]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - kernel/events/core.c
Merge branch 'parisc-4.9-4' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[zynq/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905
906         /* Only set/clear cpuctx->cgrp if current task uses event->cgrp. */
907         if (perf_cgroup_from_task(current, ctx) != event->cgrp) {
908                 /*
909                  * We are removing the last cpu event in this context.
910                  * If that event is not active in this cpu, cpuctx->cgrp
911                  * should've been cleared by perf_cgroup_switch.
912                  */
913                 WARN_ON_ONCE(!add && cpuctx->cgrp);
914                 return;
915         }
916         cpuctx->cgrp = add ? event->cgrp : NULL;
917 }
918
919 #else /* !CONFIG_CGROUP_PERF */
920
921 static inline bool
922 perf_cgroup_match(struct perf_event *event)
923 {
924         return true;
925 }
926
927 static inline void perf_detach_cgroup(struct perf_event *event)
928 {}
929
930 static inline int is_cgroup_event(struct perf_event *event)
931 {
932         return 0;
933 }
934
935 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
936 {
937         return 0;
938 }
939
940 static inline void update_cgrp_time_from_event(struct perf_event *event)
941 {
942 }
943
944 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
945 {
946 }
947
948 static inline void perf_cgroup_sched_out(struct task_struct *task,
949                                          struct task_struct *next)
950 {
951 }
952
953 static inline void perf_cgroup_sched_in(struct task_struct *prev,
954                                         struct task_struct *task)
955 {
956 }
957
958 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
959                                       struct perf_event_attr *attr,
960                                       struct perf_event *group_leader)
961 {
962         return -EINVAL;
963 }
964
965 static inline void
966 perf_cgroup_set_timestamp(struct task_struct *task,
967                           struct perf_event_context *ctx)
968 {
969 }
970
971 void
972 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
973 {
974 }
975
976 static inline void
977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978 {
979 }
980
981 static inline u64 perf_cgroup_event_time(struct perf_event *event)
982 {
983         return 0;
984 }
985
986 static inline void
987 perf_cgroup_defer_enabled(struct perf_event *event)
988 {
989 }
990
991 static inline void
992 perf_cgroup_mark_enabled(struct perf_event *event,
993                          struct perf_event_context *ctx)
994 {
995 }
996
997 static inline void
998 list_update_cgroup_event(struct perf_event *event,
999                          struct perf_event_context *ctx, bool add)
1000 {
1001 }
1002
1003 #endif
1004
1005 /*
1006  * set default to be dependent on timer tick just
1007  * like original code
1008  */
1009 #define PERF_CPU_HRTIMER (1000 / HZ)
1010 /*
1011  * function must be called with interrupts disbled
1012  */
1013 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1014 {
1015         struct perf_cpu_context *cpuctx;
1016         int rotations = 0;
1017
1018         WARN_ON(!irqs_disabled());
1019
1020         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1021         rotations = perf_rotate_context(cpuctx);
1022
1023         raw_spin_lock(&cpuctx->hrtimer_lock);
1024         if (rotations)
1025                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1026         else
1027                 cpuctx->hrtimer_active = 0;
1028         raw_spin_unlock(&cpuctx->hrtimer_lock);
1029
1030         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1031 }
1032
1033 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1034 {
1035         struct hrtimer *timer = &cpuctx->hrtimer;
1036         struct pmu *pmu = cpuctx->ctx.pmu;
1037         u64 interval;
1038
1039         /* no multiplexing needed for SW PMU */
1040         if (pmu->task_ctx_nr == perf_sw_context)
1041                 return;
1042
1043         /*
1044          * check default is sane, if not set then force to
1045          * default interval (1/tick)
1046          */
1047         interval = pmu->hrtimer_interval_ms;
1048         if (interval < 1)
1049                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1050
1051         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1052
1053         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1054         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1055         timer->function = perf_mux_hrtimer_handler;
1056 }
1057
1058 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1059 {
1060         struct hrtimer *timer = &cpuctx->hrtimer;
1061         struct pmu *pmu = cpuctx->ctx.pmu;
1062         unsigned long flags;
1063
1064         /* not for SW PMU */
1065         if (pmu->task_ctx_nr == perf_sw_context)
1066                 return 0;
1067
1068         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1069         if (!cpuctx->hrtimer_active) {
1070                 cpuctx->hrtimer_active = 1;
1071                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1072                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1073         }
1074         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1075
1076         return 0;
1077 }
1078
1079 void perf_pmu_disable(struct pmu *pmu)
1080 {
1081         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082         if (!(*count)++)
1083                 pmu->pmu_disable(pmu);
1084 }
1085
1086 void perf_pmu_enable(struct pmu *pmu)
1087 {
1088         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1089         if (!--(*count))
1090                 pmu->pmu_enable(pmu);
1091 }
1092
1093 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1094
1095 /*
1096  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1097  * perf_event_task_tick() are fully serialized because they're strictly cpu
1098  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1099  * disabled, while perf_event_task_tick is called from IRQ context.
1100  */
1101 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1102 {
1103         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1104
1105         WARN_ON(!irqs_disabled());
1106
1107         WARN_ON(!list_empty(&ctx->active_ctx_list));
1108
1109         list_add(&ctx->active_ctx_list, head);
1110 }
1111
1112 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1113 {
1114         WARN_ON(!irqs_disabled());
1115
1116         WARN_ON(list_empty(&ctx->active_ctx_list));
1117
1118         list_del_init(&ctx->active_ctx_list);
1119 }
1120
1121 static void get_ctx(struct perf_event_context *ctx)
1122 {
1123         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1124 }
1125
1126 static void free_ctx(struct rcu_head *head)
1127 {
1128         struct perf_event_context *ctx;
1129
1130         ctx = container_of(head, struct perf_event_context, rcu_head);
1131         kfree(ctx->task_ctx_data);
1132         kfree(ctx);
1133 }
1134
1135 static void put_ctx(struct perf_event_context *ctx)
1136 {
1137         if (atomic_dec_and_test(&ctx->refcount)) {
1138                 if (ctx->parent_ctx)
1139                         put_ctx(ctx->parent_ctx);
1140                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1141                         put_task_struct(ctx->task);
1142                 call_rcu(&ctx->rcu_head, free_ctx);
1143         }
1144 }
1145
1146 /*
1147  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1148  * perf_pmu_migrate_context() we need some magic.
1149  *
1150  * Those places that change perf_event::ctx will hold both
1151  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1152  *
1153  * Lock ordering is by mutex address. There are two other sites where
1154  * perf_event_context::mutex nests and those are:
1155  *
1156  *  - perf_event_exit_task_context()    [ child , 0 ]
1157  *      perf_event_exit_event()
1158  *        put_event()                   [ parent, 1 ]
1159  *
1160  *  - perf_event_init_context()         [ parent, 0 ]
1161  *      inherit_task_group()
1162  *        inherit_group()
1163  *          inherit_event()
1164  *            perf_event_alloc()
1165  *              perf_init_event()
1166  *                perf_try_init_event() [ child , 1 ]
1167  *
1168  * While it appears there is an obvious deadlock here -- the parent and child
1169  * nesting levels are inverted between the two. This is in fact safe because
1170  * life-time rules separate them. That is an exiting task cannot fork, and a
1171  * spawning task cannot (yet) exit.
1172  *
1173  * But remember that that these are parent<->child context relations, and
1174  * migration does not affect children, therefore these two orderings should not
1175  * interact.
1176  *
1177  * The change in perf_event::ctx does not affect children (as claimed above)
1178  * because the sys_perf_event_open() case will install a new event and break
1179  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1180  * concerned with cpuctx and that doesn't have children.
1181  *
1182  * The places that change perf_event::ctx will issue:
1183  *
1184  *   perf_remove_from_context();
1185  *   synchronize_rcu();
1186  *   perf_install_in_context();
1187  *
1188  * to affect the change. The remove_from_context() + synchronize_rcu() should
1189  * quiesce the event, after which we can install it in the new location. This
1190  * means that only external vectors (perf_fops, prctl) can perturb the event
1191  * while in transit. Therefore all such accessors should also acquire
1192  * perf_event_context::mutex to serialize against this.
1193  *
1194  * However; because event->ctx can change while we're waiting to acquire
1195  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1196  * function.
1197  *
1198  * Lock order:
1199  *    cred_guard_mutex
1200  *      task_struct::perf_event_mutex
1201  *        perf_event_context::mutex
1202  *          perf_event::child_mutex;
1203  *            perf_event_context::lock
1204  *          perf_event::mmap_mutex
1205  *          mmap_sem
1206  */
1207 static struct perf_event_context *
1208 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1209 {
1210         struct perf_event_context *ctx;
1211
1212 again:
1213         rcu_read_lock();
1214         ctx = ACCESS_ONCE(event->ctx);
1215         if (!atomic_inc_not_zero(&ctx->refcount)) {
1216                 rcu_read_unlock();
1217                 goto again;
1218         }
1219         rcu_read_unlock();
1220
1221         mutex_lock_nested(&ctx->mutex, nesting);
1222         if (event->ctx != ctx) {
1223                 mutex_unlock(&ctx->mutex);
1224                 put_ctx(ctx);
1225                 goto again;
1226         }
1227
1228         return ctx;
1229 }
1230
1231 static inline struct perf_event_context *
1232 perf_event_ctx_lock(struct perf_event *event)
1233 {
1234         return perf_event_ctx_lock_nested(event, 0);
1235 }
1236
1237 static void perf_event_ctx_unlock(struct perf_event *event,
1238                                   struct perf_event_context *ctx)
1239 {
1240         mutex_unlock(&ctx->mutex);
1241         put_ctx(ctx);
1242 }
1243
1244 /*
1245  * This must be done under the ctx->lock, such as to serialize against
1246  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1247  * calling scheduler related locks and ctx->lock nests inside those.
1248  */
1249 static __must_check struct perf_event_context *
1250 unclone_ctx(struct perf_event_context *ctx)
1251 {
1252         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1253
1254         lockdep_assert_held(&ctx->lock);
1255
1256         if (parent_ctx)
1257                 ctx->parent_ctx = NULL;
1258         ctx->generation++;
1259
1260         return parent_ctx;
1261 }
1262
1263 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_tgid_nr_ns(p, event->ns);
1272 }
1273
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276         /*
1277          * only top level events have the pid namespace they were created in
1278          */
1279         if (event->parent)
1280                 event = event->parent;
1281
1282         return task_pid_nr_ns(p, event->ns);
1283 }
1284
1285 /*
1286  * If we inherit events we want to return the parent event id
1287  * to userspace.
1288  */
1289 static u64 primary_event_id(struct perf_event *event)
1290 {
1291         u64 id = event->id;
1292
1293         if (event->parent)
1294                 id = event->parent->id;
1295
1296         return id;
1297 }
1298
1299 /*
1300  * Get the perf_event_context for a task and lock it.
1301  *
1302  * This has to cope with with the fact that until it is locked,
1303  * the context could get moved to another task.
1304  */
1305 static struct perf_event_context *
1306 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1307 {
1308         struct perf_event_context *ctx;
1309
1310 retry:
1311         /*
1312          * One of the few rules of preemptible RCU is that one cannot do
1313          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1314          * part of the read side critical section was irqs-enabled -- see
1315          * rcu_read_unlock_special().
1316          *
1317          * Since ctx->lock nests under rq->lock we must ensure the entire read
1318          * side critical section has interrupts disabled.
1319          */
1320         local_irq_save(*flags);
1321         rcu_read_lock();
1322         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1323         if (ctx) {
1324                 /*
1325                  * If this context is a clone of another, it might
1326                  * get swapped for another underneath us by
1327                  * perf_event_task_sched_out, though the
1328                  * rcu_read_lock() protects us from any context
1329                  * getting freed.  Lock the context and check if it
1330                  * got swapped before we could get the lock, and retry
1331                  * if so.  If we locked the right context, then it
1332                  * can't get swapped on us any more.
1333                  */
1334                 raw_spin_lock(&ctx->lock);
1335                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1336                         raw_spin_unlock(&ctx->lock);
1337                         rcu_read_unlock();
1338                         local_irq_restore(*flags);
1339                         goto retry;
1340                 }
1341
1342                 if (ctx->task == TASK_TOMBSTONE ||
1343                     !atomic_inc_not_zero(&ctx->refcount)) {
1344                         raw_spin_unlock(&ctx->lock);
1345                         ctx = NULL;
1346                 } else {
1347                         WARN_ON_ONCE(ctx->task != task);
1348                 }
1349         }
1350         rcu_read_unlock();
1351         if (!ctx)
1352                 local_irq_restore(*flags);
1353         return ctx;
1354 }
1355
1356 /*
1357  * Get the context for a task and increment its pin_count so it
1358  * can't get swapped to another task.  This also increments its
1359  * reference count so that the context can't get freed.
1360  */
1361 static struct perf_event_context *
1362 perf_pin_task_context(struct task_struct *task, int ctxn)
1363 {
1364         struct perf_event_context *ctx;
1365         unsigned long flags;
1366
1367         ctx = perf_lock_task_context(task, ctxn, &flags);
1368         if (ctx) {
1369                 ++ctx->pin_count;
1370                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371         }
1372         return ctx;
1373 }
1374
1375 static void perf_unpin_context(struct perf_event_context *ctx)
1376 {
1377         unsigned long flags;
1378
1379         raw_spin_lock_irqsave(&ctx->lock, flags);
1380         --ctx->pin_count;
1381         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1382 }
1383
1384 /*
1385  * Update the record of the current time in a context.
1386  */
1387 static void update_context_time(struct perf_event_context *ctx)
1388 {
1389         u64 now = perf_clock();
1390
1391         ctx->time += now - ctx->timestamp;
1392         ctx->timestamp = now;
1393 }
1394
1395 static u64 perf_event_time(struct perf_event *event)
1396 {
1397         struct perf_event_context *ctx = event->ctx;
1398
1399         if (is_cgroup_event(event))
1400                 return perf_cgroup_event_time(event);
1401
1402         return ctx ? ctx->time : 0;
1403 }
1404
1405 /*
1406  * Update the total_time_enabled and total_time_running fields for a event.
1407  */
1408 static void update_event_times(struct perf_event *event)
1409 {
1410         struct perf_event_context *ctx = event->ctx;
1411         u64 run_end;
1412
1413         lockdep_assert_held(&ctx->lock);
1414
1415         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1416             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1417                 return;
1418
1419         /*
1420          * in cgroup mode, time_enabled represents
1421          * the time the event was enabled AND active
1422          * tasks were in the monitored cgroup. This is
1423          * independent of the activity of the context as
1424          * there may be a mix of cgroup and non-cgroup events.
1425          *
1426          * That is why we treat cgroup events differently
1427          * here.
1428          */
1429         if (is_cgroup_event(event))
1430                 run_end = perf_cgroup_event_time(event);
1431         else if (ctx->is_active)
1432                 run_end = ctx->time;
1433         else
1434                 run_end = event->tstamp_stopped;
1435
1436         event->total_time_enabled = run_end - event->tstamp_enabled;
1437
1438         if (event->state == PERF_EVENT_STATE_INACTIVE)
1439                 run_end = event->tstamp_stopped;
1440         else
1441                 run_end = perf_event_time(event);
1442
1443         event->total_time_running = run_end - event->tstamp_running;
1444
1445 }
1446
1447 /*
1448  * Update total_time_enabled and total_time_running for all events in a group.
1449  */
1450 static void update_group_times(struct perf_event *leader)
1451 {
1452         struct perf_event *event;
1453
1454         update_event_times(leader);
1455         list_for_each_entry(event, &leader->sibling_list, group_entry)
1456                 update_event_times(event);
1457 }
1458
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462         if (event->attr.pinned)
1463                 return &ctx->pinned_groups;
1464         else
1465                 return &ctx->flexible_groups;
1466 }
1467
1468 /*
1469  * Add a event from the lists for its context.
1470  * Must be called with ctx->mutex and ctx->lock held.
1471  */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475
1476         lockdep_assert_held(&ctx->lock);
1477
1478         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1479         event->attach_state |= PERF_ATTACH_CONTEXT;
1480
1481         /*
1482          * If we're a stand alone event or group leader, we go to the context
1483          * list, group events are kept attached to the group so that
1484          * perf_group_detach can, at all times, locate all siblings.
1485          */
1486         if (event->group_leader == event) {
1487                 struct list_head *list;
1488
1489                 event->group_caps = event->event_caps;
1490
1491                 list = ctx_group_list(event, ctx);
1492                 list_add_tail(&event->group_entry, list);
1493         }
1494
1495         list_update_cgroup_event(event, ctx, true);
1496
1497         list_add_rcu(&event->event_entry, &ctx->event_list);
1498         ctx->nr_events++;
1499         if (event->attr.inherit_stat)
1500                 ctx->nr_stat++;
1501
1502         ctx->generation++;
1503 }
1504
1505 /*
1506  * Initialize event state based on the perf_event_attr::disabled.
1507  */
1508 static inline void perf_event__state_init(struct perf_event *event)
1509 {
1510         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1511                                               PERF_EVENT_STATE_INACTIVE;
1512 }
1513
1514 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1515 {
1516         int entry = sizeof(u64); /* value */
1517         int size = 0;
1518         int nr = 1;
1519
1520         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1521                 size += sizeof(u64);
1522
1523         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1524                 size += sizeof(u64);
1525
1526         if (event->attr.read_format & PERF_FORMAT_ID)
1527                 entry += sizeof(u64);
1528
1529         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1530                 nr += nr_siblings;
1531                 size += sizeof(u64);
1532         }
1533
1534         size += entry * nr;
1535         event->read_size = size;
1536 }
1537
1538 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1539 {
1540         struct perf_sample_data *data;
1541         u16 size = 0;
1542
1543         if (sample_type & PERF_SAMPLE_IP)
1544                 size += sizeof(data->ip);
1545
1546         if (sample_type & PERF_SAMPLE_ADDR)
1547                 size += sizeof(data->addr);
1548
1549         if (sample_type & PERF_SAMPLE_PERIOD)
1550                 size += sizeof(data->period);
1551
1552         if (sample_type & PERF_SAMPLE_WEIGHT)
1553                 size += sizeof(data->weight);
1554
1555         if (sample_type & PERF_SAMPLE_READ)
1556                 size += event->read_size;
1557
1558         if (sample_type & PERF_SAMPLE_DATA_SRC)
1559                 size += sizeof(data->data_src.val);
1560
1561         if (sample_type & PERF_SAMPLE_TRANSACTION)
1562                 size += sizeof(data->txn);
1563
1564         event->header_size = size;
1565 }
1566
1567 /*
1568  * Called at perf_event creation and when events are attached/detached from a
1569  * group.
1570  */
1571 static void perf_event__header_size(struct perf_event *event)
1572 {
1573         __perf_event_read_size(event,
1574                                event->group_leader->nr_siblings);
1575         __perf_event_header_size(event, event->attr.sample_type);
1576 }
1577
1578 static void perf_event__id_header_size(struct perf_event *event)
1579 {
1580         struct perf_sample_data *data;
1581         u64 sample_type = event->attr.sample_type;
1582         u16 size = 0;
1583
1584         if (sample_type & PERF_SAMPLE_TID)
1585                 size += sizeof(data->tid_entry);
1586
1587         if (sample_type & PERF_SAMPLE_TIME)
1588                 size += sizeof(data->time);
1589
1590         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1591                 size += sizeof(data->id);
1592
1593         if (sample_type & PERF_SAMPLE_ID)
1594                 size += sizeof(data->id);
1595
1596         if (sample_type & PERF_SAMPLE_STREAM_ID)
1597                 size += sizeof(data->stream_id);
1598
1599         if (sample_type & PERF_SAMPLE_CPU)
1600                 size += sizeof(data->cpu_entry);
1601
1602         event->id_header_size = size;
1603 }
1604
1605 static bool perf_event_validate_size(struct perf_event *event)
1606 {
1607         /*
1608          * The values computed here will be over-written when we actually
1609          * attach the event.
1610          */
1611         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1612         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1613         perf_event__id_header_size(event);
1614
1615         /*
1616          * Sum the lot; should not exceed the 64k limit we have on records.
1617          * Conservative limit to allow for callchains and other variable fields.
1618          */
1619         if (event->read_size + event->header_size +
1620             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1621                 return false;
1622
1623         return true;
1624 }
1625
1626 static void perf_group_attach(struct perf_event *event)
1627 {
1628         struct perf_event *group_leader = event->group_leader, *pos;
1629
1630         /*
1631          * We can have double attach due to group movement in perf_event_open.
1632          */
1633         if (event->attach_state & PERF_ATTACH_GROUP)
1634                 return;
1635
1636         event->attach_state |= PERF_ATTACH_GROUP;
1637
1638         if (group_leader == event)
1639                 return;
1640
1641         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1642
1643         group_leader->group_caps &= event->event_caps;
1644
1645         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1646         group_leader->nr_siblings++;
1647
1648         perf_event__header_size(group_leader);
1649
1650         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1651                 perf_event__header_size(pos);
1652 }
1653
1654 /*
1655  * Remove a event from the lists for its context.
1656  * Must be called with ctx->mutex and ctx->lock held.
1657  */
1658 static void
1659 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1660 {
1661         WARN_ON_ONCE(event->ctx != ctx);
1662         lockdep_assert_held(&ctx->lock);
1663
1664         /*
1665          * We can have double detach due to exit/hot-unplug + close.
1666          */
1667         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1668                 return;
1669
1670         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1671
1672         list_update_cgroup_event(event, ctx, false);
1673
1674         ctx->nr_events--;
1675         if (event->attr.inherit_stat)
1676                 ctx->nr_stat--;
1677
1678         list_del_rcu(&event->event_entry);
1679
1680         if (event->group_leader == event)
1681                 list_del_init(&event->group_entry);
1682
1683         update_group_times(event);
1684
1685         /*
1686          * If event was in error state, then keep it
1687          * that way, otherwise bogus counts will be
1688          * returned on read(). The only way to get out
1689          * of error state is by explicit re-enabling
1690          * of the event
1691          */
1692         if (event->state > PERF_EVENT_STATE_OFF)
1693                 event->state = PERF_EVENT_STATE_OFF;
1694
1695         ctx->generation++;
1696 }
1697
1698 static void perf_group_detach(struct perf_event *event)
1699 {
1700         struct perf_event *sibling, *tmp;
1701         struct list_head *list = NULL;
1702
1703         /*
1704          * We can have double detach due to exit/hot-unplug + close.
1705          */
1706         if (!(event->attach_state & PERF_ATTACH_GROUP))
1707                 return;
1708
1709         event->attach_state &= ~PERF_ATTACH_GROUP;
1710
1711         /*
1712          * If this is a sibling, remove it from its group.
1713          */
1714         if (event->group_leader != event) {
1715                 list_del_init(&event->group_entry);
1716                 event->group_leader->nr_siblings--;
1717                 goto out;
1718         }
1719
1720         if (!list_empty(&event->group_entry))
1721                 list = &event->group_entry;
1722
1723         /*
1724          * If this was a group event with sibling events then
1725          * upgrade the siblings to singleton events by adding them
1726          * to whatever list we are on.
1727          */
1728         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729                 if (list)
1730                         list_move_tail(&sibling->group_entry, list);
1731                 sibling->group_leader = sibling;
1732
1733                 /* Inherit group flags from the previous leader */
1734                 sibling->group_caps = event->group_caps;
1735
1736                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1737         }
1738
1739 out:
1740         perf_event__header_size(event->group_leader);
1741
1742         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743                 perf_event__header_size(tmp);
1744 }
1745
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748         return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753         struct pmu *pmu = event->pmu;
1754         return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765         struct perf_event *child;
1766
1767         if (!__pmu_filter_match(event))
1768                 return 0;
1769
1770         list_for_each_entry(child, &event->sibling_list, group_entry) {
1771                 if (!__pmu_filter_match(child))
1772                         return 0;
1773         }
1774
1775         return 1;
1776 }
1777
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782                perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784
1785 static void
1786 event_sched_out(struct perf_event *event,
1787                   struct perf_cpu_context *cpuctx,
1788                   struct perf_event_context *ctx)
1789 {
1790         u64 tstamp = perf_event_time(event);
1791         u64 delta;
1792
1793         WARN_ON_ONCE(event->ctx != ctx);
1794         lockdep_assert_held(&ctx->lock);
1795
1796         /*
1797          * An event which could not be activated because of
1798          * filter mismatch still needs to have its timings
1799          * maintained, otherwise bogus information is return
1800          * via read() for time_enabled, time_running:
1801          */
1802         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803             !event_filter_match(event)) {
1804                 delta = tstamp - event->tstamp_stopped;
1805                 event->tstamp_running += delta;
1806                 event->tstamp_stopped = tstamp;
1807         }
1808
1809         if (event->state != PERF_EVENT_STATE_ACTIVE)
1810                 return;
1811
1812         perf_pmu_disable(event->pmu);
1813
1814         event->tstamp_stopped = tstamp;
1815         event->pmu->del(event, 0);
1816         event->oncpu = -1;
1817         event->state = PERF_EVENT_STATE_INACTIVE;
1818         if (event->pending_disable) {
1819                 event->pending_disable = 0;
1820                 event->state = PERF_EVENT_STATE_OFF;
1821         }
1822
1823         if (!is_software_event(event))
1824                 cpuctx->active_oncpu--;
1825         if (!--ctx->nr_active)
1826                 perf_event_ctx_deactivate(ctx);
1827         if (event->attr.freq && event->attr.sample_freq)
1828                 ctx->nr_freq--;
1829         if (event->attr.exclusive || !cpuctx->active_oncpu)
1830                 cpuctx->exclusive = 0;
1831
1832         perf_pmu_enable(event->pmu);
1833 }
1834
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837                 struct perf_cpu_context *cpuctx,
1838                 struct perf_event_context *ctx)
1839 {
1840         struct perf_event *event;
1841         int state = group_event->state;
1842
1843         perf_pmu_disable(ctx->pmu);
1844
1845         event_sched_out(group_event, cpuctx, ctx);
1846
1847         /*
1848          * Schedule out siblings (if any):
1849          */
1850         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851                 event_sched_out(event, cpuctx, ctx);
1852
1853         perf_pmu_enable(ctx->pmu);
1854
1855         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856                 cpuctx->exclusive = 0;
1857 }
1858
1859 #define DETACH_GROUP    0x01UL
1860
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869                            struct perf_cpu_context *cpuctx,
1870                            struct perf_event_context *ctx,
1871                            void *info)
1872 {
1873         unsigned long flags = (unsigned long)info;
1874
1875         event_sched_out(event, cpuctx, ctx);
1876         if (flags & DETACH_GROUP)
1877                 perf_group_detach(event);
1878         list_del_event(event, ctx);
1879
1880         if (!ctx->nr_events && ctx->is_active) {
1881                 ctx->is_active = 0;
1882                 if (ctx->task) {
1883                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884                         cpuctx->task_ctx = NULL;
1885                 }
1886         }
1887 }
1888
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901         lockdep_assert_held(&event->ctx->mutex);
1902
1903         event_function_call(event, __perf_remove_from_context, (void *)flags);
1904 }
1905
1906 /*
1907  * Cross CPU call to disable a performance event
1908  */
1909 static void __perf_event_disable(struct perf_event *event,
1910                                  struct perf_cpu_context *cpuctx,
1911                                  struct perf_event_context *ctx,
1912                                  void *info)
1913 {
1914         if (event->state < PERF_EVENT_STATE_INACTIVE)
1915                 return;
1916
1917         update_context_time(ctx);
1918         update_cgrp_time_from_event(event);
1919         update_group_times(event);
1920         if (event == event->group_leader)
1921                 group_sched_out(event, cpuctx, ctx);
1922         else
1923                 event_sched_out(event, cpuctx, ctx);
1924         event->state = PERF_EVENT_STATE_OFF;
1925 }
1926
1927 /*
1928  * Disable a event.
1929  *
1930  * If event->ctx is a cloned context, callers must make sure that
1931  * every task struct that event->ctx->task could possibly point to
1932  * remains valid.  This condition is satisifed when called through
1933  * perf_event_for_each_child or perf_event_for_each because they
1934  * hold the top-level event's child_mutex, so any descendant that
1935  * goes to exit will block in perf_event_exit_event().
1936  *
1937  * When called from perf_pending_event it's OK because event->ctx
1938  * is the current context on this CPU and preemption is disabled,
1939  * hence we can't get into perf_event_task_sched_out for this context.
1940  */
1941 static void _perf_event_disable(struct perf_event *event)
1942 {
1943         struct perf_event_context *ctx = event->ctx;
1944
1945         raw_spin_lock_irq(&ctx->lock);
1946         if (event->state <= PERF_EVENT_STATE_OFF) {
1947                 raw_spin_unlock_irq(&ctx->lock);
1948                 return;
1949         }
1950         raw_spin_unlock_irq(&ctx->lock);
1951
1952         event_function_call(event, __perf_event_disable, NULL);
1953 }
1954
1955 void perf_event_disable_local(struct perf_event *event)
1956 {
1957         event_function_local(event, __perf_event_disable, NULL);
1958 }
1959
1960 /*
1961  * Strictly speaking kernel users cannot create groups and therefore this
1962  * interface does not need the perf_event_ctx_lock() magic.
1963  */
1964 void perf_event_disable(struct perf_event *event)
1965 {
1966         struct perf_event_context *ctx;
1967
1968         ctx = perf_event_ctx_lock(event);
1969         _perf_event_disable(event);
1970         perf_event_ctx_unlock(event, ctx);
1971 }
1972 EXPORT_SYMBOL_GPL(perf_event_disable);
1973
1974 void perf_event_disable_inatomic(struct perf_event *event)
1975 {
1976         event->pending_disable = 1;
1977         irq_work_queue(&event->pending);
1978 }
1979
1980 static void perf_set_shadow_time(struct perf_event *event,
1981                                  struct perf_event_context *ctx,
1982                                  u64 tstamp)
1983 {
1984         /*
1985          * use the correct time source for the time snapshot
1986          *
1987          * We could get by without this by leveraging the
1988          * fact that to get to this function, the caller
1989          * has most likely already called update_context_time()
1990          * and update_cgrp_time_xx() and thus both timestamp
1991          * are identical (or very close). Given that tstamp is,
1992          * already adjusted for cgroup, we could say that:
1993          *    tstamp - ctx->timestamp
1994          * is equivalent to
1995          *    tstamp - cgrp->timestamp.
