]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - arch/x86/platform/uv/tlb_uv.c
Apply preempt_rt patch-4.9-rt1.patch.xz
[zynq/linux.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 static struct bau_operations ops;
28
29 static struct bau_operations uv123_bau_ops = {
30         .bau_gpa_to_offset       = uv_gpa_to_offset,
31         .read_l_sw_ack           = read_mmr_sw_ack,
32         .read_g_sw_ack           = read_gmmr_sw_ack,
33         .write_l_sw_ack          = write_mmr_sw_ack,
34         .write_g_sw_ack          = write_gmmr_sw_ack,
35         .write_payload_first     = write_mmr_payload_first,
36         .write_payload_last      = write_mmr_payload_last,
37 };
38
39 static struct bau_operations uv4_bau_ops = {
40         .bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
41         .read_l_sw_ack           = read_mmr_proc_sw_ack,
42         .read_g_sw_ack           = read_gmmr_proc_sw_ack,
43         .write_l_sw_ack          = write_mmr_proc_sw_ack,
44         .write_g_sw_ack          = write_gmmr_proc_sw_ack,
45         .write_payload_first     = write_mmr_proc_payload_first,
46         .write_payload_last      = write_mmr_proc_payload_last,
47 };
48
49
50 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
51 static int timeout_base_ns[] = {
52                 20,
53                 160,
54                 1280,
55                 10240,
56                 81920,
57                 655360,
58                 5242880,
59                 167772160
60 };
61
62 static int timeout_us;
63 static bool nobau = true;
64 static int nobau_perm;
65 static cycles_t congested_cycles;
66
67 /* tunables: */
68 static int max_concurr          = MAX_BAU_CONCURRENT;
69 static int max_concurr_const    = MAX_BAU_CONCURRENT;
70 static int plugged_delay        = PLUGGED_DELAY;
71 static int plugsb4reset         = PLUGSB4RESET;
72 static int giveup_limit         = GIVEUP_LIMIT;
73 static int timeoutsb4reset      = TIMEOUTSB4RESET;
74 static int ipi_reset_limit      = IPI_RESET_LIMIT;
75 static int complete_threshold   = COMPLETE_THRESHOLD;
76 static int congested_respns_us  = CONGESTED_RESPONSE_US;
77 static int congested_reps       = CONGESTED_REPS;
78 static int disabled_period      = DISABLED_PERIOD;
79
80 static struct tunables tunables[] = {
81         {&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
82         {&plugged_delay,         PLUGGED_DELAY},
83         {&plugsb4reset,          PLUGSB4RESET},
84         {&timeoutsb4reset,       TIMEOUTSB4RESET},
85         {&ipi_reset_limit,       IPI_RESET_LIMIT},
86         {&complete_threshold,    COMPLETE_THRESHOLD},
87         {&congested_respns_us,   CONGESTED_RESPONSE_US},
88         {&congested_reps,        CONGESTED_REPS},
89         {&disabled_period,       DISABLED_PERIOD},
90         {&giveup_limit,          GIVEUP_LIMIT}
91 };
92
93 static struct dentry *tunables_dir;
94 static struct dentry *tunables_file;
95
96 /* these correspond to the statistics printed by ptc_seq_show() */
97 static char *stat_description[] = {
98         "sent:     number of shootdown messages sent",
99         "stime:    time spent sending messages",
100         "numuvhubs: number of hubs targeted with shootdown",
101         "numuvhubs16: number times 16 or more hubs targeted",
102         "numuvhubs8: number times 8 or more hubs targeted",
103         "numuvhubs4: number times 4 or more hubs targeted",
104         "numuvhubs2: number times 2 or more hubs targeted",
105         "numuvhubs1: number times 1 hub targeted",
106         "numcpus:  number of cpus targeted with shootdown",
107         "dto:      number of destination timeouts",
108         "retries:  destination timeout retries sent",
109         "rok:   :  destination timeouts successfully retried",
110         "resetp:   ipi-style resource resets for plugs",
111         "resett:   ipi-style resource resets for timeouts",
112         "giveup:   fall-backs to ipi-style shootdowns",
113         "sto:      number of source timeouts",
114         "bz:       number of stay-busy's",
115         "throt:    number times spun in throttle",
116         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
117         "recv:     shootdown messages received",
118         "rtime:    time spent processing messages",
119         "all:      shootdown all-tlb messages",
120         "one:      shootdown one-tlb messages",
121         "mult:     interrupts that found multiple messages",
122         "none:     interrupts that found no messages",
123         "retry:    number of retry messages processed",
124         "canc:     number messages canceled by retries",
125         "nocan:    number retries that found nothing to cancel",
126         "reset:    number of ipi-style reset requests processed",
127         "rcan:     number messages canceled by reset requests",
128         "disable:  number times use of the BAU was disabled",
129         "enable:   number times use of the BAU was re-enabled"
130 };
131
132 static int __init setup_bau(char *arg)
133 {
134         int result;
135
136         if (!arg)
137                 return -EINVAL;
138
139         result = strtobool(arg, &nobau);
140         if (result)
141                 return result;
142
143         /* we need to flip the logic here, so that bau=y sets nobau to false */
144         nobau = !nobau;
145
146         if (!nobau)
147                 pr_info("UV BAU Enabled\n");
148         else
149                 pr_info("UV BAU Disabled\n");
150
151         return 0;
152 }
153 early_param("bau", setup_bau);
154
155 /* base pnode in this partition */
156 static int uv_base_pnode __read_mostly;
157
158 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
159 static DEFINE_PER_CPU(struct bau_control, bau_control);
160 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
161
162 static void
163 set_bau_on(void)
164 {
165         int cpu;
166         struct bau_control *bcp;
167
168         if (nobau_perm) {
169                 pr_info("BAU not initialized; cannot be turned on\n");
170                 return;
171         }
172         nobau = false;
173         for_each_present_cpu(cpu) {
174                 bcp = &per_cpu(bau_control, cpu);
175                 bcp->nobau = false;
176         }
177         pr_info("BAU turned on\n");
178         return;
179 }
180
181 static void
182 set_bau_off(void)
183 {
184         int cpu;
185         struct bau_control *bcp;
186
187         nobau = true;
188         for_each_present_cpu(cpu) {
189                 bcp = &per_cpu(bau_control, cpu);
190                 bcp->nobau = true;
191         }
192         pr_info("BAU turned off\n");
193         return;
194 }
195
196 /*
197  * Determine the first node on a uvhub. 'Nodes' are used for kernel
198  * memory allocation.
199  */
200 static int __init uvhub_to_first_node(int uvhub)
201 {
202         int node, b;
203
204         for_each_online_node(node) {
205                 b = uv_node_to_blade_id(node);
206                 if (uvhub == b)
207                         return node;
208         }
209         return -1;
210 }
211
212 /*
213  * Determine the apicid of the first cpu on a uvhub.
214  */
215 static int __init uvhub_to_first_apicid(int uvhub)
216 {
217         int cpu;
218
219         for_each_present_cpu(cpu)
220                 if (uvhub == uv_cpu_to_blade_id(cpu))
221                         return per_cpu(x86_cpu_to_apicid, cpu);
222         return -1;
223 }
224
225 /*
226  * Free a software acknowledge hardware resource by clearing its Pending
227  * bit. This will return a reply to the sender.
228  * If the message has timed out, a reply has already been sent by the
229  * hardware but the resource has not been released. In that case our
230  * clear of the Timeout bit (as well) will free the resource. No reply will
231  * be sent (the hardware will only do one reply per message).
232  */
233 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
234                                                 int do_acknowledge)
235 {
236         unsigned long dw;
237         struct bau_pq_entry *msg;
238
239         msg = mdp->msg;
240         if (!msg->canceled && do_acknowledge) {
241                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
242                 ops.write_l_sw_ack(dw);
243         }
244         msg->replied_to = 1;
245         msg->swack_vec = 0;
246 }
247
248 /*
249  * Process the receipt of a RETRY message
250  */
251 static void bau_process_retry_msg(struct msg_desc *mdp,
252                                         struct bau_control *bcp)
253 {
254         int i;
255         int cancel_count = 0;
256         unsigned long msg_res;
257         unsigned long mmr = 0;
258         struct bau_pq_entry *msg = mdp->msg;
259         struct bau_pq_entry *msg2;
260         struct ptc_stats *stat = bcp->statp;
261
262         stat->d_retries++;
263         /*
264          * cancel any message from msg+1 to the retry itself
265          */
266         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
267                 if (msg2 > mdp->queue_last)
268                         msg2 = mdp->queue_first;
269                 if (msg2 == msg)
270                         break;
271
272                 /* same conditions for cancellation as do_reset */
273                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
274                     (msg2->swack_vec) && ((msg2->swack_vec &
275                         msg->swack_vec) == 0) &&
276                     (msg2->sending_cpu == msg->sending_cpu) &&
277                     (msg2->msg_type != MSG_NOOP)) {
278                         mmr = ops.read_l_sw_ack();
279                         msg_res = msg2->swack_vec;
280                         /*
281                          * This is a message retry; clear the resources held
282                          * by the previous message only if they timed out.
