]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - arch/x86/kvm/mmu.c
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
[zynq/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
113 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
114 #else
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #endif
117 #define PT64_LVL_ADDR_MASK(level) \
118         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
119                                                 * PT64_LEVEL_BITS))) - 1))
120 #define PT64_LVL_OFFSET_MASK(level) \
121         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT64_LEVEL_BITS))) - 1))
123
124 #define PT32_BASE_ADDR_MASK PAGE_MASK
125 #define PT32_DIR_BASE_ADDR_MASK \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
127 #define PT32_LVL_ADDR_MASK(level) \
128         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
129                                             * PT32_LEVEL_BITS))) - 1))
130
131 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
132                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
133
134 #define ACC_EXEC_MASK    1
135 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
136 #define ACC_USER_MASK    PT_USER_MASK
137 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
138
139 /* The mask for the R/X bits in EPT PTEs */
140 #define PT64_EPT_READABLE_MASK                  0x1ull
141 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 /*
157  * Return values of handle_mmio_page_fault and mmu.page_fault:
158  * RET_PF_RETRY: let CPU fault again on the address.
159  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
160  *
161  * For handle_mmio_page_fault only:
162  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
163  */
164 enum {
165         RET_PF_RETRY = 0,
166         RET_PF_EMULATE = 1,
167         RET_PF_INVALID = 2,
168 };
169
170 struct pte_list_desc {
171         u64 *sptes[PTE_LIST_EXT];
172         struct pte_list_desc *more;
173 };
174
175 struct kvm_shadow_walk_iterator {
176         u64 addr;
177         hpa_t shadow_addr;
178         u64 *sptep;
179         int level;
180         unsigned index;
181 };
182
183 static const union kvm_mmu_page_role mmu_base_role_mask = {
184         .cr0_wp = 1,
185         .cr4_pae = 1,
186         .nxe = 1,
187         .smep_andnot_wp = 1,
188         .smap_andnot_wp = 1,
189         .smm = 1,
190         .guest_mode = 1,
191         .ad_disabled = 1,
192 };
193
194 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
195         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
196                                          (_root), (_addr));                \
197              shadow_walk_okay(&(_walker));                                 \
198              shadow_walk_next(&(_walker)))
199
200 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
201         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
202              shadow_walk_okay(&(_walker));                      \
203              shadow_walk_next(&(_walker)))
204
205 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
206         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
207              shadow_walk_okay(&(_walker)) &&                            \
208                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
209              __shadow_walk_next(&(_walker), spte))
210
211 static struct kmem_cache *pte_list_desc_cache;
212 static struct kmem_cache *mmu_page_header_cache;
213 static struct percpu_counter kvm_total_used_mmu_pages;
214
215 static u64 __read_mostly shadow_nx_mask;
216 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
217 static u64 __read_mostly shadow_user_mask;
218 static u64 __read_mostly shadow_accessed_mask;
219 static u64 __read_mostly shadow_dirty_mask;
220 static u64 __read_mostly shadow_mmio_mask;
221 static u64 __read_mostly shadow_mmio_value;
222 static u64 __read_mostly shadow_present_mask;
223 static u64 __read_mostly shadow_me_mask;
224
225 /*
226  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
227  * Non-present SPTEs with shadow_acc_track_value set are in place for access
228  * tracking.
229  */
230 static u64 __read_mostly shadow_acc_track_mask;
231 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
232
233 /*
234  * The mask/shift to use for saving the original R/X bits when marking the PTE
235  * as not-present for access tracking purposes. We do not save the W bit as the
236  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
237  * restored only when a write is attempted to the page.
238  */
239 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
240                                                     PT64_EPT_EXECUTABLE_MASK;
241 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
242
243 /*
244  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
245  * to guard against L1TF attacks.
246  */
247 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
248
249 /*
250  * The number of high-order 1 bits to use in the mask above.
251  */
252 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
253
254 /*
255  * In some cases, we need to preserve the GFN of a non-present or reserved
256  * SPTE when we usurp the upper five bits of the physical address space to
257  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
258  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
259  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
260  * high and low parts.  This mask covers the lower bits of the GFN.
261  */
262 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263
264
265 static void mmu_spte_set(u64 *sptep, u64 spte);
266 static union kvm_mmu_page_role
267 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
268
269
270 static inline bool kvm_available_flush_tlb_with_range(void)
271 {
272         return kvm_x86_ops->tlb_remote_flush_with_range;
273 }
274
275 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
276                 struct kvm_tlb_range *range)
277 {
278         int ret = -ENOTSUPP;
279
280         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
281                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
282
283         if (ret)
284                 kvm_flush_remote_tlbs(kvm);
285 }
286
287 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
288                 u64 start_gfn, u64 pages)
289 {
290         struct kvm_tlb_range range;
291
292         range.start_gfn = start_gfn;
293         range.pages = pages;
294
295         kvm_flush_remote_tlbs_with_range(kvm, &range);
296 }
297
298 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
299 {
300         BUG_ON((mmio_mask & mmio_value) != mmio_value);
301         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
302         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
303 }
304 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
305
306 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
307 {
308         return sp->role.ad_disabled;
309 }
310
311 static inline bool spte_ad_enabled(u64 spte)
312 {
313         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
314         return !(spte & shadow_acc_track_value);
315 }
316
317 static inline u64 spte_shadow_accessed_mask(u64 spte)
318 {
319         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
320         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
321 }
322
323 static inline u64 spte_shadow_dirty_mask(u64 spte)
324 {
325         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
326         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
327 }
328
329 static inline bool is_access_track_spte(u64 spte)
330 {
331         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
332 }
333
334 /*
335  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
336  * the memslots generation and is derived as follows:
337  *
338  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
339  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
340  *
341  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
342  * the MMIO generation number, as doing so would require stealing a bit from
343  * the "real" generation number and thus effectively halve the maximum number
344  * of MMIO generations that can be handled before encountering a wrap (which
345  * requires a full MMU zap).  The flag is instead explicitly queried when
346  * checking for MMIO spte cache hits.
347  */
348 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
349
350 #define MMIO_SPTE_GEN_LOW_START         3
351 #define MMIO_SPTE_GEN_LOW_END           11
352 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
353                                                     MMIO_SPTE_GEN_LOW_START)
354
355 #define MMIO_SPTE_GEN_HIGH_START        52
356 #define MMIO_SPTE_GEN_HIGH_END          61
357 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
358                                                     MMIO_SPTE_GEN_HIGH_START)
359 static u64 generation_mmio_spte_mask(u64 gen)
360 {
361         u64 mask;
362
363         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
364
365         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
366         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
367         return mask;
368 }
369
370 static u64 get_mmio_spte_generation(u64 spte)
371 {
372         u64 gen;
373
374         spte &= ~shadow_mmio_mask;
375
376         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
377         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
378         return gen;
379 }
380
381 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
382                            unsigned access)
383 {
384         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
385         u64 mask = generation_mmio_spte_mask(gen);
386         u64 gpa = gfn << PAGE_SHIFT;
387
388         access &= ACC_WRITE_MASK | ACC_USER_MASK;
389         mask |= shadow_mmio_value | access;
390         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
391         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
392                 << shadow_nonpresent_or_rsvd_mask_len;
393
394         page_header(__pa(sptep))->mmio_cached = true;
395
396         trace_mark_mmio_spte(sptep, gfn, access, gen);
397         mmu_spte_set(sptep, mask);
398 }
399
400 static bool is_mmio_spte(u64 spte)
401 {
402         return (spte & shadow_mmio_mask) == shadow_mmio_value;
403 }
404
405 static gfn_t get_mmio_spte_gfn(u64 spte)
406 {
407         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
408
409         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
410                & shadow_nonpresent_or_rsvd_mask;
411
412         return gpa >> PAGE_SHIFT;
413 }
414
415 static unsigned get_mmio_spte_access(u64 spte)
416 {
417         u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
418         return (spte & ~mask) & ~PAGE_MASK;
419 }
420
421 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
422                           kvm_pfn_t pfn, unsigned access)
423 {
424         if (unlikely(is_noslot_pfn(pfn))) {
425                 mark_mmio_spte(vcpu, sptep, gfn, access);
426                 return true;
427         }
428
429         return false;
430 }
431
432 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
433 {
434         u64 kvm_gen, spte_gen, gen;
435
436         gen = kvm_vcpu_memslots(vcpu)->generation;
437         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
438                 return false;
439
440         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
441         spte_gen = get_mmio_spte_generation(spte);
442
443         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
444         return likely(kvm_gen == spte_gen);
445 }
446
447 /*
448  * Sets the shadow PTE masks used by the MMU.
449  *
450  * Assumptions:
451  *  - Setting either @accessed_mask or @dirty_mask requires setting both
452  *  - At least one of @accessed_mask or @acc_track_mask must be set
453  */
454 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
455                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
456                 u64 acc_track_mask, u64 me_mask)
457 {
458         BUG_ON(!dirty_mask != !accessed_mask);
459         BUG_ON(!accessed_mask && !acc_track_mask);
460         BUG_ON(acc_track_mask & shadow_acc_track_value);
461
462         shadow_user_mask = user_mask;
463         shadow_accessed_mask = accessed_mask;
464         shadow_dirty_mask = dirty_mask;
465         shadow_nx_mask = nx_mask;
466         shadow_x_mask = x_mask;
467         shadow_present_mask = p_mask;
468         shadow_acc_track_mask = acc_track_mask;
469         shadow_me_mask = me_mask;
470 }
471 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
472
473 static void kvm_mmu_reset_all_pte_masks(void)
474 {
475         u8 low_phys_bits;
476
477         shadow_user_mask = 0;
478         shadow_accessed_mask = 0;
479         shadow_dirty_mask = 0;
480         shadow_nx_mask = 0;
481         shadow_x_mask = 0;
482         shadow_mmio_mask = 0;
483         shadow_present_mask = 0;
484         shadow_acc_track_mask = 0;
485
486         /*
487          * If the CPU has 46 or less physical address bits, then set an
488          * appropriate mask to guard against L1TF attacks. Otherwise, it is
489          * assumed that the CPU is not vulnerable to L1TF.
490          */
491         low_phys_bits = boot_cpu_data.x86_phys_bits;
492         if (boot_cpu_data.x86_phys_bits <
493             52 - shadow_nonpresent_or_rsvd_mask_len) {
494                 shadow_nonpresent_or_rsvd_mask =
495                         rsvd_bits(boot_cpu_data.x86_phys_bits -
496                                   shadow_nonpresent_or_rsvd_mask_len,
497                                   boot_cpu_data.x86_phys_bits - 1);
498                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
499         }
500         shadow_nonpresent_or_rsvd_lower_gfn_mask =
501                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
502 }
503
504 static int is_cpuid_PSE36(void)
505 {
506         return 1;
507 }
508
509 static int is_nx(struct kvm_vcpu *vcpu)
510 {
511         return vcpu->arch.efer & EFER_NX;
512 }
513
514 static int is_shadow_present_pte(u64 pte)
515 {
516         return (pte != 0) && !is_mmio_spte(pte);
517 }
518
519 static int is_large_pte(u64 pte)
520 {
521         return pte & PT_PAGE_SIZE_MASK;
522 }
523
524 static int is_last_spte(u64 pte, int level)
525 {
526         if (level == PT_PAGE_TABLE_LEVEL)
527                 return 1;
528         if (is_large_pte(pte))
529                 return 1;
530         return 0;
531 }
532
533 static bool is_executable_pte(u64 spte)
534 {
535         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
536 }
537
538 static kvm_pfn_t spte_to_pfn(u64 pte)
539 {
540         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
541 }
542
543 static gfn_t pse36_gfn_delta(u32 gpte)
544 {
545         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
546
547         return (gpte & PT32_DIR_PSE36_MASK) << shift;
548 }
549
550 #ifdef CONFIG_X86_64
551 static void __set_spte(u64 *sptep, u64 spte)
552 {
553         WRITE_ONCE(*sptep, spte);
554 }
555
556 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
557 {
558         WRITE_ONCE(*sptep, spte);
559 }
560
561 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
562 {
563         return xchg(sptep, spte);
564 }
565
566 static u64 __get_spte_lockless(u64 *sptep)
567 {
568         return READ_ONCE(*sptep);
569 }
570 #else
571 union split_spte {
572         struct {
573                 u32 spte_low;
574                 u32 spte_high;
575         };
576         u64 spte;
577 };
578
579 static void count_spte_clear(u64 *sptep, u64 spte)
580 {
581         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
582
583         if (is_shadow_present_pte(spte))
584                 return;
585
586         /* Ensure the spte is completely set before we increase the count */
587         smp_wmb();
588         sp->clear_spte_count++;
589 }
590
591 static void __set_spte(u64 *sptep, u64 spte)
592 {
593         union split_spte *ssptep, sspte;
594
595         ssptep = (union split_spte *)sptep;
596         sspte = (union split_spte)spte;
597
598         ssptep->spte_high = sspte.spte_high;
599
600         /*
601          * If we map the spte from nonpresent to present, We should store
602          * the high bits firstly, then set present bit, so cpu can not
603          * fetch this spte while we are setting the spte.
604          */
605         smp_wmb();
606
607         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
608 }
609
610 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
611 {
612         union split_spte *ssptep, sspte;
613
614         ssptep = (union split_spte *)sptep;
615         sspte = (union split_spte)spte;
616
617         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
618
619         /*
620          * If we map the spte from present to nonpresent, we should clear
621          * present bit firstly to avoid vcpu fetch the old high bits.
622          */
623         smp_wmb();
624
625         ssptep->spte_high = sspte.spte_high;
626         count_spte_clear(sptep, spte);
627 }
628
629 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
630 {
631         union split_spte *ssptep, sspte, orig;
632
633         ssptep = (union split_spte *)sptep;
634         sspte = (union split_spte)spte;
635
636         /* xchg acts as a barrier before the setting of the high bits */
637         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
638         orig.spte_high = ssptep->spte_high;
639         ssptep->spte_high = sspte.spte_high;
640         count_spte_clear(sptep, spte);
641
642         return orig.spte;
643 }
644
645 /*
646  * The idea using the light way get the spte on x86_32 guest is from
647  * gup_get_pte(arch/x86/mm/gup.c).
648  *
649  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
650  * coalesces them and we are running out of the MMU lock.  Therefore
651  * we need to protect against in-progress updates of the spte.
652  *
653  * Reading the spte while an update is in progress may get the old value
654  * for the high part of the spte.  The race is fine for a present->non-present
655  * change (because the high part of the spte is ignored for non-present spte),
656  * but for a present->present change we must reread the spte.
657  *
658  * All such changes are done in two steps (present->non-present and
659  * non-present->present), hence it is enough to count the number of
660  * present->non-present updates: if it changed while reading the spte,
661  * we might have hit the race.  This is done using clear_spte_count.
662  */
663 static u64 __get_spte_lockless(u64 *sptep)
664 {
665         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
666         union split_spte spte, *orig = (union split_spte *)sptep;
667         int count;
668
669 retry:
670         count = sp->clear_spte_count;
671         smp_rmb();
672
673         spte.spte_low = orig->spte_low;
674         smp_rmb();
675
676         spte.spte_high = orig->spte_high;
677         smp_rmb();
678
679         if (unlikely(spte.spte_low != orig->spte_low ||
680               count != sp->clear_spte_count))
681                 goto retry;
682
683         return spte.spte;
684 }
685 #endif
686
687 static bool spte_can_locklessly_be_made_writable(u64 spte)
688 {
689         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
690                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
691 }
692
693 static bool spte_has_volatile_bits(u64 spte)
694 {
695         if (!is_shadow_present_pte(spte))
696                 return false;
697
698         /*
699          * Always atomically update spte if it can be updated
700          * out of mmu-lock, it can ensure dirty bit is not lost,
701          * also, it can help us to get a stable is_writable_pte()
702          * to ensure tlb flush is not missed.
703          */
704         if (spte_can_locklessly_be_made_writable(spte) ||
705             is_access_track_spte(spte))
706                 return true;
707
708         if (spte_ad_enabled(spte)) {
709                 if ((spte & shadow_accessed_mask) == 0 ||
710                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
711                         return true;
712         }
713
714         return false;
715 }
716
717 static bool is_accessed_spte(u64 spte)
718 {
719         u64 accessed_mask = spte_shadow_accessed_mask(spte);
720
721         return accessed_mask ? spte & accessed_mask
722                              : !is_access_track_spte(spte);
723 }
724
725 static bool is_dirty_spte(u64 spte)
726 {
727         u64 dirty_mask = spte_shadow_dirty_mask(spte);
728
729         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
730 }
731
732 /* Rules for using mmu_spte_set:
733  * Set the sptep from nonpresent to present.
734  * Note: the sptep being assigned *must* be either not present
735  * or in a state where the hardware will not attempt to update
736  * the spte.
737  */
738 static void mmu_spte_set(u64 *sptep, u64 new_spte)
739 {
740         WARN_ON(is_shadow_present_pte(*sptep));
741         __set_spte(sptep, new_spte);
742 }
743
744 /*
745  * Update the SPTE (excluding the PFN), but do not track changes in its
746  * accessed/dirty status.
747  */
748 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
749 {
750         u64 old_spte = *sptep;
751
752         WARN_ON(!is_shadow_present_pte(new_spte));
753
754         if (!is_shadow_present_pte(old_spte)) {
755                 mmu_spte_set(sptep, new_spte);
756                 return old_spte;
757         }
758
759         if (!spte_has_volatile_bits(old_spte))
760                 __update_clear_spte_fast(sptep, new_spte);
761         else
762                 old_spte = __update_clear_spte_slow(sptep, new_spte);
763
764         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
765
766         return old_spte;
767 }
768
769 /* Rules for using mmu_spte_update:
770  * Update the state bits, it means the mapped pfn is not changed.
771  *
772  * Whenever we overwrite a writable spte with a read-only one we
773  * should flush remote TLBs. Otherwise rmap_write_protect
774  * will find a read-only spte, even though the writable spte
775  * might be cached on a CPU's TLB, the return value indicates this
776  * case.
777  *
778  * Returns true if the TLB needs to be flushed
779  */
780 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
781 {
782         bool flush = false;
783         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
784
785         if (!is_shadow_present_pte(old_spte))
786                 return false;
787
788         /*
789          * For the spte updated out of mmu-lock is safe, since
790          * we always atomically update it, see the comments in
791          * spte_has_volatile_bits().
792          */
793         if (spte_can_locklessly_be_made_writable(old_spte) &&
794               !is_writable_pte(new_spte))
795                 flush = true;
796
797         /*
798          * Flush TLB when accessed/dirty states are changed in the page tables,
799          * to guarantee consistency between TLB and page tables.
800          */
801
802         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
803                 flush = true;
804                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
805         }
806
807         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
808                 flush = true;
809                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
810         }
811
812         return flush;
813 }
814
815 /*
816  * Rules for using mmu_spte_clear_track_bits:
817  * It sets the sptep from present to nonpresent, and track the
818  * state bits, it is used to clear the last level sptep.
819  * Returns non-zero if the PTE was previously valid.
820  */
821 static int mmu_spte_clear_track_bits(u64 *sptep)
822 {
823         kvm_pfn_t pfn;
824         u64 old_spte = *sptep;
825
826         if (!spte_has_volatile_bits(old_spte))
827                 __update_clear_spte_fast(sptep, 0ull);
828         else
829                 old_spte = __update_clear_spte_slow(sptep, 0ull);
830
831         if (!is_shadow_present_pte(old_spte))
832                 return 0;
833
834         pfn = spte_to_pfn(old_spte);
835
836         /*
837          * KVM does not hold the refcount of the page used by
838          * kvm mmu, before reclaiming the page, we should
839          * unmap it from mmu first.
840          */
841         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
842
843         if (is_accessed_spte(old_spte))
844                 kvm_set_pfn_accessed(pfn);
845
846         if (is_dirty_spte(old_spte))
847                 kvm_set_pfn_dirty(pfn);
848
849         return 1;
850 }
851
852 /*
853  * Rules for using mmu_spte_clear_no_track:
854  * Directly clear spte without caring the state bits of sptep,
855  * it is used to set the upper level spte.