1996          *
1997          * Then, in perf_output_read(), the calculation would
1998          * work with no changes because:
1999          * - event is guaranteed scheduled in
2000          * - no scheduled out in between
2001          * - thus the timestamp would be the same
2002          *
2003          * But this is a bit hairy.
2004          *
2005          * So instead, we have an explicit cgroup call to remain
2006          * within the time time source all along. We believe it
2007          * is cleaner and simpler to understand.
2008          */
2009         if (is_cgroup_event(event))
2010                 perf_cgroup_set_shadow_time(event, tstamp);
2011         else
2012                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2013 }
2014
2015 #define MAX_INTERRUPTS (~0ULL)
2016
2017 static void perf_log_throttle(struct perf_event *event, int enable);
2018 static void perf_log_itrace_start(struct perf_event *event);
2019
2020 static int
2021 event_sched_in(struct perf_event *event,
2022                  struct perf_cpu_context *cpuctx,
2023                  struct perf_event_context *ctx)
2024 {
2025         u64 tstamp = perf_event_time(event);
2026         int ret = 0;
2027
2028         lockdep_assert_held(&ctx->lock);
2029
2030         if (event->state <= PERF_EVENT_STATE_OFF)
2031                 return 0;
2032
2033         WRITE_ONCE(event->oncpu, smp_processor_id());
2034         /*
2035          * Order event::oncpu write to happen before the ACTIVE state
2036          * is visible.
2037          */
2038         smp_wmb();
2039         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2040
2041         /*
2042          * Unthrottle events, since we scheduled we might have missed several
2043          * ticks already, also for a heavily scheduling task there is little
2044          * guarantee it'll get a tick in a timely manner.
2045          */
2046         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2047                 perf_log_throttle(event, 1);
2048                 event->hw.interrupts = 0;
2049         }
2050
2051         /*
2052          * The new state must be visible before we turn it on in the hardware:
2053          */
2054         smp_wmb();
2055
2056         perf_pmu_disable(event->pmu);
2057
2058         perf_set_shadow_time(event, ctx, tstamp);
2059
2060         perf_log_itrace_start(event);
2061
2062         if (event->pmu->add(event, PERF_EF_START)) {
2063                 event->state = PERF_EVENT_STATE_INACTIVE;
2064                 event->oncpu = -1;
2065                 ret = -EAGAIN;
2066                 goto out;
2067         }
2068
2069         event->tstamp_running += tstamp - event->tstamp_stopped;
2070
2071         if (!is_software_event(event))
2072                 cpuctx->active_oncpu++;
2073         if (!ctx->nr_active++)
2074                 perf_event_ctx_activate(ctx);
2075         if (event->attr.freq && event->attr.sample_freq)
2076                 ctx->nr_freq++;
2077
2078         if (event->attr.exclusive)
2079                 cpuctx->exclusive = 1;
2080
2081 out:
2082         perf_pmu_enable(event->pmu);
2083
2084         return ret;
2085 }
2086
2087 static int
2088 group_sched_in(struct perf_event *group_event,
2089                struct perf_cpu_context *cpuctx,
2090                struct perf_event_context *ctx)
2091 {
2092         struct perf_event *event, *partial_group = NULL;
2093         struct pmu *pmu = ctx->pmu;
2094         u64 now = ctx->time;
2095         bool simulate = false;
2096
2097         if (group_event->state == PERF_EVENT_STATE_OFF)
2098                 return 0;
2099
2100         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2101
2102         if (event_sched_in(group_event, cpuctx, ctx)) {
2103                 pmu->cancel_txn(pmu);
2104                 perf_mux_hrtimer_restart(cpuctx);
2105                 return -EAGAIN;
2106         }
2107
2108         /*
2109          * Schedule in siblings as one group (if any):
2110          */
2111         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2112                 if (event_sched_in(event, cpuctx, ctx)) {
2113                         partial_group = event;
2114                         goto group_error;
2115                 }
2116         }
2117
2118         if (!pmu->commit_txn(pmu))
2119                 return 0;
2120
2121 group_error:
2122         /*
2123          * Groups can be scheduled in as one unit only, so undo any
2124          * partial group before returning:
2125          * The events up to the failed event are scheduled out normally,
2126          * tstamp_stopped will be updated.
2127          *
2128          * The failed events and the remaining siblings need to have
2129          * their timings updated as if they had gone thru event_sched_in()
2130          * and event_sched_out(). This is required to get consistent timings
2131          * across the group. This also takes care of the case where the group
2132          * could never be scheduled by ensuring tstamp_stopped is set to mark
2133          * the time the event was actually stopped, such that time delta
2134          * calculation in update_event_times() is correct.
2135          */
2136         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137                 if (event == partial_group)
2138                         simulate = true;
2139
2140                 if (simulate) {
2141                         event->tstamp_running += now - event->tstamp_stopped;
2142                         event->tstamp_stopped = now;
2143                 } else {
2144                         event_sched_out(event, cpuctx, ctx);
2145                 }
2146         }
2147         event_sched_out(group_event, cpuctx, ctx);
2148
2149         pmu->cancel_txn(pmu);
2150
2151         perf_mux_hrtimer_restart(cpuctx);
2152
2153         return -EAGAIN;
2154 }
2155
2156 /*
2157  * Work out whether we can put this event group on the CPU now.
2158  */
2159 static int group_can_go_on(struct perf_event *event,
2160                            struct perf_cpu_context *cpuctx,
2161                            int can_add_hw)
2162 {
2163         /*
2164          * Groups consisting entirely of software events can always go on.
2165          */
2166         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2167                 return 1;
2168         /*
2169          * If an exclusive group is already on, no other hardware
2170          * events can go on.
2171          */
2172         if (cpuctx->exclusive)
2173                 return 0;
2174         /*
2175          * If this group is exclusive and there are already
2176          * events on the CPU, it can't go on.
2177          */
2178         if (event->attr.exclusive && cpuctx->active_oncpu)
2179                 return 0;
2180         /*
2181          * Otherwise, try to add it if all previous groups were able
2182          * to go on.
2183          */
2184         return can_add_hw;
2185 }
2186
2187 static void add_event_to_ctx(struct perf_event *event,
2188                                struct perf_event_context *ctx)
2189 {
2190         u64 tstamp = perf_event_time(event);
2191
2192         list_add_event(event, ctx);
2193         perf_group_attach(event);
2194         event->tstamp_enabled = tstamp;
2195         event->tstamp_running = tstamp;
2196         event->tstamp_stopped = tstamp;
2197 }
2198
2199 static void ctx_sched_out(struct perf_event_context *ctx,
2200                           struct perf_cpu_context *cpuctx,
2201                           enum event_type_t event_type);
2202 static void
2203 ctx_sched_in(struct perf_event_context *ctx,
2204              struct perf_cpu_context *cpuctx,
2205              enum event_type_t event_type,
2206              struct task_struct *task);
2207
2208 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2209                                struct perf_event_context *ctx)
2210 {
2211         if (!cpuctx->task_ctx)
2212                 return;
2213
2214         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2215                 return;
2216
2217         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2218 }
2219
2220 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2221                                 struct perf_event_context *ctx,
2222                                 struct task_struct *task)
2223 {
2224         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2225         if (ctx)
2226                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2227         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2228         if (ctx)
2229                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2230 }
2231
2232 static void ctx_resched(struct perf_cpu_context *cpuctx,
2233                         struct perf_event_context *task_ctx)
2234 {
2235         perf_pmu_disable(cpuctx->ctx.pmu);
2236         if (task_ctx)
2237                 task_ctx_sched_out(cpuctx, task_ctx);
2238         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2239         perf_event_sched_in(cpuctx, task_ctx, current);
2240         perf_pmu_enable(cpuctx->ctx.pmu);
2241 }
2242
2243 /*
2244  * Cross CPU call to install and enable a performance event
2245  *
2246  * Very similar to remote_function() + event_function() but cannot assume that
2247  * things like ctx->is_active and cpuctx->task_ctx are set.
2248  */
2249 static int  __perf_install_in_context(void *info)
2250 {
2251         struct perf_event *event = info;
2252         struct perf_event_context *ctx = event->ctx;
2253         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2254         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2255         bool activate = true;
2256         int ret = 0;
2257
2258         raw_spin_lock(&cpuctx->ctx.lock);
2259         if (ctx->task) {
2260                 raw_spin_lock(&ctx->lock);
2261                 task_ctx = ctx;
2262
2263                 /* If we're on the wrong CPU, try again */
2264                 if (task_cpu(ctx->task) != smp_processor_id()) {
2265                         ret = -ESRCH;
2266                         goto unlock;
2267                 }
2268
2269                 /*
2270                  * If we're on the right CPU, see if the task we target is
2271                  * current, if not we don't have to activate the ctx, a future
2272                  * context switch will do that for us.
2273                  */
2274                 if (ctx->task != current)
2275                         activate = false;
2276                 else
2277                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2278
2279         } else if (task_ctx) {
2280                 raw_spin_lock(&task_ctx->lock);
2281         }
2282
2283         if (activate) {
2284                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285                 add_event_to_ctx(event, ctx);
2286                 ctx_resched(cpuctx, task_ctx);
2287         } else {
2288                 add_event_to_ctx(event, ctx);
2289         }
2290
2291 unlock:
2292         perf_ctx_unlock(cpuctx, task_ctx);
2293
2294         return ret;
2295 }
2296
2297 /*
2298  * Attach a performance event to a context.
2299  *
2300  * Very similar to event_function_call, see comment there.
2301  */
2302 static void
2303 perf_install_in_context(struct perf_event_context *ctx,
2304                         struct perf_event *event,
2305                         int cpu)
2306 {
2307         struct task_struct *task = READ_ONCE(ctx->task);
2308
2309         lockdep_assert_held(&ctx->mutex);
2310
2311         if (event->cpu != -1)
2312                 event->cpu = cpu;
2313
2314         /*
2315          * Ensures that if we can observe event->ctx, both the event and ctx
2316          * will be 'complete'. See perf_iterate_sb_cpu().
2317          */
2318         smp_store_release(&event->ctx, ctx);
2319
2320         if (!task) {
2321                 cpu_function_call(cpu, __perf_install_in_context, event);
2322                 return;
2323         }
2324
2325         /*
2326          * Should not happen, we validate the ctx is still alive before calling.
2327          */
2328         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2329                 return;
2330
2331         /*
2332          * Installing events is tricky because we cannot rely on ctx->is_active
2333          * to be set in case this is the nr_events 0 -> 1 transition.
2334          */
2335 again:
2336         /*
2337          * Cannot use task_function_call() because we need to run on the task's
2338          * CPU regardless of whether its current or not.
2339          */
2340         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2341                 return;
2342
2343         raw_spin_lock_irq(&ctx->lock);
2344         task = ctx->task;
2345         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2346                 /*
2347                  * Cannot happen because we already checked above (which also
2348                  * cannot happen), and we hold ctx->mutex, which serializes us
2349                  * against perf_event_exit_task_context().
2350                  */
2351                 raw_spin_unlock_irq(&ctx->lock);
2352                 return;
2353         }
2354         raw_spin_unlock_irq(&ctx->lock);
2355         /*
2356          * Since !ctx->is_active doesn't mean anything, we must IPI
2357          * unconditionally.
2358          */
2359         goto again;
2360 }
2361
2362 /*
2363  * Put a event into inactive state and update time fields.
2364  * Enabling the leader of a group effectively enables all
2365  * the group members that aren't explicitly disabled, so we
2366  * have to update their ->tstamp_enabled also.
2367  * Note: this works for group members as well as group leaders
2368  * since the non-leader members' sibling_lists will be empty.
2369  */
2370 static void __perf_event_mark_enabled(struct perf_event *event)
2371 {
2372         struct perf_event *sub;
2373         u64 tstamp = perf_event_time(event);
2374
2375         event->state = PERF_EVENT_STATE_INACTIVE;
2376         event->tstamp_enabled = tstamp - event->total_time_enabled;
2377         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2378                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2379                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2380         }
2381 }
2382
2383 /*
2384  * Cross CPU call to enable a performance event
2385  */
2386 static void __perf_event_enable(struct perf_event *event,
2387                                 struct perf_cpu_context *cpuctx,
2388                                 struct perf_event_context *ctx,
2389                                 void *info)
2390 {
2391         struct perf_event *leader = event->group_leader;
2392         struct perf_event_context *task_ctx;
2393
2394         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2395             event->state <= PERF_EVENT_STATE_ERROR)
2396                 return;
2397
2398         if (ctx->is_active)
2399                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2400
2401         __perf_event_mark_enabled(event);
2402
2403         if (!ctx->is_active)
2404                 return;
2405
2406         if (!event_filter_match(event)) {
2407                 if (is_cgroup_event(event))
2408                         perf_cgroup_defer_enabled(event);
2409                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2410                 return;
2411         }
2412
2413         /*
2414          * If the event is in a group and isn't the group leader,
2415          * then don't put it on unless the group is on.
2416          */
2417         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2418                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2419                 return;
2420         }
2421
2422         task_ctx = cpuctx->task_ctx;
2423         if (ctx->task)
2424                 WARN_ON_ONCE(task_ctx != ctx);
2425
2426         ctx_resched(cpuctx, task_ctx);
2427 }
2428
2429 /*
2430  * Enable a event.
2431  *
2432  * If event->ctx is a cloned context, callers must make sure that
2433  * every task struct that event->ctx->task could possibly point to
2434  * remains valid.  This condition is satisfied when called through
2435  * perf_event_for_each_child or perf_event_for_each as described
2436  * for perf_event_disable.
2437  */
2438 static void _perf_event_enable(struct perf_event *event)
2439 {
2440         struct perf_event_context *ctx = event->ctx;
2441
2442         raw_spin_lock_irq(&ctx->lock);
2443         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2444             event->state <  PERF_EVENT_STATE_ERROR) {
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 return;
2447         }
2448
2449         /*
2450          * If the event is in error state, clear that first.
2451          *
2452          * That way, if we see the event in error state below, we know that it
2453          * has gone back into error state, as distinct from the task having
2454          * been scheduled away before the cross-call arrived.
2455          */
2456         if (event->state == PERF_EVENT_STATE_ERROR)
2457                 event->state = PERF_EVENT_STATE_OFF;
2458         raw_spin_unlock_irq(&ctx->lock);
2459
2460         event_function_call(event, __perf_event_enable, NULL);
2461 }
2462
2463 /*
2464  * See perf_event_disable();
2465  */
2466 void perf_event_enable(struct perf_event *event)
2467 {
2468         struct perf_event_context *ctx;
2469
2470         ctx = perf_event_ctx_lock(event);
2471         _perf_event_enable(event);
2472         perf_event_ctx_unlock(event, ctx);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_enable);
2475
2476 struct stop_event_data {
2477         struct perf_event       *event;
2478         unsigned int            restart;
2479 };
2480
2481 static int __perf_event_stop(void *info)
2482 {
2483         struct stop_event_data *sd = info;
2484         struct perf_event *event = sd->event;
2485
2486         /* if it's already INACTIVE, do nothing */
2487         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2488                 return 0;
2489
2490         /* matches smp_wmb() in event_sched_in() */
2491         smp_rmb();
2492
2493         /*
2494          * There is a window with interrupts enabled before we get here,
2495          * so we need to check again lest we try to stop another CPU's event.
2496          */
2497         if (READ_ONCE(event->oncpu) != smp_processor_id())
2498                 return -EAGAIN;
2499
2500         event->pmu->stop(event, PERF_EF_UPDATE);
2501
2502         /*
2503          * May race with the actual stop (through perf_pmu_output_stop()),
2504          * but it is only used for events with AUX ring buffer, and such
2505          * events will refuse to restart because of rb::aux_mmap_count==0,
2506          * see comments in perf_aux_output_begin().
2507          *
2508          * Since this is happening on a event-local CPU, no trace is lost
2509          * while restarting.
2510          */
2511         if (sd->restart)
2512                 event->pmu->start(event, 0);
2513
2514         return 0;
2515 }
2516
2517 static int perf_event_stop(struct perf_event *event, int restart)
2518 {
2519         struct stop_event_data sd = {
2520                 .event          = event,
2521                 .restart        = restart,
2522         };
2523         int ret = 0;
2524
2525         do {
2526                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527                         return 0;
2528
2529                 /* matches smp_wmb() in event_sched_in() */
2530                 smp_rmb();
2531
2532                 /*
2533                  * We only want to restart ACTIVE events, so if the event goes
2534                  * inactive here (event->oncpu==-1), there's nothing more to do;
2535                  * fall through with ret==-ENXIO.
2536                  */
2537                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2538                                         __perf_event_stop, &sd);
2539         } while (ret == -EAGAIN);
2540
2541         return ret;
2542 }
2543
2544 /*
2545  * In order to contain the amount of racy and tricky in the address filter
2546  * configuration management, it is a two part process:
2547  *
2548  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2549  *      we update the addresses of corresponding vmas in
2550  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2551  * (p2) when an event is scheduled in (pmu::add), it calls
2552  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2553  *      if the generation has changed since the previous call.
2554  *
2555  * If (p1) happens while the event is active, we restart it to force (p2).
2556  *
2557  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2558  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2559  *     ioctl;
2560  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2561  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2562  *     for reading;
2563  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2564  *     of exec.
2565  */
2566 void perf_event_addr_filters_sync(struct perf_event *event)
2567 {
2568         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2569
2570         if (!has_addr_filter(event))
2571                 return;
2572
2573         raw_spin_lock(&ifh->lock);
2574         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2575                 event->pmu->addr_filters_sync(event);
2576                 event->hw.addr_filters_gen = event->addr_filters_gen;
2577         }
2578         raw_spin_unlock(&ifh->lock);
2579 }
2580 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2581
2582 static int _perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584         /*
2585          * not supported on inherited events
2586          */
2587         if (event->attr.inherit || !is_sampling_event(event))
2588                 return -EINVAL;
2589
2590         atomic_add(refresh, &event->event_limit);
2591         _perf_event_enable(event);
2592
2593         return 0;
2594 }
2595
2596 /*
2597  * See perf_event_disable()
2598  */
2599 int perf_event_refresh(struct perf_event *event, int refresh)
2600 {
2601         struct perf_event_context *ctx;
2602         int ret;
2603
2604         ctx = perf_event_ctx_lock(event);
2605         ret = _perf_event_refresh(event, refresh);
2606         perf_event_ctx_unlock(event, ctx);
2607
2608         return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(perf_event_refresh);
2611
2612 static void ctx_sched_out(struct perf_event_context *ctx,
2613                           struct perf_cpu_context *cpuctx,
2614                           enum event_type_t event_type)
2615 {
2616         int is_active = ctx->is_active;
2617         struct perf_event *event;
2618
2619         lockdep_assert_held(&ctx->lock);
2620
2621         if (likely(!ctx->nr_events)) {
2622                 /*
2623                  * See __perf_remove_from_context().
2624                  */
2625                 WARN_ON_ONCE(ctx->is_active);
2626                 if (ctx->task)
2627                         WARN_ON_ONCE(cpuctx->task_ctx);
2628                 return;
2629         }
2630
2631         ctx->is_active &= ~event_type;
2632         if (!(ctx->is_active & EVENT_ALL))
2633                 ctx->is_active = 0;
2634
2635         if (ctx->task) {
2636                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2637                 if (!ctx->is_active)
2638                         cpuctx->task_ctx = NULL;
2639         }
2640
2641         /*
2642          * Always update time if it was set; not only when it changes.
2643          * Otherwise we can 'forget' to update time for any but the last
2644          * context we sched out. For example:
2645          *
2646          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2647          *   ctx_sched_out(.event_type = EVENT_PINNED)
2648          *
2649          * would only update time for the pinned events.
2650          */
2651         if (is_active & EVENT_TIME) {
2652                 /* update (and stop) ctx time */
2653                 update_context_time(ctx);
2654                 update_cgrp_time_from_cpuctx(cpuctx);
2655         }
2656
2657         is_active ^= ctx->is_active; /* changed bits */
2658
2659         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2660                 return;
2661
2662         perf_pmu_disable(ctx->pmu);
2663         if (is_active & EVENT_PINNED) {
2664                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2665                         group_sched_out(event, cpuctx, ctx);
2666         }
2667
2668         if (is_active & EVENT_FLEXIBLE) {
2669                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2670                         group_sched_out(event, cpuctx, ctx);
2671         }
2672         perf_pmu_enable(ctx->pmu);
2673 }
2674
2675 /*
2676  * Test whether two contexts are equivalent, i.e. whether they have both been
2677  * cloned from the same version of the same context.
2678  *
2679  * Equivalence is measured using a generation number in the context that is
2680  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2681  * and list_del_event().
2682  */
2683 static int context_equiv(struct perf_event_context *ctx1,
2684                          struct perf_event_context *ctx2)
2685 {
2686         lockdep_assert_held(&ctx1->lock);
2687         lockdep_assert_held(&ctx2->lock);
2688
2689         /* Pinning disables the swap optimization */
2690         if (ctx1->pin_count || ctx2->pin_count)
2691                 return 0;
2692
2693         /* If ctx1 is the parent of ctx2 */
2694         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2695                 return 1;
2696
2697         /* If ctx2 is the parent of ctx1 */
2698         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2699                 return 1;
2700
2701         /*
2702          * If ctx1 and ctx2 have the same parent; we flatten the parent
2703          * hierarchy, see perf_event_init_context().
2704          */
2705         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2706                         ctx1->parent_gen == ctx2->parent_gen)
2707                 return 1;
2708
2709         /* Unmatched */
2710         return 0;
2711 }
2712
2713 static void __perf_event_sync_stat(struct perf_event *event,
2714                                      struct perf_event *next_event)
2715 {
2716         u64 value;
2717
2718         if (!event->attr.inherit_stat)
2719                 return;
2720
2721         /*
2722          * Update the event value, we cannot use perf_event_read()
2723          * because we're in the middle of a context switch and have IRQs
2724          * disabled, which upsets smp_call_function_single(), however
2725          * we know the event must be on the current CPU, therefore we
2726          * don't need to use it.
2727          */
2728         switch (event->state) {
2729         case PERF_EVENT_STATE_ACTIVE:
2730                 event->pmu->read(event);
2731                 /* fall-through */
2732
2733         case PERF_EVENT_STATE_INACTIVE:
2734                 update_event_times(event);
2735                 break;
2736
2737         default:
2738                 break;
2739         }
2740
2741         /*
2742          * In order to keep per-task stats reliable we need to flip the event
2743          * values when we flip the contexts.
2744          */
2745         value = local64_read(&next_event->count);
2746         value = local64_xchg(&event->count, value);
2747         local64_set(&next_event->count, value);
2748
2749         swap(event->total_time_enabled, next_event->total_time_enabled);
2750         swap(event->total_time_running, next_event->total_time_running);
2751
2752         /*
2753          * Since we swizzled the values, update the user visible data too.
2754          */
2755         perf_event_update_userpage(event);
2756         perf_event_update_userpage(next_event);
2757 }
2758
2759 static void perf_event_sync_stat(struct perf_event_context *ctx,
2760                                    struct perf_event_context *next_ctx)
2761 {
2762         struct perf_event *event, *next_event;
2763
2764         if (!ctx->nr_stat)
2765                 return;
2766
2767         update_context_time(ctx);
2768
2769         event = list_first_entry(&ctx->event_list,
2770                                    struct perf_event, event_entry);
2771
2772         next_event = list_first_entry(&next_ctx->event_list,
2773                                         struct perf_event, event_entry);
2774
2775         while (&event->event_entry != &ctx->event_list &&
2776                &next_event->event_entry != &next_ctx->event_list) {
2777
2778                 __perf_event_sync_stat(event, next_event);
2779
2780                 event = list_next_entry(event, event_entry);
2781                 next_event = list_next_entry(next_event, event_entry);
2782         }
2783 }
2784
2785 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2786                                          struct task_struct *next)
2787 {
2788         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2789         struct perf_event_context *next_ctx;
2790         struct perf_event_context *parent, *next_parent;
2791         struct perf_cpu_context *cpuctx;
2792         int do_switch = 1;
2793
2794         if (likely(!ctx))
2795                 return;
2796
2797         cpuctx = __get_cpu_context(ctx);
2798         if (!cpuctx->task_ctx)
2799                 return;
2800
2801         rcu_read_lock();
2802         next_ctx = next->perf_event_ctxp[ctxn];
2803         if (!next_ctx)
2804                 goto unlock;
2805
2806         parent = rcu_dereference(ctx->parent_ctx);
2807         next_parent = rcu_dereference(next_ctx->parent_ctx);
2808
2809         /* If neither context have a parent context; they cannot be clones. */
2810         if (!parent && !next_parent)
2811                 goto unlock;
2812
2813         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2814                 /*
2815                  * Looks like the two contexts are clones, so we might be
2816                  * able to optimize the context switch.  We lock both
2817                  * contexts and check that they are clones under the
2818                  * lock (including re-checking that neither has been
2819                  * uncloned in the meantime).  It doesn't matter which
2820                  * order we take the locks because no other cpu could
2821                  * be trying to lock both of these tasks.
2822                  */
2823                 raw_spin_lock(&ctx->lock);
2824                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2825                 if (context_equiv(ctx, next_ctx)) {
2826                         WRITE_ONCE(ctx->task, next);
2827                         WRITE_ONCE(next_ctx->task, task);
2828
2829                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2830
2831                         /*
2832                          * RCU_INIT_POINTER here is safe because we've not
2833                          * modified the ctx and the above modification of
2834                          * ctx->task and ctx->task_ctx_data are immaterial
2835                          * since those values are always verified under
2836                          * ctx->lock which we're now holding.
2837                          */
2838                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2839                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2840
2841                         do_switch = 0;
2842
2843                         perf_event_sync_stat(ctx, next_ctx);
2844                 }
2845                 raw_spin_unlock(&next_ctx->lock);
2846                 raw_spin_unlock(&ctx->lock);
2847         }
2848 unlock:
2849         rcu_read_unlock();
2850
2851         if (do_switch) {
2852                 raw_spin_lock(&ctx->lock);
2853                 task_ctx_sched_out(cpuctx, ctx);
2854                 raw_spin_unlock(&ctx->lock);
2855         }
2856 }
2857
2858 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2859
2860 void perf_sched_cb_dec(struct pmu *pmu)
2861 {
2862         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2863
2864         this_cpu_dec(perf_sched_cb_usages);
2865
2866         if (!--cpuctx->sched_cb_usage)
2867                 list_del(&cpuctx->sched_cb_entry);
2868 }
2869
2870
2871 void perf_sched_cb_inc(struct pmu *pmu)
2872 {
2873         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2874
2875         if (!cpuctx->sched_cb_usage++)
2876                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2877
2878         this_cpu_inc(perf_sched_cb_usages);
2879 }
2880
2881 /*
2882  * This function provides the context switch callback to the lower code
2883  * layer. It is invoked ONLY when the context switch callback is enabled.
2884  *
2885  * This callback is relevant even to per-cpu events; for example multi event
2886  * PEBS requires this to provide PID/TID information. This requires we flush
2887  * all queued PEBS records before we context switch to a new task.
2888  */
2889 static void perf_pmu_sched_task(struct task_struct *prev,
2890                                 struct task_struct *next,
2891                                 bool sched_in)
2892 {
2893         struct perf_cpu_context *cpuctx;
2894         struct pmu *pmu;
2895
2896         if (prev == next)
2897                 return;
2898
2899         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2900                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2901
2902                 if (WARN_ON_ONCE(!pmu->sched_task))
2903                         continue;
2904
2905                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2906                 perf_pmu_disable(pmu);
2907
2908                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2909
2910                 perf_pmu_enable(pmu);
2911                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2912         }
2913 }
2914
2915 static void perf_event_switch(struct task_struct *task,
2916                               struct task_struct *next_prev, bool sched_in);
2917
2918 #define for_each_task_context_nr(ctxn)                                  \
2919         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2920
2921 /*
2922  * Called from scheduler to remove the events of the current task,
2923  * with interrupts disabled.
2924  *
2925  * We stop each event and update the event value in event->count.
2926  *
2927  * This does not protect us against NMI, but disable()
2928  * sets the disabled bit in the control field of event _before_
2929  * accessing the event control register. If a NMI hits, then it will
2930  * not restart the event.
2931  */
2932 void __perf_event_task_sched_out(struct task_struct *task,
2933                                  struct task_struct *next)
2934 {
2935         int ctxn;
2936
2937         if (__this_cpu_read(perf_sched_cb_usages))
2938                 perf_pmu_sched_task(task, next, false);
2939
2940         if (atomic_read(&nr_switch_events))
2941                 perf_event_switch(task, next, false);
2942
2943         for_each_task_context_nr(ctxn)
2944                 perf_event_context_sched_out(task, ctxn, next);
2945
2946         /*
2947          * if cgroup events exist on this CPU, then we need
2948          * to check if we have to switch out PMU state.
2949          * cgroup event are system-wide mode only
2950          */
2951         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2952                 perf_cgroup_sched_out(task, next);
2953 }
2954
2955 /*
2956  * Called with IRQs disabled
2957  */
2958 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2959                               enum event_type_t event_type)
2960 {
2961         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2962 }
2963
2964 static void
2965 ctx_pinned_sched_in(struct perf_event_context *ctx,
2966                     struct perf_cpu_context *cpuctx)
2967 {
2968         struct perf_event *event;
2969
2970         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2971                 if (event->state <= PERF_EVENT_STATE_OFF)
2972                         continue;
2973                 if (!event_filter_match(event))
2974                         continue;
2975
2976                 /* may need to reset tstamp_enabled */
2977                 if (is_cgroup_event(event))
2978                         perf_cgroup_mark_enabled(event, ctx);
2979
2980                 if (group_can_go_on(event, cpuctx, 1))
2981                         group_sched_in(event, cpuctx, ctx);
2982
2983                 /*
2984                  * If this pinned group hasn't been scheduled,
2985                  * put it in error state.