283                          * If it has not timed out we have an unexpected
284                          * situation to report.
285                          */
286                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
287                                 unsigned long mr;
288                                 /*
289                                  * Is the resource timed out?
290                                  * Make everyone ignore the cancelled message.
291                                  */
292                                 msg2->canceled = 1;
293                                 stat->d_canceled++;
294                                 cancel_count++;
295                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
296                                 ops.write_l_sw_ack(mr);
297                         }
298                 }
299         }
300         if (!cancel_count)
301                 stat->d_nocanceled++;
302 }
303
304 /*
305  * Do all the things a cpu should do for a TLB shootdown message.
306  * Other cpu's may come here at the same time for this message.
307  */
308 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
309                                                 int do_acknowledge)
310 {
311         short socket_ack_count = 0;
312         short *sp;
313         struct atomic_short *asp;
314         struct ptc_stats *stat = bcp->statp;
315         struct bau_pq_entry *msg = mdp->msg;
316         struct bau_control *smaster = bcp->socket_master;
317
318         /*
319          * This must be a normal message, or retry of a normal message
320          */
321         if (msg->address == TLB_FLUSH_ALL) {
322                 local_flush_tlb();
323                 stat->d_alltlb++;
324         } else {
325                 __flush_tlb_one(msg->address);
326                 stat->d_onetlb++;
327         }
328         stat->d_requestee++;
329
330         /*
331          * One cpu on each uvhub has the additional job on a RETRY
332          * of releasing the resource held by the message that is
333          * being retried.  That message is identified by sending
334          * cpu number.
335          */
336         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
337                 bau_process_retry_msg(mdp, bcp);
338
339         /*
340          * This is a swack message, so we have to reply to it.
341          * Count each responding cpu on the socket. This avoids
342          * pinging the count's cache line back and forth between
343          * the sockets.
344          */
345         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
346         asp = (struct atomic_short *)sp;
347         socket_ack_count = atom_asr(1, asp);
348         if (socket_ack_count == bcp->cpus_in_socket) {
349                 int msg_ack_count;
350                 /*
351                  * Both sockets dump their completed count total into
352                  * the message's count.
353                  */
354                 *sp = 0;
355                 asp = (struct atomic_short *)&msg->acknowledge_count;
356                 msg_ack_count = atom_asr(socket_ack_count, asp);
357
358                 if (msg_ack_count == bcp->cpus_in_uvhub) {
359                         /*
360                          * All cpus in uvhub saw it; reply
361                          * (unless we are in the UV2 workaround)
362                          */
363                         reply_to_message(mdp, bcp, do_acknowledge);
364                 }
365         }
366
367         return;
368 }
369
370 /*
371  * Determine the first cpu on a pnode.
372  */
373 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
374 {
375         int cpu;
376         struct hub_and_pnode *hpp;
377
378         for_each_present_cpu(cpu) {
379                 hpp = &smaster->thp[cpu];
380                 if (pnode == hpp->pnode)
381                         return cpu;
382         }
383         return -1;
384 }
385
386 /*
387  * Last resort when we get a large number of destination timeouts is
388  * to clear resources held by a given cpu.
389  * Do this with IPI so that all messages in the BAU message queue
390  * can be identified by their nonzero swack_vec field.
391  *
392  * This is entered for a single cpu on the uvhub.
393  * The sender want's this uvhub to free a specific message's
394  * swack resources.
395  */
396 static void do_reset(void *ptr)
397 {
398         int i;
399         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
400         struct reset_args *rap = (struct reset_args *)ptr;
401         struct bau_pq_entry *msg;
402         struct ptc_stats *stat = bcp->statp;
403
404         stat->d_resets++;
405         /*
406          * We're looking for the given sender, and
407          * will free its swack resource.
408          * If all cpu's finally responded after the timeout, its
409          * message 'replied_to' was set.
410          */
411         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
412                 unsigned long msg_res;
413                 /* do_reset: same conditions for cancellation as
414                    bau_process_retry_msg() */
415                 if ((msg->replied_to == 0) &&
416                     (msg->canceled == 0) &&
417                     (msg->sending_cpu == rap->sender) &&
418                     (msg->swack_vec) &&
419                     (msg->msg_type != MSG_NOOP)) {
420                         unsigned long mmr;
421                         unsigned long mr;
422                         /*
423                          * make everyone else ignore this message
424                          */
425                         msg->canceled = 1;
426                         /*
427                          * only reset the resource if it is still pending
428                          */
429                         mmr = ops.read_l_sw_ack();
430                         msg_res = msg->swack_vec;
431                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
432                         if (mmr & msg_res) {
433                                 stat->d_rcanceled++;
434                                 ops.write_l_sw_ack(mr);
435                         }
436                 }
437         }
438         return;
439 }
440
441 /*
442  * Use IPI to get all target uvhubs to release resources held by
443  * a given sending cpu number.
444  */
445 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
446 {
447         int pnode;
448         int apnode;
449         int maskbits;
450         int sender = bcp->cpu;
451         cpumask_t *mask = bcp->uvhub_master->cpumask;
452         struct bau_control *smaster = bcp->socket_master;
453         struct reset_args reset_args;
454
455         reset_args.sender = sender;
456         cpumask_clear(mask);
457         /* find a single cpu for each uvhub in this distribution mask */
458         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
459         /* each bit is a pnode relative to the partition base pnode */
460         for (pnode = 0; pnode < maskbits; pnode++) {
461                 int cpu;
462                 if (!bau_uvhub_isset(pnode, distribution))
463                         continue;
464                 apnode = pnode + bcp->partition_base_pnode;
465                 cpu = pnode_to_first_cpu(apnode, smaster);
466                 cpumask_set_cpu(cpu, mask);
467         }
468
469         /* IPI all cpus; preemption is already disabled */
470         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
471         return;
472 }
473
474 /*
475  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
476  * number, not an absolute. It converts a duration in cycles to a duration in
477  * ns.
478  */
479 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
480 {
481         struct cyc2ns_data *data = cyc2ns_read_begin();
482         unsigned long long ns;
483
484         ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
485
486         cyc2ns_read_end(data);
487         return ns;
488 }
489
490 /*
491  * The reverse of the above; converts a duration in ns to a duration in cycles.
492  */
493 static inline unsigned long long ns_2_cycles(unsigned long long ns)
494 {
495         struct cyc2ns_data *data = cyc2ns_read_begin();
496         unsigned long long cyc;
497
498         cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
499
500         cyc2ns_read_end(data);
501         return cyc;
502 }
503
504 static inline unsigned long cycles_2_us(unsigned long long cyc)
505 {
506         return cycles_2_ns(cyc) / NSEC_PER_USEC;
507 }
508
509 static inline cycles_t sec_2_cycles(unsigned long sec)
510 {
511         return ns_2_cycles(sec * NSEC_PER_SEC);
512 }
513
514 static inline unsigned long long usec_2_cycles(unsigned long usec)
515 {
516         return ns_2_cycles(usec * NSEC_PER_USEC);
517 }
518
519 /*
520  * wait for all cpus on this hub to finish their sends and go quiet
521  * leaves uvhub_quiesce set so that no new broadcasts are started by
522  * bau_flush_send_and_wait()
523  */
524 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
525 {
526         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
527 }
528
529 /*
530  * mark this quiet-requestor as done
531  */
532 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
533 {
534         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
535 }
536
537 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
538 {
539         unsigned long descriptor_status;
540
541         descriptor_status = uv_read_local_mmr(mmr_offset);
542         descriptor_status >>= right_shift;
543         descriptor_status &= UV_ACT_STATUS_MASK;
544         return descriptor_status;
545 }
546
547 /*
548  * Wait for completion of a broadcast software ack message
549  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
550  */
551 static int uv1_wait_completion(struct bau_desc *bau_desc,
552                                 unsigned long mmr_offset, int right_shift,
553                                 struct bau_control *bcp, long try)
554 {
555         unsigned long descriptor_status;
556         cycles_t ttm;
557         struct ptc_stats *stat = bcp->statp;
558
559         descriptor_status = uv1_read_status(mmr_offset, right_shift);
560         /* spin on the status MMR, waiting for it to go idle */
561         while ((descriptor_status != DS_IDLE)) {
562                 /*
563                  * Our software ack messages may be blocked because
564                  * there are no swack resources available.  As long
565                  * as none of them has timed out hardware will NACK
566                  * our message and its state will stay IDLE.