856  */
857 static void mmu_spte_clear_no_track(u64 *sptep)
858 {
859         __update_clear_spte_fast(sptep, 0ull);
860 }
861
862 static u64 mmu_spte_get_lockless(u64 *sptep)
863 {
864         return __get_spte_lockless(sptep);
865 }
866
867 static u64 mark_spte_for_access_track(u64 spte)
868 {
869         if (spte_ad_enabled(spte))
870                 return spte & ~shadow_accessed_mask;
871
872         if (is_access_track_spte(spte))
873                 return spte;
874
875         /*
876          * Making an Access Tracking PTE will result in removal of write access
877          * from the PTE. So, verify that we will be able to restore the write
878          * access in the fast page fault path later on.
879          */
880         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
881                   !spte_can_locklessly_be_made_writable(spte),
882                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
883
884         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
885                           shadow_acc_track_saved_bits_shift),
886                   "kvm: Access Tracking saved bit locations are not zero\n");
887
888         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
889                 shadow_acc_track_saved_bits_shift;
890         spte &= ~shadow_acc_track_mask;
891
892         return spte;
893 }
894
895 /* Restore an acc-track PTE back to a regular PTE */
896 static u64 restore_acc_track_spte(u64 spte)
897 {
898         u64 new_spte = spte;
899         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
900                          & shadow_acc_track_saved_bits_mask;
901
902         WARN_ON_ONCE(spte_ad_enabled(spte));
903         WARN_ON_ONCE(!is_access_track_spte(spte));
904
905         new_spte &= ~shadow_acc_track_mask;
906         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
907                       shadow_acc_track_saved_bits_shift);
908         new_spte |= saved_bits;
909
910         return new_spte;
911 }
912
913 /* Returns the Accessed status of the PTE and resets it at the same time. */
914 static bool mmu_spte_age(u64 *sptep)
915 {
916         u64 spte = mmu_spte_get_lockless(sptep);
917
918         if (!is_accessed_spte(spte))
919                 return false;
920
921         if (spte_ad_enabled(spte)) {
922                 clear_bit((ffs(shadow_accessed_mask) - 1),
923                           (unsigned long *)sptep);
924         } else {
925                 /*
926                  * Capture the dirty status of the page, so that it doesn't get
927                  * lost when the SPTE is marked for access tracking.
928                  */
929                 if (is_writable_pte(spte))
930                         kvm_set_pfn_dirty(spte_to_pfn(spte));
931
932                 spte = mark_spte_for_access_track(spte);
933                 mmu_spte_update_no_track(sptep, spte);
934         }
935
936         return true;
937 }
938
939 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
940 {
941         /*
942          * Prevent page table teardown by making any free-er wait during
943          * kvm_flush_remote_tlbs() IPI to all active vcpus.
944          */
945         local_irq_disable();
946
947         /*
948          * Make sure a following spte read is not reordered ahead of the write
949          * to vcpu->mode.
950          */
951         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
952 }
953
954 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
955 {
956         /*
957          * Make sure the write to vcpu->mode is not reordered in front of
958          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
959          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
960          */
961         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
962         local_irq_enable();
963 }
964
965 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
966                                   struct kmem_cache *base_cache, int min)
967 {
968         void *obj;
969
970         if (cache->nobjs >= min)
971                 return 0;
972         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
973                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
974                 if (!obj)
975                         return cache->nobjs >= min ? 0 : -ENOMEM;
976                 cache->objects[cache->nobjs++] = obj;
977         }
978         return 0;
979 }
980
981 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
982 {
983         return cache->nobjs;
984 }
985
986 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
987                                   struct kmem_cache *cache)
988 {
989         while (mc->nobjs)
990                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
991 }
992
993 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
994                                        int min)
995 {
996         void *page;
997
998         if (cache->nobjs >= min)
999                 return 0;
1000         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1001                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1002                 if (!page)
1003                         return cache->nobjs >= min ? 0 : -ENOMEM;
1004                 cache->objects[cache->nobjs++] = page;
1005         }
1006         return 0;
1007 }
1008
1009 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1010 {
1011         while (mc->nobjs)
1012                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1013 }
1014
1015 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1016 {
1017         int r;
1018
1019         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1020                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1021         if (r)
1022                 goto out;
1023         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1024         if (r)
1025                 goto out;
1026         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1027                                    mmu_page_header_cache, 4);
1028 out:
1029         return r;
1030 }
1031
1032 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1033 {
1034         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1035                                 pte_list_desc_cache);
1036         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1037         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1038                                 mmu_page_header_cache);
1039 }
1040
1041 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1042 {
1043         void *p;
1044
1045         BUG_ON(!mc->nobjs);
1046         p = mc->objects[--mc->nobjs];
1047         return p;
1048 }
1049
1050 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1051 {
1052         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1053 }
1054
1055 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1056 {
1057         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1058 }
1059
1060 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1061 {
1062         if (!sp->role.direct)
1063                 return sp->gfns[index];
1064
1065         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1066 }
1067
1068 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1069 {
1070         if (sp->role.direct)
1071                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1072         else
1073                 sp->gfns[index] = gfn;
1074 }
1075
1076 /*
1077  * Return the pointer to the large page information for a given gfn,
1078  * handling slots that are not large page aligned.
1079  */
1080 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1081                                               struct kvm_memory_slot *slot,
1082                                               int level)
1083 {
1084         unsigned long idx;
1085
1086         idx = gfn_to_index(gfn, slot->base_gfn, level);
1087         return &slot->arch.lpage_info[level - 2][idx];
1088 }
1089
1090 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1091                                             gfn_t gfn, int count)
1092 {
1093         struct kvm_lpage_info *linfo;
1094         int i;
1095
1096         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1097                 linfo = lpage_info_slot(gfn, slot, i);
1098                 linfo->disallow_lpage += count;
1099                 WARN_ON(linfo->disallow_lpage < 0);
1100         }
1101 }
1102
1103 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1104 {
1105         update_gfn_disallow_lpage_count(slot, gfn, 1);
1106 }
1107
1108 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1109 {
1110         update_gfn_disallow_lpage_count(slot, gfn, -1);
1111 }
1112
1113 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1114 {
1115         struct kvm_memslots *slots;
1116         struct kvm_memory_slot *slot;
1117         gfn_t gfn;
1118
1119         kvm->arch.indirect_shadow_pages++;
1120         gfn = sp->gfn;
1121         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1122         slot = __gfn_to_memslot(slots, gfn);
1123
1124         /* the non-leaf shadow pages are keeping readonly. */
1125         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1126                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1127                                                     KVM_PAGE_TRACK_WRITE);
1128
1129         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1130 }
1131
1132 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1133 {
1134         struct kvm_memslots *slots;
1135         struct kvm_memory_slot *slot;
1136         gfn_t gfn;
1137
1138         kvm->arch.indirect_shadow_pages--;
1139         gfn = sp->gfn;
1140         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1141         slot = __gfn_to_memslot(slots, gfn);
1142         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1143                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1144                                                        KVM_PAGE_TRACK_WRITE);
1145
1146         kvm_mmu_gfn_allow_lpage(slot, gfn);
1147 }
1148
1149 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1150                                           struct kvm_memory_slot *slot)
1151 {
1152         struct kvm_lpage_info *linfo;
1153
1154         if (slot) {
1155                 linfo = lpage_info_slot(gfn, slot, level);
1156                 return !!linfo->disallow_lpage;
1157         }
1158
1159         return true;
1160 }
1161
1162 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1163                                         int level)
1164 {
1165         struct kvm_memory_slot *slot;
1166
1167         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1168         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1169 }
1170
1171 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1172 {
1173         unsigned long page_size;
1174         int i, ret = 0;
1175
1176         page_size = kvm_host_page_size(kvm, gfn);
1177
1178         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1179                 if (page_size >= KVM_HPAGE_SIZE(i))
1180                         ret = i;
1181                 else
1182                         break;
1183         }
1184
1185         return ret;
1186 }
1187
1188 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1189                                           bool no_dirty_log)
1190 {
1191         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1192                 return false;
1193         if (no_dirty_log && slot->dirty_bitmap)
1194                 return false;
1195
1196         return true;
1197 }
1198
1199 static struct kvm_memory_slot *
1200 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1201                             bool no_dirty_log)
1202 {
1203         struct kvm_memory_slot *slot;
1204
1205         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1206         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1207                 slot = NULL;
1208
1209         return slot;
1210 }
1211
1212 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1213                          bool *force_pt_level)
1214 {
1215         int host_level, level, max_level;
1216         struct kvm_memory_slot *slot;
1217
1218         if (unlikely(*force_pt_level))
1219                 return PT_PAGE_TABLE_LEVEL;
1220
1221         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1222         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1223         if (unlikely(*force_pt_level))
1224                 return PT_PAGE_TABLE_LEVEL;
1225
1226         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1227
1228         if (host_level == PT_PAGE_TABLE_LEVEL)
1229                 return host_level;
1230
1231         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1232
1233         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1234                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1235                         break;
1236
1237         return level - 1;
1238 }
1239
1240 /*
1241  * About rmap_head encoding:
1242  *
1243  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1244  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1245  * pte_list_desc containing more mappings.
1246  */
1247
1248 /*
1249  * Returns the number of pointers in the rmap chain, not counting the new one.
1250  */
1251 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1252                         struct kvm_rmap_head *rmap_head)
1253 {
1254         struct pte_list_desc *desc;
1255         int i, count = 0;
1256
1257         if (!rmap_head->val) {
1258                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1259                 rmap_head->val = (unsigned long)spte;
1260         } else if (!(rmap_head->val & 1)) {
1261                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1262                 desc = mmu_alloc_pte_list_desc(vcpu);
1263                 desc->sptes[0] = (u64 *)rmap_head->val;
1264                 desc->sptes[1] = spte;
1265                 rmap_head->val = (unsigned long)desc | 1;
1266                 ++count;
1267         } else {
1268                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1269                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1270                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1271                         desc = desc->more;
1272                         count += PTE_LIST_EXT;
1273                 }
1274                 if (desc->sptes[PTE_LIST_EXT-1]) {
1275                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1276                         desc = desc->more;
1277                 }
1278                 for (i = 0; desc->sptes[i]; ++i)
1279                         ++count;
1280                 desc->sptes[i] = spte;
1281         }
1282         return count;
1283 }
1284
1285 static void
1286 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1287                            struct pte_list_desc *desc, int i,
1288                            struct pte_list_desc *prev_desc)
1289 {
1290         int j;
1291
1292         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1293                 ;
1294         desc->sptes[i] = desc->sptes[j];
1295         desc->sptes[j] = NULL;
1296         if (j != 0)
1297                 return;
1298         if (!prev_desc && !desc->more)
1299                 rmap_head->val = (unsigned long)desc->sptes[0];
1300         else
1301                 if (prev_desc)
1302                         prev_desc->more = desc->more;
1303                 else
1304                         rmap_head->val = (unsigned long)desc->more | 1;
1305         mmu_free_pte_list_desc(desc);
1306 }
1307
1308 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1309 {
1310         struct pte_list_desc *desc;
1311         struct pte_list_desc *prev_desc;
1312         int i;
1313
1314         if (!rmap_head->val) {
1315                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1316                 BUG();
1317         } else if (!(rmap_head->val & 1)) {
1318                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1319                 if ((u64 *)rmap_head->val != spte) {
1320                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1321                         BUG();
1322                 }
1323                 rmap_head->val = 0;
1324         } else {
1325                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1326                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1327                 prev_desc = NULL;
1328                 while (desc) {
1329                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1330                                 if (desc->sptes[i] == spte) {
1331                                         pte_list_desc_remove_entry(rmap_head,
1332                                                         desc, i, prev_desc);
1333                                         return;
1334                                 }
1335                         }
1336                         prev_desc = desc;
1337                         desc = desc->more;
1338                 }
1339                 pr_err("%s: %p many->many\n", __func__, spte);
1340                 BUG();
1341         }
1342 }
1343
1344 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1345 {
1346         mmu_spte_clear_track_bits(sptep);
1347         __pte_list_remove(sptep, rmap_head);
1348 }
1349
1350 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1351                                            struct kvm_memory_slot *slot)
1352 {
1353         unsigned long idx;
1354
1355         idx = gfn_to_index(gfn, slot->base_gfn, level);
1356         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1357 }
1358
1359 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1360                                          struct kvm_mmu_page *sp)
1361 {
1362         struct kvm_memslots *slots;
1363         struct kvm_memory_slot *slot;
1364
1365         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1366         slot = __gfn_to_memslot(slots, gfn);
1367         return __gfn_to_rmap(gfn, sp->role.level, slot);
1368 }
1369
1370 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1371 {
1372         struct kvm_mmu_memory_cache *cache;
1373
1374         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1375         return mmu_memory_cache_free_objects(cache);
1376 }
1377
1378 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1379 {
1380         struct kvm_mmu_page *sp;
1381         struct kvm_rmap_head *rmap_head;
1382
1383         sp = page_header(__pa(spte));
1384         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1385         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1386         return pte_list_add(vcpu, spte, rmap_head);
1387 }
1388
1389 static void rmap_remove(struct kvm *kvm, u64 *spte)
1390 {
1391         struct kvm_mmu_page *sp;
1392         gfn_t gfn;
1393         struct kvm_rmap_head *rmap_head;
1394
1395         sp = page_header(__pa(spte));
1396         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1397         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1398         __pte_list_remove(spte, rmap_head);
1399 }
1400
1401 /*
1402  * Used by the following functions to iterate through the sptes linked by a
1403  * rmap.  All fields are private and not assumed to be used outside.
1404  */
1405 struct rmap_iterator {
1406         /* private fields */
1407         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1408         int pos;                        /* index of the sptep */
1409 };
1410
1411 /*
1412  * Iteration must be started by this function.  This should also be used after
1413  * removing/dropping sptes from the rmap link because in such cases the
1414  * information in the itererator may not be valid.
1415  *
1416  * Returns sptep if found, NULL otherwise.
1417  */
1418 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1419                            struct rmap_iterator *iter)
1420 {
1421         u64 *sptep;
1422
1423         if (!rmap_head->val)
1424                 return NULL;
1425
1426         if (!(rmap_head->val & 1)) {
1427                 iter->desc = NULL;
1428                 sptep = (u64 *)rmap_head->val;
1429                 goto out;
1430         }
1431
1432         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1433         iter->pos = 0;
1434         sptep = iter->desc->sptes[iter->pos];
1435 out:
1436         BUG_ON(!is_shadow_present_pte(*sptep));
1437         return sptep;
1438 }
1439
1440 /*
1441  * Must be used with a valid iterator: e.g. after rmap_get_first().
1442  *
1443  * Returns sptep if found, NULL otherwise.
1444  */
1445 static u64 *rmap_get_next(struct rmap_iterator *iter)
1446 {
1447         u64 *sptep;
1448
1449         if (iter->desc) {
1450                 if (iter->pos < PTE_LIST_EXT - 1) {
1451                         ++iter->pos;
1452                         sptep = iter->desc->sptes[iter->pos];
1453                         if (sptep)
1454                                 goto out;
1455                 }
1456
1457                 iter->desc = iter->desc->more;
1458
1459                 if (iter->desc) {
1460                         iter->pos = 0;
1461                         /* desc->sptes[0] cannot be NULL */
1462                         sptep = iter->desc->sptes[iter->pos];
1463                         goto out;
1464                 }
1465         }
1466
1467         return NULL;
1468 out:
1469         BUG_ON(!is_shadow_present_pte(*sptep));
1470         return sptep;
1471 }
1472
1473 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1474         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1475              _spte_; _spte_ = rmap_get_next(_iter_))
1476
1477 static void drop_spte(struct kvm *kvm, u64 *sptep)
1478 {
1479         if (mmu_spte_clear_track_bits(sptep))
1480                 rmap_remove(kvm, sptep);
1481 }
1482
1483
1484 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1485 {
1486         if (is_large_pte(*sptep)) {
1487                 WARN_ON(page_header(__pa(sptep))->role.level ==
1488                         PT_PAGE_TABLE_LEVEL);
1489                 drop_spte(kvm, sptep);
1490                 --kvm->stat.lpages;
1491                 return true;
1492         }
1493
1494         return false;
1495 }
1496
1497 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1498 {
1499         if (__drop_large_spte(vcpu->kvm, sptep)) {
1500                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1501
1502                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1503                         KVM_PAGES_PER_HPAGE(sp->role.level));
1504         }
1505 }
1506
1507 /*
1508  * Write-protect on the specified @sptep, @pt_protect indicates whether
1509  * spte write-protection is caused by protecting shadow page table.
1510  *
1511  * Note: write protection is difference between dirty logging and spte
1512  * protection:
1513  * - for dirty logging, the spte can be set to writable at anytime if
1514  *   its dirty bitmap is properly set.
1515  * - for spte protection, the spte can be writable only after unsync-ing
1516  *   shadow page.
1517  *
1518  * Return true if tlb need be flushed.
1519  */
1520 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1521 {
1522         u64 spte = *sptep;
1523
1524         if (!is_writable_pte(spte) &&
1525               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1526                 return false;
1527
1528         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1529
1530         if (pt_protect)
1531                 spte &= ~SPTE_MMU_WRITEABLE;
1532         spte = spte & ~PT_WRITABLE_MASK;
1533
1534         return mmu_spte_update(sptep, spte);
1535 }
1536
1537 static bool __rmap_write_protect(struct kvm *kvm,
1538                                  struct kvm_rmap_head *rmap_head,
1539                                  bool pt_protect)
1540 {
1541         u64 *sptep;
1542         struct rmap_iterator iter;
1543         bool flush = false;
1544
1545         for_each_rmap_spte(rmap_head, &iter, sptep)
1546                 flush |= spte_write_protect(sptep, pt_protect);
1547
1548         return flush;
1549 }
1550
1551 static bool spte_clear_dirty(u64 *sptep)
1552 {
1553         u64 spte = *sptep;
1554
1555         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1556
1557         spte &= ~shadow_dirty_mask;
1558
1559         return mmu_spte_update(sptep, spte);
1560 }
1561
1562 static bool wrprot_ad_disabled_spte(u64 *sptep)
1563 {
1564         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1565                                                (unsigned long *)sptep);
1566         if (was_writable)
1567                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1568
1569         return was_writable;
1570 }
1571
1572 /*
1573  * Gets the GFN ready for another round of dirty logging by clearing the
1574  *      - D bit on ad-enabled SPTEs, and
1575  *      - W bit on ad-disabled SPTEs.
1576  * Returns true iff any D or W bits were cleared.
1577  */
1578 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1579 {
1580         u64 *sptep;
1581         struct rmap_iterator iter;
1582         bool flush = false;
1583
1584         for_each_rmap_spte(rmap_head, &iter, sptep)
1585                 if (spte_ad_enabled(*sptep))
1586                         flush |= spte_clear_dirty(sptep);
1587                 else
1588                         flush |= wrprot_ad_disabled_spte(sptep);
1589
1590         return flush;
1591 }
1592
1593 static bool spte_set_dirty(u64 *sptep)
1594 {
1595         u64 spte = *sptep;
1596
1597         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1598
1599         spte |= shadow_dirty_mask;
1600
1601         return mmu_spte_update(sptep, spte);
1602 }
1603
1604 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1605 {
1606         u64 *sptep;
1607         struct rmap_iterator iter;
1608         bool flush = false;
1609
1610         for_each_rmap_spte(rmap_head, &iter, sptep)
1611                 if (spte_ad_enabled(*sptep))
1612                         flush |= spte_set_dirty(sptep);
1613
1614         return flush;
1615 }
1616
1617 /**
1618  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1619  * @kvm: kvm instance
1620  * @slot: slot to protect
1621  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1622  * @mask: indicates which pages we should protect
1623  *
1624  * Used when we do not need to care about huge page mappings: e.g. during dirty
1625  * logging we do not have any such mappings.
1626  */
1627 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1628                                      struct kvm_memory_slot *slot,
1629                                      gfn_t gfn_offset, unsigned long mask)
1630 {
1631         struct kvm_rmap_head *rmap_head;
1632
1633         while (mask) {
1634                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1635                                           PT_PAGE_TABLE_LEVEL, slot);
1636                 __rmap_write_protect(kvm, rmap_head, false);
1637
1638                 /* clear the first set bit */
1639                 mask &= mask - 1;
1640         }
1641 }
1642
1643 /**
1644  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1645  * protect the page if the D-bit isn't supported.