2986                  */
2987                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2988                         update_group_times(event);
2989                         event->state = PERF_EVENT_STATE_ERROR;
2990                 }
2991         }
2992 }
2993
2994 static void
2995 ctx_flexible_sched_in(struct perf_event_context *ctx,
2996                       struct perf_cpu_context *cpuctx)
2997 {
2998         struct perf_event *event;
2999         int can_add_hw = 1;
3000
3001         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3002                 /* Ignore events in OFF or ERROR state */
3003                 if (event->state <= PERF_EVENT_STATE_OFF)
3004                         continue;
3005                 /*
3006                  * Listen to the 'cpu' scheduling filter constraint
3007                  * of events:
3008                  */
3009                 if (!event_filter_match(event))
3010                         continue;
3011
3012                 /* may need to reset tstamp_enabled */
3013                 if (is_cgroup_event(event))
3014                         perf_cgroup_mark_enabled(event, ctx);
3015
3016                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3017                         if (group_sched_in(event, cpuctx, ctx))
3018                                 can_add_hw = 0;
3019                 }
3020         }
3021 }
3022
3023 static void
3024 ctx_sched_in(struct perf_event_context *ctx,
3025              struct perf_cpu_context *cpuctx,
3026              enum event_type_t event_type,
3027              struct task_struct *task)
3028 {
3029         int is_active = ctx->is_active;
3030         u64 now;
3031
3032         lockdep_assert_held(&ctx->lock);
3033
3034         if (likely(!ctx->nr_events))
3035                 return;
3036
3037         ctx->is_active |= (event_type | EVENT_TIME);
3038         if (ctx->task) {
3039                 if (!is_active)
3040                         cpuctx->task_ctx = ctx;
3041                 else
3042                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3043         }
3044
3045         is_active ^= ctx->is_active; /* changed bits */
3046
3047         if (is_active & EVENT_TIME) {
3048                 /* start ctx time */
3049                 now = perf_clock();
3050                 ctx->timestamp = now;
3051                 perf_cgroup_set_timestamp(task, ctx);
3052         }
3053
3054         /*
3055          * First go through the list and put on any pinned groups
3056          * in order to give them the best chance of going on.
3057          */
3058         if (is_active & EVENT_PINNED)
3059                 ctx_pinned_sched_in(ctx, cpuctx);
3060
3061         /* Then walk through the lower prio flexible groups */
3062         if (is_active & EVENT_FLEXIBLE)
3063                 ctx_flexible_sched_in(ctx, cpuctx);
3064 }
3065
3066 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3067                              enum event_type_t event_type,
3068                              struct task_struct *task)
3069 {
3070         struct perf_event_context *ctx = &cpuctx->ctx;
3071
3072         ctx_sched_in(ctx, cpuctx, event_type, task);
3073 }
3074
3075 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3076                                         struct task_struct *task)
3077 {
3078         struct perf_cpu_context *cpuctx;
3079
3080         cpuctx = __get_cpu_context(ctx);
3081         if (cpuctx->task_ctx == ctx)
3082                 return;
3083
3084         perf_ctx_lock(cpuctx, ctx);
3085         perf_pmu_disable(ctx->pmu);
3086         /*
3087          * We want to keep the following priority order:
3088          * cpu pinned (that don't need to move), task pinned,
3089          * cpu flexible, task flexible.
3090          */
3091         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3092         perf_event_sched_in(cpuctx, ctx, task);
3093         perf_pmu_enable(ctx->pmu);
3094         perf_ctx_unlock(cpuctx, ctx);
3095 }
3096
3097 /*
3098  * Called from scheduler to add the events of the current task
3099  * with interrupts disabled.
3100  *
3101  * We restore the event value and then enable it.
3102  *
3103  * This does not protect us against NMI, but enable()
3104  * sets the enabled bit in the control field of event _before_
3105  * accessing the event control register. If a NMI hits, then it will
3106  * keep the event running.
3107  */
3108 void __perf_event_task_sched_in(struct task_struct *prev,
3109                                 struct task_struct *task)
3110 {
3111         struct perf_event_context *ctx;
3112         int ctxn;
3113
3114         /*
3115          * If cgroup events exist on this CPU, then we need to check if we have
3116          * to switch in PMU state; cgroup event are system-wide mode only.
3117          *
3118          * Since cgroup events are CPU events, we must schedule these in before
3119          * we schedule in the task events.
3120          */
3121         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3122                 perf_cgroup_sched_in(prev, task);
3123
3124         for_each_task_context_nr(ctxn) {
3125                 ctx = task->perf_event_ctxp[ctxn];
3126                 if (likely(!ctx))
3127                         continue;
3128
3129                 perf_event_context_sched_in(ctx, task);
3130         }
3131
3132         if (atomic_read(&nr_switch_events))
3133                 perf_event_switch(task, prev, true);
3134
3135         if (__this_cpu_read(perf_sched_cb_usages))
3136                 perf_pmu_sched_task(prev, task, true);
3137 }
3138
3139 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3140 {
3141         u64 frequency = event->attr.sample_freq;
3142         u64 sec = NSEC_PER_SEC;
3143         u64 divisor, dividend;
3144
3145         int count_fls, nsec_fls, frequency_fls, sec_fls;
3146
3147         count_fls = fls64(count);
3148         nsec_fls = fls64(nsec);
3149         frequency_fls = fls64(frequency);
3150         sec_fls = 30;
3151
3152         /*
3153          * We got @count in @nsec, with a target of sample_freq HZ
3154          * the target period becomes:
3155          *
3156          *             @count * 10^9
3157          * period = -------------------
3158          *          @nsec * sample_freq
3159          *
3160          */
3161
3162         /*
3163          * Reduce accuracy by one bit such that @a and @b converge
3164          * to a similar magnitude.
3165          */
3166 #define REDUCE_FLS(a, b)                \
3167 do {                                    \
3168         if (a##_fls > b##_fls) {        \
3169                 a >>= 1;                \
3170                 a##_fls--;              \
3171         } else {                        \
3172                 b >>= 1;                \
3173                 b##_fls--;              \
3174         }                               \
3175 } while (0)
3176
3177         /*
3178          * Reduce accuracy until either term fits in a u64, then proceed with
3179          * the other, so that finally we can do a u64/u64 division.
3180          */
3181         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3182                 REDUCE_FLS(nsec, frequency);
3183                 REDUCE_FLS(sec, count);
3184         }
3185
3186         if (count_fls + sec_fls > 64) {
3187                 divisor = nsec * frequency;
3188
3189                 while (count_fls + sec_fls > 64) {
3190                         REDUCE_FLS(count, sec);
3191                         divisor >>= 1;
3192                 }
3193
3194                 dividend = count * sec;
3195         } else {
3196                 dividend = count * sec;
3197
3198                 while (nsec_fls + frequency_fls > 64) {
3199                         REDUCE_FLS(nsec, frequency);
3200                         dividend >>= 1;
3201                 }
3202
3203                 divisor = nsec * frequency;
3204         }
3205
3206         if (!divisor)
3207                 return dividend;
3208
3209         return div64_u64(dividend, divisor);
3210 }
3211
3212 static DEFINE_PER_CPU(int, perf_throttled_count);
3213 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3214
3215 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3216 {
3217         struct hw_perf_event *hwc = &event->hw;
3218         s64 period, sample_period;
3219         s64 delta;
3220
3221         period = perf_calculate_period(event, nsec, count);
3222
3223         delta = (s64)(period - hwc->sample_period);
3224         delta = (delta + 7) / 8; /* low pass filter */
3225
3226         sample_period = hwc->sample_period + delta;
3227
3228         if (!sample_period)
3229                 sample_period = 1;
3230
3231         hwc->sample_period = sample_period;
3232
3233         if (local64_read(&hwc->period_left) > 8*sample_period) {
3234                 if (disable)
3235                         event->pmu->stop(event, PERF_EF_UPDATE);
3236
3237                 local64_set(&hwc->period_left, 0);
3238
3239                 if (disable)
3240                         event->pmu->start(event, PERF_EF_RELOAD);
3241         }
3242 }
3243
3244 /*
3245  * combine freq adjustment with unthrottling to avoid two passes over the
3246  * events. At the same time, make sure, having freq events does not change
3247  * the rate of unthrottling as that would introduce bias.
3248  */
3249 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3250                                            int needs_unthr)
3251 {
3252         struct perf_event *event;
3253         struct hw_perf_event *hwc;
3254         u64 now, period = TICK_NSEC;
3255         s64 delta;
3256
3257         /*
3258          * only need to iterate over all events iff:
3259          * - context have events in frequency mode (needs freq adjust)
3260          * - there are events to unthrottle on this cpu
3261          */
3262         if (!(ctx->nr_freq || needs_unthr))
3263                 return;
3264
3265         raw_spin_lock(&ctx->lock);
3266         perf_pmu_disable(ctx->pmu);
3267
3268         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3269                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3270                         continue;
3271
3272                 if (!event_filter_match(event))
3273                         continue;
3274
3275                 perf_pmu_disable(event->pmu);
3276
3277                 hwc = &event->hw;
3278
3279                 if (hwc->interrupts == MAX_INTERRUPTS) {
3280                         hwc->interrupts = 0;
3281                         perf_log_throttle(event, 1);
3282                         event->pmu->start(event, 0);
3283                 }
3284
3285                 if (!event->attr.freq || !event->attr.sample_freq)
3286                         goto next;
3287
3288                 /*
3289                  * stop the event and update event->count
3290                  */
3291                 event->pmu->stop(event, PERF_EF_UPDATE);
3292
3293                 now = local64_read(&event->count);
3294                 delta = now - hwc->freq_count_stamp;
3295                 hwc->freq_count_stamp = now;
3296
3297                 /*
3298                  * restart the event
3299                  * reload only if value has changed
3300                  * we have stopped the event so tell that
3301                  * to perf_adjust_period() to avoid stopping it
3302                  * twice.
3303                  */
3304                 if (delta > 0)
3305                         perf_adjust_period(event, period, delta, false);
3306
3307                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3308         next:
3309                 perf_pmu_enable(event->pmu);
3310         }
3311
3312         perf_pmu_enable(ctx->pmu);
3313         raw_spin_unlock(&ctx->lock);
3314 }
3315
3316 /*
3317  * Round-robin a context's events:
3318  */
3319 static void rotate_ctx(struct perf_event_context *ctx)
3320 {
3321         /*
3322          * Rotate the first entry last of non-pinned groups. Rotation might be
3323          * disabled by the inheritance code.
3324          */
3325         if (!ctx->rotate_disable)
3326                 list_rotate_left(&ctx->flexible_groups);
3327 }
3328
3329 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3330 {
3331         struct perf_event_context *ctx = NULL;
3332         int rotate = 0;
3333
3334         if (cpuctx->ctx.nr_events) {
3335                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3336                         rotate = 1;
3337         }
3338
3339         ctx = cpuctx->task_ctx;
3340         if (ctx && ctx->nr_events) {
3341                 if (ctx->nr_events != ctx->nr_active)
3342                         rotate = 1;
3343         }
3344
3345         if (!rotate)
3346                 goto done;
3347
3348         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3349         perf_pmu_disable(cpuctx->ctx.pmu);
3350
3351         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3352         if (ctx)
3353                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3354
3355         rotate_ctx(&cpuctx->ctx);
3356         if (ctx)
3357                 rotate_ctx(ctx);
3358
3359         perf_event_sched_in(cpuctx, ctx, current);
3360
3361         perf_pmu_enable(cpuctx->ctx.pmu);
3362         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3363 done:
3364
3365         return rotate;
3366 }
3367
3368 void perf_event_task_tick(void)
3369 {
3370         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3371         struct perf_event_context *ctx, *tmp;
3372         int throttled;
3373
3374         WARN_ON(!irqs_disabled());
3375
3376         __this_cpu_inc(perf_throttled_seq);
3377         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3378         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3379
3380         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3381                 perf_adjust_freq_unthr_context(ctx, throttled);
3382 }
3383
3384 static int event_enable_on_exec(struct perf_event *event,
3385                                 struct perf_event_context *ctx)
3386 {
3387         if (!event->attr.enable_on_exec)
3388                 return 0;
3389
3390         event->attr.enable_on_exec = 0;
3391         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3392                 return 0;
3393
3394         __perf_event_mark_enabled(event);
3395
3396         return 1;
3397 }
3398
3399 /*
3400  * Enable all of a task's events that have been marked enable-on-exec.
3401  * This expects task == current.
3402  */
3403 static void perf_event_enable_on_exec(int ctxn)
3404 {
3405         struct perf_event_context *ctx, *clone_ctx = NULL;
3406         struct perf_cpu_context *cpuctx;
3407         struct perf_event *event;
3408         unsigned long flags;
3409         int enabled = 0;
3410
3411         local_irq_save(flags);
3412         ctx = current->perf_event_ctxp[ctxn];
3413         if (!ctx || !ctx->nr_events)
3414                 goto out;
3415
3416         cpuctx = __get_cpu_context(ctx);
3417         perf_ctx_lock(cpuctx, ctx);
3418         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3419         list_for_each_entry(event, &ctx->event_list, event_entry)
3420                 enabled |= event_enable_on_exec(event, ctx);
3421
3422         /*
3423          * Unclone and reschedule this context if we enabled any event.
3424          */
3425         if (enabled) {
3426                 clone_ctx = unclone_ctx(ctx);
3427                 ctx_resched(cpuctx, ctx);
3428         }
3429         perf_ctx_unlock(cpuctx, ctx);
3430
3431 out:
3432         local_irq_restore(flags);
3433
3434         if (clone_ctx)
3435                 put_ctx(clone_ctx);
3436 }
3437
3438 struct perf_read_data {
3439         struct perf_event *event;
3440         bool group;
3441         int ret;
3442 };
3443
3444 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3445 {
3446         int event_cpu = event->oncpu;
3447         u16 local_pkg, event_pkg;
3448
3449         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3450                 event_pkg =  topology_physical_package_id(event_cpu);
3451                 local_pkg =  topology_physical_package_id(local_cpu);
3452
3453                 if (event_pkg == local_pkg)
3454                         return local_cpu;
3455         }
3456
3457         return event_cpu;
3458 }
3459
3460 /*
3461  * Cross CPU call to read the hardware event
3462  */
3463 static void __perf_event_read(void *info)
3464 {
3465         struct perf_read_data *data = info;
3466         struct perf_event *sub, *event = data->event;
3467         struct perf_event_context *ctx = event->ctx;
3468         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3469         struct pmu *pmu = event->pmu;
3470
3471         /*
3472          * If this is a task context, we need to check whether it is
3473          * the current task context of this cpu.  If not it has been
3474          * scheduled out before the smp call arrived.  In that case
3475          * event->count would have been updated to a recent sample
3476          * when the event was scheduled out.
3477          */
3478         if (ctx->task && cpuctx->task_ctx != ctx)
3479                 return;
3480
3481         raw_spin_lock(&ctx->lock);
3482         if (ctx->is_active) {
3483                 update_context_time(ctx);
3484                 update_cgrp_time_from_event(event);
3485         }
3486
3487         update_event_times(event);
3488         if (event->state != PERF_EVENT_STATE_ACTIVE)
3489                 goto unlock;
3490
3491         if (!data->group) {
3492                 pmu->read(event);
3493                 data->ret = 0;
3494                 goto unlock;
3495         }
3496
3497         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3498
3499         pmu->read(event);
3500
3501         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3502                 update_event_times(sub);
3503                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3504                         /*
3505                          * Use sibling's PMU rather than @event's since
3506                          * sibling could be on different (eg: software) PMU.
3507                          */
3508                         sub->pmu->read(sub);
3509                 }
3510         }
3511
3512         data->ret = pmu->commit_txn(pmu);
3513
3514 unlock:
3515         raw_spin_unlock(&ctx->lock);
3516 }
3517
3518 static inline u64 perf_event_count(struct perf_event *event)
3519 {
3520         if (event->pmu->count)
3521                 return event->pmu->count(event);
3522
3523         return __perf_event_count(event);
3524 }
3525
3526 /*
3527  * NMI-safe method to read a local event, that is an event that
3528  * is:
3529  *   - either for the current task, or for this CPU
3530  *   - does not have inherit set, for inherited task events
3531  *     will not be local and we cannot read them atomically
3532  *   - must not have a pmu::count method
3533  */
3534 u64 perf_event_read_local(struct perf_event *event)
3535 {
3536         unsigned long flags;
3537         u64 val;
3538
3539         /*
3540          * Disabling interrupts avoids all counter scheduling (context
3541          * switches, timer based rotation and IPIs).
3542          */
3543         local_irq_save(flags);
3544
3545         /* If this is a per-task event, it must be for current */
3546         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3547                      event->hw.target != current);
3548
3549         /* If this is a per-CPU event, it must be for this CPU */
3550         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3551                      event->cpu != smp_processor_id());
3552
3553         /*
3554          * It must not be an event with inherit set, we cannot read
3555          * all child counters from atomic context.
3556          */
3557         WARN_ON_ONCE(event->attr.inherit);
3558
3559         /*
3560          * It must not have a pmu::count method, those are not
3561          * NMI safe.
3562          */
3563         WARN_ON_ONCE(event->pmu->count);
3564
3565         /*
3566          * If the event is currently on this CPU, its either a per-task event,
3567          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3568          * oncpu == -1).
3569          */
3570         if (event->oncpu == smp_processor_id())
3571                 event->pmu->read(event);
3572
3573         val = local64_read(&event->count);
3574         local_irq_restore(flags);
3575
3576         return val;
3577 }
3578
3579 static int perf_event_read(struct perf_event *event, bool group)
3580 {
3581         int ret = 0, cpu_to_read, local_cpu;
3582
3583         /*
3584          * If event is enabled and currently active on a CPU, update the
3585          * value in the event structure:
3586          */
3587         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3588                 struct perf_read_data data = {
3589                         .event = event,
3590                         .group = group,
3591                         .ret = 0,
3592                 };
3593
3594                 local_cpu = get_cpu();
3595                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3596                 put_cpu();
3597
3598                 /*
3599                  * Purposely ignore the smp_call_function_single() return
3600                  * value.
3601                  *
3602                  * If event->oncpu isn't a valid CPU it means the event got
3603                  * scheduled out and that will have updated the event count.
3604                  *
3605                  * Therefore, either way, we'll have an up-to-date event count
3606                  * after this.
3607                  */
3608                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3609                 ret = data.ret;
3610         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3611                 struct perf_event_context *ctx = event->ctx;
3612                 unsigned long flags;
3613
3614                 raw_spin_lock_irqsave(&ctx->lock, flags);
3615                 /*
3616                  * may read while context is not active
3617                  * (e.g., thread is blocked), in that case
3618                  * we cannot update context time
3619                  */
3620                 if (ctx->is_active) {
3621                         update_context_time(ctx);
3622                         update_cgrp_time_from_event(event);
3623                 }
3624                 if (group)
3625                         update_group_times(event);
3626                 else
3627                         update_event_times(event);
3628                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3629         }
3630
3631         return ret;
3632 }
3633
3634 /*
3635  * Initialize the perf_event context in a task_struct:
3636  */
3637 static void __perf_event_init_context(struct perf_event_context *ctx)
3638 {
3639         raw_spin_lock_init(&ctx->lock);
3640         mutex_init(&ctx->mutex);
3641         INIT_LIST_HEAD(&ctx->active_ctx_list);
3642         INIT_LIST_HEAD(&ctx->pinned_groups);
3643         INIT_LIST_HEAD(&ctx->flexible_groups);
3644         INIT_LIST_HEAD(&ctx->event_list);
3645         atomic_set(&ctx->refcount, 1);
3646 }
3647
3648 static struct perf_event_context *
3649 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3650 {
3651         struct perf_event_context *ctx;
3652
3653         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3654         if (!ctx)
3655                 return NULL;
3656
3657         __perf_event_init_context(ctx);
3658         if (task) {
3659                 ctx->task = task;
3660                 get_task_struct(task);
3661         }
3662         ctx->pmu = pmu;
3663
3664         return ctx;
3665 }
3666
3667 static struct task_struct *
3668 find_lively_task_by_vpid(pid_t vpid)
3669 {
3670         struct task_struct *task;
3671
3672         rcu_read_lock();
3673         if (!vpid)
3674                 task = current;
3675         else
3676                 task = find_task_by_vpid(vpid);
3677         if (task)
3678                 get_task_struct(task);
3679         rcu_read_unlock();
3680
3681         if (!task)
3682                 return ERR_PTR(-ESRCH);
3683
3684         return task;
3685 }
3686
3687 /*
3688  * Returns a matching context with refcount and pincount.
3689  */
3690 static struct perf_event_context *
3691 find_get_context(struct pmu *pmu, struct task_struct *task,
3692                 struct perf_event *event)
3693 {
3694         struct perf_event_context *ctx, *clone_ctx = NULL;
3695         struct perf_cpu_context *cpuctx;
3696         void *task_ctx_data = NULL;
3697         unsigned long flags;
3698         int ctxn, err;
3699         int cpu = event->cpu;
3700
3701         if (!task) {
3702                 /* Must be root to operate on a CPU event: */
3703                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3704                         return ERR_PTR(-EACCES);
3705
3706                 /*
3707                  * We could be clever and allow to attach a event to an
3708                  * offline CPU and activate it when the CPU comes up, but
3709                  * that's for later.
3710                  */
3711                 if (!cpu_online(cpu))
3712                         return ERR_PTR(-ENODEV);
3713
3714                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3715                 ctx = &cpuctx->ctx;
3716                 get_ctx(ctx);
3717                 ++ctx->pin_count;
3718
3719                 return ctx;
3720         }
3721
3722         err = -EINVAL;
3723         ctxn = pmu->task_ctx_nr;
3724         if (ctxn < 0)
3725                 goto errout;
3726
3727         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3728                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3729                 if (!task_ctx_data) {
3730                         err = -ENOMEM;
3731                         goto errout;
3732                 }
3733         }
3734
3735 retry:
3736         ctx = perf_lock_task_context(task, ctxn, &flags);
3737         if (ctx) {
3738                 clone_ctx = unclone_ctx(ctx);
3739                 ++ctx->pin_count;
3740
3741                 if (task_ctx_data && !ctx->task_ctx_data) {
3742                         ctx->task_ctx_data = task_ctx_data;
3743                         task_ctx_data = NULL;
3744                 }
3745                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3746
3747                 if (clone_ctx)
3748                         put_ctx(clone_ctx);
3749         } else {
3750                 ctx = alloc_perf_context(pmu, task);
3751                 err = -ENOMEM;
3752                 if (!ctx)
3753                         goto errout;
3754
3755                 if (task_ctx_data) {
3756                         ctx->task_ctx_data = task_ctx_data;
3757                         task_ctx_data = NULL;
3758                 }
3759
3760                 err = 0;
3761                 mutex_lock(&task->perf_event_mutex);
3762                 /*
3763                  * If it has already passed perf_event_exit_task().
3764                  * we must see PF_EXITING, it takes this mutex too.
3765                  */
3766                 if (task->flags & PF_EXITING)
3767                         err = -ESRCH;
3768                 else if (task->perf_event_ctxp[ctxn])
3769                         err = -EAGAIN;
3770                 else {
3771                         get_ctx(ctx);
3772                         ++ctx->pin_count;
3773                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3774                 }
3775                 mutex_unlock(&task->perf_event_mutex);
3776
3777                 if (unlikely(err)) {
3778                         put_ctx(ctx);
3779
3780                         if (err == -EAGAIN)
3781                                 goto retry;
3782                         goto errout;
3783                 }
3784         }
3785
3786         kfree(task_ctx_data);
3787         return ctx;
3788
3789 errout:
3790         kfree(task_ctx_data);
3791         return ERR_PTR(err);
3792 }
3793
3794 static void perf_event_free_filter(struct perf_event *event);
3795 static void perf_event_free_bpf_prog(struct perf_event *event);
3796
3797 static void free_event_rcu(struct rcu_head *head)
3798 {
3799         struct perf_event *event;
3800
3801         event = container_of(head, struct perf_event, rcu_head);
3802         if (event->ns)
3803                 put_pid_ns(event->ns);
3804         perf_event_free_filter(event);
3805         kfree(event);
3806 }
3807
3808 static void ring_buffer_attach(struct perf_event *event,
3809                                struct ring_buffer *rb);
3810
3811 static void detach_sb_event(struct perf_event *event)
3812 {
3813         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3814
3815         raw_spin_lock(&pel->lock);
3816         list_del_rcu(&event->sb_list);
3817         raw_spin_unlock(&pel->lock);
3818 }
3819
3820 static bool is_sb_event(struct perf_event *event)
3821 {
3822         struct perf_event_attr *attr = &event->attr;
3823
3824         if (event->parent)
3825                 return false;
3826
3827         if (event->attach_state & PERF_ATTACH_TASK)
3828                 return false;
3829
3830         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3831             attr->comm || attr->comm_exec ||
3832             attr->task ||
3833             attr->context_switch)
3834                 return true;
3835         return false;
3836 }
3837
3838 static void unaccount_pmu_sb_event(struct perf_event *event)
3839 {
3840         if (is_sb_event(event))
3841                 detach_sb_event(event);
3842 }
3843
3844 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3845 {
3846         if (event->parent)
3847                 return;
3848
3849         if (is_cgroup_event(event))
3850                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3851 }
3852
3853 #ifdef CONFIG_NO_HZ_FULL
3854 static DEFINE_SPINLOCK(nr_freq_lock);
3855 #endif
3856
3857 static void unaccount_freq_event_nohz(void)
3858 {
3859 #ifdef CONFIG_NO_HZ_FULL
3860         spin_lock(&nr_freq_lock);
3861         if (atomic_dec_and_test(&nr_freq_events))
3862                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3863         spin_unlock(&nr_freq_lock);
3864 #endif
3865 }
3866
3867 static void unaccount_freq_event(void)
3868 {
3869         if (tick_nohz_full_enabled())
3870                 unaccount_freq_event_nohz();
3871         else
3872                 atomic_dec(&nr_freq_events);
3873 }
3874
3875 static void unaccount_event(struct perf_event *event)
3876 {
3877         bool dec = false;
3878
3879         if (event->parent)
3880                 return;
3881
3882         if (event->attach_state & PERF_ATTACH_TASK)
3883                 dec = true;
3884         if (event->attr.mmap || event->attr.mmap_data)
3885                 atomic_dec(&nr_mmap_events);
3886         if (event->attr.comm)
3887                 atomic_dec(&nr_comm_events);
3888         if (event->attr.task)
3889                 atomic_dec(&nr_task_events);
3890         if (event->attr.freq)
3891                 unaccount_freq_event();
3892         if (event->attr.context_switch) {
3893                 dec = true;
3894                 atomic_dec(&nr_switch_events);
3895         }
3896         if (is_cgroup_event(event))
3897                 dec = true;
3898         if (has_branch_stack(event))
3899                 dec = true;
3900
3901         if (dec) {
3902                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3903                         schedule_delayed_work(&perf_sched_work, HZ);
3904         }
3905
3906         unaccount_event_cpu(event, event->cpu);
3907
3908         unaccount_pmu_sb_event(event);
3909 }
3910
3911 static void perf_sched_delayed(struct work_struct *work)
3912 {
3913         mutex_lock(&perf_sched_mutex);
3914         if (atomic_dec_and_test(&perf_sched_count))
3915                 static_branch_disable(&perf_sched_events);
3916         mutex_unlock(&perf_sched_mutex);
3917 }
3918
3919 /*
3920  * The following implement mutual exclusion of events on "exclusive" pmus
3921  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3922  * at a time, so we disallow creating events that might conflict, namely:
3923  *
3924  *  1) cpu-wide events in the presence of per-task events,
3925  *  2) per-task events in the presence of cpu-wide events,
3926  *  3) two matching events on the same context.
3927  *
3928  * The former two cases are handled in the allocation path (perf_event_alloc(),
3929  * _free_event()), the latter -- before the first perf_install_in_context().
3930  */
3931 static int exclusive_event_init(struct perf_event *event)
3932 {
3933         struct pmu *pmu = event->pmu;
3934
3935         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3936                 return 0;
3937
3938         /*
3939          * Prevent co-existence of per-task and cpu-wide events on the
3940          * same exclusive pmu.
3941          *
3942          * Negative pmu::exclusive_cnt means there are cpu-wide
3943          * events on this "exclusive" pmu, positive means there are
3944          * per-task events.
3945          *
3946          * Since this is called in perf_event_alloc() path, event::ctx
3947          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3948          * to mean "per-task event", because unlike other attach states it
3949          * never gets cleared.
3950          */
3951         if (event->attach_state & PERF_ATTACH_TASK) {
3952                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3953                         return -EBUSY;
3954         } else {
3955                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3956                         return -EBUSY;
3957         }
3958
3959         return 0;
3960 }
3961
3962 static void exclusive_event_destroy(struct perf_event *event)
3963 {
3964         struct pmu *pmu = event->pmu;
3965
3966         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3967                 return;
3968
3969         /* see comment in exclusive_event_init() */
3970         if (event->attach_state & PERF_ATTACH_TASK)
3971                 atomic_dec(&pmu->exclusive_cnt);
3972         else
3973                 atomic_inc(&pmu->exclusive_cnt);
3974 }
3975
3976 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3977 {
3978         if ((e1->pmu == e2->pmu) &&
3979             (e1->cpu == e2->cpu ||
3980              e1->cpu == -1 ||
3981              e2->cpu == -1))
3982                 return true;
3983         return false;
3984 }
3985
3986 /* Called under the same ctx::mutex as perf_install_in_context() */
3987 static bool exclusive_event_installable(struct perf_event *event,
3988                                         struct perf_event_context *ctx)
3989 {
3990         struct perf_event *iter_event;
3991         struct pmu *pmu = event->pmu;
3992
3993         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3994                 return true;
3995
3996         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3997                 if (exclusive_event_match(iter_event, event))
3998                         return false;
3999         }
4000
4001         return true;
4002 }
4003
4004 static void perf_addr_filters_splice(struct perf_event *event,
4005                                        struct list_head *head);
4006
4007 static void _free_event(struct perf_event *event)
4008 {
4009         irq_work_sync(&event->pending);
4010
4011         unaccount_event(event);
4012
4013         if (event->rb) {
4014                 /*
4015                  * Can happen when we close an event with re-directed output.
