf_cgroup_mark_enabled(event, ctx);
3012
3013                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3014                         if (group_sched_in(event, cpuctx, ctx))
3015                                 can_add_hw = 0;
3016                 }
3017         }
3018 }
3019
3020 static void
3021 ctx_sched_in(struct perf_event_context *ctx,
3022              struct perf_cpu_context *cpuctx,
3023              enum event_type_t event_type,
3024              struct task_struct *task)
3025 {
3026         int is_active = ctx->is_active;
3027         u64 now;
3028
3029         lockdep_assert_held(&ctx->lock);
3030
3031         if (likely(!ctx->nr_events))
3032                 return;
3033
3034         ctx->is_active |= (event_type | EVENT_TIME);
3035         if (ctx->task) {
3036                 if (!is_active)
3037                         cpuctx->task_ctx = ctx;
3038                 else
3039                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3040         }
3041
3042         is_active ^= ctx->is_active; /* changed bits */
3043
3044         if (is_active & EVENT_TIME) {
3045                 /* start ctx time */
3046                 now = perf_clock();
3047                 ctx->timestamp = now;
3048                 perf_cgroup_set_timestamp(task, ctx);
3049         }
3050
3051         /*
3052          * First go through the list and put on any pinned groups
3053          * in order to give them the best chance of going on.
3054          */
3055         if (is_active & EVENT_PINNED)
3056                 ctx_pinned_sched_in(ctx, cpuctx);
3057
3058         /* Then walk through the lower prio flexible groups */
3059         if (is_active & EVENT_FLEXIBLE)
3060                 ctx_flexible_sched_in(ctx, cpuctx);
3061 }
3062
3063 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3064                              enum event_type_t event_type,
3065                              struct task_struct *task)
3066 {
3067         struct perf_event_context *ctx = &cpuctx->ctx;
3068
3069         ctx_sched_in(ctx, cpuctx, event_type, task);
3070 }
3071
3072 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3073                                         struct task_struct *task)
3074 {
3075         struct perf_cpu_context *cpuctx;
3076
3077         cpuctx = __get_cpu_context(ctx);
3078         if (cpuctx->task_ctx == ctx)
3079                 return;
3080
3081         perf_ctx_lock(cpuctx, ctx);
3082         perf_pmu_disable(ctx->pmu);
3083         /*
3084          * We want to keep the following priority order:
3085          * cpu pinned (that don't need to move), task pinned,
3086          * cpu flexible, task flexible.
3087          */
3088         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3089         perf_event_sched_in(cpuctx, ctx, task);
3090         perf_pmu_enable(ctx->pmu);
3091         perf_ctx_unlock(cpuctx, ctx);
3092 }
3093
3094 /*
3095  * Called from scheduler to add the events of the current task
3096  * with interrupts disabled.
3097  *
3098  * We restore the event value and then enable it.
3099  *
3100  * This does not protect us against NMI, but enable()
3101  * sets the enabled bit in the control field of event _before_
3102  * accessing the event control register. If a NMI hits, then it will
3103  * keep the event running.
3104  */
3105 void __perf_event_task_sched_in(struct task_struct *prev,
3106                                 struct task_struct *task)
3107 {
3108         struct perf_event_context *ctx;
3109         int ctxn;
3110
3111         /*
3112          * If cgroup events exist on this CPU, then we need to check if we have
3113          * to switch in PMU state; cgroup event are system-wide mode only.
3114          *
3115          * Since cgroup events are CPU events, we must schedule these in before
3116          * we schedule in the task events.
3117          */
3118         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3119                 perf_cgroup_sched_in(prev, task);
3120
3121         for_each_task_context_nr(ctxn) {
3122                 ctx = task->perf_event_ctxp[ctxn];
3123                 if (likely(!ctx))
3124                         continue;
3125
3126                 perf_event_context_sched_in(ctx, task);
3127         }
3128
3129         if (atomic_read(&nr_switch_events))
3130                 perf_event_switch(task, prev, true);
3131
3132         if (__this_cpu_read(perf_sched_cb_usages))
3133                 perf_pmu_sched_task(prev, task, true);
3134 }
3135
3136 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3137 {
3138         u64 frequency = event->attr.sample_freq;
3139         u64 sec = NSEC_PER_SEC;
3140         u64 divisor, dividend;
3141
3142         int count_fls, nsec_fls, frequency_fls, sec_fls;
3143
3144         count_fls = fls64(count);
3145         nsec_fls = fls64(nsec);
3146         frequency_fls = fls64(frequency);
3147         sec_fls = 30;
3148
3149         /*
3150          * We got @count in @nsec, with a target of sample_freq HZ
3151          * the target period becomes:
3152          *
3153          *             @count * 10^9
3154          * period = -------------------
3155          *          @nsec * sample_freq
3156          *
3157          */
3158
3159         /*
3160          * Reduce accuracy by one bit such that @a and @b converge
3161          * to a similar magnitude.
3162          */
3163 #define REDUCE_FLS(a, b)                \
3164 do {                                    \
3165         if (a##_fls > b##_fls) {        \
3166                 a >>= 1;                \
3167                 a##_fls--;              \
3168         } else {                        \
3169                 b >>= 1;                \
3170                 b##_fls--;              \
3171         }                               \
3172 } while (0)
3173
3174         /*
3175          * Reduce accuracy until either term fits in a u64, then proceed with
3176          * the other, so that finally we can do a u64/u64 division.
3177          */
3178         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3179                 REDUCE_FLS(nsec, frequency);
3180                 REDUCE_FLS(sec, count);
3181         }
3182
3183         if (count_fls + sec_fls > 64) {
3184                 divisor = nsec * frequency;
3185
3186                 while (count_fls + sec_fls > 64) {
3187                         REDUCE_FLS(count, sec);
3188                         divisor >>= 1;
3189                 }
3190
3191                 dividend = count * sec;
3192         } else {
3193                 dividend = count * sec;
3194
3195                 while (nsec_fls + frequency_fls > 64) {
3196                         REDUCE_FLS(nsec, frequency);
3197                         dividend >>= 1;
3198                 }
3199
3200                 divisor = nsec * frequency;
3201         }
3202
3203         if (!divisor)
3204                 return dividend;
3205
3206         return div64_u64(dividend, divisor);
3207 }
3208
3209 static DEFINE_PER_CPU(int, perf_throttled_count);
3210 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3211
3212 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3213 {
3214         struct hw_perf_event *hwc = &event->hw;
3215         s64 period, sample_period;
3216         s64 delta;
3217
3218         period = perf_calculate_period(event, nsec, count);
3219
3220         delta = (s64)(period - hwc->sample_period);
3221         delta = (delta + 7) / 8; /* low pass filter */
3222
3223         sample_period = hwc->sample_period + delta;
3224
3225         if (!sample_period)
3226                 sample_period = 1;
3227
3228         hwc->sample_period = sample_period;
3229
3230         if (local64_read(&hwc->period_left) > 8*sample_period) {
3231                 if (disable)
3232                         event->pmu->stop(event, PERF_EF_UPDATE);
3233
3234                 local64_set(&hwc->period_left, 0);
3235
3236                 if (disable)
3237                         event->pmu->start(event, PERF_EF_RELOAD);
3238         }
3239 }
3240
3241 /*
3242  * combine freq adjustment with unthrottling to avoid two passes over the
3243  * events. At the same time, make sure, having freq events does not change
3244  * the rate of unthrottling as that would introduce bias.
3245  */
3246 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3247                                            int needs_unthr)
3248 {
3249         struct perf_event *event;
3250         struct hw_perf_event *hwc;
3251         u64 now, period = TICK_NSEC;
3252         s64 delta;
3253
3254         /*
3255          * only need to iterate over all events iff:
3256          * - context have events in frequency mode (needs freq adjust)
3257          * - there are events to unthrottle on this cpu
3258          */
3259         if (!(ctx->nr_freq || needs_unthr))
3260                 return;
3261
3262         raw_spin_lock(&ctx->lock);
3263         perf_pmu_disable(ctx->pmu);
3264
3265         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3266                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3267                         continue;
3268
3269                 if (!event_filter_match(event))
3270                         continue;
3271
3272                 perf_pmu_disable(event->pmu);
3273
3274                 hwc = &event->hw;
3275
3276                 if (hwc->interrupts == MAX_INTERRUPTS) {
3277                         hwc->interrupts = 0;
3278                         perf_log_throttle(event, 1);
3279                         event->pmu->start(event, 0);
3280                 }
3281
3282                 if (!event->attr.freq || !event->attr.sample_freq)
3283                         goto next;
3284
3285                 /*
3286                  * stop the event and update event->count
3287                  */
3288                 event->pmu->stop(event, PERF_EF_UPDATE);
3289
3290                 now = local64_read(&event->count);
3291                 delta = now - hwc->freq_count_stamp;
3292                 hwc->freq_count_stamp = now;
3293
3294                 /*
3295                  * restart the event
3296                  * reload only if value has changed
3297                  * we have stopped the event so tell that
3298                  * to perf_adjust_period() to avoid stopping it
3299                  * twice.
3300                  */
3301                 if (delta > 0)
3302                         perf_adjust_period(event, period, delta, false);
3303
3304                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3305         next:
3306                 perf_pmu_enable(event->pmu);
3307         }
3308
3309         perf_pmu_enable(ctx->pmu);
3310         raw_spin_unlock(&ctx->lock);
3311 }
3312
3313 /*
3314  * Round-robin a context's events:
3315  */
3316 static void rotate_ctx(struct perf_event_context *ctx)
3317 {
3318         /*
3319          * Rotate the first entry last of non-pinned groups. Rotation might be
3320          * disabled by the inheritance code.
3321          */
3322         if (!ctx->rotate_disable)
3323                 list_rotate_left(&ctx->flexible_groups);
3324 }
3325
3326 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3327 {
3328         struct perf_event_context *ctx = NULL;
3329         int rotate = 0;
3330
3331         if (cpuctx->ctx.nr_events) {
3332                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3333                         rotate = 1;
3334         }
3335
3336         ctx = cpuctx->task_ctx;
3337         if (ctx && ctx->nr_events) {
3338                 if (ctx->nr_events != ctx->nr_active)
3339                         rotate = 1;
3340         }
3341
3342         if (!rotate)
3343                 goto done;
3344
3345         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3346         perf_pmu_disable(cpuctx->ctx.pmu);
3347
3348         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3349         if (ctx)
3350                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3351
3352         rotate_ctx(&cpuctx->ctx);
3353         if (ctx)
3354                 rotate_ctx(ctx);
3355
3356         perf_event_sched_in(cpuctx, ctx, current);
3357
3358         perf_pmu_enable(cpuctx->ctx.pmu);
3359         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3360 done:
3361
3362         return rotate;
3363 }
3364
3365 void perf_event_task_tick(void)
3366 {
3367         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3368         struct perf_event_context *ctx, *tmp;
3369         int throttled;
3370
3371         WARN_ON(!irqs_disabled());
3372
3373         __this_cpu_inc(perf_throttled_seq);
3374         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3375         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3376
3377         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3378                 perf_adjust_freq_unthr_context(ctx, throttled);
3379 }
3380
3381 static int event_enable_on_exec(struct perf_event *event,
3382                                 struct perf_event_context *ctx)
3383 {
3384         if (!event->attr.enable_on_exec)
3385                 return 0;
3386
3387         event->attr.enable_on_exec = 0;
3388         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3389                 return 0;
3390
3391         __perf_event_mark_enabled(event);
3392
3393         return 1;
3394 }
3395
3396 /*
3397  * Enable all of a task's events that have been marked enable-on-exec.
3398  * This expects task == current.
3399  */
3400 static void perf_event_enable_on_exec(int ctxn)
3401 {
3402         struct perf_event_context *ctx, *clone_ctx = NULL;
3403         struct perf_cpu_context *cpuctx;
3404         struct perf_event *event;
3405         unsigned long flags;
3406         int enabled = 0;
3407
3408         local_irq_save(flags);
3409         ctx = current->perf_event_ctxp[ctxn];
3410         if (!ctx || !ctx->nr_events)
3411                 goto out;
3412
3413         cpuctx = __get_cpu_context(ctx);
3414         perf_ctx_lock(cpuctx, ctx);
3415         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3416         list_for_each_entry(event, &ctx->event_list, event_entry)
3417                 enabled |= event_enable_on_exec(event, ctx);
3418
3419         /*
3420          * Unclone and reschedule this context if we enabled any event.
3421          */
3422         if (enabled) {
3423                 clone_ctx = unclone_ctx(ctx);
3424                 ctx_resched(cpuctx, ctx);
3425         }
3426         perf_ctx_unlock(cpuctx, ctx);
3427
3428 out:
3429         local_irq_restore(flags);
3430
3431         if (clone_ctx)
3432                 put_ctx(clone_ctx);
3433 }
3434
3435 struct perf_read_data {
3436         struct perf_event *event;
3437         bool group;
3438         int ret;
3439 };
3440
3441 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3442 {
3443         int event_cpu = event->oncpu;
3444         u16 local_pkg, event_pkg;
3445
3446         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3447                 event_pkg =  topology_physical_package_id(event_cpu);
3448                 local_pkg =  topology_physical_package_id(local_cpu);
3449
3450                 if (event_pkg == local_pkg)
3451                         return local_cpu;
3452         }
3453
3454         return event_cpu;
3455 }
3456
3457 /*
3458  * Cross CPU call to read the hardware event
3459  */
3460 static void __perf_event_read(void *info)
3461 {
3462         struct perf_read_data *data = info;
3463         struct perf_event *sub, *event = data->event;
3464         struct perf_event_context *ctx = event->ctx;
3465         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3466         struct pmu *pmu = event->pmu;
3467
3468         /*
3469          * If this is a task context, we need to check whether it is
3470          * the current task context of this cpu.  If not it has been
3471          * scheduled out before the smp call arrived.  In that case
3472          * event->count would have been updated to a recent sample
3473          * when the event was scheduled out.
3474          */
3475         if (ctx->task && cpuctx->task_ctx != ctx)
3476                 return;
3477
3478         raw_spin_lock(&ctx->lock);
3479         if (ctx->is_active) {
3480                 update_context_time(ctx);
3481                 update_cgrp_time_from_event(event);
3482         }
3483
3484         update_event_times(event);
3485         if (event->state != PERF_EVENT_STATE_ACTIVE)
3486                 goto unlock;
3487
3488         if (!data->group) {
3489                 pmu->read(event);
3490                 data->ret = 0;
3491                 goto unlock;
3492         }
3493
3494         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3495
3496         pmu->read(event);
3497
3498         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3499                 update_event_times(sub);
3500                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3501                         /*
3502                          * Use sibling's PMU rather than @event's since
3503                          * sibling could be on different (eg: software) PMU.
3504                          */
3505                         sub->pmu->read(sub);
3506                 }
3507         }
3508
3509         data->ret = pmu->commit_txn(pmu);
3510
3511 unlock:
3512         raw_spin_unlock(&ctx->lock);
3513 }
3514
3515 static inline u64 perf_event_count(struct perf_event *event)
3516 {
3517         if (event->pmu->count)
3518                 return event->pmu->count(event);
3519
3520         return __perf_event_count(event);
3521 }
3522
3523 /*
3524  * NMI-safe method to read a local event, that is an event that
3525  * is:
3526  *   - either for the current task, or for this CPU
3527  *   - does not have inherit set, for inherited task events
3528  *     will not be local and we cannot read them atomically
3529  *   - must not have a pmu::count method
3530  */
3531 u64 perf_event_read_local(struct perf_event *event)
3532 {
3533         unsigned long flags;
3534         u64 val;
3535
3536         /*
3537          * Disabling interrupts avoids all counter scheduling (context
3538          * switches, timer based rotation and IPIs).
3539          */
3540         local_irq_save(flags);
3541
3542         /* If this is a per-task event, it must be for current */
3543         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3544                      event->hw.target != current);
3545
3546         /* If this is a per-CPU event, it must be for this CPU */
3547         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3548                      event->cpu != smp_processor_id());
3549
3550         /*
3551          * It must not be an event with inherit set, we cannot read
3552          * all child counters from atomic context.
3553          */
3554         WARN_ON_ONCE(event->attr.inherit);
3555
3556         /*
3557          * It must not have a pmu::count method, those are not
3558          * NMI safe.
3559          */
3560         WARN_ON_ONCE(event->pmu->count);
3561
3562         /*
3563          * If the event is currently on this CPU, its either a per-task event,
3564          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3565          * oncpu == -1).
3566          */
3567         if (event->oncpu == smp_processor_id())
3568                 event->pmu->read(event);
3569
3570         val = local64_read(&event->count);
3571         local_irq_restore(flags);
3572
3573         return val;
3574 }
3575
3576 static int perf_event_read(struct perf_event *event, bool group)
3577 {
3578         int ret = 0, cpu_to_read, local_cpu;
3579
3580         /*
3581          * If event is enabled and currently active on a CPU, update the
3582          * value in the event structure:
3583          */
3584         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3585                 struct perf_read_data data = {
3586                         .event = event,
3587                         .group = group,
3588                         .ret = 0,
3589                 };
3590
3591                 local_cpu = get_cpu();
3592                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3593                 put_cpu();
3594
3595                 /*
3596                  * Purposely ignore the smp_call_function_single() return
3597                  * value.
3598                  *
3599                  * If event->oncpu isn't a valid CPU it means the event got
3600                  * scheduled out and that will have updated the event count.
3601                  *
3602                  * Therefore, either way, we'll have an up-to-date event count
3603                  * after this.
3604                  */
3605                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3606                 ret = data.ret;
3607         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3608                 struct perf_event_context *ctx = event->ctx;
3609                 unsigned long flags;
3610
3611                 raw_spin_lock_irqsave(&ctx->lock, flags);
3612                 /*
3613                  * may read while context is not active
3614                  * (e.g., thread is blocked), in that case
3615                  * we cannot update context time
3616                  */
3617                 if (ctx->is_active) {
3618                         update_context_time(ctx);
3619                         update_cgrp_time_from_event(event);
3620                 }
3621                 if (group)
3622                         update_group_times(event);
3623                 else
3624                         update_event_times(event);
3625                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3626         }
3627
3628         return ret;
3629 }
3630
3631 /*
3632  * Initialize the perf_event context in a task_struct:
3633  */
3634 static void __perf_event_init_context(struct perf_event_context *ctx)
3635 {
3636         raw_spin_lock_init(&ctx->lock);
3637         mutex_init(&ctx->mutex);
3638         INIT_LIST_HEAD(&ctx->active_ctx_list);
3639         INIT_LIST_HEAD(&ctx->pinned_groups);
3640         INIT_LIST_HEAD(&ctx->flexible_groups);
3641         INIT_LIST_HEAD(&ctx->event_list);
3642         atomic_set(&ctx->refcount, 1);
3643 }
3644
3645 static struct perf_event_context *
3646 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3647 {
3648         struct perf_event_context *ctx;
3649
3650         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3651         if (!ctx)
3652                 return NULL;
3653
3654         __perf_event_init_context(ctx);
3655         if (task) {
3656                 ctx->task = task;
3657                 get_task_struct(task);
3658         }
3659         ctx->pmu = pmu;
3660
3661         return ctx;
3662 }
3663
3664 static struct task_struct *
3665 find_lively_task_by_vpid(pid_t vpid)
3666 {
3667         struct task_struct *task;
3668
3669         rcu_read_lock();
3670         if (!vpid)
3671                 task = current;
3672         else
3673                 task = find_task_by_vpid(vpid);
3674         if (task)
3675                 get_task_struct(task);
3676         rcu_read_unlock();
3677
3678         if (!task)
3679                 return ERR_PTR(-ESRCH);
3680
3681         return task;
3682 }
3683
3684 /*
3685  * Returns a matching context with refcount and pincount.
3686  */
3687 static struct perf_event_context *
3688 find_get_context(struct pmu *pmu, struct task_struct *task,
3689                 struct perf_event *event)
3690 {
3691         struct perf_event_context *ctx, *clone_ctx = NULL;
3692         struct perf_cpu_context *cpuctx;
3693         void *task_ctx_data = NULL;
3694         unsigned long flags;
3695         int ctxn, err;
3696         int cpu = event->cpu;
3697
3698         if (!task) {
3699                 /* Must be root to operate on a CPU event: */
3700                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3701                         return ERR_PTR(-EACCES);
3702
3703                 /*
3704                  * We could be clever and allow to attach a event to an
3705                  * offline CPU and activate it when the CPU comes up, but
3706                  * that's for later.
3707                  */
3708                 if (!cpu_online(cpu))
3709                         return ERR_PTR(-ENODEV);
3710
3711                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3712                 ctx = &cpuctx->ctx;
3713                 get_ctx(ctx);
3714                 ++ctx->pin_count;
3715
3716                 return ctx;
3717         }
3718
3719         err = -EINVAL;
3720         ctxn = pmu->task_ctx_nr;
3721         if (ctxn < 0)
3722                 goto errout;
3723
3724         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3725                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3726                 if (!task_ctx_data) {
3727                         err = -ENOMEM;
3728                         goto errout;
3729                 }
3730         }
3731
3732 retry:
3733         ctx = perf_lock_task_context(task, ctxn, &flags);
3734         if (ctx) {
3735                 clone_ctx = unclone_ctx(ctx);
3736                 ++ctx->pin_count;
3737
3738                 if (task_ctx_data && !ctx->task_ctx_data) {
3739                         ctx->task_ctx_data = task_ctx_data;
3740                         task_ctx_data = NULL;
3741                 }
3742                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3743
3744                 if (clone_ctx)
3745                         put_ctx(clone_ctx);
3746         } else {
3747                 ctx = alloc_perf_context(pmu, task);
3748                 err = -ENOMEM;
3749                 if (!ctx)
3750                         goto errout;
3751
3752                 if (task_ctx_data) {
3753                         ctx->task_ctx_data = task_ctx_data;
3754                         task_ctx_data = NULL;
3755                 }
3756
3757                 err = 0;
3758                 mutex_lock(&task->perf_event_mutex);
3759                 /*
3760                  * If it has already passed perf_event_exit_task().
3761                  * we must see PF_EXITING, it takes this mutex too.
3762                  */
3763                 if (task->flags & PF_EXITING)
3764                         err = -ESRCH;
3765                 else if (task->perf_event_ctxp[ctxn])
3766                         err = -EAGAIN;
3767                 else {
3768                         get_ctx(ctx);
3769                         ++ctx->pin_count;
3770                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3771                 }
3772                 mutex_unlock(&task->perf_event_mutex);
3773
3774                 if (unlikely(err)) {
3775                         put_ctx(ctx);
3776
3777                         if (err == -EAGAIN)
3778                                 goto retry;
3779                         goto errout;
3780                 }
3781         }
3782
3783         kfree(task_ctx_data);
3784         return ctx;
3785
3786 errout:
3787         kfree(task_ctx_data);
3788         return ERR_PTR(err);
3789 }
3790
3791 static void perf_event_free_filter(struct perf_event *event);
3792 static void perf_event_free_bpf_prog(struct perf_event *event);
3793
3794 static void free_event_rcu(struct rcu_head *head)
3795 {
3796         struct perf_event *event;
3797
3798         event = container_of(head, struct perf_event, rcu_head);
3799         if (event->ns)
3800                 put_pid_ns(event->ns);
3801         perf_event_free_filter(event);
3802         kfree(event);
3803 }
3804
3805 static void ring_buffer_attach(struct perf_event *event,
3806                                struct ring_buffer *rb);
3807
3808 static void detach_sb_event(struct perf_event *event)
3809 {
3810         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3811
3812         raw_spin_lock(&pel->lock);
3813         list_del_rcu(&event->sb_list);
3814         raw_spin_unlock(&pel->lock);
3815 }
3816
3817 static bool is_sb_event(struct perf_event *event)
3818 {
3819         struct perf_event_attr *attr = &event->attr;
3820
3821         if (event->parent)
3822                 return false;
3823
3824         if (event->attach_state & PERF_ATTACH_TASK)
3825                 return false;
3826
3827         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3828             attr->comm || attr->comm_exec ||
3829             attr->task ||
3830             attr->context_switch)
3831                 return true;
3832         return false;
3833 }
3834
3835 static void unaccount_pmu_sb_event(struct perf_event *event)
3836 {
3837         if (is_sb_event(event))
3838                 detach_sb_event(event);
3839 }
3840
3841 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3842 {
3843         if (event->parent)
3844                 return;
3845
3846         if (is_cgroup_event(event))
3847                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3848 }
3849
3850 #ifdef CONFIG_NO_HZ_FULL
3851 static DEFINE_SPINLOCK(nr_freq_lock);
3852 #endif
3853
3854 static void unaccount_freq_event_nohz(void)
3855 {
3856 #ifdef CONFIG_NO_HZ_FULL
3857         spin_lock(&nr_freq_lock);
3858         if (atomic_dec_and_test(&nr_freq_events))
3859                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3860         spin_unlock(&nr_freq_lock);
3861 #endif
3862 }
3863
3864 static void unaccount_freq_event(void)
3865 {
3866         if (tick_nohz_full_enabled())
3867                 unaccount_freq_event_nohz();
3868         else
3869                 atomic_dec(&nr_freq_events);
3870 }
3871
3872 static void unaccount_event(struct perf_event *event)
3873 {
3874         bool dec = false;
3875
3876         if (event->parent)
3877                 return;
3878
3879         if (event->attach_state & PERF_ATTACH_TASK)
3880                 dec = true;
3881         if (event->attr.mmap || event->attr.mmap_data)
3882                 atomic_dec(&nr_mmap_events);
3883         if (event->attr.comm)
3884                 atomic_dec(&nr_comm_events);
3885         if (event->attr.task)
3886                 atomic_dec(&nr_task_events);
3887         if (event->attr.freq)
3888                 unaccount_freq_event();
3889         if (event->attr.context_switch) {
3890                 dec = true;
3891                 atomic_dec(&nr_switch_events);
3892         }
3893         if (is_cgroup_event(event))
3894                 dec = true;
3895         if (has_branch_stack(event))
3896                 dec = true;
3897
3898         if (dec) {
3899                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3900                         schedule_delayed_work(&perf_sched_work, HZ);
3901         }
3902
3903         unaccount_event_cpu(event, event->cpu);
3904
3905         unaccount_pmu_sb_event(event);
3906 }
3907
3908 static void perf_sched_delayed(struct work_struct *work)
3909 {
3910         mutex_lock(&perf_sched_mutex);
3911         if (atomic_dec_and_test(&perf_sched_count))
3912                 static_branch_disable(&perf_sched_events);
3913         mutex_unlock(&perf_sched_mutex);
3914 }
3915
3916 /*
3917  * The following implement mutual exclusion of events on "exclusive" pmus
3918  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3919  * at a time, so we disallow creating events that might conflict, namely:
3920  *
3921  *  1) cpu-wide events in the presence of per-task events,
3922  *  2) per-task events in the presence of cpu-wide events,
3923  *  3) two matching events on the same context.
3924  *
3925  * The former two cases are handled in the allocation path (perf_event_alloc(),
3926  * _free_event()), the latter -- before the first perf_install_in_context().
3927  */
3928 static int exclusive_event_init(struct perf_event *event)
3929 {
3930         struct pmu *pmu = event->pmu;
3931
3932         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3933                 return 0;
3934
3935         /*
3936          * Prevent co-existence of per-task and cpu-wide events on the
3937          * same exclusive pmu.
3938          *
3939          * Negative pmu::exclusive_cnt means there are cpu-wide
3940          * events on this "exclusive" pmu, positive means there are
3941          * per-task events.
3942          *
3943          * Since this is called in perf_event_alloc() path, event::ctx
3944          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3945          * to mean "per-task event", because unlike other attach states it
3946          * never gets cleared.