567                  */
568                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
569                         stat->s_stimeout++;
570                         return FLUSH_GIVEUP;
571                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
572                         stat->s_dtimeout++;
573                         ttm = get_cycles();
574
575                         /*
576                          * Our retries may be blocked by all destination
577                          * swack resources being consumed, and a timeout
578                          * pending.  In that case hardware returns the
579                          * ERROR that looks like a destination timeout.
580                          */
581                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
582                                 bcp->conseccompletes = 0;
583                                 return FLUSH_RETRY_PLUGGED;
584                         }
585
586                         bcp->conseccompletes = 0;
587                         return FLUSH_RETRY_TIMEOUT;
588                 } else {
589                         /*
590                          * descriptor_status is still BUSY
591                          */
592                         cpu_relax();
593                 }
594                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
595         }
596         bcp->conseccompletes++;
597         return FLUSH_COMPLETE;
598 }
599
600 /*
601  * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
602  * But not currently used.
603  */
604 static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
605 {
606         return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
607 }
608
609 /*
610  * Return whether the status of the descriptor that is normally used for this
611  * cpu (the one indexed by its hub-relative cpu number) is busy.
612  * The status of the original 32 descriptors is always reflected in the 64
613  * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
614  * The bit provided by the activation_status_2 register is irrelevant to
615  * the status if it is only being tested for busy or not busy.
616  */
617 int normal_busy(struct bau_control *bcp)
618 {
619         int cpu = bcp->uvhub_cpu;
620         int mmr_offset;
621         int right_shift;
622
623         mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
624         right_shift = cpu * UV_ACT_STATUS_SIZE;
625         return (((((read_lmmr(mmr_offset) >> right_shift) &
626                                 UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
627 }
628
629 /*
630  * Entered when a bau descriptor has gone into a permanent busy wait because
631  * of a hardware bug.
632  * Workaround the bug.
633  */
634 int handle_uv2_busy(struct bau_control *bcp)
635 {
636         struct ptc_stats *stat = bcp->statp;
637
638         stat->s_uv2_wars++;
639         bcp->busy = 1;
640         return FLUSH_GIVEUP;
641 }
642
643 static int uv2_3_wait_completion(struct bau_desc *bau_desc,
644                                 unsigned long mmr_offset, int right_shift,
645                                 struct bau_control *bcp, long try)
646 {
647         unsigned long descriptor_stat;
648         cycles_t ttm;
649         int desc = bcp->uvhub_cpu;
650         long busy_reps = 0;
651         struct ptc_stats *stat = bcp->statp;
652
653         descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
654
655         /* spin on the status MMR, waiting for it to go idle */
656         while (descriptor_stat != UV2H_DESC_IDLE) {
657                 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
658                         /*
659                          * A h/w bug on the destination side may
660                          * have prevented the message being marked
661                          * pending, thus it doesn't get replied to
662                          * and gets continually nacked until it times
663                          * out with a SOURCE_TIMEOUT.
664                          */
665                         stat->s_stimeout++;
666                         return FLUSH_GIVEUP;
667                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
668                         ttm = get_cycles();
669
670                         /*
671                          * Our retries may be blocked by all destination
672                          * swack resources being consumed, and a timeout
673                          * pending.  In that case hardware returns the
674                          * ERROR that looks like a destination timeout.
675                          * Without using the extended status we have to
676                          * deduce from the short time that this was a
677                          * strong nack.
678                          */
679                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
680                                 bcp->conseccompletes = 0;
681                                 stat->s_plugged++;
682                                 /* FLUSH_RETRY_PLUGGED causes hang on boot */
683                                 return FLUSH_GIVEUP;
684                         }
685                         stat->s_dtimeout++;
686                         bcp->conseccompletes = 0;
687                         /* FLUSH_RETRY_TIMEOUT causes hang on boot */
688                         return FLUSH_GIVEUP;
689                 } else {
690                         busy_reps++;
691                         if (busy_reps > 1000000) {
692                                 /* not to hammer on the clock */
693                                 busy_reps = 0;
694                                 ttm = get_cycles();
695                                 if ((ttm - bcp->send_message) > bcp->timeout_interval)
696                                         return handle_uv2_busy(bcp);
697                         }
698                         /*
699                          * descriptor_stat is still BUSY
700                          */
701                         cpu_relax();
702                 }
703                 descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
704         }
705         bcp->conseccompletes++;
706         return FLUSH_COMPLETE;
707 }
708
709 /*
710  * There are 2 status registers; each and array[32] of 2 bits. Set up for
711  * which register to read and position in that register based on cpu in
712  * current hub.
713  */
714 static int wait_completion(struct bau_desc *bau_desc, struct bau_control *bcp, long try)
715 {
716         int right_shift;
717         unsigned long mmr_offset;
718         int desc = bcp->uvhub_cpu;
719
720         if (desc < UV_CPUS_PER_AS) {
721                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
722                 right_shift = desc * UV_ACT_STATUS_SIZE;
723         } else {
724                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
725                 right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
726         }
727
728         if (bcp->uvhub_version == 1)
729                 return uv1_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
730         else
731                 return uv2_3_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
732 }
733
734 /*
735  * Our retries are blocked by all destination sw ack resources being
736  * in use, and a timeout is pending. In that case hardware immediately
737  * returns the ERROR that looks like a destination timeout.
738  */
739 static void destination_plugged(struct bau_desc *bau_desc,
740                         struct bau_control *bcp,
741                         struct bau_control *hmaster, struct ptc_stats *stat)
742 {
743         udelay(bcp->plugged_delay);
744         bcp->plugged_tries++;
745
746         if (bcp->plugged_tries >= bcp->plugsb4reset) {
747                 bcp->plugged_tries = 0;
748
749                 quiesce_local_uvhub(hmaster);
750
751                 raw_spin_lock(&hmaster->queue_lock);
752                 reset_with_ipi(&bau_desc->distribution, bcp);
753                 raw_spin_unlock(&hmaster->queue_lock);
754
755                 end_uvhub_quiesce(hmaster);
756
757                 bcp->ipi_attempts++;
758                 stat->s_resets_plug++;
759         }
760 }
761
762 static void destination_timeout(struct bau_desc *bau_desc,
763                         struct bau_control *bcp, struct bau_control *hmaster,
764                         struct ptc_stats *stat)
765 {
766         hmaster->max_concurr = 1;
767         bcp->timeout_tries++;
768         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
769                 bcp->timeout_tries = 0;
770
771                 quiesce_local_uvhub(hmaster);
772
773                 raw_spin_lock(&hmaster->queue_lock);
774                 reset_with_ipi(&bau_desc->distribution, bcp);
775                 raw_spin_unlock(&hmaster->queue_lock);
776
777                 end_uvhub_quiesce(hmaster);
778
779                 bcp->ipi_attempts++;
780                 stat->s_resets_timeout++;
781         }
782 }
783
784 /*
785  * Stop all cpus on a uvhub from using the BAU for a period of time.
786  * This is reversed by check_enable.
787  */
788 static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
789 {
790         int tcpu;
791         struct bau_control *tbcp;
792         struct bau_control *hmaster;
793         cycles_t tm1;
794
795         hmaster = bcp->uvhub_master;
796         raw_spin_lock(&hmaster->disable_lock);
797         if (!bcp->baudisabled) {
798                 stat->s_bau_disabled++;
799                 tm1 = get_cycles();
800                 for_each_present_cpu(tcpu) {
801                         tbcp = &per_cpu(bau_control, tcpu);
802                         if (tbcp->uvhub_master == hmaster) {
803                                 tbcp->baudisabled = 1;
804                                 tbcp->set_bau_on_time =
805                                         tm1 + bcp->disabled_period;
806                         }
807                 }
808         }
809         raw_spin_unlock(&hmaster->disable_lock);
810 }
811
812 static void count_max_concurr(int stat, struct bau_control *bcp,
813                                 struct bau_control *hmaster)
814 {
815         bcp->plugged_tries = 0;
816         bcp->timeout_tries = 0;
817         if (stat != FLUSH_COMPLETE)
818                 return;
819         if (bcp->conseccompletes <= bcp->complete_threshold)
820                 return;
821         if (hmaster->max_concurr >= hmaster->max_concurr_const)
822                 return;
823         hmaster->max_concurr++;
824 }
825
826 static void record_send_stats(cycles_t time1, cycles_t time2,
827                 struct bau_control *bcp, struct ptc_stats *stat,
828                 int completion_status, int try)
829 {
830         cycles_t elapsed;
831
832         if (time2 > time1) {
833                 elapsed = time2 - time1;
834                 stat->s_time += elapsed;
835
836                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
837                         bcp->period_requests++;
838                         bcp->period_time += elapsed;
839                         if ((elapsed > congested_cycles) &&
840                             (bcp->period_requests > bcp->cong_reps) &&
841                             ((bcp->period_time / bcp->period_requests) >
842                                                         congested_cycles)) {
843                                 stat->s_congested++;
844                                 disable_for_period(bcp, stat);
845                         }
846                 }
847         } else
848                 stat->s_requestor--;
849
850         if (completion_status == FLUSH_COMPLETE && try > 1)
851                 stat->s_retriesok++;
852         else if (completion_status == FLUSH_GIVEUP) {
853                 stat->s_giveup++;
854                 if (get_cycles() > bcp->period_end)
855                         bcp->period_giveups = 0;
856                 bcp->period_giveups++;
857                 if (bcp->period_giveups == 1)
858                         bcp->period_end = get_cycles() + bcp->disabled_period;
859                 if (bcp->period_giveups > bcp->giveup_limit) {
860                         disable_for_period(bcp, stat);
861                         stat->s_giveuplimit++;
862                 }
863         }
864 }
865
866 /*
867  * Because of a uv1 hardware bug only a limited number of concurrent
868  * requests can be made.
