]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - virt/kvm/kvm_main.c
KVM: Boost vCPUs that are delivering interrupts
[zynq/linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125                                 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137
138 static bool largepages_enabled = true;
139
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147                 unsigned long start, unsigned long end, bool blockable)
148 {
149         return 0;
150 }
151
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154         if (pfn_valid(pfn))
155                 return PageReserved(pfn_to_page(pfn));
156
157         return true;
158 }
159
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165         int cpu = get_cpu();
166         preempt_notifier_register(&vcpu->preempt_notifier);
167         kvm_arch_vcpu_load(vcpu, cpu);
168         put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174         preempt_disable();
175         kvm_arch_vcpu_put(vcpu);
176         preempt_notifier_unregister(&vcpu->preempt_notifier);
177         preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185
186         /*
187          * We need to wait for the VCPU to reenable interrupts and get out of
188          * READING_SHADOW_PAGE_TABLES mode.
189          */
190         if (req & KVM_REQUEST_WAIT)
191                 return mode != OUTSIDE_GUEST_MODE;
192
193         /*
194          * Need to kick a running VCPU, but otherwise there is nothing to do.
195          */
196         return mode == IN_GUEST_MODE;
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 }
202
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205         if (unlikely(!cpus))
206                 cpus = cpu_online_mask;
207
208         if (cpumask_empty(cpus))
209                 return false;
210
211         smp_call_function_many(cpus, ack_flush, NULL, wait);
212         return true;
213 }
214
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218         int i, cpu, me;
219         struct kvm_vcpu *vcpu;
220         bool called;
221
222         me = get_cpu();
223
224         kvm_for_each_vcpu(i, vcpu, kvm) {
225                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226                         continue;
227
228                 kvm_make_request(req, vcpu);
229                 cpu = vcpu->cpu;
230
231                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232                         continue;
233
234                 if (tmp != NULL && cpu != -1 && cpu != me &&
235                     kvm_request_needs_ipi(vcpu, req))
236                         __cpumask_set_cpu(cpu, tmp);
237         }
238
239         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240         put_cpu();
241
242         return called;
243 }
244
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247         cpumask_var_t cpus;
248         bool called;
249
250         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251
252         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253
254         free_cpumask_var(cpus);
255         return called;
256 }
257
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261         /*
262          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263          * kvm_make_all_cpus_request.
264          */
265         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266
267         /*
268          * We want to publish modifications to the page tables before reading
269          * mode. Pairs with a memory barrier in arch-specific code.
270          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271          * and smp_mb in walk_shadow_page_lockless_begin/end.
272          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273          *
274          * There is already an smp_mb__after_atomic() before
275          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276          * barrier here.
277          */
278         if (!kvm_arch_flush_remote_tlb(kvm)
279             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280                 ++kvm->stat.remote_tlb_flush;
281         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293         struct page *page;
294         int r;
295
296         mutex_init(&vcpu->mutex);
297         vcpu->cpu = -1;
298         vcpu->kvm = kvm;
299         vcpu->vcpu_id = id;
300         vcpu->pid = NULL;
301         init_swait_queue_head(&vcpu->wq);
302         kvm_async_pf_vcpu_init(vcpu);
303
304         vcpu->pre_pcpu = -1;
305         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306
307         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308         if (!page) {
309                 r = -ENOMEM;
310                 goto fail;
311         }
312         vcpu->run = page_address(page);
313
314         kvm_vcpu_set_in_spin_loop(vcpu, false);
315         kvm_vcpu_set_dy_eligible(vcpu, false);
316         vcpu->preempted = false;
317         vcpu->ready = false;
318
319         r = kvm_arch_vcpu_init(vcpu);
320         if (r < 0)
321                 goto fail_free_run;
322         return 0;
323
324 fail_free_run:
325         free_page((unsigned long)vcpu->run);
326 fail:
327         return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333         /*
334          * no need for rcu_read_lock as VCPU_RUN is the only place that
335          * will change the vcpu->pid pointer and on uninit all file
336          * descriptors are already gone.
337          */
338         put_pid(rcu_dereference_protected(vcpu->pid, 1));
339         kvm_arch_vcpu_uninit(vcpu);
340         free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347         return container_of(mn, struct kvm, mmu_notifier);
348 }
349
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351                                         struct mm_struct *mm,
352                                         unsigned long address,
353                                         pte_t pte)
354 {
355         struct kvm *kvm = mmu_notifier_to_kvm(mn);
356         int idx;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         spin_lock(&kvm->mmu_lock);
360         kvm->mmu_notifier_seq++;
361
362         if (kvm_set_spte_hva(kvm, address, pte))
363                 kvm_flush_remote_tlbs(kvm);
364
365         spin_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370                                         const struct mmu_notifier_range *range)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373         int need_tlb_flush = 0, idx;
374         int ret;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * The count increase must become visible at unlock time as no
380          * spte can be established without taking the mmu_lock and
381          * count is also read inside the mmu_lock critical section.
382          */
383         kvm->mmu_notifier_count++;
384         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385         need_tlb_flush |= kvm->tlbs_dirty;
386         /* we've to flush the tlb before the pages can be freed */
387         if (need_tlb_flush)
388                 kvm_flush_remote_tlbs(kvm);
389
390         spin_unlock(&kvm->mmu_lock);
391
392         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393                                         range->end,
394                                         mmu_notifier_range_blockable(range));
395
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return ret;
399 }
400
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402                                         const struct mmu_notifier_range *range)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * This sequence increase will notify the kvm page fault that
409          * the page that is going to be mapped in the spte could have
410          * been freed.
411          */
412         kvm->mmu_notifier_seq++;
413         smp_wmb();
414         /*
415          * The above sequence increase must be visible before the
416          * below count decrease, which is ensured by the smp_wmb above
417          * in conjunction with the smp_rmb in mmu_notifier_retry().
418          */
419         kvm->mmu_notifier_count--;
420         spin_unlock(&kvm->mmu_lock);
421
422         BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426                                               struct mm_struct *mm,
427                                               unsigned long start,
428                                               unsigned long end)
429 {
430         struct kvm *kvm = mmu_notifier_to_kvm(mn);
431         int young, idx;
432
433         idx = srcu_read_lock(&kvm->srcu);
434         spin_lock(&kvm->mmu_lock);
435
436         young = kvm_age_hva(kvm, start, end);
437         if (young)
438                 kvm_flush_remote_tlbs(kvm);
439
440         spin_unlock(&kvm->mmu_lock);
441         srcu_read_unlock(&kvm->srcu, idx);
442
443         return young;
444 }
445
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447                                         struct mm_struct *mm,
448                                         unsigned long start,
449                                         unsigned long end)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         /*
457          * Even though we do not flush TLB, this will still adversely
458          * affect performance on pre-Haswell Intel EPT, where there is
459          * no EPT Access Bit to clear so that we have to tear down EPT
460          * tables instead. If we find this unacceptable, we can always
461          * add a parameter to kvm_age_hva so that it effectively doesn't
462          * do anything on clear_young.
463          *
464          * Also note that currently we never issue secondary TLB flushes
465          * from clear_young, leaving this job up to the regular system
466          * cadence. If we find this inaccurate, we might come up with a
467          * more sophisticated heuristic later.
468          */
469         young = kvm_age_hva(kvm, start, end);
470         spin_unlock(&kvm->mmu_lock);
471         srcu_read_unlock(&kvm->srcu, idx);
472
473         return young;
474 }
475
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477                                        struct mm_struct *mm,
478                                        unsigned long address)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         young = kvm_test_age_hva(kvm, address);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493                                      struct mm_struct *mm)
494 {
495         struct kvm *kvm = mmu_notifier_to_kvm(mn);
496         int idx;
497
498         idx = srcu_read_lock(&kvm->srcu);
499         kvm_arch_flush_shadow_all(kvm);
500         srcu_read_unlock(&kvm->srcu, idx);
501 }
502
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
506         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
507         .clear_young            = kvm_mmu_notifier_clear_young,
508         .test_young             = kvm_mmu_notifier_test_young,
509         .change_pte             = kvm_mmu_notifier_change_pte,
510         .release                = kvm_mmu_notifier_release,
511 };
512
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523         return 0;
524 }
525
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530         int i;
531         struct kvm_memslots *slots;
532
533         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534         if (!slots)
535                 return NULL;
536
537         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538                 slots->id_to_index[i] = slots->memslots[i].id = i;
539
540         return slots;
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556                               struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568         struct kvm_memory_slot *memslot;
569
570         if (!slots)
571                 return;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_memslot(kvm, memslot, NULL);
575
576         kvfree(slots);
577 }
578
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581         int i;
582
583         if (!kvm->debugfs_dentry)
584                 return;
585
586         debugfs_remove_recursive(kvm->debugfs_dentry);
587
588         if (kvm->debugfs_stat_data) {
589                 for (i = 0; i < kvm_debugfs_num_entries; i++)
590                         kfree(kvm->debugfs_stat_data[i]);
591                 kfree(kvm->debugfs_stat_data);
592         }
593 }
594
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597         char dir_name[ITOA_MAX_LEN * 2];
598         struct kvm_stat_data *stat_data;
599         struct kvm_stats_debugfs_item *p;
600
601         if (!debugfs_initialized())
602                 return 0;
603
604         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606
607         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608                                          sizeof(*kvm->debugfs_stat_data),
609                                          GFP_KERNEL_ACCOUNT);
610         if (!kvm->debugfs_stat_data)
611                 return -ENOMEM;
612
613         for (p = debugfs_entries; p->name; p++) {
614                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615                 if (!stat_data)
616                         return -ENOMEM;
617
618                 stat_data->kvm = kvm;
619                 stat_data->offset = p->offset;
620                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622                                     stat_data, stat_fops_per_vm[p->kind]);
623         }
624         return 0;
625 }
626
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629         int r, i;
630         struct kvm *kvm = kvm_arch_alloc_vm();
631
632         if (!kvm)
633                 return ERR_PTR(-ENOMEM);
634
635         spin_lock_init(&kvm->mmu_lock);
636         mmgrab(current->mm);
637         kvm->mm = current->mm;
638         kvm_eventfd_init(kvm);
639         mutex_init(&kvm->lock);
640         mutex_init(&kvm->irq_lock);
641         mutex_init(&kvm->slots_lock);
642         refcount_set(&kvm->users_count, 1);
643         INIT_LIST_HEAD(&kvm->devices);
644
645         r = kvm_arch_init_vm(kvm, type);
646         if (r)
647                 goto out_err_no_disable;
648
649         r = hardware_enable_all();
650         if (r)
651                 goto out_err_no_disable;
652
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656
657         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658
659         r = -ENOMEM;
660         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661                 struct kvm_memslots *slots = kvm_alloc_memslots();
662                 if (!slots)
663                         goto out_err_no_srcu;
664                 /* Generations must be different for each address space. */
665                 slots->generation = i;
666                 rcu_assign_pointer(kvm->memslots[i], slots);
667         }
668
669         if (init_srcu_struct(&kvm->srcu))
670                 goto out_err_no_srcu;
671         if (init_srcu_struct(&kvm->irq_srcu))
672                 goto out_err_no_irq_srcu;
673         for (i = 0; i < KVM_NR_BUSES; i++) {
674                 rcu_assign_pointer(kvm->buses[i],
675                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676                 if (!kvm->buses[i])
677                         goto out_err;
678         }
679
680         r = kvm_init_mmu_notifier(kvm);
681         if (r)
682                 goto out_err;
683
684         mutex_lock(&kvm_lock);
685         list_add(&kvm->vm_list, &vm_list);
686         mutex_unlock(&kvm_lock);
687
688         preempt_notifier_inc();
689
690         return kvm;
691
692 out_err:
693         cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695         cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697         hardware_disable_all();
698 out_err_no_disable:
699         refcount_set(&kvm->users_count, 0);
700         for (i = 0; i < KVM_NR_BUSES; i++)
701                 kfree(kvm_get_bus(kvm, i));
702         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704         kvm_arch_free_vm(kvm);
705         mmdrop(current->mm);
706         return ERR_PTR(r);
707 }
708
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711         struct kvm_device *dev, *tmp;
712
713         /*
714          * We do not need to take the kvm->lock here, because nobody else
715          * has a reference to the struct kvm at this point and therefore
716          * cannot access the devices list anyhow.