3947          */
3948         if (event->attach_state & PERF_ATTACH_TASK) {
3949                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3950                         return -EBUSY;
3951         } else {
3952                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3953                         return -EBUSY;
3954         }
3955
3956         return 0;
3957 }
3958
3959 static void exclusive_event_destroy(struct perf_event *event)
3960 {
3961         struct pmu *pmu = event->pmu;
3962
3963         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3964                 return;
3965
3966         /* see comment in exclusive_event_init() */
3967         if (event->attach_state & PERF_ATTACH_TASK)
3968                 atomic_dec(&pmu->exclusive_cnt);
3969         else
3970                 atomic_inc(&pmu->exclusive_cnt);
3971 }
3972
3973 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3974 {
3975         if ((e1->pmu == e2->pmu) &&
3976             (e1->cpu == e2->cpu ||
3977              e1->cpu == -1 ||
3978              e2->cpu == -1))
3979                 return true;
3980         return false;
3981 }
3982
3983 /* Called under the same ctx::mutex as perf_install_in_context() */
3984 static bool exclusive_event_installable(struct perf_event *event,
3985                                         struct perf_event_context *ctx)
3986 {
3987         struct perf_event *iter_event;
3988         struct pmu *pmu = event->pmu;
3989
3990         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3991                 return true;
3992
3993         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3994                 if (exclusive_event_match(iter_event, event))
3995                         return false;
3996         }
3997
3998         return true;
3999 }
4000
4001 static void perf_addr_filters_splice(struct perf_event *event,
4002                                        struct list_head *head);
4003
4004 static void _free_event(struct perf_event *event)
4005 {
4006         irq_work_sync(&event->pending);
4007
4008         unaccount_event(event);
4009
4010         if (event->rb) {
4011                 /*
4012                  * Can happen when we close an event with re-directed output.
4013                  *
4014                  * Since we have a 0 refcount, perf_mmap_close() will skip
4015                  * over us; possibly making our ring_buffer_put() the last.
4016                  */
4017                 mutex_lock(&event->mmap_mutex);
4018                 ring_buffer_attach(event, NULL);
4019                 mutex_unlock(&event->mmap_mutex);
4020         }
4021
4022         if (is_cgroup_event(event))
4023                 perf_detach_cgroup(event);
4024
4025         if (!event->parent) {
4026                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4027                         put_callchain_buffers();
4028         }
4029
4030         perf_event_free_bpf_prog(event);
4031         perf_addr_filters_splice(event, NULL);
4032         kfree(event->addr_filters_offs);
4033
4034         if (event->destroy)
4035                 event->destroy(event);
4036
4037         if (event->ctx)
4038                 put_ctx(event->ctx);
4039
4040         exclusive_event_destroy(event);
4041         module_put(event->pmu->module);
4042
4043         call_rcu(&event->rcu_head, free_event_rcu);
4044 }
4045
4046 /*
4047  * Used to free events which have a known refcount of 1, such as in error paths
4048  * where the event isn't exposed yet and inherited events.
4049  */
4050 static void free_event(struct perf_event *event)
4051 {
4052         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4053                                 "unexpected event refcount: %ld; ptr=%p\n",
4054                                 atomic_long_read(&event->refcount), event)) {
4055                 /* leak to avoid use-after-free */
4056                 return;
4057         }
4058
4059         _free_event(event);
4060 }
4061
4062 /*
4063  * Remove user event from the owner task.
4064  */
4065 static void perf_remove_from_owner(struct perf_event *event)
4066 {
4067         struct task_struct *owner;
4068
4069         rcu_read_lock();
4070         /*
4071          * Matches the smp_store_release() in perf_event_exit_task(). If we
4072          * observe !owner it means the list deletion is complete and we can
4073          * indeed free this event, otherwise we need to serialize on
4074          * owner->perf_event_mutex.
4075          */
4076         owner = lockless_dereference(event->owner);
4077         if (owner) {
4078                 /*
4079                  * Since delayed_put_task_struct() also drops the last
4080                  * task reference we can safely take a new reference
4081                  * while holding the rcu_read_lock().
4082                  */
4083                 get_task_struct(owner);
4084         }
4085         rcu_read_unlock();
4086
4087         if (owner) {
4088                 /*
4089                  * If we're here through perf_event_exit_task() we're already
4090                  * holding ctx->mutex which would be an inversion wrt. the
4091                  * normal lock order.
4092                  *
4093                  * However we can safely take this lock because its the child
4094                  * ctx->mutex.
4095                  */
4096                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4097
4098                 /*
4099                  * We have to re-check the event->owner field, if it is cleared
4100                  * we raced with perf_event_exit_task(), acquiring the mutex
4101                  * ensured they're done, and we can proceed with freeing the
4102                  * event.
4103                  */
4104                 if (event->owner) {
4105                         list_del_init(&event->owner_entry);
4106                         smp_store_release(&event->owner, NULL);
4107                 }
4108                 mutex_unlock(&owner->perf_event_mutex);
4109                 put_task_struct(owner);
4110         }
4111 }
4112
4113 static void put_event(struct perf_event *event)
4114 {
4115         if (!atomic_long_dec_and_test(&event->refcount))
4116                 return;
4117
4118         _free_event(event);
4119 }
4120
4121 /*
4122  * Kill an event dead; while event:refcount will preserve the event
4123  * object, it will not preserve its functionality. Once the last 'user'
4124  * gives up the object, we'll destroy the thing.
4125  */
4126 int perf_event_release_kernel(struct perf_event *event)
4127 {
4128         struct perf_event_context *ctx = event->ctx;
4129         struct perf_event *child, *tmp;
4130
4131         /*
4132          * If we got here through err_file: fput(event_file); we will not have
4133          * attached to a context yet.
4134          */
4135         if (!ctx) {
4136                 WARN_ON_ONCE(event->attach_state &
4137                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4138                 goto no_ctx;
4139         }
4140
4141         if (!is_kernel_event(event))
4142                 perf_remove_from_owner(event);
4143
4144         ctx = perf_event_ctx_lock(event);
4145         WARN_ON_ONCE(ctx->parent_ctx);
4146         perf_remove_from_context(event, DETACH_GROUP);
4147
4148         raw_spin_lock_irq(&ctx->lock);
4149         /*
4150          * Mark this even as STATE_DEAD, there is no external reference to it
4151          * anymore.
4152          *
4153          * Anybody acquiring event->child_mutex after the below loop _must_
4154          * also see this, most importantly inherit_event() which will avoid
4155          * placing more children on the list.
4156          *
4157          * Thus this guarantees that we will in fact observe and kill _ALL_
4158          * child events.
4159          */
4160         event->state = PERF_EVENT_STATE_DEAD;
4161         raw_spin_unlock_irq(&ctx->lock);
4162
4163         perf_event_ctx_unlock(event, ctx);
4164
4165 again:
4166         mutex_lock(&event->child_mutex);
4167         list_for_each_entry(child, &event->child_list, child_list) {
4168
4169                 /*
4170                  * Cannot change, child events are not migrated, see the
4171                  * comment with perf_event_ctx_lock_nested().
4172                  */
4173                 ctx = lockless_dereference(child->ctx);
4174                 /*
4175                  * Since child_mutex nests inside ctx::mutex, we must jump
4176                  * through hoops. We start by grabbing a reference on the ctx.
4177                  *
4178                  * Since the event cannot get freed while we hold the
4179                  * child_mutex, the context must also exist and have a !0
4180                  * reference count.
4181                  */
4182                 get_ctx(ctx);
4183
4184                 /*
4185                  * Now that we have a ctx ref, we can drop child_mutex, and
4186                  * acquire ctx::mutex without fear of it going away. Then we
4187                  * can re-acquire child_mutex.
4188                  */
4189                 mutex_unlock(&event->child_mutex);
4190                 mutex_lock(&ctx->mutex);
4191                 mutex_lock(&event->child_mutex);
4192
4193                 /*
4194                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4195                  * state, if child is still the first entry, it didn't get freed
4196                  * and we can continue doing so.
4197                  */
4198                 tmp = list_first_entry_or_null(&event->child_list,
4199                                                struct perf_event, child_list);
4200                 if (tmp == child) {
4201                         perf_remove_from_context(child, DETACH_GROUP);
4202                         list_del(&child->child_list);
4203                         free_event(child);
4204                         /*
4205                          * This matches the refcount bump in inherit_event();
4206                          * this can't be the last reference.
4207                          */
4208                         put_event(event);
4209                 }
4210
4211                 mutex_unlock(&event->child_mutex);
4212                 mutex_unlock(&ctx->mutex);
4213                 put_ctx(ctx);
4214                 goto again;
4215         }
4216         mutex_unlock(&event->child_mutex);
4217
4218 no_ctx:
4219         put_event(event); /* Must be the 'last' reference */
4220         return 0;
4221 }
4222 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4223
4224 /*
4225  * Called when the last reference to the file is gone.
4226  */
4227 static int perf_release(struct inode *inode, struct file *file)
4228 {
4229         perf_event_release_kernel(file->private_data);
4230         return 0;
4231 }
4232
4233 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4234 {
4235         struct perf_event *child;
4236         u64 total = 0;
4237
4238         *enabled = 0;
4239         *running = 0;
4240
4241         mutex_lock(&event->child_mutex);
4242
4243         (void)perf_event_read(event, false);
4244         total += perf_event_count(event);
4245
4246         *enabled += event->total_time_enabled +
4247                         atomic64_read(&event->child_total_time_enabled);
4248         *running += event->total_time_running +
4249                         atomic64_read(&event->child_total_time_running);
4250
4251         list_for_each_entry(child, &event->child_list, child_list) {
4252                 (void)perf_event_read(child, false);
4253                 total += perf_event_count(child);
4254                 *enabled += child->total_time_enabled;
4255                 *running += child->total_time_running;
4256         }
4257         mutex_unlock(&event->child_mutex);
4258
4259         return total;
4260 }
4261 EXPORT_SYMBOL_GPL(perf_event_read_value);
4262
4263 static int __perf_read_group_add(struct perf_event *leader,
4264                                         u64 read_format, u64 *values)
4265 {
4266         struct perf_event *sub;
4267         int n = 1; /* skip @nr */
4268         int ret;
4269
4270         ret = perf_event_read(leader, true);
4271         if (ret)
4272                 return ret;
4273
4274         /*
4275          * Since we co-schedule groups, {enabled,running} times of siblings
4276          * will be identical to those of the leader, so we only publish one
4277          * set.
4278          */
4279         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4280                 values[n++] += leader->total_time_enabled +
4281                         atomic64_read(&leader->child_total_time_enabled);
4282         }
4283
4284         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4285                 values[n++] += leader->total_time_running +
4286                         atomic64_read(&leader->child_total_time_running);
4287         }
4288
4289         /*
4290          * Write {count,id} tuples for every sibling.
4291          */
4292         values[n++] += perf_event_count(leader);
4293         if (read_format & PERF_FORMAT_ID)
4294                 values[n++] = primary_event_id(leader);
4295
4296         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4297                 values[n++] += perf_event_count(sub);
4298                 if (read_format & PERF_FORMAT_ID)
4299                         values[n++] = primary_event_id(sub);
4300         }
4301
4302         return 0;
4303 }
4304
4305 static int perf_read_group(struct perf_event *event,
4306                                    u64 read_format, char __user *buf)
4307 {
4308         struct perf_event *leader = event->group_leader, *child;
4309         struct perf_event_context *ctx = leader->ctx;
4310         int ret;
4311         u64 *values;
4312
4313         lockdep_assert_held(&ctx->mutex);
4314
4315         values = kzalloc(event->read_size, GFP_KERNEL);
4316         if (!values)
4317                 return -ENOMEM;
4318
4319         values[0] = 1 + leader->nr_siblings;
4320
4321         /*
4322          * By locking the child_mutex of the leader we effectively
4323          * lock the child list of all siblings.. XXX explain how.
4324          */
4325         mutex_lock(&leader->child_mutex);
4326
4327         ret = __perf_read_group_add(leader, read_format, values);
4328         if (ret)
4329                 goto unlock;
4330
4331         list_for_each_entry(child, &leader->child_list, child_list) {
4332                 ret = __perf_read_group_add(child, read_format, values);
4333                 if (ret)
4334                         goto unlock;
4335         }
4336
4337         mutex_unlock(&leader->child_mutex);
4338
4339         ret = event->read_size;
4340         if (copy_to_user(buf, values, event->read_size))
4341                 ret = -EFAULT;
4342         goto out;
4343
4344 unlock:
4345         mutex_unlock(&leader->child_mutex);
4346 out:
4347         kfree(values);
4348         return ret;
4349 }
4350
4351 static int perf_read_one(struct perf_event *event,
4352                                  u64 read_format, char __user *buf)
4353 {
4354         u64 enabled, running;
4355         u64 values[4];
4356         int n = 0;
4357
4358         values[n++] = perf_event_read_value(event, &enabled, &running);
4359         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4360                 values[n++] = enabled;
4361         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4362                 values[n++] = running;
4363         if (read_format & PERF_FORMAT_ID)
4364                 values[n++] = primary_event_id(event);
4365
4366         if (copy_to_user(buf, values, n * sizeof(u64)))
4367                 return -EFAULT;
4368
4369         return n * sizeof(u64);
4370 }
4371
4372 static bool is_event_hup(struct perf_event *event)
4373 {
4374         bool no_children;
4375
4376         if (event->state > PERF_EVENT_STATE_EXIT)
4377                 return false;
4378
4379         mutex_lock(&event->child_mutex);
4380         no_children = list_empty(&event->child_list);
4381         mutex_unlock(&event->child_mutex);
4382         return no_children;
4383 }
4384
4385 /*
4386  * Read the performance event - simple non blocking version for now
4387  */
4388 static ssize_t
4389 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4390 {
4391         u64 read_format = event->attr.read_format;
4392         int ret;
4393
4394         /*
4395          * Return end-of-file for a read on a event that is in
4396          * error state (i.e. because it was pinned but it couldn't be
4397          * scheduled on to the CPU at some point).
4398          */
4399         if (event->state == PERF_EVENT_STATE_ERROR)
4400                 return 0;
4401
4402         if (count < event->read_size)
4403                 return -ENOSPC;
4404
4405         WARN_ON_ONCE(event->ctx->parent_ctx);
4406         if (read_format & PERF_FORMAT_GROUP)
4407                 ret = perf_read_group(event, read_format, buf);
4408         else
4409                 ret = perf_read_one(event, read_format, buf);
4410
4411         return ret;
4412 }
4413
4414 static ssize_t
4415 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4416 {
4417         struct perf_event *event = file->private_data;
4418         struct perf_event_context *ctx;
4419         int ret;
4420
4421         ctx = perf_event_ctx_lock(event);
4422         ret = __perf_read(event, buf, count);
4423         perf_event_ctx_unlock(event, ctx);
4424
4425         return ret;
4426 }
4427
4428 static unsigned int perf_poll(struct file *file, poll_table *wait)
4429 {
4430         struct perf_event *event = file->private_data;
4431         struct ring_buffer *rb;
4432         unsigned int events = POLLHUP;
4433
4434         poll_wait(file, &event->waitq, wait);
4435
4436         if (is_event_hup(event))
4437                 return events;
4438
4439         /*
4440          * Pin the event->rb by taking event->mmap_mutex; otherwise
4441          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4442          */
4443         mutex_lock(&event->mmap_mutex);
4444         rb = event->rb;
4445         if (rb)
4446                 events = atomic_xchg(&rb->poll, 0);
4447         mutex_unlock(&event->mmap_mutex);
4448         return events;
4449 }
4450
4451 static void _perf_event_reset(struct perf_event *event)
4452 {
4453         (void)perf_event_read(event, false);
4454         local64_set(&event->count, 0);
4455         perf_event_update_userpage(event);
4456 }
4457
4458 /*
4459  * Holding the top-level event's child_mutex means that any
4460  * descendant process that has inherited this event will block
4461  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4462  * task existence requirements of perf_event_enable/disable.
4463  */
4464 static void perf_event_for_each_child(struct perf_event *event,
4465                                         void (*func)(struct perf_event *))
4466 {
4467         struct perf_event *child;
4468
4469         WARN_ON_ONCE(event->ctx->parent_ctx);
4470
4471         mutex_lock(&event->child_mutex);
4472         func(event);
4473         list_for_each_entry(child, &event->child_list, child_list)
4474                 func(child);
4475         mutex_unlock(&event->child_mutex);
4476 }
4477
4478 static void perf_event_for_each(struct perf_event *event,
4479                                   void (*func)(struct perf_event *))
4480 {
4481         struct perf_event_context *ctx = event->ctx;
4482         struct perf_event *sibling;
4483
4484         lockdep_assert_held(&ctx->mutex);
4485
4486         event = event->group_leader;
4487
4488         perf_event_for_each_child(event, func);
4489         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4490                 perf_event_for_each_child(sibling, func);
4491 }
4492
4493 static void __perf_event_period(struct perf_event *event,
4494                                 struct perf_cpu_context *cpuctx,
4495                                 struct perf_event_context *ctx,
4496                                 void *info)
4497 {
4498         u64 value = *((u64 *)info);
4499         bool active;
4500
4501         if (event->attr.freq) {
4502                 event->attr.sample_freq = value;
4503         } else {
4504                 event->attr.sample_period = value;
4505                 event->hw.sample_period = value;
4506         }
4507
4508         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4509         if (active) {
4510                 perf_pmu_disable(ctx->pmu);
4511                 /*
4512                  * We could be throttled; unthrottle now to avoid the tick
4513                  * trying to unthrottle while we already re-started the event.
4514                  */
4515                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4516                         event->hw.interrupts = 0;
4517                         perf_log_throttle(event, 1);
4518                 }
4519                 event->pmu->stop(event, PERF_EF_UPDATE);
4520         }
4521
4522         local64_set(&event->hw.period_left, 0);
4523
4524         if (active) {
4525                 event->pmu->start(event, PERF_EF_RELOAD);
4526                 perf_pmu_enable(ctx->pmu);
4527         }
4528 }
4529
4530 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4531 {
4532         u64 value;
4533
4534         if (!is_sampling_event(event))
4535                 return -EINVAL;
4536
4537         if (copy_from_user(&value, arg, sizeof(value)))
4538                 return -EFAULT;
4539
4540         if (!value)
4541                 return -EINVAL;
4542
4543         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4544                 return -EINVAL;
4545
4546         event_function_call(event, __perf_event_period, &value);
4547
4548         return 0;
4549 }
4550
4551 static const struct file_operations perf_fops;
4552
4553 static inline int perf_fget_light(int fd, struct fd *p)
4554 {
4555         struct fd f = fdget(fd);
4556         if (!f.file)
4557                 return -EBADF;
4558
4559         if (f.file->f_op != &perf_fops) {
4560                 fdput(f);
4561                 return -EBADF;
4562         }
4563         *p = f;
4564         return 0;
4565 }
4566
4567 static int perf_event_set_output(struct perf_event *event,
4568                                  struct perf_event *output_event);
4569 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4570 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4571
4572 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4573 {
4574         void (*func)(struct perf_event *);
4575         u32 flags = arg;
4576
4577         switch (cmd) {
4578         case PERF_EVENT_IOC_ENABLE:
4579                 func = _perf_event_enable;
4580                 break;
4581         case PERF_EVENT_IOC_DISABLE:
4582                 func = _perf_event_disable;
4583                 break;
4584         case PERF_EVENT_IOC_RESET:
4585                 func = _perf_event_reset;
4586                 break;
4587
4588         case PERF_EVENT_IOC_REFRESH:
4589                 return _perf_event_refresh(event, arg);
4590
4591         case PERF_EVENT_IOC_PERIOD:
4592                 return perf_event_period(event, (u64 __user *)arg);
4593
4594         case PERF_EVENT_IOC_ID:
4595         {
4596                 u64 id = primary_event_id(event);
4597
4598                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4599                         return -EFAULT;
4600                 return 0;
4601         }
4602
4603         case PERF_EVENT_IOC_SET_OUTPUT:
4604         {
4605                 int ret;
4606                 if (arg != -1) {
4607                         struct perf_event *output_event;
4608                         struct fd output;
4609                         ret = perf_fget_light(arg, &output);
4610                         if (ret)
4611                                 return ret;
4612                         output_event = output.file->private_data;
4613                         ret = perf_event_set_output(event, output_event);
4614                         fdput(output);
4615                 } else {
4616                         ret = perf_event_set_output(event, NULL);
4617                 }
4618                 return ret;
4619         }
4620
4621         case PERF_EVENT_IOC_SET_FILTER:
4622                 return perf_event_set_filter(event, (void __user *)arg);
4623
4624         case PERF_EVENT_IOC_SET_BPF:
4625                 return perf_event_set_bpf_prog(event, arg);
4626
4627         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4628                 struct ring_buffer *rb;
4629
4630                 rcu_read_lock();
4631                 rb = rcu_dereference(event->rb);
4632                 if (!rb || !rb->nr_pages) {
4633                         rcu_read_unlock();
4634                         return -EINVAL;
4635                 }
4636                 rb_toggle_paused(rb, !!arg);
4637                 rcu_read_unlock();
4638                 return 0;
4639         }
4640         default:
4641                 return -ENOTTY;
4642         }
4643
4644         if (flags & PERF_IOC_FLAG_GROUP)
4645                 perf_event_for_each(event, func);
4646         else
4647                 perf_event_for_each_child(event, func);
4648
4649         return 0;
4650 }
4651
4652 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4653 {
4654         struct perf_event *event = file->private_data;
4655         struct perf_event_context *ctx;
4656         long ret;
4657
4658         ctx = perf_event_ctx_lock(event);
4659         ret = _perf_ioctl(event, cmd, arg);
4660         perf_event_ctx_unlock(event, ctx);
4661
4662         return ret;
4663 }
4664
4665 #ifdef CONFIG_COMPAT
4666 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4667                                 unsigned long arg)
4668 {
4669         switch (_IOC_NR(cmd)) {
4670         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4671         case _IOC_NR(PERF_EVENT_IOC_ID):
4672                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4673                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4674                         cmd &= ~IOCSIZE_MASK;
4675                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4676                 }
4677                 break;
4678         }
4679         return perf_ioctl(file, cmd, arg);
4680 }
4681 #else
4682 # define perf_compat_ioctl NULL
4683 #endif
4684
4685 int perf_event_task_enable(void)
4686 {
4687         struct perf_event_context *ctx;
4688         struct perf_event *event;
4689
4690         mutex_lock(&current->perf_event_mutex);
4691         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4692                 ctx = perf_event_ctx_lock(event);
4693                 perf_event_for_each_child(event, _perf_event_enable);
4694                 perf_event_ctx_unlock(event, ctx);
4695         }
4696         mutex_unlock(&current->perf_event_mutex);
4697
4698         return 0;
4699 }
4700
4701 int perf_event_task_disable(void)
4702 {
4703         struct perf_event_context *ctx;
4704         struct perf_event *event;
4705
4706         mutex_lock(&current->perf_event_mutex);
4707         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4708                 ctx = perf_event_ctx_lock(event);
4709                 perf_event_for_each_child(event, _perf_event_disable);
4710                 perf_event_ctx_unlock(event, ctx);
4711         }
4712         mutex_unlock(&current->perf_event_mutex);
4713
4714         return 0;
4715 }
4716
4717 static int perf_event_index(struct perf_event *event)
4718 {
4719         if (event->hw.state & PERF_HES_STOPPED)
4720                 return 0;
4721
4722         if (event->state != PERF_EVENT_STATE_ACTIVE)
4723                 return 0;
4724
4725         return event->pmu->event_idx(event);
4726 }
4727
4728 static void calc_timer_values(struct perf_event *event,
4729                                 u64 *now,
4730                                 u64 *enabled,
4731                                 u64 *running)
4732 {
4733         u64 ctx_time;
4734
4735         *now = perf_clock();
4736         ctx_time = event->shadow_ctx_time + *now;
4737         *enabled = ctx_time - event->tstamp_enabled;
4738         *running = ctx_time - event->tstamp_running;
4739 }
4740
4741 static void perf_event_init_userpage(struct perf_event *event)
4742 {
4743         struct perf_event_mmap_page *userpg;
4744         struct ring_buffer *rb;
4745
4746         rcu_read_lock();
4747         rb = rcu_dereference(event->rb);
4748         if (!rb)
4749                 goto unlock;
4750
4751         userpg = rb->user_page;
4752
4753         /* Allow new userspace to detect that bit 0 is deprecated */
4754         userpg->cap_bit0_is_deprecated = 1;
4755         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4756         userpg->data_offset = PAGE_SIZE;
4757         userpg->data_size = perf_data_size(rb);
4758
4759 unlock:
4760         rcu_read_unlock();
4761 }
4762
4763 void __weak arch_perf_update_userpage(
4764         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4765 {
4766 }
4767
4768 /*
4769  * Callers need to ensure there can be no nesting of this function, otherwise
4770  * the seqlock logic goes bad. We can not serialize this because the arch
4771  * code calls this from NMI context.
4772  */
4773 void perf_event_update_userpage(struct perf_event *event)
4774 {
4775         struct perf_event_mmap_page *userpg;
4776         struct ring_buffer *rb;
4777         u64 enabled, running, now;
4778
4779         rcu_read_lock();
4780         rb = rcu_dereference(event->rb);
4781         if (!rb)
4782                 goto unlock;
4783
4784         /*
4785          * compute total_time_enabled, total_time_running
4786          * based on snapshot values taken when the event
4787          * was last scheduled in.
4788          *
4789          * we cannot simply called update_context_time()
4790          * because of locking issue as we can be called in
4791          * NMI context
4792          */
4793         calc_timer_values(event, &now, &enabled, &running);
4794
4795         userpg = rb->user_page;
4796         /*
4797          * Disable preemption so as to not let the corresponding user-space
4798          * spin too long if we get preempted.
4799          */
4800         preempt_disable();
4801         ++userpg->lock;
4802         barrier();
4803         userpg->index = perf_event_index(event);
4804         userpg->offset = perf_event_count(event);
4805         if (userpg->index)
4806                 userpg->offset -= local64_read(&event->hw.prev_count);
4807
4808         userpg->time_enabled = enabled +
4809                         atomic64_read(&event->child_total_time_enabled);
4810
4811         userpg->time_running = running +
4812                         atomic64_read(&event->child_total_time_running);
4813
4814         arch_perf_update_userpage(event, userpg, now);
4815
4816         barrier();
4817         ++userpg->lock;
4818         preempt_enable();
4819 unlock:
4820         rcu_read_unlock();
4821 }
4822
4823 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4824 {
4825         struct perf_event *event = vma->vm_file->private_data;
4826         struct ring_buffer *rb;
4827         int ret = VM_FAULT_SIGBUS;
4828
4829         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4830                 if (vmf->pgoff == 0)
4831                         ret = 0;
4832                 return ret;
4833         }
4834
4835         rcu_read_lock();
4836         rb = rcu_dereference(event->rb);
4837         if (!rb)
4838                 goto unlock;
4839
4840         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4841                 goto unlock;
4842
4843         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4844         if (!vmf->page)
4845                 goto unlock;
4846
4847         get_page(vmf->page);
4848         vmf->page->mapping = vma->vm_file->f_mapping;
4849         vmf->page->index   = vmf->pgoff;
4850
4851         ret = 0;
4852 unlock:
4853         rcu_read_unlock();
4854
4855         return ret;
4856 }
4857
4858 static void ring_buffer_attach(struct perf_event *event,
4859                                struct ring_buffer *rb)
4860 {
4861         struct ring_buffer *old_rb = NULL;
4862         unsigned long flags;
4863
4864         if (event->rb) {
4865                 /*
4866                  * Should be impossible, we set this when removing
4867                  * event->rb_entry and wait/clear when adding event->rb_entry.
4868                  */
4869                 WARN_ON_ONCE(event->rcu_pending);
4870
4871                 old_rb = event->rb;
4872                 spin_lock_irqsave(&old_rb->event_lock, flags);
4873                 list_del_rcu(&event->rb_entry);
4874                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4875
4876                 event->rcu_batches = get_state_synchronize_rcu();
4877                 event->rcu_pending = 1;
4878         }
4879
4880         if (rb) {
4881                 if (event->rcu_pending) {
4882                         cond_synchronize_rcu(event->rcu_batches);
4883                         event->rcu_pending = 0;
4884                 }
4885
4886                 spin_lock_irqsave(&rb->event_lock, flags);
4887                 list_add_rcu(&event->rb_entry, &rb->event_list);
4888                 spin_unlock_irqrestore(&rb->event_lock, flags);
4889         }
4890
4891         /*
4892          * Avoid racing with perf_mmap_close(AUX): stop the event
4893          * before swizzling the event::rb pointer; if it's getting
4894          * unmapped, its aux_mmap_count will be 0 and it won't
4895          * restart. See the comment in __perf_pmu_output_stop().
4896          *
4897          * Data will inevitably be lost when set_output is done in
4898          * mid-air, but then again, whoever does it like this is
4899          * not in for the data anyway.
4900          */
4901         if (has_aux(event))
4902                 perf_event_stop(event, 0);
4903
4904         rcu_assign_pointer(event->rb, rb);
4905
4906         if (old_rb) {
4907                 ring_buffer_put(old_rb);
4908                 /*
4909                  * Since we detached before setting the new rb, so that we
4910                  * could attach the new rb, we could have missed a wakeup.