1646  * @kvm: kvm instance
1647  * @slot: slot to clear D-bit
1648  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1649  * @mask: indicates which pages we should clear D-bit
1650  *
1651  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1652  */
1653 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1654                                      struct kvm_memory_slot *slot,
1655                                      gfn_t gfn_offset, unsigned long mask)
1656 {
1657         struct kvm_rmap_head *rmap_head;
1658
1659         while (mask) {
1660                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1661                                           PT_PAGE_TABLE_LEVEL, slot);
1662                 __rmap_clear_dirty(kvm, rmap_head);
1663
1664                 /* clear the first set bit */
1665                 mask &= mask - 1;
1666         }
1667 }
1668 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1669
1670 /**
1671  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1672  * PT level pages.
1673  *
1674  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1675  * enable dirty logging for them.
1676  *
1677  * Used when we do not need to care about huge page mappings: e.g. during dirty
1678  * logging we do not have any such mappings.
1679  */
1680 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1681                                 struct kvm_memory_slot *slot,
1682                                 gfn_t gfn_offset, unsigned long mask)
1683 {
1684         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1685                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1686                                 mask);
1687         else
1688                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1689 }
1690
1691 /**
1692  * kvm_arch_write_log_dirty - emulate dirty page logging
1693  * @vcpu: Guest mode vcpu
1694  *
1695  * Emulate arch specific page modification logging for the
1696  * nested hypervisor
1697  */
1698 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1699 {
1700         if (kvm_x86_ops->write_log_dirty)
1701                 return kvm_x86_ops->write_log_dirty(vcpu);
1702
1703         return 0;
1704 }
1705
1706 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1707                                     struct kvm_memory_slot *slot, u64 gfn)
1708 {
1709         struct kvm_rmap_head *rmap_head;
1710         int i;
1711         bool write_protected = false;
1712
1713         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1714                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1715                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1716         }
1717
1718         return write_protected;
1719 }
1720
1721 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1722 {
1723         struct kvm_memory_slot *slot;
1724
1725         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1726         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1727 }
1728
1729 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1730 {
1731         u64 *sptep;
1732         struct rmap_iterator iter;
1733         bool flush = false;
1734
1735         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1736                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1737
1738                 pte_list_remove(rmap_head, sptep);
1739                 flush = true;
1740         }
1741
1742         return flush;
1743 }
1744
1745 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1746                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1747                            unsigned long data)
1748 {
1749         return kvm_zap_rmapp(kvm, rmap_head);
1750 }
1751
1752 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1753                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1754                              unsigned long data)
1755 {
1756         u64 *sptep;
1757         struct rmap_iterator iter;
1758         int need_flush = 0;
1759         u64 new_spte;
1760         pte_t *ptep = (pte_t *)data;
1761         kvm_pfn_t new_pfn;
1762
1763         WARN_ON(pte_huge(*ptep));
1764         new_pfn = pte_pfn(*ptep);
1765
1766 restart:
1767         for_each_rmap_spte(rmap_head, &iter, sptep) {
1768                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1769                             sptep, *sptep, gfn, level);
1770
1771                 need_flush = 1;
1772
1773                 if (pte_write(*ptep)) {
1774                         pte_list_remove(rmap_head, sptep);
1775                         goto restart;
1776                 } else {
1777                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1778                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1779
1780                         new_spte &= ~PT_WRITABLE_MASK;
1781                         new_spte &= ~SPTE_HOST_WRITEABLE;
1782
1783                         new_spte = mark_spte_for_access_track(new_spte);
1784
1785                         mmu_spte_clear_track_bits(sptep);
1786                         mmu_spte_set(sptep, new_spte);
1787                 }
1788         }
1789
1790         if (need_flush && kvm_available_flush_tlb_with_range()) {
1791                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1792                 return 0;
1793         }
1794
1795         return need_flush;
1796 }
1797
1798 struct slot_rmap_walk_iterator {
1799         /* input fields. */
1800         struct kvm_memory_slot *slot;
1801         gfn_t start_gfn;
1802         gfn_t end_gfn;
1803         int start_level;
1804         int end_level;
1805
1806         /* output fields. */
1807         gfn_t gfn;
1808         struct kvm_rmap_head *rmap;
1809         int level;
1810
1811         /* private field. */
1812         struct kvm_rmap_head *end_rmap;
1813 };
1814
1815 static void
1816 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1817 {
1818         iterator->level = level;
1819         iterator->gfn = iterator->start_gfn;
1820         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1821         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1822                                            iterator->slot);
1823 }
1824
1825 static void
1826 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1827                     struct kvm_memory_slot *slot, int start_level,
1828                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1829 {
1830         iterator->slot = slot;
1831         iterator->start_level = start_level;
1832         iterator->end_level = end_level;
1833         iterator->start_gfn = start_gfn;
1834         iterator->end_gfn = end_gfn;
1835
1836         rmap_walk_init_level(iterator, iterator->start_level);
1837 }
1838
1839 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1840 {
1841         return !!iterator->rmap;
1842 }
1843
1844 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1845 {
1846         if (++iterator->rmap <= iterator->end_rmap) {
1847                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1848                 return;
1849         }
1850
1851         if (++iterator->level > iterator->end_level) {
1852                 iterator->rmap = NULL;
1853                 return;
1854         }
1855
1856         rmap_walk_init_level(iterator, iterator->level);
1857 }
1858
1859 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1860            _start_gfn, _end_gfn, _iter_)                                \
1861         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1862                                  _end_level_, _start_gfn, _end_gfn);    \
1863              slot_rmap_walk_okay(_iter_);                               \
1864              slot_rmap_walk_next(_iter_))
1865
1866 static int kvm_handle_hva_range(struct kvm *kvm,
1867                                 unsigned long start,
1868                                 unsigned long end,
1869                                 unsigned long data,
1870                                 int (*handler)(struct kvm *kvm,
1871                                                struct kvm_rmap_head *rmap_head,
1872                                                struct kvm_memory_slot *slot,
1873                                                gfn_t gfn,
1874                                                int level,
1875                                                unsigned long data))
1876 {
1877         struct kvm_memslots *slots;
1878         struct kvm_memory_slot *memslot;
1879         struct slot_rmap_walk_iterator iterator;
1880         int ret = 0;
1881         int i;
1882
1883         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1884                 slots = __kvm_memslots(kvm, i);
1885                 kvm_for_each_memslot(memslot, slots) {
1886                         unsigned long hva_start, hva_end;
1887                         gfn_t gfn_start, gfn_end;
1888
1889                         hva_start = max(start, memslot->userspace_addr);
1890                         hva_end = min(end, memslot->userspace_addr +
1891                                       (memslot->npages << PAGE_SHIFT));
1892                         if (hva_start >= hva_end)
1893                                 continue;
1894                         /*
1895                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1896                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1897                          */
1898                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1899                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1900
1901                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1902                                                  PT_MAX_HUGEPAGE_LEVEL,
1903                                                  gfn_start, gfn_end - 1,
1904                                                  &iterator)
1905                                 ret |= handler(kvm, iterator.rmap, memslot,
1906                                                iterator.gfn, iterator.level, data);
1907                 }
1908         }
1909
1910         return ret;
1911 }
1912
1913 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1914                           unsigned long data,
1915                           int (*handler)(struct kvm *kvm,
1916                                          struct kvm_rmap_head *rmap_head,
1917                                          struct kvm_memory_slot *slot,
1918                                          gfn_t gfn, int level,
1919                                          unsigned long data))
1920 {
1921         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1922 }
1923
1924 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1925 {
1926         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1927 }
1928
1929 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1930 {
1931         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1932 }
1933
1934 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1935                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1936                          unsigned long data)
1937 {
1938         u64 *sptep;
1939         struct rmap_iterator uninitialized_var(iter);
1940         int young = 0;
1941
1942         for_each_rmap_spte(rmap_head, &iter, sptep)
1943                 young |= mmu_spte_age(sptep);
1944
1945         trace_kvm_age_page(gfn, level, slot, young);
1946         return young;
1947 }
1948
1949 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1950                               struct kvm_memory_slot *slot, gfn_t gfn,
1951                               int level, unsigned long data)
1952 {
1953         u64 *sptep;
1954         struct rmap_iterator iter;
1955
1956         for_each_rmap_spte(rmap_head, &iter, sptep)
1957                 if (is_accessed_spte(*sptep))
1958                         return 1;
1959         return 0;
1960 }
1961
1962 #define RMAP_RECYCLE_THRESHOLD 1000
1963
1964 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1965 {
1966         struct kvm_rmap_head *rmap_head;
1967         struct kvm_mmu_page *sp;
1968
1969         sp = page_header(__pa(spte));
1970
1971         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1972
1973         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1974         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1975                         KVM_PAGES_PER_HPAGE(sp->role.level));
1976 }
1977
1978 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1979 {
1980         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1981 }
1982
1983 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1984 {
1985         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1986 }
1987
1988 #ifdef MMU_DEBUG
1989 static int is_empty_shadow_page(u64 *spt)
1990 {
1991         u64 *pos;
1992         u64 *end;
1993
1994         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1995                 if (is_shadow_present_pte(*pos)) {
1996                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1997                                pos, *pos);
1998                         return 0;
1999                 }
2000         return 1;
2001 }
2002 #endif
2003
2004 /*
2005  * This value is the sum of all of the kvm instances's
2006  * kvm->arch.n_used_mmu_pages values.  We need a global,
2007  * aggregate version in order to make the slab shrinker
2008  * faster
2009  */
2010 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2011 {
2012         kvm->arch.n_used_mmu_pages += nr;
2013         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2014 }
2015
2016 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2017 {
2018         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2019         hlist_del(&sp->hash_link);
2020         list_del(&sp->link);
2021         free_page((unsigned long)sp->spt);
2022         if (!sp->role.direct)
2023                 free_page((unsigned long)sp->gfns);
2024         kmem_cache_free(mmu_page_header_cache, sp);
2025 }
2026
2027 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2028 {
2029         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2030 }
2031
2032 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2033                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2034 {
2035         if (!parent_pte)
2036                 return;
2037
2038         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2039 }
2040
2041 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2042                                        u64 *parent_pte)
2043 {
2044         __pte_list_remove(parent_pte, &sp->parent_ptes);
2045 }
2046
2047 static void drop_parent_pte(struct kvm_mmu_page *sp,
2048                             u64 *parent_pte)
2049 {
2050         mmu_page_remove_parent_pte(sp, parent_pte);
2051         mmu_spte_clear_no_track(parent_pte);
2052 }
2053
2054 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2055 {
2056         struct kvm_mmu_page *sp;
2057
2058         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2059         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2060         if (!direct)
2061                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2062         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2063         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2064         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2065         return sp;
2066 }
2067
2068 static void mark_unsync(u64 *spte);
2069 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2070 {
2071         u64 *sptep;
2072         struct rmap_iterator iter;
2073
2074         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2075                 mark_unsync(sptep);
2076         }
2077 }
2078
2079 static void mark_unsync(u64 *spte)
2080 {
2081         struct kvm_mmu_page *sp;
2082         unsigned int index;
2083
2084         sp = page_header(__pa(spte));
2085         index = spte - sp->spt;
2086         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2087                 return;
2088         if (sp->unsync_children++)
2089                 return;
2090         kvm_mmu_mark_parents_unsync(sp);
2091 }
2092
2093 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2094                                struct kvm_mmu_page *sp)
2095 {
2096         return 0;
2097 }
2098
2099 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2100 {
2101 }
2102
2103 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2104                                  struct kvm_mmu_page *sp, u64 *spte,
2105                                  const void *pte)
2106 {
2107         WARN_ON(1);
2108 }
2109
2110 #define KVM_PAGE_ARRAY_NR 16
2111
2112 struct kvm_mmu_pages {
2113         struct mmu_page_and_offset {
2114                 struct kvm_mmu_page *sp;
2115                 unsigned int idx;
2116         } page[KVM_PAGE_ARRAY_NR];
2117         unsigned int nr;
2118 };
2119
2120 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2121                          int idx)
2122 {
2123         int i;
2124
2125         if (sp->unsync)
2126                 for (i=0; i < pvec->nr; i++)
2127                         if (pvec->page[i].sp == sp)
2128                                 return 0;
2129
2130         pvec->page[pvec->nr].sp = sp;
2131         pvec->page[pvec->nr].idx = idx;
2132         pvec->nr++;
2133         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2134 }
2135
2136 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2137 {
2138         --sp->unsync_children;
2139         WARN_ON((int)sp->unsync_children < 0);
2140         __clear_bit(idx, sp->unsync_child_bitmap);
2141 }
2142
2143 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2144                            struct kvm_mmu_pages *pvec)
2145 {
2146         int i, ret, nr_unsync_leaf = 0;
2147
2148         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2149                 struct kvm_mmu_page *child;
2150                 u64 ent = sp->spt[i];
2151
2152                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2153                         clear_unsync_child_bit(sp, i);
2154                         continue;
2155                 }
2156
2157                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2158
2159                 if (child->unsync_children) {
2160                         if (mmu_pages_add(pvec, child, i))
2161                                 return -ENOSPC;
2162
2163                         ret = __mmu_unsync_walk(child, pvec);
2164                         if (!ret) {
2165                                 clear_unsync_child_bit(sp, i);
2166                                 continue;
2167                         } else if (ret > 0) {
2168                                 nr_unsync_leaf += ret;
2169                         } else
2170                                 return ret;
2171                 } else if (child->unsync) {
2172                         nr_unsync_leaf++;
2173                         if (mmu_pages_add(pvec, child, i))
2174                                 return -ENOSPC;
2175                 } else
2176                         clear_unsync_child_bit(sp, i);
2177         }
2178
2179         return nr_unsync_leaf;
2180 }
2181
2182 #define INVALID_INDEX (-1)
2183
2184 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2185                            struct kvm_mmu_pages *pvec)
2186 {
2187         pvec->nr = 0;
2188         if (!sp->unsync_children)
2189                 return 0;
2190
2191         mmu_pages_add(pvec, sp, INVALID_INDEX);
2192         return __mmu_unsync_walk(sp, pvec);
2193 }
2194
2195 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2196 {
2197         WARN_ON(!sp->unsync);
2198         trace_kvm_mmu_sync_page(sp);
2199         sp->unsync = 0;
2200         --kvm->stat.mmu_unsync;
2201 }
2202
2203 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2204                                      struct list_head *invalid_list);
2205 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2206                                     struct list_head *invalid_list);
2207
2208 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2209         hlist_for_each_entry(_sp,                                       \
2210           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2211                 if ((_sp)->role.invalid) {    \
2212                 } else
2213
2214 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2215         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2216                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2217
2218 /* @sp->gfn should be write-protected at the call site */
2219 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2220                             struct list_head *invalid_list)
2221 {
2222         if (sp->role.cr4_pae != !!is_pae(vcpu)
2223             || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2224                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2225                 return false;
2226         }
2227
2228         return true;
2229 }
2230
2231 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2232                                         struct list_head *invalid_list,
2233                                         bool remote_flush)
2234 {
2235         if (!remote_flush && !list_empty(invalid_list))
2236                 return false;
2237
2238         if (!list_empty(invalid_list))
2239                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2240         else
2241                 kvm_flush_remote_tlbs(kvm);
2242         return true;
2243 }
2244
2245 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2246                                  struct list_head *invalid_list,
2247                                  bool remote_flush, bool local_flush)
2248 {
2249         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2250                 return;
2251
2252         if (local_flush)
2253                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2254 }
2255
2256 #ifdef CONFIG_KVM_MMU_AUDIT
2257 #include "mmu_audit.c"
2258 #else
2259 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2260 static void mmu_audit_disable(void) { }
2261 #endif
2262
2263 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2264                          struct list_head *invalid_list)
2265 {
2266         kvm_unlink_unsync_page(vcpu->kvm, sp);
2267         return __kvm_sync_page(vcpu, sp, invalid_list);
2268 }
2269
2270 /* @gfn should be write-protected at the call site */
2271 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2272                            struct list_head *invalid_list)
2273 {
2274         struct kvm_mmu_page *s;
2275         bool ret = false;
2276
2277         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2278                 if (!s->unsync)
2279                         continue;
2280
2281                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2282                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2283         }
2284
2285         return ret;
2286 }
2287
2288 struct mmu_page_path {
2289         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2290         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2291 };
2292
2293 #define for_each_sp(pvec, sp, parents, i)                       \
2294                 for (i = mmu_pages_first(&pvec, &parents);      \
2295                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2296                         i = mmu_pages_next(&pvec, &parents, i))
2297
2298 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2299                           struct mmu_page_path *parents,
2300                           int i)
2301 {
2302         int n;
2303
2304         for (n = i+1; n < pvec->nr; n++) {
2305                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2306                 unsigned idx = pvec->page[n].idx;
2307                 int level = sp->role.level;
2308
2309                 parents->idx[level-1] = idx;
2310                 if (level == PT_PAGE_TABLE_LEVEL)
2311                         break;
2312
2313                 parents->parent[level-2] = sp;
2314         }
2315
2316         return n;
2317 }
2318
2319 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2320                            struct mmu_page_path *parents)
2321 {
2322         struct kvm_mmu_page *sp;
2323         int level;
2324
2325         if (pvec->nr == 0)
2326                 return 0;
2327
2328         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2329
2330         sp = pvec->page[0].sp;
2331         level = sp->role.level;
2332         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2333
2334         parents->parent[level-2] = sp;
2335
2336         /* Also set up a sentinel.  Further entries in pvec are all
2337          * children of sp, so this element is never overwritten.
2338          */
2339         parents->parent[level-1] = NULL;
2340         return mmu_pages_next(pvec, parents, 0);
2341 }
2342
2343 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2344 {
2345         struct kvm_mmu_page *sp;
2346         unsigned int level = 0;
2347
2348         do {
2349                 unsigned int idx = parents->idx[level];
2350                 sp = parents->parent[level];
2351                 if (!sp)
2352                         return;
2353
2354                 WARN_ON(idx == INVALID_INDEX);
2355                 clear_unsync_child_bit(sp, idx);
2356                 level++;
2357         } while (!sp->unsync_children);
2358 }
2359
2360 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2361                               struct kvm_mmu_page *parent)
2362 {
2363         int i;
2364         struct kvm_mmu_page *sp;
2365         struct mmu_page_path parents;
2366         struct kvm_mmu_pages pages;
2367         LIST_HEAD(invalid_list);
2368         bool flush = false;
2369
2370         while (mmu_unsync_walk(parent, &pages)) {
2371                 bool protected = false;
2372
2373                 for_each_sp(pages, sp, parents, i)
2374                         protected |= rmap_write_protect(vcpu, sp->gfn);
2375
2376                 if (protected) {
2377                         kvm_flush_remote_tlbs(vcpu->kvm);
2378                         flush = false;
2379                 }
2380
2381                 for_each_sp(pages, sp, parents, i) {
2382                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2383                         mmu_pages_clear_parents(&parents);
2384                 }
2385                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2386                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2387                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2388                         flush = false;
2389                 }
2390         }
2391
2392         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2393 }
2394
2395 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2396 {
2397         atomic_set(&sp->write_flooding_count,  0);
2398 }
2399
2400 static void clear_sp_write_flooding_count(u64 *spte)
2401 {
2402         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2403
2404         __clear_sp_write_flooding_count(sp);
2405 }
2406
2407 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2408                                              gfn_t gfn,
2409                                              gva_t gaddr,
2410                                              unsigned level,
2411                                              int direct,
2412                                              unsigned access)
2413 {
2414         union kvm_mmu_page_role role;
2415         unsigned quadrant;
2416         struct kvm_mmu_page *sp;
2417         bool need_sync = false;
2418         bool flush = false;
2419         int collisions = 0;
2420         LIST_HEAD(invalid_list);
2421
2422         role = vcpu->arch.mmu->mmu_role.base;
2423         role.level = level;
2424         role.direct = direct;
2425         if (role.direct)
2426                 role.cr4_pae = 0;
2427         role.access = access;
2428         if (!vcpu->arch.mmu->direct_map
2429             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2430                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2431                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2432                 role.quadrant = quadrant;
2433         }
2434         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2435                 if (sp->gfn != gfn) {
2436                         collisions++;
2437                         continue;
2438                 }
2439
2440                 if (!need_sync && sp->unsync)
2441                         need_sync = true;
2442
2443                 if (sp->role.word != role.word)
2444                         continue;
2445
2446                 if (sp->unsync) {
2447                         /* The page is good, but __kvm_sync_page might still end
2448                          * up zapping it.  If so, break in order to rebuild it.