717          */
718         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719                 list_del(&dev->vm_node);
720                 dev->ops->destroy(dev);
721         }
722 }
723
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726         int i;
727         struct mm_struct *mm = kvm->mm;
728
729         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730         kvm_destroy_vm_debugfs(kvm);
731         kvm_arch_sync_events(kvm);
732         mutex_lock(&kvm_lock);
733         list_del(&kvm->vm_list);
734         mutex_unlock(&kvm_lock);
735         kvm_free_irq_routing(kvm);
736         for (i = 0; i < KVM_NR_BUSES; i++) {
737                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738
739                 if (bus)
740                         kvm_io_bus_destroy(bus);
741                 kvm->buses[i] = NULL;
742         }
743         kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747         kvm_arch_flush_shadow_all(kvm);
748 #endif
749         kvm_arch_destroy_vm(kvm);
750         kvm_destroy_devices(kvm);
751         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753         cleanup_srcu_struct(&kvm->irq_srcu);
754         cleanup_srcu_struct(&kvm->srcu);
755         kvm_arch_free_vm(kvm);
756         preempt_notifier_dec();
757         hardware_disable_all();
758         mmdrop(mm);
759 }
760
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763         refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769         if (refcount_dec_and_test(&kvm->users_count))
770                 kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777         struct kvm *kvm = filp->private_data;
778
779         kvm_irqfd_release(kvm);
780
781         kvm_put_kvm(kvm);
782         return 0;
783 }
784
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792
793         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794         if (!memslot->dirty_bitmap)
795                 return -ENOMEM;
796
797         return 0;
798 }
799
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807                             struct kvm_memory_slot *new,
808                             enum kvm_mr_change change)
809 {
810         int id = new->id;
811         int i = slots->id_to_index[id];
812         struct kvm_memory_slot *mslots = slots->memslots;
813
814         WARN_ON(mslots[i].id != id);
815         switch (change) {
816         case KVM_MR_CREATE:
817                 slots->used_slots++;
818                 WARN_ON(mslots[i].npages || !new->npages);
819                 break;
820         case KVM_MR_DELETE:
821                 slots->used_slots--;
822                 WARN_ON(new->npages || !mslots[i].npages);
823                 break;
824         default:
825                 break;
826         }
827
828         while (i < KVM_MEM_SLOTS_NUM - 1 &&
829                new->base_gfn <= mslots[i + 1].base_gfn) {
830                 if (!mslots[i + 1].npages)
831                         break;
832                 mslots[i] = mslots[i + 1];
833                 slots->id_to_index[mslots[i].id] = i;
834                 i++;
835         }
836
837         /*
838          * The ">=" is needed when creating a slot with base_gfn == 0,
839          * so that it moves before all those with base_gfn == npages == 0.
840          *
841          * On the other hand, if new->npages is zero, the above loop has
842          * already left i pointing to the beginning of the empty part of
843          * mslots, and the ">=" would move the hole backwards in this
844          * case---which is wrong.  So skip the loop when deleting a slot.
845          */
846         if (new->npages) {
847                 while (i > 0 &&
848                        new->base_gfn >= mslots[i - 1].base_gfn) {
849                         mslots[i] = mslots[i - 1];
850                         slots->id_to_index[mslots[i].id] = i;
851                         i--;
852                 }
853         } else
854                 WARN_ON_ONCE(i != slots->used_slots);
855
856         mslots[i] = *new;
857         slots->id_to_index[mslots[i].id] = i;
858 }
859
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
864 #ifdef __KVM_HAVE_READONLY_MEM
865         valid_flags |= KVM_MEM_READONLY;
866 #endif
867
868         if (mem->flags & ~valid_flags)
869                 return -EINVAL;
870
871         return 0;
872 }
873
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875                 int as_id, struct kvm_memslots *slots)
876 {
877         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878         u64 gen = old_memslots->generation;
879
880         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882
883         rcu_assign_pointer(kvm->memslots[as_id], slots);
884         synchronize_srcu_expedited(&kvm->srcu);
885
886         /*
887          * Increment the new memslot generation a second time, dropping the
888          * update in-progress flag and incrementing then generation based on
889          * the number of address spaces.  This provides a unique and easily
890          * identifiable generation number while the memslots are in flux.
891          */
892         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893
894         /*
895          * Generations must be unique even across address spaces.  We do not need
896          * a global counter for that, instead the generation space is evenly split
897          * across address spaces.  For example, with two address spaces, address
898          * space 0 will use generations 0, 2, 4, ... while address space 1 will
899          * use generations 1, 3, 5, ...
900          */
901         gen += KVM_ADDRESS_SPACE_NUM;
902
903         kvm_arch_memslots_updated(kvm, gen);
904
905         slots->generation = gen;
906
907         return old_memslots;
908 }
909
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919                             const struct kvm_userspace_memory_region *mem)
920 {
921         int r;
922         gfn_t base_gfn;
923         unsigned long npages;
924         struct kvm_memory_slot *slot;
925         struct kvm_memory_slot old, new;
926         struct kvm_memslots *slots = NULL, *old_memslots;
927         int as_id, id;
928         enum kvm_mr_change change;
929
930         r = check_memory_region_flags(mem);
931         if (r)
932                 goto out;
933
934         r = -EINVAL;
935         as_id = mem->slot >> 16;
936         id = (u16)mem->slot;
937
938         /* General sanity checks */
939         if (mem->memory_size & (PAGE_SIZE - 1))
940                 goto out;
941         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942                 goto out;
943         /* We can read the guest memory with __xxx_user() later on. */
944         if ((id < KVM_USER_MEM_SLOTS) &&
945             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947                         mem->memory_size)))
948                 goto out;
949         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950                 goto out;
951         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952                 goto out;
953
954         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956         npages = mem->memory_size >> PAGE_SHIFT;
957
958         if (npages > KVM_MEM_MAX_NR_PAGES)
959                 goto out;
960
961         new = old = *slot;
962
963         new.id = id;
964         new.base_gfn = base_gfn;
965         new.npages = npages;
966         new.flags = mem->flags;
967
968         if (npages) {
969                 if (!old.npages)
970                         change = KVM_MR_CREATE;
971                 else { /* Modify an existing slot. */
972                         if ((mem->userspace_addr != old.userspace_addr) ||
973                             (npages != old.npages) ||
974                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975                                 goto out;
976
977                         if (base_gfn != old.base_gfn)
978                                 change = KVM_MR_MOVE;
979                         else if (new.flags != old.flags)
980                                 change = KVM_MR_FLAGS_ONLY;
981                         else { /* Nothing to change. */
982                                 r = 0;
983                                 goto out;
984                         }
985                 }
986         } else {
987                 if (!old.npages)
988                         goto out;
989
990                 change = KVM_MR_DELETE;
991                 new.base_gfn = 0;
992                 new.flags = 0;
993         }
994
995         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996                 /* Check for overlaps */
997                 r = -EEXIST;
998                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999                         if (slot->id == id)
1000                                 continue;
1001                         if (!((base_gfn + npages <= slot->base_gfn) ||
1002                               (base_gfn >= slot->base_gfn + slot->npages)))
1003                                 goto out;
1004                 }
1005         }
1006
1007         /* Free page dirty bitmap if unneeded */
1008         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009                 new.dirty_bitmap = NULL;
1010
1011         r = -ENOMEM;
1012         if (change == KVM_MR_CREATE) {
1013                 new.userspace_addr = mem->userspace_addr;
1014
1015                 if (kvm_arch_create_memslot(kvm, &new, npages))
1016                         goto out_free;
1017         }
1018
1019         /* Allocate page dirty bitmap if needed */
1020         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021                 if (kvm_create_dirty_bitmap(&new) < 0)
1022                         goto out_free;
1023         }
1024
1025         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026         if (!slots)
1027                 goto out_free;
1028         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029
1030         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031                 slot = id_to_memslot(slots, id);
1032                 slot->flags |= KVM_MEMSLOT_INVALID;
1033
1034                 old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036                 /* From this point no new shadow pages pointing to a deleted,
1037                  * or moved, memslot will be created.
1038                  *
1039                  * validation of sp->gfn happens in:
1040                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041                  *      - kvm_is_visible_gfn (mmu_check_roots)
1042                  */
1043                 kvm_arch_flush_shadow_memslot(kvm, slot);
1044
1045                 /*
1046                  * We can re-use the old_memslots from above, the only difference
1047                  * from the currently installed memslots is the invalid flag.  This
1048                  * will get overwritten by update_memslots anyway.
1049                  */
1050                 slots = old_memslots;
1051         }
1052
1053         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054         if (r)
1055                 goto out_slots;
1056
1057         /* actual memory is freed via old in kvm_free_memslot below */
1058         if (change == KVM_MR_DELETE) {
1059                 new.dirty_bitmap = NULL;
1060                 memset(&new.arch, 0, sizeof(new.arch));
1061         }
1062
1063         update_memslots(slots, &new, change);
1064         old_memslots = install_new_memslots(kvm, as_id, slots);
1065
1066         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067
1068         kvm_free_memslot(kvm, &old, &new);
1069         kvfree(old_memslots);
1070         return 0;
1071
1072 out_slots:
1073         kvfree(slots);
1074 out_free:
1075         kvm_free_memslot(kvm, &new, &old);
1076 out:
1077         return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082                           const struct kvm_userspace_memory_region *mem)
1083 {
1084         int r;
1085
1086         mutex_lock(&kvm->slots_lock);
1087         r = __kvm_set_memory_region(kvm, mem);
1088         mutex_unlock(&kvm->slots_lock);
1089         return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094                                           struct kvm_userspace_memory_region *mem)
1095 {
1096         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097                 return -EINVAL;
1098
1099         return kvm_set_memory_region(kvm, mem);
1100 }
1101
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103                         struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105         struct kvm_memslots *slots;
1106         struct kvm_memory_slot *memslot;
1107         int i, as_id, id;
1108         unsigned long n;
1109         unsigned long any = 0;
1110
1111         as_id = log->slot >> 16;
1112         id = (u16)log->slot;
1113         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114                 return -EINVAL;
1115
1116         slots = __kvm_memslots(kvm, as_id);
1117         memslot = id_to_memslot(slots, id);
1118         if (!memslot->dirty_bitmap)
1119                 return -ENOENT;
1120
1121         n = kvm_dirty_bitmap_bytes(memslot);
1122
1123         for (i = 0; !any && i < n/sizeof(long); ++i)
1124                 any = memslot->dirty_bitmap[i];
1125
1126         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127                 return -EFAULT;
1128
1129         if (any)
1130                 *is_dirty = 1;
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1138  *      and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:        pointer to kvm instance
1140  * @log:        slot id and address to which we copy the log
1141  * @flush:      true if TLB flush is needed by caller
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159                         struct kvm_dirty_log *log, bool *flush)
1160 {
1161         struct kvm_memslots *slots;
1162         struct kvm_memory_slot *memslot;
1163         int i, as_id, id;
1164         unsigned long n;
1165         unsigned long *dirty_bitmap;
1166         unsigned long *dirty_bitmap_buffer;
1167
1168         as_id = log->slot >> 16;
1169         id = (u16)log->slot;
1170         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171                 return -EINVAL;
1172
1173         slots = __kvm_memslots(kvm, as_id);
1174         memslot = id_to_memslot(slots, id);
1175
1176         dirty_bitmap = memslot->dirty_bitmap;
1177         if (!dirty_bitmap)
1178                 return -ENOENT;
1179
1180         n = kvm_dirty_bitmap_bytes(memslot);
1181         *flush = false;
1182         if (kvm->manual_dirty_log_protect) {
1183                 /*
1184                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1185                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186                  * is some code duplication between this function and
1187                  * kvm_get_dirty_log, but hopefully all architecture
1188                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189                  * can be eliminated.
1190                  */
1191                 dirty_bitmap_buffer = dirty_bitmap;
1192         } else {
1193                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194                 memset(dirty_bitmap_buffer, 0, n);
1195
1196                 spin_lock(&kvm->mmu_lock);
1197                 for (i = 0; i < n / sizeof(long); i++) {
1198                         unsigned long mask;
1199                         gfn_t offset;
1200
1201                         if (!dirty_bitmap[i])
1202                                 continue;
1203
1204                         *flush = true;
1205                         mask = xchg(&dirty_bitmap[i], 0);
1206                         dirty_bitmap_buffer[i] = mask;
1207
1208                         offset = i * BITS_PER_LONG;
1209                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210                                                                 offset, mask);
1211                 }
1212                 spin_unlock(&kvm->mmu_lock);
1213         }
1214
1215         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216                 return -EFAULT;
1217         return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *      and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:        pointer to kvm instance
1225  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1226  * @flush:      true if TLB flush is needed by caller
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229                                 struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231         struct kvm_memslots *slots;
1232         struct kvm_memory_slot *memslot;
1233         int as_id, id;
1234         gfn_t offset;
1235         unsigned long i, n;
1236         unsigned long *dirty_bitmap;
1237         unsigned long *dirty_bitmap_buffer;
1238
1239         as_id = log->slot >> 16;
1240         id = (u16)log->slot;
1241         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242                 return -EINVAL;
1243
1244         if (log->first_page & 63)
1245                 return -EINVAL;
1246
1247         slots = __kvm_memslots(kvm, as_id);
1248         memslot = id_to_memslot(slots, id);
1249
1250         dirty_bitmap = memslot->dirty_bitmap;
1251         if (!dirty_bitmap)
1252                 return -ENOENT;
1253
1254         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255
1256         if (log->first_page > memslot->npages ||
1257             log->num_pages > memslot->npages - log->first_page ||
1258             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259             return -EINVAL;
1260
1261         *flush = false;
1262         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264                 return -EFAULT;
1265
1266         spin_lock(&kvm->mmu_lock);
1267         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1268                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1269              i++, offset += BITS_PER_LONG) {
1270                 unsigned long mask = *dirty_bitmap_buffer++;
1271                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272                 if (!mask)
1273                         continue;
1274
1275                 mask &= atomic_long_fetch_andnot(mask, p);
1276
1277                 /*
1278                  * mask contains the bits that really have been cleared.  This
1279                  * never includes any bits beyond the length of the memslot (if
1280                  * the length is not aligned to 64 pages), therefore it is not
1281                  * a problem if userspace sets them in log->dirty_bitmap.