4911                  * Provide it now.
4912                  */
4913                 wake_up_all(&event->waitq);
4914         }
4915 }
4916
4917 static void ring_buffer_wakeup(struct perf_event *event)
4918 {
4919         struct ring_buffer *rb;
4920
4921         rcu_read_lock();
4922         rb = rcu_dereference(event->rb);
4923         if (rb) {
4924                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4925                         wake_up_all(&event->waitq);
4926         }
4927         rcu_read_unlock();
4928 }
4929
4930 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4931 {
4932         struct ring_buffer *rb;
4933
4934         rcu_read_lock();
4935         rb = rcu_dereference(event->rb);
4936         if (rb) {
4937                 if (!atomic_inc_not_zero(&rb->refcount))
4938                         rb = NULL;
4939         }
4940         rcu_read_unlock();
4941
4942         return rb;
4943 }
4944
4945 void ring_buffer_put(struct ring_buffer *rb)
4946 {
4947         if (!atomic_dec_and_test(&rb->refcount))
4948                 return;
4949
4950         WARN_ON_ONCE(!list_empty(&rb->event_list));
4951
4952         call_rcu(&rb->rcu_head, rb_free_rcu);
4953 }
4954
4955 static void perf_mmap_open(struct vm_area_struct *vma)
4956 {
4957         struct perf_event *event = vma->vm_file->private_data;
4958
4959         atomic_inc(&event->mmap_count);
4960         atomic_inc(&event->rb->mmap_count);
4961
4962         if (vma->vm_pgoff)
4963                 atomic_inc(&event->rb->aux_mmap_count);
4964
4965         if (event->pmu->event_mapped)
4966                 event->pmu->event_mapped(event);
4967 }
4968
4969 static void perf_pmu_output_stop(struct perf_event *event);
4970
4971 /*
4972  * A buffer can be mmap()ed multiple times; either directly through the same
4973  * event, or through other events by use of perf_event_set_output().
4974  *
4975  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4976  * the buffer here, where we still have a VM context. This means we need
4977  * to detach all events redirecting to us.
4978  */
4979 static void perf_mmap_close(struct vm_area_struct *vma)
4980 {
4981         struct perf_event *event = vma->vm_file->private_data;
4982
4983         struct ring_buffer *rb = ring_buffer_get(event);
4984         struct user_struct *mmap_user = rb->mmap_user;
4985         int mmap_locked = rb->mmap_locked;
4986         unsigned long size = perf_data_size(rb);
4987
4988         if (event->pmu->event_unmapped)
4989                 event->pmu->event_unmapped(event);
4990
4991         /*
4992          * rb->aux_mmap_count will always drop before rb->mmap_count and
4993          * event->mmap_count, so it is ok to use event->mmap_mutex to
4994          * serialize with perf_mmap here.
4995          */
4996         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4997             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4998                 /*
4999                  * Stop all AUX events that are writing to this buffer,
5000                  * so that we can free its AUX pages and corresponding PMU
5001                  * data. Note that after rb::aux_mmap_count dropped to zero,
5002                  * they won't start any more (see perf_aux_output_begin()).
5003                  */
5004                 perf_pmu_output_stop(event);
5005
5006                 /* now it's safe to free the pages */
5007                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5008                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5009
5010                 /* this has to be the last one */
5011                 rb_free_aux(rb);
5012                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5013
5014                 mutex_unlock(&event->mmap_mutex);
5015         }
5016
5017         atomic_dec(&rb->mmap_count);
5018
5019         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5020                 goto out_put;
5021
5022         ring_buffer_attach(event, NULL);
5023         mutex_unlock(&event->mmap_mutex);
5024
5025         /* If there's still other mmap()s of this buffer, we're done. */
5026         if (atomic_read(&rb->mmap_count))
5027                 goto out_put;
5028
5029         /*
5030          * No other mmap()s, detach from all other events that might redirect
5031          * into the now unreachable buffer. Somewhat complicated by the
5032          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5033          */
5034 again:
5035         rcu_read_lock();
5036         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5037                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5038                         /*
5039                          * This event is en-route to free_event() which will
5040                          * detach it and remove it from the list.
5041                          */
5042                         continue;
5043                 }
5044                 rcu_read_unlock();
5045
5046                 mutex_lock(&event->mmap_mutex);
5047                 /*
5048                  * Check we didn't race with perf_event_set_output() which can
5049                  * swizzle the rb from under us while we were waiting to
5050                  * acquire mmap_mutex.
5051                  *
5052                  * If we find a different rb; ignore this event, a next
5053                  * iteration will no longer find it on the list. We have to
5054                  * still restart the iteration to make sure we're not now
5055                  * iterating the wrong list.
5056                  */
5057                 if (event->rb == rb)
5058                         ring_buffer_attach(event, NULL);
5059
5060                 mutex_unlock(&event->mmap_mutex);
5061                 put_event(event);
5062
5063                 /*
5064                  * Restart the iteration; either we're on the wrong list or
5065                  * destroyed its integrity by doing a deletion.
5066                  */
5067                 goto again;
5068         }
5069         rcu_read_unlock();
5070
5071         /*
5072          * It could be there's still a few 0-ref events on the list; they'll
5073          * get cleaned up by free_event() -- they'll also still have their
5074          * ref on the rb and will free it whenever they are done with it.
5075          *
5076          * Aside from that, this buffer is 'fully' detached and unmapped,
5077          * undo the VM accounting.
5078          */
5079
5080         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5081         vma->vm_mm->pinned_vm -= mmap_locked;
5082         free_uid(mmap_user);
5083
5084 out_put:
5085         ring_buffer_put(rb); /* could be last */
5086 }
5087
5088 static const struct vm_operations_struct perf_mmap_vmops = {
5089         .open           = perf_mmap_open,
5090         .close          = perf_mmap_close, /* non mergable */
5091         .fault          = perf_mmap_fault,
5092         .page_mkwrite   = perf_mmap_fault,
5093 };
5094
5095 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5096 {
5097         struct perf_event *event = file->private_data;
5098         unsigned long user_locked, user_lock_limit;
5099         struct user_struct *user = current_user();
5100         unsigned long locked, lock_limit;
5101         struct ring_buffer *rb = NULL;
5102         unsigned long vma_size;
5103         unsigned long nr_pages;
5104         long user_extra = 0, extra = 0;
5105         int ret = 0, flags = 0;
5106
5107         /*
5108          * Don't allow mmap() of inherited per-task counters. This would
5109          * create a performance issue due to all children writing to the
5110          * same rb.
5111          */
5112         if (event->cpu == -1 && event->attr.inherit)
5113                 return -EINVAL;
5114
5115         if (!(vma->vm_flags & VM_SHARED))
5116                 return -EINVAL;
5117
5118         vma_size = vma->vm_end - vma->vm_start;
5119
5120         if (vma->vm_pgoff == 0) {
5121                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5122         } else {
5123                 /*
5124                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5125                  * mapped, all subsequent mappings should have the same size
5126                  * and offset. Must be above the normal perf buffer.
5127                  */
5128                 u64 aux_offset, aux_size;
5129
5130                 if (!event->rb)
5131                         return -EINVAL;
5132
5133                 nr_pages = vma_size / PAGE_SIZE;
5134
5135                 mutex_lock(&event->mmap_mutex);
5136                 ret = -EINVAL;
5137
5138                 rb = event->rb;
5139                 if (!rb)
5140                         goto aux_unlock;
5141
5142                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5143                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5144
5145                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5146                         goto aux_unlock;
5147
5148                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5149                         goto aux_unlock;
5150
5151                 /* already mapped with a different offset */
5152                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5153                         goto aux_unlock;
5154
5155                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5156                         goto aux_unlock;
5157
5158                 /* already mapped with a different size */
5159                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5160                         goto aux_unlock;
5161
5162                 if (!is_power_of_2(nr_pages))
5163                         goto aux_unlock;
5164
5165                 if (!atomic_inc_not_zero(&rb->mmap_count))
5166                         goto aux_unlock;
5167
5168                 if (rb_has_aux(rb)) {
5169                         atomic_inc(&rb->aux_mmap_count);
5170                         ret = 0;
5171                         goto unlock;
5172                 }
5173
5174                 atomic_set(&rb->aux_mmap_count, 1);
5175                 user_extra = nr_pages;
5176
5177                 goto accounting;
5178         }
5179
5180         /*
5181          * If we have rb pages ensure they're a power-of-two number, so we
5182          * can do bitmasks instead of modulo.
5183          */
5184         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5185                 return -EINVAL;
5186
5187         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5188                 return -EINVAL;
5189
5190         WARN_ON_ONCE(event->ctx->parent_ctx);
5191 again:
5192         mutex_lock(&event->mmap_mutex);
5193         if (event->rb) {
5194                 if (event->rb->nr_pages != nr_pages) {
5195                         ret = -EINVAL;
5196                         goto unlock;
5197                 }
5198
5199                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5200                         /*
5201                          * Raced against perf_mmap_close() through
5202                          * perf_event_set_output(). Try again, hope for better
5203                          * luck.
5204                          */
5205                         mutex_unlock(&event->mmap_mutex);
5206                         goto again;
5207                 }
5208
5209                 goto unlock;
5210         }
5211
5212         user_extra = nr_pages + 1;
5213
5214 accounting:
5215         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5216
5217         /*
5218          * Increase the limit linearly with more CPUs:
5219          */
5220         user_lock_limit *= num_online_cpus();
5221
5222         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5223
5224         if (user_locked > user_lock_limit)
5225                 extra = user_locked - user_lock_limit;
5226
5227         lock_limit = rlimit(RLIMIT_MEMLOCK);
5228         lock_limit >>= PAGE_SHIFT;
5229         locked = vma->vm_mm->pinned_vm + extra;
5230
5231         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5232                 !capable(CAP_IPC_LOCK)) {
5233                 ret = -EPERM;
5234                 goto unlock;
5235         }
5236
5237         WARN_ON(!rb && event->rb);
5238
5239         if (vma->vm_flags & VM_WRITE)
5240                 flags |= RING_BUFFER_WRITABLE;
5241
5242         if (!rb) {
5243                 rb = rb_alloc(nr_pages,
5244                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5245                               event->cpu, flags);
5246
5247                 if (!rb) {
5248                         ret = -ENOMEM;
5249                         goto unlock;
5250                 }
5251
5252                 atomic_set(&rb->mmap_count, 1);
5253                 rb->mmap_user = get_current_user();
5254                 rb->mmap_locked = extra;
5255
5256                 ring_buffer_attach(event, rb);
5257
5258                 perf_event_init_userpage(event);
5259                 perf_event_update_userpage(event);
5260         } else {
5261                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5262                                    event->attr.aux_watermark, flags);
5263                 if (!ret)
5264                         rb->aux_mmap_locked = extra;
5265         }
5266
5267 unlock:
5268         if (!ret) {
5269                 atomic_long_add(user_extra, &user->locked_vm);
5270                 vma->vm_mm->pinned_vm += extra;
5271
5272                 atomic_inc(&event->mmap_count);
5273         } else if (rb) {
5274                 atomic_dec(&rb->mmap_count);
5275         }
5276 aux_unlock:
5277         mutex_unlock(&event->mmap_mutex);
5278
5279         /*
5280          * Since pinned accounting is per vm we cannot allow fork() to copy our
5281          * vma.
5282          */
5283         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5284         vma->vm_ops = &perf_mmap_vmops;
5285
5286         if (event->pmu->event_mapped)
5287                 event->pmu->event_mapped(event);
5288
5289         return ret;
5290 }
5291
5292 static int perf_fasync(int fd, struct file *filp, int on)
5293 {
5294         struct inode *inode = file_inode(filp);
5295         struct perf_event *event = filp->private_data;
5296         int retval;
5297
5298         inode_lock(inode);
5299         retval = fasync_helper(fd, filp, on, &event->fasync);
5300         inode_unlock(inode);
5301
5302         if (retval < 0)
5303                 return retval;
5304
5305         return 0;
5306 }
5307
5308 static const struct file_operations perf_fops = {
5309         .llseek                 = no_llseek,
5310         .release                = perf_release,
5311         .read                   = perf_read,
5312         .poll                   = perf_poll,
5313         .unlocked_ioctl         = perf_ioctl,
5314         .compat_ioctl           = perf_compat_ioctl,
5315         .mmap                   = perf_mmap,
5316         .fasync                 = perf_fasync,
5317 };
5318
5319 /*
5320  * Perf event wakeup
5321  *
5322  * If there's data, ensure we set the poll() state and publish everything
5323  * to user-space before waking everybody up.
5324  */
5325
5326 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5327 {
5328         /* only the parent has fasync state */
5329         if (event->parent)
5330                 event = event->parent;
5331         return &event->fasync;
5332 }
5333
5334 void perf_event_wakeup(struct perf_event *event)
5335 {
5336         ring_buffer_wakeup(event);
5337
5338         if (event->pending_kill) {
5339                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5340                 event->pending_kill = 0;
5341         }
5342 }
5343
5344 static void perf_pending_event(struct irq_work *entry)
5345 {
5346         struct perf_event *event = container_of(entry,
5347                         struct perf_event, pending);
5348         int rctx;
5349
5350         rctx = perf_swevent_get_recursion_context();
5351         /*
5352          * If we 'fail' here, that's OK, it means recursion is already disabled
5353          * and we won't recurse 'further'.
5354          */
5355
5356         if (event->pending_disable) {
5357                 event->pending_disable = 0;
5358                 perf_event_disable_local(event);
5359         }
5360
5361         if (event->pending_wakeup) {
5362                 event->pending_wakeup = 0;
5363                 perf_event_wakeup(event);
5364         }
5365
5366         if (rctx >= 0)
5367                 perf_swevent_put_recursion_context(rctx);
5368 }
5369
5370 /*
5371  * We assume there is only KVM supporting the callbacks.
5372  * Later on, we might change it to a list if there is
5373  * another virtualization implementation supporting the callbacks.
5374  */
5375 struct perf_guest_info_callbacks *perf_guest_cbs;
5376
5377 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5378 {
5379         perf_guest_cbs = cbs;
5380         return 0;
5381 }
5382 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5383
5384 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5385 {
5386         perf_guest_cbs = NULL;
5387         return 0;
5388 }
5389 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5390
5391 static void
5392 perf_output_sample_regs(struct perf_output_handle *handle,
5393                         struct pt_regs *regs, u64 mask)
5394 {
5395         int bit;
5396         DECLARE_BITMAP(_mask, 64);
5397
5398         bitmap_from_u64(_mask, mask);
5399         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5400                 u64 val;
5401
5402                 val = perf_reg_value(regs, bit);
5403                 perf_output_put(handle, val);
5404         }
5405 }
5406
5407 static void perf_sample_regs_user(struct perf_regs *regs_user,
5408                                   struct pt_regs *regs,
5409                                   struct pt_regs *regs_user_copy)
5410 {
5411         if (user_mode(regs)) {
5412                 regs_user->abi = perf_reg_abi(current);
5413                 regs_user->regs = regs;
5414         } else if (current->mm) {
5415                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5416         } else {
5417                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5418                 regs_user->regs = NULL;
5419         }
5420 }
5421
5422 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5423                                   struct pt_regs *regs)
5424 {
5425         regs_intr->regs = regs;
5426         regs_intr->abi  = perf_reg_abi(current);
5427 }
5428
5429
5430 /*
5431  * Get remaining task size from user stack pointer.
5432  *
5433  * It'd be better to take stack vma map and limit this more
5434  * precisly, but there's no way to get it safely under interrupt,
5435  * so using TASK_SIZE as limit.
5436  */
5437 static u64 perf_ustack_task_size(struct pt_regs *regs)
5438 {
5439         unsigned long addr = perf_user_stack_pointer(regs);
5440
5441         if (!addr || addr >= TASK_SIZE)
5442                 return 0;
5443
5444         return TASK_SIZE - addr;
5445 }
5446
5447 static u16
5448 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5449                         struct pt_regs *regs)
5450 {
5451         u64 task_size;
5452
5453         /* No regs, no stack pointer, no dump. */
5454         if (!regs)
5455                 return 0;
5456
5457         /*
5458          * Check if we fit in with the requested stack size into the:
5459          * - TASK_SIZE
5460          *   If we don't, we limit the size to the TASK_SIZE.
5461          *
5462          * - remaining sample size
5463          *   If we don't, we customize the stack size to
5464          *   fit in to the remaining sample size.
5465          */
5466
5467         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5468         stack_size = min(stack_size, (u16) task_size);
5469
5470         /* Current header size plus static size and dynamic size. */
5471         header_size += 2 * sizeof(u64);
5472
5473         /* Do we fit in with the current stack dump size? */
5474         if ((u16) (header_size + stack_size) < header_size) {
5475                 /*
5476                  * If we overflow the maximum size for the sample,
5477                  * we customize the stack dump size to fit in.
5478                  */
5479                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5480                 stack_size = round_up(stack_size, sizeof(u64));
5481         }
5482
5483         return stack_size;
5484 }
5485
5486 static void
5487 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5488                           struct pt_regs *regs)
5489 {
5490         /* Case of a kernel thread, nothing to dump */
5491         if (!regs) {
5492                 u64 size = 0;
5493                 perf_output_put(handle, size);
5494         } else {
5495                 unsigned long sp;
5496                 unsigned int rem;
5497                 u64 dyn_size;
5498
5499                 /*
5500                  * We dump:
5501                  * static size
5502                  *   - the size requested by user or the best one we can fit
5503                  *     in to the sample max size
5504                  * data
5505                  *   - user stack dump data
5506                  * dynamic size
5507                  *   - the actual dumped size
5508                  */
5509
5510                 /* Static size. */
5511                 perf_output_put(handle, dump_size);
5512
5513                 /* Data. */
5514                 sp = perf_user_stack_pointer(regs);
5515                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5516                 dyn_size = dump_size - rem;
5517
5518                 perf_output_skip(handle, rem);
5519
5520                 /* Dynamic size. */
5521                 perf_output_put(handle, dyn_size);
5522         }
5523 }
5524
5525 static void __perf_event_header__init_id(struct perf_event_header *header,
5526                                          struct perf_sample_data *data,
5527                                          struct perf_event *event)
5528 {
5529         u64 sample_type = event->attr.sample_type;
5530
5531         data->type = sample_type;
5532         header->size += event->id_header_size;
5533
5534         if (sample_type & PERF_SAMPLE_TID) {
5535                 /* namespace issues */
5536                 data->tid_entry.pid = perf_event_pid(event, current);
5537                 data->tid_entry.tid = perf_event_tid(event, current);
5538         }
5539
5540         if (sample_type & PERF_SAMPLE_TIME)
5541                 data->time = perf_event_clock(event);
5542
5543         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5544                 data->id = primary_event_id(event);
5545
5546         if (sample_type & PERF_SAMPLE_STREAM_ID)
5547                 data->stream_id = event->id;
5548
5549         if (sample_type & PERF_SAMPLE_CPU) {
5550                 data->cpu_entry.cpu      = raw_smp_processor_id();
5551                 data->cpu_entry.reserved = 0;
5552         }
5553 }
5554
5555 void perf_event_header__init_id(struct perf_event_header *header,
5556                                 struct perf_sample_data *data,
5557                                 struct perf_event *event)
5558 {
5559         if (event->attr.sample_id_all)
5560                 __perf_event_header__init_id(header, data, event);
5561 }
5562
5563 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5564                                            struct perf_sample_data *data)
5565 {
5566         u64 sample_type = data->type;
5567
5568         if (sample_type & PERF_SAMPLE_TID)
5569                 perf_output_put(handle, data->tid_entry);
5570
5571         if (sample_type & PERF_SAMPLE_TIME)
5572                 perf_output_put(handle, data->time);
5573
5574         if (sample_type & PERF_SAMPLE_ID)
5575                 perf_output_put(handle, data->id);
5576
5577         if (sample_type & PERF_SAMPLE_STREAM_ID)
5578                 perf_output_put(handle, data->stream_id);
5579
5580         if (sample_type & PERF_SAMPLE_CPU)
5581                 perf_output_put(handle, data->cpu_entry);
5582
5583         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5584                 perf_output_put(handle, data->id);
5585 }
5586
5587 void perf_event__output_id_sample(struct perf_event *event,
5588                                   struct perf_output_handle *handle,
5589                                   struct perf_sample_data *sample)
5590 {
5591         if (event->attr.sample_id_all)
5592                 __perf_event__output_id_sample(handle, sample);
5593 }
5594
5595 static void perf_output_read_one(struct perf_output_handle *handle,
5596                                  struct perf_event *event,
5597                                  u64 enabled, u64 running)
5598 {
5599         u64 read_format = event->attr.read_format;
5600         u64 values[4];
5601         int n = 0;
5602
5603         values[n++] = perf_event_count(event);
5604         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5605                 values[n++] = enabled +
5606                         atomic64_read(&event->child_total_time_enabled);
5607         }
5608         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5609                 values[n++] = running +
5610                         atomic64_read(&event->child_total_time_running);
5611         }
5612         if (read_format & PERF_FORMAT_ID)
5613                 values[n++] = primary_event_id(event);
5614
5615         __output_copy(handle, values, n * sizeof(u64));
5616 }
5617
5618 /*
5619  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5620  */
5621 static void perf_output_read_group(struct perf_output_handle *handle,
5622                             struct perf_event *event,
5623                             u64 enabled, u64 running)
5624 {
5625         struct perf_event *leader = event->group_leader, *sub;
5626         u64 read_format = event->attr.read_format;
5627         u64 values[5];
5628         int n = 0;
5629
5630         values[n++] = 1 + leader->nr_siblings;
5631
5632         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5633                 values[n++] = enabled;
5634
5635         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5636                 values[n++] = running;
5637
5638         if (leader != event)
5639                 leader->pmu->read(leader);
5640
5641         values[n++] = perf_event_count(leader);
5642         if (read_format & PERF_FORMAT_ID)
5643                 values[n++] = primary_event_id(leader);
5644
5645         __output_copy(handle, values, n * sizeof(u64));
5646
5647         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5648                 n = 0;
5649
5650                 if ((sub != event) &&
5651                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5652                         sub->pmu->read(sub);
5653
5654                 values[n++] = perf_event_count(sub);
5655                 if (read_format & PERF_FORMAT_ID)
5656                         values[n++] = primary_event_id(sub);
5657
5658                 __output_copy(handle, values, n * sizeof(u64));
5659         }
5660 }
5661
5662 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5663                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5664
5665 static void perf_output_read(struct perf_output_handle *handle,
5666                              struct perf_event *event)
5667 {
5668         u64 enabled = 0, running = 0, now;
5669         u64 read_format = event->attr.read_format;
5670
5671         /*
5672          * compute total_time_enabled, total_time_running
5673          * based on snapshot values taken when the event
5674          * was last scheduled in.
5675          *
5676          * we cannot simply called update_context_time()
5677          * because of locking issue as we are called in
5678          * NMI context
5679          */
5680         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5681                 calc_timer_values(event, &now, &enabled, &running);
5682
5683         if (event->attr.read_format & PERF_FORMAT_GROUP)
5684                 perf_output_read_group(handle, event, enabled, running);
5685         else
5686                 perf_output_read_one(handle, event, enabled, running);
5687 }
5688
5689 void perf_output_sample(struct perf_output_handle *handle,
5690                         struct perf_event_header *header,
5691                         struct perf_sample_data *data,
5692                         struct perf_event *event)
5693 {
5694         u64 sample_type = data->type;
5695
5696         perf_output_put(handle, *header);
5697
5698         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699                 perf_output_put(handle, data->id);
5700
5701         if (sample_type & PERF_SAMPLE_IP)
5702                 perf_output_put(handle, data->ip);
5703
5704         if (sample_type & PERF_SAMPLE_TID)
5705                 perf_output_put(handle, data->tid_entry);
5706
5707         if (sample_type & PERF_SAMPLE_TIME)
5708                 perf_output_put(handle, data->time);
5709
5710         if (sample_type & PERF_SAMPLE_ADDR)
5711                 perf_output_put(handle, data->addr);
5712
5713         if (sample_type & PERF_SAMPLE_ID)
5714                 perf_output_put(handle, data->id);
5715
5716         if (sample_type & PERF_SAMPLE_STREAM_ID)
5717                 perf_output_put(handle, data->stream_id);
5718
5719         if (sample_type & PERF_SAMPLE_CPU)
5720                 perf_output_put(handle, data->cpu_entry);
5721
5722         if (sample_type & PERF_SAMPLE_PERIOD)
5723                 perf_output_put(handle, data->period);
5724
5725         if (sample_type & PERF_SAMPLE_READ)
5726                 perf_output_read(handle, event);
5727
5728         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5729                 if (data->callchain) {
5730                         int size = 1;
5731
5732                         if (data->callchain)
5733                                 size += data->callchain->nr;
5734
5735                         size *= sizeof(u64);
5736
5737                         __output_copy(handle, data->callchain, size);
5738                 } else {
5739                         u64 nr = 0;
5740                         perf_output_put(handle, nr);
5741                 }
5742         }
5743
5744         if (sample_type & PERF_SAMPLE_RAW) {
5745                 struct perf_raw_record *raw = data->raw;
5746
5747                 if (raw) {
5748                         struct perf_raw_frag *frag = &raw->frag;
5749
5750                         perf_output_put(handle, raw->size);
5751                         do {
5752                                 if (frag->copy) {
5753                                         __output_custom(handle, frag->copy,
5754                                                         frag->data, frag->size);
5755                                 } else {
5756                                         __output_copy(handle, frag->data,
5757                                                       frag->size);
5758                                 }
5759                                 if (perf_raw_frag_last(frag))
5760                                         break;
5761                                 frag = frag->next;
5762                         } while (1);
5763                         if (frag->pad)
5764                                 __output_skip(handle, NULL, frag->pad);
5765                 } else {
5766                         struct {
5767                                 u32     size;
5768                                 u32     data;
5769                         } raw = {
5770                                 .size = sizeof(u32),
5771                                 .data = 0,
5772                         };
5773                         perf_output_put(handle, raw);
5774                 }
5775         }
5776
5777         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5778                 if (data->br_stack) {
5779                         size_t size;
5780
5781                         size = data->br_stack->nr
5782                              * sizeof(struct perf_branch_entry);
5783
5784                         perf_output_put(handle, data->br_stack->nr);
5785                         perf_output_copy(handle, data->br_stack->entries, size);
5786                 } else {
5787                         /*
5788                          * we always store at least the value of nr
5789                          */
5790                         u64 nr = 0;
5791                         perf_output_put(handle, nr);
5792                 }
5793         }
5794
5795         if (sample_type & PERF_SAMPLE_REGS_USER) {
5796                 u64 abi = data->regs_user.abi;
5797
5798                 /*
5799                  * If there are no regs to dump, notice it through
5800                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5801                  */
5802                 perf_output_put(handle, abi);
5803
5804                 if (abi) {
5805                         u64 mask = event->attr.sample_regs_user;
5806                         perf_output_sample_regs(handle,
5807                                                 data->regs_user.regs,
5808                                                 mask);
5809                 }
5810         }
5811
5812         if (sample_type & PERF_SAMPLE_STACK_USER) {
5813                 perf_output_sample_ustack(handle,
5814                                           data->stack_user_size,
5815                                           data->regs_user.regs);
5816         }
5817
5818         if (sample_type & PERF_SAMPLE_WEIGHT)
5819                 perf_output_put(handle, data->weight);
5820
5821         if (sample_type & PERF_SAMPLE_DATA_SRC)
5822                 perf_output_put(handle, data->data_src.val);
5823
5824         if (sample_type & PERF_SAMPLE_TRANSACTION)
5825                 perf_output_put(handle, data->txn);
5826
5827         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5828                 u64 abi = data->regs_intr.abi;
5829                 /*
5830                  * If there are no regs to dump, notice it through
5831                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5832                  */
5833                 perf_output_put(handle, abi);
5834
5835                 if (abi) {
5836                         u64 mask = event->attr.sample_regs_intr;
5837
5838                         perf_output_sample_regs(handle,
5839                                                 data->regs_intr.regs,
5840                                                 mask);
5841                 }
5842         }
5843
5844         if (!event->attr.watermark) {
5845                 int wakeup_events = event->attr.wakeup_events;
5846
5847                 if (wakeup_events) {
5848                         struct ring_buffer *rb = handle->rb;
5849                         int events = local_inc_return(&rb->events);
5850
5851                         if (events >= wakeup_events) {
5852                                 local_sub(wakeup_events, &rb->events);
5853                                 local_inc(&rb->wakeup);
5854                         }
5855                 }
5856         }
5857 }
5858
5859 void perf_prepare_sample(struct perf_event_header *header,
5860                          struct perf_sample_data *data,
5861                          struct perf_event *event,
5862                          struct pt_regs *regs)
5863 {
5864         u64 sample_type = event->attr.sample_type;
5865
5866         header->type = PERF_RECORD_SAMPLE;
5867         header->size = sizeof(*header) + event->header_size;
5868
5869         header->misc = 0;
5870         header->misc |= perf_misc_flags(regs);
5871
5872         __perf_event_header__init_id(header, data, event);
5873
5874         if (sample_type & PERF_SAMPLE_IP)
5875                 data->ip = perf_instruction_pointer(regs);
5876
5877         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5878                 int size = 1;
5879
5880                 data->callchain = perf_callchain(event, regs);
5881
5882                 if (data->callchain)
5883                         size += data->callchain->nr;
5884
5885                 header->size += size * sizeof(u64);
5886         }
5887
5888         if (sample_type & PERF_SAMPLE_RAW) {
5889                 struct perf_raw_record *raw = data->raw;
5890                 int size;
5891
5892                 if (raw) {
5893                         struct perf_raw_frag *frag = &raw->frag;
5894                         u32 sum = 0;
5895
5896                         do {
5897                                 sum += frag->size;
5898                                 if (perf_raw_frag_last(frag))
5899                                         break;
5900                                 frag = frag->next;
5901                         } while (1);
5902
5903                         size = round_up(sum + sizeof(u32), sizeof(u64));
5904                         raw->size = size - sizeof(u32);
5905                         frag->pad = raw->size - sum;
5906                 } else {
5907                         size = sizeof(u64);
5908                 }
5909
5910                 header->size += size;
5911         }
5912
5913         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5914                 int size = sizeof(u64); /* nr */
5915                 if (data->br_stack) {
5916                         size += data->br_stack->nr
5917                               * sizeof(struct perf_branch_entry);
5918                 }
5919                 header->size += size;
5920         }
5921
5922         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5923                 perf_sample_regs_user(&data->regs_user, regs,
5924                                       &data->regs_user_copy);
5925
5926         if (sample_type & PERF_SAMPLE_REGS_USER) {
5927                 /* regs dump ABI info */
5928                 int size = sizeof(u64);
5929
5930                 if (data->regs_user.regs) {
5931                         u64 mask = event->attr.sample_regs_user;
5932                         size += hweight64(mask) * sizeof(u64);
5933                 }
5934
5935                 header->size += size;
5936         }
5937
5938         if (sample_type & PERF_SAMPLE_STACK_USER) {
5939                 /*
5940                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5941                  * processed as the last one or have additional check added
5942                  * in case new sample type is added, because we could eat
5943                  * up the rest of the sample size.