2449                          */
2450                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2451                                 break;
2452
2453                         WARN_ON(!list_empty(&invalid_list));
2454                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2455                 }
2456
2457                 if (sp->unsync_children)
2458                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2459
2460                 __clear_sp_write_flooding_count(sp);
2461                 trace_kvm_mmu_get_page(sp, false);
2462                 goto out;
2463         }
2464
2465         ++vcpu->kvm->stat.mmu_cache_miss;
2466
2467         sp = kvm_mmu_alloc_page(vcpu, direct);
2468
2469         sp->gfn = gfn;
2470         sp->role = role;
2471         hlist_add_head(&sp->hash_link,
2472                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2473         if (!direct) {
2474                 /*
2475                  * we should do write protection before syncing pages
2476                  * otherwise the content of the synced shadow page may
2477                  * be inconsistent with guest page table.
2478                  */
2479                 account_shadowed(vcpu->kvm, sp);
2480                 if (level == PT_PAGE_TABLE_LEVEL &&
2481                       rmap_write_protect(vcpu, gfn))
2482                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2483
2484                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2485                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2486         }
2487         clear_page(sp->spt);
2488         trace_kvm_mmu_get_page(sp, true);
2489
2490         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2491 out:
2492         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2493                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2494         return sp;
2495 }
2496
2497 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2498                                         struct kvm_vcpu *vcpu, hpa_t root,
2499                                         u64 addr)
2500 {
2501         iterator->addr = addr;
2502         iterator->shadow_addr = root;
2503         iterator->level = vcpu->arch.mmu->shadow_root_level;
2504
2505         if (iterator->level == PT64_ROOT_4LEVEL &&
2506             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2507             !vcpu->arch.mmu->direct_map)
2508                 --iterator->level;
2509
2510         if (iterator->level == PT32E_ROOT_LEVEL) {
2511                 /*
2512                  * prev_root is currently only used for 64-bit hosts. So only
2513                  * the active root_hpa is valid here.
2514                  */
2515                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2516
2517                 iterator->shadow_addr
2518                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2519                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2520                 --iterator->level;
2521                 if (!iterator->shadow_addr)
2522                         iterator->level = 0;
2523         }
2524 }
2525
2526 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2527                              struct kvm_vcpu *vcpu, u64 addr)
2528 {
2529         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2530                                     addr);
2531 }
2532
2533 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2534 {
2535         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2536                 return false;
2537
2538         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2539         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2540         return true;
2541 }
2542
2543 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2544                                u64 spte)
2545 {
2546         if (is_last_spte(spte, iterator->level)) {
2547                 iterator->level = 0;
2548                 return;
2549         }
2550
2551         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2552         --iterator->level;
2553 }
2554
2555 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2556 {
2557         __shadow_walk_next(iterator, *iterator->sptep);
2558 }
2559
2560 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2561                              struct kvm_mmu_page *sp)
2562 {
2563         u64 spte;
2564
2565         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2566
2567         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2568                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2569
2570         if (sp_ad_disabled(sp))
2571                 spte |= shadow_acc_track_value;
2572         else
2573                 spte |= shadow_accessed_mask;
2574
2575         mmu_spte_set(sptep, spte);
2576
2577         mmu_page_add_parent_pte(vcpu, sp, sptep);
2578
2579         if (sp->unsync_children || sp->unsync)
2580                 mark_unsync(sptep);
2581 }
2582
2583 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2584                                    unsigned direct_access)
2585 {
2586         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2587                 struct kvm_mmu_page *child;
2588
2589                 /*
2590                  * For the direct sp, if the guest pte's dirty bit
2591                  * changed form clean to dirty, it will corrupt the
2592                  * sp's access: allow writable in the read-only sp,
2593                  * so we should update the spte at this point to get
2594                  * a new sp with the correct access.
2595                  */
2596                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2597                 if (child->role.access == direct_access)
2598                         return;
2599
2600                 drop_parent_pte(child, sptep);
2601                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2602         }
2603 }
2604
2605 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2606                              u64 *spte)
2607 {
2608         u64 pte;
2609         struct kvm_mmu_page *child;
2610
2611         pte = *spte;
2612         if (is_shadow_present_pte(pte)) {
2613                 if (is_last_spte(pte, sp->role.level)) {
2614                         drop_spte(kvm, spte);
2615                         if (is_large_pte(pte))
2616                                 --kvm->stat.lpages;
2617                 } else {
2618                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2619                         drop_parent_pte(child, spte);
2620                 }
2621                 return true;
2622         }
2623
2624         if (is_mmio_spte(pte))
2625                 mmu_spte_clear_no_track(spte);
2626
2627         return false;
2628 }
2629
2630 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2631                                          struct kvm_mmu_page *sp)
2632 {
2633         unsigned i;
2634
2635         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2636                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2637 }
2638
2639 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2640 {
2641         u64 *sptep;
2642         struct rmap_iterator iter;
2643
2644         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2645                 drop_parent_pte(sp, sptep);
2646 }
2647
2648 static int mmu_zap_unsync_children(struct kvm *kvm,
2649                                    struct kvm_mmu_page *parent,
2650                                    struct list_head *invalid_list)
2651 {
2652         int i, zapped = 0;
2653         struct mmu_page_path parents;
2654         struct kvm_mmu_pages pages;
2655
2656         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2657                 return 0;
2658
2659         while (mmu_unsync_walk(parent, &pages)) {
2660                 struct kvm_mmu_page *sp;
2661
2662                 for_each_sp(pages, sp, parents, i) {
2663                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2664                         mmu_pages_clear_parents(&parents);
2665                         zapped++;
2666                 }
2667         }
2668
2669         return zapped;
2670 }
2671
2672 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2673                                        struct kvm_mmu_page *sp,
2674                                        struct list_head *invalid_list,
2675                                        int *nr_zapped)
2676 {
2677         bool list_unstable;
2678
2679         trace_kvm_mmu_prepare_zap_page(sp);
2680         ++kvm->stat.mmu_shadow_zapped;
2681         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2682         kvm_mmu_page_unlink_children(kvm, sp);
2683         kvm_mmu_unlink_parents(kvm, sp);
2684
2685         /* Zapping children means active_mmu_pages has become unstable. */
2686         list_unstable = *nr_zapped;
2687
2688         if (!sp->role.invalid && !sp->role.direct)
2689                 unaccount_shadowed(kvm, sp);
2690
2691         if (sp->unsync)
2692                 kvm_unlink_unsync_page(kvm, sp);
2693         if (!sp->root_count) {
2694                 /* Count self */
2695                 (*nr_zapped)++;
2696                 list_move(&sp->link, invalid_list);
2697                 kvm_mod_used_mmu_pages(kvm, -1);
2698         } else {
2699                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2700
2701                 if (!sp->role.invalid)
2702                         kvm_reload_remote_mmus(kvm);
2703         }
2704
2705         sp->role.invalid = 1;
2706         return list_unstable;
2707 }
2708
2709 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2710                                      struct list_head *invalid_list)
2711 {
2712         int nr_zapped;
2713
2714         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2715         return nr_zapped;
2716 }
2717
2718 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2719                                     struct list_head *invalid_list)
2720 {
2721         struct kvm_mmu_page *sp, *nsp;
2722
2723         if (list_empty(invalid_list))
2724                 return;
2725
2726         /*
2727          * We need to make sure everyone sees our modifications to
2728          * the page tables and see changes to vcpu->mode here. The barrier
2729          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2730          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2731          *
2732          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2733          * guest mode and/or lockless shadow page table walks.
2734          */
2735         kvm_flush_remote_tlbs(kvm);
2736
2737         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2738                 WARN_ON(!sp->role.invalid || sp->root_count);
2739                 kvm_mmu_free_page(sp);
2740         }
2741 }
2742
2743 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2744                                         struct list_head *invalid_list)
2745 {
2746         struct kvm_mmu_page *sp;
2747
2748         if (list_empty(&kvm->arch.active_mmu_pages))
2749                 return false;
2750
2751         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2752                              struct kvm_mmu_page, link);
2753         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2754 }
2755
2756 /*
2757  * Changing the number of mmu pages allocated to the vm
2758  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2759  */
2760 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2761 {
2762         LIST_HEAD(invalid_list);
2763
2764         spin_lock(&kvm->mmu_lock);
2765
2766         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2767                 /* Need to free some mmu pages to achieve the goal. */
2768                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2769                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2770                                 break;
2771
2772                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2773                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2774         }
2775
2776         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2777
2778         spin_unlock(&kvm->mmu_lock);
2779 }
2780
2781 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2782 {
2783         struct kvm_mmu_page *sp;
2784         LIST_HEAD(invalid_list);
2785         int r;
2786
2787         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2788         r = 0;
2789         spin_lock(&kvm->mmu_lock);
2790         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2791                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2792                          sp->role.word);
2793                 r = 1;
2794                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2795         }
2796         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2797         spin_unlock(&kvm->mmu_lock);
2798
2799         return r;
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2802
2803 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2804 {
2805         trace_kvm_mmu_unsync_page(sp);
2806         ++vcpu->kvm->stat.mmu_unsync;
2807         sp->unsync = 1;
2808
2809         kvm_mmu_mark_parents_unsync(sp);
2810 }
2811
2812 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2813                                    bool can_unsync)
2814 {
2815         struct kvm_mmu_page *sp;
2816
2817         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2818                 return true;
2819
2820         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2821                 if (!can_unsync)
2822                         return true;
2823
2824                 if (sp->unsync)
2825                         continue;
2826
2827                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2828                 kvm_unsync_page(vcpu, sp);
2829         }
2830
2831         /*
2832          * We need to ensure that the marking of unsync pages is visible
2833          * before the SPTE is updated to allow writes because
2834          * kvm_mmu_sync_roots() checks the unsync flags without holding
2835          * the MMU lock and so can race with this. If the SPTE was updated
2836          * before the page had been marked as unsync-ed, something like the
2837          * following could happen:
2838          *
2839          * CPU 1                    CPU 2
2840          * ---------------------------------------------------------------------
2841          * 1.2 Host updates SPTE
2842          *     to be writable
2843          *                      2.1 Guest writes a GPTE for GVA X.
2844          *                          (GPTE being in the guest page table shadowed
2845          *                           by the SP from CPU 1.)
2846          *                          This reads SPTE during the page table walk.
2847          *                          Since SPTE.W is read as 1, there is no
2848          *                          fault.
2849          *
2850          *                      2.2 Guest issues TLB flush.
2851          *                          That causes a VM Exit.
2852          *
2853          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2854          *                          Since it is false, so it just returns.
2855          *
2856          *                      2.4 Guest accesses GVA X.
2857          *                          Since the mapping in the SP was not updated,
2858          *                          so the old mapping for GVA X incorrectly
2859          *                          gets used.
2860          * 1.1 Host marks SP
2861          *     as unsync
2862          *     (sp->unsync = true)
2863          *
2864          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2865          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2866          * pairs with this write barrier.
2867          */
2868         smp_wmb();
2869
2870         return false;
2871 }
2872
2873 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2874 {
2875         if (pfn_valid(pfn))
2876                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2877                         /*
2878                          * Some reserved pages, such as those from NVDIMM
2879                          * DAX devices, are not for MMIO, and can be mapped
2880                          * with cached memory type for better performance.
2881                          * However, the above check misconceives those pages
2882                          * as MMIO, and results in KVM mapping them with UC
2883                          * memory type, which would hurt the performance.
2884                          * Therefore, we check the host memory type in addition
2885                          * and only treat UC/UC-/WC pages as MMIO.
2886                          */
2887                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2888
2889         return true;
2890 }
2891
2892 /* Bits which may be returned by set_spte() */
2893 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2894 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2895
2896 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2897                     unsigned pte_access, int level,
2898                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2899                     bool can_unsync, bool host_writable)
2900 {
2901         u64 spte = 0;
2902         int ret = 0;
2903         struct kvm_mmu_page *sp;
2904
2905         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2906                 return 0;
2907
2908         sp = page_header(__pa(sptep));
2909         if (sp_ad_disabled(sp))
2910                 spte |= shadow_acc_track_value;
2911
2912         /*
2913          * For the EPT case, shadow_present_mask is 0 if hardware
2914          * supports exec-only page table entries.  In that case,
2915          * ACC_USER_MASK and shadow_user_mask are used to represent
2916          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2917          */
2918         spte |= shadow_present_mask;
2919         if (!speculative)
2920                 spte |= spte_shadow_accessed_mask(spte);
2921
2922         if (pte_access & ACC_EXEC_MASK)
2923                 spte |= shadow_x_mask;
2924         else
2925                 spte |= shadow_nx_mask;
2926
2927         if (pte_access & ACC_USER_MASK)
2928                 spte |= shadow_user_mask;
2929
2930         if (level > PT_PAGE_TABLE_LEVEL)
2931                 spte |= PT_PAGE_SIZE_MASK;
2932         if (tdp_enabled)
2933                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2934                         kvm_is_mmio_pfn(pfn));
2935
2936         if (host_writable)
2937                 spte |= SPTE_HOST_WRITEABLE;
2938         else
2939                 pte_access &= ~ACC_WRITE_MASK;
2940
2941         if (!kvm_is_mmio_pfn(pfn))
2942                 spte |= shadow_me_mask;
2943
2944         spte |= (u64)pfn << PAGE_SHIFT;
2945
2946         if (pte_access & ACC_WRITE_MASK) {
2947
2948                 /*
2949                  * Other vcpu creates new sp in the window between
2950                  * mapping_level() and acquiring mmu-lock. We can
2951                  * allow guest to retry the access, the mapping can
2952                  * be fixed if guest refault.
2953                  */
2954                 if (level > PT_PAGE_TABLE_LEVEL &&
2955                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2956                         goto done;
2957
2958                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2959
2960                 /*
2961                  * Optimization: for pte sync, if spte was writable the hash
2962                  * lookup is unnecessary (and expensive). Write protection
2963                  * is responsibility of mmu_get_page / kvm_sync_page.
2964                  * Same reasoning can be applied to dirty page accounting.
2965                  */
2966                 if (!can_unsync && is_writable_pte(*sptep))
2967                         goto set_pte;
2968
2969                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2970                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2971                                  __func__, gfn);
2972                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2973                         pte_access &= ~ACC_WRITE_MASK;
2974                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2975                 }
2976         }
2977
2978         if (pte_access & ACC_WRITE_MASK) {
2979                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2980                 spte |= spte_shadow_dirty_mask(spte);
2981         }
2982
2983         if (speculative)
2984                 spte = mark_spte_for_access_track(spte);
2985
2986 set_pte:
2987         if (mmu_spte_update(sptep, spte))
2988                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2989 done:
2990         return ret;
2991 }
2992
2993 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2994                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2995                         bool speculative, bool host_writable)
2996 {
2997         int was_rmapped = 0;
2998         int rmap_count;
2999         int set_spte_ret;
3000         int ret = RET_PF_RETRY;
3001         bool flush = false;
3002
3003         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3004                  *sptep, write_fault, gfn);
3005
3006         if (is_shadow_present_pte(*sptep)) {
3007                 /*
3008                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3009                  * the parent of the now unreachable PTE.
3010                  */
3011                 if (level > PT_PAGE_TABLE_LEVEL &&
3012                     !is_large_pte(*sptep)) {
3013                         struct kvm_mmu_page *child;
3014                         u64 pte = *sptep;
3015
3016                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3017                         drop_parent_pte(child, sptep);
3018                         flush = true;
3019                 } else if (pfn != spte_to_pfn(*sptep)) {
3020                         pgprintk("hfn old %llx new %llx\n",
3021                                  spte_to_pfn(*sptep), pfn);
3022                         drop_spte(vcpu->kvm, sptep);
3023                         flush = true;
3024                 } else
3025                         was_rmapped = 1;
3026         }
3027
3028         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3029                                 speculative, true, host_writable);
3030         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3031                 if (write_fault)
3032                         ret = RET_PF_EMULATE;
3033                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3034         }
3035
3036         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3037                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3038                                 KVM_PAGES_PER_HPAGE(level));
3039
3040         if (unlikely(is_mmio_spte(*sptep)))
3041                 ret = RET_PF_EMULATE;
3042
3043         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3044         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
3045                  is_large_pte(*sptep)? "2MB" : "4kB",
3046                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
3047                  *sptep, sptep);
3048         if (!was_rmapped && is_large_pte(*sptep))
3049                 ++vcpu->kvm->stat.lpages;
3050
3051         if (is_shadow_present_pte(*sptep)) {
3052                 if (!was_rmapped) {
3053                         rmap_count = rmap_add(vcpu, sptep, gfn);
3054                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3055                                 rmap_recycle(vcpu, sptep, gfn);
3056                 }
3057         }
3058
3059         kvm_release_pfn_clean(pfn);
3060
3061         return ret;
3062 }
3063
3064 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3065                                      bool no_dirty_log)
3066 {
3067         struct kvm_memory_slot *slot;
3068
3069         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3070         if (!slot)
3071                 return KVM_PFN_ERR_FAULT;
3072
3073         return gfn_to_pfn_memslot_atomic(slot, gfn);
3074 }
3075
3076 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3077                                     struct kvm_mmu_page *sp,
3078                                     u64 *start, u64 *end)
3079 {
3080         struct page *pages[PTE_PREFETCH_NUM];
3081         struct kvm_memory_slot *slot;
3082         unsigned access = sp->role.access;
3083         int i, ret;
3084         gfn_t gfn;
3085
3086         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3087         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3088         if (!slot)
3089                 return -1;
3090
3091         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3092         if (ret <= 0)
3093                 return -1;
3094
3095         for (i = 0; i < ret; i++, gfn++, start++)
3096                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3097                              page_to_pfn(pages[i]), true, true);
3098
3099         return 0;
3100 }
3101
3102 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3103                                   struct kvm_mmu_page *sp, u64 *sptep)
3104 {
3105         u64 *spte, *start = NULL;
3106         int i;
3107
3108         WARN_ON(!sp->role.direct);
3109
3110         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3111         spte = sp->spt + i;
3112
3113         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3114                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3115                         if (!start)
3116                                 continue;
3117                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3118                                 break;
3119                         start = NULL;
3120                 } else if (!start)
3121                         start = spte;
3122         }
3123 }
3124
3125 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3126 {
3127         struct kvm_mmu_page *sp;
3128
3129         sp = page_header(__pa(sptep));
3130
3131         /*
3132          * Without accessed bits, there's no way to distinguish between
3133          * actually accessed translations and prefetched, so disable pte
3134          * prefetch if accessed bits aren't available.
3135          */
3136         if (sp_ad_disabled(sp))
3137                 return;
3138
3139         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3140                 return;
3141
3142         __direct_pte_prefetch(vcpu, sp, sptep);
3143 }
3144
3145 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3146                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3147 {
3148         struct kvm_shadow_walk_iterator iterator;
3149         struct kvm_mmu_page *sp;
3150         int emulate = 0;
3151         gfn_t pseudo_gfn;
3152
3153         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3154                 return 0;
3155
3156         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3157                 if (iterator.level == level) {
3158                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3159                                                write, level, gfn, pfn, prefault,
3160                                                map_writable);
3161                         direct_pte_prefetch(vcpu, iterator.sptep);
3162                         ++vcpu->stat.pf_fixed;
3163                         break;
3164                 }
3165
3166                 drop_large_spte(vcpu, iterator.sptep);
3167                 if (!is_shadow_present_pte(*iterator.sptep)) {
3168                         u64 base_addr = iterator.addr;
3169
3170                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3171                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3172                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3173                                               iterator.level - 1, 1, ACC_ALL);
3174
3175                         link_shadow_page(vcpu, iterator.sptep, sp);
3176                 }
3177         }
3178         return emulate;
3179 }
3180
3181 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3182 {
3183         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3184 }
3185
3186 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3187 {
3188         /*
3189          * Do not cache the mmio info caused by writing the readonly gfn
3190          * into the spte otherwise read access on readonly gfn also can
3191          * caused mmio page fault and treat it as mmio access.