1282                 */
1283                 if (mask) {
1284                         *flush = true;
1285                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286                                                                 offset, mask);
1287                 }
1288         }
1289         spin_unlock(&kvm->mmu_lock);
1290
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295
1296 bool kvm_largepages_enabled(void)
1297 {
1298         return largepages_enabled;
1299 }
1300
1301 void kvm_disable_largepages(void)
1302 {
1303         largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321
1322         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323               memslot->flags & KVM_MEMSLOT_INVALID)
1324                 return false;
1325
1326         return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332         struct vm_area_struct *vma;
1333         unsigned long addr, size;
1334
1335         size = PAGE_SIZE;
1336
1337         addr = gfn_to_hva(kvm, gfn);
1338         if (kvm_is_error_hva(addr))
1339                 return PAGE_SIZE;
1340
1341         down_read(&current->mm->mmap_sem);
1342         vma = find_vma(current->mm, addr);
1343         if (!vma)
1344                 goto out;
1345
1346         size = vma_kernel_pagesize(vma);
1347
1348 out:
1349         up_read(&current->mm->mmap_sem);
1350
1351         return size;
1352 }
1353
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356         return slot->flags & KVM_MEM_READONLY;
1357 }
1358
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360                                        gfn_t *nr_pages, bool write)
1361 {
1362         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363                 return KVM_HVA_ERR_BAD;
1364
1365         if (memslot_is_readonly(slot) && write)
1366                 return KVM_HVA_ERR_RO_BAD;
1367
1368         if (nr_pages)
1369                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370
1371         return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375                                      gfn_t *nr_pages)
1376 {
1377         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381                                         gfn_t gfn)
1382 {
1383         return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408                                       gfn_t gfn, bool *writable)
1409 {
1410         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411
1412         if (!kvm_is_error_hva(hva) && writable)
1413                 *writable = !memslot_is_readonly(slot);
1414
1415         return hva;
1416 }
1417
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421
1422         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428
1429         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435
1436         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437         return rc == -EHWPOISON;
1438 }
1439
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446                             bool *writable, kvm_pfn_t *pfn)
1447 {
1448         struct page *page[1];
1449         int npages;
1450
1451         /*
1452          * Fast pin a writable pfn only if it is a write fault request
1453          * or the caller allows to map a writable pfn for a read fault
1454          * request.
1455          */
1456         if (!(write_fault || writable))
1457                 return false;
1458
1459         npages = __get_user_pages_fast(addr, 1, 1, page);
1460         if (npages == 1) {
1461                 *pfn = page_to_pfn(page[0]);
1462
1463                 if (writable)
1464                         *writable = true;
1465                 return true;
1466         }
1467
1468         return false;
1469 }
1470
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476                            bool *writable, kvm_pfn_t *pfn)
1477 {
1478         unsigned int flags = FOLL_HWPOISON;
1479         struct page *page;
1480         int npages = 0;
1481
1482         might_sleep();
1483
1484         if (writable)
1485                 *writable = write_fault;
1486
1487         if (write_fault)
1488                 flags |= FOLL_WRITE;
1489         if (async)
1490                 flags |= FOLL_NOWAIT;
1491
1492         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493         if (npages != 1)
1494                 return npages;
1495
1496         /* map read fault as writable if possible */
1497         if (unlikely(!write_fault) && writable) {
1498                 struct page *wpage;
1499
1500                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501                         *writable = true;
1502                         put_page(page);
1503                         page = wpage;
1504                 }
1505         }
1506         *pfn = page_to_pfn(page);
1507         return npages;
1508 }
1509
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512         if (unlikely(!(vma->vm_flags & VM_READ)))
1513                 return false;
1514
1515         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516                 return false;
1517
1518         return true;
1519 }
1520
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522                                unsigned long addr, bool *async,
1523                                bool write_fault, bool *writable,
1524                                kvm_pfn_t *p_pfn)
1525 {
1526         unsigned long pfn;
1527         int r;
1528
1529         r = follow_pfn(vma, addr, &pfn);
1530         if (r) {
1531                 /*
1532                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533                  * not call the fault handler, so do it here.
1534                  */
1535                 bool unlocked = false;
1536                 r = fixup_user_fault(current, current->mm, addr,
1537                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1538                                      &unlocked);
1539                 if (unlocked)
1540                         return -EAGAIN;
1541                 if (r)
1542                         return r;
1543
1544                 r = follow_pfn(vma, addr, &pfn);
1545                 if (r)
1546                         return r;
1547
1548         }
1549
1550         if (writable)
1551                 *writable = true;
1552
1553         /*
1554          * Get a reference here because callers of *hva_to_pfn* and
1555          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558          * simply do nothing for reserved pfns.
1559          *
1560          * Whoever called remap_pfn_range is also going to call e.g.
1561          * unmap_mapping_range before the underlying pages are freed,
1562          * causing a call to our MMU notifier.
1563          */ 
1564         kvm_get_pfn(pfn);
1565
1566         *p_pfn = pfn;
1567         return 0;
1568 }
1569
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585                         bool write_fault, bool *writable)
1586 {
1587         struct vm_area_struct *vma;
1588         kvm_pfn_t pfn = 0;
1589         int npages, r;
1590
1591         /* we can do it either atomically or asynchronously, not both */
1592         BUG_ON(atomic && async);
1593
1594         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595                 return pfn;
1596
1597         if (atomic)
1598                 return KVM_PFN_ERR_FAULT;
1599
1600         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601         if (npages == 1)
1602                 return pfn;
1603
1604         down_read(&current->mm->mmap_sem);
1605         if (npages == -EHWPOISON ||
1606               (!async && check_user_page_hwpoison(addr))) {
1607                 pfn = KVM_PFN_ERR_HWPOISON;
1608                 goto exit;
1609         }
1610
1611 retry:
1612         vma = find_vma_intersection(current->mm, addr, addr + 1);
1613
1614         if (vma == NULL)
1615                 pfn = KVM_PFN_ERR_FAULT;
1616         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618                 if (r == -EAGAIN)
1619                         goto retry;
1620                 if (r < 0)
1621                         pfn = KVM_PFN_ERR_FAULT;
1622         } else {
1623                 if (async && vma_is_valid(vma, write_fault))
1624                         *async = true;
1625                 pfn = KVM_PFN_ERR_FAULT;
1626         }
1627 exit:
1628         up_read(&current->mm->mmap_sem);
1629         return pfn;
1630 }
1631
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633                                bool atomic, bool *async, bool write_fault,
1634                                bool *writable)
1635 {
1636         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637
1638         if (addr == KVM_HVA_ERR_RO_BAD) {
1639                 if (writable)
1640                         *writable = false;
1641                 return KVM_PFN_ERR_RO_FAULT;
1642         }
1643
1644         if (kvm_is_error_hva(addr)) {
1645                 if (writable)
1646                         *writable = false;
1647                 return KVM_PFN_NOSLOT;
1648         }
1649
1650         /* Do not map writable pfn in the readonly memslot. */
1651         if (writable && memslot_is_readonly(slot)) {
1652                 *writable = false;
1653                 writable = NULL;
1654         }
1655
1656         return hva_to_pfn(addr, atomic, async, write_fault,
1657                           writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662                       bool *writable)
1663 {
1664         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665                                     write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706                             struct page **pages, int nr_pages)
1707 {
1708         unsigned long addr;
1709         gfn_t entry = 0;
1710
1711         addr = gfn_to_hva_many(slot, gfn, &entry);
1712         if (kvm_is_error_hva(addr))
1713                 return -1;
1714
1715         if (entry < nr_pages)
1716                 return 0;
1717
1718         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724         if (is_error_noslot_pfn(pfn))
1725                 return KVM_ERR_PTR_BAD_PAGE;
1726
1727         if (kvm_is_reserved_pfn(pfn)) {
1728                 WARN_ON(1);
1729                 return KVM_ERR_PTR_BAD_PAGE;
1730         }
1731
1732         return pfn_to_page(pfn);
1733 }
1734
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737         kvm_pfn_t pfn;
1738
1739         pfn = gfn_to_pfn(kvm, gfn);
1740
1741         return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744
1745 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1746                          struct kvm_host_map *map)
1747 {
1748         kvm_pfn_t pfn;
1749         void *hva = NULL;
1750         struct page *page = KVM_UNMAPPED_PAGE;
1751
1752         if (!map)
1753                 return -EINVAL;
1754
1755         pfn = gfn_to_pfn_memslot(slot, gfn);
1756         if (is_error_noslot_pfn(pfn))
1757                 return -EINVAL;
1758
1759         if (pfn_valid(pfn)) {
1760                 page = pfn_to_page(pfn);
1761                 hva = kmap(page);
1762 #ifdef CONFIG_HAS_IOMEM
1763         } else {
1764                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765 #endif
1766         }
1767
1768         if (!hva)
1769                 return -EFAULT;
1770
1771         map->page = page;
1772         map->hva = hva;
1773         map->pfn = pfn;
1774         map->gfn = gfn;
1775
1776         return 0;
1777 }
1778
1779 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1780 {
1781         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1784
1785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1786                     bool dirty)
1787 {
1788         if (!map)
1789                 return;
1790
1791         if (!map->hva)
1792                 return;
1793
1794         if (map->page != KVM_UNMAPPED_PAGE)
1795                 kunmap(map->page);
1796 #ifdef CONFIG_HAS_IOMEM
1797         else
1798                 memunmap(map->hva);
1799 #endif
1800
1801         if (dirty) {
1802                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1803                 kvm_release_pfn_dirty(map->pfn);
1804         } else {
1805                 kvm_release_pfn_clean(map->pfn);
1806         }
1807
1808         map->hva = NULL;
1809         map->page = NULL;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812
1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814 {
1815         kvm_pfn_t pfn;
1816
1817         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818
1819         return kvm_pfn_to_page(pfn);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822
1823 void kvm_release_page_clean(struct page *page)
1824 {
1825         WARN_ON(is_error_page(page));
1826
1827         kvm_release_pfn_clean(page_to_pfn(page));
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830
1831 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832 {
1833         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1834                 put_page(pfn_to_page(pfn));
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837
1838 void kvm_release_page_dirty(struct page *page)
1839 {
1840         WARN_ON(is_error_page(page));
1841
1842         kvm_release_pfn_dirty(page_to_pfn(page));
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845
1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847 {
1848         kvm_set_pfn_dirty(pfn);
1849         kvm_release_pfn_clean(pfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852
1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854 {
1855         if (!kvm_is_reserved_pfn(pfn)) {
1856                 struct page *page = pfn_to_page(pfn);
1857
1858                 if (!PageReserved(page))
1859                         SetPageDirty(page);
1860         }
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863
1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 {
1866         if (!kvm_is_reserved_pfn(pfn))
1867                 mark_page_accessed(pfn_to_page(pfn));
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870
1871 void kvm_get_pfn(kvm_pfn_t pfn)
1872 {
1873         if (!kvm_is_reserved_pfn(pfn))
1874                 get_page(pfn_to_page(pfn));
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877
1878 static int next_segment(unsigned long len, int offset)
1879 {
1880         if (len > PAGE_SIZE - offset)
1881                 return PAGE_SIZE - offset;
1882         else
1883                 return len;
1884 }
1885
1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1887                                  void *data, int offset, int len)
1888 {
1889         int r;
1890         unsigned long addr;
1891
1892         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1893         if (kvm_is_error_hva(addr))
1894                 return -EFAULT;
1895         r = __copy_from_user(data, (void __user *)addr + offset, len);
1896         if (r)
1897                 return -EFAULT;
1898         return 0;
1899 }
1900
1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1902                         int len)
1903 {
1904         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905
1906         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909
1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1911                              int offset, int len)
1912 {
1913         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914
1915         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918
1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 {
1921         gfn_t gfn = gpa >> PAGE_SHIFT;
1922         int seg;
1923         int offset = offset_in_page(gpa);
1924         int ret;
1925
1926         while ((seg = next_segment(len, offset)) != 0) {
1927                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1928                 if (ret < 0)
1929                         return ret;
1930                 offset = 0;
1931                 len -= seg;
1932                 data += seg;
1933                 ++gfn;
1934         }
1935         return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938
1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 {
1941         gfn_t gfn = gpa >> PAGE_SHIFT;
1942         int seg;
1943         int offset = offset_in_page(gpa);
1944         int ret;
1945
1946         while ((seg = next_segment(len, offset)) != 0) {
1947                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1948                 if (ret < 0)
1949                         return ret;
1950                 offset = 0;
1951                 len -= seg;
1952                 data += seg;
1953                 ++gfn;
1954         }
1955         return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958
1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1960                                    void *data, int offset, unsigned long len)
1961 {
1962         int r;
1963         unsigned long addr;
1964
1965         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1966         if (kvm_is_error_hva(addr))
1967                 return -EFAULT;
1968         pagefault_disable();
1969         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1970         pagefault_enable();
1971         if (r)
1972                 return -EFAULT;
1973         return 0;
1974 }
1975
1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1977                           unsigned long len)
1978 {
1979         gfn_t gfn = gpa >> PAGE_SHIFT;
1980         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1981         int offset = offset_in_page(gpa);
1982
1983         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986
1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1988                                void *data, unsigned long len)
1989 {
1990         gfn_t gfn = gpa >> PAGE_SHIFT;
1991         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992         int offset = offset_in_page(gpa);
1993
1994         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997
1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1999                                   const void *data, int offset, int len)
2000 {
2001         int r;
2002         unsigned long addr;
2003
2004         addr = gfn_to_hva_memslot(memslot, gfn);
2005         if (kvm_is_error_hva(addr))
2006                 return -EFAULT;
2007         r = __copy_to_user((void __user *)addr + offset, data, len);
2008         if (r)
2009                 return -EFAULT;
2010         mark_page_dirty_in_slot(memslot, gfn);
2011         return 0;
2012 }
2013
2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2015                          const void *data, int offset, int len)
2016 {
2017         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018
2019         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022
2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2024                               const void *data, int offset, int len)
2025 {
2026         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027
2028         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031
2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2033                     unsigned long len)
2034 {
2035         gfn_t gfn = gpa >> PAGE_SHIFT;
2036         int seg;
2037         int offset = offset_in_page(gpa);
2038         int ret;
2039
2040         while ((seg = next_segment(len, offset)) != 0) {
2041                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2042                 if (ret < 0)
2043                         return ret;
2044                 offset = 0;
2045                 len -= seg;
2046                 data += seg;
2047                 ++gfn;
2048         }
2049         return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052
2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2054                          unsigned long len)
2055 {
2056         gfn_t gfn = gpa >> PAGE_SHIFT;
2057         int seg;
2058         int offset = offset_in_page(gpa);
2059         int ret;
2060
2061         while ((seg = next_segment(len, offset)) != 0) {
2062                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2063                 if (ret < 0)
2064                         return ret;
2065                 offset = 0;
2066                 len -= seg;
2067                 data += seg;
2068                 ++gfn;
2069         }
2070         return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073
2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2075                                        struct gfn_to_hva_cache *ghc,
2076                                        gpa_t gpa, unsigned long len)
2077 {
2078         int offset = offset_in_page(gpa);
2079         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2080         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2081         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2082         gfn_t nr_pages_avail;
2083         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084
2085         ghc->gpa = gpa;
2086         ghc->generation = slots->generation;
2087         ghc->len = len;
2088         ghc->hva = KVM_HVA_ERR_BAD;
2089
2090         /*
2091          * If the requested region crosses two memslots, we still
2092          * verify that the entire region is valid here.