5944                  */
5945                 u16 stack_size = event->attr.sample_stack_user;
5946                 u16 size = sizeof(u64);
5947
5948                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5949                                                      data->regs_user.regs);
5950
5951                 /*
5952                  * If there is something to dump, add space for the dump
5953                  * itself and for the field that tells the dynamic size,
5954                  * which is how many have been actually dumped.
5955                  */
5956                 if (stack_size)
5957                         size += sizeof(u64) + stack_size;
5958
5959                 data->stack_user_size = stack_size;
5960                 header->size += size;
5961         }
5962
5963         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5964                 /* regs dump ABI info */
5965                 int size = sizeof(u64);
5966
5967                 perf_sample_regs_intr(&data->regs_intr, regs);
5968
5969                 if (data->regs_intr.regs) {
5970                         u64 mask = event->attr.sample_regs_intr;
5971
5972                         size += hweight64(mask) * sizeof(u64);
5973                 }
5974
5975                 header->size += size;
5976         }
5977 }
5978
5979 static void __always_inline
5980 __perf_event_output(struct perf_event *event,
5981                     struct perf_sample_data *data,
5982                     struct pt_regs *regs,
5983                     int (*output_begin)(struct perf_output_handle *,
5984                                         struct perf_event *,
5985                                         unsigned int))
5986 {
5987         struct perf_output_handle handle;
5988         struct perf_event_header header;
5989
5990         /* protect the callchain buffers */
5991         rcu_read_lock();
5992
5993         perf_prepare_sample(&header, data, event, regs);
5994
5995         if (output_begin(&handle, event, header.size))
5996                 goto exit;
5997
5998         perf_output_sample(&handle, &header, data, event);
5999
6000         perf_output_end(&handle);
6001
6002 exit:
6003         rcu_read_unlock();
6004 }
6005
6006 void
6007 perf_event_output_forward(struct perf_event *event,
6008                          struct perf_sample_data *data,
6009                          struct pt_regs *regs)
6010 {
6011         __perf_event_output(event, data, regs, perf_output_begin_forward);
6012 }
6013
6014 void
6015 perf_event_output_backward(struct perf_event *event,
6016                            struct perf_sample_data *data,
6017                            struct pt_regs *regs)
6018 {
6019         __perf_event_output(event, data, regs, perf_output_begin_backward);
6020 }
6021
6022 void
6023 perf_event_output(struct perf_event *event,
6024                   struct perf_sample_data *data,
6025                   struct pt_regs *regs)
6026 {
6027         __perf_event_output(event, data, regs, perf_output_begin);
6028 }
6029
6030 /*
6031  * read event_id
6032  */
6033
6034 struct perf_read_event {
6035         struct perf_event_header        header;
6036
6037         u32                             pid;
6038         u32                             tid;
6039 };
6040
6041 static void
6042 perf_event_read_event(struct perf_event *event,
6043                         struct task_struct *task)
6044 {
6045         struct perf_output_handle handle;
6046         struct perf_sample_data sample;
6047         struct perf_read_event read_event = {
6048                 .header = {
6049                         .type = PERF_RECORD_READ,
6050                         .misc = 0,
6051                         .size = sizeof(read_event) + event->read_size,
6052                 },
6053                 .pid = perf_event_pid(event, task),
6054                 .tid = perf_event_tid(event, task),
6055         };
6056         int ret;
6057
6058         perf_event_header__init_id(&read_event.header, &sample, event);
6059         ret = perf_output_begin(&handle, event, read_event.header.size);
6060         if (ret)
6061                 return;
6062
6063         perf_output_put(&handle, read_event);
6064         perf_output_read(&handle, event);
6065         perf_event__output_id_sample(event, &handle, &sample);
6066
6067         perf_output_end(&handle);
6068 }
6069
6070 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6071
6072 static void
6073 perf_iterate_ctx(struct perf_event_context *ctx,
6074                    perf_iterate_f output,
6075                    void *data, bool all)
6076 {
6077         struct perf_event *event;
6078
6079         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6080                 if (!all) {
6081                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6082                                 continue;
6083                         if (!event_filter_match(event))
6084                                 continue;
6085                 }
6086
6087                 output(event, data);
6088         }
6089 }
6090
6091 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6092 {
6093         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6094         struct perf_event *event;
6095
6096         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6097                 /*
6098                  * Skip events that are not fully formed yet; ensure that
6099                  * if we observe event->ctx, both event and ctx will be
6100                  * complete enough. See perf_install_in_context().
6101                  */
6102                 if (!smp_load_acquire(&event->ctx))
6103                         continue;
6104
6105                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6106                         continue;
6107                 if (!event_filter_match(event))
6108                         continue;
6109                 output(event, data);
6110         }
6111 }
6112
6113 /*
6114  * Iterate all events that need to receive side-band events.
6115  *
6116  * For new callers; ensure that account_pmu_sb_event() includes
6117  * your event, otherwise it might not get delivered.
6118  */
6119 static void
6120 perf_iterate_sb(perf_iterate_f output, void *data,
6121                struct perf_event_context *task_ctx)
6122 {
6123         struct perf_event_context *ctx;
6124         int ctxn;
6125
6126         rcu_read_lock();
6127         preempt_disable();
6128
6129         /*
6130          * If we have task_ctx != NULL we only notify the task context itself.
6131          * The task_ctx is set only for EXIT events before releasing task
6132          * context.
6133          */
6134         if (task_ctx) {
6135                 perf_iterate_ctx(task_ctx, output, data, false);
6136                 goto done;
6137         }
6138
6139         perf_iterate_sb_cpu(output, data);
6140
6141         for_each_task_context_nr(ctxn) {
6142                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6143                 if (ctx)
6144                         perf_iterate_ctx(ctx, output, data, false);
6145         }
6146 done:
6147         preempt_enable();
6148         rcu_read_unlock();
6149 }
6150
6151 /*
6152  * Clear all file-based filters at exec, they'll have to be
6153  * re-instated when/if these objects are mmapped again.
6154  */
6155 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6156 {
6157         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6158         struct perf_addr_filter *filter;
6159         unsigned int restart = 0, count = 0;
6160         unsigned long flags;
6161
6162         if (!has_addr_filter(event))
6163                 return;
6164
6165         raw_spin_lock_irqsave(&ifh->lock, flags);
6166         list_for_each_entry(filter, &ifh->list, entry) {
6167                 if (filter->inode) {
6168                         event->addr_filters_offs[count] = 0;
6169                         restart++;
6170                 }
6171
6172                 count++;
6173         }
6174
6175         if (restart)
6176                 event->addr_filters_gen++;
6177         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6178
6179         if (restart)
6180                 perf_event_stop(event, 1);
6181 }
6182
6183 void perf_event_exec(void)
6184 {
6185         struct perf_event_context *ctx;
6186         int ctxn;
6187
6188         rcu_read_lock();
6189         for_each_task_context_nr(ctxn) {
6190                 ctx = current->perf_event_ctxp[ctxn];
6191                 if (!ctx)
6192                         continue;
6193
6194                 perf_event_enable_on_exec(ctxn);
6195
6196                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6197                                    true);
6198         }
6199         rcu_read_unlock();
6200 }
6201
6202 struct remote_output {
6203         struct ring_buffer      *rb;
6204         int                     err;
6205 };
6206
6207 static void __perf_event_output_stop(struct perf_event *event, void *data)
6208 {
6209         struct perf_event *parent = event->parent;
6210         struct remote_output *ro = data;
6211         struct ring_buffer *rb = ro->rb;
6212         struct stop_event_data sd = {
6213                 .event  = event,
6214         };
6215
6216         if (!has_aux(event))
6217                 return;
6218
6219         if (!parent)
6220                 parent = event;
6221
6222         /*
6223          * In case of inheritance, it will be the parent that links to the
6224          * ring-buffer, but it will be the child that's actually using it.
6225          *
6226          * We are using event::rb to determine if the event should be stopped,
6227          * however this may race with ring_buffer_attach() (through set_output),
6228          * which will make us skip the event that actually needs to be stopped.
6229          * So ring_buffer_attach() has to stop an aux event before re-assigning
6230          * its rb pointer.
6231          */
6232         if (rcu_dereference(parent->rb) == rb)
6233                 ro->err = __perf_event_stop(&sd);
6234 }
6235
6236 static int __perf_pmu_output_stop(void *info)
6237 {
6238         struct perf_event *event = info;
6239         struct pmu *pmu = event->pmu;
6240         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6241         struct remote_output ro = {
6242                 .rb     = event->rb,
6243         };
6244
6245         rcu_read_lock();
6246         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6247         if (cpuctx->task_ctx)
6248                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6249                                    &ro, false);
6250         rcu_read_unlock();
6251
6252         return ro.err;
6253 }
6254
6255 static void perf_pmu_output_stop(struct perf_event *event)
6256 {
6257         struct perf_event *iter;
6258         int err, cpu;
6259
6260 restart:
6261         rcu_read_lock();
6262         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6263                 /*
6264                  * For per-CPU events, we need to make sure that neither they
6265                  * nor their children are running; for cpu==-1 events it's
6266                  * sufficient to stop the event itself if it's active, since
6267                  * it can't have children.
6268                  */
6269                 cpu = iter->cpu;
6270                 if (cpu == -1)
6271                         cpu = READ_ONCE(iter->oncpu);
6272
6273                 if (cpu == -1)
6274                         continue;
6275
6276                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6277                 if (err == -EAGAIN) {
6278                         rcu_read_unlock();
6279                         goto restart;
6280                 }
6281         }
6282         rcu_read_unlock();
6283 }
6284
6285 /*
6286  * task tracking -- fork/exit
6287  *
6288  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6289  */
6290
6291 struct perf_task_event {
6292         struct task_struct              *task;
6293         struct perf_event_context       *task_ctx;
6294
6295         struct {
6296                 struct perf_event_header        header;
6297
6298                 u32                             pid;
6299                 u32                             ppid;
6300                 u32                             tid;
6301                 u32                             ptid;
6302                 u64                             time;
6303         } event_id;
6304 };
6305
6306 static int perf_event_task_match(struct perf_event *event)
6307 {
6308         return event->attr.comm  || event->attr.mmap ||
6309                event->attr.mmap2 || event->attr.mmap_data ||
6310                event->attr.task;
6311 }
6312
6313 static void perf_event_task_output(struct perf_event *event,
6314                                    void *data)
6315 {
6316         struct perf_task_event *task_event = data;
6317         struct perf_output_handle handle;
6318         struct perf_sample_data sample;
6319         struct task_struct *task = task_event->task;
6320         int ret, size = task_event->event_id.header.size;
6321
6322         if (!perf_event_task_match(event))
6323                 return;
6324
6325         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6326
6327         ret = perf_output_begin(&handle, event,
6328                                 task_event->event_id.header.size);
6329         if (ret)
6330                 goto out;
6331
6332         task_event->event_id.pid = perf_event_pid(event, task);
6333         task_event->event_id.ppid = perf_event_pid(event, current);
6334
6335         task_event->event_id.tid = perf_event_tid(event, task);
6336         task_event->event_id.ptid = perf_event_tid(event, current);
6337
6338         task_event->event_id.time = perf_event_clock(event);
6339
6340         perf_output_put(&handle, task_event->event_id);
6341
6342         perf_event__output_id_sample(event, &handle, &sample);
6343
6344         perf_output_end(&handle);
6345 out:
6346         task_event->event_id.header.size = size;
6347 }
6348
6349 static void perf_event_task(struct task_struct *task,
6350                               struct perf_event_context *task_ctx,
6351                               int new)
6352 {
6353         struct perf_task_event task_event;
6354
6355         if (!atomic_read(&nr_comm_events) &&
6356             !atomic_read(&nr_mmap_events) &&
6357             !atomic_read(&nr_task_events))
6358                 return;
6359
6360         task_event = (struct perf_task_event){
6361                 .task     = task,
6362                 .task_ctx = task_ctx,
6363                 .event_id    = {
6364                         .header = {
6365                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6366                                 .misc = 0,
6367                                 .size = sizeof(task_event.event_id),
6368                         },
6369                         /* .pid  */
6370                         /* .ppid */
6371                         /* .tid  */
6372                         /* .ptid */
6373                         /* .time */
6374                 },
6375         };
6376
6377         perf_iterate_sb(perf_event_task_output,
6378                        &task_event,
6379                        task_ctx);
6380 }
6381
6382 void perf_event_fork(struct task_struct *task)
6383 {
6384         perf_event_task(task, NULL, 1);
6385 }
6386
6387 /*
6388  * comm tracking
6389  */
6390
6391 struct perf_comm_event {
6392         struct task_struct      *task;
6393         char                    *comm;
6394         int                     comm_size;
6395
6396         struct {
6397                 struct perf_event_header        header;
6398
6399                 u32                             pid;
6400                 u32                             tid;
6401         } event_id;
6402 };
6403
6404 static int perf_event_comm_match(struct perf_event *event)
6405 {
6406         return event->attr.comm;
6407 }
6408
6409 static void perf_event_comm_output(struct perf_event *event,
6410                                    void *data)
6411 {
6412         struct perf_comm_event *comm_event = data;
6413         struct perf_output_handle handle;
6414         struct perf_sample_data sample;
6415         int size = comm_event->event_id.header.size;
6416         int ret;
6417
6418         if (!perf_event_comm_match(event))
6419                 return;
6420
6421         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6422         ret = perf_output_begin(&handle, event,
6423                                 comm_event->event_id.header.size);
6424
6425         if (ret)
6426                 goto out;
6427
6428         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6429         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6430
6431         perf_output_put(&handle, comm_event->event_id);
6432         __output_copy(&handle, comm_event->comm,
6433                                    comm_event->comm_size);
6434
6435         perf_event__output_id_sample(event, &handle, &sample);
6436
6437         perf_output_end(&handle);
6438 out:
6439         comm_event->event_id.header.size = size;
6440 }
6441
6442 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6443 {
6444         char comm[TASK_COMM_LEN];
6445         unsigned int size;
6446
6447         memset(comm, 0, sizeof(comm));
6448         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6449         size = ALIGN(strlen(comm)+1, sizeof(u64));
6450
6451         comm_event->comm = comm;
6452         comm_event->comm_size = size;
6453
6454         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6455
6456         perf_iterate_sb(perf_event_comm_output,
6457                        comm_event,
6458                        NULL);
6459 }
6460
6461 void perf_event_comm(struct task_struct *task, bool exec)
6462 {
6463         struct perf_comm_event comm_event;
6464
6465         if (!atomic_read(&nr_comm_events))
6466                 return;
6467
6468         comm_event = (struct perf_comm_event){
6469                 .task   = task,
6470                 /* .comm      */
6471                 /* .comm_size */
6472                 .event_id  = {
6473                         .header = {
6474                                 .type = PERF_RECORD_COMM,
6475                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6476                                 /* .size */
6477                         },
6478                         /* .pid */
6479                         /* .tid */
6480                 },
6481         };
6482
6483         perf_event_comm_event(&comm_event);
6484 }
6485
6486 /*
6487  * mmap tracking
6488  */
6489
6490 struct perf_mmap_event {
6491         struct vm_area_struct   *vma;
6492
6493         const char              *file_name;
6494         int                     file_size;
6495         int                     maj, min;
6496         u64                     ino;
6497         u64                     ino_generation;
6498         u32                     prot, flags;
6499
6500         struct {
6501                 struct perf_event_header        header;
6502
6503                 u32                             pid;
6504                 u32                             tid;
6505                 u64                             start;
6506                 u64                             len;
6507                 u64                             pgoff;
6508         } event_id;
6509 };
6510
6511 static int perf_event_mmap_match(struct perf_event *event,
6512                                  void *data)
6513 {
6514         struct perf_mmap_event *mmap_event = data;
6515         struct vm_area_struct *vma = mmap_event->vma;
6516         int executable = vma->vm_flags & VM_EXEC;
6517
6518         return (!executable && event->attr.mmap_data) ||
6519                (executable && (event->attr.mmap || event->attr.mmap2));
6520 }
6521
6522 static void perf_event_mmap_output(struct perf_event *event,
6523                                    void *data)
6524 {
6525         struct perf_mmap_event *mmap_event = data;
6526         struct perf_output_handle handle;
6527         struct perf_sample_data sample;
6528         int size = mmap_event->event_id.header.size;
6529         int ret;
6530
6531         if (!perf_event_mmap_match(event, data))
6532                 return;
6533
6534         if (event->attr.mmap2) {
6535                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6536                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6537                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6538                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6539                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6540                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6541                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6542         }
6543
6544         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6545         ret = perf_output_begin(&handle, event,
6546                                 mmap_event->event_id.header.size);
6547         if (ret)
6548                 goto out;
6549
6550         mmap_event->event_id.pid = perf_event_pid(event, current);
6551         mmap_event->event_id.tid = perf_event_tid(event, current);
6552
6553         perf_output_put(&handle, mmap_event->event_id);
6554
6555         if (event->attr.mmap2) {
6556                 perf_output_put(&handle, mmap_event->maj);
6557                 perf_output_put(&handle, mmap_event->min);
6558                 perf_output_put(&handle, mmap_event->ino);
6559                 perf_output_put(&handle, mmap_event->ino_generation);
6560                 perf_output_put(&handle, mmap_event->prot);
6561                 perf_output_put(&handle, mmap_event->flags);
6562         }
6563
6564         __output_copy(&handle, mmap_event->file_name,
6565                                    mmap_event->file_size);
6566
6567         perf_event__output_id_sample(event, &handle, &sample);
6568
6569         perf_output_end(&handle);
6570 out:
6571         mmap_event->event_id.header.size = size;
6572 }
6573
6574 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6575 {
6576         struct vm_area_struct *vma = mmap_event->vma;
6577         struct file *file = vma->vm_file;
6578         int maj = 0, min = 0;
6579         u64 ino = 0, gen = 0;
6580         u32 prot = 0, flags = 0;
6581         unsigned int size;
6582         char tmp[16];
6583         char *buf = NULL;
6584         char *name;
6585
6586         if (file) {
6587                 struct inode *inode;
6588                 dev_t dev;
6589
6590                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6591                 if (!buf) {
6592                         name = "//enomem";
6593                         goto cpy_name;
6594                 }
6595                 /*
6596                  * d_path() works from the end of the rb backwards, so we
6597                  * need to add enough zero bytes after the string to handle
6598                  * the 64bit alignment we do later.
6599                  */
6600                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6601                 if (IS_ERR(name)) {
6602                         name = "//toolong";
6603                         goto cpy_name;
6604                 }
6605                 inode = file_inode(vma->vm_file);
6606                 dev = inode->i_sb->s_dev;
6607                 ino = inode->i_ino;
6608                 gen = inode->i_generation;
6609                 maj = MAJOR(dev);
6610                 min = MINOR(dev);
6611
6612                 if (vma->vm_flags & VM_READ)
6613                         prot |= PROT_READ;
6614                 if (vma->vm_flags & VM_WRITE)
6615                         prot |= PROT_WRITE;
6616                 if (vma->vm_flags & VM_EXEC)
6617                         prot |= PROT_EXEC;
6618
6619                 if (vma->vm_flags & VM_MAYSHARE)
6620                         flags = MAP_SHARED;
6621                 else
6622                         flags = MAP_PRIVATE;
6623
6624                 if (vma->vm_flags & VM_DENYWRITE)
6625                         flags |= MAP_DENYWRITE;
6626                 if (vma->vm_flags & VM_MAYEXEC)
6627                         flags |= MAP_EXECUTABLE;
6628                 if (vma->vm_flags & VM_LOCKED)
6629                         flags |= MAP_LOCKED;
6630                 if (vma->vm_flags & VM_HUGETLB)
6631                         flags |= MAP_HUGETLB;
6632
6633                 goto got_name;
6634         } else {
6635                 if (vma->vm_ops && vma->vm_ops->name) {
6636                         name = (char *) vma->vm_ops->name(vma);
6637                         if (name)
6638                                 goto cpy_name;
6639                 }
6640
6641                 name = (char *)arch_vma_name(vma);
6642                 if (name)
6643                         goto cpy_name;
6644
6645                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6646                                 vma->vm_end >= vma->vm_mm->brk) {
6647                         name = "[heap]";
6648                         goto cpy_name;
6649                 }
6650                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6651                                 vma->vm_end >= vma->vm_mm->start_stack) {
6652                         name = "[stack]";
6653                         goto cpy_name;
6654                 }
6655
6656                 name = "//anon";
6657                 goto cpy_name;
6658         }
6659
6660 cpy_name:
6661         strlcpy(tmp, name, sizeof(tmp));
6662         name = tmp;
6663 got_name:
6664         /*
6665          * Since our buffer works in 8 byte units we need to align our string
6666          * size to a multiple of 8. However, we must guarantee the tail end is
6667          * zero'd out to avoid leaking random bits to userspace.
6668          */
6669         size = strlen(name)+1;
6670         while (!IS_ALIGNED(size, sizeof(u64)))
6671                 name[size++] = '\0';
6672
6673         mmap_event->file_name = name;
6674         mmap_event->file_size = size;
6675         mmap_event->maj = maj;
6676         mmap_event->min = min;
6677         mmap_event->ino = ino;
6678         mmap_event->ino_generation = gen;
6679         mmap_event->prot = prot;
6680         mmap_event->flags = flags;
6681
6682         if (!(vma->vm_flags & VM_EXEC))
6683                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6684
6685         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6686
6687         perf_iterate_sb(perf_event_mmap_output,
6688                        mmap_event,
6689                        NULL);
6690
6691         kfree(buf);
6692 }
6693
6694 /*
6695  * Check whether inode and address range match filter criteria.