869  */
870 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
871 {
872         raw_spinlock_t *lock = &hmaster->uvhub_lock;
873         atomic_t *v;
874
875         v = &hmaster->active_descriptor_count;
876         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
877                 stat->s_throttles++;
878                 do {
879                         cpu_relax();
880                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
881         }
882 }
883
884 /*
885  * Handle the completion status of a message send.
886  */
887 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
888                         struct bau_control *bcp, struct bau_control *hmaster,
889                         struct ptc_stats *stat)
890 {
891         if (completion_status == FLUSH_RETRY_PLUGGED)
892                 destination_plugged(bau_desc, bcp, hmaster, stat);
893         else if (completion_status == FLUSH_RETRY_TIMEOUT)
894                 destination_timeout(bau_desc, bcp, hmaster, stat);
895 }
896
897 /*
898  * Send a broadcast and wait for it to complete.
899  *
900  * The flush_mask contains the cpus the broadcast is to be sent to including
901  * cpus that are on the local uvhub.
902  *
903  * Returns 0 if all flushing represented in the mask was done.
904  * Returns 1 if it gives up entirely and the original cpu mask is to be
905  * returned to the kernel.
906  */
907 int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp,
908         struct bau_desc *bau_desc)
909 {
910         int seq_number = 0;
911         int completion_stat = 0;
912         int uv1 = 0;
913         long try = 0;
914         unsigned long index;
915         cycles_t time1;
916         cycles_t time2;
917         struct ptc_stats *stat = bcp->statp;
918         struct bau_control *hmaster = bcp->uvhub_master;
919         struct uv1_bau_msg_header *uv1_hdr = NULL;
920         struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
921
922         if (bcp->uvhub_version == 1) {
923                 uv1 = 1;
924                 uv1_throttle(hmaster, stat);
925         }
926
927         while (hmaster->uvhub_quiesce)
928                 cpu_relax();
929
930         time1 = get_cycles();
931         if (uv1)
932                 uv1_hdr = &bau_desc->header.uv1_hdr;
933         else
934                 /* uv2 and uv3 */
935                 uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
936
937         do {
938                 if (try == 0) {
939                         if (uv1)
940                                 uv1_hdr->msg_type = MSG_REGULAR;
941                         else
942                                 uv2_3_hdr->msg_type = MSG_REGULAR;
943                         seq_number = bcp->message_number++;
944                 } else {
945                         if (uv1)
946                                 uv1_hdr->msg_type = MSG_RETRY;
947                         else
948                                 uv2_3_hdr->msg_type = MSG_RETRY;
949                         stat->s_retry_messages++;
950                 }
951
952                 if (uv1)
953                         uv1_hdr->sequence = seq_number;
954                 else
955                         uv2_3_hdr->sequence = seq_number;
956                 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
957                 bcp->send_message = get_cycles();
958
959                 write_mmr_activation(index);
960
961                 try++;
962                 completion_stat = wait_completion(bau_desc, bcp, try);
963
964                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
965
966                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
967                         bcp->ipi_attempts = 0;
968                         stat->s_overipilimit++;
969                         completion_stat = FLUSH_GIVEUP;
970                         break;
971                 }
972                 cpu_relax();
973         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
974                  (completion_stat == FLUSH_RETRY_TIMEOUT));
975
976         time2 = get_cycles();
977
978         count_max_concurr(completion_stat, bcp, hmaster);
979
980         while (hmaster->uvhub_quiesce)
981                 cpu_relax();
982
983         atomic_dec(&hmaster->active_descriptor_count);
984
985         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
986
987         if (completion_stat == FLUSH_GIVEUP)
988                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
989                 return 1;
990         return 0;
991 }
992
993 /*
994  * The BAU is disabled for this uvhub. When the disabled time period has
995  * expired re-enable it.
996  * Return 0 if it is re-enabled for all cpus on this uvhub.
997  */
998 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
999 {
1000         int tcpu;
1001         struct bau_control *tbcp;
1002         struct bau_control *hmaster;
1003
1004         hmaster = bcp->uvhub_master;
1005         raw_spin_lock(&hmaster->disable_lock);
1006         if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
1007                 stat->s_bau_reenabled++;
1008                 for_each_present_cpu(tcpu) {
1009                         tbcp = &per_cpu(bau_control, tcpu);
1010                         if (tbcp->uvhub_master == hmaster) {
1011                                 tbcp->baudisabled = 0;
1012                                 tbcp->period_requests = 0;
1013                                 tbcp->period_time = 0;
1014                                 tbcp->period_giveups = 0;
1015                         }
1016                 }
1017                 raw_spin_unlock(&hmaster->disable_lock);
1018                 return 0;
1019         }
1020         raw_spin_unlock(&hmaster->disable_lock);
1021         return -1;
1022 }
1023
1024 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1025                                 int remotes, struct bau_desc *bau_desc)
1026 {
1027         stat->s_requestor++;
1028         stat->s_ntargcpu += remotes + locals;
1029         stat->s_ntargremotes += remotes;
1030         stat->s_ntarglocals += locals;
1031
1032         /* uvhub statistics */
1033         hubs = bau_uvhub_weight(&bau_desc->distribution);
1034         if (locals) {
1035                 stat->s_ntarglocaluvhub++;
1036                 stat->s_ntargremoteuvhub += (hubs - 1);
1037         } else
1038                 stat->s_ntargremoteuvhub += hubs;
1039
1040         stat->s_ntarguvhub += hubs;
1041
1042         if (hubs >= 16)
1043                 stat->s_ntarguvhub16++;
1044         else if (hubs >= 8)
1045                 stat->s_ntarguvhub8++;
1046         else if (hubs >= 4)
1047                 stat->s_ntarguvhub4++;
1048         else if (hubs >= 2)
1049                 stat->s_ntarguvhub2++;
1050         else
1051                 stat->s_ntarguvhub1++;
1052 }
1053
1054 /*
1055  * Translate a cpu mask to the uvhub distribution mask in the BAU
1056  * activation descriptor.
1057  */
1058 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1059                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1060 {
1061         int cpu;
1062         int pnode;
1063         int cnt = 0;
1064         struct hub_and_pnode *hpp;
1065
1066         for_each_cpu(cpu, flush_mask) {
1067                 /*
1068                  * The distribution vector is a bit map of pnodes, relative
1069                  * to the partition base pnode (and the partition base nasid
1070                  * in the header).
1071                  * Translate cpu to pnode and hub using a local memory array.
1072                  */
1073                 hpp = &bcp->socket_master->thp[cpu];
1074                 pnode = hpp->pnode - bcp->partition_base_pnode;
1075                 bau_uvhub_set(pnode, &bau_desc->distribution);
1076                 cnt++;
1077                 if (hpp->uvhub == bcp->uvhub)
1078                         (*localsp)++;
1079                 else
1080                         (*remotesp)++;
1081         }
1082         if (!cnt)
1083                 return 1;
1084         return 0;
1085 }
1086
1087 /*
1088  * globally purge translation cache of a virtual address or all TLB's
1089  * @cpumask: mask of all cpu's in which the address is to be removed
1090  * @mm: mm_struct containing virtual address range
1091  * @start: start virtual address to be removed from TLB
1092  * @end: end virtual address to be remove from TLB
1093  * @cpu: the current cpu
1094  *
1095  * This is the entry point for initiating any UV global TLB shootdown.
1096  *
1097  * Purges the translation caches of all specified processors of the given
1098  * virtual address, or purges all TLB's on specified processors.
1099  *
1100  * The caller has derived the cpumask from the mm_struct.  This function
1101  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1102  *
1103  * The cpumask is converted into a uvhubmask of the uvhubs containing
1104  * those cpus.
1105  *
1106  * Note that this function should be called with preemption disabled.
1107  *
1108  * Returns NULL if all remote flushing was done.
1109  * Returns pointer to cpumask if some remote flushing remains to be
1110  * done.  The returned pointer is valid till preemption is re-enabled.