2093          */
2094         while (!r && start_gfn <= end_gfn) {
2095                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2096                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2097                                            &nr_pages_avail);
2098                 if (kvm_is_error_hva(ghc->hva))
2099                         r = -EFAULT;
2100                 start_gfn += nr_pages_avail;
2101         }
2102
2103         /* Use the slow path for cross page reads and writes. */
2104         if (!r && nr_pages_needed == 1)
2105                 ghc->hva += offset;
2106         else
2107                 ghc->memslot = NULL;
2108
2109         return r;
2110 }
2111
2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2113                               gpa_t gpa, unsigned long len)
2114 {
2115         struct kvm_memslots *slots = kvm_memslots(kvm);
2116         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119
2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2121                                   void *data, unsigned int offset,
2122                                   unsigned long len)
2123 {
2124         struct kvm_memslots *slots = kvm_memslots(kvm);
2125         int r;
2126         gpa_t gpa = ghc->gpa + offset;
2127
2128         BUG_ON(len + offset > ghc->len);
2129
2130         if (slots->generation != ghc->generation)
2131                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132
2133         if (unlikely(!ghc->memslot))
2134                 return kvm_write_guest(kvm, gpa, data, len);
2135
2136         if (kvm_is_error_hva(ghc->hva))
2137                 return -EFAULT;
2138
2139         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2140         if (r)
2141                 return -EFAULT;
2142         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143
2144         return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147
2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2149                            void *data, unsigned long len)
2150 {
2151         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154
2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2156                            void *data, unsigned long len)
2157 {
2158         struct kvm_memslots *slots = kvm_memslots(kvm);
2159         int r;
2160
2161         BUG_ON(len > ghc->len);
2162
2163         if (slots->generation != ghc->generation)
2164                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165
2166         if (unlikely(!ghc->memslot))
2167                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2168
2169         if (kvm_is_error_hva(ghc->hva))
2170                 return -EFAULT;
2171
2172         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2173         if (r)
2174                 return -EFAULT;
2175
2176         return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179
2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 {
2182         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183
2184         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187
2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 {
2190         gfn_t gfn = gpa >> PAGE_SHIFT;
2191         int seg;
2192         int offset = offset_in_page(gpa);
2193         int ret;
2194
2195         while ((seg = next_segment(len, offset)) != 0) {
2196                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2197                 if (ret < 0)
2198                         return ret;
2199                 offset = 0;
2200                 len -= seg;
2201                 ++gfn;
2202         }
2203         return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206
2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2208                                     gfn_t gfn)
2209 {
2210         if (memslot && memslot->dirty_bitmap) {
2211                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2212
2213                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2214         }
2215 }
2216
2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 {
2219         struct kvm_memory_slot *memslot;
2220
2221         memslot = gfn_to_memslot(kvm, gfn);
2222         mark_page_dirty_in_slot(memslot, gfn);
2223 }
2224 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225
2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 {
2228         struct kvm_memory_slot *memslot;
2229
2230         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231         mark_page_dirty_in_slot(memslot, gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234
2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 {
2237         if (!vcpu->sigset_active)
2238                 return;
2239
2240         /*
2241          * This does a lockless modification of ->real_blocked, which is fine
2242          * because, only current can change ->real_blocked and all readers of
2243          * ->real_blocked don't care as long ->real_blocked is always a subset
2244          * of ->blocked.
2245          */
2246         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2247 }
2248
2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 {
2251         if (!vcpu->sigset_active)
2252                 return;
2253
2254         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2255         sigemptyset(&current->real_blocked);
2256 }
2257
2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 {
2260         unsigned int old, val, grow, grow_start;
2261
2262         old = val = vcpu->halt_poll_ns;
2263         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2264         grow = READ_ONCE(halt_poll_ns_grow);
2265         if (!grow)
2266                 goto out;
2267
2268         val *= grow;
2269         if (val < grow_start)
2270                 val = grow_start;
2271
2272         if (val > halt_poll_ns)
2273                 val = halt_poll_ns;
2274
2275         vcpu->halt_poll_ns = val;
2276 out:
2277         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2278 }
2279
2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 {
2282         unsigned int old, val, shrink;
2283
2284         old = val = vcpu->halt_poll_ns;
2285         shrink = READ_ONCE(halt_poll_ns_shrink);
2286         if (shrink == 0)
2287                 val = 0;
2288         else
2289                 val /= shrink;
2290
2291         vcpu->halt_poll_ns = val;
2292         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2293 }
2294
2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 {
2297         int ret = -EINTR;
2298         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299
2300         if (kvm_arch_vcpu_runnable(vcpu)) {
2301                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2302                 goto out;
2303         }
2304         if (kvm_cpu_has_pending_timer(vcpu))
2305                 goto out;
2306         if (signal_pending(current))
2307                 goto out;
2308
2309         ret = 0;
2310 out:
2311         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2312         return ret;
2313 }
2314
2315 /*
2316  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317  */
2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 {
2320         ktime_t start, cur;
2321         DECLARE_SWAITQUEUE(wait);
2322         bool waited = false;
2323         u64 block_ns;
2324
2325         start = cur = ktime_get();
2326         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2327                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2328
2329                 ++vcpu->stat.halt_attempted_poll;
2330                 do {
2331                         /*
2332                          * This sets KVM_REQ_UNHALT if an interrupt
2333                          * arrives.
2334                          */
2335                         if (kvm_vcpu_check_block(vcpu) < 0) {
2336                                 ++vcpu->stat.halt_successful_poll;
2337                                 if (!vcpu_valid_wakeup(vcpu))
2338                                         ++vcpu->stat.halt_poll_invalid;
2339                                 goto out;
2340                         }
2341                         cur = ktime_get();
2342                 } while (single_task_running() && ktime_before(cur, stop));
2343         }
2344
2345         kvm_arch_vcpu_blocking(vcpu);
2346
2347         for (;;) {
2348                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349
2350                 if (kvm_vcpu_check_block(vcpu) < 0)
2351                         break;
2352
2353                 waited = true;
2354                 schedule();
2355         }
2356
2357         finish_swait(&vcpu->wq, &wait);
2358         cur = ktime_get();
2359
2360         kvm_arch_vcpu_unblocking(vcpu);
2361 out:
2362         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2363
2364         if (!vcpu_valid_wakeup(vcpu))
2365                 shrink_halt_poll_ns(vcpu);
2366         else if (halt_poll_ns) {
2367                 if (block_ns <= vcpu->halt_poll_ns)
2368                         ;
2369                 /* we had a long block, shrink polling */
2370                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2371                         shrink_halt_poll_ns(vcpu);
2372                 /* we had a short halt and our poll time is too small */
2373                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2374                         block_ns < halt_poll_ns)
2375                         grow_halt_poll_ns(vcpu);
2376         } else
2377                 vcpu->halt_poll_ns = 0;
2378
2379         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2380         kvm_arch_vcpu_block_finish(vcpu);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2383
2384 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2385 {
2386         struct swait_queue_head *wqp;
2387
2388         wqp = kvm_arch_vcpu_wq(vcpu);
2389         if (swq_has_sleeper(wqp)) {
2390                 swake_up_one(wqp);
2391                 WRITE_ONCE(vcpu->ready, true);
2392                 ++vcpu->stat.halt_wakeup;
2393                 return true;
2394         }
2395
2396         return false;
2397 }
2398 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2399
2400 #ifndef CONFIG_S390
2401 /*
2402  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2403  */
2404 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2405 {
2406         int me;
2407         int cpu = vcpu->cpu;
2408
2409         if (kvm_vcpu_wake_up(vcpu))
2410                 return;
2411
2412         me = get_cpu();
2413         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2414                 if (kvm_arch_vcpu_should_kick(vcpu))
2415                         smp_send_reschedule(cpu);
2416         put_cpu();
2417 }
2418 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2419 #endif /* !CONFIG_S390 */
2420
2421 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2422 {
2423         struct pid *pid;
2424         struct task_struct *task = NULL;
2425         int ret = 0;
2426
2427         rcu_read_lock();
2428         pid = rcu_dereference(target->pid);
2429         if (pid)
2430                 task = get_pid_task(pid, PIDTYPE_PID);
2431         rcu_read_unlock();
2432         if (!task)
2433                 return ret;
2434         ret = yield_to(task, 1);
2435         put_task_struct(task);
2436
2437         return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2440
2441 /*
2442  * Helper that checks whether a VCPU is eligible for directed yield.
2443  * Most eligible candidate to yield is decided by following heuristics:
2444  *
2445  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2446  *  (preempted lock holder), indicated by @in_spin_loop.
2447  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2448  *
2449  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2450  *  chance last time (mostly it has become eligible now since we have probably
2451  *  yielded to lockholder in last iteration. This is done by toggling
2452  *  @dy_eligible each time a VCPU checked for eligibility.)
2453  *
2454  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2455  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2456  *  burning. Giving priority for a potential lock-holder increases lock
2457  *  progress.
2458  *
2459  *  Since algorithm is based on heuristics, accessing another VCPU data without
2460  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2461  *  and continue with next VCPU and so on.
2462  */
2463 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2464 {
2465 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2466         bool eligible;
2467
2468         eligible = !vcpu->spin_loop.in_spin_loop ||
2469                     vcpu->spin_loop.dy_eligible;
2470
2471         if (vcpu->spin_loop.in_spin_loop)
2472                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2473
2474         return eligible;
2475 #else
2476         return true;
2477 #endif
2478 }
2479
2480 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2481 {
2482         struct kvm *kvm = me->kvm;
2483         struct kvm_vcpu *vcpu;
2484         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2485         int yielded = 0;
2486         int try = 3;
2487         int pass;
2488         int i;
2489
2490         kvm_vcpu_set_in_spin_loop(me, true);
2491         /*
2492          * We boost the priority of a VCPU that is runnable but not
2493          * currently running, because it got preempted by something
2494          * else and called schedule in __vcpu_run.  Hopefully that
2495          * VCPU is holding the lock that we need and will release it.
2496          * We approximate round-robin by starting at the last boosted VCPU.