6696  */
6697 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6698                                      struct file *file, unsigned long offset,
6699                                      unsigned long size)
6700 {
6701         if (filter->inode != file->f_inode)
6702                 return false;
6703
6704         if (filter->offset > offset + size)
6705                 return false;
6706
6707         if (filter->offset + filter->size < offset)
6708                 return false;
6709
6710         return true;
6711 }
6712
6713 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6714 {
6715         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6716         struct vm_area_struct *vma = data;
6717         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6718         struct file *file = vma->vm_file;
6719         struct perf_addr_filter *filter;
6720         unsigned int restart = 0, count = 0;
6721
6722         if (!has_addr_filter(event))
6723                 return;
6724
6725         if (!file)
6726                 return;
6727
6728         raw_spin_lock_irqsave(&ifh->lock, flags);
6729         list_for_each_entry(filter, &ifh->list, entry) {
6730                 if (perf_addr_filter_match(filter, file, off,
6731                                              vma->vm_end - vma->vm_start)) {
6732                         event->addr_filters_offs[count] = vma->vm_start;
6733                         restart++;
6734                 }
6735
6736                 count++;
6737         }
6738
6739         if (restart)
6740                 event->addr_filters_gen++;
6741         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6742
6743         if (restart)
6744                 perf_event_stop(event, 1);
6745 }
6746
6747 /*
6748  * Adjust all task's events' filters to the new vma
6749  */
6750 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6751 {
6752         struct perf_event_context *ctx;
6753         int ctxn;
6754
6755         /*
6756          * Data tracing isn't supported yet and as such there is no need
6757          * to keep track of anything that isn't related to executable code:
6758          */
6759         if (!(vma->vm_flags & VM_EXEC))
6760                 return;
6761
6762         rcu_read_lock();
6763         for_each_task_context_nr(ctxn) {
6764                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6765                 if (!ctx)
6766                         continue;
6767
6768                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6769         }
6770         rcu_read_unlock();
6771 }
6772
6773 void perf_event_mmap(struct vm_area_struct *vma)
6774 {
6775         struct perf_mmap_event mmap_event;
6776
6777         if (!atomic_read(&nr_mmap_events))
6778                 return;
6779
6780         mmap_event = (struct perf_mmap_event){
6781                 .vma    = vma,
6782                 /* .file_name */
6783                 /* .file_size */
6784                 .event_id  = {
6785                         .header = {
6786                                 .type = PERF_RECORD_MMAP,
6787                                 .misc = PERF_RECORD_MISC_USER,
6788                                 /* .size */
6789                         },
6790                         /* .pid */
6791                         /* .tid */
6792                         .start  = vma->vm_start,
6793                         .len    = vma->vm_end - vma->vm_start,
6794                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6795                 },
6796                 /* .maj (attr_mmap2 only) */
6797                 /* .min (attr_mmap2 only) */
6798                 /* .ino (attr_mmap2 only) */
6799                 /* .ino_generation (attr_mmap2 only) */
6800                 /* .prot (attr_mmap2 only) */
6801                 /* .flags (attr_mmap2 only) */
6802         };
6803
6804         perf_addr_filters_adjust(vma);
6805         perf_event_mmap_event(&mmap_event);
6806 }
6807
6808 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6809                           unsigned long size, u64 flags)
6810 {
6811         struct perf_output_handle handle;
6812         struct perf_sample_data sample;
6813         struct perf_aux_event {
6814                 struct perf_event_header        header;
6815                 u64                             offset;
6816                 u64                             size;
6817                 u64                             flags;
6818         } rec = {
6819                 .header = {
6820                         .type = PERF_RECORD_AUX,
6821                         .misc = 0,
6822                         .size = sizeof(rec),
6823                 },
6824                 .offset         = head,
6825                 .size           = size,
6826                 .flags          = flags,
6827         };
6828         int ret;
6829
6830         perf_event_header__init_id(&rec.header, &sample, event);
6831         ret = perf_output_begin(&handle, event, rec.header.size);
6832
6833         if (ret)
6834                 return;
6835
6836         perf_output_put(&handle, rec);
6837         perf_event__output_id_sample(event, &handle, &sample);
6838
6839         perf_output_end(&handle);
6840 }
6841
6842 /*
6843  * Lost/dropped samples logging
6844  */
6845 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6846 {
6847         struct perf_output_handle handle;
6848         struct perf_sample_data sample;
6849         int ret;
6850
6851         struct {
6852                 struct perf_event_header        header;
6853                 u64                             lost;
6854         } lost_samples_event = {
6855                 .header = {
6856                         .type = PERF_RECORD_LOST_SAMPLES,
6857                         .misc = 0,
6858                         .size = sizeof(lost_samples_event),
6859                 },
6860                 .lost           = lost,
6861         };
6862
6863         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6864
6865         ret = perf_output_begin(&handle, event,
6866                                 lost_samples_event.header.size);
6867         if (ret)
6868                 return;
6869
6870         perf_output_put(&handle, lost_samples_event);
6871         perf_event__output_id_sample(event, &handle, &sample);
6872         perf_output_end(&handle);
6873 }
6874
6875 /*
6876  * context_switch tracking
6877  */
6878
6879 struct perf_switch_event {
6880         struct task_struct      *task;
6881         struct task_struct      *next_prev;
6882
6883         struct {
6884                 struct perf_event_header        header;
6885                 u32                             next_prev_pid;
6886                 u32                             next_prev_tid;
6887         } event_id;
6888 };
6889
6890 static int perf_event_switch_match(struct perf_event *event)
6891 {
6892         return event->attr.context_switch;
6893 }
6894
6895 static void perf_event_switch_output(struct perf_event *event, void *data)
6896 {
6897         struct perf_switch_event *se = data;
6898         struct perf_output_handle handle;
6899         struct perf_sample_data sample;
6900         int ret;
6901
6902         if (!perf_event_switch_match(event))
6903                 return;
6904
6905         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6906         if (event->ctx->task) {
6907                 se->event_id.header.type = PERF_RECORD_SWITCH;
6908                 se->event_id.header.size = sizeof(se->event_id.header);
6909         } else {
6910                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6911                 se->event_id.header.size = sizeof(se->event_id);
6912                 se->event_id.next_prev_pid =
6913                                         perf_event_pid(event, se->next_prev);
6914                 se->event_id.next_prev_tid =
6915                                         perf_event_tid(event, se->next_prev);
6916         }
6917
6918         perf_event_header__init_id(&se->event_id.header, &sample, event);
6919
6920         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6921         if (ret)
6922                 return;
6923
6924         if (event->ctx->task)
6925                 perf_output_put(&handle, se->event_id.header);
6926         else
6927                 perf_output_put(&handle, se->event_id);
6928
6929         perf_event__output_id_sample(event, &handle, &sample);
6930
6931         perf_output_end(&handle);
6932 }
6933
6934 static void perf_event_switch(struct task_struct *task,
6935                               struct task_struct *next_prev, bool sched_in)
6936 {
6937         struct perf_switch_event switch_event;
6938
6939         /* N.B. caller checks nr_switch_events != 0 */
6940
6941         switch_event = (struct perf_switch_event){
6942                 .task           = task,
6943                 .next_prev      = next_prev,
6944                 .event_id       = {
6945                         .header = {
6946                                 /* .type */
6947                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6948                                 /* .size */
6949                         },
6950                         /* .next_prev_pid */
6951                         /* .next_prev_tid */
6952                 },
6953         };
6954
6955         perf_iterate_sb(perf_event_switch_output,
6956                        &switch_event,
6957                        NULL);
6958 }
6959
6960 /*
6961  * IRQ throttle logging
6962  */
6963
6964 static void perf_log_throttle(struct perf_event *event, int enable)
6965 {
6966         struct perf_output_handle handle;
6967         struct perf_sample_data sample;
6968         int ret;
6969
6970         struct {
6971                 struct perf_event_header        header;
6972                 u64                             time;
6973                 u64                             id;
6974                 u64                             stream_id;
6975         } throttle_event = {
6976                 .header = {
6977                         .type = PERF_RECORD_THROTTLE,
6978                         .misc = 0,
6979                         .size = sizeof(throttle_event),
6980                 },
6981                 .time           = perf_event_clock(event),
6982                 .id             = primary_event_id(event),
6983                 .stream_id      = event->id,
6984         };
6985
6986         if (enable)
6987                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6988
6989         perf_event_header__init_id(&throttle_event.header, &sample, event);
6990
6991         ret = perf_output_begin(&handle, event,
6992                                 throttle_event.header.size);
6993         if (ret)
6994                 return;
6995
6996         perf_output_put(&handle, throttle_event);
6997         perf_event__output_id_sample(event, &handle, &sample);
6998         perf_output_end(&handle);
6999 }
7000
7001 static void perf_log_itrace_start(struct perf_event *event)
7002 {
7003         struct perf_output_handle handle;
7004         struct perf_sample_data sample;
7005         struct perf_aux_event {
7006                 struct perf_event_header        header;
7007                 u32                             pid;
7008                 u32                             tid;
7009         } rec;
7010         int ret;
7011
7012         if (event->parent)
7013                 event = event->parent;
7014
7015         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7016             event->hw.itrace_started)
7017                 return;
7018
7019         rec.header.type = PERF_RECORD_ITRACE_START;
7020         rec.header.misc = 0;
7021         rec.header.size = sizeof(rec);
7022         rec.pid = perf_event_pid(event, current);
7023         rec.tid = perf_event_tid(event, current);
7024
7025         perf_event_header__init_id(&rec.header, &sample, event);
7026         ret = perf_output_begin(&handle, event, rec.header.size);
7027
7028         if (ret)
7029                 return;
7030
7031         perf_output_put(&handle, rec);
7032         perf_event__output_id_sample(event, &handle, &sample);
7033
7034         perf_output_end(&handle);
7035 }
7036
7037 /*
7038  * Generic event overflow handling, sampling.
7039  */
7040
7041 static int __perf_event_overflow(struct perf_event *event,
7042                                    int throttle, struct perf_sample_data *data,
7043                                    struct pt_regs *regs)
7044 {
7045         int events = atomic_read(&event->event_limit);
7046         struct hw_perf_event *hwc = &event->hw;
7047         u64 seq;
7048         int ret = 0;
7049
7050         /*
7051          * Non-sampling counters might still use the PMI to fold short
7052          * hardware counters, ignore those.
7053          */
7054         if (unlikely(!is_sampling_event(event)))
7055                 return 0;
7056
7057         seq = __this_cpu_read(perf_throttled_seq);
7058         if (seq != hwc->interrupts_seq) {
7059                 hwc->interrupts_seq = seq;
7060                 hwc->interrupts = 1;
7061         } else {
7062                 hwc->interrupts++;
7063                 if (unlikely(throttle
7064                              && hwc->interrupts >= max_samples_per_tick)) {
7065                         __this_cpu_inc(perf_throttled_count);
7066                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7067                         hwc->interrupts = MAX_INTERRUPTS;
7068                         perf_log_throttle(event, 0);
7069                         ret = 1;
7070                 }
7071         }
7072
7073         if (event->attr.freq) {
7074                 u64 now = perf_clock();
7075                 s64 delta = now - hwc->freq_time_stamp;
7076
7077                 hwc->freq_time_stamp = now;
7078
7079                 if (delta > 0 && delta < 2*TICK_NSEC)
7080                         perf_adjust_period(event, delta, hwc->last_period, true);
7081         }
7082
7083         /*
7084          * XXX event_limit might not quite work as expected on inherited
7085          * events
7086          */
7087
7088         event->pending_kill = POLL_IN;
7089         if (events && atomic_dec_and_test(&event->event_limit)) {
7090                 ret = 1;
7091                 event->pending_kill = POLL_HUP;
7092
7093                 perf_event_disable_inatomic(event);
7094         }
7095
7096         READ_ONCE(event->overflow_handler)(event, data, regs);
7097
7098         if (*perf_event_fasync(event) && event->pending_kill) {
7099                 event->pending_wakeup = 1;
7100                 irq_work_queue(&event->pending);
7101         }
7102
7103         return ret;
7104 }
7105
7106 int perf_event_overflow(struct perf_event *event,
7107                           struct perf_sample_data *data,
7108                           struct pt_regs *regs)
7109 {
7110         return __perf_event_overflow(event, 1, data, regs);
7111 }
7112
7113 /*
7114  * Generic software event infrastructure
7115  */
7116
7117 struct swevent_htable {
7118         struct swevent_hlist            *swevent_hlist;
7119         struct mutex                    hlist_mutex;
7120         int                             hlist_refcount;
7121
7122         /* Recursion avoidance in each contexts */
7123         int                             recursion[PERF_NR_CONTEXTS];
7124 };
7125
7126 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7127
7128 /*
7129  * We directly increment event->count and keep a second value in
7130  * event->hw.period_left to count intervals. This period event
7131  * is kept in the range [-sample_period, 0] so that we can use the
7132  * sign as trigger.
7133  */
7134
7135 u64 perf_swevent_set_period(struct perf_event *event)
7136 {
7137         struct hw_perf_event *hwc = &event->hw;
7138         u64 period = hwc->last_period;
7139         u64 nr, offset;
7140         s64 old, val;
7141
7142         hwc->last_period = hwc->sample_period;
7143
7144 again:
7145         old = val = local64_read(&hwc->period_left);
7146         if (val < 0)
7147                 return 0;
7148
7149         nr = div64_u64(period + val, period);
7150         offset = nr * period;
7151         val -= offset;
7152         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7153                 goto again;
7154
7155         return nr;
7156 }
7157
7158 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7159                                     struct perf_sample_data *data,
7160                                     struct pt_regs *regs)
7161 {
7162         struct hw_perf_event *hwc = &event->hw;
7163         int throttle = 0;
7164
7165         if (!overflow)
7166                 overflow = perf_swevent_set_period(event);
7167
7168         if (hwc->interrupts == MAX_INTERRUPTS)
7169                 return;
7170
7171         for (; overflow; overflow--) {
7172                 if (__perf_event_overflow(event, throttle,
7173                                             data, regs)) {
7174                         /*
7175                          * We inhibit the overflow from happening when
7176                          * hwc->interrupts == MAX_INTERRUPTS.
7177                          */
7178                         break;
7179                 }
7180                 throttle = 1;
7181         }
7182 }
7183
7184 static void perf_swevent_event(struct perf_event *event, u64 nr,
7185                                struct perf_sample_data *data,
7186                                struct pt_regs *regs)
7187 {
7188         struct hw_perf_event *hwc = &event->hw;
7189
7190         local64_add(nr, &event->count);
7191
7192         if (!regs)
7193                 return;
7194
7195         if (!is_sampling_event(event))
7196                 return;
7197
7198         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7199                 data->period = nr;
7200                 return perf_swevent_overflow(event, 1, data, regs);
7201         } else
7202                 data->period = event->hw.last_period;
7203
7204         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7205                 return perf_swevent_overflow(event, 1, data, regs);
7206
7207         if (local64_add_negative(nr, &hwc->period_left))
7208                 return;
7209
7210         perf_swevent_overflow(event, 0, data, regs);
7211 }
7212
7213 static int perf_exclude_event(struct perf_event *event,
7214                               struct pt_regs *regs)
7215 {
7216         if (event->hw.state & PERF_HES_STOPPED)
7217                 return 1;
7218
7219         if (regs) {
7220                 if (event->attr.exclude_user && user_mode(regs))
7221                         return 1;
7222
7223                 if (event->attr.exclude_kernel && !user_mode(regs))
7224                         return 1;
7225         }
7226
7227         return 0;
7228 }
7229
7230 static int perf_swevent_match(struct perf_event *event,
7231                                 enum perf_type_id type,
7232                                 u32 event_id,
7233                                 struct perf_sample_data *data,
7234                                 struct pt_regs *regs)
7235 {
7236         if (event->attr.type != type)
7237                 return 0;
7238
7239         if (event->attr.config != event_id)
7240                 return 0;
7241
7242         if (perf_exclude_event(event, regs))
7243                 return 0;
7244
7245         return 1;
7246 }
7247
7248 static inline u64 swevent_hash(u64 type, u32 event_id)
7249 {
7250         u64 val = event_id | (type << 32);
7251
7252         return hash_64(val, SWEVENT_HLIST_BITS);
7253 }
7254
7255 static inline struct hlist_head *
7256 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7257 {
7258         u64 hash = swevent_hash(type, event_id);
7259
7260         return &hlist->heads[hash];
7261 }
7262
7263 /* For the read side: events when they trigger */
7264 static inline struct hlist_head *
7265 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7266 {
7267         struct swevent_hlist *hlist;
7268
7269         hlist = rcu_dereference(swhash->swevent_hlist);
7270         if (!hlist)
7271                 return NULL;
7272
7273         return __find_swevent_head(hlist, type, event_id);
7274 }
7275
7276 /* For the event head insertion and removal in the hlist */
7277 static inline struct hlist_head *
7278 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7279 {
7280         struct swevent_hlist *hlist;
7281         u32 event_id = event->attr.config;
7282         u64 type = event->attr.type;
7283
7284         /*
7285          * Event scheduling is always serialized against hlist allocation
7286          * and release. Which makes the protected version suitable here.
7287          * The context lock guarantees that.
7288          */
7289         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7290                                           lockdep_is_held(&event->ctx->lock));
7291         if (!hlist)
7292                 return NULL;
7293
7294         return __find_swevent_head(hlist, type, event_id);
7295 }
7296
7297 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7298                                     u64 nr,
7299                                     struct perf_sample_data *data,
7300                                     struct pt_regs *regs)
7301 {
7302         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7303         struct perf_event *event;
7304         struct hlist_head *head;
7305
7306         rcu_read_lock();
7307         head = find_swevent_head_rcu(swhash, type, event_id);
7308         if (!head)
7309                 goto end;
7310
7311         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7312                 if (perf_swevent_match(event, type, event_id, data, regs))
7313                         perf_swevent_event(event, nr, data, regs);
7314         }
7315 end:
7316         rcu_read_unlock();
7317 }
7318
7319 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7320
7321 int perf_swevent_get_recursion_context(void)
7322 {
7323         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7324
7325         return get_recursion_context(swhash->recursion);
7326 }
7327 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7328
7329 void perf_swevent_put_recursion_context(int rctx)
7330 {
7331         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7332
7333         put_recursion_context(swhash->recursion, rctx);
7334 }
7335
7336 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7337 {
7338         struct perf_sample_data data;
7339
7340         if (WARN_ON_ONCE(!regs))
7341                 return;
7342
7343         perf_sample_data_init(&data, addr, 0);
7344         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7345 }
7346
7347 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7348 {
7349         int rctx;
7350
7351         preempt_disable_notrace();
7352         rctx = perf_swevent_get_recursion_context();
7353         if (unlikely(rctx < 0))
7354                 goto fail;
7355
7356         ___perf_sw_event(event_id, nr, regs, addr);
7357
7358         perf_swevent_put_recursion_context(rctx);
7359 fail:
7360         preempt_enable_notrace();
7361 }
7362
7363 static void perf_swevent_read(struct perf_event *event)
7364 {
7365 }
7366
7367 static int perf_swevent_add(struct perf_event *event, int flags)
7368 {
7369         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7370         struct hw_perf_event *hwc = &event->hw;
7371         struct hlist_head *head;
7372
7373         if (is_sampling_event(event)) {
7374                 hwc->last_period = hwc->sample_period;
7375                 perf_swevent_set_period(event);
7376         }
7377
7378         hwc->state = !(flags & PERF_EF_START);
7379
7380         head = find_swevent_head(swhash, event);
7381         if (WARN_ON_ONCE(!head))
7382                 return -EINVAL;
7383
7384         hlist_add_head_rcu(&event->hlist_entry, head);
7385         perf_event_update_userpage(event);
7386
7387         return 0;
7388 }
7389
7390 static void perf_swevent_del(struct perf_event *event, int flags)
7391 {
7392         hlist_del_rcu(&event->hlist_entry);
7393 }
7394
7395 static void perf_swevent_start(struct perf_event *event, int flags)
7396 {
7397         event->hw.state = 0;
7398 }
7399
7400 static void perf_swevent_stop(struct perf_event *event, int flags)
7401 {
7402         event->hw.state = PERF_HES_STOPPED;
7403 }
7404
7405 /* Deref the hlist from the update side */
7406 static inline struct swevent_hlist *
7407 swevent_hlist_deref(struct swevent_htable *swhash)
7408 {
7409         return rcu_dereference_protected(swhash->swevent_hlist,
7410                                          lockdep_is_held(&swhash->hlist_mutex));
7411 }
7412
7413 static void swevent_hlist_release(struct swevent_htable *swhash)
7414 {
7415         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7416
7417         if (!hlist)
7418                 return;
7419
7420         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7421         kfree_rcu(hlist, rcu_head);
7422 }
7423
7424 static void swevent_hlist_put_cpu(int cpu)
7425 {
7426         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7427
7428         mutex_lock(&swhash->hlist_mutex);
7429
7430         if (!--swhash->hlist_refcount)
7431                 swevent_hlist_release(swhash);
7432
7433         mutex_unlock(&swhash->hlist_mutex);
7434 }
7435
7436 static void swevent_hlist_put(void)
7437 {
7438         int cpu;
7439
7440         for_each_possible_cpu(cpu)
7441                 swevent_hlist_put_cpu(cpu);
7442 }
7443
7444 static int swevent_hlist_get_cpu(int cpu)
7445 {
7446         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7447         int err = 0;
7448
7449         mutex_lock(&swhash->hlist_mutex);
7450         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7451                 struct swevent_hlist *hlist;
7452
7453                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7454                 if (!hlist) {
7455                         err = -ENOMEM;
7456                         goto exit;
7457                 }
7458                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7459         }
7460         swhash->hlist_refcount++;
7461 exit:
7462         mutex_unlock(&swhash->hlist_mutex);
7463
7464         return err;
7465 }
7466
7467 static int swevent_hlist_get(void)
7468 {
7469         int err, cpu, failed_cpu;
7470
7471         get_online_cpus();
7472         for_each_possible_cpu(cpu) {
7473                 err = swevent_hlist_get_cpu(cpu);
7474                 if (err) {
7475                         failed_cpu = cpu;
7476                         goto fail;
7477                 }
7478         }
7479         put_online_cpus();
7480
7481         return 0;
7482 fail:
7483         for_each_possible_cpu(cpu) {
7484                 if (cpu == failed_cpu)
7485                         break;
7486                 swevent_hlist_put_cpu(cpu);
7487         }
7488
7489         put_online_cpus();
7490         return err;
7491 }
7492
7493 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7494
7495 static void sw_perf_event_destroy(struct perf_event *event)
7496 {
7497         u64 event_id = event->attr.config;
7498
7499         WARN_ON(event->parent);
7500
7501         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7502         swevent_hlist_put();
7503 }
7504
7505 static int perf_swevent_init(struct perf_event *event)
7506 {
7507         u64 event_id = event->attr.config;
7508
7509         if (event->attr.type != PERF_TYPE_SOFTWARE)
7510                 return -ENOENT;
7511
7512         /*
7513          * no branch sampling for software events
7514          */
7515         if (has_branch_stack(event))
7516                 return -EOPNOTSUPP;
7517
7518         switch (event_id) {
7519         case PERF_COUNT_SW_CPU_CLOCK:
7520         case PERF_COUNT_SW_TASK_CLOCK:
7521                 return -ENOENT;
7522
7523         default:
7524                 break;
7525         }
7526
7527         if (event_id >= PERF_COUNT_SW_MAX)
7528                 return -ENOENT;
7529
7530         if (!event->parent) {
7531                 int err;
7532
7533                 err = swevent_hlist_get();
7534                 if (err)
7535                         return err;
7536
7537                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7538                 event->destroy = sw_perf_event_destroy;
7539         }
7540
7541         return 0;
7542 }
7543
7544 static struct pmu perf_swevent = {
7545         .task_ctx_nr    = perf_sw_context,
7546
7547         .capabilities   = PERF_PMU_CAP_NO_NMI,
7548
7549         .event_init     = perf_swevent_init,
7550         .add            = perf_swevent_add,
7551         .del            = perf_swevent_del,
7552         .start          = perf_swevent_start,
7553         .stop           = perf_swevent_stop,
7554         .read           = perf_swevent_read,
7555 };
7556
7557 #ifdef CONFIG_EVENT_TRACING
7558
7559 static int perf_tp_filter_match(struct perf_event *event,
7560                                 struct perf_sample_data *data)
7561 {
7562         void *record = data->raw->frag.data;
7563
7564         /* only top level events have filters set */
7565         if (event->parent)
7566                 event = event->parent;
7567
7568         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7569                 return 1;
7570         return 0;
7571 }
7572
7573 static int perf_tp_event_match(struct perf_event *event,
7574                                 struct perf_sample_data *data,
7575                                 struct pt_regs *regs)
7576 {
7577         if (event->hw.state & PERF_HES_STOPPED)
7578                 return 0;
7579         /*
7580          * All tracepoints are from kernel-space.
7581          */
7582         if (event->attr.exclude_kernel)
7583                 return 0;
7584
7585         if (!perf_tp_filter_match(event, data))
7586                 return 0;
7587
7588         return 1;
7589 }
7590
7591 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7592                                struct trace_event_call *call, u64 count,
7593                                struct pt_regs *regs, struct hlist_head *head,
7594                                struct task_struct *task)
7595 {
7596         struct bpf_prog *prog = call->prog;
7597
7598         if (prog) {
7599                 *(struct pt_regs **)raw_data = regs;
7600                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7601                         perf_swevent_put_recursion_context(rctx);
7602                         return;
7603                 }
7604         }
7605         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7606                       rctx, task);
7607 }
7608 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7609
7610 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7611                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7612                    struct task_struct *task)
7613 {
7614         struct perf_sample_data data;
7615         struct perf_event *event;
7616
7617         struct perf_raw_record raw = {
7618                 .frag = {
7619                         .size = entry_size,
7620                         .data = record,
7621                 },
7622         };
7623
7624         perf_sample_data_init(&data, 0, 0);
7625         data.raw = &raw;
7626
7627         perf_trace_buf_update(record, event_type);
7628
7629         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7630                 if (perf_tp_event_match(event, &data, regs))
7631                         perf_swevent_event(event, count, &data, regs);
7632         }
7633
7634         /*
7635          * If we got specified a target task, also iterate its context and
7636          * deliver this event there too.
7637          */
7638         if (task && task != current) {
7639                 struct perf_event_context *ctx;
7640                 struct trace_entry *entry = record;
7641
7642                 rcu_read_lock();
7643                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7644                 if (!ctx)
7645                         goto unlock;
7646
7647                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7648                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7649                                 continue;
7650                         if (event->attr.config != entry->type)
7651                                 continue;
7652                         if (perf_tp_event_match(event, &data, regs))
7653                                 perf_swevent_event(event, count, &data, regs);
7654                 }
7655 unlock:
7656                 rcu_read_unlock();
7657         }
7658
7659         perf_swevent_put_recursion_context(rctx);
7660 }
7661 EXPORT_SYMBOL_GPL(perf_tp_event);
7662
7663 static void tp_perf_event_destroy(struct perf_event *event)
7664 {
7665         perf_trace_destroy(event);
7666 }
7667
7668 static int perf_tp_event_init(struct perf_event *event)
7669 {
7670         int err;
7671
7672         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673                 return -ENOENT;
7674
7675         /*
7676          * no branch sampling for tracepoint events
7677          */
7678         if (has_branch_stack(event))
7679                 return -EOPNOTSUPP;
7680
7681         err = perf_trace_init(event);
7682         if (err)
7683                 return err;
7684
7685         event->destroy = tp_perf_event_destroy;
7686
7687         return 0;
7688 }
7689
7690 static struct pmu perf_tracepoint = {
7691         .task_ctx_nr    = perf_sw_context,
7692
7693         .event_init     = perf_tp_event_init,
7694         .add            = perf_trace_add,
7695         .del            = perf_trace_del,
7696         .start          = perf_swevent_start,
7697         .stop           = perf_swevent_stop,
7698         .read           = perf_swevent_read,
7699 };
7700
7701 static inline void perf_tp_register(void)
7702 {
7703         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7704 }
7705
7706 static void perf_event_free_filter(struct perf_event *event)
7707 {
7708         ftrace_profile_free_filter(event);
7709 }
7710
7711 #ifdef CONFIG_BPF_SYSCALL
7712 static void bpf_overflow_handler(struct perf_event *event,
7713                                  struct perf_sample_data *data,
7714                                  struct pt_regs *regs)
7715 {
7716         struct bpf_perf_event_data_kern ctx = {
7717                 .data = data,
7718                 .regs = regs,
7719         };
7720         int ret = 0;
7721
7722         preempt_disable();
7723         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7724                 goto out;
7725         rcu_read_lock();
7726         ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7727         rcu_read_unlock();
7728 out:
7729         __this_cpu_dec(bpf_prog_active);
7730         preempt_enable();
7731         if (!ret)
7732                 return;
7733
7734         event->orig_overflow_handler(event, data, regs);
7735 }
7736
7737 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7738 {
7739         struct bpf_prog *prog;
7740
7741         if (event->overflow_handler_context)
7742                 /* hw breakpoint or kernel counter */
7743                 return -EINVAL;
7744
7745         if (event->prog)
7746                 return -EEXIST;
7747
7748         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7749         if (IS_ERR(prog))
7750                 return PTR_ERR(prog);
7751
7752         event->prog = prog;
7753         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7754         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7755         return 0;
7756 }
7757
7758 static void perf_event_free_bpf_handler(struct perf_event *event)
7759 {
7760         struct bpf_prog *prog = event->prog;
7761
7762         if (!prog)
7763                 return;
7764
7765         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7766         event->prog = NULL;
7767         bpf_prog_put(prog);
7768 }
7769 #else
7770 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7771 {
7772         return -EOPNOTSUPP;
7773 }
7774 static void perf_event_free_bpf_handler(struct perf_event *event)
7775 {
7776 }
7777 #endif
7778
7779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7780 {
7781         bool is_kprobe, is_tracepoint;
7782         struct bpf_prog *prog;
7783
7784         if (event->attr.type == PERF_TYPE_HARDWARE ||
7785             event->attr.type == PERF_TYPE_SOFTWARE)
7786                 return perf_event_set_bpf_handler(event, prog_fd);
7787
7788         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7789                 return -EINVAL;
7790
7791         if (event->tp_event->prog)
7792                 return -EEXIST;
7793
7794         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7795         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7796         if (!is_kprobe && !is_tracepoint)
7797                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7798                 return -EINVAL;
7799
7800         prog = bpf_prog_get(prog_fd);
7801         if (IS_ERR(prog))
7802                 return PTR_ERR(prog);
7803
7804         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7805             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7806                 /* valid fd, but invalid bpf program type */
7807                 bpf_prog_put(prog);
7808                 return -EINVAL;
7809         }
7810
7811         if (is_tracepoint) {
7812                 int off = trace_event_get_offsets(event->tp_event);
7813
7814                 if (prog->aux->max_ctx_offset > off) {
7815                         bpf_prog_put(prog);
7816                         return -EACCES;
7817                 }
7818         }
7819         event->tp_event->prog = prog;
7820
7821         return 0;
7822 }
7823
7824 static void perf_event_free_bpf_prog(struct perf_event *event)
7825 {
7826         struct bpf_prog *prog;
7827
7828         perf_event_free_bpf_handler(event);
7829
7830         if (!event->tp_event)
7831                 return;
7832
7833         prog = event->tp_event->prog;
7834         if (prog) {
7835                 event->tp_event->prog = NULL;
7836                 bpf_prog_put(prog);
7837         }
7838 }
7839
7840 #else
7841
7842 static inline void perf_tp_register(void)
7843 {
7844 }
7845
7846 static void perf_event_free_filter(struct perf_event *event)
7847 {
7848 }
7849
7850 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7851 {
7852         return -ENOENT;
7853 }
7854
7855 static void perf_event_free_bpf_prog(struct perf_event *event)
7856 {
7857 }
7858 #endif /* CONFIG_EVENT_TRACING */
7859
7860 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7861 void perf_bp_event(struct perf_event *bp, void *data)
7862 {
7863         struct perf_sample_data sample;
7864         struct pt_regs *regs = data;
7865
7866         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7867
7868         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7869                 perf_swevent_event(bp, 1, &sample, regs);
7870 }
7871 #endif
7872
7873 /*
7874  * Allocate a new address filter
7875  */
7876 static struct perf_addr_filter *
7877 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7878 {
7879         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7880         struct perf_addr_filter *filter;
7881
7882         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7883         if (!filter)
7884                 return NULL;
7885
7886         INIT_LIST_HEAD(&filter->entry);
7887         list_add_tail(&filter->entry, filters);
7888
7889         return filter;
7890 }
7891
7892 static void free_filters_list(struct list_head *filters)
7893 {
7894         struct perf_addr_filter *filter, *iter;
7895
7896         list_for_each_entry_safe(filter, iter, filters, entry) {
7897                 if (filter->inode)
7898                         iput(filter->inode);
7899                 list_del(&filter->entry);
7900                 kfree(filter);
7901         }
7902 }
7903
7904 /*
7905  * Free existing address filters and optionally install new ones
7906  */
7907 static void perf_addr_filters_splice(struct perf_event *event,
7908                                      struct list_head *head)
7909 {
7910         unsigned long flags;
7911         LIST_HEAD(list);
7912
7913         if (!has_addr_filter(event))
7914                 return;
7915
7916         /* don't bother with children, they don't have their own filters */
7917         if (event->parent)
7918                 return;
7919
7920         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7921
7922         list_splice_init(&event->addr_filters.list, &list);
7923         if (head)
7924                 list_splice(head, &event->addr_filters.list);
7925
7926         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7927
7928         free_filters_list(&list);
7929 }
7930
7931 /*
7932  * Scan through mm's vmas and see if one of them matches the
7933  * @filter; if so, adjust filter's address range.