4016                  *
4017                  * Since we have a 0 refcount, perf_mmap_close() will skip
4018                  * over us; possibly making our ring_buffer_put() the last.
4019                  */
4020                 mutex_lock(&event->mmap_mutex);
4021                 ring_buffer_attach(event, NULL);
4022                 mutex_unlock(&event->mmap_mutex);
4023         }
4024
4025         if (is_cgroup_event(event))
4026                 perf_detach_cgroup(event);
4027
4028         if (!event->parent) {
4029                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4030                         put_callchain_buffers();
4031         }
4032
4033         perf_event_free_bpf_prog(event);
4034         perf_addr_filters_splice(event, NULL);
4035         kfree(event->addr_filters_offs);
4036
4037         if (event->destroy)
4038                 event->destroy(event);
4039
4040         if (event->ctx)
4041                 put_ctx(event->ctx);
4042
4043         exclusive_event_destroy(event);
4044         module_put(event->pmu->module);
4045
4046         call_rcu(&event->rcu_head, free_event_rcu);
4047 }
4048
4049 /*
4050  * Used to free events which have a known refcount of 1, such as in error paths
4051  * where the event isn't exposed yet and inherited events.
4052  */
4053 static void free_event(struct perf_event *event)
4054 {
4055         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4056                                 "unexpected event refcount: %ld; ptr=%p\n",
4057                                 atomic_long_read(&event->refcount), event)) {
4058                 /* leak to avoid use-after-free */
4059                 return;
4060         }
4061
4062         _free_event(event);
4063 }
4064
4065 /*
4066  * Remove user event from the owner task.
4067  */
4068 static void perf_remove_from_owner(struct perf_event *event)
4069 {
4070         struct task_struct *owner;
4071
4072         rcu_read_lock();
4073         /*
4074          * Matches the smp_store_release() in perf_event_exit_task(). If we
4075          * observe !owner it means the list deletion is complete and we can
4076          * indeed free this event, otherwise we need to serialize on
4077          * owner->perf_event_mutex.
4078          */
4079         owner = lockless_dereference(event->owner);
4080         if (owner) {
4081                 /*
4082                  * Since delayed_put_task_struct() also drops the last
4083                  * task reference we can safely take a new reference
4084                  * while holding the rcu_read_lock().
4085                  */
4086                 get_task_struct(owner);
4087         }
4088         rcu_read_unlock();
4089
4090         if (owner) {
4091                 /*
4092                  * If we're here through perf_event_exit_task() we're already
4093                  * holding ctx->mutex which would be an inversion wrt. the
4094                  * normal lock order.
4095                  *
4096                  * However we can safely take this lock because its the child
4097                  * ctx->mutex.
4098                  */
4099                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4100
4101                 /*
4102                  * We have to re-check the event->owner field, if it is cleared
4103                  * we raced with perf_event_exit_task(), acquiring the mutex
4104                  * ensured they're done, and we can proceed with freeing the
4105                  * event.
4106                  */
4107                 if (event->owner) {
4108                         list_del_init(&event->owner_entry);
4109                         smp_store_release(&event->owner, NULL);
4110                 }
4111                 mutex_unlock(&owner->perf_event_mutex);
4112                 put_task_struct(owner);
4113         }
4114 }
4115
4116 static void put_event(struct perf_event *event)
4117 {
4118         if (!atomic_long_dec_and_test(&event->refcount))
4119                 return;
4120
4121         _free_event(event);
4122 }
4123
4124 /*
4125  * Kill an event dead; while event:refcount will preserve the event
4126  * object, it will not preserve its functionality. Once the last 'user'
4127  * gives up the object, we'll destroy the thing.
4128  */
4129 int perf_event_release_kernel(struct perf_event *event)
4130 {
4131         struct perf_event_context *ctx = event->ctx;
4132         struct perf_event *child, *tmp;
4133
4134         /*
4135          * If we got here through err_file: fput(event_file); we will not have
4136          * attached to a context yet.
4137          */
4138         if (!ctx) {
4139                 WARN_ON_ONCE(event->attach_state &
4140                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4141                 goto no_ctx;
4142         }
4143
4144         if (!is_kernel_event(event))
4145                 perf_remove_from_owner(event);
4146
4147         ctx = perf_event_ctx_lock(event);
4148         WARN_ON_ONCE(ctx->parent_ctx);
4149         perf_remove_from_context(event, DETACH_GROUP);
4150
4151         raw_spin_lock_irq(&ctx->lock);
4152         /*
4153          * Mark this even as STATE_DEAD, there is no external reference to it
4154          * anymore.
4155          *
4156          * Anybody acquiring event->child_mutex after the below loop _must_
4157          * also see this, most importantly inherit_event() which will avoid
4158          * placing more children on the list.
4159          *
4160          * Thus this guarantees that we will in fact observe and kill _ALL_
4161          * child events.
4162          */
4163         event->state = PERF_EVENT_STATE_DEAD;
4164         raw_spin_unlock_irq(&ctx->lock);
4165
4166         perf_event_ctx_unlock(event, ctx);
4167
4168 again:
4169         mutex_lock(&event->child_mutex);
4170         list_for_each_entry(child, &event->child_list, child_list) {
4171
4172                 /*
4173                  * Cannot change, child events are not migrated, see the
4174                  * comment with perf_event_ctx_lock_nested().
4175                  */
4176                 ctx = lockless_dereference(child->ctx);
4177                 /*
4178                  * Since child_mutex nests inside ctx::mutex, we must jump
4179                  * through hoops. We start by grabbing a reference on the ctx.
4180                  *
4181                  * Since the event cannot get freed while we hold the
4182                  * child_mutex, the context must also exist and have a !0
4183                  * reference count.
4184                  */
4185                 get_ctx(ctx);
4186
4187                 /*
4188                  * Now that we have a ctx ref, we can drop child_mutex, and
4189                  * acquire ctx::mutex without fear of it going away. Then we
4190                  * can re-acquire child_mutex.
4191                  */
4192                 mutex_unlock(&event->child_mutex);
4193                 mutex_lock(&ctx->mutex);
4194                 mutex_lock(&event->child_mutex);
4195
4196                 /*
4197                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4198                  * state, if child is still the first entry, it didn't get freed
4199                  * and we can continue doing so.
4200                  */
4201                 tmp = list_first_entry_or_null(&event->child_list,
4202                                                struct perf_event, child_list);
4203                 if (tmp == child) {
4204                         perf_remove_from_context(child, DETACH_GROUP);
4205                         list_del(&child->child_list);
4206                         free_event(child);
4207                         /*
4208                          * This matches the refcount bump in inherit_event();
4209                          * this can't be the last reference.
4210                          */
4211                         put_event(event);
4212                 }
4213
4214                 mutex_unlock(&event->child_mutex);
4215                 mutex_unlock(&ctx->mutex);
4216                 put_ctx(ctx);
4217                 goto again;
4218         }
4219         mutex_unlock(&event->child_mutex);
4220
4221 no_ctx:
4222         put_event(event); /* Must be the 'last' reference */
4223         return 0;
4224 }
4225 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4226
4227 /*
4228  * Called when the last reference to the file is gone.
4229  */
4230 static int perf_release(struct inode *inode, struct file *file)
4231 {
4232         perf_event_release_kernel(file->private_data);
4233         return 0;
4234 }
4235
4236 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4237 {
4238         struct perf_event *child;
4239         u64 total = 0;
4240
4241         *enabled = 0;
4242         *running = 0;
4243
4244         mutex_lock(&event->child_mutex);
4245
4246         (void)perf_event_read(event, false);
4247         total += perf_event_count(event);
4248
4249         *enabled += event->total_time_enabled +
4250                         atomic64_read(&event->child_total_time_enabled);
4251         *running += event->total_time_running +
4252                         atomic64_read(&event->child_total_time_running);
4253
4254         list_for_each_entry(child, &event->child_list, child_list) {
4255                 (void)perf_event_read(child, false);
4256                 total += perf_event_count(child);
4257                 *enabled += child->total_time_enabled;
4258                 *running += child->total_time_running;
4259         }
4260         mutex_unlock(&event->child_mutex);
4261
4262         return total;
4263 }
4264 EXPORT_SYMBOL_GPL(perf_event_read_value);
4265
4266 static int __perf_read_group_add(struct perf_event *leader,
4267                                         u64 read_format, u64 *values)
4268 {
4269         struct perf_event *sub;
4270         int n = 1; /* skip @nr */
4271         int ret;
4272
4273         ret = perf_event_read(leader, true);
4274         if (ret)
4275                 return ret;
4276
4277         /*
4278          * Since we co-schedule groups, {enabled,running} times of siblings
4279          * will be identical to those of the leader, so we only publish one
4280          * set.
4281          */
4282         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4283                 values[n++] += leader->total_time_enabled +
4284                         atomic64_read(&leader->child_total_time_enabled);
4285         }
4286
4287         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4288                 values[n++] += leader->total_time_running +
4289                         atomic64_read(&leader->child_total_time_running);
4290         }
4291
4292         /*
4293          * Write {count,id} tuples for every sibling.
4294          */
4295         values[n++] += perf_event_count(leader);
4296         if (read_format & PERF_FORMAT_ID)
4297                 values[n++] = primary_event_id(leader);
4298
4299         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4300                 values[n++] += perf_event_count(sub);
4301                 if (read_format & PERF_FORMAT_ID)
4302                         values[n++] = primary_event_id(sub);
4303         }
4304
4305         return 0;
4306 }
4307
4308 static int perf_read_group(struct perf_event *event,
4309                                    u64 read_format, char __user *buf)
4310 {
4311         struct perf_event *leader = event->group_leader, *child;
4312         struct perf_event_context *ctx = leader->ctx;
4313         int ret;
4314         u64 *values;
4315
4316         lockdep_assert_held(&ctx->mutex);
4317
4318         values = kzalloc(event->read_size, GFP_KERNEL);
4319         if (!values)
4320                 return -ENOMEM;
4321
4322         values[0] = 1 + leader->nr_siblings;
4323
4324         /*
4325          * By locking the child_mutex of the leader we effectively
4326          * lock the child list of all siblings.. XXX explain how.
4327          */
4328         mutex_lock(&leader->child_mutex);
4329
4330         ret = __perf_read_group_add(leader, read_format, values);
4331         if (ret)
4332                 goto unlock;
4333
4334         list_for_each_entry(child, &leader->child_list, child_list) {
4335                 ret = __perf_read_group_add(child, read_format, values);
4336                 if (ret)
4337                         goto unlock;
4338         }
4339
4340         mutex_unlock(&leader->child_mutex);
4341
4342         ret = event->read_size;
4343         if (copy_to_user(buf, values, event->read_size))
4344                 ret = -EFAULT;
4345         goto out;
4346
4347 unlock:
4348         mutex_unlock(&leader->child_mutex);
4349 out:
4350         kfree(values);
4351         return ret;
4352 }
4353
4354 static int perf_read_one(struct perf_event *event,
4355                                  u64 read_format, char __user *buf)
4356 {
4357         u64 enabled, running;
4358         u64 values[4];
4359         int n = 0;
4360
4361         values[n++] = perf_event_read_value(event, &enabled, &running);
4362         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4363                 values[n++] = enabled;
4364         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4365                 values[n++] = running;
4366         if (read_format & PERF_FORMAT_ID)
4367                 values[n++] = primary_event_id(event);
4368
4369         if (copy_to_user(buf, values, n * sizeof(u64)))
4370                 return -EFAULT;
4371
4372         return n * sizeof(u64);
4373 }
4374
4375 static bool is_event_hup(struct perf_event *event)
4376 {
4377         bool no_children;
4378
4379         if (event->state > PERF_EVENT_STATE_EXIT)
4380                 return false;
4381
4382         mutex_lock(&event->child_mutex);
4383         no_children = list_empty(&event->child_list);
4384         mutex_unlock(&event->child_mutex);
4385         return no_children;
4386 }
4387
4388 /*
4389  * Read the performance event - simple non blocking version for now
4390  */
4391 static ssize_t
4392 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4393 {
4394         u64 read_format = event->attr.read_format;
4395         int ret;
4396
4397         /*
4398          * Return end-of-file for a read on a event that is in
4399          * error state (i.e. because it was pinned but it couldn't be
4400          * scheduled on to the CPU at some point).
4401          */
4402         if (event->state == PERF_EVENT_STATE_ERROR)
4403                 return 0;
4404
4405         if (count < event->read_size)
4406                 return -ENOSPC;
4407
4408         WARN_ON_ONCE(event->ctx->parent_ctx);
4409         if (read_format & PERF_FORMAT_GROUP)
4410                 ret = perf_read_group(event, read_format, buf);
4411         else
4412                 ret = perf_read_one(event, read_format, buf);
4413
4414         return ret;
4415 }
4416
4417 static ssize_t
4418 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4419 {
4420         struct perf_event *event = file->private_data;
4421         struct perf_event_context *ctx;
4422         int ret;
4423
4424         ctx = perf_event_ctx_lock(event);
4425         ret = __perf_read(event, buf, count);
4426         perf_event_ctx_unlock(event, ctx);
4427
4428         return ret;
4429 }
4430
4431 static unsigned int perf_poll(struct file *file, poll_table *wait)
4432 {
4433         struct perf_event *event = file->private_data;
4434         struct ring_buffer *rb;
4435         unsigned int events = POLLHUP;
4436
4437         poll_wait(file, &event->waitq, wait);
4438
4439         if (is_event_hup(event))
4440                 return events;
4441
4442         /*
4443          * Pin the event->rb by taking event->mmap_mutex; otherwise
4444          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4445          */
4446         mutex_lock(&event->mmap_mutex);
4447         rb = event->rb;
4448         if (rb)
4449                 events = atomic_xchg(&rb->poll, 0);
4450         mutex_unlock(&event->mmap_mutex);
4451         return events;
4452 }
4453
4454 static void _perf_event_reset(struct perf_event *event)
4455 {
4456         (void)perf_event_read(event, false);
4457         local64_set(&event->count, 0);
4458         perf_event_update_userpage(event);
4459 }
4460
4461 /*
4462  * Holding the top-level event's child_mutex means that any
4463  * descendant process that has inherited this event will block
4464  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4465  * task existence requirements of perf_event_enable/disable.
4466  */
4467 static void perf_event_for_each_child(struct perf_event *event,
4468                                         void (*func)(struct perf_event *))
4469 {
4470         struct perf_event *child;
4471
4472         WARN_ON_ONCE(event->ctx->parent_ctx);
4473
4474         mutex_lock(&event->child_mutex);
4475         func(event);
4476         list_for_each_entry(child, &event->child_list, child_list)
4477                 func(child);
4478         mutex_unlock(&event->child_mutex);
4479 }
4480
4481 static void perf_event_for_each(struct perf_event *event,
4482                                   void (*func)(struct perf_event *))
4483 {
4484         struct perf_event_context *ctx = event->ctx;
4485         struct perf_event *sibling;
4486
4487         lockdep_assert_held(&ctx->mutex);
4488
4489         event = event->group_leader;
4490
4491         perf_event_for_each_child(event, func);
4492         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4493                 perf_event_for_each_child(sibling, func);
4494 }
4495
4496 static void __perf_event_period(struct perf_event *event,
4497                                 struct perf_cpu_context *cpuctx,
4498                                 struct perf_event_context *ctx,
4499                                 void *info)
4500 {
4501         u64 value = *((u64 *)info);
4502         bool active;
4503
4504         if (event->attr.freq) {
4505                 event->attr.sample_freq = value;
4506         } else {
4507                 event->attr.sample_period = value;
4508                 event->hw.sample_period = value;
4509         }
4510
4511         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4512         if (active) {
4513                 perf_pmu_disable(ctx->pmu);
4514                 /*
4515                  * We could be throttled; unthrottle now to avoid the tick
4516                  * trying to unthrottle while we already re-started the event.
4517                  */
4518                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4519                         event->hw.interrupts = 0;
4520                         perf_log_throttle(event, 1);
4521                 }
4522                 event->pmu->stop(event, PERF_EF_UPDATE);
4523         }
4524
4525         local64_set(&event->hw.period_left, 0);
4526
4527         if (active) {
4528                 event->pmu->start(event, PERF_EF_RELOAD);
4529                 perf_pmu_enable(ctx->pmu);
4530         }
4531 }
4532
4533 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4534 {
4535         u64 value;
4536
4537         if (!is_sampling_event(event))
4538                 return -EINVAL;
4539
4540         if (copy_from_user(&value, arg, sizeof(value)))
4541                 return -EFAULT;
4542
4543         if (!value)
4544                 return -EINVAL;
4545
4546         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4547                 return -EINVAL;
4548
4549         event_function_call(event, __perf_event_period, &value);
4550
4551         return 0;
4552 }
4553
4554 static const struct file_operations perf_fops;
4555
4556 static inline int perf_fget_light(int fd, struct fd *p)
4557 {
4558         struct fd f = fdget(fd);
4559         if (!f.file)
4560                 return -EBADF;
4561
4562         if (f.file->f_op != &perf_fops) {
4563                 fdput(f);
4564                 return -EBADF;
4565         }
4566         *p = f;
4567         return 0;
4568 }
4569
4570 static int perf_event_set_output(struct perf_event *event,
4571                                  struct perf_event *output_event);
4572 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4573 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4574
4575 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4576 {
4577         void (*func)(struct perf_event *);
4578         u32 flags = arg;
4579
4580         switch (cmd) {
4581         case PERF_EVENT_IOC_ENABLE:
4582                 func = _perf_event_enable;
4583                 break;
4584         case PERF_EVENT_IOC_DISABLE:
4585                 func = _perf_event_disable;
4586                 break;
4587         case PERF_EVENT_IOC_RESET:
4588                 func = _perf_event_reset;
4589                 break;
4590
4591         case PERF_EVENT_IOC_REFRESH:
4592                 return _perf_event_refresh(event, arg);
4593
4594         case PERF_EVENT_IOC_PERIOD:
4595                 return perf_event_period(event, (u64 __user *)arg);
4596
4597         case PERF_EVENT_IOC_ID:
4598         {
4599                 u64 id = primary_event_id(event);
4600
4601                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4602                         return -EFAULT;
4603                 return 0;
4604         }
4605
4606         case PERF_EVENT_IOC_SET_OUTPUT:
4607         {
4608                 int ret;
4609                 if (arg != -1) {
4610                         struct perf_event *output_event;
4611                         struct fd output;
4612                         ret = perf_fget_light(arg, &output);
4613                         if (ret)
4614                                 return ret;
4615                         output_event = output.file->private_data;
4616                         ret = perf_event_set_output(event, output_event);
4617                         fdput(output);
4618                 } else {
4619                         ret = perf_event_set_output(event, NULL);
4620                 }
4621                 return ret;
4622         }
4623
4624         case PERF_EVENT_IOC_SET_FILTER:
4625                 return perf_event_set_filter(event, (void __user *)arg);
4626
4627         case PERF_EVENT_IOC_SET_BPF:
4628                 return perf_event_set_bpf_prog(event, arg);
4629
4630         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4631                 struct ring_buffer *rb;
4632
4633                 rcu_read_lock();
4634                 rb = rcu_dereference(event->rb);
4635                 if (!rb || !rb->nr_pages) {
4636                         rcu_read_unlock();
4637                         return -EINVAL;
4638                 }
4639                 rb_toggle_paused(rb, !!arg);
4640                 rcu_read_unlock();
4641                 return 0;
4642         }
4643         default:
4644                 return -ENOTTY;
4645         }
4646
4647         if (flags & PERF_IOC_FLAG_GROUP)
4648                 perf_event_for_each(event, func);
4649         else
4650                 perf_event_for_each_child(event, func);
4651
4652         return 0;
4653 }
4654
4655 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4656 {
4657         struct perf_event *event = file->private_data;
4658         struct perf_event_context *ctx;
4659         long ret;
4660
4661         ctx = perf_event_ctx_lock(event);
4662         ret = _perf_ioctl(event, cmd, arg);
4663         perf_event_ctx_unlock(event, ctx);
4664
4665         return ret;
4666 }
4667
4668 #ifdef CONFIG_COMPAT
4669 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4670                                 unsigned long arg)
4671 {
4672         switch (_IOC_NR(cmd)) {
4673         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4674         case _IOC_NR(PERF_EVENT_IOC_ID):
4675                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4676                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4677                         cmd &= ~IOCSIZE_MASK;
4678                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4679                 }
4680                 break;
4681         }
4682         return perf_ioctl(file, cmd, arg);
4683 }
4684 #else
4685 # define perf_compat_ioctl NULL
4686 #endif
4687
4688 int perf_event_task_enable(void)
4689 {
4690         struct perf_event_context *ctx;
4691         struct perf_event *event;
4692
4693         mutex_lock(&current->perf_event_mutex);
4694         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4695                 ctx = perf_event_ctx_lock(event);
4696                 perf_event_for_each_child(event, _perf_event_enable);
4697                 perf_event_ctx_unlock(event, ctx);
4698         }
4699         mutex_unlock(&current->perf_event_mutex);
4700
4701         return 0;
4702 }
4703
4704 int perf_event_task_disable(void)
4705 {
4706         struct perf_event_context *ctx;
4707         struct perf_event *event;
4708
4709         mutex_lock(&current->perf_event_mutex);
4710         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4711                 ctx = perf_event_ctx_lock(event);
4712                 perf_event_for_each_child(event, _perf_event_disable);
4713                 perf_event_ctx_unlock(event, ctx);
4714         }
4715         mutex_unlock(&current->perf_event_mutex);
4716
4717         return 0;
4718 }
4719
4720 static int perf_event_index(struct perf_event *event)
4721 {
4722         if (event->hw.state & PERF_HES_STOPPED)
4723                 return 0;
4724
4725         if (event->state != PERF_EVENT_STATE_ACTIVE)
4726                 return 0;
4727
4728         return event->pmu->event_idx(event);
4729 }
4730
4731 static void calc_timer_values(struct perf_event *event,
4732                                 u64 *now,
4733                                 u64 *enabled,
4734                                 u64 *running)
4735 {
4736         u64 ctx_time;
4737
4738         *now = perf_clock();
4739         ctx_time = event->shadow_ctx_time + *now;
4740         *enabled = ctx_time - event->tstamp_enabled;
4741         *running = ctx_time - event->tstamp_running;
4742 }
4743
4744 static void perf_event_init_userpage(struct perf_event *event)
4745 {
4746         struct perf_event_mmap_page *userpg;
4747         struct ring_buffer *rb;
4748
4749         rcu_read_lock();
4750         rb = rcu_dereference(event->rb);
4751         if (!rb)
4752                 goto unlock;
4753
4754         userpg = rb->user_page;
4755
4756         /* Allow new userspace to detect that bit 0 is deprecated */
4757         userpg->cap_bit0_is_deprecated = 1;
4758         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4759         userpg->data_offset = PAGE_SIZE;
4760         userpg->data_size = perf_data_size(rb);
4761
4762 unlock:
4763         rcu_read_unlock();
4764 }
4765
4766 void __weak arch_perf_update_userpage(
4767         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4768 {
4769 }
4770
4771 /*
4772  * Callers need to ensure there can be no nesting of this function, otherwise
4773  * the seqlock logic goes bad. We can not serialize this because the arch
4774  * code calls this from NMI context.
4775  */
4776 void perf_event_update_userpage(struct perf_event *event)
4777 {
4778         struct perf_event_mmap_page *userpg;
4779         struct ring_buffer *rb;
4780         u64 enabled, running, now;
4781
4782         rcu_read_lock();
4783         rb = rcu_dereference(event->rb);
4784         if (!rb)
4785                 goto unlock;
4786
4787         /*
4788          * compute total_time_enabled, total_time_running
4789          * based on snapshot values taken when the event
4790          * was last scheduled in.
4791          *
4792          * we cannot simply called update_context_time()
4793          * because of locking issue as we can be called in
4794          * NMI context
4795          */
4796         calc_timer_values(event, &now, &enabled, &running);
4797
4798         userpg = rb->user_page;
4799         /*
4800          * Disable preemption so as to not let the corresponding user-space
4801          * spin too long if we get preempted.
4802          */
4803         preempt_disable();
4804         ++userpg->lock;
4805         barrier();
4806         userpg->index = perf_event_index(event);
4807         userpg->offset = perf_event_count(event);
4808         if (userpg->index)
4809                 userpg->offset -= local64_read(&event->hw.prev_count);
4810
4811         userpg->time_enabled = enabled +
4812                         atomic64_read(&event->child_total_time_enabled);
4813
4814         userpg->time_running = running +
4815                         atomic64_read(&event->child_total_time_running);
4816
4817         arch_perf_update_userpage(event, userpg, now);
4818
4819         barrier();
4820         ++userpg->lock;
4821         preempt_enable();
4822 unlock:
4823         rcu_read_unlock();
4824 }
4825
4826 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4827 {
4828         struct perf_event *event = vma->vm_file->private_data;
4829         struct ring_buffer *rb;
4830         int ret = VM_FAULT_SIGBUS;
4831
4832         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4833                 if (vmf->pgoff == 0)
4834                         ret = 0;
4835                 return ret;
4836         }
4837
4838         rcu_read_lock();
4839         rb = rcu_dereference(event->rb);
4840         if (!rb)
4841                 goto unlock;
4842
4843         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4844                 goto unlock;
4845
4846         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4847         if (!vmf->page)
4848                 goto unlock;
4849
4850         get_page(vmf->page);
4851         vmf->page->mapping = vma->vm_file->f_mapping;
4852         vmf->page->index   = vmf->pgoff;
4853
4854         ret = 0;
4855 unlock:
4856         rcu_read_unlock();
4857
4858         return ret;
4859 }
4860
4861 static void ring_buffer_attach(struct perf_event *event,
4862                                struct ring_buffer *rb)
4863 {
4864         struct ring_buffer *old_rb = NULL;
4865         unsigned long flags;
4866
4867         if (event->rb) {
4868                 /*
4869                  * Should be impossible, we set this when removing
4870                  * event->rb_entry and wait/clear when adding event->rb_entry.
4871                  */
4872                 WARN_ON_ONCE(event->rcu_pending);
4873
4874                 old_rb = event->rb;
4875                 spin_lock_irqsave(&old_rb->event_lock, flags);
4876                 list_del_rcu(&event->rb_entry);
4877                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4878
4879                 event->rcu_batches = get_state_synchronize_rcu();
4880                 event->rcu_pending = 1;
4881         }
4882
4883         if (rb) {
4884                 if (event->rcu_pending) {
4885                         cond_synchronize_rcu(event->rcu_batches);
4886                         event->rcu_pending = 0;
4887                 }
4888
4889                 spin_lock_irqsave(&rb->event_lock, flags);
4890                 list_add_rcu(&event->rb_entry, &rb->event_list);
4891                 spin_unlock_irqrestore(&rb->event_lock, flags);
4892         }
4893
4894         /*
4895          * Avoid racing with perf_mmap_close(AUX): stop the event
4896          * before swizzling the event::rb pointer; if it's getting
4897          * unmapped, its aux_mmap_count will be 0 and it won't
4898          * restart. See the comment in __perf_pmu_output_stop().
4899          *
4900          * Data will inevitably be lost when set_output is done in
4901          * mid-air, but then again, whoever does it like this is
4902          * not in for the data anyway.
4903          */
4904         if (has_aux(event))
4905                 perf_event_stop(event, 0);
4906
4907         rcu_assign_pointer(event->rb, rb);
4908
4909         if (old_rb) {
4910                 ring_buffer_put(old_rb);
4911                 /*
4912                  * Since we detached before setting the new rb, so that we
4913                  * could attach the new rb, we could have missed a wakeup.
4914                  * Provide it now.
4915                  */
4916                 wake_up_all(&event->waitq);
4917         }
4918 }
4919
4920 static void ring_buffer_wakeup(struct perf_event *event)
4921 {
4922         struct ring_buffer *rb;
4923
4924         rcu_read_lock();
4925         rb = rcu_dereference(event->rb);
4926         if (rb) {
4927                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4928                         wake_up_all(&event->waitq);
4929         }
4930         rcu_read_unlock();
4931 }
4932
4933 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4934 {
4935         struct ring_buffer *rb;
4936
4937         rcu_read_lock();
4938         rb = rcu_dereference(event->rb);
4939         if (rb) {
4940                 if (!atomic_inc_not_zero(&rb->refcount))
4941                         rb = NULL;
4942         }
4943         rcu_read_unlock();
4944
4945         return rb;
4946 }
4947
4948 void ring_buffer_put(struct ring_buffer *rb)
4949 {
4950         if (!atomic_dec_and_test(&rb->refcount))
4951                 return;
4952
4953         WARN_ON_ONCE(!list_empty(&rb->event_list));
4954
4955         call_rcu(&rb->rcu_head, rb_free_rcu);
4956 }
4957
4958 static void perf_mmap_open(struct vm_area_struct *vma)
4959 {
4960         struct perf_event *event = vma->vm_file->private_data;
4961
4962         atomic_inc(&event->mmap_count);
4963         atomic_inc(&event->rb->mmap_count);
4964
4965         if (vma->vm_pgoff)
4966                 atomic_inc(&event->rb->aux_mmap_count);
4967
4968         if (event->pmu->event_mapped)
4969                 event->pmu->event_mapped(event);
4970 }
4971
4972 static void perf_pmu_output_stop(struct perf_event *event);
4973
4974 /*
4975  * A buffer can be mmap()ed multiple times; either directly through the same
4976  * event, or through other events by use of perf_event_set_output().
4977  *
4978  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4979  * the buffer here, where we still have a VM context. This means we need
4980  * to detach all events redirecting to us.
4981  */
4982 static void perf_mmap_close(struct vm_area_struct *vma)
4983 {
4984         struct perf_event *event = vma->vm_file->private_data;
4985
4986         struct ring_buffer *rb = ring_buffer_get(event);
4987         struct user_struct *mmap_user = rb->mmap_user;
4988         int mmap_locked = rb->mmap_locked;
4989         unsigned long size = perf_data_size(rb);
4990
4991         if (event->pmu->event_unmapped)
4992                 event->pmu->event_unmapped(event);
4993
4994         /*
4995          * rb->aux_mmap_count will always drop before rb->mmap_count and
4996          * event->mmap_count, so it is ok to use event->mmap_mutex to
4997          * serialize with perf_mmap here.