2497          */
2498         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2499                 kvm_for_each_vcpu(i, vcpu, kvm) {
2500                         if (!pass && i <= last_boosted_vcpu) {
2501                                 i = last_boosted_vcpu;
2502                                 continue;
2503                         } else if (pass && i > last_boosted_vcpu)
2504                                 break;
2505                         if (!READ_ONCE(vcpu->ready))
2506                                 continue;
2507                         if (vcpu == me)
2508                                 continue;
2509                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2510                                 continue;
2511                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2512                                 continue;
2513                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2514                                 continue;
2515
2516                         yielded = kvm_vcpu_yield_to(vcpu);
2517                         if (yielded > 0) {
2518                                 kvm->last_boosted_vcpu = i;
2519                                 break;
2520                         } else if (yielded < 0) {
2521                                 try--;
2522                                 if (!try)
2523                                         break;
2524                         }
2525                 }
2526         }
2527         kvm_vcpu_set_in_spin_loop(me, false);
2528
2529         /* Ensure vcpu is not eligible during next spinloop */
2530         kvm_vcpu_set_dy_eligible(me, false);
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2533
2534 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2535 {
2536         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2537         struct page *page;
2538
2539         if (vmf->pgoff == 0)
2540                 page = virt_to_page(vcpu->run);
2541 #ifdef CONFIG_X86
2542         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2543                 page = virt_to_page(vcpu->arch.pio_data);
2544 #endif
2545 #ifdef CONFIG_KVM_MMIO
2546         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2547                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2548 #endif
2549         else
2550                 return kvm_arch_vcpu_fault(vcpu, vmf);
2551         get_page(page);
2552         vmf->page = page;
2553         return 0;
2554 }
2555
2556 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2557         .fault = kvm_vcpu_fault,
2558 };
2559
2560 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2561 {
2562         vma->vm_ops = &kvm_vcpu_vm_ops;
2563         return 0;
2564 }
2565
2566 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2567 {
2568         struct kvm_vcpu *vcpu = filp->private_data;
2569
2570         debugfs_remove_recursive(vcpu->debugfs_dentry);
2571         kvm_put_kvm(vcpu->kvm);
2572         return 0;
2573 }
2574
2575 static struct file_operations kvm_vcpu_fops = {
2576         .release        = kvm_vcpu_release,
2577         .unlocked_ioctl = kvm_vcpu_ioctl,
2578         .mmap           = kvm_vcpu_mmap,
2579         .llseek         = noop_llseek,
2580         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2581 };
2582
2583 /*
2584  * Allocates an inode for the vcpu.
2585  */
2586 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2587 {
2588         char name[8 + 1 + ITOA_MAX_LEN + 1];
2589
2590         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2591         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2592 }
2593
2594 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2595 {
2596         char dir_name[ITOA_MAX_LEN * 2];
2597         int ret;
2598
2599         if (!kvm_arch_has_vcpu_debugfs())
2600                 return 0;
2601
2602         if (!debugfs_initialized())
2603                 return 0;
2604
2605         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2606         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2607                                                                 vcpu->kvm->debugfs_dentry);
2608         if (!vcpu->debugfs_dentry)
2609                 return -ENOMEM;
2610
2611         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2612         if (ret < 0) {
2613                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2614                 return ret;
2615         }
2616
2617         return 0;
2618 }
2619
2620 /*
2621  * Creates some virtual cpus.  Good luck creating more than one.
2622  */
2623 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2624 {
2625         int r;
2626         struct kvm_vcpu *vcpu;
2627
2628         if (id >= KVM_MAX_VCPU_ID)
2629                 return -EINVAL;
2630
2631         mutex_lock(&kvm->lock);
2632         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2633                 mutex_unlock(&kvm->lock);
2634                 return -EINVAL;
2635         }
2636
2637         kvm->created_vcpus++;
2638         mutex_unlock(&kvm->lock);
2639
2640         vcpu = kvm_arch_vcpu_create(kvm, id);
2641         if (IS_ERR(vcpu)) {
2642                 r = PTR_ERR(vcpu);
2643                 goto vcpu_decrement;
2644         }
2645
2646         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2647
2648         r = kvm_arch_vcpu_setup(vcpu);
2649         if (r)
2650                 goto vcpu_destroy;
2651
2652         r = kvm_create_vcpu_debugfs(vcpu);
2653         if (r)
2654                 goto vcpu_destroy;
2655
2656         mutex_lock(&kvm->lock);
2657         if (kvm_get_vcpu_by_id(kvm, id)) {
2658                 r = -EEXIST;
2659                 goto unlock_vcpu_destroy;
2660         }
2661
2662         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2663
2664         /* Now it's all set up, let userspace reach it */
2665         kvm_get_kvm(kvm);
2666         r = create_vcpu_fd(vcpu);
2667         if (r < 0) {
2668                 kvm_put_kvm(kvm);
2669                 goto unlock_vcpu_destroy;
2670         }
2671
2672         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2673
2674         /*
2675          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2676          * before kvm->online_vcpu's incremented value.
2677          */
2678         smp_wmb();
2679         atomic_inc(&kvm->online_vcpus);
2680
2681         mutex_unlock(&kvm->lock);
2682         kvm_arch_vcpu_postcreate(vcpu);
2683         return r;
2684
2685 unlock_vcpu_destroy:
2686         mutex_unlock(&kvm->lock);
2687         debugfs_remove_recursive(vcpu->debugfs_dentry);
2688 vcpu_destroy:
2689         kvm_arch_vcpu_destroy(vcpu);
2690 vcpu_decrement:
2691         mutex_lock(&kvm->lock);
2692         kvm->created_vcpus--;
2693         mutex_unlock(&kvm->lock);
2694         return r;
2695 }
2696
2697 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2698 {
2699         if (sigset) {
2700                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2701                 vcpu->sigset_active = 1;
2702                 vcpu->sigset = *sigset;
2703         } else
2704                 vcpu->sigset_active = 0;
2705         return 0;
2706 }
2707
2708 static long kvm_vcpu_ioctl(struct file *filp,
2709                            unsigned int ioctl, unsigned long arg)
2710 {
2711         struct kvm_vcpu *vcpu = filp->private_data;
2712         void __user *argp = (void __user *)arg;
2713         int r;
2714         struct kvm_fpu *fpu = NULL;
2715         struct kvm_sregs *kvm_sregs = NULL;
2716
2717         if (vcpu->kvm->mm != current->mm)
2718                 return -EIO;
2719
2720         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2721                 return -EINVAL;
2722
2723         /*
2724          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2725          * execution; mutex_lock() would break them.
2726          */
2727         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2728         if (r != -ENOIOCTLCMD)
2729                 return r;
2730
2731         if (mutex_lock_killable(&vcpu->mutex))
2732                 return -EINTR;
2733         switch (ioctl) {
2734         case KVM_RUN: {
2735                 struct pid *oldpid;
2736                 r = -EINVAL;
2737                 if (arg)
2738                         goto out;
2739                 oldpid = rcu_access_pointer(vcpu->pid);
2740                 if (unlikely(oldpid != task_pid(current))) {
2741                         /* The thread running this VCPU changed. */
2742                         struct pid *newpid;
2743
2744                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2745                         if (r)
2746                                 break;
2747
2748                         newpid = get_task_pid(current, PIDTYPE_PID);
2749                         rcu_assign_pointer(vcpu->pid, newpid);
2750                         if (oldpid)
2751                                 synchronize_rcu();
2752                         put_pid(oldpid);
2753                 }
2754                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2755                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2756                 break;
2757         }
2758         case KVM_GET_REGS: {
2759                 struct kvm_regs *kvm_regs;
2760
2761                 r = -ENOMEM;
2762                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2763                 if (!kvm_regs)
2764                         goto out;
2765                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2766                 if (r)
2767                         goto out_free1;
2768                 r = -EFAULT;
2769                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2770                         goto out_free1;
2771                 r = 0;
2772 out_free1:
2773                 kfree(kvm_regs);
2774                 break;
2775         }
2776         case KVM_SET_REGS: {
2777                 struct kvm_regs *kvm_regs;
2778
2779                 r = -ENOMEM;
2780                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2781                 if (IS_ERR(kvm_regs)) {
2782                         r = PTR_ERR(kvm_regs);
2783                         goto out;
2784                 }
2785                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2786                 kfree(kvm_regs);
2787                 break;
2788         }
2789         case KVM_GET_SREGS: {
2790                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2791                                     GFP_KERNEL_ACCOUNT);
2792                 r = -ENOMEM;
2793                 if (!kvm_sregs)
2794                         goto out;
2795                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2796                 if (r)
2797                         goto out;
2798                 r = -EFAULT;
2799                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2800                         goto out;
2801                 r = 0;
2802                 break;
2803         }
2804         case KVM_SET_SREGS: {
2805                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2806                 if (IS_ERR(kvm_sregs)) {
2807                         r = PTR_ERR(kvm_sregs);
2808                         kvm_sregs = NULL;
2809                         goto out;
2810                 }
2811                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2812                 break;
2813         }
2814         case KVM_GET_MP_STATE: {
2815                 struct kvm_mp_state mp_state;
2816
2817                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2818                 if (r)
2819                         goto out;
2820                 r = -EFAULT;
2821                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2822                         goto out;
2823                 r = 0;
2824                 break;
2825         }
2826         case KVM_SET_MP_STATE: {
2827                 struct kvm_mp_state mp_state;
2828
2829                 r = -EFAULT;
2830                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2831                         goto out;
2832                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2833                 break;
2834         }
2835         case KVM_TRANSLATE: {
2836                 struct kvm_translation tr;
2837
2838                 r = -EFAULT;
2839                 if (copy_from_user(&tr, argp, sizeof(tr)))
2840                         goto out;
2841                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2842                 if (r)
2843                         goto out;
2844                 r = -EFAULT;
2845                 if (copy_to_user(argp, &tr, sizeof(tr)))
2846                         goto out;
2847                 r = 0;
2848                 break;
2849         }
2850         case KVM_SET_GUEST_DEBUG: {
2851                 struct kvm_guest_debug dbg;
2852
2853                 r = -EFAULT;
2854                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2855                         goto out;
2856                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2857                 break;
2858         }
2859         case KVM_SET_SIGNAL_MASK: {
2860                 struct kvm_signal_mask __user *sigmask_arg = argp;
2861                 struct kvm_signal_mask kvm_sigmask;
2862                 sigset_t sigset, *p;
2863
2864                 p = NULL;
2865                 if (argp) {
2866                         r = -EFAULT;
2867                         if (copy_from_user(&kvm_sigmask, argp,
2868                                            sizeof(kvm_sigmask)))
2869                                 goto out;
2870                         r = -EINVAL;
2871                         if (kvm_sigmask.len != sizeof(sigset))
2872                                 goto out;
2873                         r = -EFAULT;
2874                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2875                                            sizeof(sigset)))
2876                                 goto out;
2877                         p = &sigset;
2878                 }
2879                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2880                 break;
2881         }
2882         case KVM_GET_FPU: {
2883                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2884                 r = -ENOMEM;
2885                 if (!fpu)
2886                         goto out;
2887                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2888                 if (r)
2889                         goto out;
2890                 r = -EFAULT;
2891                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2892                         goto out;
2893                 r = 0;
2894                 break;
2895         }
2896         case KVM_SET_FPU: {
2897                 fpu = memdup_user(argp, sizeof(*fpu));
2898                 if (IS_ERR(fpu)) {
2899                         r = PTR_ERR(fpu);
2900                         fpu = NULL;
2901                         goto out;
2902                 }
2903                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2904                 break;
2905         }
2906         default:
2907                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2908         }
2909 out:
2910         mutex_unlock(&vcpu->mutex);
2911         kfree(fpu);
2912         kfree(kvm_sregs);
2913         return r;
2914 }
2915
2916 #ifdef CONFIG_KVM_COMPAT
2917 static long kvm_vcpu_compat_ioctl(struct file *filp,
2918                                   unsigned int ioctl, unsigned long arg)
2919 {
2920         struct kvm_vcpu *vcpu = filp->private_data;
2921         void __user *argp = compat_ptr(arg);
2922         int r;
2923
2924         if (vcpu->kvm->mm != current->mm)
2925                 return -EIO;
2926
2927         switch (ioctl) {
2928         case KVM_SET_SIGNAL_MASK: {
2929                 struct kvm_signal_mask __user *sigmask_arg = argp;
2930                 struct kvm_signal_mask kvm_sigmask;
2931                 sigset_t sigset;
2932
2933                 if (argp) {
2934                         r = -EFAULT;
2935                         if (copy_from_user(&kvm_sigmask, argp,
2936                                            sizeof(kvm_sigmask)))
2937                                 goto out;
2938                         r = -EINVAL;
2939                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2940                                 goto out;
2941                         r = -EFAULT;
2942                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2943                                 goto out;
2944                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2945                 } else
2946                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2947                 break;
2948         }
2949         default:
2950                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2951         }
2952
2953 out:
2954         return r;
2955 }
2956 #endif
2957
2958 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2959 {
2960         struct kvm_device *dev = filp->private_data;
2961
2962         if (dev->ops->mmap)
2963                 return dev->ops->mmap(dev, vma);