7934  * Called with mm::mmap_sem down for reading.
7935  */
7936 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7937                                             struct mm_struct *mm)
7938 {
7939         struct vm_area_struct *vma;
7940
7941         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7942                 struct file *file = vma->vm_file;
7943                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7944                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7945
7946                 if (!file)
7947                         continue;
7948
7949                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7950                         continue;
7951
7952                 return vma->vm_start;
7953         }
7954
7955         return 0;
7956 }
7957
7958 /*
7959  * Update event's address range filters based on the
7960  * task's existing mappings, if any.
7961  */
7962 static void perf_event_addr_filters_apply(struct perf_event *event)
7963 {
7964         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7965         struct task_struct *task = READ_ONCE(event->ctx->task);
7966         struct perf_addr_filter *filter;
7967         struct mm_struct *mm = NULL;
7968         unsigned int count = 0;
7969         unsigned long flags;
7970
7971         /*
7972          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7973          * will stop on the parent's child_mutex that our caller is also holding
7974          */
7975         if (task == TASK_TOMBSTONE)
7976                 return;
7977
7978         mm = get_task_mm(event->ctx->task);
7979         if (!mm)
7980                 goto restart;
7981
7982         down_read(&mm->mmap_sem);
7983
7984         raw_spin_lock_irqsave(&ifh->lock, flags);
7985         list_for_each_entry(filter, &ifh->list, entry) {
7986                 event->addr_filters_offs[count] = 0;
7987
7988                 /*
7989                  * Adjust base offset if the filter is associated to a binary
7990                  * that needs to be mapped:
7991                  */
7992                 if (filter->inode)
7993                         event->addr_filters_offs[count] =
7994                                 perf_addr_filter_apply(filter, mm);
7995
7996                 count++;
7997         }
7998
7999         event->addr_filters_gen++;
8000         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8001
8002         up_read(&mm->mmap_sem);
8003
8004         mmput(mm);
8005
8006 restart:
8007         perf_event_stop(event, 1);
8008 }
8009
8010 /*
8011  * Address range filtering: limiting the data to certain
8012  * instruction address ranges. Filters are ioctl()ed to us from
8013  * userspace as ascii strings.
8014  *
8015  * Filter string format:
8016  *
8017  * ACTION RANGE_SPEC
8018  * where ACTION is one of the
8019  *  * "filter": limit the trace to this region
8020  *  * "start": start tracing from this address
8021  *  * "stop": stop tracing at this address/region;
8022  * RANGE_SPEC is
8023  *  * for kernel addresses: <start address>[/<size>]
8024  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8025  *
8026  * if <size> is not specified, the range is treated as a single address.
8027  */
8028 enum {
8029         IF_ACT_NONE = -1,
8030         IF_ACT_FILTER,
8031         IF_ACT_START,
8032         IF_ACT_STOP,
8033         IF_SRC_FILE,
8034         IF_SRC_KERNEL,
8035         IF_SRC_FILEADDR,
8036         IF_SRC_KERNELADDR,
8037 };
8038
8039 enum {
8040         IF_STATE_ACTION = 0,
8041         IF_STATE_SOURCE,
8042         IF_STATE_END,
8043 };
8044
8045 static const match_table_t if_tokens = {
8046         { IF_ACT_FILTER,        "filter" },
8047         { IF_ACT_START,         "start" },
8048         { IF_ACT_STOP,          "stop" },
8049         { IF_SRC_FILE,          "%u/%u@%s" },
8050         { IF_SRC_KERNEL,        "%u/%u" },
8051         { IF_SRC_FILEADDR,      "%u@%s" },
8052         { IF_SRC_KERNELADDR,    "%u" },
8053         { IF_ACT_NONE,          NULL },
8054 };
8055
8056 /*
8057  * Address filter string parser
8058  */
8059 static int
8060 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8061                              struct list_head *filters)
8062 {
8063         struct perf_addr_filter *filter = NULL;
8064         char *start, *orig, *filename = NULL;
8065         struct path path;
8066         substring_t args[MAX_OPT_ARGS];
8067         int state = IF_STATE_ACTION, token;
8068         unsigned int kernel = 0;
8069         int ret = -EINVAL;
8070
8071         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8072         if (!fstr)
8073                 return -ENOMEM;
8074
8075         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8076                 ret = -EINVAL;
8077
8078                 if (!*start)
8079                         continue;
8080
8081                 /* filter definition begins */
8082                 if (state == IF_STATE_ACTION) {
8083                         filter = perf_addr_filter_new(event, filters);
8084                         if (!filter)
8085                                 goto fail;
8086                 }
8087
8088                 token = match_token(start, if_tokens, args);
8089                 switch (token) {
8090                 case IF_ACT_FILTER:
8091                 case IF_ACT_START:
8092                         filter->filter = 1;
8093
8094                 case IF_ACT_STOP:
8095                         if (state != IF_STATE_ACTION)
8096                                 goto fail;
8097
8098                         state = IF_STATE_SOURCE;
8099                         break;
8100
8101                 case IF_SRC_KERNELADDR:
8102                 case IF_SRC_KERNEL:
8103                         kernel = 1;
8104
8105                 case IF_SRC_FILEADDR:
8106                 case IF_SRC_FILE:
8107                         if (state != IF_STATE_SOURCE)
8108                                 goto fail;
8109
8110                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8111                                 filter->range = 1;
8112
8113                         *args[0].to = 0;
8114                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8115                         if (ret)
8116                                 goto fail;
8117
8118                         if (filter->range) {
8119                                 *args[1].to = 0;
8120                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8121                                 if (ret)
8122                                         goto fail;
8123                         }
8124
8125                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8126                                 int fpos = filter->range ? 2 : 1;
8127
8128                                 filename = match_strdup(&args[fpos]);
8129                                 if (!filename) {
8130                                         ret = -ENOMEM;
8131                                         goto fail;
8132                                 }
8133                         }
8134
8135                         state = IF_STATE_END;
8136                         break;
8137
8138                 default:
8139                         goto fail;
8140                 }
8141
8142                 /*
8143                  * Filter definition is fully parsed, validate and install it.
8144                  * Make sure that it doesn't contradict itself or the event's
8145                  * attribute.
8146                  */
8147                 if (state == IF_STATE_END) {
8148                         if (kernel && event->attr.exclude_kernel)
8149                                 goto fail;
8150
8151                         if (!kernel) {
8152                                 if (!filename)
8153                                         goto fail;
8154
8155                                 /* look up the path and grab its inode */
8156                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8157                                 if (ret)
8158                                         goto fail_free_name;
8159
8160                                 filter->inode = igrab(d_inode(path.dentry));
8161                                 path_put(&path);
8162                                 kfree(filename);
8163                                 filename = NULL;
8164
8165                                 ret = -EINVAL;
8166                                 if (!filter->inode ||
8167                                     !S_ISREG(filter->inode->i_mode))
8168                                         /* free_filters_list() will iput() */
8169                                         goto fail;
8170                         }
8171
8172                         /* ready to consume more filters */
8173                         state = IF_STATE_ACTION;
8174                         filter = NULL;
8175                 }
8176         }
8177
8178         if (state != IF_STATE_ACTION)
8179                 goto fail;
8180
8181         kfree(orig);
8182
8183         return 0;
8184
8185 fail_free_name:
8186         kfree(filename);
8187 fail:
8188         free_filters_list(filters);
8189         kfree(orig);
8190
8191         return ret;
8192 }
8193
8194 static int
8195 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8196 {
8197         LIST_HEAD(filters);
8198         int ret;
8199
8200         /*
8201          * Since this is called in perf_ioctl() path, we're already holding
8202          * ctx::mutex.
8203          */
8204         lockdep_assert_held(&event->ctx->mutex);
8205
8206         if (WARN_ON_ONCE(event->parent))
8207                 return -EINVAL;
8208
8209         /*
8210          * For now, we only support filtering in per-task events; doing so
8211          * for CPU-wide events requires additional context switching trickery,
8212          * since same object code will be mapped at different virtual
8213          * addresses in different processes.
8214          */
8215         if (!event->ctx->task)
8216                 return -EOPNOTSUPP;
8217
8218         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8219         if (ret)
8220                 return ret;
8221
8222         ret = event->pmu->addr_filters_validate(&filters);
8223         if (ret) {
8224                 free_filters_list(&filters);
8225                 return ret;
8226         }
8227
8228         /* remove existing filters, if any */
8229         perf_addr_filters_splice(event, &filters);
8230
8231         /* install new filters */
8232         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8233
8234         return ret;
8235 }
8236
8237 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8238 {
8239         char *filter_str;
8240         int ret = -EINVAL;
8241
8242         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8243             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8244             !has_addr_filter(event))
8245                 return -EINVAL;
8246
8247         filter_str = strndup_user(arg, PAGE_SIZE);
8248         if (IS_ERR(filter_str))
8249                 return PTR_ERR(filter_str);
8250
8251         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8252             event->attr.type == PERF_TYPE_TRACEPOINT)
8253                 ret = ftrace_profile_set_filter(event, event->attr.config,
8254                                                 filter_str);
8255         else if (has_addr_filter(event))
8256                 ret = perf_event_set_addr_filter(event, filter_str);
8257
8258         kfree(filter_str);
8259         return ret;
8260 }
8261
8262 /*
8263  * hrtimer based swevent callback
8264  */
8265
8266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8267 {
8268         enum hrtimer_restart ret = HRTIMER_RESTART;
8269         struct perf_sample_data data;
8270         struct pt_regs *regs;
8271         struct perf_event *event;
8272         u64 period;
8273
8274         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8275
8276         if (event->state != PERF_EVENT_STATE_ACTIVE)
8277                 return HRTIMER_NORESTART;
8278
8279         event->pmu->read(event);
8280
8281         perf_sample_data_init(&data, 0, event->hw.last_period);
8282         regs = get_irq_regs();
8283
8284         if (regs && !perf_exclude_event(event, regs)) {
8285                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8286                         if (__perf_event_overflow(event, 1, &data, regs))
8287                                 ret = HRTIMER_NORESTART;
8288         }
8289
8290         period = max_t(u64, 10000, event->hw.sample_period);
8291         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8292
8293         return ret;
8294 }
8295
8296 static void perf_swevent_start_hrtimer(struct perf_event *event)
8297 {
8298         struct hw_perf_event *hwc = &event->hw;
8299         s64 period;
8300
8301         if (!is_sampling_event(event))
8302                 return;
8303
8304         period = local64_read(&hwc->period_left);
8305         if (period) {
8306                 if (period < 0)
8307                         period = 10000;
8308
8309                 local64_set(&hwc->period_left, 0);
8310         } else {
8311                 period = max_t(u64, 10000, hwc->sample_period);
8312         }
8313         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8314                       HRTIMER_MODE_REL_PINNED);
8315 }
8316
8317 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8318 {
8319         struct hw_perf_event *hwc = &event->hw;
8320
8321         if (is_sampling_event(event)) {
8322                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8323                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8324
8325                 hrtimer_cancel(&hwc->hrtimer);
8326         }
8327 }
8328
8329 static void perf_swevent_init_hrtimer(struct perf_event *event)
8330 {
8331         struct hw_perf_event *hwc = &event->hw;
8332
8333         if (!is_sampling_event(event))
8334                 return;
8335
8336         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8337         hwc->hrtimer.function = perf_swevent_hrtimer;
8338
8339         /*
8340          * Since hrtimers have a fixed rate, we can do a static freq->period
8341          * mapping and avoid the whole period adjust feedback stuff.
8342          */
8343         if (event->attr.freq) {
8344                 long freq = event->attr.sample_freq;
8345
8346                 event->attr.sample_period = NSEC_PER_SEC / freq;
8347                 hwc->sample_period = event->attr.sample_period;
8348                 local64_set(&hwc->period_left, hwc->sample_period);
8349                 hwc->last_period = hwc->sample_period;
8350                 event->attr.freq = 0;
8351         }
8352 }
8353
8354 /*
8355  * Software event: cpu wall time clock
8356  */
8357
8358 static void cpu_clock_event_update(struct perf_event *event)
8359 {
8360         s64 prev;
8361         u64 now;
8362
8363         now = local_clock();
8364         prev = local64_xchg(&event->hw.prev_count, now);
8365         local64_add(now - prev, &event->count);
8366 }
8367
8368 static void cpu_clock_event_start(struct perf_event *event, int flags)
8369 {
8370         local64_set(&event->hw.prev_count, local_clock());
8371         perf_swevent_start_hrtimer(event);
8372 }
8373
8374 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8375 {
8376         perf_swevent_cancel_hrtimer(event);
8377         cpu_clock_event_update(event);
8378 }
8379
8380 static int cpu_clock_event_add(struct perf_event *event, int flags)
8381 {
8382         if (flags & PERF_EF_START)
8383                 cpu_clock_event_start(event, flags);
8384         perf_event_update_userpage(event);
8385
8386         return 0;
8387 }
8388
8389 static void cpu_clock_event_del(struct perf_event *event, int flags)
8390 {
8391         cpu_clock_event_stop(event, flags);
8392 }
8393
8394 static void cpu_clock_event_read(struct perf_event *event)
8395 {
8396         cpu_clock_event_update(event);
8397 }
8398
8399 static int cpu_clock_event_init(struct perf_event *event)
8400 {
8401         if (event->attr.type != PERF_TYPE_SOFTWARE)
8402                 return -ENOENT;
8403
8404         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8405                 return -ENOENT;
8406
8407         /*
8408          * no branch sampling for software events
8409          */
8410         if (has_branch_stack(event))
8411                 return -EOPNOTSUPP;
8412
8413         perf_swevent_init_hrtimer(event);
8414
8415         return 0;
8416 }
8417
8418 static struct pmu perf_cpu_clock = {
8419         .task_ctx_nr    = perf_sw_context,
8420
8421         .capabilities   = PERF_PMU_CAP_NO_NMI,
8422
8423         .event_init     = cpu_clock_event_init,
8424         .add            = cpu_clock_event_add,
8425         .del            = cpu_clock_event_del,
8426         .start          = cpu_clock_event_start,
8427         .stop           = cpu_clock_event_stop,
8428         .read           = cpu_clock_event_read,
8429 };
8430
8431 /*
8432  * Software event: task time clock
8433  */
8434
8435 static void task_clock_event_update(struct perf_event *event, u64 now)
8436 {
8437         u64 prev;
8438         s64 delta;
8439
8440         prev = local64_xchg(&event->hw.prev_count, now);
8441         delta = now - prev;
8442         local64_add(delta, &event->count);
8443 }
8444
8445 static void task_clock_event_start(struct perf_event *event, int flags)
8446 {
8447         local64_set(&event->hw.prev_count, event->ctx->time);
8448         perf_swevent_start_hrtimer(event);
8449 }
8450
8451 static void task_clock_event_stop(struct perf_event *event, int flags)
8452 {
8453         perf_swevent_cancel_hrtimer(event);
8454         task_clock_event_update(event, event->ctx->time);
8455 }
8456
8457 static int task_clock_event_add(struct perf_event *event, int flags)
8458 {
8459         if (flags & PERF_EF_START)
8460                 task_clock_event_start(event, flags);
8461         perf_event_update_userpage(event);
8462
8463         return 0;
8464 }
8465
8466 static void task_clock_event_del(struct perf_event *event, int flags)
8467 {
8468         task_clock_event_stop(event, PERF_EF_UPDATE);
8469 }
8470
8471 static void task_clock_event_read(struct perf_event *event)
8472 {
8473         u64 now = perf_clock();
8474         u64 delta = now - event->ctx->timestamp;
8475         u64 time = event->ctx->time + delta;
8476
8477         task_clock_event_update(event, time);
8478 }
8479
8480 static int task_clock_event_init(struct perf_event *event)
8481 {
8482         if (event->attr.type != PERF_TYPE_SOFTWARE)
8483                 return -ENOENT;
8484
8485         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8486                 return -ENOENT;
8487
8488         /*
8489          * no branch sampling for software events
8490          */
8491         if (has_branch_stack(event))
8492                 return -EOPNOTSUPP;
8493
8494         perf_swevent_init_hrtimer(event);
8495
8496         return 0;
8497 }
8498
8499 static struct pmu perf_task_clock = {
8500         .task_ctx_nr    = perf_sw_context,
8501
8502         .capabilities   = PERF_PMU_CAP_NO_NMI,
8503
8504         .event_init     = task_clock_event_init,
8505         .add            = task_clock_event_add,
8506         .del            = task_clock_event_del,
8507         .start          = task_clock_event_start,
8508         .stop           = task_clock_event_stop,
8509         .read           = task_clock_event_read,
8510 };
8511
8512 static void perf_pmu_nop_void(struct pmu *pmu)
8513 {
8514 }
8515
8516 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8517 {
8518 }
8519
8520 static int perf_pmu_nop_int(struct pmu *pmu)
8521 {
8522         return 0;
8523 }
8524
8525 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8526
8527 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8528 {
8529         __this_cpu_write(nop_txn_flags, flags);
8530
8531         if (flags & ~PERF_PMU_TXN_ADD)
8532                 return;
8533
8534         perf_pmu_disable(pmu);
8535 }
8536
8537 static int perf_pmu_commit_txn(struct pmu *pmu)
8538 {
8539         unsigned int flags = __this_cpu_read(nop_txn_flags);
8540
8541         __this_cpu_write(nop_txn_flags, 0);
8542
8543         if (flags & ~PERF_PMU_TXN_ADD)
8544                 return 0;
8545
8546         perf_pmu_enable(pmu);
8547         return 0;
8548 }
8549
8550 static void perf_pmu_cancel_txn(struct pmu *pmu)
8551 {
8552         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8553
8554         __this_cpu_write(nop_txn_flags, 0);
8555
8556         if (flags & ~PERF_PMU_TXN_ADD)
8557                 return;
8558
8559         perf_pmu_enable(pmu);
8560 }
8561
8562 static int perf_event_idx_default(struct perf_event *event)
8563 {
8564         return 0;
8565 }
8566
8567 /*
8568  * Ensures all contexts with the same task_ctx_nr have the same
8569  * pmu_cpu_context too.
8570  */
8571 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8572 {
8573         struct pmu *pmu;
8574
8575         if (ctxn < 0)
8576                 return NULL;
8577
8578         list_for_each_entry(pmu, &pmus, entry) {
8579                 if (pmu->task_ctx_nr == ctxn)
8580                         return pmu->pmu_cpu_context;
8581         }
8582
8583         return NULL;
8584 }
8585
8586 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8587 {
8588         int cpu;
8589
8590         for_each_possible_cpu(cpu) {
8591                 struct perf_cpu_context *cpuctx;
8592
8593                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8594
8595                 if (cpuctx->unique_pmu == old_pmu)
8596                         cpuctx->unique_pmu = pmu;
8597         }
8598 }
8599
8600 static void free_pmu_context(struct pmu *pmu)
8601 {
8602         struct pmu *i;
8603
8604         mutex_lock(&pmus_lock);
8605         /*
8606          * Like a real lame refcount.
8607          */
8608         list_for_each_entry(i, &pmus, entry) {
8609                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8610                         update_pmu_context(i, pmu);
8611                         goto out;
8612                 }
8613         }
8614
8615         free_percpu(pmu->pmu_cpu_context);
8616 out:
8617         mutex_unlock(&pmus_lock);
8618 }
8619
8620 /*
8621  * Let userspace know that this PMU supports address range filtering:
8622  */
8623 static ssize_t nr_addr_filters_show(struct device *dev,
8624                                     struct device_attribute *attr,
8625                                     char *page)
8626 {
8627         struct pmu *pmu = dev_get_drvdata(dev);
8628
8629         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8630 }
8631 DEVICE_ATTR_RO(nr_addr_filters);
8632
8633 static struct idr pmu_idr;
8634
8635 static ssize_t
8636 type_show(struct device *dev, struct device_attribute *attr, char *page)
8637 {
8638         struct pmu *pmu = dev_get_drvdata(dev);
8639
8640         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8641 }
8642 static DEVICE_ATTR_RO(type);
8643
8644 static ssize_t
8645 perf_event_mux_interval_ms_show(struct device *dev,
8646                                 struct device_attribute *attr,
8647                                 char *page)
8648 {
8649         struct pmu *pmu = dev_get_drvdata(dev);
8650
8651         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8652 }
8653
8654 static DEFINE_MUTEX(mux_interval_mutex);
8655
8656 static ssize_t
8657 perf_event_mux_interval_ms_store(struct device *dev,
8658                                  struct device_attribute *attr,
8659                                  const char *buf, size_t count)
8660 {
8661         struct pmu *pmu = dev_get_drvdata(dev);
8662         int timer, cpu, ret;
8663
8664         ret = kstrtoint(buf, 0, &timer);
8665         if (ret)
8666                 return ret;
8667
8668         if (timer < 1)
8669                 return -EINVAL;
8670
8671         /* same value, noting to do */
8672         if (timer == pmu->hrtimer_interval_ms)
8673                 return count;
8674
8675         mutex_lock(&mux_interval_mutex);
8676         pmu->hrtimer_interval_ms = timer;
8677
8678         /* update all cpuctx for this PMU */
8679         get_online_cpus();
8680         for_each_online_cpu(cpu) {
8681                 struct perf_cpu_context *cpuctx;
8682                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8683                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8684
8685                 cpu_function_call(cpu,
8686                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8687         }
8688         put_online_cpus();
8689         mutex_unlock(&mux_interval_mutex);
8690
8691         return count;
8692 }
8693 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8694
8695 static struct attribute *pmu_dev_attrs[] = {
8696         &dev_attr_type.attr,
8697         &dev_attr_perf_event_mux_interval_ms.attr,
8698         NULL,
8699 };
8700 ATTRIBUTE_GROUPS(pmu_dev);
8701
8702 static int pmu_bus_running;
8703 static struct bus_type pmu_bus = {
8704         .name           = "event_source",
8705         .dev_groups     = pmu_dev_groups,
8706 };
8707
8708 static void pmu_dev_release(struct device *dev)
8709 {
8710         kfree(dev);
8711 }
8712
8713 static int pmu_dev_alloc(struct pmu *pmu)
8714 {
8715         int ret = -ENOMEM;
8716
8717         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8718         if (!pmu->dev)
8719                 goto out;
8720
8721         pmu->dev->groups = pmu->attr_groups;
8722         device_initialize(pmu->dev);
8723         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8724         if (ret)
8725                 goto free_dev;
8726
8727         dev_set_drvdata(pmu->dev, pmu);
8728         pmu->dev->bus = &pmu_bus;
8729         pmu->dev->release = pmu_dev_release;
8730         ret = device_add(pmu->dev);
8731         if (ret)
8732                 goto free_dev;
8733
8734         /* For PMUs with address filters, throw in an extra attribute: */
8735         if (pmu->nr_addr_filters)
8736                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8737
8738         if (ret)
8739                 goto del_dev;
8740
8741 out:
8742         return ret;
8743
8744 del_dev:
8745         device_del(pmu->dev);
8746
8747 free_dev:
8748         put_device(pmu->dev);
8749         goto out;
8750 }
8751
8752 static struct lock_class_key cpuctx_mutex;
8753 static struct lock_class_key cpuctx_lock;
8754
8755 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8756 {
8757         int cpu, ret;
8758
8759         mutex_lock(&pmus_lock);
8760         ret = -ENOMEM;
8761         pmu->pmu_disable_count = alloc_percpu(int);
8762         if (!pmu->pmu_disable_count)
8763                 goto unlock;
8764
8765         pmu->type = -1;
8766         if (!name)
8767                 goto skip_type;
8768         pmu->name = name;
8769
8770         if (type < 0) {
8771                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8772                 if (type < 0) {
8773                         ret = type;
8774                         goto free_pdc;
8775                 }
8776         }
8777         pmu->type = type;
8778
8779         if (pmu_bus_running) {
8780                 ret = pmu_dev_alloc(pmu);
8781                 if (ret)
8782                         goto free_idr;
8783         }
8784
8785 skip_type:
8786         if (pmu->task_ctx_nr == perf_hw_context) {
8787                 static int hw_context_taken = 0;
8788
8789                 /*
8790                  * Other than systems with heterogeneous CPUs, it never makes
8791                  * sense for two PMUs to share perf_hw_context. PMUs which are
8792                  * uncore must use perf_invalid_context.
8793                  */
8794                 if (WARN_ON_ONCE(hw_context_taken &&
8795                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8796                         pmu->task_ctx_nr = perf_invalid_context;
8797
8798                 hw_context_taken = 1;
8799         }
8800
8801         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8802         if (pmu->pmu_cpu_context)
8803                 goto got_cpu_context;
8804
8805         ret = -ENOMEM;
8806         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8807         if (!pmu->pmu_cpu_context)
8808                 goto free_dev;
8809
8810         for_each_possible_cpu(cpu) {
8811                 struct perf_cpu_context *cpuctx;
8812
8813                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8814                 __perf_event_init_context(&cpuctx->ctx);
8815                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8816                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8817                 cpuctx->ctx.pmu = pmu;
8818
8819                 __perf_mux_hrtimer_init(cpuctx, cpu);
8820
8821                 cpuctx->unique_pmu = pmu;
8822         }
8823
8824 got_cpu_context:
8825         if (!pmu->start_txn) {
8826                 if (pmu->pmu_enable) {
8827                         /*
8828                          * If we have pmu_enable/pmu_disable calls, install
8829                          * transaction stubs that use that to try and batch
8830                          * hardware accesses.
8831                          */
8832                         pmu->start_txn  = perf_pmu_start_txn;
8833                         pmu->commit_txn = perf_pmu_commit_txn;
8834                         pmu->cancel_txn = perf_pmu_cancel_txn;
8835                 } else {
8836                         pmu->start_txn  = perf_pmu_nop_txn;
8837                         pmu->commit_txn = perf_pmu_nop_int;
8838                         pmu->cancel_txn = perf_pmu_nop_void;
8839                 }
8840         }
8841
8842         if (!pmu->pmu_enable) {
8843                 pmu->pmu_enable  = perf_pmu_nop_void;
8844                 pmu->pmu_disable = perf_pmu_nop_void;
8845         }
8846
8847         if (!pmu->event_idx)
8848                 pmu->event_idx = perf_event_idx_default;
8849
8850         list_add_rcu(&pmu->entry, &pmus);
8851         atomic_set(&pmu->exclusive_cnt, 0);
8852         ret = 0;
8853 unlock:
8854         mutex_unlock(&pmus_lock);
8855
8856         return ret;
8857
8858 free_dev:
8859         device_del(pmu->dev);
8860         put_device(pmu->dev);
8861
8862 free_idr:
8863         if (pmu->type >= PERF_TYPE_MAX)
8864                 idr_remove(&pmu_idr, pmu->type);
8865
8866 free_pdc:
8867         free_percpu(pmu->pmu_disable_count);
8868         goto unlock;
8869 }
8870 EXPORT_SYMBOL_GPL(perf_pmu_register);
8871
8872 void perf_pmu_unregister(struct pmu *pmu)
8873 {
8874         int remove_device;
8875
8876         mutex_lock(&pmus_lock);
8877         remove_device = pmu_bus_running;
8878         list_del_rcu(&pmu->entry);
8879         mutex_unlock(&pmus_lock);
8880
8881         /*
8882          * We dereference the pmu list under both SRCU and regular RCU, so
8883          * synchronize against both of those.