4998          */
4999         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5000             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5001                 /*
5002                  * Stop all AUX events that are writing to this buffer,
5003                  * so that we can free its AUX pages and corresponding PMU
5004                  * data. Note that after rb::aux_mmap_count dropped to zero,
5005                  * they won't start any more (see perf_aux_output_begin()).
5006                  */
5007                 perf_pmu_output_stop(event);
5008
5009                 /* now it's safe to free the pages */
5010                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5011                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5012
5013                 /* this has to be the last one */
5014                 rb_free_aux(rb);
5015                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5016
5017                 mutex_unlock(&event->mmap_mutex);
5018         }
5019
5020         atomic_dec(&rb->mmap_count);
5021
5022         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5023                 goto out_put;
5024
5025         ring_buffer_attach(event, NULL);
5026         mutex_unlock(&event->mmap_mutex);
5027
5028         /* If there's still other mmap()s of this buffer, we're done. */
5029         if (atomic_read(&rb->mmap_count))
5030                 goto out_put;
5031
5032         /*
5033          * No other mmap()s, detach from all other events that might redirect
5034          * into the now unreachable buffer. Somewhat complicated by the
5035          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5036          */
5037 again:
5038         rcu_read_lock();
5039         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5040                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5041                         /*
5042                          * This event is en-route to free_event() which will
5043                          * detach it and remove it from the list.
5044                          */
5045                         continue;
5046                 }
5047                 rcu_read_unlock();
5048
5049                 mutex_lock(&event->mmap_mutex);
5050                 /*
5051                  * Check we didn't race with perf_event_set_output() which can
5052                  * swizzle the rb from under us while we were waiting to
5053                  * acquire mmap_mutex.
5054                  *
5055                  * If we find a different rb; ignore this event, a next
5056                  * iteration will no longer find it on the list. We have to
5057                  * still restart the iteration to make sure we're not now
5058                  * iterating the wrong list.
5059                  */
5060                 if (event->rb == rb)
5061                         ring_buffer_attach(event, NULL);
5062
5063                 mutex_unlock(&event->mmap_mutex);
5064                 put_event(event);
5065
5066                 /*
5067                  * Restart the iteration; either we're on the wrong list or
5068                  * destroyed its integrity by doing a deletion.
5069                  */
5070                 goto again;
5071         }
5072         rcu_read_unlock();
5073
5074         /*
5075          * It could be there's still a few 0-ref events on the list; they'll
5076          * get cleaned up by free_event() -- they'll also still have their
5077          * ref on the rb and will free it whenever they are done with it.
5078          *
5079          * Aside from that, this buffer is 'fully' detached and unmapped,
5080          * undo the VM accounting.
5081          */
5082
5083         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5084         vma->vm_mm->pinned_vm -= mmap_locked;
5085         free_uid(mmap_user);
5086
5087 out_put:
5088         ring_buffer_put(rb); /* could be last */
5089 }
5090
5091 static const struct vm_operations_struct perf_mmap_vmops = {
5092         .open           = perf_mmap_open,
5093         .close          = perf_mmap_close, /* non mergable */
5094         .fault          = perf_mmap_fault,
5095         .page_mkwrite   = perf_mmap_fault,
5096 };
5097
5098 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5099 {
5100         struct perf_event *event = file->private_data;
5101         unsigned long user_locked, user_lock_limit;
5102         struct user_struct *user = current_user();
5103         unsigned long locked, lock_limit;
5104         struct ring_buffer *rb = NULL;
5105         unsigned long vma_size;
5106         unsigned long nr_pages;
5107         long user_extra = 0, extra = 0;
5108         int ret = 0, flags = 0;
5109
5110         /*
5111          * Don't allow mmap() of inherited per-task counters. This would
5112          * create a performance issue due to all children writing to the
5113          * same rb.
5114          */
5115         if (event->cpu == -1 && event->attr.inherit)
5116                 return -EINVAL;
5117
5118         if (!(vma->vm_flags & VM_SHARED))
5119                 return -EINVAL;
5120
5121         vma_size = vma->vm_end - vma->vm_start;
5122
5123         if (vma->vm_pgoff == 0) {
5124                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5125         } else {
5126                 /*
5127                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5128                  * mapped, all subsequent mappings should have the same size
5129                  * and offset. Must be above the normal perf buffer.
5130                  */
5131                 u64 aux_offset, aux_size;
5132
5133                 if (!event->rb)
5134                         return -EINVAL;
5135
5136                 nr_pages = vma_size / PAGE_SIZE;
5137
5138                 mutex_lock(&event->mmap_mutex);
5139                 ret = -EINVAL;
5140
5141                 rb = event->rb;
5142                 if (!rb)
5143                         goto aux_unlock;
5144
5145                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5146                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5147
5148                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5149                         goto aux_unlock;
5150
5151                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5152                         goto aux_unlock;
5153
5154                 /* already mapped with a different offset */
5155                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5156                         goto aux_unlock;
5157
5158                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5159                         goto aux_unlock;
5160
5161                 /* already mapped with a different size */
5162                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5163                         goto aux_unlock;
5164
5165                 if (!is_power_of_2(nr_pages))
5166                         goto aux_unlock;
5167
5168                 if (!atomic_inc_not_zero(&rb->mmap_count))
5169                         goto aux_unlock;
5170
5171                 if (rb_has_aux(rb)) {
5172                         atomic_inc(&rb->aux_mmap_count);
5173                         ret = 0;
5174                         goto unlock;
5175                 }
5176
5177                 atomic_set(&rb->aux_mmap_count, 1);
5178                 user_extra = nr_pages;
5179
5180                 goto accounting;
5181         }
5182
5183         /*
5184          * If we have rb pages ensure they're a power-of-two number, so we
5185          * can do bitmasks instead of modulo.
5186          */
5187         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5188                 return -EINVAL;
5189
5190         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5191                 return -EINVAL;
5192
5193         WARN_ON_ONCE(event->ctx->parent_ctx);
5194 again:
5195         mutex_lock(&event->mmap_mutex);
5196         if (event->rb) {
5197                 if (event->rb->nr_pages != nr_pages) {
5198                         ret = -EINVAL;
5199                         goto unlock;
5200                 }
5201
5202                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5203                         /*
5204                          * Raced against perf_mmap_close() through
5205                          * perf_event_set_output(). Try again, hope for better
5206                          * luck.
5207                          */
5208                         mutex_unlock(&event->mmap_mutex);
5209                         goto again;
5210                 }
5211
5212                 goto unlock;
5213         }
5214
5215         user_extra = nr_pages + 1;
5216
5217 accounting:
5218         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5219
5220         /*
5221          * Increase the limit linearly with more CPUs:
5222          */
5223         user_lock_limit *= num_online_cpus();
5224
5225         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5226
5227         if (user_locked > user_lock_limit)
5228                 extra = user_locked - user_lock_limit;
5229
5230         lock_limit = rlimit(RLIMIT_MEMLOCK);
5231         lock_limit >>= PAGE_SHIFT;
5232         locked = vma->vm_mm->pinned_vm + extra;
5233
5234         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5235                 !capable(CAP_IPC_LOCK)) {
5236                 ret = -EPERM;
5237                 goto unlock;
5238         }
5239
5240         WARN_ON(!rb && event->rb);
5241
5242         if (vma->vm_flags & VM_WRITE)
5243                 flags |= RING_BUFFER_WRITABLE;
5244
5245         if (!rb) {
5246                 rb = rb_alloc(nr_pages,
5247                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5248                               event->cpu, flags);
5249
5250                 if (!rb) {
5251                         ret = -ENOMEM;
5252                         goto unlock;
5253                 }
5254
5255                 atomic_set(&rb->mmap_count, 1);
5256                 rb->mmap_user = get_current_user();
5257                 rb->mmap_locked = extra;
5258
5259                 ring_buffer_attach(event, rb);
5260
5261                 perf_event_init_userpage(event);
5262                 perf_event_update_userpage(event);
5263         } else {
5264                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5265                                    event->attr.aux_watermark, flags);
5266                 if (!ret)
5267                         rb->aux_mmap_locked = extra;
5268         }
5269
5270 unlock:
5271         if (!ret) {
5272                 atomic_long_add(user_extra, &user->locked_vm);
5273                 vma->vm_mm->pinned_vm += extra;
5274
5275                 atomic_inc(&event->mmap_count);
5276         } else if (rb) {
5277                 atomic_dec(&rb->mmap_count);
5278         }
5279 aux_unlock:
5280         mutex_unlock(&event->mmap_mutex);
5281
5282         /*
5283          * Since pinned accounting is per vm we cannot allow fork() to copy our
5284          * vma.
5285          */
5286         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5287         vma->vm_ops = &perf_mmap_vmops;
5288
5289         if (event->pmu->event_mapped)
5290                 event->pmu->event_mapped(event);
5291
5292         return ret;
5293 }
5294
5295 static int perf_fasync(int fd, struct file *filp, int on)
5296 {
5297         struct inode *inode = file_inode(filp);
5298         struct perf_event *event = filp->private_data;
5299         int retval;
5300
5301         inode_lock(inode);
5302         retval = fasync_helper(fd, filp, on, &event->fasync);
5303         inode_unlock(inode);
5304
5305         if (retval < 0)
5306                 return retval;
5307
5308         return 0;
5309 }
5310
5311 static const struct file_operations perf_fops = {
5312         .llseek                 = no_llseek,
5313         .release                = perf_release,
5314         .read                   = perf_read,
5315         .poll                   = perf_poll,
5316         .unlocked_ioctl         = perf_ioctl,
5317         .compat_ioctl           = perf_compat_ioctl,
5318         .mmap                   = perf_mmap,
5319         .fasync                 = perf_fasync,
5320 };
5321
5322 /*
5323  * Perf event wakeup
5324  *
5325  * If there's data, ensure we set the poll() state and publish everything
5326  * to user-space before waking everybody up.
5327  */
5328
5329 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5330 {
5331         /* only the parent has fasync state */
5332         if (event->parent)
5333                 event = event->parent;
5334         return &event->fasync;
5335 }
5336
5337 void perf_event_wakeup(struct perf_event *event)
5338 {
5339         ring_buffer_wakeup(event);
5340
5341         if (event->pending_kill) {
5342                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5343                 event->pending_kill = 0;
5344         }
5345 }
5346
5347 static void perf_pending_event(struct irq_work *entry)
5348 {
5349         struct perf_event *event = container_of(entry,
5350                         struct perf_event, pending);
5351         int rctx;
5352
5353         rctx = perf_swevent_get_recursion_context();
5354         /*
5355          * If we 'fail' here, that's OK, it means recursion is already disabled
5356          * and we won't recurse 'further'.
5357          */
5358
5359         if (event->pending_disable) {
5360                 event->pending_disable = 0;
5361                 perf_event_disable_local(event);
5362         }
5363
5364         if (event->pending_wakeup) {
5365                 event->pending_wakeup = 0;
5366                 perf_event_wakeup(event);
5367         }
5368
5369         if (rctx >= 0)
5370                 perf_swevent_put_recursion_context(rctx);
5371 }
5372
5373 /*
5374  * We assume there is only KVM supporting the callbacks.
5375  * Later on, we might change it to a list if there is
5376  * another virtualization implementation supporting the callbacks.
5377  */
5378 struct perf_guest_info_callbacks *perf_guest_cbs;
5379
5380 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5381 {
5382         perf_guest_cbs = cbs;
5383         return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5386
5387 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5388 {
5389         perf_guest_cbs = NULL;
5390         return 0;
5391 }
5392 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5393
5394 static void
5395 perf_output_sample_regs(struct perf_output_handle *handle,
5396                         struct pt_regs *regs, u64 mask)
5397 {
5398         int bit;
5399         DECLARE_BITMAP(_mask, 64);
5400
5401         bitmap_from_u64(_mask, mask);
5402         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5403                 u64 val;
5404
5405                 val = perf_reg_value(regs, bit);
5406                 perf_output_put(handle, val);
5407         }
5408 }
5409
5410 static void perf_sample_regs_user(struct perf_regs *regs_user,
5411                                   struct pt_regs *regs,
5412                                   struct pt_regs *regs_user_copy)
5413 {
5414         if (user_mode(regs)) {
5415                 regs_user->abi = perf_reg_abi(current);
5416                 regs_user->regs = regs;
5417         } else if (current->mm) {
5418                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5419         } else {
5420                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5421                 regs_user->regs = NULL;
5422         }
5423 }
5424
5425 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5426                                   struct pt_regs *regs)
5427 {
5428         regs_intr->regs = regs;
5429         regs_intr->abi  = perf_reg_abi(current);
5430 }
5431
5432
5433 /*
5434  * Get remaining task size from user stack pointer.
5435  *
5436  * It'd be better to take stack vma map and limit this more
5437  * precisly, but there's no way to get it safely under interrupt,
5438  * so using TASK_SIZE as limit.
5439  */
5440 static u64 perf_ustack_task_size(struct pt_regs *regs)
5441 {
5442         unsigned long addr = perf_user_stack_pointer(regs);
5443
5444         if (!addr || addr >= TASK_SIZE)
5445                 return 0;
5446
5447         return TASK_SIZE - addr;
5448 }
5449
5450 static u16
5451 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5452                         struct pt_regs *regs)
5453 {
5454         u64 task_size;
5455
5456         /* No regs, no stack pointer, no dump. */
5457         if (!regs)
5458                 return 0;
5459
5460         /*
5461          * Check if we fit in with the requested stack size into the:
5462          * - TASK_SIZE
5463          *   If we don't, we limit the size to the TASK_SIZE.
5464          *
5465          * - remaining sample size
5466          *   If we don't, we customize the stack size to
5467          *   fit in to the remaining sample size.
5468          */
5469
5470         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5471         stack_size = min(stack_size, (u16) task_size);
5472
5473         /* Current header size plus static size and dynamic size. */
5474         header_size += 2 * sizeof(u64);
5475
5476         /* Do we fit in with the current stack dump size? */
5477         if ((u16) (header_size + stack_size) < header_size) {
5478                 /*
5479                  * If we overflow the maximum size for the sample,
5480                  * we customize the stack dump size to fit in.
5481                  */
5482                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5483                 stack_size = round_up(stack_size, sizeof(u64));
5484         }
5485
5486         return stack_size;
5487 }
5488
5489 static void
5490 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5491                           struct pt_regs *regs)
5492 {
5493         /* Case of a kernel thread, nothing to dump */
5494         if (!regs) {
5495                 u64 size = 0;
5496                 perf_output_put(handle, size);
5497         } else {
5498                 unsigned long sp;
5499                 unsigned int rem;
5500                 u64 dyn_size;
5501
5502                 /*
5503                  * We dump:
5504                  * static size
5505                  *   - the size requested by user or the best one we can fit
5506                  *     in to the sample max size
5507                  * data
5508                  *   - user stack dump data
5509                  * dynamic size
5510                  *   - the actual dumped size
5511                  */
5512
5513                 /* Static size. */
5514                 perf_output_put(handle, dump_size);
5515
5516                 /* Data. */
5517                 sp = perf_user_stack_pointer(regs);
5518                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5519                 dyn_size = dump_size - rem;
5520
5521                 perf_output_skip(handle, rem);
5522
5523                 /* Dynamic size. */
5524                 perf_output_put(handle, dyn_size);
5525         }
5526 }
5527
5528 static void __perf_event_header__init_id(struct perf_event_header *header,
5529                                          struct perf_sample_data *data,
5530                                          struct perf_event *event)
5531 {
5532         u64 sample_type = event->attr.sample_type;
5533
5534         data->type = sample_type;
5535         header->size += event->id_header_size;
5536
5537         if (sample_type & PERF_SAMPLE_TID) {
5538                 /* namespace issues */
5539                 data->tid_entry.pid = perf_event_pid(event, current);
5540                 data->tid_entry.tid = perf_event_tid(event, current);
5541         }
5542
5543         if (sample_type & PERF_SAMPLE_TIME)
5544                 data->time = perf_event_clock(event);
5545
5546         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5547                 data->id = primary_event_id(event);
5548
5549         if (sample_type & PERF_SAMPLE_STREAM_ID)
5550                 data->stream_id = event->id;
5551
5552         if (sample_type & PERF_SAMPLE_CPU) {
5553                 data->cpu_entry.cpu      = raw_smp_processor_id();
5554                 data->cpu_entry.reserved = 0;
5555         }
5556 }
5557
5558 void perf_event_header__init_id(struct perf_event_header *header,
5559                                 struct perf_sample_data *data,
5560                                 struct perf_event *event)
5561 {
5562         if (event->attr.sample_id_all)
5563                 __perf_event_header__init_id(header, data, event);
5564 }
5565
5566 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5567                                            struct perf_sample_data *data)
5568 {
5569         u64 sample_type = data->type;
5570
5571         if (sample_type & PERF_SAMPLE_TID)
5572                 perf_output_put(handle, data->tid_entry);
5573
5574         if (sample_type & PERF_SAMPLE_TIME)
5575                 perf_output_put(handle, data->time);
5576
5577         if (sample_type & PERF_SAMPLE_ID)
5578                 perf_output_put(handle, data->id);
5579
5580         if (sample_type & PERF_SAMPLE_STREAM_ID)
5581                 perf_output_put(handle, data->stream_id);
5582
5583         if (sample_type & PERF_SAMPLE_CPU)
5584                 perf_output_put(handle, data->cpu_entry);
5585
5586         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5587                 perf_output_put(handle, data->id);
5588 }
5589
5590 void perf_event__output_id_sample(struct perf_event *event,
5591                                   struct perf_output_handle *handle,
5592                                   struct perf_sample_data *sample)
5593 {
5594         if (event->attr.sample_id_all)
5595                 __perf_event__output_id_sample(handle, sample);
5596 }
5597
5598 static void perf_output_read_one(struct perf_output_handle *handle,
5599                                  struct perf_event *event,
5600                                  u64 enabled, u64 running)
5601 {
5602         u64 read_format = event->attr.read_format;
5603         u64 values[4];
5604         int n = 0;
5605
5606         values[n++] = perf_event_count(event);
5607         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5608                 values[n++] = enabled +
5609                         atomic64_read(&event->child_total_time_enabled);
5610         }
5611         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5612                 values[n++] = running +
5613                         atomic64_read(&event->child_total_time_running);
5614         }
5615         if (read_format & PERF_FORMAT_ID)
5616                 values[n++] = primary_event_id(event);
5617
5618         __output_copy(handle, values, n * sizeof(u64));
5619 }
5620
5621 /*
5622  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5623  */
5624 static void perf_output_read_group(struct perf_output_handle *handle,
5625                             struct perf_event *event,
5626                             u64 enabled, u64 running)
5627 {
5628         struct perf_event *leader = event->group_leader, *sub;
5629         u64 read_format = event->attr.read_format;
5630         u64 values[5];
5631         int n = 0;
5632
5633         values[n++] = 1 + leader->nr_siblings;
5634
5635         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5636                 values[n++] = enabled;
5637
5638         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639                 values[n++] = running;
5640
5641         if (leader != event)
5642                 leader->pmu->read(leader);
5643
5644         values[n++] = perf_event_count(leader);
5645         if (read_format & PERF_FORMAT_ID)
5646                 values[n++] = primary_event_id(leader);
5647
5648         __output_copy(handle, values, n * sizeof(u64));
5649
5650         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5651                 n = 0;
5652
5653                 if ((sub != event) &&
5654                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5655                         sub->pmu->read(sub);
5656
5657                 values[n++] = perf_event_count(sub);
5658                 if (read_format & PERF_FORMAT_ID)
5659                         values[n++] = primary_event_id(sub);
5660
5661                 __output_copy(handle, values, n * sizeof(u64));
5662         }
5663 }
5664
5665 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5666                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5667
5668 static void perf_output_read(struct perf_output_handle *handle,
5669                              struct perf_event *event)
5670 {
5671         u64 enabled = 0, running = 0, now;
5672         u64 read_format = event->attr.read_format;
5673
5674         /*
5675          * compute total_time_enabled, total_time_running
5676          * based on snapshot values taken when the event
5677          * was last scheduled in.
5678          *
5679          * we cannot simply called update_context_time()
5680          * because of locking issue as we are called in
5681          * NMI context
5682          */
5683         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5684                 calc_timer_values(event, &now, &enabled, &running);
5685
5686         if (event->attr.read_format & PERF_FORMAT_GROUP)
5687                 perf_output_read_group(handle, event, enabled, running);
5688         else
5689                 perf_output_read_one(handle, event, enabled, running);
5690 }
5691
5692 void perf_output_sample(struct perf_output_handle *handle,
5693                         struct perf_event_header *header,
5694                         struct perf_sample_data *data,
5695                         struct perf_event *event)
5696 {
5697         u64 sample_type = data->type;
5698
5699         perf_output_put(handle, *header);
5700
5701         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5702                 perf_output_put(handle, data->id);
5703
5704         if (sample_type & PERF_SAMPLE_IP)
5705                 perf_output_put(handle, data->ip);
5706
5707         if (sample_type & PERF_SAMPLE_TID)
5708                 perf_output_put(handle, data->tid_entry);
5709
5710         if (sample_type & PERF_SAMPLE_TIME)
5711                 perf_output_put(handle, data->time);
5712
5713         if (sample_type & PERF_SAMPLE_ADDR)
5714                 perf_output_put(handle, data->addr);
5715
5716         if (sample_type & PERF_SAMPLE_ID)
5717                 perf_output_put(handle, data->id);
5718
5719         if (sample_type & PERF_SAMPLE_STREAM_ID)
5720                 perf_output_put(handle, data->stream_id);
5721
5722         if (sample_type & PERF_SAMPLE_CPU)
5723                 perf_output_put(handle, data->cpu_entry);
5724
5725         if (sample_type & PERF_SAMPLE_PERIOD)
5726                 perf_output_put(handle, data->period);
5727
5728         if (sample_type & PERF_SAMPLE_READ)
5729                 perf_output_read(handle, event);
5730
5731         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5732                 if (data->callchain) {
5733                         int size = 1;
5734
5735                         if (data->callchain)
5736                                 size += data->callchain->nr;
5737
5738                         size *= sizeof(u64);
5739
5740                         __output_copy(handle, data->callchain, size);
5741                 } else {
5742                         u64 nr = 0;
5743                         perf_output_put(handle, nr);
5744                 }
5745         }
5746
5747         if (sample_type & PERF_SAMPLE_RAW) {
5748                 struct perf_raw_record *raw = data->raw;
5749
5750                 if (raw) {
5751                         struct perf_raw_frag *frag = &raw->frag;
5752
5753                         perf_output_put(handle, raw->size);
5754                         do {
5755                                 if (frag->copy) {
5756                                         __output_custom(handle, frag->copy,
5757                                                         frag->data, frag->size);
5758                                 } else {
5759                                         __output_copy(handle, frag->data,
5760                                                       frag->size);
5761                                 }
5762                                 if (perf_raw_frag_last(frag))
5763                                         break;
5764                                 frag = frag->next;
5765                         } while (1);
5766                         if (frag->pad)
5767                                 __output_skip(handle, NULL, frag->pad);
5768                 } else {
5769                         struct {
5770                                 u32     size;
5771                                 u32     data;
5772                         } raw = {
5773                                 .size = sizeof(u32),
5774                                 .data = 0,
5775                         };
5776                         perf_output_put(handle, raw);
5777                 }
5778         }
5779
5780         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5781                 if (data->br_stack) {
5782                         size_t size;
5783
5784                         size = data->br_stack->nr
5785                              * sizeof(struct perf_branch_entry);
5786
5787                         perf_output_put(handle, data->br_stack->nr);
5788                         perf_output_copy(handle, data->br_stack->entries, size);
5789                 } else {
5790                         /*
5791                          * we always store at least the value of nr
5792                          */
5793                         u64 nr = 0;
5794                         perf_output_put(handle, nr);
5795                 }
5796         }
5797
5798         if (sample_type & PERF_SAMPLE_REGS_USER) {
5799                 u64 abi = data->regs_user.abi;
5800
5801                 /*
5802                  * If there are no regs to dump, notice it through
5803                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5804                  */
5805                 perf_output_put(handle, abi);
5806
5807                 if (abi) {
5808                         u64 mask = event->attr.sample_regs_user;
5809                         perf_output_sample_regs(handle,
5810                                                 data->regs_user.regs,
5811                                                 mask);
5812                 }
5813         }
5814
5815         if (sample_type & PERF_SAMPLE_STACK_USER) {
5816                 perf_output_sample_ustack(handle,
5817                                           data->stack_user_size,
5818                                           data->regs_user.regs);
5819         }
5820
5821         if (sample_type & PERF_SAMPLE_WEIGHT)
5822                 perf_output_put(handle, data->weight);
5823
5824         if (sample_type & PERF_SAMPLE_DATA_SRC)
5825                 perf_output_put(handle, data->data_src.val);
5826
5827         if (sample_type & PERF_SAMPLE_TRANSACTION)
5828                 perf_output_put(handle, data->txn);
5829
5830         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5831                 u64 abi = data->regs_intr.abi;
5832                 /*
5833                  * If there are no regs to dump, notice it through
5834                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5835                  */
5836                 perf_output_put(handle, abi);
5837
5838                 if (abi) {
5839                         u64 mask = event->attr.sample_regs_intr;
5840
5841                         perf_output_sample_regs(handle,
5842                                                 data->regs_intr.regs,
5843                                                 mask);
5844                 }
5845         }
5846
5847         if (!event->attr.watermark) {
5848                 int wakeup_events = event->attr.wakeup_events;
5849
5850                 if (wakeup_events) {
5851                         struct ring_buffer *rb = handle->rb;
5852                         int events = local_inc_return(&rb->events);
5853
5854                         if (events >= wakeup_events) {
5855                                 local_sub(wakeup_events, &rb->events);
5856                                 local_inc(&rb->wakeup);
5857                         }
5858                 }
5859         }
5860 }
5861
5862 void perf_prepare_sample(struct perf_event_header *header,
5863                          struct perf_sample_data *data,
5864                          struct perf_event *event,
5865                          struct pt_regs *regs)
5866 {
5867         u64 sample_type = event->attr.sample_type;
5868
5869         header->type = PERF_RECORD_SAMPLE;
5870         header->size = sizeof(*header) + event->header_size;
5871
5872         header->misc = 0;
5873         header->misc |= perf_misc_flags(regs);
5874
5875         __perf_event_header__init_id(header, data, event);
5876
5877         if (sample_type & PERF_SAMPLE_IP)
5878                 data->ip = perf_instruction_pointer(regs);
5879
5880         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5881                 int size = 1;
5882
5883                 data->callchain = perf_callchain(event, regs);
5884
5885                 if (data->callchain)
5886                         size += data->callchain->nr;
5887
5888                 header->size += size * sizeof(u64);
5889         }
5890
5891         if (sample_type & PERF_SAMPLE_RAW) {
5892                 struct perf_raw_record *raw = data->raw;
5893                 int size;
5894
5895                 if (raw) {
5896                         struct perf_raw_frag *frag = &raw->frag;
5897                         u32 sum = 0;
5898
5899                         do {
5900                                 sum += frag->size;
5901                                 if (perf_raw_frag_last(frag))
5902                                         break;
5903                                 frag = frag->next;
5904                         } while (1);
5905
5906                         size = round_up(sum + sizeof(u32), sizeof(u64));
5907                         raw->size = size - sizeof(u32);
5908                         frag->pad = raw->size - sum;
5909                 } else {
5910                         size = sizeof(u64);
5911                 }
5912
5913                 header->size += size;
5914         }
5915
5916         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5917                 int size = sizeof(u64); /* nr */
5918                 if (data->br_stack) {
5919                         size += data->br_stack->nr
5920                               * sizeof(struct perf_branch_entry);
5921                 }
5922                 header->size += size;
5923         }
5924
5925         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5926                 perf_sample_regs_user(&data->regs_user, regs,
5927                                       &data->regs_user_copy);
5928
5929         if (sample_type & PERF_SAMPLE_REGS_USER) {
5930                 /* regs dump ABI info */
5931                 int size = sizeof(u64);
5932
5933                 if (data->regs_user.regs) {
5934                         u64 mask = event->attr.sample_regs_user;
5935                         size += hweight64(mask) * sizeof(u64);
5936                 }
5937
5938                 header->size += size;
5939         }
5940
5941         if (sample_type & PERF_SAMPLE_STACK_USER) {
5942                 /*
5943                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5944                  * processed as the last one or have additional check added
5945                  * in case new sample type is added, because we could eat
5946                  * up the rest of the sample size.
5947                  */
5948                 u16 stack_size = event->attr.sample_stack_user;
5949                 u16 size = sizeof(u64);
5950
5951                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5952                                                      data->regs_user.regs);
5953
5954                 /*
5955                  * If there is something to dump, add space for the dump
5956                  * itself and for the field that tells the dynamic size,
5957                  * which is how many have been actually dumped.