2964
2965         return -ENODEV;
2966 }
2967
2968 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2969                                  int (*accessor)(struct kvm_device *dev,
2970                                                  struct kvm_device_attr *attr),
2971                                  unsigned long arg)
2972 {
2973         struct kvm_device_attr attr;
2974
2975         if (!accessor)
2976                 return -EPERM;
2977
2978         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2979                 return -EFAULT;
2980
2981         return accessor(dev, &attr);
2982 }
2983
2984 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2985                              unsigned long arg)
2986 {
2987         struct kvm_device *dev = filp->private_data;
2988
2989         if (dev->kvm->mm != current->mm)
2990                 return -EIO;
2991
2992         switch (ioctl) {
2993         case KVM_SET_DEVICE_ATTR:
2994                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2995         case KVM_GET_DEVICE_ATTR:
2996                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2997         case KVM_HAS_DEVICE_ATTR:
2998                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2999         default:
3000                 if (dev->ops->ioctl)
3001                         return dev->ops->ioctl(dev, ioctl, arg);
3002
3003                 return -ENOTTY;
3004         }
3005 }
3006
3007 static int kvm_device_release(struct inode *inode, struct file *filp)
3008 {
3009         struct kvm_device *dev = filp->private_data;
3010         struct kvm *kvm = dev->kvm;
3011
3012         if (dev->ops->release) {
3013                 mutex_lock(&kvm->lock);
3014                 list_del(&dev->vm_node);
3015                 dev->ops->release(dev);
3016                 mutex_unlock(&kvm->lock);
3017         }
3018
3019         kvm_put_kvm(kvm);
3020         return 0;
3021 }
3022
3023 static const struct file_operations kvm_device_fops = {
3024         .unlocked_ioctl = kvm_device_ioctl,
3025         .release = kvm_device_release,
3026         KVM_COMPAT(kvm_device_ioctl),
3027         .mmap = kvm_device_mmap,
3028 };
3029
3030 struct kvm_device *kvm_device_from_filp(struct file *filp)
3031 {
3032         if (filp->f_op != &kvm_device_fops)
3033                 return NULL;
3034
3035         return filp->private_data;
3036 }
3037
3038 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3039 #ifdef CONFIG_KVM_MPIC
3040         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3041         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3042 #endif
3043 };
3044
3045 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3046 {
3047         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3048                 return -ENOSPC;
3049
3050         if (kvm_device_ops_table[type] != NULL)
3051                 return -EEXIST;
3052
3053         kvm_device_ops_table[type] = ops;
3054         return 0;
3055 }
3056
3057 void kvm_unregister_device_ops(u32 type)
3058 {
3059         if (kvm_device_ops_table[type] != NULL)
3060                 kvm_device_ops_table[type] = NULL;
3061 }
3062
3063 static int kvm_ioctl_create_device(struct kvm *kvm,
3064                                    struct kvm_create_device *cd)
3065 {
3066         struct kvm_device_ops *ops = NULL;
3067         struct kvm_device *dev;
3068         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3069         int type;
3070         int ret;
3071
3072         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3073                 return -ENODEV;
3074
3075         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3076         ops = kvm_device_ops_table[type];
3077         if (ops == NULL)
3078                 return -ENODEV;
3079
3080         if (test)
3081                 return 0;
3082
3083         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3084         if (!dev)
3085                 return -ENOMEM;
3086
3087         dev->ops = ops;
3088         dev->kvm = kvm;
3089
3090         mutex_lock(&kvm->lock);
3091         ret = ops->create(dev, type);
3092         if (ret < 0) {
3093                 mutex_unlock(&kvm->lock);
3094                 kfree(dev);
3095                 return ret;
3096         }
3097         list_add(&dev->vm_node, &kvm->devices);
3098         mutex_unlock(&kvm->lock);
3099
3100         if (ops->init)
3101                 ops->init(dev);
3102
3103         kvm_get_kvm(kvm);
3104         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3105         if (ret < 0) {
3106                 kvm_put_kvm(kvm);
3107                 mutex_lock(&kvm->lock);
3108                 list_del(&dev->vm_node);
3109                 mutex_unlock(&kvm->lock);
3110                 ops->destroy(dev);
3111                 return ret;
3112         }
3113
3114         cd->fd = ret;
3115         return 0;
3116 }
3117
3118 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3119 {
3120         switch (arg) {
3121         case KVM_CAP_USER_MEMORY:
3122         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3123         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3124         case KVM_CAP_INTERNAL_ERROR_DATA:
3125 #ifdef CONFIG_HAVE_KVM_MSI
3126         case KVM_CAP_SIGNAL_MSI:
3127 #endif
3128 #ifdef CONFIG_HAVE_KVM_IRQFD
3129         case KVM_CAP_IRQFD:
3130         case KVM_CAP_IRQFD_RESAMPLE:
3131 #endif
3132         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3133         case KVM_CAP_CHECK_EXTENSION_VM:
3134         case KVM_CAP_ENABLE_CAP_VM:
3135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3136         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3137 #endif
3138                 return 1;
3139 #ifdef CONFIG_KVM_MMIO
3140         case KVM_CAP_COALESCED_MMIO:
3141                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3142         case KVM_CAP_COALESCED_PIO:
3143                 return 1;
3144 #endif
3145 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3146         case KVM_CAP_IRQ_ROUTING:
3147                 return KVM_MAX_IRQ_ROUTES;
3148 #endif
3149 #if KVM_ADDRESS_SPACE_NUM > 1
3150         case KVM_CAP_MULTI_ADDRESS_SPACE:
3151                 return KVM_ADDRESS_SPACE_NUM;
3152 #endif
3153         case KVM_CAP_NR_MEMSLOTS:
3154                 return KVM_USER_MEM_SLOTS;
3155         default:
3156                 break;
3157         }
3158         return kvm_vm_ioctl_check_extension(kvm, arg);
3159 }
3160
3161 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3162                                                   struct kvm_enable_cap *cap)
3163 {
3164         return -EINVAL;
3165 }
3166
3167 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3168                                            struct kvm_enable_cap *cap)
3169 {
3170         switch (cap->cap) {
3171 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3172         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3173                 if (cap->flags || (cap->args[0] & ~1))
3174                         return -EINVAL;
3175                 kvm->manual_dirty_log_protect = cap->args[0];
3176                 return 0;
3177 #endif
3178         default:
3179                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3180         }
3181 }
3182
3183 static long kvm_vm_ioctl(struct file *filp,
3184                            unsigned int ioctl, unsigned long arg)
3185 {
3186         struct kvm *kvm = filp->private_data;
3187         void __user *argp = (void __user *)arg;
3188         int r;
3189
3190         if (kvm->mm != current->mm)
3191                 return -EIO;
3192         switch (ioctl) {
3193         case KVM_CREATE_VCPU:
3194                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3195                 break;
3196         case KVM_ENABLE_CAP: {
3197                 struct kvm_enable_cap cap;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&cap, argp, sizeof(cap)))
3201                         goto out;
3202                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3203                 break;
3204         }
3205         case KVM_SET_USER_MEMORY_REGION: {
3206                 struct kvm_userspace_memory_region kvm_userspace_mem;
3207
3208                 r = -EFAULT;
3209                 if (copy_from_user(&kvm_userspace_mem, argp,
3210                                                 sizeof(kvm_userspace_mem)))
3211                         goto out;
3212
3213                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3214                 break;
3215         }
3216         case KVM_GET_DIRTY_LOG: {
3217                 struct kvm_dirty_log log;
3218
3219                 r = -EFAULT;
3220                 if (copy_from_user(&log, argp, sizeof(log)))
3221                         goto out;
3222                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3223                 break;
3224         }
3225 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3226         case KVM_CLEAR_DIRTY_LOG: {
3227                 struct kvm_clear_dirty_log log;
3228
3229                 r = -EFAULT;
3230                 if (copy_from_user(&log, argp, sizeof(log)))
3231                         goto out;
3232                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3233                 break;
3234         }
3235 #endif
3236 #ifdef CONFIG_KVM_MMIO
3237         case KVM_REGISTER_COALESCED_MMIO: {
3238                 struct kvm_coalesced_mmio_zone zone;
3239
3240                 r = -EFAULT;
3241                 if (copy_from_user(&zone, argp, sizeof(zone)))
3242                         goto out;
3243                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3244                 break;
3245         }
3246         case KVM_UNREGISTER_COALESCED_MMIO: {
3247                 struct kvm_coalesced_mmio_zone zone;
3248
3249                 r = -EFAULT;
3250                 if (copy_from_user(&zone, argp, sizeof(zone)))
3251                         goto out;
3252                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3253                 break;
3254         }
3255 #endif
3256         case KVM_IRQFD: {
3257                 struct kvm_irqfd data;
3258
3259                 r = -EFAULT;
3260                 if (copy_from_user(&data, argp, sizeof(data)))
3261                         goto out;
3262                 r = kvm_irqfd(kvm, &data);
3263                 break;
3264         }
3265         case KVM_IOEVENTFD: {
3266                 struct kvm_ioeventfd data;
3267
3268                 r = -EFAULT;
3269                 if (copy_from_user(&data, argp, sizeof(data)))
3270                         goto out;
3271                 r = kvm_ioeventfd(kvm, &data);
3272                 break;
3273         }
3274 #ifdef CONFIG_HAVE_KVM_MSI
3275         case KVM_SIGNAL_MSI: {
3276                 struct kvm_msi msi;
3277
3278                 r = -EFAULT;
3279                 if (copy_from_user(&msi, argp, sizeof(msi)))
3280                         goto out;
3281                 r = kvm_send_userspace_msi(kvm, &msi);
3282                 break;
3283         }
3284 #endif
3285 #ifdef __KVM_HAVE_IRQ_LINE
3286         case KVM_IRQ_LINE_STATUS:
3287         case KVM_IRQ_LINE: {
3288                 struct kvm_irq_level irq_event;
3289
3290                 r = -EFAULT;
3291                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3292                         goto out;
3293
3294                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3295                                         ioctl == KVM_IRQ_LINE_STATUS);
3296                 if (r)
3297                         goto out;
3298
3299                 r = -EFAULT;
3300                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3301                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3302                                 goto out;
3303                 }
3304
3305                 r = 0;
3306                 break;
3307         }
3308 #endif
3309 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3310         case KVM_SET_GSI_ROUTING: {
3311                 struct kvm_irq_routing routing;
3312                 struct kvm_irq_routing __user *urouting;
3313                 struct kvm_irq_routing_entry *entries = NULL;
3314
3315                 r = -EFAULT;
3316                 if (copy_from_user(&routing, argp, sizeof(routing)))
3317                         goto out;
3318                 r = -EINVAL;
3319                 if (!kvm_arch_can_set_irq_routing(kvm))
3320                         goto out;
3321                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3322                         goto out;
3323                 if (routing.flags)
3324                         goto out;
3325                 if (routing.nr) {
3326                         r = -ENOMEM;
3327                         entries = vmalloc(array_size(sizeof(*entries),
3328                                                      routing.nr));
3329                         if (!entries)
3330                                 goto out;
3331                         r = -EFAULT;
3332                         urouting = argp;
3333                         if (copy_from_user(entries, urouting->entries,
3334                                            routing.nr * sizeof(*entries)))
3335                                 goto out_free_irq_routing;
3336                 }
3337                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3338                                         routing.flags);
3339 out_free_irq_routing:
3340                 vfree(entries);
3341                 break;
3342         }
3343 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3344         case KVM_CREATE_DEVICE: {
3345                 struct kvm_create_device cd;
3346
3347                 r = -EFAULT;
3348                 if (copy_from_user(&cd, argp, sizeof(cd)))
3349                         goto out;
3350
3351                 r = kvm_ioctl_create_device(kvm, &cd);
3352                 if (r)
3353                         goto out;
3354
3355                 r = -EFAULT;
3356                 if (copy_to_user(argp, &cd, sizeof(cd)))
3357                         goto out;
3358
3359                 r = 0;
3360                 break;
3361         }
3362         case KVM_CHECK_EXTENSION:
3363                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3364                 break;
3365         default:
3366                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3367         }
3368 out:
3369         return r;
3370 }
3371
3372 #ifdef CONFIG_KVM_COMPAT
3373 struct compat_kvm_dirty_log {
3374         __u32 slot;
3375         __u32 padding1;
3376         union {
3377                 compat_uptr_t dirty_bitmap; /* one bit per page */
3378                 __u64 padding2;
3379         };
3380 };
3381
3382 static long kvm_vm_compat_ioctl(struct file *filp,
3383                            unsigned int ioctl, unsigned long arg)
3384 {
3385         struct kvm *kvm = filp->private_data;
3386         int r;
3387
3388         if (kvm->mm != current->mm)
3389                 return -EIO;
3390         switch (ioctl) {
3391         case KVM_GET_DIRTY_LOG: {
3392                 struct compat_kvm_dirty_log compat_log;
3393                 struct kvm_dirty_log log;
3394
3395                 if (copy_from_user(&compat_log, (void __user *)arg,
3396                                    sizeof(compat_log)))
3397                         return -EFAULT;
3398                 log.slot         = compat_log.slot;
3399                 log.padding1     = compat_log.padding1;
3400                 log.padding2     = compat_log.padding2;
3401                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3402
3403                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3404                 break;
3405         }
3406         default:
3407                 r = kvm_vm_ioctl(filp, ioctl, arg);
3408         }
3409         return r;
3410 }
3411 #endif
3412
3413 static struct file_operations kvm_vm_fops = {
3414         .release        = kvm_vm_release,
3415         .unlocked_ioctl = kvm_vm_ioctl,
3416         .llseek         = noop_llseek,
3417         KVM_COMPAT(kvm_vm_compat_ioctl),
3418 };
3419
3420 static int kvm_dev_ioctl_create_vm(unsigned long type)
3421 {
3422         int r;
3423         struct kvm *kvm;
3424         struct file *file;
3425
3426         kvm = kvm_create_vm(type);
3427         if (IS_ERR(kvm))
3428                 return PTR_ERR(kvm);
3429 #ifdef CONFIG_KVM_MMIO
3430         r = kvm_coalesced_mmio_init(kvm);
3431         if (r < 0)
3432                 goto put_kvm;
3433 #endif
3434         r = get_unused_fd_flags(O_CLOEXEC);
3435         if (r < 0)
3436                 goto put_kvm;
3437
3438         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3439         if (IS_ERR(file)) {
3440                 put_unused_fd(r);
3441                 r = PTR_ERR(file);
3442                 goto put_kvm;
3443         }
3444
3445         /*
3446          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3447          * already set, with ->release() being kvm_vm_release().  In error
3448          * cases it will be called by the final fput(file) and will take
3449          * care of doing kvm_put_kvm(kvm).