1111  */
1112 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1113                                                 struct mm_struct *mm,
1114                                                 unsigned long start,
1115                                                 unsigned long end,
1116                                                 unsigned int cpu)
1117 {
1118         int locals = 0;
1119         int remotes = 0;
1120         int hubs = 0;
1121         struct bau_desc *bau_desc;
1122         struct cpumask *flush_mask;
1123         struct ptc_stats *stat;
1124         struct bau_control *bcp;
1125         unsigned long descriptor_status;
1126         unsigned long status;
1127
1128         bcp = &per_cpu(bau_control, cpu);
1129
1130         if (bcp->nobau)
1131                 return cpumask;
1132
1133         stat = bcp->statp;
1134         stat->s_enters++;
1135
1136         if (bcp->busy) {
1137                 descriptor_status =
1138                         read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1139                 status = ((descriptor_status >> (bcp->uvhub_cpu *
1140                         UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1141                 if (status == UV2H_DESC_BUSY)
1142                         return cpumask;
1143                 bcp->busy = 0;
1144         }
1145
1146         /* bau was disabled due to slow response */
1147         if (bcp->baudisabled) {
1148                 if (check_enable(bcp, stat)) {
1149                         stat->s_ipifordisabled++;
1150                         return cpumask;
1151                 }
1152         }
1153
1154         /*
1155          * Each sending cpu has a per-cpu mask which it fills from the caller's
1156          * cpu mask.  All cpus are converted to uvhubs and copied to the
1157          * activation descriptor.
1158          */
1159         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1160         /* don't actually do a shootdown of the local cpu */
1161         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1162
1163         if (cpumask_test_cpu(cpu, cpumask))
1164                 stat->s_ntargself++;
1165
1166         bau_desc = bcp->descriptor_base;
1167         bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1168         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1169         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1170                 return NULL;
1171
1172         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1173
1174         if (!end || (end - start) <= PAGE_SIZE)
1175                 bau_desc->payload.address = start;
1176         else
1177                 bau_desc->payload.address = TLB_FLUSH_ALL;
1178         bau_desc->payload.sending_cpu = cpu;
1179         /*
1180          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1181          * or 1 if it gave up and the original cpumask should be returned.
1182          */
1183         if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1184                 return NULL;
1185         else
1186                 return cpumask;
1187 }
1188
1189 /*
1190  * Search the message queue for any 'other' unprocessed message with the
1191  * same software acknowledge resource bit vector as the 'msg' message.
1192  */
1193 struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1194                                            struct bau_control *bcp)
1195 {
1196         struct bau_pq_entry *msg_next = msg + 1;
1197         unsigned char swack_vec = msg->swack_vec;
1198
1199         if (msg_next > bcp->queue_last)
1200                 msg_next = bcp->queue_first;
1201         while (msg_next != msg) {
1202                 if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1203                                 (msg_next->swack_vec == swack_vec))
1204                         return msg_next;
1205                 msg_next++;
1206                 if (msg_next > bcp->queue_last)
1207                         msg_next = bcp->queue_first;
1208         }
1209         return NULL;
1210 }
1211
1212 /*
1213  * UV2 needs to work around a bug in which an arriving message has not
1214  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1215  * Such a message must be ignored.
1216  */
1217 void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1218 {
1219         unsigned long mmr_image;
1220         unsigned char swack_vec;
1221         struct bau_pq_entry *msg = mdp->msg;
1222         struct bau_pq_entry *other_msg;
1223
1224         mmr_image = ops.read_l_sw_ack();
1225         swack_vec = msg->swack_vec;
1226
1227         if ((swack_vec & mmr_image) == 0) {
1228                 /*
1229                  * This message was assigned a swack resource, but no
1230                  * reserved acknowlegment is pending.
1231                  * The bug has prevented this message from setting the MMR.
1232                  */
1233                 /*
1234                  * Some message has set the MMR 'pending' bit; it might have
1235                  * been another message.  Look for that message.
1236                  */
1237                 other_msg = find_another_by_swack(msg, bcp);
1238                 if (other_msg) {
1239                         /*
1240                          * There is another. Process this one but do not
1241                          * ack it.
1242                          */
1243                         bau_process_message(mdp, bcp, 0);
1244                         /*
1245                          * Let the natural processing of that other message
1246                          * acknowledge it. Don't get the processing of sw_ack's
1247                          * out of order.
1248                          */
1249                         return;
1250                 }
1251         }
1252
1253         /*
1254          * Either the MMR shows this one pending a reply or there is no
1255          * other message using this sw_ack, so it is safe to acknowledge it.
1256          */
1257         bau_process_message(mdp, bcp, 1);
1258
1259         return;
1260 }
1261
1262 /*
1263  * The BAU message interrupt comes here. (registered by set_intr_gate)
1264  * See entry_64.S
1265  *
1266  * We received a broadcast assist message.
1267  *
1268  * Interrupts are disabled; this interrupt could represent
1269  * the receipt of several messages.
1270  *
1271  * All cores/threads on this hub get this interrupt.
1272  * The last one to see it does the software ack.
1273  * (the resource will not be freed until noninterruptable cpus see this
1274  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1275  */
1276 void uv_bau_message_interrupt(struct pt_regs *regs)
1277 {
1278         int count = 0;
1279         cycles_t time_start;
1280         struct bau_pq_entry *msg;
1281         struct bau_control *bcp;
1282         struct ptc_stats *stat;
1283         struct msg_desc msgdesc;
1284
1285         ack_APIC_irq();
1286         time_start = get_cycles();
1287
1288         bcp = &per_cpu(bau_control, smp_processor_id());
1289         stat = bcp->statp;
1290
1291         msgdesc.queue_first = bcp->queue_first;
1292         msgdesc.queue_last = bcp->queue_last;
1293
1294         msg = bcp->bau_msg_head;
1295         while (msg->swack_vec) {
1296                 count++;
1297
1298                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1299                 msgdesc.msg = msg;
1300                 if (bcp->uvhub_version == 2)
1301                         process_uv2_message(&msgdesc, bcp);
1302                 else
1303                         /* no error workaround for uv1 or uv3 */
1304                         bau_process_message(&msgdesc, bcp, 1);
1305
1306                 msg++;
1307                 if (msg > msgdesc.queue_last)
1308                         msg = msgdesc.queue_first;
1309                 bcp->bau_msg_head = msg;
1310         }
1311         stat->d_time += (get_cycles() - time_start);
1312         if (!count)
1313                 stat->d_nomsg++;
1314         else if (count > 1)
1315                 stat->d_multmsg++;
1316 }
1317
1318 /*
1319  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1320  * shootdown message timeouts enabled.  The timeout does not cause
1321  * an interrupt, but causes an error message to be returned to
1322  * the sender.
1323  */
1324 static void __init enable_timeouts(void)
1325 {
1326         int uvhub;
1327         int nuvhubs;
1328         int pnode;
1329         unsigned long mmr_image;
1330
1331         nuvhubs = uv_num_possible_blades();
1332
1333         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1334                 if (!uv_blade_nr_possible_cpus(uvhub))
1335                         continue;
1336
1337                 pnode = uv_blade_to_pnode(uvhub);
1338                 mmr_image = read_mmr_misc_control(pnode);
1339                 /*
1340                  * Set the timeout period and then lock it in, in three
1341                  * steps; captures and locks in the period.
1342                  *
1343                  * To program the period, the SOFT_ACK_MODE must be off.
1344                  */
1345                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1346                 write_mmr_misc_control(pnode, mmr_image);
1347                 /*
1348                  * Set the 4-bit period.
1349                  */
1350                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1351                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1352                 write_mmr_misc_control(pnode, mmr_image);
1353                 /*
1354                  * UV1:
1355                  * Subsequent reversals of the timebase bit (3) cause an
1356                  * immediate timeout of one or all INTD resources as
1357                  * indicated in bits 2:0 (7 causes all of them to timeout).
1358                  */
1359                 mmr_image |= (1L << SOFTACK_MSHIFT);
1360                 if (is_uv2_hub()) {
1361                         /* do not touch the legacy mode bit */
1362                         /* hw bug workaround; do not use extended status */
1363                         mmr_image &= ~(1L << UV2_EXT_SHFT);
1364                 } else if (is_uv3_hub()) {
1365                         mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1366                         mmr_image |= (1L << SB_STATUS_SHFT);
1367                 }
1368                 write_mmr_misc_control(pnode, mmr_image);
1369         }
1370 }
1371
1372 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1373 {
1374         if (*offset < num_possible_cpus())
1375                 return offset;
1376         return NULL;
1377 }
1378
1379 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1380 {
1381         (*offset)++;
1382         if (*offset < num_possible_cpus())
1383                 return offset;
1384         return NULL;
1385 }
1386
1387 static void ptc_seq_stop(struct seq_file *file, void *data)
1388 {
1389 }
1390
1391 /*
1392  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1393  * 'data' points to the cpu number
1394  * Note: see the descriptions in stat_description[].