5958                  */
5959                 if (stack_size)
5960                         size += sizeof(u64) + stack_size;
5961
5962                 data->stack_user_size = stack_size;
5963                 header->size += size;
5964         }
5965
5966         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5967                 /* regs dump ABI info */
5968                 int size = sizeof(u64);
5969
5970                 perf_sample_regs_intr(&data->regs_intr, regs);
5971
5972                 if (data->regs_intr.regs) {
5973                         u64 mask = event->attr.sample_regs_intr;
5974
5975                         size += hweight64(mask) * sizeof(u64);
5976                 }
5977
5978                 header->size += size;
5979         }
5980 }
5981
5982 static void __always_inline
5983 __perf_event_output(struct perf_event *event,
5984                     struct perf_sample_data *data,
5985                     struct pt_regs *regs,
5986                     int (*output_begin)(struct perf_output_handle *,
5987                                         struct perf_event *,
5988                                         unsigned int))
5989 {
5990         struct perf_output_handle handle;
5991         struct perf_event_header header;
5992
5993         /* protect the callchain buffers */
5994         rcu_read_lock();
5995
5996         perf_prepare_sample(&header, data, event, regs);
5997
5998         if (output_begin(&handle, event, header.size))
5999                 goto exit;
6000
6001         perf_output_sample(&handle, &header, data, event);
6002
6003         perf_output_end(&handle);
6004
6005 exit:
6006         rcu_read_unlock();
6007 }
6008
6009 void
6010 perf_event_output_forward(struct perf_event *event,
6011                          struct perf_sample_data *data,
6012                          struct pt_regs *regs)
6013 {
6014         __perf_event_output(event, data, regs, perf_output_begin_forward);
6015 }
6016
6017 void
6018 perf_event_output_backward(struct perf_event *event,
6019                            struct perf_sample_data *data,
6020                            struct pt_regs *regs)
6021 {
6022         __perf_event_output(event, data, regs, perf_output_begin_backward);
6023 }
6024
6025 void
6026 perf_event_output(struct perf_event *event,
6027                   struct perf_sample_data *data,
6028                   struct pt_regs *regs)
6029 {
6030         __perf_event_output(event, data, regs, perf_output_begin);
6031 }
6032
6033 /*
6034  * read event_id
6035  */
6036
6037 struct perf_read_event {
6038         struct perf_event_header        header;
6039
6040         u32                             pid;
6041         u32                             tid;
6042 };
6043
6044 static void
6045 perf_event_read_event(struct perf_event *event,
6046                         struct task_struct *task)
6047 {
6048         struct perf_output_handle handle;
6049         struct perf_sample_data sample;
6050         struct perf_read_event read_event = {
6051                 .header = {
6052                         .type = PERF_RECORD_READ,
6053                         .misc = 0,
6054                         .size = sizeof(read_event) + event->read_size,
6055                 },
6056                 .pid = perf_event_pid(event, task),
6057                 .tid = perf_event_tid(event, task),
6058         };
6059         int ret;
6060
6061         perf_event_header__init_id(&read_event.header, &sample, event);
6062         ret = perf_output_begin(&handle, event, read_event.header.size);
6063         if (ret)
6064                 return;
6065
6066         perf_output_put(&handle, read_event);
6067         perf_output_read(&handle, event);
6068         perf_event__output_id_sample(event, &handle, &sample);
6069
6070         perf_output_end(&handle);
6071 }
6072
6073 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6074
6075 static void
6076 perf_iterate_ctx(struct perf_event_context *ctx,
6077                    perf_iterate_f output,
6078                    void *data, bool all)
6079 {
6080         struct perf_event *event;
6081
6082         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6083                 if (!all) {
6084                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6085                                 continue;
6086                         if (!event_filter_match(event))
6087                                 continue;
6088                 }
6089
6090                 output(event, data);
6091         }
6092 }
6093
6094 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6095 {
6096         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6097         struct perf_event *event;
6098
6099         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6100                 /*
6101                  * Skip events that are not fully formed yet; ensure that
6102                  * if we observe event->ctx, both event and ctx will be
6103                  * complete enough. See perf_install_in_context().
6104                  */
6105                 if (!smp_load_acquire(&event->ctx))
6106                         continue;
6107
6108                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6109                         continue;
6110                 if (!event_filter_match(event))
6111                         continue;
6112                 output(event, data);
6113         }
6114 }
6115
6116 /*
6117  * Iterate all events that need to receive side-band events.
6118  *
6119  * For new callers; ensure that account_pmu_sb_event() includes
6120  * your event, otherwise it might not get delivered.
6121  */
6122 static void
6123 perf_iterate_sb(perf_iterate_f output, void *data,
6124                struct perf_event_context *task_ctx)
6125 {
6126         struct perf_event_context *ctx;
6127         int ctxn;
6128
6129         rcu_read_lock();
6130         preempt_disable();
6131
6132         /*
6133          * If we have task_ctx != NULL we only notify the task context itself.
6134          * The task_ctx is set only for EXIT events before releasing task
6135          * context.
6136          */
6137         if (task_ctx) {
6138                 perf_iterate_ctx(task_ctx, output, data, false);
6139                 goto done;
6140         }
6141
6142         perf_iterate_sb_cpu(output, data);
6143
6144         for_each_task_context_nr(ctxn) {
6145                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6146                 if (ctx)
6147                         perf_iterate_ctx(ctx, output, data, false);
6148         }
6149 done:
6150         preempt_enable();
6151         rcu_read_unlock();
6152 }
6153
6154 /*
6155  * Clear all file-based filters at exec, they'll have to be
6156  * re-instated when/if these objects are mmapped again.
6157  */
6158 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6159 {
6160         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6161         struct perf_addr_filter *filter;
6162         unsigned int restart = 0, count = 0;
6163         unsigned long flags;
6164
6165         if (!has_addr_filter(event))
6166                 return;
6167
6168         raw_spin_lock_irqsave(&ifh->lock, flags);
6169         list_for_each_entry(filter, &ifh->list, entry) {
6170                 if (filter->inode) {
6171                         event->addr_filters_offs[count] = 0;
6172                         restart++;
6173                 }
6174
6175                 count++;
6176         }
6177
6178         if (restart)
6179                 event->addr_filters_gen++;
6180         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6181
6182         if (restart)
6183                 perf_event_stop(event, 1);
6184 }
6185
6186 void perf_event_exec(void)
6187 {
6188         struct perf_event_context *ctx;
6189         int ctxn;
6190
6191         rcu_read_lock();
6192         for_each_task_context_nr(ctxn) {
6193                 ctx = current->perf_event_ctxp[ctxn];
6194                 if (!ctx)
6195                         continue;
6196
6197                 perf_event_enable_on_exec(ctxn);
6198
6199                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6200                                    true);
6201         }
6202         rcu_read_unlock();
6203 }
6204
6205 struct remote_output {
6206         struct ring_buffer      *rb;
6207         int                     err;
6208 };
6209
6210 static void __perf_event_output_stop(struct perf_event *event, void *data)
6211 {
6212         struct perf_event *parent = event->parent;
6213         struct remote_output *ro = data;
6214         struct ring_buffer *rb = ro->rb;
6215         struct stop_event_data sd = {
6216                 .event  = event,
6217         };
6218
6219         if (!has_aux(event))
6220                 return;
6221
6222         if (!parent)
6223                 parent = event;
6224
6225         /*
6226          * In case of inheritance, it will be the parent that links to the
6227          * ring-buffer, but it will be the child that's actually using it.
6228          *
6229          * We are using event::rb to determine if the event should be stopped,
6230          * however this may race with ring_buffer_attach() (through set_output),
6231          * which will make us skip the event that actually needs to be stopped.
6232          * So ring_buffer_attach() has to stop an aux event before re-assigning
6233          * its rb pointer.
6234          */
6235         if (rcu_dereference(parent->rb) == rb)
6236                 ro->err = __perf_event_stop(&sd);
6237 }
6238
6239 static int __perf_pmu_output_stop(void *info)
6240 {
6241         struct perf_event *event = info;
6242         struct pmu *pmu = event->pmu;
6243         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6244         struct remote_output ro = {
6245                 .rb     = event->rb,
6246         };
6247
6248         rcu_read_lock();
6249         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6250         if (cpuctx->task_ctx)
6251                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6252                                    &ro, false);
6253         rcu_read_unlock();
6254
6255         return ro.err;
6256 }
6257
6258 static void perf_pmu_output_stop(struct perf_event *event)
6259 {
6260         struct perf_event *iter;
6261         int err, cpu;
6262
6263 restart:
6264         rcu_read_lock();
6265         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6266                 /*
6267                  * For per-CPU events, we need to make sure that neither they
6268                  * nor their children are running; for cpu==-1 events it's
6269                  * sufficient to stop the event itself if it's active, since
6270                  * it can't have children.
6271                  */
6272                 cpu = iter->cpu;
6273                 if (cpu == -1)
6274                         cpu = READ_ONCE(iter->oncpu);
6275
6276                 if (cpu == -1)
6277                         continue;
6278
6279                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6280                 if (err == -EAGAIN) {
6281                         rcu_read_unlock();
6282                         goto restart;
6283                 }
6284         }
6285         rcu_read_unlock();
6286 }
6287
6288 /*
6289  * task tracking -- fork/exit
6290  *
6291  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6292  */
6293
6294 struct perf_task_event {
6295         struct task_struct              *task;
6296         struct perf_event_context       *task_ctx;
6297
6298         struct {
6299                 struct perf_event_header        header;
6300
6301                 u32                             pid;
6302                 u32                             ppid;
6303                 u32                             tid;
6304                 u32                             ptid;
6305                 u64                             time;
6306         } event_id;
6307 };
6308
6309 static int perf_event_task_match(struct perf_event *event)
6310 {
6311         return event->attr.comm  || event->attr.mmap ||
6312                event->attr.mmap2 || event->attr.mmap_data ||
6313                event->attr.task;
6314 }
6315
6316 static void perf_event_task_output(struct perf_event *event,
6317                                    void *data)
6318 {
6319         struct perf_task_event *task_event = data;
6320         struct perf_output_handle handle;
6321         struct perf_sample_data sample;
6322         struct task_struct *task = task_event->task;
6323         int ret, size = task_event->event_id.header.size;
6324
6325         if (!perf_event_task_match(event))
6326                 return;
6327
6328         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6329
6330         ret = perf_output_begin(&handle, event,
6331                                 task_event->event_id.header.size);
6332         if (ret)
6333                 goto out;
6334
6335         task_event->event_id.pid = perf_event_pid(event, task);
6336         task_event->event_id.ppid = perf_event_pid(event, current);
6337
6338         task_event->event_id.tid = perf_event_tid(event, task);
6339         task_event->event_id.ptid = perf_event_tid(event, current);
6340
6341         task_event->event_id.time = perf_event_clock(event);
6342
6343         perf_output_put(&handle, task_event->event_id);
6344
6345         perf_event__output_id_sample(event, &handle, &sample);
6346
6347         perf_output_end(&handle);
6348 out:
6349         task_event->event_id.header.size = size;
6350 }
6351
6352 static void perf_event_task(struct task_struct *task,
6353                               struct perf_event_context *task_ctx,
6354                               int new)
6355 {
6356         struct perf_task_event task_event;
6357
6358         if (!atomic_read(&nr_comm_events) &&
6359             !atomic_read(&nr_mmap_events) &&
6360             !atomic_read(&nr_task_events))
6361                 return;
6362
6363         task_event = (struct perf_task_event){
6364                 .task     = task,
6365                 .task_ctx = task_ctx,
6366                 .event_id    = {
6367                         .header = {
6368                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6369                                 .misc = 0,
6370                                 .size = sizeof(task_event.event_id),
6371                         },
6372                         /* .pid  */
6373                         /* .ppid */
6374                         /* .tid  */
6375                         /* .ptid */
6376                         /* .time */
6377                 },
6378         };
6379
6380         perf_iterate_sb(perf_event_task_output,
6381                        &task_event,
6382                        task_ctx);
6383 }
6384
6385 void perf_event_fork(struct task_struct *task)
6386 {
6387         perf_event_task(task, NULL, 1);
6388 }
6389
6390 /*
6391  * comm tracking
6392  */
6393
6394 struct perf_comm_event {
6395         struct task_struct      *task;
6396         char                    *comm;
6397         int                     comm_size;
6398
6399         struct {
6400                 struct perf_event_header        header;
6401
6402                 u32                             pid;
6403                 u32                             tid;
6404         } event_id;
6405 };
6406
6407 static int perf_event_comm_match(struct perf_event *event)
6408 {
6409         return event->attr.comm;
6410 }
6411
6412 static void perf_event_comm_output(struct perf_event *event,
6413                                    void *data)
6414 {
6415         struct perf_comm_event *comm_event = data;
6416         struct perf_output_handle handle;
6417         struct perf_sample_data sample;
6418         int size = comm_event->event_id.header.size;
6419         int ret;
6420
6421         if (!perf_event_comm_match(event))
6422                 return;
6423
6424         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6425         ret = perf_output_begin(&handle, event,
6426                                 comm_event->event_id.header.size);
6427
6428         if (ret)
6429                 goto out;
6430
6431         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6432         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6433
6434         perf_output_put(&handle, comm_event->event_id);
6435         __output_copy(&handle, comm_event->comm,
6436                                    comm_event->comm_size);
6437
6438         perf_event__output_id_sample(event, &handle, &sample);
6439
6440         perf_output_end(&handle);
6441 out:
6442         comm_event->event_id.header.size = size;
6443 }
6444
6445 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6446 {
6447         char comm[TASK_COMM_LEN];
6448         unsigned int size;
6449
6450         memset(comm, 0, sizeof(comm));
6451         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6452         size = ALIGN(strlen(comm)+1, sizeof(u64));
6453
6454         comm_event->comm = comm;
6455         comm_event->comm_size = size;
6456
6457         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6458
6459         perf_iterate_sb(perf_event_comm_output,
6460                        comm_event,
6461                        NULL);
6462 }
6463
6464 void perf_event_comm(struct task_struct *task, bool exec)
6465 {
6466         struct perf_comm_event comm_event;
6467
6468         if (!atomic_read(&nr_comm_events))
6469                 return;
6470
6471         comm_event = (struct perf_comm_event){
6472                 .task   = task,
6473                 /* .comm      */
6474                 /* .comm_size */
6475                 .event_id  = {
6476                         .header = {
6477                                 .type = PERF_RECORD_COMM,
6478                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6479                                 /* .size */
6480                         },
6481                         /* .pid */
6482                         /* .tid */
6483                 },
6484         };
6485
6486         perf_event_comm_event(&comm_event);
6487 }
6488
6489 /*
6490  * mmap tracking
6491  */
6492
6493 struct perf_mmap_event {
6494         struct vm_area_struct   *vma;
6495
6496         const char              *file_name;
6497         int                     file_size;
6498         int                     maj, min;
6499         u64                     ino;
6500         u64                     ino_generation;
6501         u32                     prot, flags;
6502
6503         struct {
6504                 struct perf_event_header        header;
6505
6506                 u32                             pid;
6507                 u32                             tid;
6508                 u64                             start;
6509                 u64                             len;
6510                 u64                             pgoff;
6511         } event_id;
6512 };
6513
6514 static int perf_event_mmap_match(struct perf_event *event,
6515                                  void *data)
6516 {
6517         struct perf_mmap_event *mmap_event = data;
6518         struct vm_area_struct *vma = mmap_event->vma;
6519         int executable = vma->vm_flags & VM_EXEC;
6520
6521         return (!executable && event->attr.mmap_data) ||
6522                (executable && (event->attr.mmap || event->attr.mmap2));
6523 }
6524
6525 static void perf_event_mmap_output(struct perf_event *event,
6526                                    void *data)
6527 {
6528         struct perf_mmap_event *mmap_event = data;
6529         struct perf_output_handle handle;
6530         struct perf_sample_data sample;
6531         int size = mmap_event->event_id.header.size;
6532         int ret;
6533
6534         if (!perf_event_mmap_match(event, data))
6535                 return;
6536
6537         if (event->attr.mmap2) {
6538                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6539                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6540                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6541                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6542                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6543                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6544                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6545         }
6546
6547         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6548         ret = perf_output_begin(&handle, event,
6549                                 mmap_event->event_id.header.size);
6550         if (ret)
6551                 goto out;
6552
6553         mmap_event->event_id.pid = perf_event_pid(event, current);
6554         mmap_event->event_id.tid = perf_event_tid(event, current);
6555
6556         perf_output_put(&handle, mmap_event->event_id);
6557
6558         if (event->attr.mmap2) {
6559                 perf_output_put(&handle, mmap_event->maj);
6560                 perf_output_put(&handle, mmap_event->min);
6561                 perf_output_put(&handle, mmap_event->ino);
6562                 perf_output_put(&handle, mmap_event->ino_generation);
6563                 perf_output_put(&handle, mmap_event->prot);
6564                 perf_output_put(&handle, mmap_event->flags);
6565         }
6566
6567         __output_copy(&handle, mmap_event->file_name,
6568                                    mmap_event->file_size);
6569
6570         perf_event__output_id_sample(event, &handle, &sample);
6571
6572         perf_output_end(&handle);
6573 out:
6574         mmap_event->event_id.header.size = size;
6575 }
6576
6577 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6578 {
6579         struct vm_area_struct *vma = mmap_event->vma;
6580         struct file *file = vma->vm_file;
6581         int maj = 0, min = 0;
6582         u64 ino = 0, gen = 0;
6583         u32 prot = 0, flags = 0;
6584         unsigned int size;
6585         char tmp[16];
6586         char *buf = NULL;
6587         char *name;
6588
6589         if (file) {
6590                 struct inode *inode;
6591                 dev_t dev;
6592
6593                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6594                 if (!buf) {
6595                         name = "//enomem";
6596                         goto cpy_name;
6597                 }
6598                 /*
6599                  * d_path() works from the end of the rb backwards, so we
6600                  * need to add enough zero bytes after the string to handle
6601                  * the 64bit alignment we do later.
6602                  */
6603                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6604                 if (IS_ERR(name)) {
6605                         name = "//toolong";
6606                         goto cpy_name;
6607                 }
6608                 inode = file_inode(vma->vm_file);
6609                 dev = inode->i_sb->s_dev;
6610                 ino = inode->i_ino;
6611                 gen = inode->i_generation;
6612                 maj = MAJOR(dev);
6613                 min = MINOR(dev);
6614
6615                 if (vma->vm_flags & VM_READ)
6616                         prot |= PROT_READ;
6617                 if (vma->vm_flags & VM_WRITE)
6618                         prot |= PROT_WRITE;
6619                 if (vma->vm_flags & VM_EXEC)
6620                         prot |= PROT_EXEC;
6621
6622                 if (vma->vm_flags & VM_MAYSHARE)
6623                         flags = MAP_SHARED;
6624                 else
6625                         flags = MAP_PRIVATE;
6626
6627                 if (vma->vm_flags & VM_DENYWRITE)
6628                         flags |= MAP_DENYWRITE;
6629                 if (vma->vm_flags & VM_MAYEXEC)
6630                         flags |= MAP_EXECUTABLE;
6631                 if (vma->vm_flags & VM_LOCKED)
6632                         flags |= MAP_LOCKED;
6633                 if (vma->vm_flags & VM_HUGETLB)
6634                         flags |= MAP_HUGETLB;
6635
6636                 goto got_name;
6637         } else {
6638                 if (vma->vm_ops && vma->vm_ops->name) {
6639                         name = (char *) vma->vm_ops->name(vma);
6640                         if (name)
6641                                 goto cpy_name;
6642                 }
6643
6644                 name = (char *)arch_vma_name(vma);
6645                 if (name)
6646                         goto cpy_name;
6647
6648                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6649                                 vma->vm_end >= vma->vm_mm->brk) {
6650                         name = "[heap]";
6651                         goto cpy_name;
6652                 }
6653                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6654                                 vma->vm_end >= vma->vm_mm->start_stack) {
6655                         name = "[stack]";
6656                         goto cpy_name;
6657                 }
6658
6659                 name = "//anon";
6660                 goto cpy_name;
6661         }
6662
6663 cpy_name:
6664         strlcpy(tmp, name, sizeof(tmp));
6665         name = tmp;
6666 got_name:
6667         /*
6668          * Since our buffer works in 8 byte units we need to align our string
6669          * size to a multiple of 8. However, we must guarantee the tail end is
6670          * zero'd out to avoid leaking random bits to userspace.
6671          */
6672         size = strlen(name)+1;
6673         while (!IS_ALIGNED(size, sizeof(u64)))
6674                 name[size++] = '\0';
6675
6676         mmap_event->file_name = name;
6677         mmap_event->file_size = size;
6678         mmap_event->maj = maj;
6679         mmap_event->min = min;
6680         mmap_event->ino = ino;
6681         mmap_event->ino_generation = gen;
6682         mmap_event->prot = prot;
6683         mmap_event->flags = flags;
6684
6685         if (!(vma->vm_flags & VM_EXEC))
6686                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6687
6688         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6689
6690         perf_iterate_sb(perf_event_mmap_output,
6691                        mmap_event,
6692                        NULL);
6693
6694         kfree(buf);
6695 }
6696
6697 /*
6698  * Check whether inode and address range match filter criteria.
6699  */
6700 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6701                                      struct file *file, unsigned long offset,
6702                                      unsigned long size)
6703 {
6704         if (filter->inode != file->f_inode)
6705                 return false;
6706
6707         if (filter->offset > offset + size)
6708                 return false;
6709
6710         if (filter->offset + filter->size < offset)
6711                 return false;
6712
6713         return true;
6714 }
6715
6716 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6717 {
6718         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6719         struct vm_area_struct *vma = data;
6720         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6721         struct file *file = vma->vm_file;
6722         struct perf_addr_filter *filter;
6723         unsigned int restart = 0, count = 0;
6724
6725         if (!has_addr_filter(event))
6726                 return;
6727
6728         if (!file)
6729                 return;
6730
6731         raw_spin_lock_irqsave(&ifh->lock, flags);
6732         list_for_each_entry(filter, &ifh->list, entry) {
6733                 if (perf_addr_filter_match(filter, file, off,
6734                                              vma->vm_end - vma->vm_start)) {
6735                         event->addr_filters_offs[count] = vma->vm_start;
6736                         restart++;
6737                 }
6738
6739                 count++;
6740         }
6741
6742         if (restart)
6743                 event->addr_filters_gen++;
6744         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6745
6746         if (restart)
6747                 perf_event_stop(event, 1);
6748 }
6749
6750 /*
6751  * Adjust all task's events' filters to the new vma
6752  */
6753 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6754 {
6755         struct perf_event_context *ctx;
6756         int ctxn;
6757
6758         /*
6759          * Data tracing isn't supported yet and as such there is no need
6760          * to keep track of anything that isn't related to executable code:
6761          */
6762         if (!(vma->vm_flags & VM_EXEC))
6763                 return;
6764
6765         rcu_read_lock();
6766         for_each_task_context_nr(ctxn) {
6767                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6768                 if (!ctx)
6769                         continue;
6770
6771                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6772         }
6773         rcu_read_unlock();
6774 }
6775
6776 void perf_event_mmap(struct vm_area_struct *vma)
6777 {
6778         struct perf_mmap_event mmap_event;
6779
6780         if (!atomic_read(&nr_mmap_events))
6781                 return;
6782
6783         mmap_event = (struct perf_mmap_event){
6784                 .vma    = vma,
6785                 /* .file_name */
6786                 /* .file_size */
6787                 .event_id  = {
6788                         .header = {
6789                                 .type = PERF_RECORD_MMAP,
6790                                 .misc = PERF_RECORD_MISC_USER,
6791                                 /* .size */
6792                         },
6793                         /* .pid */
6794                         /* .tid */
6795                         .start  = vma->vm_start,
6796                         .len    = vma->vm_end - vma->vm_start,
6797                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6798                 },
6799                 /* .maj (attr_mmap2 only) */
6800                 /* .min (attr_mmap2 only) */
6801                 /* .ino (attr_mmap2 only) */
6802                 /* .ino_generation (attr_mmap2 only) */
6803                 /* .prot (attr_mmap2 only) */
6804                 /* .flags (attr_mmap2 only) */
6805         };
6806
6807         perf_addr_filters_adjust(vma);
6808         perf_event_mmap_event(&mmap_event);
6809 }
6810
6811 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6812                           unsigned long size, u64 flags)
6813 {
6814         struct perf_output_handle handle;
6815         struct perf_sample_data sample;
6816         struct perf_aux_event {
6817                 struct perf_event_header        header;
6818                 u64                             offset;
6819                 u64                             size;
6820                 u64                             flags;
6821         } rec = {
6822                 .header = {
6823                         .type = PERF_RECORD_AUX,
6824                         .misc = 0,
6825                         .size = sizeof(rec),
6826                 },
6827                 .offset         = head,
6828                 .size           = size,
6829                 .flags          = flags,
6830         };
6831         int ret;
6832
6833         perf_event_header__init_id(&rec.header, &sample, event);
6834         ret = perf_output_begin(&handle, event, rec.header.size);
6835
6836         if (ret)
6837                 return;
6838
6839         perf_output_put(&handle, rec);
6840         perf_event__output_id_sample(event, &handle, &sample);
6841
6842         perf_output_end(&handle);
6843 }
6844
6845 /*
6846  * Lost/dropped samples logging
6847  */
6848 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6849 {
6850         struct perf_output_handle handle;
6851         struct perf_sample_data sample;
6852         int ret;
6853
6854         struct {
6855                 struct perf_event_header        header;
6856                 u64                             lost;
6857         } lost_samples_event = {
6858                 .header = {
6859                         .type = PERF_RECORD_LOST_SAMPLES,
6860                         .misc = 0,
6861                         .size = sizeof(lost_samples_event),
6862                 },
6863                 .lost           = lost,
6864         };
6865
6866         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6867
6868         ret = perf_output_begin(&handle, event,
6869                                 lost_samples_event.header.size);
6870         if (ret)
6871                 return;
6872
6873         perf_output_put(&handle, lost_samples_event);
6874         perf_event__output_id_sample(event, &handle, &sample);
6875         perf_output_end(&handle);
6876 }
6877
6878 /*
6879  * context_switch tracking
6880  */
6881
6882 struct perf_switch_event {
6883         struct task_struct      *task;
6884         struct task_struct      *next_prev;
6885
6886         struct {
6887                 struct perf_event_header        header;
6888                 u32                             next_prev_pid;
6889                 u32                             next_prev_tid;
6890         } event_id;
6891 };
6892
6893 static int perf_event_switch_match(struct perf_event *event)
6894 {
6895         return event->attr.context_switch;
6896 }
6897
6898 static void perf_event_switch_output(struct perf_event *event, void *data)
6899 {
6900         struct perf_switch_event *se = data;
6901         struct perf_output_handle handle;
6902         struct perf_sample_data sample;
6903         int ret;
6904
6905         if (!perf_event_switch_match(event))
6906                 return;
6907
6908         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6909         if (event->ctx->task) {
6910                 se->event_id.header.type = PERF_RECORD_SWITCH;
6911                 se->event_id.header.size = sizeof(se->event_id.header);
6912         } else {
6913                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6914                 se->event_id.header.size = sizeof(se->event_id);
6915                 se->event_id.next_prev_pid =
6916                                         perf_event_pid(event, se->next_prev);
6917                 se->event_id.next_prev_tid =
6918                                         perf_event_tid(event, se->next_prev);
6919         }
6920
6921         perf_event_header__init_id(&se->event_id.header, &sample, event);
6922
6923         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6924         if (ret)
6925                 return;
6926
6927         if (event->ctx->task)
6928                 perf_output_put(&handle, se->event_id.header);
6929         else
6930                 perf_output_put(&handle, se->event_id);
6931
6932         perf_event__output_id_sample(event, &handle, &sample);
6933
6934         perf_output_end(&handle);
6935 }
6936
6937 static void perf_event_switch(struct task_struct *task,
6938                               struct task_struct *next_prev, bool sched_in)
6939 {
6940         struct perf_switch_event switch_event;
6941
6942         /* N.B. caller checks nr_switch_events != 0 */
6943
6944         switch_event = (struct perf_switch_event){
6945                 .task           = task,
6946                 .next_prev      = next_prev,
6947                 .event_id       = {
6948                         .header = {
6949                                 /* .type */
6950                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6951                                 /* .size */
6952                         },
6953                         /* .next_prev_pid */
6954                         /* .next_prev_tid */
6955                 },
6956         };
6957
6958         perf_iterate_sb(perf_event_switch_output,
6959                        &switch_event,
6960                        NULL);
6961 }
6962
6963 /*
6964  * IRQ throttle logging
6965  */
6966
6967 static void perf_log_throttle(struct perf_event *event, int enable)
6968 {
6969         struct perf_output_handle handle;
6970         struct perf_sample_data sample;
6971         int ret;
6972
6973         struct {
6974                 struct perf_event_header        header;
6975                 u64                             time;
6976                 u64                             id;
6977                 u64                             stream_id;
6978         } throttle_event = {
6979                 .header = {
6980                         .type = PERF_RECORD_THROTTLE,
6981                         .misc = 0,
6982                         .size = sizeof(throttle_event),
6983                 },
6984                 .time           = perf_event_clock(event),
6985                 .id             = primary_event_id(event),
6986                 .stream_id      = event->id,
6987         };
6988
6989         if (enable)
6990                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6991
6992         perf_event_header__init_id(&throttle_event.header, &sample, event);
6993
6994         ret = perf_output_begin(&handle, event,
6995                                 throttle_event.header.size);
6996         if (ret)
6997                 return;
6998
6999         perf_output_put(&handle, throttle_event);
7000         perf_event__output_id_sample(event, &handle, &sample);
7001         perf_output_end(&handle);
7002 }
7003
7004 static void perf_log_itrace_start(struct perf_event *event)
7005 {
7006         struct perf_output_handle handle;
7007         struct perf_sample_data sample;
7008         struct perf_aux_event {
7009                 struct perf_event_header        header;
7010                 u32                             pid;
7011                 u32                             tid;
7012         } rec;
7013         int ret;
7014
7015         if (event->parent)
7016                 event = event->parent;
7017
7018         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7019             event->hw.itrace_started)
7020                 return;
7021
7022         rec.header.type = PERF_RECORD_ITRACE_START;
7023         rec.header.misc = 0;
7024         rec.header.size = sizeof(rec);
7025         rec.pid = perf_event_pid(event, current);
7026         rec.tid = perf_event_tid(event, current);
7027
7028         perf_event_header__init_id(&rec.header, &sample, event);
7029         ret = perf_output_begin(&handle, event, rec.header.size);
7030
7031         if (ret)
7032                 return;
7033
7034         perf_output_put(&handle, rec);
7035         perf_event__output_id_sample(event, &handle, &sample);
7036
7037         perf_output_end(&handle);
7038 }
7039
7040 /*
7041  * Generic event overflow handling, sampling.
7042  */
7043
7044 static int __perf_event_overflow(struct perf_event *event,
7045                                    int throttle, struct perf_sample_data *data,
7046                                    struct pt_regs *regs)
7047 {
7048         int events = atomic_read(&event->event_limit);
7049         struct hw_perf_event *hwc = &event->hw;
7050         u64 seq;
7051         int ret = 0;
7052
7053         /*
7054          * Non-sampling counters might still use the PMI to fold short
7055          * hardware counters, ignore those.