3450          */
3451         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3452                 put_unused_fd(r);
3453                 fput(file);
3454                 return -ENOMEM;
3455         }
3456         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3457
3458         fd_install(r, file);
3459         return r;
3460
3461 put_kvm:
3462         kvm_put_kvm(kvm);
3463         return r;
3464 }
3465
3466 static long kvm_dev_ioctl(struct file *filp,
3467                           unsigned int ioctl, unsigned long arg)
3468 {
3469         long r = -EINVAL;
3470
3471         switch (ioctl) {
3472         case KVM_GET_API_VERSION:
3473                 if (arg)
3474                         goto out;
3475                 r = KVM_API_VERSION;
3476                 break;
3477         case KVM_CREATE_VM:
3478                 r = kvm_dev_ioctl_create_vm(arg);
3479                 break;
3480         case KVM_CHECK_EXTENSION:
3481                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3482                 break;
3483         case KVM_GET_VCPU_MMAP_SIZE:
3484                 if (arg)
3485                         goto out;
3486                 r = PAGE_SIZE;     /* struct kvm_run */
3487 #ifdef CONFIG_X86
3488                 r += PAGE_SIZE;    /* pio data page */
3489 #endif
3490 #ifdef CONFIG_KVM_MMIO
3491                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3492 #endif
3493                 break;
3494         case KVM_TRACE_ENABLE:
3495         case KVM_TRACE_PAUSE:
3496         case KVM_TRACE_DISABLE:
3497                 r = -EOPNOTSUPP;
3498                 break;
3499         default:
3500                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3501         }
3502 out:
3503         return r;
3504 }
3505
3506 static struct file_operations kvm_chardev_ops = {
3507         .unlocked_ioctl = kvm_dev_ioctl,
3508         .llseek         = noop_llseek,
3509         KVM_COMPAT(kvm_dev_ioctl),
3510 };
3511
3512 static struct miscdevice kvm_dev = {
3513         KVM_MINOR,
3514         "kvm",
3515         &kvm_chardev_ops,
3516 };
3517
3518 static void hardware_enable_nolock(void *junk)
3519 {
3520         int cpu = raw_smp_processor_id();
3521         int r;
3522
3523         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3524                 return;
3525
3526         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3527
3528         r = kvm_arch_hardware_enable();
3529
3530         if (r) {
3531                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3532                 atomic_inc(&hardware_enable_failed);
3533                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3534         }
3535 }
3536
3537 static int kvm_starting_cpu(unsigned int cpu)
3538 {
3539         raw_spin_lock(&kvm_count_lock);
3540         if (kvm_usage_count)
3541                 hardware_enable_nolock(NULL);
3542         raw_spin_unlock(&kvm_count_lock);
3543         return 0;
3544 }
3545
3546 static void hardware_disable_nolock(void *junk)
3547 {
3548         int cpu = raw_smp_processor_id();
3549
3550         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3551                 return;
3552         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3553         kvm_arch_hardware_disable();
3554 }
3555
3556 static int kvm_dying_cpu(unsigned int cpu)
3557 {
3558         raw_spin_lock(&kvm_count_lock);
3559         if (kvm_usage_count)
3560                 hardware_disable_nolock(NULL);
3561         raw_spin_unlock(&kvm_count_lock);
3562         return 0;
3563 }
3564
3565 static void hardware_disable_all_nolock(void)
3566 {
3567         BUG_ON(!kvm_usage_count);
3568
3569         kvm_usage_count--;
3570         if (!kvm_usage_count)
3571                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3572 }
3573
3574 static void hardware_disable_all(void)
3575 {
3576         raw_spin_lock(&kvm_count_lock);
3577         hardware_disable_all_nolock();
3578         raw_spin_unlock(&kvm_count_lock);
3579 }
3580
3581 static int hardware_enable_all(void)
3582 {
3583         int r = 0;
3584
3585         raw_spin_lock(&kvm_count_lock);
3586
3587         kvm_usage_count++;
3588         if (kvm_usage_count == 1) {
3589                 atomic_set(&hardware_enable_failed, 0);
3590                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3591
3592                 if (atomic_read(&hardware_enable_failed)) {
3593                         hardware_disable_all_nolock();
3594                         r = -EBUSY;
3595                 }
3596         }
3597
3598         raw_spin_unlock(&kvm_count_lock);
3599
3600         return r;
3601 }
3602
3603 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3604                       void *v)
3605 {
3606         /*
3607          * Some (well, at least mine) BIOSes hang on reboot if
3608          * in vmx root mode.
3609          *
3610          * And Intel TXT required VMX off for all cpu when system shutdown.
3611          */
3612         pr_info("kvm: exiting hardware virtualization\n");
3613         kvm_rebooting = true;
3614         on_each_cpu(hardware_disable_nolock, NULL, 1);
3615         return NOTIFY_OK;
3616 }
3617
3618 static struct notifier_block kvm_reboot_notifier = {
3619         .notifier_call = kvm_reboot,
3620         .priority = 0,
3621 };
3622
3623 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3624 {
3625         int i;
3626
3627         for (i = 0; i < bus->dev_count; i++) {
3628                 struct kvm_io_device *pos = bus->range[i].dev;
3629
3630                 kvm_iodevice_destructor(pos);
3631         }
3632         kfree(bus);
3633 }
3634
3635 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3636                                  const struct kvm_io_range *r2)
3637 {
3638         gpa_t addr1 = r1->addr;
3639         gpa_t addr2 = r2->addr;
3640
3641         if (addr1 < addr2)
3642                 return -1;
3643
3644         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3645          * accept any overlapping write.  Any order is acceptable for
3646          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3647          * we process all of them.
3648          */
3649         if (r2->len) {
3650                 addr1 += r1->len;
3651                 addr2 += r2->len;
3652         }
3653
3654         if (addr1 > addr2)
3655                 return 1;
3656
3657         return 0;
3658 }
3659
3660 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3661 {
3662         return kvm_io_bus_cmp(p1, p2);
3663 }
3664
3665 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3666                              gpa_t addr, int len)
3667 {
3668         struct kvm_io_range *range, key;
3669         int off;
3670
3671         key = (struct kvm_io_range) {
3672                 .addr = addr,
3673                 .len = len,
3674         };
3675
3676         range = bsearch(&key, bus->range, bus->dev_count,
3677                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3678         if (range == NULL)
3679                 return -ENOENT;
3680
3681         off = range - bus->range;
3682
3683         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3684                 off--;
3685
3686         return off;
3687 }
3688
3689 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3690                               struct kvm_io_range *range, const void *val)
3691 {
3692         int idx;
3693
3694         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3695         if (idx < 0)
3696                 return -EOPNOTSUPP;
3697
3698         while (idx < bus->dev_count &&
3699                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3700                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3701                                         range->len, val))
3702                         return idx;
3703                 idx++;
3704         }
3705
3706         return -EOPNOTSUPP;
3707 }
3708
3709 /* kvm_io_bus_write - called under kvm->slots_lock */
3710 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3711                      int len, const void *val)
3712 {
3713         struct kvm_io_bus *bus;
3714         struct kvm_io_range range;
3715         int r;
3716
3717         range = (struct kvm_io_range) {
3718                 .addr = addr,
3719                 .len = len,
3720         };
3721
3722         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3723         if (!bus)
3724                 return -ENOMEM;
3725         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3726         return r < 0 ? r : 0;
3727 }
3728 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3729
3730 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3731 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3732                             gpa_t addr, int len, const void *val, long cookie)
3733 {
3734         struct kvm_io_bus *bus;
3735         struct kvm_io_range range;
3736
3737         range = (struct kvm_io_range) {
3738                 .addr = addr,
3739                 .len = len,
3740         };
3741
3742         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3743         if (!bus)
3744                 return -ENOMEM;
3745
3746         /* First try the device referenced by cookie. */
3747         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3748             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3749                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3750                                         val))
3751                         return cookie;
3752
3753         /*
3754          * cookie contained garbage; fall back to search and return the
3755          * correct cookie value.
3756          */
3757         return __kvm_io_bus_write(vcpu, bus, &range, val);
3758 }
3759
3760 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3761                              struct kvm_io_range *range, void *val)
3762 {
3763         int idx;
3764
3765         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3766         if (idx < 0)
3767                 return -EOPNOTSUPP;
3768
3769         while (idx < bus->dev_count &&
3770                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3771                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3772                                        range->len, val))
3773                         return idx;
3774                 idx++;
3775         }
3776
3777         return -EOPNOTSUPP;
3778 }
3779
3780 /* kvm_io_bus_read - called under kvm->slots_lock */
3781 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3782                     int len, void *val)
3783 {
3784         struct kvm_io_bus *bus;
3785         struct kvm_io_range range;
3786         int r;
3787
3788         range = (struct kvm_io_range) {
3789                 .addr = addr,
3790                 .len = len,
3791         };
3792
3793         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3794         if (!bus)
3795                 return -ENOMEM;
3796         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3797         return r < 0 ? r : 0;
3798 }
3799
3800 /* Caller must hold slots_lock. */
3801 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3802                             int len, struct kvm_io_device *dev)
3803 {
3804         int i;
3805         struct kvm_io_bus *new_bus, *bus;
3806         struct kvm_io_range range;
3807
3808         bus = kvm_get_bus(kvm, bus_idx);
3809         if (!bus)
3810                 return -ENOMEM;
3811
3812         /* exclude ioeventfd which is limited by maximum fd */
3813         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3814                 return -ENOSPC;
3815
3816         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3817                           GFP_KERNEL_ACCOUNT);
3818         if (!new_bus)
3819                 return -ENOMEM;
3820
3821         range = (struct kvm_io_range) {
3822                 .addr = addr,
3823                 .len = len,
3824                 .dev = dev,
3825         };
3826
3827         for (i = 0; i < bus->dev_count; i++)
3828                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3829                         break;
3830
3831         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3832         new_bus->dev_count++;
3833         new_bus->range[i] = range;
3834         memcpy(new_bus->range + i + 1, bus->range + i,
3835                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3836         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3837         synchronize_srcu_expedited(&kvm->srcu);
3838         kfree(bus);
3839
3840         return 0;
3841 }
3842
3843 /* Caller must hold slots_lock. */
3844 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3845                                struct kvm_io_device *dev)
3846 {
3847         int i;
3848         struct kvm_io_bus *new_bus, *bus;
3849
3850         bus = kvm_get_bus(kvm, bus_idx);
3851         if (!bus)
3852                 return;
3853
3854         for (i = 0; i < bus->dev_count; i++)
3855                 if (bus->range[i].dev == dev) {
3856                         break;
3857                 }
3858
3859         if (i == bus->dev_count)
3860                 return;
3861
3862         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3863                           GFP_KERNEL_ACCOUNT);
3864         if (!new_bus)  {
3865                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3866                 goto broken;
3867         }
3868
3869         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3870         new_bus->dev_count--;
3871         memcpy(new_bus->range + i, bus->range + i + 1,
3872                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3873
3874 broken:
3875         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3876         synchronize_srcu_expedited(&kvm->srcu);
3877         kfree(bus);
3878         return;
3879 }
3880
3881 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3882                                          gpa_t addr)
3883 {
3884         struct kvm_io_bus *bus;
3885         int dev_idx, srcu_idx;
3886         struct kvm_io_device *iodev = NULL;
3887
3888         srcu_idx = srcu_read_lock(&kvm->srcu);
3889
3890         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3891         if (!bus)
3892                 goto out_unlock;
3893
3894         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3895         if (dev_idx < 0)
3896                 goto out_unlock;
3897
3898         iodev = bus->range[dev_idx].dev;
3899
3900 out_unlock:
3901         srcu_read_unlock(&kvm->srcu, srcu_idx);
3902
3903         return iodev;
3904 }
3905 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3906
3907 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3908                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3909                            const char *fmt)
3910 {
3911         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3912                                           inode->i_private;
3913
3914         /* The debugfs files are a reference to the kvm struct which
3915          * is still valid when kvm_destroy_vm is called.