1395  */
1396 static int ptc_seq_show(struct seq_file *file, void *data)
1397 {
1398         struct ptc_stats *stat;
1399         struct bau_control *bcp;
1400         int cpu;
1401
1402         cpu = *(loff_t *)data;
1403         if (!cpu) {
1404                 seq_puts(file,
1405                          "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1406                 seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1407                 seq_puts(file,
1408                          "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1409                 seq_puts(file,
1410                          "rok resetp resett giveup sto bz throt disable ");
1411                 seq_puts(file,
1412                          "enable wars warshw warwaits enters ipidis plugged ");
1413                 seq_puts(file,
1414                          "ipiover glim cong swack recv rtime all one mult ");
1415                 seq_puts(file, "none retry canc nocan reset rcan\n");
1416         }
1417         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1418                 bcp = &per_cpu(bau_control, cpu);
1419                 if (bcp->nobau) {
1420                         seq_printf(file, "cpu %d bau disabled\n", cpu);
1421                         return 0;
1422                 }
1423                 stat = bcp->statp;
1424                 /* source side statistics */
1425                 seq_printf(file,
1426                         "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1427                            cpu, bcp->nobau, stat->s_requestor,
1428                            cycles_2_us(stat->s_time),
1429                            stat->s_ntargself, stat->s_ntarglocals,
1430                            stat->s_ntargremotes, stat->s_ntargcpu,
1431                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1432                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1433                 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1434                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1435                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1436                            stat->s_dtimeout, stat->s_strongnacks);
1437                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1438                            stat->s_retry_messages, stat->s_retriesok,
1439                            stat->s_resets_plug, stat->s_resets_timeout,
1440                            stat->s_giveup, stat->s_stimeout,
1441                            stat->s_busy, stat->s_throttles);
1442                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1443                            stat->s_bau_disabled, stat->s_bau_reenabled,
1444                            stat->s_uv2_wars, stat->s_uv2_wars_hw,
1445                            stat->s_uv2_war_waits, stat->s_enters,
1446                            stat->s_ipifordisabled, stat->s_plugged,
1447                            stat->s_overipilimit, stat->s_giveuplimit,
1448                            stat->s_congested);
1449
1450                 /* destination side statistics */
1451                 seq_printf(file,
1452                         "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1453                            ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1454                            stat->d_requestee, cycles_2_us(stat->d_time),
1455                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1456                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1457                            stat->d_nocanceled, stat->d_resets,
1458                            stat->d_rcanceled);
1459         }
1460         return 0;
1461 }
1462
1463 /*
1464  * Display the tunables thru debugfs
1465  */
1466 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1467                                 size_t count, loff_t *ppos)
1468 {
1469         char *buf;
1470         int ret;
1471
1472         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1473                 "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1474                 "ipi_reset_limit complete_threshold congested_response_us",
1475                 "congested_reps disabled_period giveup_limit",
1476                 max_concurr, plugged_delay, plugsb4reset,
1477                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1478                 congested_respns_us, congested_reps, disabled_period,
1479                 giveup_limit);
1480
1481         if (!buf)
1482                 return -ENOMEM;
1483
1484         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1485         kfree(buf);
1486         return ret;
1487 }
1488
1489 /*
1490  * handle a write to /proc/sgi_uv/ptc_statistics
1491  * -1: reset the statistics
1492  *  0: display meaning of the statistics
1493  */
1494 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1495                                 size_t count, loff_t *data)
1496 {
1497         int cpu;
1498         int i;
1499         int elements;
1500         long input_arg;
1501         char optstr[64];
1502         struct ptc_stats *stat;
1503
1504         if (count == 0 || count > sizeof(optstr))
1505                 return -EINVAL;
1506         if (copy_from_user(optstr, user, count))
1507                 return -EFAULT;
1508         optstr[count - 1] = '\0';
1509
1510         if (!strcmp(optstr, "on")) {
1511                 set_bau_on();
1512                 return count;
1513         } else if (!strcmp(optstr, "off")) {
1514                 set_bau_off();
1515                 return count;
1516         }
1517
1518         if (kstrtol(optstr, 10, &input_arg) < 0) {
1519                 pr_debug("%s is invalid\n", optstr);
1520                 return -EINVAL;
1521         }
1522
1523         if (input_arg == 0) {
1524                 elements = ARRAY_SIZE(stat_description);
1525                 pr_debug("# cpu:      cpu number\n");
1526                 pr_debug("Sender statistics:\n");
1527                 for (i = 0; i < elements; i++)
1528                         pr_debug("%s\n", stat_description[i]);
1529         } else if (input_arg == -1) {
1530                 for_each_present_cpu(cpu) {
1531                         stat = &per_cpu(ptcstats, cpu);
1532                         memset(stat, 0, sizeof(struct ptc_stats));
1533                 }
1534         }
1535
1536         return count;
1537 }
1538
1539 static int local_atoi(const char *name)
1540 {
1541         int val = 0;
1542
1543         for (;; name++) {
1544                 switch (*name) {
1545                 case '0' ... '9':
1546                         val = 10*val+(*name-'0');
1547                         break;
1548                 default:
1549                         return val;
1550                 }
1551         }
1552 }
1553
1554 /*
1555  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1556  * Zero values reset them to defaults.
1557  */
1558 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1559                                 int count)
1560 {
1561         char *p;
1562         char *q;
1563         int cnt = 0;
1564         int val;
1565         int e = ARRAY_SIZE(tunables);
1566
1567         p = instr + strspn(instr, WHITESPACE);
1568         q = p;
1569         for (; *p; p = q + strspn(q, WHITESPACE)) {
1570                 q = p + strcspn(p, WHITESPACE);
1571                 cnt++;
1572                 if (q == p)
1573                         break;
1574         }
1575         if (cnt != e) {
1576                 pr_info("bau tunable error: should be %d values\n", e);
1577                 return -EINVAL;
1578         }
1579
1580         p = instr + strspn(instr, WHITESPACE);
1581         q = p;
1582         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1583                 q = p + strcspn(p, WHITESPACE);
1584                 val = local_atoi(p);
1585                 switch (cnt) {
1586                 case 0:
1587                         if (val == 0) {
1588                                 max_concurr = MAX_BAU_CONCURRENT;
1589                                 max_concurr_const = MAX_BAU_CONCURRENT;
1590                                 continue;
1591                         }
1592                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1593                                 pr_debug(
1594                                 "Error: BAU max concurrent %d is invalid\n",
1595                                 val);
1596                                 return -EINVAL;
1597                         }
1598                         max_concurr = val;
1599                         max_concurr_const = val;
1600                         continue;
1601                 default:
1602                         if (val == 0)
1603                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1604                         else
1605                                 *tunables[cnt].tunp = val;
1606                         continue;
1607                 }
1608                 if (q == p)
1609                         break;
1610         }
1611         return 0;
1612 }
1613
1614 /*
1615  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1616  */
1617 static ssize_t tunables_write(struct file *file, const char __user *user,
1618                                 size_t count, loff_t *data)
1619 {
1620         int cpu;
1621         int ret;
1622         char instr[100];
1623         struct bau_control *bcp;
1624
1625         if (count == 0 || count > sizeof(instr)-1)
1626                 return -EINVAL;
1627         if (copy_from_user(instr, user, count))
1628                 return -EFAULT;
1629
1630         instr[count] = '\0';
1631
1632         cpu = get_cpu();
1633         bcp = &per_cpu(bau_control, cpu);
1634         ret = parse_tunables_write(bcp, instr, count);
1635         put_cpu();
1636         if (ret)
1637                 return ret;
1638
1639         for_each_present_cpu(cpu) {
1640                 bcp = &per_cpu(bau_control, cpu);
1641                 bcp->max_concurr         = max_concurr;
1642                 bcp->max_concurr_const   = max_concurr;
1643                 bcp->plugged_delay       = plugged_delay;
1644                 bcp->plugsb4reset        = plugsb4reset;
1645                 bcp->timeoutsb4reset     = timeoutsb4reset;
1646                 bcp->ipi_reset_limit     = ipi_reset_limit;
1647                 bcp->complete_threshold  = complete_threshold;
1648                 bcp->cong_response_us    = congested_respns_us;
1649                 bcp->cong_reps           = congested_reps;
1650                 bcp->disabled_period     = sec_2_cycles(disabled_period);
1651                 bcp->giveup_limit        = giveup_limit;
1652         }
1653         return count;
1654 }
1655
1656 static const struct seq_operations uv_ptc_seq_ops = {
1657         .start          = ptc_seq_start,
1658         .next           = ptc_seq_next,
1659         .stop           = ptc_seq_stop,
1660         .show           = ptc_seq_show
1661 };
1662
1663 static int ptc_proc_open(struct inode *inode, struct file *file)
1664 {
1665         return seq_open(file, &uv_ptc_seq_ops);
1666 }
1667
1668 static int tunables_open(struct inode *inode, struct file *file)
1669 {
1670         return 0;
1671 }
1672
1673 static const struct file_operations proc_uv_ptc_operations = {
1674         .open           = ptc_proc_open,
1675         .read           = seq_read,
1676         .write          = ptc_proc_write,
1677         .llseek         = seq_lseek,
1678         .release        = seq_release,
1679 };
1680
1681 static const struct file_operations tunables_fops = {
1682         .open           = tunables_open,
1683         .read           = tunables_read,
1684         .write          = tunables_write,
1685         .llseek         = default_llseek,
1686 };
1687
1688 static int __init uv_ptc_init(void)
1689 {
1690         struct proc_dir_entry *proc_uv_ptc;
1691
1692         if (!is_uv_system())
1693                 return 0;
1694
1695         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1696                                   &proc_uv_ptc_operations);
1697         if (!proc_uv_ptc) {
1698                 pr_err("unable to create %s proc entry\n",
1699                        UV_PTC_BASENAME);
1700                 return -EINVAL;
1701         }
1702
1703         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1704         if (!tunables_dir) {
1705                 pr_err("unable to create debugfs directory %s\n",
1706                        UV_BAU_TUNABLES_DIR);
1707                 return -EINVAL;
1708         }
1709         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1710                                         tunables_dir, NULL, &tunables_fops);
1711         if (!tunables_file) {
1712                 pr_err("unable to create debugfs file %s\n",
1713                        UV_BAU_TUNABLES_FILE);
1714                 return -EINVAL;
1715         }
1716         return 0;
1717 }
1718
1719 /*
1720  * Initialize the sending side's sending buffers.