8884          */
8885         synchronize_srcu(&pmus_srcu);
8886         synchronize_rcu();
8887
8888         free_percpu(pmu->pmu_disable_count);
8889         if (pmu->type >= PERF_TYPE_MAX)
8890                 idr_remove(&pmu_idr, pmu->type);
8891         if (remove_device) {
8892                 if (pmu->nr_addr_filters)
8893                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8894                 device_del(pmu->dev);
8895                 put_device(pmu->dev);
8896         }
8897         free_pmu_context(pmu);
8898 }
8899 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8900
8901 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8902 {
8903         struct perf_event_context *ctx = NULL;
8904         int ret;
8905
8906         if (!try_module_get(pmu->module))
8907                 return -ENODEV;
8908
8909         if (event->group_leader != event) {
8910                 /*
8911                  * This ctx->mutex can nest when we're called through
8912                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8913                  */
8914                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8915                                                  SINGLE_DEPTH_NESTING);
8916                 BUG_ON(!ctx);
8917         }
8918
8919         event->pmu = pmu;
8920         ret = pmu->event_init(event);
8921
8922         if (ctx)
8923                 perf_event_ctx_unlock(event->group_leader, ctx);
8924
8925         if (ret)
8926                 module_put(pmu->module);
8927
8928         return ret;
8929 }
8930
8931 static struct pmu *perf_init_event(struct perf_event *event)
8932 {
8933         struct pmu *pmu = NULL;
8934         int idx;
8935         int ret;
8936
8937         idx = srcu_read_lock(&pmus_srcu);
8938
8939         rcu_read_lock();
8940         pmu = idr_find(&pmu_idr, event->attr.type);
8941         rcu_read_unlock();
8942         if (pmu) {
8943                 ret = perf_try_init_event(pmu, event);
8944                 if (ret)
8945                         pmu = ERR_PTR(ret);
8946                 goto unlock;
8947         }
8948
8949         list_for_each_entry_rcu(pmu, &pmus, entry) {
8950                 ret = perf_try_init_event(pmu, event);
8951                 if (!ret)
8952                         goto unlock;
8953
8954                 if (ret != -ENOENT) {
8955                         pmu = ERR_PTR(ret);
8956                         goto unlock;
8957                 }
8958         }
8959         pmu = ERR_PTR(-ENOENT);
8960 unlock:
8961         srcu_read_unlock(&pmus_srcu, idx);
8962
8963         return pmu;
8964 }
8965
8966 static void attach_sb_event(struct perf_event *event)
8967 {
8968         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8969
8970         raw_spin_lock(&pel->lock);
8971         list_add_rcu(&event->sb_list, &pel->list);
8972         raw_spin_unlock(&pel->lock);
8973 }
8974
8975 /*
8976  * We keep a list of all !task (and therefore per-cpu) events
8977  * that need to receive side-band records.
8978  *
8979  * This avoids having to scan all the various PMU per-cpu contexts
8980  * looking for them.
8981  */
8982 static void account_pmu_sb_event(struct perf_event *event)
8983 {
8984         if (is_sb_event(event))
8985                 attach_sb_event(event);
8986 }
8987
8988 static void account_event_cpu(struct perf_event *event, int cpu)
8989 {
8990         if (event->parent)
8991                 return;
8992
8993         if (is_cgroup_event(event))
8994                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8995 }
8996
8997 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8998 static void account_freq_event_nohz(void)
8999 {
9000 #ifdef CONFIG_NO_HZ_FULL
9001         /* Lock so we don't race with concurrent unaccount */
9002         spin_lock(&nr_freq_lock);
9003         if (atomic_inc_return(&nr_freq_events) == 1)
9004                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9005         spin_unlock(&nr_freq_lock);
9006 #endif
9007 }
9008
9009 static void account_freq_event(void)
9010 {
9011         if (tick_nohz_full_enabled())
9012                 account_freq_event_nohz();
9013         else
9014                 atomic_inc(&nr_freq_events);
9015 }
9016
9017
9018 static void account_event(struct perf_event *event)
9019 {
9020         bool inc = false;
9021
9022         if (event->parent)
9023                 return;
9024
9025         if (event->attach_state & PERF_ATTACH_TASK)
9026                 inc = true;
9027         if (event->attr.mmap || event->attr.mmap_data)
9028                 atomic_inc(&nr_mmap_events);
9029         if (event->attr.comm)
9030                 atomic_inc(&nr_comm_events);
9031         if (event->attr.task)
9032                 atomic_inc(&nr_task_events);
9033         if (event->attr.freq)
9034                 account_freq_event();
9035         if (event->attr.context_switch) {
9036                 atomic_inc(&nr_switch_events);
9037                 inc = true;
9038         }
9039         if (has_branch_stack(event))
9040                 inc = true;
9041         if (is_cgroup_event(event))
9042                 inc = true;
9043
9044         if (inc) {
9045                 if (atomic_inc_not_zero(&perf_sched_count))
9046                         goto enabled;
9047
9048                 mutex_lock(&perf_sched_mutex);
9049                 if (!atomic_read(&perf_sched_count)) {
9050                         static_branch_enable(&perf_sched_events);
9051                         /*
9052                          * Guarantee that all CPUs observe they key change and
9053                          * call the perf scheduling hooks before proceeding to
9054                          * install events that need them.
9055                          */
9056                         synchronize_sched();
9057                 }
9058                 /*
9059                  * Now that we have waited for the sync_sched(), allow further
9060                  * increments to by-pass the mutex.
9061                  */
9062                 atomic_inc(&perf_sched_count);
9063                 mutex_unlock(&perf_sched_mutex);
9064         }
9065 enabled:
9066
9067         account_event_cpu(event, event->cpu);
9068
9069         account_pmu_sb_event(event);
9070 }
9071
9072 /*
9073  * Allocate and initialize a event structure
9074  */
9075 static struct perf_event *
9076 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9077                  struct task_struct *task,
9078                  struct perf_event *group_leader,
9079                  struct perf_event *parent_event,
9080                  perf_overflow_handler_t overflow_handler,
9081                  void *context, int cgroup_fd)
9082 {
9083         struct pmu *pmu;
9084         struct perf_event *event;
9085         struct hw_perf_event *hwc;
9086         long err = -EINVAL;
9087
9088         if ((unsigned)cpu >= nr_cpu_ids) {
9089                 if (!task || cpu != -1)
9090                         return ERR_PTR(-EINVAL);
9091         }
9092
9093         event = kzalloc(sizeof(*event), GFP_KERNEL);
9094         if (!event)
9095                 return ERR_PTR(-ENOMEM);
9096
9097         /*
9098          * Single events are their own group leaders, with an
9099          * empty sibling list:
9100          */
9101         if (!group_leader)
9102                 group_leader = event;
9103
9104         mutex_init(&event->child_mutex);
9105         INIT_LIST_HEAD(&event->child_list);
9106
9107         INIT_LIST_HEAD(&event->group_entry);
9108         INIT_LIST_HEAD(&event->event_entry);
9109         INIT_LIST_HEAD(&event->sibling_list);
9110         INIT_LIST_HEAD(&event->rb_entry);
9111         INIT_LIST_HEAD(&event->active_entry);
9112         INIT_LIST_HEAD(&event->addr_filters.list);
9113         INIT_HLIST_NODE(&event->hlist_entry);
9114
9115
9116         init_waitqueue_head(&event->waitq);
9117         init_irq_work(&event->pending, perf_pending_event);
9118
9119         mutex_init(&event->mmap_mutex);
9120         raw_spin_lock_init(&event->addr_filters.lock);
9121
9122         atomic_long_set(&event->refcount, 1);
9123         event->cpu              = cpu;
9124         event->attr             = *attr;
9125         event->group_leader     = group_leader;
9126         event->pmu              = NULL;
9127         event->oncpu            = -1;
9128
9129         event->parent           = parent_event;
9130
9131         event->ns               = get_pid_ns(task_active_pid_ns(current));
9132         event->id               = atomic64_inc_return(&perf_event_id);
9133
9134         event->state            = PERF_EVENT_STATE_INACTIVE;
9135
9136         if (task) {
9137                 event->attach_state = PERF_ATTACH_TASK;
9138                 /*
9139                  * XXX pmu::event_init needs to know what task to account to
9140                  * and we cannot use the ctx information because we need the
9141                  * pmu before we get a ctx.
9142                  */
9143                 event->hw.target = task;
9144         }
9145
9146         event->clock = &local_clock;
9147         if (parent_event)
9148                 event->clock = parent_event->clock;
9149
9150         if (!overflow_handler && parent_event) {
9151                 overflow_handler = parent_event->overflow_handler;
9152                 context = parent_event->overflow_handler_context;
9153 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9154                 if (overflow_handler == bpf_overflow_handler) {
9155                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9156
9157                         if (IS_ERR(prog)) {
9158                                 err = PTR_ERR(prog);
9159                                 goto err_ns;
9160                         }
9161                         event->prog = prog;
9162                         event->orig_overflow_handler =
9163                                 parent_event->orig_overflow_handler;
9164                 }
9165 #endif
9166         }
9167
9168         if (overflow_handler) {
9169                 event->overflow_handler = overflow_handler;
9170                 event->overflow_handler_context = context;
9171         } else if (is_write_backward(event)){
9172                 event->overflow_handler = perf_event_output_backward;
9173                 event->overflow_handler_context = NULL;
9174         } else {
9175                 event->overflow_handler = perf_event_output_forward;
9176                 event->overflow_handler_context = NULL;
9177         }
9178
9179         perf_event__state_init(event);
9180
9181         pmu = NULL;
9182
9183         hwc = &event->hw;
9184         hwc->sample_period = attr->sample_period;
9185         if (attr->freq && attr->sample_freq)
9186                 hwc->sample_period = 1;
9187         hwc->last_period = hwc->sample_period;
9188
9189         local64_set(&hwc->period_left, hwc->sample_period);
9190
9191         /*
9192          * we currently do not support PERF_FORMAT_GROUP on inherited events
9193          */
9194         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9195                 goto err_ns;
9196
9197         if (!has_branch_stack(event))
9198                 event->attr.branch_sample_type = 0;
9199
9200         if (cgroup_fd != -1) {
9201                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9202                 if (err)
9203                         goto err_ns;
9204         }
9205
9206         pmu = perf_init_event(event);
9207         if (!pmu)
9208                 goto err_ns;
9209         else if (IS_ERR(pmu)) {
9210                 err = PTR_ERR(pmu);
9211                 goto err_ns;
9212         }
9213
9214         err = exclusive_event_init(event);
9215         if (err)
9216                 goto err_pmu;
9217
9218         if (has_addr_filter(event)) {
9219                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9220                                                    sizeof(unsigned long),
9221                                                    GFP_KERNEL);
9222                 if (!event->addr_filters_offs)
9223                         goto err_per_task;
9224
9225                 /* force hw sync on the address filters */
9226                 event->addr_filters_gen = 1;
9227         }
9228
9229         if (!event->parent) {
9230                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9231                         err = get_callchain_buffers(attr->sample_max_stack);
9232                         if (err)
9233                                 goto err_addr_filters;
9234                 }
9235         }
9236
9237         /* symmetric to unaccount_event() in _free_event() */
9238         account_event(event);
9239
9240         return event;
9241
9242 err_addr_filters:
9243         kfree(event->addr_filters_offs);
9244
9245 err_per_task:
9246         exclusive_event_destroy(event);
9247
9248 err_pmu:
9249         if (event->destroy)
9250                 event->destroy(event);
9251         module_put(pmu->module);
9252 err_ns:
9253         if (is_cgroup_event(event))
9254                 perf_detach_cgroup(event);
9255         if (event->ns)
9256                 put_pid_ns(event->ns);
9257         kfree(event);
9258
9259         return ERR_PTR(err);
9260 }
9261
9262 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9263                           struct perf_event_attr *attr)
9264 {
9265         u32 size;
9266         int ret;
9267
9268         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9269                 return -EFAULT;
9270
9271         /*
9272          * zero the full structure, so that a short copy will be nice.
9273          */
9274         memset(attr, 0, sizeof(*attr));
9275
9276         ret = get_user(size, &uattr->size);
9277         if (ret)
9278                 return ret;
9279
9280         if (size > PAGE_SIZE)   /* silly large */
9281                 goto err_size;
9282
9283         if (!size)              /* abi compat */
9284                 size = PERF_ATTR_SIZE_VER0;
9285
9286         if (size < PERF_ATTR_SIZE_VER0)
9287                 goto err_size;
9288
9289         /*
9290          * If we're handed a bigger struct than we know of,
9291          * ensure all the unknown bits are 0 - i.e. new
9292          * user-space does not rely on any kernel feature
9293          * extensions we dont know about yet.
9294          */
9295         if (size > sizeof(*attr)) {
9296                 unsigned char __user *addr;
9297                 unsigned char __user *end;
9298                 unsigned char val;
9299
9300                 addr = (void __user *)uattr + sizeof(*attr);
9301                 end  = (void __user *)uattr + size;
9302
9303                 for (; addr < end; addr++) {
9304                         ret = get_user(val, addr);
9305                         if (ret)
9306                                 return ret;
9307                         if (val)
9308                                 goto err_size;
9309                 }
9310                 size = sizeof(*attr);
9311         }
9312
9313         ret = copy_from_user(attr, uattr, size);
9314         if (ret)
9315                 return -EFAULT;
9316
9317         if (attr->__reserved_1)
9318                 return -EINVAL;
9319
9320         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9321                 return -EINVAL;
9322
9323         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9324                 return -EINVAL;
9325
9326         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9327                 u64 mask = attr->branch_sample_type;
9328
9329                 /* only using defined bits */
9330                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9331                         return -EINVAL;
9332
9333                 /* at least one branch bit must be set */
9334                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9335                         return -EINVAL;
9336
9337                 /* propagate priv level, when not set for branch */
9338                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9339
9340                         /* exclude_kernel checked on syscall entry */
9341                         if (!attr->exclude_kernel)
9342                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9343
9344                         if (!attr->exclude_user)
9345                                 mask |= PERF_SAMPLE_BRANCH_USER;
9346
9347                         if (!attr->exclude_hv)
9348                                 mask |= PERF_SAMPLE_BRANCH_HV;
9349                         /*
9350                          * adjust user setting (for HW filter setup)
9351                          */
9352                         attr->branch_sample_type = mask;
9353                 }
9354                 /* privileged levels capture (kernel, hv): check permissions */
9355                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9356                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9357                         return -EACCES;
9358         }
9359
9360         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9361                 ret = perf_reg_validate(attr->sample_regs_user);
9362                 if (ret)
9363                         return ret;
9364         }
9365
9366         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9367                 if (!arch_perf_have_user_stack_dump())
9368                         return -ENOSYS;
9369
9370                 /*
9371                  * We have __u32 type for the size, but so far
9372                  * we can only use __u16 as maximum due to the
9373                  * __u16 sample size limit.
9374                  */
9375                 if (attr->sample_stack_user >= USHRT_MAX)
9376                         ret = -EINVAL;
9377                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9378                         ret = -EINVAL;
9379         }
9380
9381         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9382                 ret = perf_reg_validate(attr->sample_regs_intr);
9383 out:
9384         return ret;
9385
9386 err_size:
9387         put_user(sizeof(*attr), &uattr->size);
9388         ret = -E2BIG;
9389         goto out;
9390 }
9391
9392 static int
9393 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9394 {
9395         struct ring_buffer *rb = NULL;
9396         int ret = -EINVAL;
9397
9398         if (!output_event)
9399                 goto set;
9400
9401         /* don't allow circular references */
9402         if (event == output_event)
9403                 goto out;
9404
9405         /*
9406          * Don't allow cross-cpu buffers
9407          */
9408         if (output_event->cpu != event->cpu)
9409                 goto out;
9410
9411         /*
9412          * If its not a per-cpu rb, it must be the same task.
9413          */
9414         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9415                 goto out;
9416
9417         /*
9418          * Mixing clocks in the same buffer is trouble you don't need.
9419          */
9420         if (output_event->clock != event->clock)
9421                 goto out;
9422
9423         /*
9424          * Either writing ring buffer from beginning or from end.
9425          * Mixing is not allowed.
9426          */
9427         if (is_write_backward(output_event) != is_write_backward(event))
9428                 goto out;
9429
9430         /*
9431          * If both events generate aux data, they must be on the same PMU
9432          */
9433         if (has_aux(event) && has_aux(output_event) &&
9434             event->pmu != output_event->pmu)
9435                 goto out;
9436
9437 set:
9438         mutex_lock(&event->mmap_mutex);
9439         /* Can't redirect output if we've got an active mmap() */
9440         if (atomic_read(&event->mmap_count))
9441                 goto unlock;
9442
9443         if (output_event) {
9444                 /* get the rb we want to redirect to */
9445                 rb = ring_buffer_get(output_event);
9446                 if (!rb)
9447                         goto unlock;
9448         }
9449
9450         ring_buffer_attach(event, rb);
9451
9452         ret = 0;
9453 unlock:
9454         mutex_unlock(&event->mmap_mutex);
9455
9456 out:
9457         return ret;
9458 }
9459
9460 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9461 {
9462         if (b < a)
9463                 swap(a, b);
9464
9465         mutex_lock(a);
9466         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9467 }
9468
9469 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9470 {
9471         bool nmi_safe = false;
9472
9473         switch (clk_id) {
9474         case CLOCK_MONOTONIC:
9475                 event->clock = &ktime_get_mono_fast_ns;
9476                 nmi_safe = true;
9477                 break;
9478
9479         case CLOCK_MONOTONIC_RAW:
9480                 event->clock = &ktime_get_raw_fast_ns;
9481                 nmi_safe = true;
9482                 break;
9483
9484         case CLOCK_REALTIME:
9485                 event->clock = &ktime_get_real_ns;
9486                 break;
9487
9488         case CLOCK_BOOTTIME:
9489                 event->clock = &ktime_get_boot_ns;
9490                 break;
9491
9492         case CLOCK_TAI:
9493                 event->clock = &ktime_get_tai_ns;
9494                 break;
9495
9496         default:
9497                 return -EINVAL;
9498         }
9499
9500         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9501                 return -EINVAL;
9502
9503         return 0;
9504 }
9505
9506 /**
9507  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9508  *
9509  * @attr_uptr:  event_id type attributes for monitoring/sampling
9510  * @pid:                target pid
9511  * @cpu:                target cpu
9512  * @group_fd:           group leader event fd
9513  */
9514 SYSCALL_DEFINE5(perf_event_open,
9515                 struct perf_event_attr __user *, attr_uptr,
9516                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9517 {
9518         struct perf_event *group_leader = NULL, *output_event = NULL;
9519         struct perf_event *event, *sibling;
9520         struct perf_event_attr attr;
9521         struct perf_event_context *ctx, *uninitialized_var(gctx);
9522         struct file *event_file = NULL;
9523         struct fd group = {NULL, 0};
9524         struct task_struct *task = NULL;
9525         struct pmu *pmu;
9526         int event_fd;
9527         int move_group = 0;
9528         int err;
9529         int f_flags = O_RDWR;
9530         int cgroup_fd = -1;
9531
9532         /* for future expandability... */
9533         if (flags & ~PERF_FLAG_ALL)
9534                 return -EINVAL;
9535
9536         err = perf_copy_attr(attr_uptr, &attr);
9537         if (err)
9538                 return err;
9539
9540         if (!attr.exclude_kernel) {
9541                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9542                         return -EACCES;
9543         }
9544
9545         if (attr.freq) {
9546                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9547                         return -EINVAL;
9548         } else {
9549                 if (attr.sample_period & (1ULL << 63))
9550                         return -EINVAL;
9551         }
9552
9553         if (!attr.sample_max_stack)
9554                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9555
9556         /*
9557          * In cgroup mode, the pid argument is used to pass the fd
9558          * opened to the cgroup directory in cgroupfs. The cpu argument
9559          * designates the cpu on which to monitor threads from that
9560          * cgroup.
9561          */
9562         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9563                 return -EINVAL;
9564
9565         if (flags & PERF_FLAG_FD_CLOEXEC)
9566                 f_flags |= O_CLOEXEC;
9567
9568         event_fd = get_unused_fd_flags(f_flags);
9569         if (event_fd < 0)
9570                 return event_fd;
9571
9572         if (group_fd != -1) {
9573                 err = perf_fget_light(group_fd, &group);
9574                 if (err)
9575                         goto err_fd;
9576                 group_leader = group.file->private_data;
9577                 if (flags & PERF_FLAG_FD_OUTPUT)
9578                         output_event = group_leader;
9579                 if (flags & PERF_FLAG_FD_NO_GROUP)
9580                         group_leader = NULL;
9581         }
9582
9583         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9584                 task = find_lively_task_by_vpid(pid);
9585                 if (IS_ERR(task)) {
9586                         err = PTR_ERR(task);
9587                         goto err_group_fd;
9588                 }
9589         }
9590
9591         if (task && group_leader &&
9592             group_leader->attr.inherit != attr.inherit) {
9593                 err = -EINVAL;
9594                 goto err_task;
9595         }
9596
9597         get_online_cpus();
9598
9599         if (task) {
9600                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9601                 if (err)
9602                         goto err_cpus;
9603
9604                 /*
9605                  * Reuse ptrace permission checks for now.
9606                  *
9607                  * We must hold cred_guard_mutex across this and any potential
9608                  * perf_install_in_context() call for this new event to
9609                  * serialize against exec() altering our credentials (and the
9610                  * perf_event_exit_task() that could imply).
9611                  */
9612                 err = -EACCES;
9613                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9614                         goto err_cred;
9615         }
9616
9617         if (flags & PERF_FLAG_PID_CGROUP)
9618                 cgroup_fd = pid;
9619
9620         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9621                                  NULL, NULL, cgroup_fd);
9622         if (IS_ERR(event)) {
9623                 err = PTR_ERR(event);
9624                 goto err_cred;
9625         }
9626
9627         if (is_sampling_event(event)) {
9628                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9629                         err = -EOPNOTSUPP;
9630                         goto err_alloc;
9631                 }
9632         }
9633
9634         /*
9635          * Special case software events and allow them to be part of
9636          * any hardware group.
9637          */
9638         pmu = event->pmu;
9639
9640         if (attr.use_clockid) {
9641                 err = perf_event_set_clock(event, attr.clockid);
9642                 if (err)
9643                         goto err_alloc;
9644         }
9645
9646         if (pmu->task_ctx_nr == perf_sw_context)
9647                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9648
9649         if (group_leader &&
9650             (is_software_event(event) != is_software_event(group_leader))) {
9651                 if (is_software_event(event)) {
9652                         /*
9653                          * If event and group_leader are not both a software
9654                          * event, and event is, then group leader is not.
9655                          *
9656                          * Allow the addition of software events to !software
9657                          * groups, this is safe because software events never
9658                          * fail to schedule.
9659                          */
9660                         pmu = group_leader->pmu;
9661                 } else if (is_software_event(group_leader) &&
9662                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9663                         /*
9664                          * In case the group is a pure software group, and we
9665                          * try to add a hardware event, move the whole group to
9666                          * the hardware context.
9667                          */
9668                         move_group = 1;
9669                 }
9670         }
9671
9672         /*
9673          * Get the target context (task or percpu):
9674          */
9675         ctx = find_get_context(pmu, task, event);
9676         if (IS_ERR(ctx)) {
9677                 err = PTR_ERR(ctx);
9678                 goto err_alloc;
9679         }
9680
9681         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9682                 err = -EBUSY;
9683                 goto err_context;
9684         }
9685
9686         /*
9687          * Look up the group leader (we will attach this event to it):
9688          */
9689         if (group_leader) {
9690                 err = -EINVAL;
9691
9692                 /*
9693                  * Do not allow a recursive hierarchy (this new sibling
9694                  * becoming part of another group-sibling):
9695                  */
9696                 if (group_leader->group_leader != group_leader)
9697                         goto err_context;
9698
9699                 /* All events in a group should have the same clock */
9700                 if (group_leader->clock != event->clock)
9701                         goto err_context;
9702
9703                 /*
9704                  * Do not allow to attach to a group in a different
9705                  * task or CPU context:
9706                  */
9707                 if (move_group) {
9708                         /*
9709                          * Make sure we're both on the same task, or both
9710                          * per-cpu events.
9711                          */
9712                         if (group_leader->ctx->task != ctx->task)
9713                                 goto err_context;
9714
9715                         /*
9716                          * Make sure we're both events for the same CPU;
9717                          * grouping events for different CPUs is broken; since
9718                          * you can never concurrently schedule them anyhow.
9719                          */
9720                         if (group_leader->cpu != event->cpu)
9721                                 goto err_context;
9722                 } else {
9723                         if (group_leader->ctx != ctx)
9724                                 goto err_context;
9725                 }
9726
9727                 /*
9728                  * Only a group leader can be exclusive or pinned
9729                  */
9730                 if (attr.exclusive || attr.pinned)
9731                         goto err_context;
9732         }
9733
9734         if (output_event) {
9735                 err = perf_event_set_output(event, output_event);
9736                 if (err)
9737                         goto err_context;
9738         }
9739
9740         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9741                                         f_flags);
9742         if (IS_ERR(event_file)) {
9743                 err = PTR_ERR(event_file);
9744                 event_file = NULL;
9745                 goto err_context;
9746         }
9747
9748         if (move_group) {
9749                 gctx = group_leader->ctx;
9750                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9751                 if (gctx->task == TASK_TOMBSTONE) {
9752                         err = -ESRCH;
9753                         goto err_locked;
9754                 }
9755         } else {
9756                 mutex_lock(&ctx->mutex);
9757         }
9758
9759         if (ctx->task == TASK_TOMBSTONE) {
9760                 err = -ESRCH;
9761                 goto err_locked;
9762         }
9763
9764         if (!perf_event_validate_size(event)) {
9765                 err = -E2BIG;
9766                 goto err_locked;
9767         }
9768
9769         /*
9770          * Must be under the same ctx::mutex as perf_install_in_context(),
9771          * because we need to serialize with concurrent event creation.
9772          */
9773         if (!exclusive_event_installable(event, ctx)) {
9774                 /* exclusive and group stuff are assumed mutually exclusive */
9775                 WARN_ON_ONCE(move_group);
9776
9777                 err = -EBUSY;
9778                 goto err_locked;
9779         }
9780
9781         WARN_ON_ONCE(ctx->parent_ctx);
9782
9783         /*
9784          * This is the point on no return; we cannot fail hereafter. This is
9785          * where we start modifying current state.
9786          */
9787
9788         if (move_group) {
9789                 /*
9790                  * See perf_event_ctx_lock() for comments on the details
9791                  * of swizzling perf_event::ctx.
9792                  */
9793                 perf_remove_from_context(group_leader, 0);
9794
9795                 list_for_each_entry(sibling, &group_leader->sibling_list,
9796                                     group_entry) {
9797                         perf_remove_from_context(sibling, 0);
9798                         put_ctx(gctx);
9799                 }
9800
9801                 /*
9802                  * Wait for everybody to stop referencing the events through
9803                  * the old lists, before installing it on new lists.
9804                  */
9805                 synchronize_rcu();
9806
9807                 /*
9808                  * Install the group siblings before the group leader.
9809                  *
9810                  * Because a group leader will try and install the entire group
9811                  * (through the sibling list, which is still in-tact), we can
9812                  * end up with siblings installed in the wrong context.
9813                  *
9814                  * By installing siblings first we NO-OP because they're not
9815                  * reachable through the group lists.
9816                  */
9817                 list_for_each_entry(sibling, &group_leader->sibling_list,
9818                                     group_entry) {
9819                         perf_event__state_init(sibling);
9820                         perf_install_in_context(ctx, sibling, sibling->cpu);
9821                         get_ctx(ctx);
9822                 }
9823
9824                 /*
9825                  * Removing from the context ends up with disabled
9826                  * event. What we want here is event in the initial
9827                  * startup state, ready to be add into new context.
9828                  */
9829                 perf_event__state_init(group_leader);
9830                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9831                 get_ctx(ctx);
9832
9833                 /*
9834                  * Now that all events are installed in @ctx, nothing
9835                  * references @gctx anymore, so drop the last reference we have
9836                  * on it.
9837                  */
9838                 put_ctx(gctx);
9839         }
9840
9841         /*
9842          * Precalculate sample_data sizes; do while holding ctx::mutex such
9843          * that we're serialized against further additions and before
9844          * perf_install_in_context() which is the point the event is active and
9845          * can use these values.