3916          * To avoid the race between open and the removal of the debugfs
3917          * directory we test against the users count.
3918          */
3919         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3920                 return -ENOENT;
3921
3922         if (simple_attr_open(inode, file, get, set, fmt)) {
3923                 kvm_put_kvm(stat_data->kvm);
3924                 return -ENOMEM;
3925         }
3926
3927         return 0;
3928 }
3929
3930 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3931 {
3932         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3933                                           inode->i_private;
3934
3935         simple_attr_release(inode, file);
3936         kvm_put_kvm(stat_data->kvm);
3937
3938         return 0;
3939 }
3940
3941 static int vm_stat_get_per_vm(void *data, u64 *val)
3942 {
3943         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3944
3945         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3946
3947         return 0;
3948 }
3949
3950 static int vm_stat_clear_per_vm(void *data, u64 val)
3951 {
3952         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3953
3954         if (val)
3955                 return -EINVAL;
3956
3957         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3958
3959         return 0;
3960 }
3961
3962 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3963 {
3964         __simple_attr_check_format("%llu\n", 0ull);
3965         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3966                                 vm_stat_clear_per_vm, "%llu\n");
3967 }
3968
3969 static const struct file_operations vm_stat_get_per_vm_fops = {
3970         .owner   = THIS_MODULE,
3971         .open    = vm_stat_get_per_vm_open,
3972         .release = kvm_debugfs_release,
3973         .read    = simple_attr_read,
3974         .write   = simple_attr_write,
3975         .llseek  = no_llseek,
3976 };
3977
3978 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3979 {
3980         int i;
3981         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3982         struct kvm_vcpu *vcpu;
3983
3984         *val = 0;
3985
3986         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3987                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3988
3989         return 0;
3990 }
3991
3992 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3993 {
3994         int i;
3995         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3996         struct kvm_vcpu *vcpu;
3997
3998         if (val)
3999                 return -EINVAL;
4000
4001         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4002                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4003
4004         return 0;
4005 }
4006
4007 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4008 {
4009         __simple_attr_check_format("%llu\n", 0ull);
4010         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4011                                  vcpu_stat_clear_per_vm, "%llu\n");
4012 }
4013
4014 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4015         .owner   = THIS_MODULE,
4016         .open    = vcpu_stat_get_per_vm_open,
4017         .release = kvm_debugfs_release,
4018         .read    = simple_attr_read,
4019         .write   = simple_attr_write,
4020         .llseek  = no_llseek,
4021 };
4022
4023 static const struct file_operations *stat_fops_per_vm[] = {
4024         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4025         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4026 };
4027
4028 static int vm_stat_get(void *_offset, u64 *val)
4029 {
4030         unsigned offset = (long)_offset;
4031         struct kvm *kvm;
4032         struct kvm_stat_data stat_tmp = {.offset = offset};
4033         u64 tmp_val;
4034
4035         *val = 0;
4036         mutex_lock(&kvm_lock);
4037         list_for_each_entry(kvm, &vm_list, vm_list) {
4038                 stat_tmp.kvm = kvm;
4039                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4040                 *val += tmp_val;
4041         }
4042         mutex_unlock(&kvm_lock);
4043         return 0;
4044 }
4045
4046 static int vm_stat_clear(void *_offset, u64 val)
4047 {
4048         unsigned offset = (long)_offset;
4049         struct kvm *kvm;
4050         struct kvm_stat_data stat_tmp = {.offset = offset};
4051
4052         if (val)
4053                 return -EINVAL;
4054
4055         mutex_lock(&kvm_lock);
4056         list_for_each_entry(kvm, &vm_list, vm_list) {
4057                 stat_tmp.kvm = kvm;
4058                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4059         }
4060         mutex_unlock(&kvm_lock);
4061
4062         return 0;
4063 }
4064
4065 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4066
4067 static int vcpu_stat_get(void *_offset, u64 *val)
4068 {
4069         unsigned offset = (long)_offset;
4070         struct kvm *kvm;
4071         struct kvm_stat_data stat_tmp = {.offset = offset};
4072         u64 tmp_val;
4073
4074         *val = 0;
4075         mutex_lock(&kvm_lock);
4076         list_for_each_entry(kvm, &vm_list, vm_list) {
4077                 stat_tmp.kvm = kvm;
4078                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4079                 *val += tmp_val;
4080         }
4081         mutex_unlock(&kvm_lock);
4082         return 0;
4083 }
4084
4085 static int vcpu_stat_clear(void *_offset, u64 val)
4086 {
4087         unsigned offset = (long)_offset;
4088         struct kvm *kvm;
4089         struct kvm_stat_data stat_tmp = {.offset = offset};
4090
4091         if (val)
4092                 return -EINVAL;
4093
4094         mutex_lock(&kvm_lock);
4095         list_for_each_entry(kvm, &vm_list, vm_list) {
4096                 stat_tmp.kvm = kvm;
4097                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4098         }
4099         mutex_unlock(&kvm_lock);
4100
4101         return 0;
4102 }
4103
4104 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4105                         "%llu\n");
4106
4107 static const struct file_operations *stat_fops[] = {
4108         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4109         [KVM_STAT_VM]   = &vm_stat_fops,
4110 };
4111
4112 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4113 {
4114         struct kobj_uevent_env *env;
4115         unsigned long long created, active;
4116
4117         if (!kvm_dev.this_device || !kvm)
4118                 return;
4119
4120         mutex_lock(&kvm_lock);
4121         if (type == KVM_EVENT_CREATE_VM) {
4122                 kvm_createvm_count++;
4123                 kvm_active_vms++;
4124         } else if (type == KVM_EVENT_DESTROY_VM) {
4125                 kvm_active_vms--;
4126         }
4127         created = kvm_createvm_count;
4128         active = kvm_active_vms;
4129         mutex_unlock(&kvm_lock);
4130
4131         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4132         if (!env)
4133                 return;
4134
4135         add_uevent_var(env, "CREATED=%llu", created);
4136         add_uevent_var(env, "COUNT=%llu", active);
4137
4138         if (type == KVM_EVENT_CREATE_VM) {
4139                 add_uevent_var(env, "EVENT=create");
4140                 kvm->userspace_pid = task_pid_nr(current);
4141         } else if (type == KVM_EVENT_DESTROY_VM) {
4142                 add_uevent_var(env, "EVENT=destroy");
4143         }
4144         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4145
4146         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4147                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4148
4149                 if (p) {
4150                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4151                         if (!IS_ERR(tmp))
4152                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4153                         kfree(p);
4154                 }
4155         }
4156         /* no need for checks, since we are adding at most only 5 keys */
4157         env->envp[env->envp_idx++] = NULL;
4158         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4159         kfree(env);
4160 }
4161
4162 static void kvm_init_debug(void)
4163 {
4164         struct kvm_stats_debugfs_item *p;
4165
4166         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4167
4168         kvm_debugfs_num_entries = 0;
4169         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4170                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4171                                     (void *)(long)p->offset,
4172                                     stat_fops[p->kind]);
4173         }
4174 }
4175
4176 static int kvm_suspend(void)
4177 {
4178         if (kvm_usage_count)
4179                 hardware_disable_nolock(NULL);
4180         return 0;
4181 }
4182
4183 static void kvm_resume(void)
4184 {
4185         if (kvm_usage_count) {
4186 #ifdef CONFIG_LOCKDEP
4187                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4188 #endif
4189                 hardware_enable_nolock(NULL);
4190         }
4191 }
4192
4193 static struct syscore_ops kvm_syscore_ops = {
4194         .suspend = kvm_suspend,
4195         .resume = kvm_resume,
4196 };
4197
4198 static inline
4199 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4200 {
4201         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4202 }
4203
4204 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4205 {
4206         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4207
4208         vcpu->preempted = false;
4209         WRITE_ONCE(vcpu->ready, false);
4210
4211         kvm_arch_sched_in(vcpu, cpu);
4212
4213         kvm_arch_vcpu_load(vcpu, cpu);
4214 }
4215
4216 static void kvm_sched_out(struct preempt_notifier *pn,
4217                           struct task_struct *next)
4218 {
4219         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4220
4221         if (current->state == TASK_RUNNING) {
4222                 vcpu->preempted = true;
4223                 WRITE_ONCE(vcpu->ready, true);
4224         }
4225         kvm_arch_vcpu_put(vcpu);
4226 }
4227
4228 static void check_processor_compat(void *rtn)
4229 {
4230         *(int *)rtn = kvm_arch_check_processor_compat();
4231 }
4232
4233 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4234                   struct module *module)
4235 {
4236         int r;
4237         int cpu;
4238
4239         r = kvm_arch_init(opaque);
4240         if (r)
4241                 goto out_fail;
4242
4243         /*
4244          * kvm_arch_init makes sure there's at most one caller
4245          * for architectures that support multiple implementations,
4246          * like intel and amd on x86.
4247          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4248          * conflicts in case kvm is already setup for another implementation.
4249          */
4250         r = kvm_irqfd_init();
4251         if (r)
4252                 goto out_irqfd;
4253
4254         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4255                 r = -ENOMEM;
4256                 goto out_free_0;
4257         }
4258
4259         r = kvm_arch_hardware_setup();
4260         if (r < 0)
4261                 goto out_free_0a;
4262
4263         for_each_online_cpu(cpu) {
4264                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4265                 if (r < 0)
4266                         goto out_free_1;
4267         }
4268
4269         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4270                                       kvm_starting_cpu, kvm_dying_cpu);
4271         if (r)
4272                 goto out_free_2;
4273         register_reboot_notifier(&kvm_reboot_notifier);
4274
4275         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4276         if (!vcpu_align)
4277                 vcpu_align = __alignof__(struct kvm_vcpu);
4278         kvm_vcpu_cache =
4279                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4280                                            SLAB_ACCOUNT,
4281                                            offsetof(struct kvm_vcpu, arch),
4282                                            sizeof_field(struct kvm_vcpu, arch),
4283                                            NULL);
4284         if (!kvm_vcpu_cache) {
4285                 r = -ENOMEM;
4286                 goto out_free_3;
4287         }
4288
4289         r = kvm_async_pf_init();
4290         if (r)
4291                 goto out_free;
4292
4293         kvm_chardev_ops.owner = module;
4294         kvm_vm_fops.owner = module;
4295         kvm_vcpu_fops.owner = module;
4296
4297         r = misc_register(&kvm_dev);
4298         if (r) {
4299                 pr_err("kvm: misc device register failed\n");
4300                 goto out_unreg;
4301         }
4302
4303         register_syscore_ops(&kvm_syscore_ops);
4304
4305         kvm_preempt_ops.sched_in = kvm_sched_in;
4306         kvm_preempt_ops.sched_out = kvm_sched_out;
4307
4308         kvm_init_debug();
4309
4310         r = kvm_vfio_ops_init();
4311         WARN_ON(r);
4312
4313         return 0;
4314
4315 out_unreg:
4316         kvm_async_pf_deinit();
4317 out_free:
4318         kmem_cache_destroy(kvm_vcpu_cache);
4319 out_free_3:
4320         unregister_reboot_notifier(&kvm_reboot_notifier);
4321         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4322 out_free_2:
4323 out_free_1:
4324         kvm_arch_hardware_unsetup();
4325 out_free_0a:
4326         free_cpumask_var(cpus_hardware_enabled);
4327 out_free_0:
4328         kvm_irqfd_exit();
4329 out_irqfd:
4330         kvm_arch_exit();
4331 out_fail:
4332         return r;
4333 }
4334 EXPORT_SYMBOL_GPL(kvm_init);
4335
4336 void kvm_exit(void)
4337 {
4338         debugfs_remove_recursive(kvm_debugfs_dir);
4339         misc_deregister(&kvm_dev);
4340         kmem_cache_destroy(kvm_vcpu_cache);
4341         kvm_async_pf_deinit();
4342         unregister_syscore_ops(&kvm_syscore_ops);
4343         unregister_reboot_notifier(&kvm_reboot_notifier);
4344         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4345         on_each_cpu(hardware_disable_nolock, NULL, 1);
4346         kvm_arch_hardware_unsetup();
4347         kvm_arch_exit();
4348         kvm_irqfd_exit();
4349         free_cpumask_var(cpus_hardware_enabled);
4350         kvm_vfio_ops_exit();
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_exit);