1721  */
1722 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1723 {
1724         int i;
1725         int cpu;
1726         int uv1 = 0;
1727         unsigned long gpa;
1728         unsigned long m;
1729         unsigned long n;
1730         size_t dsize;
1731         struct bau_desc *bau_desc;
1732         struct bau_desc *bd2;
1733         struct uv1_bau_msg_header *uv1_hdr;
1734         struct uv2_3_bau_msg_header *uv2_3_hdr;
1735         struct bau_control *bcp;
1736
1737         /*
1738          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1739          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1740          */
1741         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1742         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1743         BUG_ON(!bau_desc);
1744
1745         gpa = uv_gpa(bau_desc);
1746         n = uv_gpa_to_gnode(gpa);
1747         m = ops.bau_gpa_to_offset(gpa);
1748         if (is_uv1_hub())
1749                 uv1 = 1;
1750
1751         /* the 14-bit pnode */
1752         write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1753         /*
1754          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1755          * cpu even though we only use the first one; one descriptor can
1756          * describe a broadcast to 256 uv hubs.
1757          */
1758         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1759                 memset(bd2, 0, sizeof(struct bau_desc));
1760                 if (uv1) {
1761                         uv1_hdr = &bd2->header.uv1_hdr;
1762                         uv1_hdr->swack_flag = 1;
1763                         /*
1764                          * The base_dest_nasid set in the message header
1765                          * is the nasid of the first uvhub in the partition.
1766                          * The bit map will indicate destination pnode numbers
1767                          * relative to that base. They may not be consecutive
1768                          * if nasid striding is being used.
1769                          */
1770                         uv1_hdr->base_dest_nasid =
1771                                                   UV_PNODE_TO_NASID(base_pnode);
1772                         uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1773                         uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1774                         uv1_hdr->int_both        = 1;
1775                         /*
1776                          * all others need to be set to zero:
1777                          *   fairness chaining multilevel count replied_to
1778                          */
1779                 } else {
1780                         /*
1781                          * BIOS uses legacy mode, but uv2 and uv3 hardware always
1782                          * uses native mode for selective broadcasts.
1783                          */
1784                         uv2_3_hdr = &bd2->header.uv2_3_hdr;
1785                         uv2_3_hdr->swack_flag      = 1;
1786                         uv2_3_hdr->base_dest_nasid =
1787                                                   UV_PNODE_TO_NASID(base_pnode);
1788                         uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1789                         uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1790                 }
1791         }
1792         for_each_present_cpu(cpu) {
1793                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1794                         continue;
1795                 bcp = &per_cpu(bau_control, cpu);
1796                 bcp->descriptor_base = bau_desc;
1797         }
1798 }
1799
1800 /*
1801  * initialize the destination side's receiving buffers
1802  * entered for each uvhub in the partition
1803  * - node is first node (kernel memory notion) on the uvhub
1804  * - pnode is the uvhub's physical identifier
1805  */
1806 static void pq_init(int node, int pnode)
1807 {
1808         int cpu;
1809         size_t plsize;
1810         char *cp;
1811         void *vp;
1812         unsigned long gnode, first, last, tail;
1813         struct bau_pq_entry *pqp;
1814         struct bau_control *bcp;
1815
1816         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1817         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1818         pqp = (struct bau_pq_entry *)vp;
1819         BUG_ON(!pqp);
1820
1821         cp = (char *)pqp + 31;
1822         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1823
1824         for_each_present_cpu(cpu) {
1825                 if (pnode != uv_cpu_to_pnode(cpu))
1826                         continue;
1827                 /* for every cpu on this pnode: */
1828                 bcp = &per_cpu(bau_control, cpu);
1829                 bcp->queue_first        = pqp;
1830                 bcp->bau_msg_head       = pqp;
1831                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1832         }
1833
1834         first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1835         last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1836
1837         /*
1838          * Pre UV4, the gnode is required to locate the payload queue
1839          * and the payload queue tail must be maintained by the kernel.
1840          */
1841         bcp = &per_cpu(bau_control, smp_processor_id());
1842         if (bcp->uvhub_version <= 3) {
1843                 tail = first;
1844                 gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1845                 first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1846                 write_mmr_payload_tail(pnode, tail);
1847         }
1848
1849         ops.write_payload_first(pnode, first);
1850         ops.write_payload_last(pnode, last);
1851         ops.write_g_sw_ack(pnode, 0xffffUL);
1852
1853         /* in effect, all msg_type's are set to MSG_NOOP */
1854         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1855 }
1856
1857 /*
1858  * Initialization of each UV hub's structures
1859  */
1860 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1861 {
1862         int node;
1863         int pnode;
1864         unsigned long apicid;
1865
1866         node = uvhub_to_first_node(uvhub);
1867         pnode = uv_blade_to_pnode(uvhub);
1868
1869         activation_descriptor_init(node, pnode, base_pnode);
1870
1871         pq_init(node, pnode);
1872         /*
1873          * The below initialization can't be in firmware because the
1874          * messaging IRQ will be determined by the OS.
1875          */
1876         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1877         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1878 }
1879
1880 /*
1881  * We will set BAU_MISC_CONTROL with a timeout period.
1882  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1883  * So the destination timeout period has to be calculated from them.
1884  */
1885 static int calculate_destination_timeout(void)
1886 {
1887         unsigned long mmr_image;
1888         int mult1;
1889         int mult2;
1890         int index;
1891         int base;
1892         int ret;
1893         unsigned long ts_ns;
1894
1895         if (is_uv1_hub()) {
1896                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1897                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1898                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1899                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1900                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1901                 ts_ns = timeout_base_ns[index];
1902                 ts_ns *= (mult1 * mult2);
1903                 ret = ts_ns / 1000;
1904         } else {
1905                 /* same destination timeout for uv2 and uv3 */
1906                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1907                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1908                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1909                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1910                         base = 80;
1911                 else
1912                         base = 10;
1913                 mult1 = mmr_image & UV2_ACK_MASK;
1914                 ret = mult1 * base;
1915         }
1916         return ret;
1917 }
1918
1919 static void __init init_per_cpu_tunables(void)
1920 {
1921         int cpu;
1922         struct bau_control *bcp;
1923
1924         for_each_present_cpu(cpu) {
1925                 bcp = &per_cpu(bau_control, cpu);
1926                 bcp->baudisabled                = 0;
1927                 if (nobau)
1928                         bcp->nobau              = true;
1929                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1930                 /* time interval to catch a hardware stay-busy bug */
1931                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1932                 bcp->max_concurr                = max_concurr;
1933                 bcp->max_concurr_const          = max_concurr;
1934                 bcp->plugged_delay              = plugged_delay;
1935                 bcp->plugsb4reset               = plugsb4reset;
1936                 bcp->timeoutsb4reset            = timeoutsb4reset;
1937                 bcp->ipi_reset_limit            = ipi_reset_limit;
1938                 bcp->complete_threshold         = complete_threshold;
1939                 bcp->cong_response_us           = congested_respns_us;
1940                 bcp->cong_reps                  = congested_reps;
1941                 bcp->disabled_period            = sec_2_cycles(disabled_period);
1942                 bcp->giveup_limit               = giveup_limit;
1943                 raw_spin_lock_init(&bcp->queue_lock);
1944                 raw_spin_lock_init(&bcp->uvhub_lock);
1945                 raw_spin_lock_init(&bcp->disable_lock);
1946         }
1947 }
1948
1949 /*
1950  * Scan all cpus to collect blade and socket summaries.