9846          */
9847         perf_event__header_size(event);
9848         perf_event__id_header_size(event);
9849
9850         event->owner = current;
9851
9852         perf_install_in_context(ctx, event, event->cpu);
9853         perf_unpin_context(ctx);
9854
9855         if (move_group)
9856                 mutex_unlock(&gctx->mutex);
9857         mutex_unlock(&ctx->mutex);
9858
9859         if (task) {
9860                 mutex_unlock(&task->signal->cred_guard_mutex);
9861                 put_task_struct(task);
9862         }
9863
9864         put_online_cpus();
9865
9866         mutex_lock(&current->perf_event_mutex);
9867         list_add_tail(&event->owner_entry, &current->perf_event_list);
9868         mutex_unlock(&current->perf_event_mutex);
9869
9870         /*
9871          * Drop the reference on the group_event after placing the
9872          * new event on the sibling_list. This ensures destruction
9873          * of the group leader will find the pointer to itself in
9874          * perf_group_detach().
9875          */
9876         fdput(group);
9877         fd_install(event_fd, event_file);
9878         return event_fd;
9879
9880 err_locked:
9881         if (move_group)
9882                 mutex_unlock(&gctx->mutex);
9883         mutex_unlock(&ctx->mutex);
9884 /* err_file: */
9885         fput(event_file);
9886 err_context:
9887         perf_unpin_context(ctx);
9888         put_ctx(ctx);
9889 err_alloc:
9890         /*
9891          * If event_file is set, the fput() above will have called ->release()
9892          * and that will take care of freeing the event.
9893          */
9894         if (!event_file)
9895                 free_event(event);
9896 err_cred:
9897         if (task)
9898                 mutex_unlock(&task->signal->cred_guard_mutex);
9899 err_cpus:
9900         put_online_cpus();
9901 err_task:
9902         if (task)
9903                 put_task_struct(task);
9904 err_group_fd:
9905         fdput(group);
9906 err_fd:
9907         put_unused_fd(event_fd);
9908         return err;
9909 }
9910
9911 /**
9912  * perf_event_create_kernel_counter
9913  *
9914  * @attr: attributes of the counter to create
9915  * @cpu: cpu in which the counter is bound
9916  * @task: task to profile (NULL for percpu)
9917  */
9918 struct perf_event *
9919 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9920                                  struct task_struct *task,
9921                                  perf_overflow_handler_t overflow_handler,
9922                                  void *context)
9923 {
9924         struct perf_event_context *ctx;
9925         struct perf_event *event;
9926         int err;
9927
9928         /*
9929          * Get the target context (task or percpu):
9930          */
9931
9932         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9933                                  overflow_handler, context, -1);
9934         if (IS_ERR(event)) {
9935                 err = PTR_ERR(event);
9936                 goto err;
9937         }
9938
9939         /* Mark owner so we could distinguish it from user events. */
9940         event->owner = TASK_TOMBSTONE;
9941
9942         ctx = find_get_context(event->pmu, task, event);
9943         if (IS_ERR(ctx)) {
9944                 err = PTR_ERR(ctx);
9945                 goto err_free;
9946         }
9947
9948         WARN_ON_ONCE(ctx->parent_ctx);
9949         mutex_lock(&ctx->mutex);
9950         if (ctx->task == TASK_TOMBSTONE) {
9951                 err = -ESRCH;
9952                 goto err_unlock;
9953         }
9954
9955         if (!exclusive_event_installable(event, ctx)) {
9956                 err = -EBUSY;
9957                 goto err_unlock;
9958         }
9959
9960         perf_install_in_context(ctx, event, cpu);
9961         perf_unpin_context(ctx);
9962         mutex_unlock(&ctx->mutex);
9963
9964         return event;
9965
9966 err_unlock:
9967         mutex_unlock(&ctx->mutex);
9968         perf_unpin_context(ctx);
9969         put_ctx(ctx);
9970 err_free:
9971         free_event(event);
9972 err:
9973         return ERR_PTR(err);
9974 }
9975 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9976
9977 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9978 {
9979         struct perf_event_context *src_ctx;
9980         struct perf_event_context *dst_ctx;
9981         struct perf_event *event, *tmp;
9982         LIST_HEAD(events);
9983
9984         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9985         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9986
9987         /*
9988          * See perf_event_ctx_lock() for comments on the details
9989          * of swizzling perf_event::ctx.
9990          */
9991         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9992         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9993                                  event_entry) {
9994                 perf_remove_from_context(event, 0);
9995                 unaccount_event_cpu(event, src_cpu);
9996                 put_ctx(src_ctx);
9997                 list_add(&event->migrate_entry, &events);
9998         }
9999
10000         /*
10001          * Wait for the events to quiesce before re-instating them.
10002          */
10003         synchronize_rcu();
10004
10005         /*
10006          * Re-instate events in 2 passes.
10007          *
10008          * Skip over group leaders and only install siblings on this first
10009          * pass, siblings will not get enabled without a leader, however a
10010          * leader will enable its siblings, even if those are still on the old
10011          * context.
10012          */
10013         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10014                 if (event->group_leader == event)
10015                         continue;
10016
10017                 list_del(&event->migrate_entry);
10018                 if (event->state >= PERF_EVENT_STATE_OFF)
10019                         event->state = PERF_EVENT_STATE_INACTIVE;
10020                 account_event_cpu(event, dst_cpu);
10021                 perf_install_in_context(dst_ctx, event, dst_cpu);
10022                 get_ctx(dst_ctx);
10023         }
10024
10025         /*
10026          * Once all the siblings are setup properly, install the group leaders
10027          * to make it go.
10028          */
10029         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10030                 list_del(&event->migrate_entry);
10031                 if (event->state >= PERF_EVENT_STATE_OFF)
10032                         event->state = PERF_EVENT_STATE_INACTIVE;
10033                 account_event_cpu(event, dst_cpu);
10034                 perf_install_in_context(dst_ctx, event, dst_cpu);
10035                 get_ctx(dst_ctx);
10036         }
10037         mutex_unlock(&dst_ctx->mutex);
10038         mutex_unlock(&src_ctx->mutex);
10039 }
10040 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10041
10042 static void sync_child_event(struct perf_event *child_event,
10043                                struct task_struct *child)
10044 {
10045         struct perf_event *parent_event = child_event->parent;
10046         u64 child_val;
10047
10048         if (child_event->attr.inherit_stat)
10049                 perf_event_read_event(child_event, child);
10050
10051         child_val = perf_event_count(child_event);
10052
10053         /*
10054          * Add back the child's count to the parent's count:
10055          */
10056         atomic64_add(child_val, &parent_event->child_count);
10057         atomic64_add(child_event->total_time_enabled,
10058                      &parent_event->child_total_time_enabled);
10059         atomic64_add(child_event->total_time_running,
10060                      &parent_event->child_total_time_running);
10061 }
10062
10063 static void
10064 perf_event_exit_event(struct perf_event *child_event,
10065                       struct perf_event_context *child_ctx,
10066                       struct task_struct *child)
10067 {
10068         struct perf_event *parent_event = child_event->parent;
10069
10070         /*
10071          * Do not destroy the 'original' grouping; because of the context
10072          * switch optimization the original events could've ended up in a
10073          * random child task.
10074          *
10075          * If we were to destroy the original group, all group related
10076          * operations would cease to function properly after this random
10077          * child dies.
10078          *
10079          * Do destroy all inherited groups, we don't care about those
10080          * and being thorough is better.
10081          */
10082         raw_spin_lock_irq(&child_ctx->lock);
10083         WARN_ON_ONCE(child_ctx->is_active);
10084
10085         if (parent_event)
10086                 perf_group_detach(child_event);
10087         list_del_event(child_event, child_ctx);
10088         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10089         raw_spin_unlock_irq(&child_ctx->lock);
10090
10091         /*
10092          * Parent events are governed by their filedesc, retain them.
10093          */
10094         if (!parent_event) {
10095                 perf_event_wakeup(child_event);
10096                 return;
10097         }
10098         /*
10099          * Child events can be cleaned up.
10100          */
10101
10102         sync_child_event(child_event, child);
10103
10104         /*
10105          * Remove this event from the parent's list
10106          */
10107         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10108         mutex_lock(&parent_event->child_mutex);
10109         list_del_init(&child_event->child_list);
10110         mutex_unlock(&parent_event->child_mutex);
10111
10112         /*
10113          * Kick perf_poll() for is_event_hup().
10114          */
10115         perf_event_wakeup(parent_event);
10116         free_event(child_event);
10117         put_event(parent_event);
10118 }
10119
10120 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10121 {
10122         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10123         struct perf_event *child_event, *next;
10124
10125         WARN_ON_ONCE(child != current);
10126
10127         child_ctx = perf_pin_task_context(child, ctxn);
10128         if (!child_ctx)
10129                 return;
10130
10131         /*
10132          * In order to reduce the amount of tricky in ctx tear-down, we hold
10133          * ctx::mutex over the entire thing. This serializes against almost
10134          * everything that wants to access the ctx.
10135          *
10136          * The exception is sys_perf_event_open() /
10137          * perf_event_create_kernel_count() which does find_get_context()
10138          * without ctx::mutex (it cannot because of the move_group double mutex
10139          * lock thing). See the comments in perf_install_in_context().
10140          */
10141         mutex_lock(&child_ctx->mutex);
10142
10143         /*
10144          * In a single ctx::lock section, de-schedule the events and detach the
10145          * context from the task such that we cannot ever get it scheduled back
10146          * in.
10147          */
10148         raw_spin_lock_irq(&child_ctx->lock);
10149         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10150
10151         /*
10152          * Now that the context is inactive, destroy the task <-> ctx relation
10153          * and mark the context dead.
10154          */
10155         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10156         put_ctx(child_ctx); /* cannot be last */
10157         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10158         put_task_struct(current); /* cannot be last */
10159
10160         clone_ctx = unclone_ctx(child_ctx);
10161         raw_spin_unlock_irq(&child_ctx->lock);
10162
10163         if (clone_ctx)
10164                 put_ctx(clone_ctx);
10165
10166         /*
10167          * Report the task dead after unscheduling the events so that we
10168          * won't get any samples after PERF_RECORD_EXIT. We can however still
10169          * get a few PERF_RECORD_READ events.
10170          */
10171         perf_event_task(child, child_ctx, 0);
10172
10173         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10174                 perf_event_exit_event(child_event, child_ctx, child);
10175
10176         mutex_unlock(&child_ctx->mutex);
10177
10178         put_ctx(child_ctx);
10179 }
10180
10181 /*
10182  * When a child task exits, feed back event values to parent events.
10183  *
10184  * Can be called with cred_guard_mutex held when called from
10185  * install_exec_creds().
10186  */
10187 void perf_event_exit_task(struct task_struct *child)
10188 {
10189         struct perf_event *event, *tmp;
10190         int ctxn;
10191
10192         mutex_lock(&child->perf_event_mutex);
10193         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10194                                  owner_entry) {
10195                 list_del_init(&event->owner_entry);
10196
10197                 /*
10198                  * Ensure the list deletion is visible before we clear
10199                  * the owner, closes a race against perf_release() where
10200                  * we need to serialize on the owner->perf_event_mutex.
10201                  */
10202                 smp_store_release(&event->owner, NULL);
10203         }
10204         mutex_unlock(&child->perf_event_mutex);
10205
10206         for_each_task_context_nr(ctxn)
10207                 perf_event_exit_task_context(child, ctxn);
10208
10209         /*
10210          * The perf_event_exit_task_context calls perf_event_task
10211          * with child's task_ctx, which generates EXIT events for
10212          * child contexts and sets child->perf_event_ctxp[] to NULL.
10213          * At this point we need to send EXIT events to cpu contexts.
10214          */
10215         perf_event_task(child, NULL, 0);
10216 }
10217
10218 static void perf_free_event(struct perf_event *event,
10219                             struct perf_event_context *ctx)
10220 {
10221         struct perf_event *parent = event->parent;
10222
10223         if (WARN_ON_ONCE(!parent))
10224                 return;
10225
10226         mutex_lock(&parent->child_mutex);
10227         list_del_init(&event->child_list);
10228         mutex_unlock(&parent->child_mutex);
10229
10230         put_event(parent);
10231
10232         raw_spin_lock_irq(&ctx->lock);
10233         perf_group_detach(event);
10234         list_del_event(event, ctx);
10235         raw_spin_unlock_irq(&ctx->lock);
10236         free_event(event);
10237 }
10238
10239 /*
10240  * Free an unexposed, unused context as created by inheritance by
10241  * perf_event_init_task below, used by fork() in case of fail.
10242  *
10243  * Not all locks are strictly required, but take them anyway to be nice and
10244  * help out with the lockdep assertions.
10245  */
10246 void perf_event_free_task(struct task_struct *task)
10247 {
10248         struct perf_event_context *ctx;
10249         struct perf_event *event, *tmp;
10250         int ctxn;
10251
10252         for_each_task_context_nr(ctxn) {
10253                 ctx = task->perf_event_ctxp[ctxn];
10254                 if (!ctx)
10255                         continue;
10256
10257                 mutex_lock(&ctx->mutex);
10258 again:
10259                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10260                                 group_entry)
10261                         perf_free_event(event, ctx);
10262
10263                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10264                                 group_entry)
10265                         perf_free_event(event, ctx);
10266
10267                 if (!list_empty(&ctx->pinned_groups) ||
10268                                 !list_empty(&ctx->flexible_groups))
10269                         goto again;
10270
10271                 mutex_unlock(&ctx->mutex);
10272
10273                 put_ctx(ctx);
10274         }
10275 }
10276
10277 void perf_event_delayed_put(struct task_struct *task)
10278 {
10279         int ctxn;
10280
10281         for_each_task_context_nr(ctxn)
10282                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10283 }
10284
10285 struct file *perf_event_get(unsigned int fd)
10286 {
10287         struct file *file;
10288
10289         file = fget_raw(fd);
10290         if (!file)
10291                 return ERR_PTR(-EBADF);
10292
10293         if (file->f_op != &perf_fops) {
10294                 fput(file);
10295                 return ERR_PTR(-EBADF);
10296         }
10297
10298         return file;
10299 }
10300
10301 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10302 {
10303         if (!event)
10304                 return ERR_PTR(-EINVAL);
10305
10306         return &event->attr;
10307 }
10308
10309 /*
10310  * inherit a event from parent task to child task:
10311  */
10312 static struct perf_event *
10313 inherit_event(struct perf_event *parent_event,
10314               struct task_struct *parent,
10315               struct perf_event_context *parent_ctx,
10316               struct task_struct *child,
10317               struct perf_event *group_leader,
10318               struct perf_event_context *child_ctx)
10319 {
10320         enum perf_event_active_state parent_state = parent_event->state;
10321         struct perf_event *child_event;
10322         unsigned long flags;
10323
10324         /*
10325          * Instead of creating recursive hierarchies of events,
10326          * we link inherited events back to the original parent,
10327          * which has a filp for sure, which we use as the reference
10328          * count:
10329          */
10330         if (parent_event->parent)
10331                 parent_event = parent_event->parent;
10332
10333         child_event = perf_event_alloc(&parent_event->attr,
10334                                            parent_event->cpu,
10335                                            child,
10336                                            group_leader, parent_event,
10337                                            NULL, NULL, -1);
10338         if (IS_ERR(child_event))
10339                 return child_event;
10340
10341         /*
10342          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10343          * must be under the same lock in order to serialize against
10344          * perf_event_release_kernel(), such that either we must observe
10345          * is_orphaned_event() or they will observe us on the child_list.
10346          */
10347         mutex_lock(&parent_event->child_mutex);
10348         if (is_orphaned_event(parent_event) ||
10349             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10350                 mutex_unlock(&parent_event->child_mutex);
10351                 free_event(child_event);
10352                 return NULL;
10353         }
10354
10355         get_ctx(child_ctx);
10356
10357         /*
10358          * Make the child state follow the state of the parent event,
10359          * not its attr.disabled bit.  We hold the parent's mutex,
10360          * so we won't race with perf_event_{en, dis}able_family.
10361          */
10362         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10363                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10364         else
10365                 child_event->state = PERF_EVENT_STATE_OFF;
10366
10367         if (parent_event->attr.freq) {
10368                 u64 sample_period = parent_event->hw.sample_period;
10369                 struct hw_perf_event *hwc = &child_event->hw;
10370
10371                 hwc->sample_period = sample_period;
10372                 hwc->last_period   = sample_period;
10373
10374                 local64_set(&hwc->period_left, sample_period);
10375         }
10376
10377         child_event->ctx = child_ctx;
10378         child_event->overflow_handler = parent_event->overflow_handler;
10379         child_event->overflow_handler_context
10380                 = parent_event->overflow_handler_context;
10381
10382         /*
10383          * Precalculate sample_data sizes
10384          */
10385         perf_event__header_size(child_event);
10386         perf_event__id_header_size(child_event);
10387
10388         /*
10389          * Link it up in the child's context:
10390          */
10391         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10392         add_event_to_ctx(child_event, child_ctx);
10393         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10394
10395         /*
10396          * Link this into the parent event's child list
10397          */
10398         list_add_tail(&child_event->child_list, &parent_event->child_list);
10399         mutex_unlock(&parent_event->child_mutex);
10400
10401         return child_event;
10402 }
10403
10404 static int inherit_group(struct perf_event *parent_event,
10405               struct task_struct *parent,
10406               struct perf_event_context *parent_ctx,
10407               struct task_struct *child,
10408               struct perf_event_context *child_ctx)
10409 {
10410         struct perf_event *leader;
10411         struct perf_event *sub;
10412         struct perf_event *child_ctr;
10413
10414         leader = inherit_event(parent_event, parent, parent_ctx,
10415                                  child, NULL, child_ctx);
10416         if (IS_ERR(leader))
10417                 return PTR_ERR(leader);
10418         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10419                 child_ctr = inherit_event(sub, parent, parent_ctx,
10420                                             child, leader, child_ctx);
10421                 if (IS_ERR(child_ctr))
10422                         return PTR_ERR(child_ctr);
10423         }
10424         return 0;
10425 }
10426
10427 static int
10428 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10429                    struct perf_event_context *parent_ctx,
10430                    struct task_struct *child, int ctxn,
10431                    int *inherited_all)
10432 {
10433         int ret;
10434         struct perf_event_context *child_ctx;
10435
10436         if (!event->attr.inherit) {
10437                 *inherited_all = 0;
10438                 return 0;
10439         }
10440
10441         child_ctx = child->perf_event_ctxp[ctxn];
10442         if (!child_ctx) {
10443                 /*
10444                  * This is executed from the parent task context, so
10445                  * inherit events that have been marked for cloning.
10446                  * First allocate and initialize a context for the
10447                  * child.
10448                  */
10449
10450                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10451                 if (!child_ctx)
10452                         return -ENOMEM;
10453
10454                 child->perf_event_ctxp[ctxn] = child_ctx;
10455         }
10456
10457         ret = inherit_group(event, parent, parent_ctx,
10458                             child, child_ctx);
10459
10460         if (ret)
10461                 *inherited_all = 0;
10462
10463         return ret;
10464 }
10465
10466 /*
10467  * Initialize the perf_event context in task_struct
10468  */
10469 static int perf_event_init_context(struct task_struct *child, int ctxn)
10470 {
10471         struct perf_event_context *child_ctx, *parent_ctx;
10472         struct perf_event_context *cloned_ctx;
10473         struct perf_event *event;
10474         struct task_struct *parent = current;
10475         int inherited_all = 1;
10476         unsigned long flags;
10477         int ret = 0;
10478
10479         if (likely(!parent->perf_event_ctxp[ctxn]))
10480                 return 0;
10481
10482         /*
10483          * If the parent's context is a clone, pin it so it won't get
10484          * swapped under us.
10485          */
10486         parent_ctx = perf_pin_task_context(parent, ctxn);
10487         if (!parent_ctx)
10488                 return 0;
10489
10490         /*
10491          * No need to check if parent_ctx != NULL here; since we saw
10492          * it non-NULL earlier, the only reason for it to become NULL
10493          * is if we exit, and since we're currently in the middle of
10494          * a fork we can't be exiting at the same time.
10495          */
10496
10497         /*
10498          * Lock the parent list. No need to lock the child - not PID
10499          * hashed yet and not running, so nobody can access it.
10500          */
10501         mutex_lock(&parent_ctx->mutex);
10502
10503         /*
10504          * We dont have to disable NMIs - we are only looking at
10505          * the list, not manipulating it:
10506          */
10507         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10508                 ret = inherit_task_group(event, parent, parent_ctx,
10509                                          child, ctxn, &inherited_all);
10510                 if (ret)
10511                         break;
10512         }
10513
10514         /*
10515          * We can't hold ctx->lock when iterating the ->flexible_group list due
10516          * to allocations, but we need to prevent rotation because
10517          * rotate_ctx() will change the list from interrupt context.
10518          */
10519         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10520         parent_ctx->rotate_disable = 1;
10521         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10522
10523         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10524                 ret = inherit_task_group(event, parent, parent_ctx,
10525                                          child, ctxn, &inherited_all);
10526                 if (ret)
10527                         break;
10528         }
10529
10530         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10531         parent_ctx->rotate_disable = 0;
10532
10533         child_ctx = child->perf_event_ctxp[ctxn];
10534
10535         if (child_ctx && inherited_all) {
10536                 /*
10537                  * Mark the child context as a clone of the parent
10538                  * context, or of whatever the parent is a clone of.
10539                  *
10540                  * Note that if the parent is a clone, the holding of
10541                  * parent_ctx->lock avoids it from being uncloned.
10542                  */
10543                 cloned_ctx = parent_ctx->parent_ctx;
10544                 if (cloned_ctx) {
10545                         child_ctx->parent_ctx = cloned_ctx;
10546                         child_ctx->parent_gen = parent_ctx->parent_gen;
10547                 } else {
10548                         child_ctx->parent_ctx = parent_ctx;
10549                         child_ctx->parent_gen = parent_ctx->generation;
10550                 }
10551                 get_ctx(child_ctx->parent_ctx);
10552         }
10553
10554         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10555         mutex_unlock(&parent_ctx->mutex);
10556
10557         perf_unpin_context(parent_ctx);
10558         put_ctx(parent_ctx);
10559
10560         return ret;
10561 }
10562
10563 /*
10564  * Initialize the perf_event context in task_struct
10565  */
10566 int perf_event_init_task(struct task_struct *child)
10567 {
10568         int ctxn, ret;
10569
10570         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10571         mutex_init(&child->perf_event_mutex);
10572         INIT_LIST_HEAD(&child->perf_event_list);
10573
10574         for_each_task_context_nr(ctxn) {
10575                 ret = perf_event_init_context(child, ctxn);
10576                 if (ret) {
10577                         perf_event_free_task(child);
10578                         return ret;
10579                 }
10580         }
10581
10582         return 0;
10583 }
10584
10585 static void __init perf_event_init_all_cpus(void)
10586 {
10587         struct swevent_htable *swhash;
10588         int cpu;
10589
10590         for_each_possible_cpu(cpu) {
10591                 swhash = &per_cpu(swevent_htable, cpu);
10592                 mutex_init(&swhash->hlist_mutex);
10593                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10594
10595                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10596                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10597
10598                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10599         }
10600 }
10601
10602 int perf_event_init_cpu(unsigned int cpu)
10603 {
10604         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10605
10606         mutex_lock(&swhash->hlist_mutex);
10607         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10608                 struct swevent_hlist *hlist;
10609
10610                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10611                 WARN_ON(!hlist);
10612                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10613         }
10614         mutex_unlock(&swhash->hlist_mutex);
10615         return 0;
10616 }
10617
10618 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10619 static void __perf_event_exit_context(void *__info)
10620 {
10621         struct perf_event_context *ctx = __info;
10622         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10623         struct perf_event *event;
10624
10625         raw_spin_lock(&ctx->lock);
10626         list_for_each_entry(event, &ctx->event_list, event_entry)
10627                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10628         raw_spin_unlock(&ctx->lock);
10629 }
10630
10631 static void perf_event_exit_cpu_context(int cpu)
10632 {
10633         struct perf_event_context *ctx;
10634         struct pmu *pmu;
10635         int idx;
10636
10637         idx = srcu_read_lock(&pmus_srcu);
10638         list_for_each_entry_rcu(pmu, &pmus, entry) {
10639                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10640
10641                 mutex_lock(&ctx->mutex);
10642                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10643                 mutex_unlock(&ctx->mutex);
10644         }
10645         srcu_read_unlock(&pmus_srcu, idx);
10646 }
10647 #else
10648
10649 static void perf_event_exit_cpu_context(int cpu) { }
10650
10651 #endif
10652
10653 int perf_event_exit_cpu(unsigned int cpu)
10654 {
10655         perf_event_exit_cpu_context(cpu);
10656         return 0;
10657 }
10658
10659 static int
10660 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10661 {
10662         int cpu;
10663
10664         for_each_online_cpu(cpu)
10665                 perf_event_exit_cpu(cpu);
10666
10667         return NOTIFY_OK;
10668 }
10669
10670 /*
10671  * Run the perf reboot notifier at the very last possible moment so that
10672  * the generic watchdog code runs as long as possible.
10673  */
10674 static struct notifier_block perf_reboot_notifier = {
10675         .notifier_call = perf_reboot,
10676         .priority = INT_MIN,
10677 };
10678
10679 void __init perf_event_init(void)
10680 {
10681         int ret;
10682
10683         idr_init(&pmu_idr);
10684
10685         perf_event_init_all_cpus();
10686         init_srcu_struct(&pmus_srcu);
10687         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10688         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10689         perf_pmu_register(&perf_task_clock, NULL, -1);
10690         perf_tp_register();
10691         perf_event_init_cpu(smp_processor_id());
10692         register_reboot_notifier(&perf_reboot_notifier);
10693
10694         ret = init_hw_breakpoint();
10695         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10696
10697         /*
10698          * Build time assertion that we keep the data_head at the intended
10699          * location.  IOW, validation we got the __reserved[] size right.
10700          */
10701         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10702                      != 1024);
10703 }
10704
10705 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10706                               char *page)
10707 {
10708         struct perf_pmu_events_attr *pmu_attr =
10709                 container_of(attr, struct perf_pmu_events_attr, attr);
10710
10711         if (pmu_attr->event_str)
10712                 return sprintf(page, "%s\n", pmu_attr->event_str);
10713
10714         return 0;
10715 }
10716 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10717
10718 static int __init perf_event_sysfs_init(void)
10719 {
10720         struct pmu *pmu;
10721         int ret;
10722
10723         mutex_lock(&pmus_lock);
10724
10725         ret = bus_register(&pmu_bus);
10726         if (ret)
10727                 goto unlock;
10728
10729         list_for_each_entry(pmu, &pmus, entry) {
10730                 if (!pmu->name || pmu->type < 0)
10731                         continue;
10732
10733                 ret = pmu_dev_alloc(pmu);
10734                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10735         }
10736         pmu_bus_running = 1;
10737         ret = 0;
10738
10739 unlock:
10740         mutex_unlock(&pmus_lock);
10741
10742         return ret;
10743 }
10744 device_initcall(perf_event_sysfs_init);
10745
10746 #ifdef CONFIG_CGROUP_PERF
10747 static struct cgroup_subsys_state *
10748 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10749 {
10750         struct perf_cgroup *jc;
10751
10752         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10753         if (!jc)
10754                 return ERR_PTR(-ENOMEM);
10755
10756         jc->info = alloc_percpu(struct perf_cgroup_info);
10757         if (!jc->info) {
10758                 kfree(jc);
10759                 return ERR_PTR(-ENOMEM);
10760         }
10761
10762         return &jc->css;
10763 }
10764
10765 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10766 {
10767         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10768
10769         free_percpu(jc->info);
10770         kfree(jc);
10771 }
10772
10773 static int __perf_cgroup_move(void *info)
10774 {
10775         struct task_struct *task = info;
10776         rcu_read_lock();
10777         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10778         rcu_read_unlock();
10779         return 0;
10780 }
10781
10782 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10783 {
10784         struct task_struct *task;
10785         struct cgroup_subsys_state *css;
10786
10787         cgroup_taskset_for_each(task, css, tset)
10788                 task_function_call(task, __perf_cgroup_move, task);
10789 }
10790
10791 struct cgroup_subsys perf_event_cgrp_subsys = {
10792         .css_alloc      = perf_cgroup_css_alloc,
10793         .css_free       = perf_cgroup_css_free,
10794         .attach         = perf_cgroup_attach,
10795 };
10796 #endif /* CONFIG_CGROUP_PERF */