3192          */
3193         if (pfn == KVM_PFN_ERR_RO_FAULT)
3194                 return RET_PF_EMULATE;
3195
3196         if (pfn == KVM_PFN_ERR_HWPOISON) {
3197                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3198                 return RET_PF_RETRY;
3199         }
3200
3201         return -EFAULT;
3202 }
3203
3204 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3205                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3206                                         int *levelp)
3207 {
3208         kvm_pfn_t pfn = *pfnp;
3209         gfn_t gfn = *gfnp;
3210         int level = *levelp;
3211
3212         /*
3213          * Check if it's a transparent hugepage. If this would be an
3214          * hugetlbfs page, level wouldn't be set to
3215          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3216          * here.
3217          */
3218         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3219             level == PT_PAGE_TABLE_LEVEL &&
3220             PageTransCompoundMap(pfn_to_page(pfn)) &&
3221             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3222                 unsigned long mask;
3223                 /*
3224                  * mmu_notifier_retry was successful and we hold the
3225                  * mmu_lock here, so the pmd can't become splitting
3226                  * from under us, and in turn
3227                  * __split_huge_page_refcount() can't run from under
3228                  * us and we can safely transfer the refcount from
3229                  * PG_tail to PG_head as we switch the pfn to tail to
3230                  * head.
3231                  */
3232                 *levelp = level = PT_DIRECTORY_LEVEL;
3233                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3234                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3235                 if (pfn & mask) {
3236                         gfn &= ~mask;
3237                         *gfnp = gfn;
3238                         kvm_release_pfn_clean(pfn);
3239                         pfn &= ~mask;
3240                         kvm_get_pfn(pfn);
3241                         *pfnp = pfn;
3242                 }
3243         }
3244 }
3245
3246 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3247                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3248 {
3249         /* The pfn is invalid, report the error! */
3250         if (unlikely(is_error_pfn(pfn))) {
3251                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3252                 return true;
3253         }
3254
3255         if (unlikely(is_noslot_pfn(pfn)))
3256                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3257
3258         return false;
3259 }
3260
3261 static bool page_fault_can_be_fast(u32 error_code)
3262 {
3263         /*
3264          * Do not fix the mmio spte with invalid generation number which
3265          * need to be updated by slow page fault path.
3266          */
3267         if (unlikely(error_code & PFERR_RSVD_MASK))
3268                 return false;
3269
3270         /* See if the page fault is due to an NX violation */
3271         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3272                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3273                 return false;
3274
3275         /*
3276          * #PF can be fast if:
3277          * 1. The shadow page table entry is not present, which could mean that
3278          *    the fault is potentially caused by access tracking (if enabled).
3279          * 2. The shadow page table entry is present and the fault
3280          *    is caused by write-protect, that means we just need change the W
3281          *    bit of the spte which can be done out of mmu-lock.
3282          *
3283          * However, if access tracking is disabled we know that a non-present
3284          * page must be a genuine page fault where we have to create a new SPTE.
3285          * So, if access tracking is disabled, we return true only for write
3286          * accesses to a present page.
3287          */
3288
3289         return shadow_acc_track_mask != 0 ||
3290                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3291                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3292 }
3293
3294 /*
3295  * Returns true if the SPTE was fixed successfully. Otherwise,
3296  * someone else modified the SPTE from its original value.
3297  */
3298 static bool
3299 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3300                         u64 *sptep, u64 old_spte, u64 new_spte)
3301 {
3302         gfn_t gfn;
3303
3304         WARN_ON(!sp->role.direct);
3305
3306         /*
3307          * Theoretically we could also set dirty bit (and flush TLB) here in
3308          * order to eliminate unnecessary PML logging. See comments in
3309          * set_spte. But fast_page_fault is very unlikely to happen with PML
3310          * enabled, so we do not do this. This might result in the same GPA
3311          * to be logged in PML buffer again when the write really happens, and
3312          * eventually to be called by mark_page_dirty twice. But it's also no
3313          * harm. This also avoids the TLB flush needed after setting dirty bit
3314          * so non-PML cases won't be impacted.
3315          *
3316          * Compare with set_spte where instead shadow_dirty_mask is set.
3317          */
3318         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3319                 return false;
3320
3321         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3322                 /*
3323                  * The gfn of direct spte is stable since it is
3324                  * calculated by sp->gfn.
3325                  */
3326                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3327                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3328         }
3329
3330         return true;
3331 }
3332
3333 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3334 {
3335         if (fault_err_code & PFERR_FETCH_MASK)
3336                 return is_executable_pte(spte);
3337
3338         if (fault_err_code & PFERR_WRITE_MASK)
3339                 return is_writable_pte(spte);
3340
3341         /* Fault was on Read access */
3342         return spte & PT_PRESENT_MASK;
3343 }
3344
3345 /*
3346  * Return value:
3347  * - true: let the vcpu to access on the same address again.
3348  * - false: let the real page fault path to fix it.
3349  */
3350 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3351                             u32 error_code)
3352 {
3353         struct kvm_shadow_walk_iterator iterator;
3354         struct kvm_mmu_page *sp;
3355         bool fault_handled = false;
3356         u64 spte = 0ull;
3357         uint retry_count = 0;
3358
3359         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3360                 return false;
3361
3362         if (!page_fault_can_be_fast(error_code))
3363                 return false;
3364
3365         walk_shadow_page_lockless_begin(vcpu);
3366
3367         do {
3368                 u64 new_spte;
3369
3370                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3371                         if (!is_shadow_present_pte(spte) ||
3372                             iterator.level < level)
3373                                 break;
3374
3375                 sp = page_header(__pa(iterator.sptep));
3376                 if (!is_last_spte(spte, sp->role.level))
3377                         break;
3378
3379                 /*
3380                  * Check whether the memory access that caused the fault would
3381                  * still cause it if it were to be performed right now. If not,
3382                  * then this is a spurious fault caused by TLB lazily flushed,
3383                  * or some other CPU has already fixed the PTE after the
3384                  * current CPU took the fault.
3385                  *
3386                  * Need not check the access of upper level table entries since
3387                  * they are always ACC_ALL.
3388                  */
3389                 if (is_access_allowed(error_code, spte)) {
3390                         fault_handled = true;
3391                         break;
3392                 }
3393
3394                 new_spte = spte;
3395
3396                 if (is_access_track_spte(spte))
3397                         new_spte = restore_acc_track_spte(new_spte);
3398
3399                 /*
3400                  * Currently, to simplify the code, write-protection can
3401                  * be removed in the fast path only if the SPTE was
3402                  * write-protected for dirty-logging or access tracking.
3403                  */
3404                 if ((error_code & PFERR_WRITE_MASK) &&
3405                     spte_can_locklessly_be_made_writable(spte))
3406                 {
3407                         new_spte |= PT_WRITABLE_MASK;
3408
3409                         /*
3410                          * Do not fix write-permission on the large spte.  Since
3411                          * we only dirty the first page into the dirty-bitmap in
3412                          * fast_pf_fix_direct_spte(), other pages are missed
3413                          * if its slot has dirty logging enabled.
3414                          *
3415                          * Instead, we let the slow page fault path create a
3416                          * normal spte to fix the access.
3417                          *
3418                          * See the comments in kvm_arch_commit_memory_region().
3419                          */
3420                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3421                                 break;
3422                 }
3423
3424                 /* Verify that the fault can be handled in the fast path */
3425                 if (new_spte == spte ||
3426                     !is_access_allowed(error_code, new_spte))
3427                         break;
3428
3429                 /*
3430                  * Currently, fast page fault only works for direct mapping
3431                  * since the gfn is not stable for indirect shadow page. See
3432                  * Documentation/virtual/kvm/locking.txt to get more detail.
3433                  */
3434                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3435                                                         iterator.sptep, spte,
3436                                                         new_spte);
3437                 if (fault_handled)
3438                         break;
3439
3440                 if (++retry_count > 4) {
3441                         printk_once(KERN_WARNING
3442                                 "kvm: Fast #PF retrying more than 4 times.\n");
3443                         break;
3444                 }
3445
3446         } while (true);
3447
3448         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3449                               spte, fault_handled);
3450         walk_shadow_page_lockless_end(vcpu);
3451
3452         return fault_handled;
3453 }
3454
3455 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3456                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3457 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3458
3459 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3460                          gfn_t gfn, bool prefault)
3461 {
3462         int r;
3463         int level;
3464         bool force_pt_level = false;
3465         kvm_pfn_t pfn;
3466         unsigned long mmu_seq;
3467         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3468
3469         level = mapping_level(vcpu, gfn, &force_pt_level);
3470         if (likely(!force_pt_level)) {
3471                 /*
3472                  * This path builds a PAE pagetable - so we can map
3473                  * 2mb pages at maximum. Therefore check if the level
3474                  * is larger than that.
3475                  */
3476                 if (level > PT_DIRECTORY_LEVEL)
3477                         level = PT_DIRECTORY_LEVEL;
3478
3479                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3480         }
3481
3482         if (fast_page_fault(vcpu, v, level, error_code))
3483                 return RET_PF_RETRY;
3484
3485         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3486         smp_rmb();
3487
3488         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3489                 return RET_PF_RETRY;
3490
3491         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3492                 return r;
3493
3494         spin_lock(&vcpu->kvm->mmu_lock);
3495         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3496                 goto out_unlock;
3497         if (make_mmu_pages_available(vcpu) < 0)
3498                 goto out_unlock;
3499         if (likely(!force_pt_level))
3500                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3501         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3502         spin_unlock(&vcpu->kvm->mmu_lock);
3503
3504         return r;
3505
3506 out_unlock:
3507         spin_unlock(&vcpu->kvm->mmu_lock);
3508         kvm_release_pfn_clean(pfn);
3509         return RET_PF_RETRY;
3510 }
3511
3512 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3513                                struct list_head *invalid_list)
3514 {
3515         struct kvm_mmu_page *sp;
3516
3517         if (!VALID_PAGE(*root_hpa))
3518                 return;
3519
3520         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3521         --sp->root_count;
3522         if (!sp->root_count && sp->role.invalid)
3523                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3524
3525         *root_hpa = INVALID_PAGE;
3526 }
3527
3528 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3529 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3530                         ulong roots_to_free)
3531 {
3532         int i;
3533         LIST_HEAD(invalid_list);
3534         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3535
3536         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3537
3538         /* Before acquiring the MMU lock, see if we need to do any real work. */
3539         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3540                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3541                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3542                             VALID_PAGE(mmu->prev_roots[i].hpa))
3543                                 break;
3544
3545                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3546                         return;
3547         }
3548
3549         spin_lock(&vcpu->kvm->mmu_lock);
3550
3551         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3552                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3553                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3554                                            &invalid_list);
3555
3556         if (free_active_root) {
3557                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3558                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3559                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3560                                            &invalid_list);
3561                 } else {
3562                         for (i = 0; i < 4; ++i)
3563                                 if (mmu->pae_root[i] != 0)
3564                                         mmu_free_root_page(vcpu->kvm,
3565                                                            &mmu->pae_root[i],
3566                                                            &invalid_list);
3567                         mmu->root_hpa = INVALID_PAGE;
3568                 }
3569         }
3570
3571         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3572         spin_unlock(&vcpu->kvm->mmu_lock);
3573 }
3574 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3575
3576 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3577 {
3578         int ret = 0;
3579
3580         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3581                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3582                 ret = 1;
3583         }
3584
3585         return ret;
3586 }
3587
3588 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3589 {
3590         struct kvm_mmu_page *sp;
3591         unsigned i;
3592
3593         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3594                 spin_lock(&vcpu->kvm->mmu_lock);
3595                 if(make_mmu_pages_available(vcpu) < 0) {
3596                         spin_unlock(&vcpu->kvm->mmu_lock);
3597                         return -ENOSPC;
3598                 }
3599                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3600                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3601                 ++sp->root_count;
3602                 spin_unlock(&vcpu->kvm->mmu_lock);
3603                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3604         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3605                 for (i = 0; i < 4; ++i) {
3606                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3607
3608                         MMU_WARN_ON(VALID_PAGE(root));
3609                         spin_lock(&vcpu->kvm->mmu_lock);
3610                         if (make_mmu_pages_available(vcpu) < 0) {
3611                                 spin_unlock(&vcpu->kvm->mmu_lock);
3612                                 return -ENOSPC;
3613                         }
3614                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3615                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3616                         root = __pa(sp->spt);
3617                         ++sp->root_count;
3618                         spin_unlock(&vcpu->kvm->mmu_lock);
3619                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3620                 }
3621                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3622         } else
3623                 BUG();
3624
3625         return 0;
3626 }
3627
3628 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3629 {
3630         struct kvm_mmu_page *sp;
3631         u64 pdptr, pm_mask;
3632         gfn_t root_gfn;
3633         int i;
3634
3635         root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
3636
3637         if (mmu_check_root(vcpu, root_gfn))
3638                 return 1;
3639
3640         /*
3641          * Do we shadow a long mode page table? If so we need to
3642          * write-protect the guests page table root.
3643          */
3644         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3645                 hpa_t root = vcpu->arch.mmu->root_hpa;
3646
3647                 MMU_WARN_ON(VALID_PAGE(root));
3648
3649                 spin_lock(&vcpu->kvm->mmu_lock);
3650                 if (make_mmu_pages_available(vcpu) < 0) {
3651                         spin_unlock(&vcpu->kvm->mmu_lock);
3652                         return -ENOSPC;
3653                 }
3654                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3655                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3656                 root = __pa(sp->spt);
3657                 ++sp->root_count;
3658                 spin_unlock(&vcpu->kvm->mmu_lock);
3659                 vcpu->arch.mmu->root_hpa = root;
3660                 return 0;
3661         }
3662
3663         /*
3664          * We shadow a 32 bit page table. This may be a legacy 2-level
3665          * or a PAE 3-level page table. In either case we need to be aware that
3666          * the shadow page table may be a PAE or a long mode page table.
3667          */
3668         pm_mask = PT_PRESENT_MASK;
3669         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3670                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3671
3672         for (i = 0; i < 4; ++i) {
3673                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3674
3675                 MMU_WARN_ON(VALID_PAGE(root));
3676                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3677                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3678                         if (!(pdptr & PT_PRESENT_MASK)) {
3679                                 vcpu->arch.mmu->pae_root[i] = 0;
3680                                 continue;
3681                         }
3682                         root_gfn = pdptr >> PAGE_SHIFT;
3683                         if (mmu_check_root(vcpu, root_gfn))
3684                                 return 1;
3685                 }
3686                 spin_lock(&vcpu->kvm->mmu_lock);
3687                 if (make_mmu_pages_available(vcpu) < 0) {
3688                         spin_unlock(&vcpu->kvm->mmu_lock);
3689                         return -ENOSPC;
3690                 }
3691                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3692                                       0, ACC_ALL);
3693                 root = __pa(sp->spt);
3694                 ++sp->root_count;
3695                 spin_unlock(&vcpu->kvm->mmu_lock);
3696
3697                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3698         }
3699         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3700
3701         /*
3702          * If we shadow a 32 bit page table with a long mode page
3703          * table we enter this path.
3704          */
3705         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3706                 if (vcpu->arch.mmu->lm_root == NULL) {
3707                         /*
3708                          * The additional page necessary for this is only
3709                          * allocated on demand.
3710                          */
3711
3712                         u64 *lm_root;
3713
3714                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3715                         if (lm_root == NULL)
3716                                 return 1;
3717
3718                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3719
3720                         vcpu->arch.mmu->lm_root = lm_root;
3721                 }
3722
3723                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3724         }
3725
3726         return 0;
3727 }
3728
3729 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3730 {
3731         if (vcpu->arch.mmu->direct_map)
3732                 return mmu_alloc_direct_roots(vcpu);
3733         else
3734                 return mmu_alloc_shadow_roots(vcpu);
3735 }
3736
3737 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3738 {
3739         int i;
3740         struct kvm_mmu_page *sp;
3741
3742         if (vcpu->arch.mmu->direct_map)
3743                 return;
3744
3745         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3746                 return;
3747
3748         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3749
3750         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3751                 hpa_t root = vcpu->arch.mmu->root_hpa;
3752                 sp = page_header(root);
3753
3754                 /*
3755                  * Even if another CPU was marking the SP as unsync-ed
3756                  * simultaneously, any guest page table changes are not
3757                  * guaranteed to be visible anyway until this VCPU issues a TLB
3758                  * flush strictly after those changes are made. We only need to
3759                  * ensure that the other CPU sets these flags before any actual
3760                  * changes to the page tables are made. The comments in
3761                  * mmu_need_write_protect() describe what could go wrong if this
3762                  * requirement isn't satisfied.
3763                  */
3764                 if (!smp_load_acquire(&sp->unsync) &&
3765                     !smp_load_acquire(&sp->unsync_children))
3766                         return;
3767
3768                 spin_lock(&vcpu->kvm->mmu_lock);
3769                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3770
3771                 mmu_sync_children(vcpu, sp);
3772
3773                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3774                 spin_unlock(&vcpu->kvm->mmu_lock);
3775                 return;
3776         }
3777
3778         spin_lock(&vcpu->kvm->mmu_lock);
3779         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3780
3781         for (i = 0; i < 4; ++i) {
3782                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3783
3784                 if (root && VALID_PAGE(root)) {
3785                         root &= PT64_BASE_ADDR_MASK;
3786                         sp = page_header(root);
3787                         mmu_sync_children(vcpu, sp);
3788                 }
3789         }
3790
3791         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3792         spin_unlock(&vcpu->kvm->mmu_lock);
3793 }
3794 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3795
3796 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3797                                   u32 access, struct x86_exception *exception)
3798 {
3799         if (exception)
3800                 exception->error_code = 0;
3801         return vaddr;
3802 }
3803
3804 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3805                                          u32 access,
3806                                          struct x86_exception *exception)
3807 {
3808         if (exception)
3809                 exception->error_code = 0;
3810         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3811 }
3812
3813 static bool
3814 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3815 {
3816         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3817
3818         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3819                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3820 }
3821
3822 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3823 {
3824         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3825 }
3826
3827 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3828 {
3829         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3830 }
3831
3832 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3833 {
3834         /*
3835          * A nested guest cannot use the MMIO cache if it is using nested
3836          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3837          */
3838         if (mmu_is_nested(vcpu))
3839                 return false;
3840
3841         if (direct)
3842                 return vcpu_match_mmio_gpa(vcpu, addr);
3843
3844         return vcpu_match_mmio_gva(vcpu, addr);
3845 }
3846
3847 /* return true if reserved bit is detected on spte. */
3848 static bool
3849 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3850 {
3851         struct kvm_shadow_walk_iterator iterator;
3852         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3853         int root, leaf;
3854         bool reserved = false;
3855
3856         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3857                 goto exit;
3858
3859         walk_shadow_page_lockless_begin(vcpu);
3860
3861         for (shadow_walk_init(&iterator, vcpu, addr),
3862                  leaf = root = iterator.level;
3863              shadow_walk_okay(&iterator);
3864              __shadow_walk_next(&iterator, spte)) {
3865                 spte = mmu_spte_get_lockless(iterator.sptep);
3866
3867                 sptes[leaf - 1] = spte;
3868                 leaf--;
3869
3870                 if (!is_shadow_present_pte(spte))
3871                         break;
3872
3873                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3874                                                     iterator.level);
3875         }
3876
3877         walk_shadow_page_lockless_end(vcpu);
3878
3879         if (reserved) {
3880                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3881                        __func__, addr);
3882                 while (root > leaf) {
3883                         pr_err("------ spte 0x%llx level %d.\n",
3884                                sptes[root - 1], root);
3885                         root--;
3886                 }
3887         }
3888 exit:
3889         *sptep = spte;
3890         return reserved;
3891 }
3892
3893 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3894 {
3895         u64 spte;
3896         bool reserved;
3897
3898         if (mmio_info_in_cache(vcpu, addr, direct))
3899                 return RET_PF_EMULATE;
3900
3901         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3902         if (WARN_ON(reserved))
3903                 return -EINVAL;
3904
3905         if (is_mmio_spte(spte)) {
3906                 gfn_t gfn = get_mmio_spte_gfn(spte);
3907                 unsigned access = get_mmio_spte_access(spte);
3908
3909                 if (!check_mmio_spte(vcpu, spte))
3910                         return RET_PF_INVALID;
3911
3912                 if (direct)
3913                         addr = 0;
3914
3915                 trace_handle_mmio_page_fault(addr, gfn, access);
3916                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3917                 return RET_PF_EMULATE;
3918         }
3919
3920         /*
3921          * If the page table is zapped by other cpus, let CPU fault again on
3922          * the address.