7056          */
7057         if (unlikely(!is_sampling_event(event)))
7058                 return 0;
7059
7060         seq = __this_cpu_read(perf_throttled_seq);
7061         if (seq != hwc->interrupts_seq) {
7062                 hwc->interrupts_seq = seq;
7063                 hwc->interrupts = 1;
7064         } else {
7065                 hwc->interrupts++;
7066                 if (unlikely(throttle
7067                              && hwc->interrupts >= max_samples_per_tick)) {
7068                         __this_cpu_inc(perf_throttled_count);
7069                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7070                         hwc->interrupts = MAX_INTERRUPTS;
7071                         perf_log_throttle(event, 0);
7072                         ret = 1;
7073                 }
7074         }
7075
7076         if (event->attr.freq) {
7077                 u64 now = perf_clock();
7078                 s64 delta = now - hwc->freq_time_stamp;
7079
7080                 hwc->freq_time_stamp = now;
7081
7082                 if (delta > 0 && delta < 2*TICK_NSEC)
7083                         perf_adjust_period(event, delta, hwc->last_period, true);
7084         }
7085
7086         /*
7087          * XXX event_limit might not quite work as expected on inherited
7088          * events
7089          */
7090
7091         event->pending_kill = POLL_IN;
7092         if (events && atomic_dec_and_test(&event->event_limit)) {
7093                 ret = 1;
7094                 event->pending_kill = POLL_HUP;
7095
7096                 perf_event_disable_inatomic(event);
7097         }
7098
7099         READ_ONCE(event->overflow_handler)(event, data, regs);
7100
7101         if (*perf_event_fasync(event) && event->pending_kill) {
7102                 event->pending_wakeup = 1;
7103                 irq_work_queue(&event->pending);
7104         }
7105
7106         return ret;
7107 }
7108
7109 int perf_event_overflow(struct perf_event *event,
7110                           struct perf_sample_data *data,
7111                           struct pt_regs *regs)
7112 {
7113         return __perf_event_overflow(event, 1, data, regs);
7114 }
7115
7116 /*
7117  * Generic software event infrastructure
7118  */
7119
7120 struct swevent_htable {
7121         struct swevent_hlist            *swevent_hlist;
7122         struct mutex                    hlist_mutex;
7123         int                             hlist_refcount;
7124
7125         /* Recursion avoidance in each contexts */
7126         int                             recursion[PERF_NR_CONTEXTS];
7127 };
7128
7129 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7130
7131 /*
7132  * We directly increment event->count and keep a second value in
7133  * event->hw.period_left to count intervals. This period event
7134  * is kept in the range [-sample_period, 0] so that we can use the
7135  * sign as trigger.
7136  */
7137
7138 u64 perf_swevent_set_period(struct perf_event *event)
7139 {
7140         struct hw_perf_event *hwc = &event->hw;
7141         u64 period = hwc->last_period;
7142         u64 nr, offset;
7143         s64 old, val;
7144
7145         hwc->last_period = hwc->sample_period;
7146
7147 again:
7148         old = val = local64_read(&hwc->period_left);
7149         if (val < 0)
7150                 return 0;
7151
7152         nr = div64_u64(period + val, period);
7153         offset = nr * period;
7154         val -= offset;
7155         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7156                 goto again;
7157
7158         return nr;
7159 }
7160
7161 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7162                                     struct perf_sample_data *data,
7163                                     struct pt_regs *regs)
7164 {
7165         struct hw_perf_event *hwc = &event->hw;
7166         int throttle = 0;
7167
7168         if (!overflow)
7169                 overflow = perf_swevent_set_period(event);
7170
7171         if (hwc->interrupts == MAX_INTERRUPTS)
7172                 return;
7173
7174         for (; overflow; overflow--) {
7175                 if (__perf_event_overflow(event, throttle,
7176                                             data, regs)) {
7177                         /*
7178                          * We inhibit the overflow from happening when
7179                          * hwc->interrupts == MAX_INTERRUPTS.
7180                          */
7181                         break;
7182                 }
7183                 throttle = 1;
7184         }
7185 }
7186
7187 static void perf_swevent_event(struct perf_event *event, u64 nr,
7188                                struct perf_sample_data *data,
7189                                struct pt_regs *regs)
7190 {
7191         struct hw_perf_event *hwc = &event->hw;
7192
7193         local64_add(nr, &event->count);
7194
7195         if (!regs)
7196                 return;
7197
7198         if (!is_sampling_event(event))
7199                 return;
7200
7201         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7202                 data->period = nr;
7203                 return perf_swevent_overflow(event, 1, data, regs);
7204         } else
7205                 data->period = event->hw.last_period;
7206
7207         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7208                 return perf_swevent_overflow(event, 1, data, regs);
7209
7210         if (local64_add_negative(nr, &hwc->period_left))
7211                 return;
7212
7213         perf_swevent_overflow(event, 0, data, regs);
7214 }
7215
7216 static int perf_exclude_event(struct perf_event *event,
7217                               struct pt_regs *regs)
7218 {
7219         if (event->hw.state & PERF_HES_STOPPED)
7220                 return 1;
7221
7222         if (regs) {
7223                 if (event->attr.exclude_user && user_mode(regs))
7224                         return 1;
7225
7226                 if (event->attr.exclude_kernel && !user_mode(regs))
7227                         return 1;
7228         }
7229
7230         return 0;
7231 }
7232
7233 static int perf_swevent_match(struct perf_event *event,
7234                                 enum perf_type_id type,
7235                                 u32 event_id,
7236                                 struct perf_sample_data *data,
7237                                 struct pt_regs *regs)
7238 {
7239         if (event->attr.type != type)
7240                 return 0;
7241
7242         if (event->attr.config != event_id)
7243                 return 0;
7244
7245         if (perf_exclude_event(event, regs))
7246                 return 0;
7247
7248         return 1;
7249 }
7250
7251 static inline u64 swevent_hash(u64 type, u32 event_id)
7252 {
7253         u64 val = event_id | (type << 32);
7254
7255         return hash_64(val, SWEVENT_HLIST_BITS);
7256 }
7257
7258 static inline struct hlist_head *
7259 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7260 {
7261         u64 hash = swevent_hash(type, event_id);
7262
7263         return &hlist->heads[hash];
7264 }
7265
7266 /* For the read side: events when they trigger */
7267 static inline struct hlist_head *
7268 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7269 {
7270         struct swevent_hlist *hlist;
7271
7272         hlist = rcu_dereference(swhash->swevent_hlist);
7273         if (!hlist)
7274                 return NULL;
7275
7276         return __find_swevent_head(hlist, type, event_id);
7277 }
7278
7279 /* For the event head insertion and removal in the hlist */
7280 static inline struct hlist_head *
7281 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7282 {
7283         struct swevent_hlist *hlist;
7284         u32 event_id = event->attr.config;
7285         u64 type = event->attr.type;
7286
7287         /*
7288          * Event scheduling is always serialized against hlist allocation
7289          * and release. Which makes the protected version suitable here.
7290          * The context lock guarantees that.
7291          */
7292         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7293                                           lockdep_is_held(&event->ctx->lock));
7294         if (!hlist)
7295                 return NULL;
7296
7297         return __find_swevent_head(hlist, type, event_id);
7298 }
7299
7300 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7301                                     u64 nr,
7302                                     struct perf_sample_data *data,
7303                                     struct pt_regs *regs)
7304 {
7305         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7306         struct perf_event *event;
7307         struct hlist_head *head;
7308
7309         rcu_read_lock();
7310         head = find_swevent_head_rcu(swhash, type, event_id);
7311         if (!head)
7312                 goto end;
7313
7314         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7315                 if (perf_swevent_match(event, type, event_id, data, regs))
7316                         perf_swevent_event(event, nr, data, regs);
7317         }
7318 end:
7319         rcu_read_unlock();
7320 }
7321
7322 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7323
7324 int perf_swevent_get_recursion_context(void)
7325 {
7326         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7327
7328         return get_recursion_context(swhash->recursion);
7329 }
7330 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7331
7332 void perf_swevent_put_recursion_context(int rctx)
7333 {
7334         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7335
7336         put_recursion_context(swhash->recursion, rctx);
7337 }
7338
7339 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7340 {
7341         struct perf_sample_data data;
7342
7343         if (WARN_ON_ONCE(!regs))
7344                 return;
7345
7346         perf_sample_data_init(&data, addr, 0);
7347         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7348 }
7349
7350 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7351 {
7352         int rctx;
7353
7354         preempt_disable_notrace();
7355         rctx = perf_swevent_get_recursion_context();
7356         if (unlikely(rctx < 0))
7357                 goto fail;
7358
7359         ___perf_sw_event(event_id, nr, regs, addr);
7360
7361         perf_swevent_put_recursion_context(rctx);
7362 fail:
7363         preempt_enable_notrace();
7364 }
7365
7366 static void perf_swevent_read(struct perf_event *event)
7367 {
7368 }
7369
7370 static int perf_swevent_add(struct perf_event *event, int flags)
7371 {
7372         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373         struct hw_perf_event *hwc = &event->hw;
7374         struct hlist_head *head;
7375
7376         if (is_sampling_event(event)) {
7377                 hwc->last_period = hwc->sample_period;
7378                 perf_swevent_set_period(event);
7379         }
7380
7381         hwc->state = !(flags & PERF_EF_START);
7382
7383         head = find_swevent_head(swhash, event);
7384         if (WARN_ON_ONCE(!head))
7385                 return -EINVAL;
7386
7387         hlist_add_head_rcu(&event->hlist_entry, head);
7388         perf_event_update_userpage(event);
7389
7390         return 0;
7391 }
7392
7393 static void perf_swevent_del(struct perf_event *event, int flags)
7394 {
7395         hlist_del_rcu(&event->hlist_entry);
7396 }
7397
7398 static void perf_swevent_start(struct perf_event *event, int flags)
7399 {
7400         event->hw.state = 0;
7401 }
7402
7403 static void perf_swevent_stop(struct perf_event *event, int flags)
7404 {
7405         event->hw.state = PERF_HES_STOPPED;
7406 }
7407
7408 /* Deref the hlist from the update side */
7409 static inline struct swevent_hlist *
7410 swevent_hlist_deref(struct swevent_htable *swhash)
7411 {
7412         return rcu_dereference_protected(swhash->swevent_hlist,
7413                                          lockdep_is_held(&swhash->hlist_mutex));
7414 }
7415
7416 static void swevent_hlist_release(struct swevent_htable *swhash)
7417 {
7418         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7419
7420         if (!hlist)
7421                 return;
7422
7423         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7424         kfree_rcu(hlist, rcu_head);
7425 }
7426
7427 static void swevent_hlist_put_cpu(int cpu)
7428 {
7429         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7430
7431         mutex_lock(&swhash->hlist_mutex);
7432
7433         if (!--swhash->hlist_refcount)
7434                 swevent_hlist_release(swhash);
7435
7436         mutex_unlock(&swhash->hlist_mutex);
7437 }
7438
7439 static void swevent_hlist_put(void)
7440 {
7441         int cpu;
7442
7443         for_each_possible_cpu(cpu)
7444                 swevent_hlist_put_cpu(cpu);
7445 }
7446
7447 static int swevent_hlist_get_cpu(int cpu)
7448 {
7449         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7450         int err = 0;
7451
7452         mutex_lock(&swhash->hlist_mutex);
7453         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7454                 struct swevent_hlist *hlist;
7455
7456                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7457                 if (!hlist) {
7458                         err = -ENOMEM;
7459                         goto exit;
7460                 }
7461                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7462         }
7463         swhash->hlist_refcount++;
7464 exit:
7465         mutex_unlock(&swhash->hlist_mutex);
7466
7467         return err;
7468 }
7469
7470 static int swevent_hlist_get(void)
7471 {
7472         int err, cpu, failed_cpu;
7473
7474         get_online_cpus();
7475         for_each_possible_cpu(cpu) {
7476                 err = swevent_hlist_get_cpu(cpu);
7477                 if (err) {
7478                         failed_cpu = cpu;
7479                         goto fail;
7480                 }
7481         }
7482         put_online_cpus();
7483
7484         return 0;
7485 fail:
7486         for_each_possible_cpu(cpu) {
7487                 if (cpu == failed_cpu)
7488                         break;
7489                 swevent_hlist_put_cpu(cpu);
7490         }
7491
7492         put_online_cpus();
7493         return err;
7494 }
7495
7496 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7497
7498 static void sw_perf_event_destroy(struct perf_event *event)
7499 {
7500         u64 event_id = event->attr.config;
7501
7502         WARN_ON(event->parent);
7503
7504         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7505         swevent_hlist_put();
7506 }
7507
7508 static int perf_swevent_init(struct perf_event *event)
7509 {
7510         u64 event_id = event->attr.config;
7511
7512         if (event->attr.type != PERF_TYPE_SOFTWARE)
7513                 return -ENOENT;
7514
7515         /*
7516          * no branch sampling for software events
7517          */
7518         if (has_branch_stack(event))
7519                 return -EOPNOTSUPP;
7520
7521         switch (event_id) {
7522         case PERF_COUNT_SW_CPU_CLOCK:
7523         case PERF_COUNT_SW_TASK_CLOCK:
7524                 return -ENOENT;
7525
7526         default:
7527                 break;
7528         }
7529
7530         if (event_id >= PERF_COUNT_SW_MAX)
7531                 return -ENOENT;
7532
7533         if (!event->parent) {
7534                 int err;
7535
7536                 err = swevent_hlist_get();
7537                 if (err)
7538                         return err;
7539
7540                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7541                 event->destroy = sw_perf_event_destroy;
7542         }
7543
7544         return 0;
7545 }
7546
7547 static struct pmu perf_swevent = {
7548         .task_ctx_nr    = perf_sw_context,
7549
7550         .capabilities   = PERF_PMU_CAP_NO_NMI,
7551
7552         .event_init     = perf_swevent_init,
7553         .add            = perf_swevent_add,
7554         .del            = perf_swevent_del,
7555         .start          = perf_swevent_start,
7556         .stop           = perf_swevent_stop,
7557         .read           = perf_swevent_read,
7558 };
7559
7560 #ifdef CONFIG_EVENT_TRACING
7561
7562 static int perf_tp_filter_match(struct perf_event *event,
7563                                 struct perf_sample_data *data)
7564 {
7565         void *record = data->raw->frag.data;
7566
7567         /* only top level events have filters set */
7568         if (event->parent)
7569                 event = event->parent;
7570
7571         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7572                 return 1;
7573         return 0;
7574 }
7575
7576 static int perf_tp_event_match(struct perf_event *event,
7577                                 struct perf_sample_data *data,
7578                                 struct pt_regs *regs)
7579 {
7580         if (event->hw.state & PERF_HES_STOPPED)
7581                 return 0;
7582         /*
7583          * All tracepoints are from kernel-space.
7584          */
7585         if (event->attr.exclude_kernel)
7586                 return 0;
7587
7588         if (!perf_tp_filter_match(event, data))
7589                 return 0;
7590
7591         return 1;
7592 }
7593
7594 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7595                                struct trace_event_call *call, u64 count,
7596                                struct pt_regs *regs, struct hlist_head *head,
7597                                struct task_struct *task)
7598 {
7599         struct bpf_prog *prog = call->prog;
7600
7601         if (prog) {
7602                 *(struct pt_regs **)raw_data = regs;
7603                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7604                         perf_swevent_put_recursion_context(rctx);
7605                         return;
7606                 }
7607         }
7608         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7609                       rctx, task);
7610 }
7611 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7612
7613 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7614                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7615                    struct task_struct *task)
7616 {
7617         struct perf_sample_data data;
7618         struct perf_event *event;
7619
7620         struct perf_raw_record raw = {
7621                 .frag = {
7622                         .size = entry_size,
7623                         .data = record,
7624                 },
7625         };
7626
7627         perf_sample_data_init(&data, 0, 0);
7628         data.raw = &raw;
7629
7630         perf_trace_buf_update(record, event_type);
7631
7632         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7633                 if (perf_tp_event_match(event, &data, regs))
7634                         perf_swevent_event(event, count, &data, regs);
7635         }
7636
7637         /*
7638          * If we got specified a target task, also iterate its context and
7639          * deliver this event there too.
7640          */
7641         if (task && task != current) {
7642                 struct perf_event_context *ctx;
7643                 struct trace_entry *entry = record;
7644
7645                 rcu_read_lock();
7646                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7647                 if (!ctx)
7648                         goto unlock;
7649
7650                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7651                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7652                                 continue;
7653                         if (event->attr.config != entry->type)
7654                                 continue;
7655                         if (perf_tp_event_match(event, &data, regs))
7656                                 perf_swevent_event(event, count, &data, regs);
7657                 }
7658 unlock:
7659                 rcu_read_unlock();
7660         }
7661
7662         perf_swevent_put_recursion_context(rctx);
7663 }
7664 EXPORT_SYMBOL_GPL(perf_tp_event);
7665
7666 static void tp_perf_event_destroy(struct perf_event *event)
7667 {
7668         perf_trace_destroy(event);
7669 }
7670
7671 static int perf_tp_event_init(struct perf_event *event)
7672 {
7673         int err;
7674
7675         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7676                 return -ENOENT;
7677
7678         /*
7679          * no branch sampling for tracepoint events
7680          */
7681         if (has_branch_stack(event))
7682                 return -EOPNOTSUPP;
7683
7684         err = perf_trace_init(event);
7685         if (err)
7686                 return err;
7687
7688         event->destroy = tp_perf_event_destroy;
7689
7690         return 0;
7691 }
7692
7693 static struct pmu perf_tracepoint = {
7694         .task_ctx_nr    = perf_sw_context,
7695
7696         .event_init     = perf_tp_event_init,
7697         .add            = perf_trace_add,
7698         .del            = perf_trace_del,
7699         .start          = perf_swevent_start,
7700         .stop           = perf_swevent_stop,
7701         .read           = perf_swevent_read,
7702 };
7703
7704 static inline void perf_tp_register(void)
7705 {
7706         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7707 }
7708
7709 static void perf_event_free_filter(struct perf_event *event)
7710 {
7711         ftrace_profile_free_filter(event);
7712 }
7713
7714 #ifdef CONFIG_BPF_SYSCALL
7715 static void bpf_overflow_handler(struct perf_event *event,
7716                                  struct perf_sample_data *data,
7717                                  struct pt_regs *regs)
7718 {
7719         struct bpf_perf_event_data_kern ctx = {
7720                 .data = data,
7721                 .regs = regs,
7722         };
7723         int ret = 0;
7724
7725         preempt_disable();
7726         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7727                 goto out;
7728         rcu_read_lock();
7729         ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7730         rcu_read_unlock();
7731 out:
7732         __this_cpu_dec(bpf_prog_active);
7733         preempt_enable();
7734         if (!ret)
7735                 return;
7736
7737         event->orig_overflow_handler(event, data, regs);
7738 }
7739
7740 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7741 {
7742         struct bpf_prog *prog;
7743
7744         if (event->overflow_handler_context)
7745                 /* hw breakpoint or kernel counter */
7746                 return -EINVAL;
7747
7748         if (event->prog)
7749                 return -EEXIST;
7750
7751         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7752         if (IS_ERR(prog))
7753                 return PTR_ERR(prog);
7754
7755         event->prog = prog;
7756         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7757         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7758         return 0;
7759 }
7760
7761 static void perf_event_free_bpf_handler(struct perf_event *event)
7762 {
7763         struct bpf_prog *prog = event->prog;
7764
7765         if (!prog)
7766                 return;
7767
7768         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7769         event->prog = NULL;
7770         bpf_prog_put(prog);
7771 }
7772 #else
7773 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7774 {
7775         return -EOPNOTSUPP;
7776 }
7777 static void perf_event_free_bpf_handler(struct perf_event *event)
7778 {
7779 }
7780 #endif
7781
7782 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7783 {
7784         bool is_kprobe, is_tracepoint;
7785         struct bpf_prog *prog;
7786
7787         if (event->attr.type == PERF_TYPE_HARDWARE ||
7788             event->attr.type == PERF_TYPE_SOFTWARE)
7789                 return perf_event_set_bpf_handler(event, prog_fd);
7790
7791         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7792                 return -EINVAL;
7793
7794         if (event->tp_event->prog)
7795                 return -EEXIST;
7796
7797         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7798         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7799         if (!is_kprobe && !is_tracepoint)
7800                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7801                 return -EINVAL;
7802
7803         prog = bpf_prog_get(prog_fd);
7804         if (IS_ERR(prog))
7805                 return PTR_ERR(prog);
7806
7807         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7808             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7809                 /* valid fd, but invalid bpf program type */
7810                 bpf_prog_put(prog);
7811                 return -EINVAL;
7812         }
7813
7814         if (is_tracepoint) {
7815                 int off = trace_event_get_offsets(event->tp_event);
7816
7817                 if (prog->aux->max_ctx_offset > off) {
7818                         bpf_prog_put(prog);
7819                         return -EACCES;
7820                 }
7821         }
7822         event->tp_event->prog = prog;
7823
7824         return 0;
7825 }
7826
7827 static void perf_event_free_bpf_prog(struct perf_event *event)
7828 {
7829         struct bpf_prog *prog;
7830
7831         perf_event_free_bpf_handler(event);
7832
7833         if (!event->tp_event)
7834                 return;
7835
7836         prog = event->tp_event->prog;
7837         if (prog) {
7838                 event->tp_event->prog = NULL;
7839                 bpf_prog_put(prog);
7840         }
7841 }
7842
7843 #else
7844
7845 static inline void perf_tp_register(void)
7846 {
7847 }
7848
7849 static void perf_event_free_filter(struct perf_event *event)
7850 {
7851 }
7852
7853 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7854 {
7855         return -ENOENT;
7856 }
7857
7858 static void perf_event_free_bpf_prog(struct perf_event *event)
7859 {
7860 }
7861 #endif /* CONFIG_EVENT_TRACING */
7862
7863 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7864 void perf_bp_event(struct perf_event *bp, void *data)
7865 {
7866         struct perf_sample_data sample;
7867         struct pt_regs *regs = data;
7868
7869         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7870
7871         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7872                 perf_swevent_event(bp, 1, &sample, regs);
7873 }
7874 #endif
7875
7876 /*
7877  * Allocate a new address filter
7878  */
7879 static struct perf_addr_filter *
7880 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7881 {
7882         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7883         struct perf_addr_filter *filter;
7884
7885         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7886         if (!filter)
7887                 return NULL;
7888
7889         INIT_LIST_HEAD(&filter->entry);
7890         list_add_tail(&filter->entry, filters);
7891
7892         return filter;
7893 }
7894
7895 static void free_filters_list(struct list_head *filters)
7896 {
7897         struct perf_addr_filter *filter, *iter;
7898
7899         list_for_each_entry_safe(filter, iter, filters, entry) {
7900                 if (filter->inode)
7901                         iput(filter->inode);
7902                 list_del(&filter->entry);
7903                 kfree(filter);
7904         }
7905 }
7906
7907 /*
7908  * Free existing address filters and optionally install new ones
7909  */
7910 static void perf_addr_filters_splice(struct perf_event *event,
7911                                      struct list_head *head)
7912 {
7913         unsigned long flags;
7914         LIST_HEAD(list);
7915
7916         if (!has_addr_filter(event))
7917                 return;
7918
7919         /* don't bother with children, they don't have their own filters */
7920         if (event->parent)
7921                 return;
7922
7923         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7924
7925         list_splice_init(&event->addr_filters.list, &list);
7926         if (head)
7927                 list_splice(head, &event->addr_filters.list);
7928
7929         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7930
7931         free_filters_list(&list);
7932 }
7933
7934 /*
7935  * Scan through mm's vmas and see if one of them matches the
7936  * @filter; if so, adjust filter's address range.
7937  * Called with mm::mmap_sem down for reading.
7938  */
7939 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7940                                             struct mm_struct *mm)
7941 {
7942         struct vm_area_struct *vma;
7943
7944         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7945                 struct file *file = vma->vm_file;
7946                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7947                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7948
7949                 if (!file)
7950                         continue;
7951
7952                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7953                         continue;
7954
7955                 return vma->vm_start;
7956         }
7957
7958         return 0;
7959 }
7960
7961 /*
7962  * Update event's address range filters based on the
7963  * task's existing mappings, if any.
7964  */
7965 static void perf_event_addr_filters_apply(struct perf_event *event)
7966 {
7967         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7968         struct task_struct *task = READ_ONCE(event->ctx->task);
7969         struct perf_addr_filter *filter;
7970         struct mm_struct *mm = NULL;
7971         unsigned int count = 0;
7972         unsigned long flags;
7973
7974         /*
7975          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7976          * will stop on the parent's child_mutex that our caller is also holding
7977          */
7978         if (task == TASK_TOMBSTONE)
7979                 return;
7980
7981         mm = get_task_mm(event->ctx->task);
7982         if (!mm)
7983                 goto restart;
7984
7985         down_read(&mm->mmap_sem);
7986
7987         raw_spin_lock_irqsave(&ifh->lock, flags);
7988         list_for_each_entry(filter, &ifh->list, entry) {
7989                 event->addr_filters_offs[count] = 0;
7990
7991                 /*
7992                  * Adjust base offset if the filter is associated to a binary
7993                  * that needs to be mapped:
7994                  */
7995                 if (filter->inode)
7996                         event->addr_filters_offs[count] =
7997                                 perf_addr_filter_apply(filter, mm);
7998
7999                 count++;
8000         }
8001
8002         event->addr_filters_gen++;
8003         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8004
8005         up_read(&mm->mmap_sem);
8006
8007         mmput(mm);
8008
8009 restart:
8010         perf_event_stop(event, 1);
8011 }
8012
8013 /*
8014  * Address range filtering: limiting the data to certain
8015  * instruction address ranges. Filters are ioctl()ed to us from
8016  * userspace as ascii strings.
8017  *
8018  * Filter string format:
8019  *
8020  * ACTION RANGE_SPEC
8021  * where ACTION is one of the
8022  *  * "filter": limit the trace to this region
8023  *  * "start": start tracing from this address
8024  *  * "stop": stop tracing at this address/region;
8025  * RANGE_SPEC is
8026  *  * for kernel addresses: <start address>[/<size>]
8027  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8028  *
8029  * if <size> is not specified, the range is treated as a single address.
8030  */
8031 enum {
8032         IF_ACT_NONE = -1,
8033         IF_ACT_FILTER,
8034         IF_ACT_START,
8035         IF_ACT_STOP,
8036         IF_SRC_FILE,
8037         IF_SRC_KERNEL,
8038         IF_SRC_FILEADDR,
8039         IF_SRC_KERNELADDR,
8040 };
8041
8042 enum {
8043         IF_STATE_ACTION = 0,
8044         IF_STATE_SOURCE,
8045         IF_STATE_END,
8046 };
8047
8048 static const match_table_t if_tokens = {
8049         { IF_ACT_FILTER,        "filter" },
8050         { IF_ACT_START,         "start" },
8051         { IF_ACT_STOP,          "stop" },
8052         { IF_SRC_FILE,          "%u/%u@%s" },
8053         { IF_SRC_KERNEL,        "%u/%u" },
8054         { IF_SRC_FILEADDR,      "%u@%s" },
8055         { IF_SRC_KERNELADDR,    "%u" },
8056         { IF_ACT_NONE,          NULL },
8057 };
8058
8059 /*
8060  * Address filter string parser
8061  */
8062 static int
8063 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8064                              struct list_head *filters)
8065 {
8066         struct perf_addr_filter *filter = NULL;
8067         char *start, *orig, *filename = NULL;
8068         struct path path;
8069         substring_t args[MAX_OPT_ARGS];
8070         int state = IF_STATE_ACTION, token;
8071         unsigned int kernel = 0;
8072         int ret = -EINVAL;
8073
8074         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8075         if (!fstr)
8076                 return -ENOMEM;
8077
8078         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8079                 ret = -EINVAL;
8080
8081                 if (!*start)
8082                         continue;
8083
8084                 /* filter definition begins */
8085                 if (state == IF_STATE_ACTION) {
8086                         filter = perf_addr_filter_new(event, filters);
8087                         if (!filter)
8088                                 goto fail;
8089                 }
8090
8091                 token = match_token(start, if_tokens, args);
8092                 switch (token) {
8093                 case IF_ACT_FILTER:
8094                 case IF_ACT_START:
8095                         filter->filter = 1;
8096
8097                 case IF_ACT_STOP:
8098                         if (state != IF_STATE_ACTION)
8099                                 goto fail;
8100
8101                         state = IF_STATE_SOURCE;
8102                         break;
8103
8104                 case IF_SRC_KERNELADDR:
8105                 case IF_SRC_KERNEL:
8106                         kernel = 1;
8107
8108                 case IF_SRC_FILEADDR:
8109                 case IF_SRC_FILE:
8110                         if (state != IF_STATE_SOURCE)
8111                                 goto fail;
8112
8113                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8114                                 filter->range = 1;
8115
8116                         *args[0].to = 0;
8117                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8118                         if (ret)
8119                                 goto fail;
8120
8121                         if (filter->range) {
8122                                 *args[1].to = 0;
8123                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8124                                 if (ret)
8125                                         goto fail;
8126                         }
8127
8128                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8129                                 int fpos = filter->range ? 2 : 1;
8130
8131                                 filename = match_strdup(&args[fpos]);
8132                                 if (!filename) {
8133                                         ret = -ENOMEM;
8134                                         goto fail;
8135                                 }
8136                         }
8137
8138                         state = IF_STATE_END;
8139                         break;
8140
8141                 default:
8142                         goto fail;
8143                 }
8144
8145                 /*
8146                  * Filter definition is fully parsed, validate and install it.
8147                  * Make sure that it doesn't contradict itself or the event's
8148                  * attribute.