1951  */
1952 static int __init get_cpu_topology(int base_pnode,
1953                                         struct uvhub_desc *uvhub_descs,
1954                                         unsigned char *uvhub_mask)
1955 {
1956         int cpu;
1957         int pnode;
1958         int uvhub;
1959         int socket;
1960         struct bau_control *bcp;
1961         struct uvhub_desc *bdp;
1962         struct socket_desc *sdp;
1963
1964         for_each_present_cpu(cpu) {
1965                 bcp = &per_cpu(bau_control, cpu);
1966
1967                 memset(bcp, 0, sizeof(struct bau_control));
1968
1969                 pnode = uv_cpu_hub_info(cpu)->pnode;
1970                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1971                         pr_emerg(
1972                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1973                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1974                         return 1;
1975                 }
1976
1977                 bcp->osnode = cpu_to_node(cpu);
1978                 bcp->partition_base_pnode = base_pnode;
1979
1980                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1981                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1982                 bdp = &uvhub_descs[uvhub];
1983
1984                 bdp->num_cpus++;
1985                 bdp->uvhub = uvhub;
1986                 bdp->pnode = pnode;
1987
1988                 /* kludge: 'assuming' one node per socket, and assuming that
1989                    disabling a socket just leaves a gap in node numbers */
1990                 socket = bcp->osnode & 1;
1991                 bdp->socket_mask |= (1 << socket);
1992                 sdp = &bdp->socket[socket];
1993                 sdp->cpu_number[sdp->num_cpus] = cpu;
1994                 sdp->num_cpus++;
1995                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1996                         pr_emerg("%d cpus per socket invalid\n",
1997                                 sdp->num_cpus);
1998                         return 1;
1999                 }
2000         }
2001         return 0;
2002 }
2003
2004 /*
2005  * Each socket is to get a local array of pnodes/hubs.
2006  */
2007 static void make_per_cpu_thp(struct bau_control *smaster)
2008 {
2009         int cpu;
2010         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
2011
2012         smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2013         memset(smaster->thp, 0, hpsz);
2014         for_each_present_cpu(cpu) {
2015                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2016                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2017         }
2018 }
2019
2020 /*
2021  * Each uvhub is to get a local cpumask.
2022  */
2023 static void make_per_hub_cpumask(struct bau_control *hmaster)
2024 {
2025         int sz = sizeof(cpumask_t);
2026
2027         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2028 }
2029
2030 /*
2031  * Initialize all the per_cpu information for the cpu's on a given socket,
2032  * given what has been gathered into the socket_desc struct.
2033  * And reports the chosen hub and socket masters back to the caller.
2034  */
2035 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2036                         struct bau_control **smasterp,
2037                         struct bau_control **hmasterp)
2038 {
2039         int i;
2040         int cpu;
2041         struct bau_control *bcp;
2042
2043         for (i = 0; i < sdp->num_cpus; i++) {
2044                 cpu = sdp->cpu_number[i];
2045                 bcp = &per_cpu(bau_control, cpu);
2046                 bcp->cpu = cpu;
2047                 if (i == 0) {
2048                         *smasterp = bcp;
2049                         if (!(*hmasterp))
2050                                 *hmasterp = bcp;
2051                 }
2052                 bcp->cpus_in_uvhub = bdp->num_cpus;
2053                 bcp->cpus_in_socket = sdp->num_cpus;
2054                 bcp->socket_master = *smasterp;
2055                 bcp->uvhub = bdp->uvhub;
2056                 if (is_uv1_hub())
2057                         bcp->uvhub_version = 1;
2058                 else if (is_uv2_hub())
2059                         bcp->uvhub_version = 2;
2060                 else if (is_uv3_hub())
2061                         bcp->uvhub_version = 3;
2062                 else if (is_uv4_hub())
2063                         bcp->uvhub_version = 4;
2064                 else {
2065                         pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2066                         return 1;
2067                 }
2068                 bcp->uvhub_master = *hmasterp;
2069                 bcp->uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2070
2071                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2072                         pr_emerg("%d cpus per uvhub invalid\n",
2073                                 bcp->uvhub_cpu);
2074                         return 1;
2075                 }
2076         }
2077         return 0;
2078 }
2079
2080 /*
2081  * Summarize the blade and socket topology into the per_cpu structures.
2082  */
2083 static int __init summarize_uvhub_sockets(int nuvhubs,
2084                         struct uvhub_desc *uvhub_descs,
2085                         unsigned char *uvhub_mask)
2086 {
2087         int socket;
2088         int uvhub;
2089         unsigned short socket_mask;
2090
2091         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2092                 struct uvhub_desc *bdp;
2093                 struct bau_control *smaster = NULL;
2094                 struct bau_control *hmaster = NULL;
2095
2096                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2097                         continue;
2098
2099                 bdp = &uvhub_descs[uvhub];
2100                 socket_mask = bdp->socket_mask;
2101                 socket = 0;
2102                 while (socket_mask) {
2103                         struct socket_desc *sdp;
2104                         if ((socket_mask & 1)) {
2105                                 sdp = &bdp->socket[socket];
2106                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2107                                         return 1;
2108                                 make_per_cpu_thp(smaster);
2109                         }
2110                         socket++;
2111                         socket_mask = (socket_mask >> 1);
2112                 }
2113                 make_per_hub_cpumask(hmaster);
2114         }
2115         return 0;
2116 }
2117
2118 /*
2119  * initialize the bau_control structure for each cpu
2120  */
2121 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2122 {
2123         unsigned char *uvhub_mask;
2124         void *vp;
2125         struct uvhub_desc *uvhub_descs;
2126
2127         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2128                 timeout_us = calculate_destination_timeout();
2129
2130         vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2131         uvhub_descs = (struct uvhub_desc *)vp;
2132         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2133         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2134
2135         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2136                 goto fail;
2137
2138         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2139                 goto fail;
2140
2141         kfree(uvhub_descs);
2142         kfree(uvhub_mask);
2143         init_per_cpu_tunables();
2144         return 0;
2145
2146 fail:
2147         kfree(uvhub_descs);
2148         kfree(uvhub_mask);
2149         return 1;
2150 }
2151
2152 /*
2153  * Initialization of BAU-related structures
2154  */
2155 static int __init uv_bau_init(void)
2156 {
2157         int uvhub;
2158         int pnode;
2159         int nuvhubs;
2160         int cur_cpu;
2161         int cpus;
2162         int vector;
2163         cpumask_var_t *mask;
2164
2165         if (!is_uv_system())
2166                 return 0;
2167
2168         if (is_uv4_hub())
2169                 ops = uv4_bau_ops;
2170         else if (is_uv3_hub())
2171                 ops = uv123_bau_ops;
2172         else if (is_uv2_hub())
2173                 ops = uv123_bau_ops;
2174         else if (is_uv1_hub())
2175                 ops = uv123_bau_ops;
2176
2177         for_each_possible_cpu(cur_cpu) {
2178                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2179                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2180         }
2181
2182         nuvhubs = uv_num_possible_blades();
2183         congested_cycles = usec_2_cycles(congested_respns_us);
2184
2185         uv_base_pnode = 0x7fffffff;
2186         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2187                 cpus = uv_blade_nr_possible_cpus(uvhub);
2188                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2189                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2190         }
2191
2192         /* software timeouts are not supported on UV4 */
2193         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2194                 enable_timeouts();
2195
2196         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2197                 set_bau_off();
2198                 nobau_perm = 1;
2199                 return 0;
2200         }
2201
2202         vector = UV_BAU_MESSAGE;
2203         for_each_possible_blade(uvhub) {
2204                 if (uv_blade_nr_possible_cpus(uvhub))
2205                         init_uvhub(uvhub, vector, uv_base_pnode);
2206         }
2207
2208         alloc_intr_gate(vector, uv_bau_message_intr1);
2209
2210         for_each_possible_blade(uvhub) {
2211                 if (uv_blade_nr_possible_cpus(uvhub)) {
2212                         unsigned long val;
2213                         unsigned long mmr;
2214                         pnode = uv_blade_to_pnode(uvhub);
2215                         /* INIT the bau */
2216                         val = 1L << 63;
2217                         write_gmmr_activation(pnode, val);
2218                         mmr = 1; /* should be 1 to broadcast to both sockets */
2219                         if (!is_uv1_hub())
2220                                 write_mmr_data_broadcast(pnode, mmr);
2221                 }
2222         }
2223
2224         return 0;
2225 }
2226 core_initcall(uv_bau_init);
2227 fs_initcall(uv_ptc_init);