3923          */
3924         return RET_PF_RETRY;
3925 }
3926
3927 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3928                                          u32 error_code, gfn_t gfn)
3929 {
3930         if (unlikely(error_code & PFERR_RSVD_MASK))
3931                 return false;
3932
3933         if (!(error_code & PFERR_PRESENT_MASK) ||
3934               !(error_code & PFERR_WRITE_MASK))
3935                 return false;
3936
3937         /*
3938          * guest is writing the page which is write tracked which can
3939          * not be fixed by page fault handler.
3940          */
3941         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3942                 return true;
3943
3944         return false;
3945 }
3946
3947 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3948 {
3949         struct kvm_shadow_walk_iterator iterator;
3950         u64 spte;
3951
3952         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3953                 return;
3954
3955         walk_shadow_page_lockless_begin(vcpu);
3956         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3957                 clear_sp_write_flooding_count(iterator.sptep);
3958                 if (!is_shadow_present_pte(spte))
3959                         break;
3960         }
3961         walk_shadow_page_lockless_end(vcpu);
3962 }
3963
3964 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3965                                 u32 error_code, bool prefault)
3966 {
3967         gfn_t gfn = gva >> PAGE_SHIFT;
3968         int r;
3969
3970         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3971
3972         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3973                 return RET_PF_EMULATE;
3974
3975         r = mmu_topup_memory_caches(vcpu);
3976         if (r)
3977                 return r;
3978
3979         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3980
3981
3982         return nonpaging_map(vcpu, gva & PAGE_MASK,
3983                              error_code, gfn, prefault);
3984 }
3985
3986 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3987 {
3988         struct kvm_arch_async_pf arch;
3989
3990         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3991         arch.gfn = gfn;
3992         arch.direct_map = vcpu->arch.mmu->direct_map;
3993         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3994
3995         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3996 }
3997
3998 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3999 {
4000         if (unlikely(!lapic_in_kernel(vcpu) ||
4001                      kvm_event_needs_reinjection(vcpu) ||
4002                      vcpu->arch.exception.pending))
4003                 return false;
4004
4005         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
4006                 return false;
4007
4008         return kvm_x86_ops->interrupt_allowed(vcpu);
4009 }
4010
4011 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4012                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4013 {
4014         struct kvm_memory_slot *slot;
4015         bool async;
4016
4017         /*
4018          * Don't expose private memslots to L2.
4019          */
4020         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4021                 *pfn = KVM_PFN_NOSLOT;
4022                 return false;
4023         }
4024
4025         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4026         async = false;
4027         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4028         if (!async)
4029                 return false; /* *pfn has correct page already */
4030
4031         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4032                 trace_kvm_try_async_get_page(gva, gfn);
4033                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4034                         trace_kvm_async_pf_doublefault(gva, gfn);
4035                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4036                         return true;
4037                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4038                         return true;
4039         }
4040
4041         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4042         return false;
4043 }
4044
4045 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4046                                 u64 fault_address, char *insn, int insn_len)
4047 {
4048         int r = 1;
4049
4050         vcpu->arch.l1tf_flush_l1d = true;
4051         switch (vcpu->arch.apf.host_apf_reason) {
4052         default:
4053                 trace_kvm_page_fault(fault_address, error_code);
4054
4055                 if (kvm_event_needs_reinjection(vcpu))
4056                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4057                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4058                                 insn_len);
4059                 break;
4060         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4061                 vcpu->arch.apf.host_apf_reason = 0;
4062                 local_irq_disable();
4063                 kvm_async_pf_task_wait(fault_address, 0);
4064                 local_irq_enable();
4065                 break;
4066         case KVM_PV_REASON_PAGE_READY:
4067                 vcpu->arch.apf.host_apf_reason = 0;
4068                 local_irq_disable();
4069                 kvm_async_pf_task_wake(fault_address);
4070                 local_irq_enable();
4071                 break;
4072         }
4073         return r;
4074 }
4075 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4076
4077 static bool
4078 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4079 {
4080         int page_num = KVM_PAGES_PER_HPAGE(level);
4081
4082         gfn &= ~(page_num - 1);
4083
4084         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4085 }
4086
4087 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4088                           bool prefault)
4089 {
4090         kvm_pfn_t pfn;
4091         int r;
4092         int level;
4093         bool force_pt_level;
4094         gfn_t gfn = gpa >> PAGE_SHIFT;
4095         unsigned long mmu_seq;
4096         int write = error_code & PFERR_WRITE_MASK;
4097         bool map_writable;
4098
4099         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4100
4101         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4102                 return RET_PF_EMULATE;
4103
4104         r = mmu_topup_memory_caches(vcpu);
4105         if (r)
4106                 return r;
4107
4108         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4109                                                            PT_DIRECTORY_LEVEL);
4110         level = mapping_level(vcpu, gfn, &force_pt_level);
4111         if (likely(!force_pt_level)) {
4112                 if (level > PT_DIRECTORY_LEVEL &&
4113                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4114                         level = PT_DIRECTORY_LEVEL;
4115                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4116         }
4117
4118         if (fast_page_fault(vcpu, gpa, level, error_code))
4119                 return RET_PF_RETRY;
4120
4121         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4122         smp_rmb();
4123
4124         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4125                 return RET_PF_RETRY;
4126
4127         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4128                 return r;
4129
4130         spin_lock(&vcpu->kvm->mmu_lock);
4131         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4132                 goto out_unlock;
4133         if (make_mmu_pages_available(vcpu) < 0)
4134                 goto out_unlock;
4135         if (likely(!force_pt_level))
4136                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4137         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4138         spin_unlock(&vcpu->kvm->mmu_lock);
4139
4140         return r;
4141
4142 out_unlock:
4143         spin_unlock(&vcpu->kvm->mmu_lock);
4144         kvm_release_pfn_clean(pfn);
4145         return RET_PF_RETRY;
4146 }
4147
4148 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4149                                    struct kvm_mmu *context)
4150 {
4151         context->page_fault = nonpaging_page_fault;
4152         context->gva_to_gpa = nonpaging_gva_to_gpa;
4153         context->sync_page = nonpaging_sync_page;
4154         context->invlpg = nonpaging_invlpg;
4155         context->update_pte = nonpaging_update_pte;
4156         context->root_level = 0;
4157         context->shadow_root_level = PT32E_ROOT_LEVEL;
4158         context->direct_map = true;
4159         context->nx = false;
4160 }
4161
4162 /*
4163  * Find out if a previously cached root matching the new CR3/role is available.
4164  * The current root is also inserted into the cache.
4165  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4166  * returned.
4167  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4168  * false is returned. This root should now be freed by the caller.
4169  */
4170 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4171                                   union kvm_mmu_page_role new_role)
4172 {
4173         uint i;
4174         struct kvm_mmu_root_info root;
4175         struct kvm_mmu *mmu = vcpu->arch.mmu;
4176
4177         root.cr3 = mmu->get_cr3(vcpu);
4178         root.hpa = mmu->root_hpa;
4179
4180         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4181                 swap(root, mmu->prev_roots[i]);
4182
4183                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4184                     page_header(root.hpa) != NULL &&
4185                     new_role.word == page_header(root.hpa)->role.word)
4186                         break;
4187         }
4188
4189         mmu->root_hpa = root.hpa;
4190
4191         return i < KVM_MMU_NUM_PREV_ROOTS;
4192 }
4193
4194 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4195                             union kvm_mmu_page_role new_role,
4196                             bool skip_tlb_flush)
4197 {
4198         struct kvm_mmu *mmu = vcpu->arch.mmu;
4199
4200         /*
4201          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4202          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4203          * later if necessary.
4204          */
4205         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4206             mmu->root_level >= PT64_ROOT_4LEVEL) {
4207                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4208                         return false;
4209
4210                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4211                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4212                         if (!skip_tlb_flush) {
4213                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4214                                 kvm_x86_ops->tlb_flush(vcpu, true);
4215                         }
4216
4217                         /*
4218                          * The last MMIO access's GVA and GPA are cached in the
4219                          * VCPU. When switching to a new CR3, that GVA->GPA
4220                          * mapping may no longer be valid. So clear any cached
4221                          * MMIO info even when we don't need to sync the shadow
4222                          * page tables.
4223                          */
4224                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4225
4226                         __clear_sp_write_flooding_count(
4227                                 page_header(mmu->root_hpa));
4228
4229                         return true;
4230                 }
4231         }
4232
4233         return false;
4234 }
4235
4236 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4237                               union kvm_mmu_page_role new_role,
4238                               bool skip_tlb_flush)
4239 {
4240         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4241                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4242                                    KVM_MMU_ROOT_CURRENT);
4243 }
4244
4245 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4246 {
4247         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4248                           skip_tlb_flush);
4249 }
4250 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4251
4252 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4253 {
4254         return kvm_read_cr3(vcpu);
4255 }
4256
4257 static void inject_page_fault(struct kvm_vcpu *vcpu,
4258                               struct x86_exception *fault)
4259 {
4260         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4261 }
4262
4263 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4264                            unsigned access, int *nr_present)
4265 {
4266         if (unlikely(is_mmio_spte(*sptep))) {
4267                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4268                         mmu_spte_clear_no_track(sptep);
4269                         return true;
4270                 }
4271
4272                 (*nr_present)++;
4273                 mark_mmio_spte(vcpu, sptep, gfn, access);
4274                 return true;
4275         }
4276
4277         return false;
4278 }
4279
4280 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4281                                 unsigned level, unsigned gpte)
4282 {
4283         /*
4284          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4285          * If it is clear, there are no large pages at this level, so clear
4286          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4287          */
4288         gpte &= level - mmu->last_nonleaf_level;
4289
4290         /*
4291          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4292          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4293          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4294          */
4295         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4296
4297         return gpte & PT_PAGE_SIZE_MASK;
4298 }
4299
4300 #define PTTYPE_EPT 18 /* arbitrary */
4301 #define PTTYPE PTTYPE_EPT
4302 #include "paging_tmpl.h"
4303 #undef PTTYPE
4304
4305 #define PTTYPE 64
4306 #include "paging_tmpl.h"
4307 #undef PTTYPE
4308
4309 #define PTTYPE 32
4310 #include "paging_tmpl.h"
4311 #undef PTTYPE
4312
4313 static void
4314 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4315                         struct rsvd_bits_validate *rsvd_check,
4316                         int maxphyaddr, int level, bool nx, bool gbpages,
4317                         bool pse, bool amd)
4318 {
4319         u64 exb_bit_rsvd = 0;
4320         u64 gbpages_bit_rsvd = 0;
4321         u64 nonleaf_bit8_rsvd = 0;
4322
4323         rsvd_check->bad_mt_xwr = 0;
4324
4325         if (!nx)
4326                 exb_bit_rsvd = rsvd_bits(63, 63);
4327         if (!gbpages)
4328                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4329
4330         /*
4331          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4332          * leaf entries) on AMD CPUs only.
4333          */
4334         if (amd)
4335                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4336
4337         switch (level) {
4338         case PT32_ROOT_LEVEL:
4339                 /* no rsvd bits for 2 level 4K page table entries */
4340                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4341                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4342                 rsvd_check->rsvd_bits_mask[1][0] =
4343                         rsvd_check->rsvd_bits_mask[0][0];
4344
4345                 if (!pse) {
4346                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4347                         break;
4348                 }
4349
4350                 if (is_cpuid_PSE36())
4351                         /* 36bits PSE 4MB page */
4352                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4353                 else
4354                         /* 32 bits PSE 4MB page */
4355                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4356                 break;
4357         case PT32E_ROOT_LEVEL:
4358                 rsvd_check->rsvd_bits_mask[0][2] =
4359                         rsvd_bits(maxphyaddr, 63) |
4360                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4361                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4362                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4363                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4364                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4365                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4366                         rsvd_bits(maxphyaddr, 62) |
4367                         rsvd_bits(13, 20);              /* large page */
4368                 rsvd_check->rsvd_bits_mask[1][0] =
4369                         rsvd_check->rsvd_bits_mask[0][0];
4370                 break;
4371         case PT64_ROOT_5LEVEL:
4372                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4373                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4374                         rsvd_bits(maxphyaddr, 51);
4375                 rsvd_check->rsvd_bits_mask[1][4] =
4376                         rsvd_check->rsvd_bits_mask[0][4];
4377                 /* fall through */
4378         case PT64_ROOT_4LEVEL:
4379                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4380                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4381                         rsvd_bits(maxphyaddr, 51);
4382                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4383                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4384                         rsvd_bits(maxphyaddr, 51);
4385                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4386                         rsvd_bits(maxphyaddr, 51);
4387                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4388                         rsvd_bits(maxphyaddr, 51);
4389                 rsvd_check->rsvd_bits_mask[1][3] =
4390                         rsvd_check->rsvd_bits_mask[0][3];
4391                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4392                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4393                         rsvd_bits(13, 29);
4394                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4395                         rsvd_bits(maxphyaddr, 51) |
4396                         rsvd_bits(13, 20);              /* large page */
4397                 rsvd_check->rsvd_bits_mask[1][0] =
4398                         rsvd_check->rsvd_bits_mask[0][0];
4399                 break;
4400         }
4401 }
4402
4403 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4404                                   struct kvm_mmu *context)
4405 {
4406         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4407                                 cpuid_maxphyaddr(vcpu), context->root_level,
4408                                 context->nx,
4409                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4410                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4411 }
4412
4413 static void
4414 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4415                             int maxphyaddr, bool execonly)
4416 {
4417         u64 bad_mt_xwr;
4418
4419         rsvd_check->rsvd_bits_mask[0][4] =
4420                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4421         rsvd_check->rsvd_bits_mask[0][3] =
4422                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4423         rsvd_check->rsvd_bits_mask[0][2] =
4424                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4425         rsvd_check->rsvd_bits_mask[0][1] =
4426                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4427         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4428
4429         /* large page */
4430         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4431         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4432         rsvd_check->rsvd_bits_mask[1][2] =
4433                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4434         rsvd_check->rsvd_bits_mask[1][1] =
4435                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4436         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4437
4438         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4439         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4440         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4441         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4442         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4443         if (!execonly) {
4444                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4445                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4446         }
4447         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4448 }
4449
4450 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4451                 struct kvm_mmu *context, bool execonly)
4452 {
4453         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4454                                     cpuid_maxphyaddr(vcpu), execonly);
4455 }
4456
4457 /*
4458  * the page table on host is the shadow page table for the page
4459  * table in guest or amd nested guest, its mmu features completely
4460  * follow the features in guest.
4461  */
4462 void
4463 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4464 {
4465         bool uses_nx = context->nx ||
4466                 context->mmu_role.base.smep_andnot_wp;
4467         struct rsvd_bits_validate *shadow_zero_check;
4468         int i;
4469
4470         /*
4471          * Passing "true" to the last argument is okay; it adds a check
4472          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4473          */
4474         shadow_zero_check = &context->shadow_zero_check;
4475         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4476                                 boot_cpu_data.x86_phys_bits,
4477                                 context->shadow_root_level, uses_nx,
4478                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4479                                 is_pse(vcpu), true);
4480
4481         if (!shadow_me_mask)
4482                 return;
4483
4484         for (i = context->shadow_root_level; --i >= 0;) {
4485                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4486                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4487         }
4488
4489 }
4490 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4491
4492 static inline bool boot_cpu_is_amd(void)
4493 {
4494         WARN_ON_ONCE(!tdp_enabled);
4495         return shadow_x_mask == 0;
4496 }
4497
4498 /*
4499  * the direct page table on host, use as much mmu features as
4500  * possible, however, kvm currently does not do execution-protection.
4501  */
4502 static void
4503 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4504                                 struct kvm_mmu *context)
4505 {
4506         struct rsvd_bits_validate *shadow_zero_check;
4507         int i;
4508
4509         shadow_zero_check = &context->shadow_zero_check;
4510
4511         if (boot_cpu_is_amd())
4512                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4513                                         boot_cpu_data.x86_phys_bits,
4514                                         context->shadow_root_level, false,
4515                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4516                                         true, true);
4517         else
4518                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4519                                             boot_cpu_data.x86_phys_bits,
4520                                             false);
4521
4522         if (!shadow_me_mask)
4523                 return;
4524
4525         for (i = context->shadow_root_level; --i >= 0;) {
4526                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4527                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4528         }
4529 }
4530
4531 /*
4532  * as the comments in reset_shadow_zero_bits_mask() except it
4533  * is the shadow page table for intel nested guest.
4534  */
4535 static void
4536 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4537                                 struct kvm_mmu *context, bool execonly)
4538 {
4539         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4540                                     boot_cpu_data.x86_phys_bits, execonly);
4541 }
4542
4543 #define BYTE_MASK(access) \
4544         ((1 & (access) ? 2 : 0) | \
4545          (2 & (access) ? 4 : 0) | \
4546          (3 & (access) ? 8 : 0) | \
4547          (4 & (access) ? 16 : 0) | \
4548          (5 & (access) ? 32 : 0) | \
4549          (6 & (access) ? 64 : 0) | \
4550          (7 & (access) ? 128 : 0))
4551
4552
4553 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4554                                       struct kvm_mmu *mmu, bool ept)
4555 {
4556         unsigned byte;
4557
4558         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4559         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4560         const u8 u = BYTE_MASK(ACC_USER_MASK);
4561
4562         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4563         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4564         bool cr0_wp = is_write_protection(vcpu);
4565
4566         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4567                 unsigned pfec = byte << 1;
4568
4569                 /*
4570                  * Each "*f" variable has a 1 bit for each UWX value
4571                  * that causes a fault with the given PFEC.
4572                  */
4573
4574                 /* Faults from writes to non-writable pages */
4575                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4576                 /* Faults from user mode accesses to supervisor pages */
4577                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4578                 /* Faults from fetches of non-executable pages*/
4579                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4580                 /* Faults from kernel mode fetches of user pages */
4581                 u8 smepf = 0;
4582                 /* Faults from kernel mode accesses of user pages */
4583                 u8 smapf = 0;
4584
4585                 if (!ept) {
4586                         /* Faults from kernel mode accesses to user pages */
4587                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4588
4589                         /* Not really needed: !nx will cause pte.nx to fault */
4590                         if (!mmu->nx)
4591                                 ff = 0;
4592
4593                         /* Allow supervisor writes if !cr0.wp */
4594                         if (!cr0_wp)
4595                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4596
4597                         /* Disallow supervisor fetches of user code if cr4.smep */
4598                         if (cr4_smep)
4599                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4600
4601                         /*
4602                          * SMAP:kernel-mode data accesses from user-mode
4603                          * mappings should fault. A fault is considered
4604                          * as a SMAP violation if all of the following
4605                          * conditions are true:
4606                          *   - X86_CR4_SMAP is set in CR4
4607                          *   - A user page is accessed
4608                          *   - The access is not a fetch
4609                          *   - Page fault in kernel mode
4610                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4611                          *
4612                          * Here, we cover the first three conditions.
4613                          * The fourth is computed dynamically in permission_fault();
4614                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4615                          * *not* subject to SMAP restrictions.
4616                          */
4617                         if (cr4_smap)
4618                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4619                 }
4620
4621                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4622         }
4623 }
4624
4625 /*
4626 * PKU is an additional mechanism by which the paging controls access to
4627 * user-mode addresses based on the value in the PKRU register.  Protection
4628 * key violations are reported through a bit in the page fault error code.
4629 * Unlike other bits of the error code, the PK bit is not known at the
4630 * call site of e.g. gva_to_gpa; it must be computed directly in
4631 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4632 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4633 *
4634 * In particular the following conditions come from the error code, the
4635 * page tables and the machine state:
4636 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4637 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4638 * - PK is always zero if U=0 in the page tables
4639 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4640 *
4641 * The PKRU bitmask caches the result of these four conditions.  The error
4642 * code (minus the P bit) and the page table's U bit form an index into the
4643 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4644 * with the two bits of the PKRU register corresponding to the protection key.
4645 * For the first three conditions above the bits will be 00, thus masking
4646 * away both AD and WD.  For all reads or if the last condition holds, WD
4647 * only will be masked away.
4648 */
4649 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4650                                 bool ept)
4651 {
4652         unsigned bit;
4653         bool wp;
4654
4655         if (ept) {
4656                 mmu->pkru_mask = 0;
4657                 return;
4658         }
4659
4660         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4661         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4662                 mmu->pkru_mask = 0;
4663                 return;
4664         }
4665
4666         wp = is_write_protection(vcpu);
4667
4668         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4669                 unsigned pfec, pkey_bits;
4670                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4671
4672                 pfec = bit << 1;
4673                 ff = pfec & PFERR_FETCH_MASK;
4674                 uf = pfec & PFERR_USER_MASK;
4675                 wf = pfec & PFERR_WRITE_MASK;
4676
4677                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4678                 pte_user = pfec & PFERR_RSVD_MASK;
4679
4680                 /*
4681                  * Only need to check the access which is not an
4682                  * instruction fetch and is to a user page.
4683                  */
4684                 check_pkey = (!ff && pte_user);
4685                 /*
4686                  * write access is controlled by PKRU if it is a
4687                  * user access or CR0.WP = 1.
4688                  */
4689                 check_write = check_pkey && wf && (uf || wp);
4690
4691                 /* PKRU.AD stops both read and write access. */
4692                 pkey_bits = !!check_pkey;
4693                 /* PKRU.WD stops write access. */
4694                 pkey_bits |= (!!check_write) << 1;
4695
4696                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4697         }
4698 }
4699
4700 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4701 {
4702         unsigned root_level = mmu->root_level;
4703
4704         mmu->last_nonleaf_level = root_level;
4705         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4706                 mmu->last_nonleaf_level++;
4707 }
4708
4709 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4710                                          struct kvm_mmu *context,
4711                                          int level)
4712 {
4713         context->nx = is_nx(vcpu);
4714         context->root_level = level;
4715
4716         reset_rsvds_bits_mask(vcpu, context);
4717         update_permission_bitmask(vcpu, context, false);
4718         update_pkru_bitmask(vcpu, context, false);
4719         update_last_nonleaf_level(vcpu, context);
4720
4721         MMU_WARN_ON(!is_pae(vcpu));
4722         context->page_fault = paging64_page_fault;
4723         context->gva_to_gpa = paging64_gva_to_gpa;
4724         context->sync_page = paging64_sync_page;
4725         context->invlpg = paging64_invlpg;
4726         context->update_pte = paging64_update_pte;
4727         context->shadow_root_level = level;
4728         context->direct_map = false;
4729 }
4730
4731 static void paging64_init_context(struct kvm_vcpu *vcpu,
4732                                   struct kvm_mmu *context)
4733 {
4734         int root_level = is_la57_mode(vcpu) ?
4735                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4736
4737         paging64_init_context_common(vcpu, context, root_level);
4738 }
4739
4740 static void paging32_init_context(struct kvm_vcpu *vcpu,
4741                                   struct kvm_mmu *context)
4742 {
4743         context->nx = false;
4744         context->root_level = PT32_ROOT_LEVEL;
4745
4746         reset_rsvds_bits_mask(vcpu, context);
4747         update_permission_bitmask(vcpu, context, false);
4748         update_pkru_bitmask(vcpu, context, false);
4749         update_last_nonleaf_level(vcpu, context);
4750
4751         context->page_fault = paging32_page_fault;
4752         context->gva_to_gpa = paging32_gva_to_gpa;
4753         context->sync_page = paging32_sync_page;
4754         context->invlpg = paging32_invlpg;
4755         context->update_pte = paging32_update_pte;
4756         context->shadow_root_level = PT32E_ROOT_LEVEL;
4757         context->direct_map = false;
4758 }
4759
4760 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4761                                    struct kvm_mmu *context)
4762 {
4763         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4764 }
4765
4766 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4767 {
4768         union kvm_mmu_extended_role ext = {0};
4769
4770         ext.cr0_pg = !!is_paging(vcpu);
4771         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4772         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4773         ext.cr4_pse = !!is_pse(vcpu);
4774         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4775         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4776
4777         ext.valid = 1;
4778
4779         return ext;
4780 }
4781
4782 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4783                                                    bool base_only)
4784 {
4785         union kvm_mmu_role role = {0};
4786
4787         role.base.access = ACC_ALL;
4788         role.base.nxe = !!is_nx(vcpu);
4789         role.base.cr4_pae = !!is_pae(vcpu);
4790         role.base.cr0_wp = is_write_protection(vcpu);
4791         role.base.smm = is_smm(vcpu);
4792         role.base.guest_mode = is_guest_mode(vcpu);
4793
4794         if (base_only)
4795                 return role;
4796
4797         role.ext = kvm_calc_mmu_role_ext(vcpu);
4798
4799         return role;
4800 }
4801
4802 static union kvm_mmu_role
4803 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4804 {
4805         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4806
4807         role.base.ad_disabled = (shadow_accessed_mask == 0);
4808         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4809         role.base.direct = true;
4810
4811         return role;
4812 }
4813
4814 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4815 {
4816         struct kvm_mmu *context = vcpu->arch.mmu;
4817         union kvm_mmu_role new_role =
4818                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4819
4820         new_role.base.word &= mmu_base_role_mask.word;
4821         if (new_role.as_u64 == context->mmu_role.as_u64)
4822                 return;
4823
4824         context->mmu_role.as_u64 = new_role.as_u64;
4825         context->page_fault = tdp_page_fault;
4826         context->sync_page = nonpaging_sync_page;
4827         context->invlpg = nonpaging_invlpg;
4828         context->update_pte = nonpaging_update_pte;
4829         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4830         context->direct_map = true;
4831         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4832         context->get_cr3 = get_cr3;
4833         context->get_pdptr = kvm_pdptr_read;
4834         context->inject_page_fault = kvm_inject_page_fault;
4835
4836         if (!is_paging(vcpu)) {
4837                 context->nx = false;
4838                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4839                 context->root_level = 0;
4840         } else if (is_long_mode(vcpu)) {
4841                 context->nx = is_nx(vcpu);
4842                 context->root_level = is_la57_mode(vcpu) ?
4843                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4844                 reset_rsvds_bits_mask(vcpu, context);
4845                 context->gva_to_gpa = paging64_gva_to_gpa;
4846         } else if (is_pae(vcpu)) {
4847                 context->nx = is_nx(vcpu);
4848                 context->root_level = PT32E_ROOT_LEVEL;
4849                 reset_rsvds_bits_mask(vcpu, context);
4850                 context->gva_to_gpa = paging64_gva_to_gpa;
4851         } else {
4852                 context->nx = false;
4853                 context->root_level = PT32_ROOT_LEVEL;
4854                 reset_rsvds_bits_mask(vcpu, context);
4855                 context->gva_to_gpa = paging32_gva_to_gpa;
4856         }
4857
4858         update_permission_bitmask(vcpu, context, false);
4859         update_pkru_bitmask(vcpu, context, false);
4860         update_last_nonleaf_level(vcpu, context);
4861         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4862 }
4863
4864 static union kvm_mmu_role
4865 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4866 {
4867         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4868
4869         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4870                 !is_write_protection(vcpu);
4871         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4872                 !is_write_protection(vcpu);
4873         role.base.direct = !is_paging(vcpu);
4874
4875         if (!is_long_mode(vcpu))
4876                 role.base.level = PT32E_ROOT_LEVEL;
4877         else if (is_la57_mode(vcpu))
4878                 role.base.level = PT64_ROOT_5LEVEL;
4879         else
4880                 role.base.level = PT64_ROOT_4LEVEL;
4881
4882         return role;
4883 }
4884
4885 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4886 {
4887         struct kvm_mmu *context = vcpu->arch.mmu;
4888         union kvm_mmu_role new_role =
4889                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4890
4891         new_role.base.word &= mmu_base_role_mask.word;
4892         if (new_role.as_u64 == context->mmu_role.as_u64)
4893                 return;
4894
4895         if (!is_paging(vcpu))
4896                 nonpaging_init_context(vcpu, context);
4897         else if (is_long_mode(vcpu))
4898                 paging64_init_context(vcpu, context);
4899         else if (is_pae(vcpu))
4900                 paging32E_init_context(vcpu, context);
4901         else
4902                 paging32_init_context(vcpu, context);
4903
4904         context->mmu_role.as_u64 = new_role.as_u64;
4905         reset_shadow_zero_bits_mask(vcpu, context);
4906 }
4907 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4908
4909 static union kvm_mmu_role
4910 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4911                                    bool execonly)
4912 {
4913         union kvm_mmu_role role;
4914
4915         /* Base role is inherited from root_mmu */
4916         role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4917         role.ext = kvm_calc_mmu_role_ext(vcpu);
4918
4919         role.base.level = PT64_ROOT_4LEVEL;
4920         role.base.direct = false;
4921         role.base.ad_disabled = !accessed_dirty;
4922         role.base.guest_mode = true;
4923         role.base.access = ACC_ALL;
4924
4925         role.ext.execonly = execonly;
4926
4927         return role;
4928 }
4929
4930 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4931                              bool accessed_dirty, gpa_t new_eptp)
4932 {
4933         struct kvm_mmu *context = vcpu->arch.mmu;
4934         union kvm_mmu_role new_role =
4935                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4936                                                    execonly);
4937
4938         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4939
4940         new_role.base.word &= mmu_base_role_mask.word;
4941         if (new_role.as_u64 == context->mmu_role.as_u64)
4942                 return;
4943
4944         context->shadow_root_level = PT64_ROOT_4LEVEL;
4945
4946         context->nx = true;
4947         context->ept_ad = accessed_dirty;
4948         context->page_fault = ept_page_fault;
4949         context->gva_to_gpa = ept_gva_to_gpa;
4950         context->sync_page = ept_sync_page;
4951         context->invlpg = ept_invlpg;
4952         context->update_pte = ept_update_pte;
4953         context->root_level = PT64_ROOT_4LEVEL;
4954         context->direct_map = false;
4955         context->mmu_role.as_u64 = new_role.as_u64;
4956
4957         update_permission_bitmask(vcpu, context, true);
4958         update_pkru_bitmask(vcpu, context, true);
4959         update_last_nonleaf_level(vcpu, context);
4960         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4961         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4964
4965 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4966 {
4967         struct kvm_mmu *context = vcpu->arch.mmu;
4968
4969         kvm_init_shadow_mmu(vcpu);
4970         context->set_cr3           = kvm_x86_ops->set_cr3;
4971         context->get_cr3           = get_cr3;
4972         context->get_pdptr         = kvm_pdptr_read;
4973         context->inject_page_fault = kvm_inject_page_fault;
4974 }
4975
4976 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4977 {
4978         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4979         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4980
4981         new_role.base.word &= mmu_base_role_mask.word;
4982         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4983                 return;
4984
4985         g_context->mmu_role.as_u64 = new_role.as_u64;
4986         g_context->get_cr3           = get_cr3;
4987         g_context->get_pdptr         = kvm_pdptr_read;
4988         g_context->inject_page_fault = kvm_inject_page_fault;
4989
4990         /*
4991          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4992          * L1's nested page tables (e.g. EPT12). The nested translation
4993          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4994          * L2's page tables as the first level of translation and L1's
4995          * nested page tables as the second level of translation. Basically
4996          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4997          */
4998         if (!is_paging(vcpu)) {
4999                 g_context->nx = false;
5000                 g_context->root_level = 0;
5001                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5002         } else if (is_long_mode(vcpu)) {
5003                 g_context->nx = is_nx(vcpu);
5004                 g_context->root_level = is_la57_mode(vcpu) ?
5005                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5006                 reset_rsvds_bits_mask(vcpu, g_context);
5007                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5008         } else if (is_pae(vcpu)) {
5009                 g_context->nx = is_nx(vcpu);
5010                 g_context->root_level = PT32E_ROOT_LEVEL;
5011                 reset_rsvds_bits_mask(vcpu, g_context);
5012                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5013         } else {
5014                 g_context->nx = false;
5015                 g_context->root_level = PT32_ROOT_LEVEL;
5016                 reset_rsvds_bits_mask(vcpu, g_context);
5017                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5018         }
5019
5020         update_permission_bitmask(vcpu, g_context, false);
5021         update_pkru_bitmask(vcpu, g_context, false);
5022         update_last_nonleaf_level(vcpu, g_context);
5023 }
5024
5025 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5026 {
5027         if (reset_roots) {
5028                 uint i;
5029
5030                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5031
5032                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5033                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5034         }
5035
5036         if (mmu_is_nested(vcpu))
5037                 init_kvm_nested_mmu(vcpu);
5038         else if (tdp_enabled)
5039                 init_kvm_tdp_mmu(vcpu);
5040         else
5041                 init_kvm_softmmu(vcpu);
5042 }
5043 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5044
5045 static union kvm_mmu_page_role
5046 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5047 {
5048         union kvm_mmu_role role;
5049
5050         if (tdp_enabled)
5051                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5052         else
5053                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5054
5055         return role.base;
5056 }
5057
5058 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5059 {
5060         kvm_mmu_unload(vcpu);
5061         kvm_init_mmu(vcpu, true);
5062 }
5063 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5064
5065 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5066 {
5067         int r;
5068
5069         r = mmu_topup_memory_caches(vcpu);
5070         if (r)
5071                 goto out;
5072         r = mmu_alloc_roots(vcpu);
5073         kvm_mmu_sync_roots(vcpu);
5074         if (r)
5075                 goto out;
5076         kvm_mmu_load_cr3(vcpu);
5077         kvm_x86_ops->tlb_flush(vcpu, true);
5078 out:
5079         return r;
5080 }
5081 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5082
5083 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5084 {
5085         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5086         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5087         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5088         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5089 }
5090 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5091
5092 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5093                                   struct kvm_mmu_page *sp, u64 *spte,
5094                                   const void *new)
5095 {
5096         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5097                 ++vcpu->kvm->stat.mmu_pde_zapped;
5098                 return;
5099         }
5100
5101         ++vcpu->kvm->stat.mmu_pte_updated;
5102         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5103 }
5104
5105 static bool need_remote_flush(u64 old, u64 new)
5106 {
5107         if (!is_shadow_present_pte(old))
5108                 return false;
5109         if (!is_shadow_present_pte(new))
5110                 return true;
5111         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5112                 return true;
5113         old ^= shadow_nx_mask;
5114         new ^= shadow_nx_mask;
5115         return (old & ~new & PT64_PERM_MASK) != 0;
5116 }
5117
5118 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5119                                     int *bytes)
5120 {
5121         u64 gentry = 0;
5122         int r;
5123
5124         /*
5125          * Assume that the pte write on a page table of the same type
5126          * as the current vcpu paging mode since we update the sptes only
5127          * when they have the same mode.
5128          */
5129         if (is_pae(vcpu) && *bytes == 4) {
5130                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5131                 *gpa &= ~(gpa_t)7;
5132                 *bytes = 8;
5133         }
5134
5135         if (*bytes == 4 || *bytes == 8) {
5136                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5137                 if (r)
5138                         gentry = 0;
5139         }
5140
5141         return gentry;
5142 }
5143
5144 /*
5145  * If we're seeing too many writes to a page, it may no longer be a page table,
5146  * or we may be forking, in which case it is better to unmap the page.
5147  */
5148 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5149 {
5150         /*
5151          * Skip write-flooding detected for the sp whose level is 1, because
5152          * it can become unsync, then the guest page is not write-protected.
5153          */
5154         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5155                 return false;
5156
5157         atomic_inc(&sp->write_flooding_count);
5158         return atomic_read(&sp->write_flooding_count) >= 3;
5159 }
5160
5161 /*
5162  * Misaligned accesses are too much trouble to fix up; also, they usually
5163  * indicate a page is not used as a page table.
5164  */
5165 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5166                                     int bytes)
5167 {
5168         unsigned offset, pte_size, misaligned;
5169
5170         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5171                  gpa, bytes, sp->role.word);
5172
5173         offset = offset_in_page(gpa);
5174         pte_size = sp->role.cr4_pae ? 8 : 4;
5175
5176         /*
5177          * Sometimes, the OS only writes the last one bytes to update status
5178          * bits, for example, in linux, andb instruction is used in clear_bit().
5179          */
5180         if (!(offset & (pte_size - 1)) && bytes == 1)
5181                 return false;
5182
5183         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5184         misaligned |= bytes < 4;
5185
5186         return misaligned;
5187 }
5188
5189 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5190 {
5191         unsigned page_offset, quadrant;
5192         u64 *spte;
5193         int level;
5194
5195         page_offset = offset_in_page(gpa);
5196         level = sp->role.level;
5197         *nspte = 1;
5198         if (!sp->role.cr4_pae) {
5199                 page_offset <<= 1;      /* 32->64 */
5200                 /*
5201                  * A 32-bit pde maps 4MB while the shadow pdes map
5202                  * only 2MB.  So we need to double the offset again
5203                  * and zap two pdes instead of one.
5204                  */
5205                 if (level == PT32_ROOT_LEVEL) {
5206                         page_offset &= ~7; /* kill rounding error */
5207                         page_offset <<= 1;
5208                         *nspte = 2;
5209                 }
5210                 quadrant = page_offset >> PAGE_SHIFT;
5211                 page_offset &= ~PAGE_MASK;
5212                 if (quadrant != sp->role.quadrant)
5213                         return NULL;
5214         }
5215
5216         spte = &sp->spt[page_offset / sizeof(*spte)];
5217         return spte;
5218 }
5219
5220 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5221                               const u8 *new, int bytes,
5222                               struct kvm_page_track_notifier_node *node)
5223 {
5224         gfn_t gfn = gpa >> PAGE_SHIFT;
5225         struct kvm_mmu_page *sp;
5226         LIST_HEAD(invalid_list);
5227         u64 entry, gentry, *spte;
5228         int npte;
5229         bool remote_flush, local_flush;
5230
5231         /*
5232          * If we don't have indirect shadow pages, it means no page is
5233          * write-protected, so we can exit simply.
5234          */
5235         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5236                 return;
5237
5238         remote_flush = local_flush = false;
5239
5240         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5241
5242         /*
5243          * No need to care whether allocation memory is successful
5244          * or not since pte prefetch is skiped if it does not have
5245          * enough objects in the cache.
5246          */
5247         mmu_topup_memory_caches(vcpu);
5248
5249         spin_lock(&vcpu->kvm->mmu_lock);
5250
5251         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5252
5253         ++vcpu->kvm->stat.mmu_pte_write;
5254         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5255
5256         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5257                 if (detect_write_misaligned(sp, gpa, bytes) ||
5258                       detect_write_flooding(sp)) {
5259                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5260                         ++vcpu->kvm->stat.mmu_flooded;
5261                         continue;
5262                 }
5263
5264                 spte = get_written_sptes(sp, gpa, &npte);
5265                 if (!spte)
5266                         continue;
5267
5268                 local_flush = true;
5269                 while (npte--) {
5270                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5271
5272                         entry = *spte;
5273                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5274                         if (gentry &&
5275                               !((sp->role.word ^ base_role)
5276                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5277                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5278                         if (need_remote_flush(entry, *spte))
5279                                 remote_flush = true;
5280                         ++spte;
5281                 }
5282         }
5283         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5284         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5285         spin_unlock(&vcpu->kvm->mmu_lock);
5286 }
5287
5288 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5289 {
5290         gpa_t gpa;
5291         int r;
5292
5293         if (vcpu->arch.mmu->direct_map)
5294                 return 0;
5295
5296         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5297
5298         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5299
5300         return r;
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5303
5304 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5305 {
5306         LIST_HEAD(invalid_list);
5307
5308         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5309                 return 0;
5310
5311         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5312                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5313                         break;
5314
5315                 ++vcpu->kvm->stat.mmu_recycled;
5316         }
5317         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5318
5319         if (!kvm_mmu_available_pages(vcpu->kvm))
5320                 return -ENOSPC;
5321         return 0;
5322 }
5323
5324 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5325                        void *insn, int insn_len)
5326 {
5327         int r, emulation_type = 0;
5328         enum emulation_result er;
5329         bool direct = vcpu->arch.mmu->direct_map;
5330
5331         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5332         if (vcpu->arch.mmu->direct_map) {
5333                 vcpu->arch.gpa_available = true;
5334                 vcpu->arch.gpa_val = cr2;
5335         }
5336
5337         r = RET_PF_INVALID;
5338         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5339                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5340                 if (r == RET_PF_EMULATE)
5341                         goto emulate;
5342         }
5343
5344         if (r == RET_PF_INVALID) {
5345                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5346                                                lower_32_bits(error_code),
5347                                                false);
5348                 WARN_ON(r == RET_PF_INVALID);
5349         }
5350
5351         if (r == RET_PF_RETRY)
5352                 return 1;
5353         if (r < 0)
5354                 return r;
5355
5356         /*
5357          * Before emulating the instruction, check if the error code
5358          * was due to a RO violation while translating the guest page.
5359          * This can occur when using nested virtualization with nested
5360          * paging in both guests. If true, we simply unprotect the page
5361          * and resume the guest.
5362          */
5363         if (vcpu->arch.mmu->direct_map &&
5364             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5365                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5366                 return 1;
5367         }
5368
5369         /*
5370          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5371          * optimistically try to just unprotect the page and let the processor
5372          * re-execute the instruction that caused the page fault.  Do not allow
5373          * retrying MMIO emulation, as it's not only pointless but could also
5374          * cause us to enter an infinite loop because the processor will keep
5375          * faulting on the non-existent MMIO address.  Retrying an instruction
5376          * from a nested guest is also pointless and dangerous as we are only
5377          * explicitly shadowing L1's page tables, i.e. unprotecting something
5378          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5379          */
5380         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5381                 emulation_type = EMULTYPE_ALLOW_RETRY;
5382 emulate:
5383         /*
5384          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5385          * This can happen if a guest gets a page-fault on data access but the HW
5386          * table walker is not able to read the instruction page (e.g instruction
5387          * page is not present in memory). In those cases we simply restart the
5388          * guest.
5389          */
5390         if (unlikely(insn && !insn_len))
5391                 return 1;
5392
5393         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5394
5395         switch (er) {
5396         case EMULATE_DONE:
5397                 return 1;
5398         case EMULATE_USER_EXIT:
5399                 ++vcpu->stat.mmio_exits;
5400                 /* fall through */
5401         case EMULATE_FAIL:
5402                 return 0;
5403         default:
5404                 BUG();
5405         }
5406 }
5407 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5408
5409 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5410 {
5411         struct kvm_mmu *mmu = vcpu->arch.mmu;
5412         int i;
5413
5414         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5415         if (is_noncanonical_address(gva, vcpu))
5416                 return;
5417
5418         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5419
5420         /*
5421          * INVLPG is required to invalidate any global mappings for the VA,
5422          * irrespective of PCID. Since it would take us roughly similar amount
5423          * of work to determine whether any of the prev_root mappings of the VA
5424          * is marked global, or to just sync it blindly, so we might as well
5425          * just always sync it.
5426          *
5427          * Mappings not reachable via the current cr3 or the prev_roots will be
5428          * synced when switching to that cr3, so nothing needs to be done here
5429          * for them.
5430          */
5431         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5432                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5433                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5434
5435         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5436         ++vcpu->stat.invlpg;
5437 }
5438 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5439
5440 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5441 {
5442         struct kvm_mmu *mmu = vcpu->arch.mmu;
5443         bool tlb_flush = false;
5444         uint i;
5445
5446         if (pcid == kvm_get_active_pcid(vcpu)) {
5447                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5448                 tlb_flush = true;
5449         }
5450
5451         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5452                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5453                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5454                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5455                         tlb_flush = true;
5456                 }
5457         }
5458
5459         if (tlb_flush)
5460                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5461
5462         ++vcpu->stat.invlpg;
5463
5464         /*
5465          * Mappings not reachable via the current cr3 or the prev_roots will be
5466          * synced when switching to that cr3, so nothing needs to be done here
5467          * for them.
5468          */
5469 }
5470 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5471
5472 void kvm_enable_tdp(void)
5473 {
5474         tdp_enabled = true;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5477
5478 void kvm_disable_tdp(void)
5479 {
5480         tdp_enabled = false;
5481 }
5482 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5483
5484
5485 /* The return value indicates if tlb flush on all vcpus is needed. */
5486 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5487
5488 /* The caller should hold mmu-lock before calling this function. */
5489 static __always_inline bool
5490 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5491                         slot_level_handler fn, int start_level, int end_level,
5492                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5493 {
5494         struct slot_rmap_walk_iterator iterator;
5495         bool flush = false;
5496
5497         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5498                         end_gfn, &iterator) {
5499                 if (iterator.rmap)
5500                         flush |= fn(kvm, iterator.rmap);
5501
5502                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5503                         if (flush && lock_flush_tlb) {
5504                                 kvm_flush_remote_tlbs(kvm);
5505                                 flush = false;
5506                         }
5507                         cond_resched_lock(&kvm->mmu_lock);
5508                 }
5509         }
5510
5511         if (flush && lock_flush_tlb) {
5512                 kvm_flush_remote_tlbs(kvm);
5513                 flush = false;
5514         }
5515
5516         return flush;
5517 }
5518
5519 static __always_inline bool
5520 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5521                   slot_level_handler fn, int start_level, int end_level,
5522                   bool lock_flush_tlb)
5523 {
5524         return slot_handle_level_range(kvm, memslot, fn, start_level,
5525                         end_level, memslot->base_gfn,
5526                         memslot->base_gfn + memslot->npages - 1,
5527                         lock_flush_tlb);
5528 }
5529
5530 static __always_inline bool
5531 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5532                       slot_level_handler fn, bool lock_flush_tlb)
5533 {
5534         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5535                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5536 }
5537
5538 static __always_inline bool
5539 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5540                         slot_level_handler fn, bool lock_flush_tlb)
5541 {
5542         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5543                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5544 }
5545
5546 static __always_inline bool
5547 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5548                  slot_level_handler fn, bool lock_flush_tlb)
5549 {
5550         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5551                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5552 }
5553
5554 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5555 {
5556         free_page((unsigned long)vcpu->arch.mmu->pae_root);
5557         free_page((unsigned long)vcpu->arch.mmu->lm_root);
5558 }
5559
5560 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5561 {
5562         struct page *page;
5563         int i;
5564
5565         if (tdp_enabled)
5566                 return 0;
5567
5568         /*
5569          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5570          * Therefore we need to allocate shadow page tables in the first
5571          * 4GB of memory, which happens to fit the DMA32 zone.
5572          */
5573         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5574         if (!page)
5575                 return -ENOMEM;
5576
5577         vcpu->arch.mmu->pae_root = page_address(page);
5578         for (i = 0; i < 4; ++i)
5579                 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5580
5581         return 0;
5582 }
5583
5584 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5585 {
5586         uint i;
5587
5588         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5589         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5590
5591         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5592         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5593         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5594                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5595
5596         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5597         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5598         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5599                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5600
5601         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5602         return alloc_mmu_pages(vcpu);
5603 }
5604
5605 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5606                         struct kvm_memory_slot *slot,
5607                         struct kvm_page_track_notifier_node *node)
5608 {
5609         struct kvm_mmu_page *sp;
5610         LIST_HEAD(invalid_list);
5611         unsigned long i;
5612         bool flush;
5613         gfn_t gfn;
5614
5615         spin_lock(&kvm->mmu_lock);
5616
5617         if (list_empty(&kvm->arch.active_mmu_pages))
5618                 goto out_unlock;
5619
5620         flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
5621
5622         for (i = 0; i < slot->npages; i++) {
5623                 gfn = slot->base_gfn + i;
5624
5625                 for_each_valid_sp(kvm, sp, gfn) {
5626                         if (sp->gfn != gfn)
5627                                 continue;
5628
5629                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5630                 }
5631                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5632                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5633                         flush = false;
5634                         cond_resched_lock(&kvm->mmu_lock);
5635                 }
5636         }
5637         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5638
5639 out_unlock:
5640         spin_unlock(&kvm->mmu_lock);
5641 }
5642
5643 void kvm_mmu_init_vm(struct kvm *kvm)
5644 {
5645         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5646
5647         node->track_write = kvm_mmu_pte_write;
5648         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5649         kvm_page_track_register_notifier(kvm, node);
5650 }
5651
5652 void kvm_mmu_uninit_vm(struct kvm *kvm)
5653 {
5654         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5655
5656         kvm_page_track_unregister_notifier(kvm, node);
5657 }
5658
5659 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5660 {
5661         struct kvm_memslots *slots;
5662         struct kvm_memory_slot *memslot;
5663         int i;
5664
5665         spin_lock(&kvm->mmu_lock);
5666         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5667                 slots = __kvm_memslots(kvm, i);
5668                 kvm_for_each_memslot(memslot, slots) {
5669                         gfn_t start, end;
5670
5671                         start = max(gfn_start, memslot->base_gfn);
5672                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5673                         if (start >= end)
5674                                 continue;
5675
5676                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5677                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5678                                                 start, end - 1, true);
5679                 }
5680         }
5681
5682         spin_unlock(&kvm->mmu_lock);
5683 }
5684
5685 static bool slot_rmap_write_protect(struct kvm *kvm,
5686                                     struct kvm_rmap_head *rmap_head)
5687 {
5688         return __rmap_write_protect(kvm, rmap_head, false);
5689 }
5690
5691 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5692                                       struct kvm_memory_slot *memslot)
5693 {
5694         bool flush;
5695
5696         spin_lock(&kvm->mmu_lock);
5697         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5698                                       false);
5699         spin_unlock(&kvm->mmu_lock);
5700
5701         /*
5702          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5703          * which do tlb flush out of mmu-lock should be serialized by
5704          * kvm->slots_lock otherwise tlb flush would be missed.
5705          */
5706         lockdep_assert_held(&kvm->slots_lock);
5707
5708         /*
5709          * We can flush all the TLBs out of the mmu lock without TLB
5710          * corruption since we just change the spte from writable to
5711          * readonly so that we only need to care the case of changing
5712          * spte from present to present (changing the spte from present
5713          * to nonpresent will flush all the TLBs immediately), in other
5714          * words, the only case we care is mmu_spte_update() where we
5715          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5716          * instead of PT_WRITABLE_MASK, that means it does not depend
5717          * on PT_WRITABLE_MASK anymore.
5718          */
5719         if (flush)
5720                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5721                         memslot->npages);
5722 }
5723
5724 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5725                                          struct kvm_rmap_head *rmap_head)
5726 {
5727         u64 *sptep;
5728         struct rmap_iterator iter;
5729         int need_tlb_flush = 0;
5730         kvm_pfn_t pfn;
5731         struct kvm_mmu_page *sp;
5732
5733 restart:
5734         for_each_rmap_spte(rmap_head, &iter, sptep) {
5735                 sp = page_header(__pa(sptep));
5736                 pfn = spte_to_pfn(*sptep);
5737
5738                 /*
5739                  * We cannot do huge page mapping for indirect shadow pages,
5740                  * which are found on the last rmap (level = 1) when not using
5741                  * tdp; such shadow pages are synced with the page table in
5742                  * the guest, and the guest page table is using 4K page size
5743                  * mapping if the indirect sp has level = 1.
5744                  */
5745                 if (sp->role.direct &&
5746                         !kvm_is_reserved_pfn(pfn) &&
5747                         PageTransCompoundMap(pfn_to_page(pfn))) {
5748                         pte_list_remove(rmap_head, sptep);
5749
5750                         if (kvm_available_flush_tlb_with_range())
5751                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5752                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5753                         else
5754                                 need_tlb_flush = 1;
5755
5756                         goto restart;
5757                 }
5758         }
5759
5760         return need_tlb_flush;
5761 }
5762
5763 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5764                                    const struct kvm_memory_slot *memslot)
5765 {
5766         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5767         spin_lock(&kvm->mmu_lock);
5768         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5769                          kvm_mmu_zap_collapsible_spte, true);
5770         spin_unlock(&kvm->mmu_lock);
5771 }
5772
5773 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5774                                    struct kvm_memory_slot *memslot)
5775 {
5776         bool flush;
5777
5778         spin_lock(&kvm->mmu_lock);
5779         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5780         spin_unlock(&kvm->mmu_lock);
5781
5782         lockdep_assert_held(&kvm->slots_lock);
5783
5784         /*
5785          * It's also safe to flush TLBs out of mmu lock here as currently this
5786          * function is only used for dirty logging, in which case flushing TLB
5787          * out of mmu lock also guarantees no dirty pages will be lost in
5788          * dirty_bitmap.
5789          */
5790         if (flush)
5791                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5792                                 memslot->npages);
5793 }
5794 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5795
5796 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5797                                         struct kvm_memory_slot *memslot)
5798 {
5799         bool flush;
5800
5801         spin_lock(&kvm->mmu_lock);
5802         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5803                                         false);
5804         spin_unlock(&kvm->mmu_lock);
5805
5806         /* see kvm_mmu_slot_remove_write_access */
5807         lockdep_assert_held(&kvm->slots_lock);
5808
5809         if (flush)
5810                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5811                                 memslot->npages);
5812 }
5813 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5814
5815 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5816                             struct kvm_memory_slot *memslot)
5817 {
5818         bool flush;
5819
5820         spin_lock(&kvm->mmu_lock);
5821         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5822         spin_unlock(&kvm->mmu_lock);
5823
5824         lockdep_assert_held(&kvm->slots_lock);
5825
5826         /* see kvm_mmu_slot_leaf_clear_dirty */
5827         if (flush)
5828                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5829                                 memslot->npages);
5830 }
5831 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5832
5833 static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5834 {
5835         struct kvm_mmu_page *sp, *node;
5836         LIST_HEAD(invalid_list);
5837         int ign;
5838
5839         spin_lock(&kvm->mmu_lock);
5840 restart:
5841         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5842                 if (mmio_only && !sp->mmio_cached)
5843                         continue;
5844                 if (sp->role.invalid && sp->root_count)
5845                         continue;
5846                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
5847                         WARN_ON_ONCE(mmio_only);
5848                         goto restart;
5849                 }
5850                 if (cond_resched_lock(&kvm->mmu_lock))
5851                         goto restart;
5852         }
5853
5854         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5855         spin_unlock(&kvm->mmu_lock);
5856 }
5857
5858 void kvm_mmu_zap_all(struct kvm *kvm)
5859 {
5860         return __kvm_mmu_zap_all(kvm, false);
5861 }
5862
5863 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5864 {
5865         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5866
5867         gen &= MMIO_SPTE_GEN_MASK;
5868
5869         /*
5870          * Generation numbers are incremented in multiples of the number of
5871          * address spaces in order to provide unique generations across all
5872          * address spaces.  Strip what is effectively the address space
5873          * modifier prior to checking for a wrap of the MMIO generation so
5874          * that a wrap in any address space is detected.
5875          */
5876         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5877
5878         /*
5879          * The very rare case: if the MMIO generation number has wrapped,
5880          * zap all shadow pages.
5881          */
5882         if (unlikely(gen == 0)) {
5883                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5884                 __kvm_mmu_zap_all(kvm, true);
5885         }
5886 }
5887
5888 static unsigned long
5889 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5890 {
5891         struct kvm *kvm;
5892         int nr_to_scan = sc->nr_to_scan;
5893         unsigned long freed = 0;
5894
5895         spin_lock(&kvm_lock);
5896
5897         list_for_each_entry(kvm, &vm_list, vm_list) {
5898                 int idx;
5899                 LIST_HEAD(invalid_list);
5900
5901                 /*
5902                  * Never scan more than sc->nr_to_scan VM instances.
5903                  * Will not hit this condition practically since we do not try
5904                  * to shrink more than one VM and it is very unlikely to see
5905                  * !n_used_mmu_pages so many times.
5906                  */
5907                 if (!nr_to_scan--)
5908                         break;
5909                 /*
5910                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5911                  * here. We may skip a VM instance errorneosly, but we do not
5912                  * want to shrink a VM that only started to populate its MMU
5913                  * anyway.
5914                  */
5915                 if (!kvm->arch.n_used_mmu_pages)
5916                         continue;
5917
5918                 idx = srcu_read_lock(&kvm->srcu);
5919                 spin_lock(&kvm->mmu_lock);
5920
5921                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5922                         freed++;
5923                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5924
5925                 spin_unlock(&kvm->mmu_lock);
5926                 srcu_read_unlock(&kvm->srcu, idx);
5927
5928                 /*
5929                  * unfair on small ones
5930                  * per-vm shrinkers cry out
5931                  * sadness comes quickly
5932                  */
5933                 list_move_tail(&kvm->vm_list, &vm_list);
5934                 break;
5935         }
5936
5937         spin_unlock(&kvm_lock);
5938         return freed;
5939 }
5940
5941 static unsigned long
5942 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5943 {
5944         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5945 }
5946
5947 static struct shrinker mmu_shrinker = {
5948         .count_objects = mmu_shrink_count,
5949         .scan_objects = mmu_shrink_scan,
5950         .seeks = DEFAULT_SEEKS * 10,
5951 };
5952
5953 static void mmu_destroy_caches(void)
5954 {
5955         kmem_cache_destroy(pte_list_desc_cache);
5956         kmem_cache_destroy(mmu_page_header_cache);
5957 }
5958
5959 int kvm_mmu_module_init(void)
5960 {
5961         int ret = -ENOMEM;
5962
5963         /*
5964          * MMU roles use union aliasing which is, generally speaking, an
5965          * undefined behavior. However, we supposedly know how compilers behave
5966          * and the current status quo is unlikely to change. Guardians below are
5967          * supposed to let us know if the assumption becomes false.
5968          */
5969         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5970         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5971         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5972
5973         kvm_mmu_reset_all_pte_masks();
5974
5975         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5976                                             sizeof(struct pte_list_desc),
5977                                             0, SLAB_ACCOUNT, NULL);
5978         if (!pte_list_desc_cache)
5979                 goto out;
5980
5981         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5982                                                   sizeof(struct kvm_mmu_page),
5983                                                   0, SLAB_ACCOUNT, NULL);
5984         if (!mmu_page_header_cache)
5985                 goto out;
5986
5987         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5988                 goto out;
5989
5990         ret = register_shrinker(&mmu_shrinker);
5991         if (ret)
5992                 goto out;
5993
5994         return 0;
5995
5996 out:
5997         mmu_destroy_caches();
5998         return ret;
5999 }
6000
6001 /*
6002  * Calculate mmu pages needed for kvm.
6003  */
6004 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6005 {
6006         unsigned int nr_mmu_pages;
6007         unsigned int  nr_pages = 0;
6008         struct kvm_memslots *slots;
6009         struct kvm_memory_slot *memslot;
6010         int i;
6011
6012         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6013                 slots = __kvm_memslots(kvm, i);
6014
6015                 kvm_for_each_memslot(memslot, slots)
6016                         nr_pages += memslot->npages;
6017         }
6018
6019         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6020         nr_mmu_pages = max(nr_mmu_pages,
6021                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
6022
6023         return nr_mmu_pages;
6024 }
6025
6026 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6027 {
6028         kvm_mmu_unload(vcpu);
6029         free_mmu_pages(vcpu);
6030         mmu_free_memory_caches(vcpu);
6031 }
6032
6033 void kvm_mmu_module_exit(void)
6034 {
6035         mmu_destroy_caches();
6036         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6037         unregister_shrinker(&mmu_shrinker);
6038         mmu_audit_disable();
6039 }