8149                  */
8150                 if (state == IF_STATE_END) {
8151                         if (kernel && event->attr.exclude_kernel)
8152                                 goto fail;
8153
8154                         if (!kernel) {
8155                                 if (!filename)
8156                                         goto fail;
8157
8158                                 /* look up the path and grab its inode */
8159                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8160                                 if (ret)
8161                                         goto fail_free_name;
8162
8163                                 filter->inode = igrab(d_inode(path.dentry));
8164                                 path_put(&path);
8165                                 kfree(filename);
8166                                 filename = NULL;
8167
8168                                 ret = -EINVAL;
8169                                 if (!filter->inode ||
8170                                     !S_ISREG(filter->inode->i_mode))
8171                                         /* free_filters_list() will iput() */
8172                                         goto fail;
8173                         }
8174
8175                         /* ready to consume more filters */
8176                         state = IF_STATE_ACTION;
8177                         filter = NULL;
8178                 }
8179         }
8180
8181         if (state != IF_STATE_ACTION)
8182                 goto fail;
8183
8184         kfree(orig);
8185
8186         return 0;
8187
8188 fail_free_name:
8189         kfree(filename);
8190 fail:
8191         free_filters_list(filters);
8192         kfree(orig);
8193
8194         return ret;
8195 }
8196
8197 static int
8198 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8199 {
8200         LIST_HEAD(filters);
8201         int ret;
8202
8203         /*
8204          * Since this is called in perf_ioctl() path, we're already holding
8205          * ctx::mutex.
8206          */
8207         lockdep_assert_held(&event->ctx->mutex);
8208
8209         if (WARN_ON_ONCE(event->parent))
8210                 return -EINVAL;
8211
8212         /*
8213          * For now, we only support filtering in per-task events; doing so
8214          * for CPU-wide events requires additional context switching trickery,
8215          * since same object code will be mapped at different virtual
8216          * addresses in different processes.
8217          */
8218         if (!event->ctx->task)
8219                 return -EOPNOTSUPP;
8220
8221         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8222         if (ret)
8223                 return ret;
8224
8225         ret = event->pmu->addr_filters_validate(&filters);
8226         if (ret) {
8227                 free_filters_list(&filters);
8228                 return ret;
8229         }
8230
8231         /* remove existing filters, if any */
8232         perf_addr_filters_splice(event, &filters);
8233
8234         /* install new filters */
8235         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8236
8237         return ret;
8238 }
8239
8240 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8241 {
8242         char *filter_str;
8243         int ret = -EINVAL;
8244
8245         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8246             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8247             !has_addr_filter(event))
8248                 return -EINVAL;
8249
8250         filter_str = strndup_user(arg, PAGE_SIZE);
8251         if (IS_ERR(filter_str))
8252                 return PTR_ERR(filter_str);
8253
8254         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8255             event->attr.type == PERF_TYPE_TRACEPOINT)
8256                 ret = ftrace_profile_set_filter(event, event->attr.config,
8257                                                 filter_str);
8258         else if (has_addr_filter(event))
8259                 ret = perf_event_set_addr_filter(event, filter_str);
8260
8261         kfree(filter_str);
8262         return ret;
8263 }
8264
8265 /*
8266  * hrtimer based swevent callback
8267  */
8268
8269 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8270 {
8271         enum hrtimer_restart ret = HRTIMER_RESTART;
8272         struct perf_sample_data data;
8273         struct pt_regs *regs;
8274         struct perf_event *event;
8275         u64 period;
8276
8277         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8278
8279         if (event->state != PERF_EVENT_STATE_ACTIVE)
8280                 return HRTIMER_NORESTART;
8281
8282         event->pmu->read(event);
8283
8284         perf_sample_data_init(&data, 0, event->hw.last_period);
8285         regs = get_irq_regs();
8286
8287         if (regs && !perf_exclude_event(event, regs)) {
8288                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8289                         if (__perf_event_overflow(event, 1, &data, regs))
8290                                 ret = HRTIMER_NORESTART;
8291         }
8292
8293         period = max_t(u64, 10000, event->hw.sample_period);
8294         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8295
8296         return ret;
8297 }
8298
8299 static void perf_swevent_start_hrtimer(struct perf_event *event)
8300 {
8301         struct hw_perf_event *hwc = &event->hw;
8302         s64 period;
8303
8304         if (!is_sampling_event(event))
8305                 return;
8306
8307         period = local64_read(&hwc->period_left);
8308         if (period) {
8309                 if (period < 0)
8310                         period = 10000;
8311
8312                 local64_set(&hwc->period_left, 0);
8313         } else {
8314                 period = max_t(u64, 10000, hwc->sample_period);
8315         }
8316         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8317                       HRTIMER_MODE_REL_PINNED);
8318 }
8319
8320 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8321 {
8322         struct hw_perf_event *hwc = &event->hw;
8323
8324         if (is_sampling_event(event)) {
8325                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8326                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8327
8328                 hrtimer_cancel(&hwc->hrtimer);
8329         }
8330 }
8331
8332 static void perf_swevent_init_hrtimer(struct perf_event *event)
8333 {
8334         struct hw_perf_event *hwc = &event->hw;
8335
8336         if (!is_sampling_event(event))
8337                 return;
8338
8339         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8340         hwc->hrtimer.function = perf_swevent_hrtimer;
8341
8342         /*
8343          * Since hrtimers have a fixed rate, we can do a static freq->period
8344          * mapping and avoid the whole period adjust feedback stuff.
8345          */
8346         if (event->attr.freq) {
8347                 long freq = event->attr.sample_freq;
8348
8349                 event->attr.sample_period = NSEC_PER_SEC / freq;
8350                 hwc->sample_period = event->attr.sample_period;
8351                 local64_set(&hwc->period_left, hwc->sample_period);
8352                 hwc->last_period = hwc->sample_period;
8353                 event->attr.freq = 0;
8354         }
8355 }
8356
8357 /*
8358  * Software event: cpu wall time clock
8359  */
8360
8361 static void cpu_clock_event_update(struct perf_event *event)
8362 {
8363         s64 prev;
8364         u64 now;
8365
8366         now = local_clock();
8367         prev = local64_xchg(&event->hw.prev_count, now);
8368         local64_add(now - prev, &event->count);
8369 }
8370
8371 static void cpu_clock_event_start(struct perf_event *event, int flags)
8372 {
8373         local64_set(&event->hw.prev_count, local_clock());
8374         perf_swevent_start_hrtimer(event);
8375 }
8376
8377 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8378 {
8379         perf_swevent_cancel_hrtimer(event);
8380         cpu_clock_event_update(event);
8381 }
8382
8383 static int cpu_clock_event_add(struct perf_event *event, int flags)
8384 {
8385         if (flags & PERF_EF_START)
8386                 cpu_clock_event_start(event, flags);
8387         perf_event_update_userpage(event);
8388
8389         return 0;
8390 }
8391
8392 static void cpu_clock_event_del(struct perf_event *event, int flags)
8393 {
8394         cpu_clock_event_stop(event, flags);
8395 }
8396
8397 static void cpu_clock_event_read(struct perf_event *event)
8398 {
8399         cpu_clock_event_update(event);
8400 }
8401
8402 static int cpu_clock_event_init(struct perf_event *event)
8403 {
8404         if (event->attr.type != PERF_TYPE_SOFTWARE)
8405                 return -ENOENT;
8406
8407         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8408                 return -ENOENT;
8409
8410         /*
8411          * no branch sampling for software events
8412          */
8413         if (has_branch_stack(event))
8414                 return -EOPNOTSUPP;
8415
8416         perf_swevent_init_hrtimer(event);
8417
8418         return 0;
8419 }
8420
8421 static struct pmu perf_cpu_clock = {
8422         .task_ctx_nr    = perf_sw_context,
8423
8424         .capabilities   = PERF_PMU_CAP_NO_NMI,
8425
8426         .event_init     = cpu_clock_event_init,
8427         .add            = cpu_clock_event_add,
8428         .del            = cpu_clock_event_del,
8429         .start          = cpu_clock_event_start,
8430         .stop           = cpu_clock_event_stop,
8431         .read           = cpu_clock_event_read,
8432 };
8433
8434 /*
8435  * Software event: task time clock
8436  */
8437
8438 static void task_clock_event_update(struct perf_event *event, u64 now)
8439 {
8440         u64 prev;
8441         s64 delta;
8442
8443         prev = local64_xchg(&event->hw.prev_count, now);
8444         delta = now - prev;
8445         local64_add(delta, &event->count);
8446 }
8447
8448 static void task_clock_event_start(struct perf_event *event, int flags)
8449 {
8450         local64_set(&event->hw.prev_count, event->ctx->time);
8451         perf_swevent_start_hrtimer(event);
8452 }
8453
8454 static void task_clock_event_stop(struct perf_event *event, int flags)
8455 {
8456         perf_swevent_cancel_hrtimer(event);
8457         task_clock_event_update(event, event->ctx->time);
8458 }
8459
8460 static int task_clock_event_add(struct perf_event *event, int flags)
8461 {
8462         if (flags & PERF_EF_START)
8463                 task_clock_event_start(event, flags);
8464         perf_event_update_userpage(event);
8465
8466         return 0;
8467 }
8468
8469 static void task_clock_event_del(struct perf_event *event, int flags)
8470 {
8471         task_clock_event_stop(event, PERF_EF_UPDATE);
8472 }
8473
8474 static void task_clock_event_read(struct perf_event *event)
8475 {
8476         u64 now = perf_clock();
8477         u64 delta = now - event->ctx->timestamp;
8478         u64 time = event->ctx->time + delta;
8479
8480         task_clock_event_update(event, time);
8481 }
8482
8483 static int task_clock_event_init(struct perf_event *event)
8484 {
8485         if (event->attr.type != PERF_TYPE_SOFTWARE)
8486                 return -ENOENT;
8487
8488         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8489                 return -ENOENT;
8490
8491         /*
8492          * no branch sampling for software events
8493          */
8494         if (has_branch_stack(event))
8495                 return -EOPNOTSUPP;
8496
8497         perf_swevent_init_hrtimer(event);
8498
8499         return 0;
8500 }
8501
8502 static struct pmu perf_task_clock = {
8503         .task_ctx_nr    = perf_sw_context,
8504
8505         .capabilities   = PERF_PMU_CAP_NO_NMI,
8506
8507         .event_init     = task_clock_event_init,
8508         .add            = task_clock_event_add,
8509         .del            = task_clock_event_del,
8510         .start          = task_clock_event_start,
8511         .stop           = task_clock_event_stop,
8512         .read           = task_clock_event_read,
8513 };
8514
8515 static void perf_pmu_nop_void(struct pmu *pmu)
8516 {
8517 }
8518
8519 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8520 {
8521 }
8522
8523 static int perf_pmu_nop_int(struct pmu *pmu)
8524 {
8525         return 0;
8526 }
8527
8528 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8529
8530 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8531 {
8532         __this_cpu_write(nop_txn_flags, flags);
8533
8534         if (flags & ~PERF_PMU_TXN_ADD)
8535                 return;
8536
8537         perf_pmu_disable(pmu);
8538 }
8539
8540 static int perf_pmu_commit_txn(struct pmu *pmu)
8541 {
8542         unsigned int flags = __this_cpu_read(nop_txn_flags);
8543
8544         __this_cpu_write(nop_txn_flags, 0);
8545
8546         if (flags & ~PERF_PMU_TXN_ADD)
8547                 return 0;
8548
8549         perf_pmu_enable(pmu);
8550         return 0;
8551 }
8552
8553 static void perf_pmu_cancel_txn(struct pmu *pmu)
8554 {
8555         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8556
8557         __this_cpu_write(nop_txn_flags, 0);
8558
8559         if (flags & ~PERF_PMU_TXN_ADD)
8560                 return;
8561
8562         perf_pmu_enable(pmu);
8563 }
8564
8565 static int perf_event_idx_default(struct perf_event *event)
8566 {
8567         return 0;
8568 }
8569
8570 /*
8571  * Ensures all contexts with the same task_ctx_nr have the same
8572  * pmu_cpu_context too.
8573  */
8574 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8575 {
8576         struct pmu *pmu;
8577
8578         if (ctxn < 0)
8579                 return NULL;
8580
8581         list_for_each_entry(pmu, &pmus, entry) {
8582                 if (pmu->task_ctx_nr == ctxn)
8583                         return pmu->pmu_cpu_context;
8584         }
8585
8586         return NULL;
8587 }
8588
8589 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8590 {
8591         int cpu;
8592
8593         for_each_possible_cpu(cpu) {
8594                 struct perf_cpu_context *cpuctx;
8595
8596                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8597
8598                 if (cpuctx->unique_pmu == old_pmu)
8599                         cpuctx->unique_pmu = pmu;
8600         }
8601 }
8602
8603 static void free_pmu_context(struct pmu *pmu)
8604 {
8605         struct pmu *i;
8606
8607         mutex_lock(&pmus_lock);
8608         /*
8609          * Like a real lame refcount.
8610          */
8611         list_for_each_entry(i, &pmus, entry) {
8612                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8613                         update_pmu_context(i, pmu);
8614                         goto out;
8615                 }
8616         }
8617
8618         free_percpu(pmu->pmu_cpu_context);
8619 out:
8620         mutex_unlock(&pmus_lock);
8621 }
8622
8623 /*
8624  * Let userspace know that this PMU supports address range filtering:
8625  */
8626 static ssize_t nr_addr_filters_show(struct device *dev,
8627                                     struct device_attribute *attr,
8628                                     char *page)
8629 {
8630         struct pmu *pmu = dev_get_drvdata(dev);
8631
8632         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8633 }
8634 DEVICE_ATTR_RO(nr_addr_filters);
8635
8636 static struct idr pmu_idr;
8637
8638 static ssize_t
8639 type_show(struct device *dev, struct device_attribute *attr, char *page)
8640 {
8641         struct pmu *pmu = dev_get_drvdata(dev);
8642
8643         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8644 }
8645 static DEVICE_ATTR_RO(type);
8646
8647 static ssize_t
8648 perf_event_mux_interval_ms_show(struct device *dev,
8649                                 struct device_attribute *attr,
8650                                 char *page)
8651 {
8652         struct pmu *pmu = dev_get_drvdata(dev);
8653
8654         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8655 }
8656
8657 static DEFINE_MUTEX(mux_interval_mutex);
8658
8659 static ssize_t
8660 perf_event_mux_interval_ms_store(struct device *dev,
8661                                  struct device_attribute *attr,
8662                                  const char *buf, size_t count)
8663 {
8664         struct pmu *pmu = dev_get_drvdata(dev);
8665         int timer, cpu, ret;
8666
8667         ret = kstrtoint(buf, 0, &timer);
8668         if (ret)
8669                 return ret;
8670
8671         if (timer < 1)
8672                 return -EINVAL;
8673
8674         /* same value, noting to do */
8675         if (timer == pmu->hrtimer_interval_ms)
8676                 return count;
8677
8678         mutex_lock(&mux_interval_mutex);
8679         pmu->hrtimer_interval_ms = timer;
8680
8681         /* update all cpuctx for this PMU */
8682         get_online_cpus();
8683         for_each_online_cpu(cpu) {
8684                 struct perf_cpu_context *cpuctx;
8685                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8686                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8687
8688                 cpu_function_call(cpu,
8689                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8690         }
8691         put_online_cpus();
8692         mutex_unlock(&mux_interval_mutex);
8693
8694         return count;
8695 }
8696 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8697
8698 static struct attribute *pmu_dev_attrs[] = {
8699         &dev_attr_type.attr,
8700         &dev_attr_perf_event_mux_interval_ms.attr,
8701         NULL,
8702 };
8703 ATTRIBUTE_GROUPS(pmu_dev);
8704
8705 static int pmu_bus_running;
8706 static struct bus_type pmu_bus = {
8707         .name           = "event_source",
8708         .dev_groups     = pmu_dev_groups,
8709 };
8710
8711 static void pmu_dev_release(struct device *dev)
8712 {
8713         kfree(dev);
8714 }
8715
8716 static int pmu_dev_alloc(struct pmu *pmu)
8717 {
8718         int ret = -ENOMEM;
8719
8720         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8721         if (!pmu->dev)
8722                 goto out;
8723
8724         pmu->dev->groups = pmu->attr_groups;
8725         device_initialize(pmu->dev);
8726         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8727         if (ret)
8728                 goto free_dev;
8729
8730         dev_set_drvdata(pmu->dev, pmu);
8731         pmu->dev->bus = &pmu_bus;
8732         pmu->dev->release = pmu_dev_release;
8733         ret = device_add(pmu->dev);
8734         if (ret)
8735                 goto free_dev;
8736
8737         /* For PMUs with address filters, throw in an extra attribute: */
8738         if (pmu->nr_addr_filters)
8739                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8740
8741         if (ret)
8742                 goto del_dev;
8743
8744 out:
8745         return ret;
8746
8747 del_dev:
8748         device_del(pmu->dev);
8749
8750 free_dev:
8751         put_device(pmu->dev);
8752         goto out;
8753 }
8754
8755 static struct lock_class_key cpuctx_mutex;
8756 static struct lock_class_key cpuctx_lock;
8757
8758 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8759 {
8760         int cpu, ret;
8761
8762         mutex_lock(&pmus_lock);
8763         ret = -ENOMEM;
8764         pmu->pmu_disable_count = alloc_percpu(int);
8765         if (!pmu->pmu_disable_count)
8766                 goto unlock;
8767
8768         pmu->type = -1;
8769         if (!name)
8770                 goto skip_type;
8771         pmu->name = name;
8772
8773         if (type < 0) {
8774                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8775                 if (type < 0) {
8776                         ret = type;
8777                         goto free_pdc;
8778                 }
8779         }
8780         pmu->type = type;
8781
8782         if (pmu_bus_running) {
8783                 ret = pmu_dev_alloc(pmu);
8784                 if (ret)
8785                         goto free_idr;
8786         }
8787
8788 skip_type:
8789         if (pmu->task_ctx_nr == perf_hw_context) {
8790                 static int hw_context_taken = 0;
8791
8792                 /*
8793                  * Other than systems with heterogeneous CPUs, it never makes
8794                  * sense for two PMUs to share perf_hw_context. PMUs which are
8795                  * uncore must use perf_invalid_context.
8796                  */
8797                 if (WARN_ON_ONCE(hw_context_taken &&
8798                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8799                         pmu->task_ctx_nr = perf_invalid_context;
8800
8801                 hw_context_taken = 1;
8802         }
8803
8804         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8805         if (pmu->pmu_cpu_context)
8806                 goto got_cpu_context;
8807
8808         ret = -ENOMEM;
8809         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8810         if (!pmu->pmu_cpu_context)
8811                 goto free_dev;
8812
8813         for_each_possible_cpu(cpu) {
8814                 struct perf_cpu_context *cpuctx;
8815
8816                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8817                 __perf_event_init_context(&cpuctx->ctx);
8818                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8819                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8820                 cpuctx->ctx.pmu = pmu;
8821
8822                 __perf_mux_hrtimer_init(cpuctx, cpu);
8823
8824                 cpuctx->unique_pmu = pmu;
8825         }
8826
8827 got_cpu_context:
8828         if (!pmu->start_txn) {
8829                 if (pmu->pmu_enable) {
8830                         /*
8831                          * If we have pmu_enable/pmu_disable calls, install
8832                          * transaction stubs that use that to try and batch
8833                          * hardware accesses.
8834                          */
8835                         pmu->start_txn  = perf_pmu_start_txn;
8836                         pmu->commit_txn = perf_pmu_commit_txn;
8837                         pmu->cancel_txn = perf_pmu_cancel_txn;
8838                 } else {
8839                         pmu->start_txn  = perf_pmu_nop_txn;
8840                         pmu->commit_txn = perf_pmu_nop_int;
8841                         pmu->cancel_txn = perf_pmu_nop_void;
8842                 }
8843         }
8844
8845         if (!pmu->pmu_enable) {
8846                 pmu->pmu_enable  = perf_pmu_nop_void;
8847                 pmu->pmu_disable = perf_pmu_nop_void;
8848         }
8849
8850         if (!pmu->event_idx)
8851                 pmu->event_idx = perf_event_idx_default;
8852
8853         list_add_rcu(&pmu->entry, &pmus);
8854         atomic_set(&pmu->exclusive_cnt, 0);
8855         ret = 0;
8856 unlock:
8857         mutex_unlock(&pmus_lock);
8858
8859         return ret;
8860
8861 free_dev:
8862         device_del(pmu->dev);
8863         put_device(pmu->dev);
8864
8865 free_idr:
8866         if (pmu->type >= PERF_TYPE_MAX)
8867                 idr_remove(&pmu_idr, pmu->type);
8868
8869 free_pdc:
8870         free_percpu(pmu->pmu_disable_count);
8871         goto unlock;
8872 }
8873 EXPORT_SYMBOL_GPL(perf_pmu_register);
8874
8875 void perf_pmu_unregister(struct pmu *pmu)
8876 {
8877         int remove_device;
8878
8879         mutex_lock(&pmus_lock);
8880         remove_device = pmu_bus_running;
8881         list_del_rcu(&pmu->entry);
8882         mutex_unlock(&pmus_lock);
8883
8884         /*
8885          * We dereference the pmu list under both SRCU and regular RCU, so
8886          * synchronize against both of those.
8887          */
8888         synchronize_srcu(&pmus_srcu);
8889         synchronize_rcu();
8890
8891         free_percpu(pmu->pmu_disable_count);
8892         if (pmu->type >= PERF_TYPE_MAX)
8893                 idr_remove(&pmu_idr, pmu->type);
8894         if (remove_device) {
8895                 if (pmu->nr_addr_filters)
8896                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8897                 device_del(pmu->dev);
8898                 put_device(pmu->dev);
8899         }
8900         free_pmu_context(pmu);
8901 }
8902 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8903
8904 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8905 {
8906         struct perf_event_context *ctx = NULL;
8907         int ret;
8908
8909         if (!try_module_get(pmu->module))
8910                 return -ENODEV;
8911
8912         if (event->group_leader != event) {
8913                 /*
8914                  * This ctx->mutex can nest when we're called through
8915                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8916                  */
8917                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8918                                                  SINGLE_DEPTH_NESTING);
8919                 BUG_ON(!ctx);
8920         }
8921
8922         event->pmu = pmu;
8923         ret = pmu->event_init(event);
8924
8925         if (ctx)
8926                 perf_event_ctx_unlock(event->group_leader, ctx);
8927
8928         if (ret)
8929                 module_put(pmu->module);
8930
8931         return ret;
8932 }
8933
8934 static struct pmu *perf_init_event(struct perf_event *event)
8935 {
8936         struct pmu *pmu = NULL;
8937         int idx;
8938         int ret;
8939
8940         idx = srcu_read_lock(&pmus_srcu);
8941
8942         rcu_read_lock();
8943         pmu = idr_find(&pmu_idr, event->attr.type);
8944         rcu_read_unlock();
8945         if (pmu) {
8946                 ret = perf_try_init_event(pmu, event);
8947                 if (ret)
8948                         pmu = ERR_PTR(ret);
8949                 goto unlock;
8950         }
8951
8952         list_for_each_entry_rcu(pmu, &pmus, entry) {
8953                 ret = perf_try_init_event(pmu, event);
8954                 if (!ret)
8955                         goto unlock;
8956
8957                 if (ret != -ENOENT) {
8958                         pmu = ERR_PTR(ret);
8959                         goto unlock;
8960                 }
8961         }
8962         pmu = ERR_PTR(-ENOENT);
8963 unlock:
8964         srcu_read_unlock(&pmus_srcu, idx);
8965
8966         return pmu;
8967 }
8968
8969 static void attach_sb_event(struct perf_event *event)
8970 {
8971         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8972
8973         raw_spin_lock(&pel->lock);
8974         list_add_rcu(&event->sb_list, &pel->list);
8975         raw_spin_unlock(&pel->lock);
8976 }
8977
8978 /*
8979  * We keep a list of all !task (and therefore per-cpu) events
8980  * that need to receive side-band records.
8981  *
8982  * This avoids having to scan all the various PMU per-cpu contexts
8983  * looking for them.
8984  */
8985 static void account_pmu_sb_event(struct perf_event *event)
8986 {
8987         if (is_sb_event(event))
8988                 attach_sb_event(event);
8989 }
8990
8991 static void account_event_cpu(struct perf_event *event, int cpu)
8992 {
8993         if (event->parent)
8994                 return;
8995
8996         if (is_cgroup_event(event))
8997                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8998 }
8999
9000 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9001 static void account_freq_event_nohz(void)
9002 {
9003 #ifdef CONFIG_NO_HZ_FULL
9004         /* Lock so we don't race with concurrent unaccount */
9005         spin_lock(&nr_freq_lock);
9006         if (atomic_inc_return(&nr_freq_events) == 1)
9007                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9008         spin_unlock(&nr_freq_lock);
9009 #endif
9010 }
9011
9012 static void account_freq_event(void)
9013 {
9014         if (tick_nohz_full_enabled())
9015                 account_freq_event_nohz();
9016         else
9017                 atomic_inc(&nr_freq_events);
9018 }
9019
9020
9021 static void account_event(struct perf_event *event)
9022 {
9023         bool inc = false;
9024
9025         if (event->parent)
9026                 return;
9027
9028         if (event->attach_state & PERF_ATTACH_TASK)
9029                 inc = true;
9030         if (event->attr.mmap || event->attr.mmap_data)
9031                 atomic_inc(&nr_mmap_events);
9032         if (event->attr.comm)
9033                 atomic_inc(&nr_comm_events);
9034         if (event->attr.task)
9035                 atomic_inc(&nr_task_events);
9036         if (event->attr.freq)
9037                 account_freq_event();
9038         if (event->attr.context_switch) {
9039                 atomic_inc(&nr_switch_events);
9040                 inc = true;
9041         }
9042         if (has_branch_stack(event))
9043                 inc = true;
9044         if (is_cgroup_event(event))
9045                 inc = true;
9046
9047         if (inc) {
9048                 if (atomic_inc_not_zero(&perf_sched_count))
9049                         goto enabled;
9050
9051                 mutex_lock(&perf_sched_mutex);
9052                 if (!atomic_read(&perf_sched_count)) {
9053                         static_branch_enable(&perf_sched_events);
9054                         /*
9055                          * Guarantee that all CPUs observe they key change and
9056                          * call the perf scheduling hooks before proceeding to
9057                          * install events that need them.
9058                          */
9059                         synchronize_sched();
9060                 }
9061                 /*
9062                  * Now that we have waited for the sync_sched(), allow further
9063                  * increments to by-pass the mutex.
9064                  */
9065                 atomic_inc(&perf_sched_count);
9066                 mutex_unlock(&perf_sched_mutex);
9067         }
9068 enabled:
9069
9070         account_event_cpu(event, event->cpu);
9071
9072         account_pmu_sb_event(event);
9073 }
9074
9075 /*
9076  * Allocate and initialize a event structure
9077  */
9078 static struct perf_event *
9079 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9080                  struct task_struct *task,
9081                  struct perf_event *group_leader,
9082                  struct perf_event *parent_event,
9083                  perf_overflow_handler_t overflow_handler,
9084                  void *context, int cgroup_fd)
9085 {
9086         struct pmu *pmu;
9087         struct perf_event *event;
9088         struct hw_perf_event *hwc;
9089         long err = -EINVAL;
9090
9091         if ((unsigned)cpu >= nr_cpu_ids) {
9092                 if (!task || cpu != -1)
9093                         return ERR_PTR(-EINVAL);
9094         }
9095
9096         event = kzalloc(sizeof(*event), GFP_KERNEL);
9097         if (!event)
9098                 return ERR_PTR(-ENOMEM);
9099
9100         /*
9101          * Single events are their own group leaders, with an
9102          * empty sibling list:
9103          */
9104         if (!group_leader)
9105                 group_leader = event;
9106
9107         mutex_init(&event->child_mutex);
9108         INIT_LIST_HEAD(&event->child_list);
9109
9110         INIT_LIST_HEAD(&event->group_entry);
9111         INIT_LIST_HEAD(&event->event_entry);
9112         INIT_LIST_HEAD(&event->sibling_list);
9113         INIT_LIST_HEAD(&event->rb_entry);
9114         INIT_LIST_HEAD(&event->active_entry);
9115         INIT_LIST_HEAD(&event->addr_filters.list);
9116         INIT_HLIST_NODE(&event->hlist_entry);
9117
9118
9119         init_waitqueue_head(&event->waitq);
9120         init_irq_work(&event->pending, perf_pending_event);
9121
9122         mutex_init(&event->mmap_mutex);
9123         raw_spin_lock_init(&event->addr_filters.lock);
9124
9125         atomic_long_set(&event->refcount, 1);
9126         event->cpu              = cpu;
9127         event->attr             = *attr;
9128         event->group_leader     = group_leader;
9129         event->pmu              = NULL;
9130         event->oncpu            = -1;
9131
9132         event->parent           = parent_event;
9133
9134         event->ns               = get_pid_ns(task_active_pid_ns(current));
9135         event->id               = atomic64_inc_return(&perf_event_id);
9136
9137         event->state            = PERF_EVENT_STATE_INACTIVE;
9138
9139         if (task) {
9140                 event->attach_state = PERF_ATTACH_TASK;
9141                 /*
9142                  * XXX pmu::event_init needs to know what task to account to
9143                  * and we cannot use the ctx information because we need the
9144                  * pmu before we get a ctx.
9145                  */
9146                 event->hw.target = task;
9147         }
9148
9149         event->clock = &local_clock;
9150         if (parent_event)
9151                 event->clock = parent_event->clock;
9152
9153         if (!overflow_handler && parent_event) {
9154                 overflow_handler = parent_event->overflow_handler;
9155                 context = parent_event->overflow_handler_context;
9156 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9157                 if (overflow_handler == bpf_overflow_handler) {
9158                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9159
9160                         if (IS_ERR(prog)) {
9161                                 err = PTR_ERR(prog);
9162                                 goto err_ns;
9163                         }
9164                         event->prog = prog;
9165                         event->orig_overflow_handler =
9166                                 parent_event->orig_overflow_handler;
9167                 }
9168 #endif
9169         }
9170
9171         if (overflow_handler) {
9172                 event->overflow_handler = overflow_handler;
9173                 event->overflow_handler_context = context;
9174         } else if (is_write_backward(event)){
9175                 event->overflow_handler = perf_event_output_backward;
9176                 event->overflow_handler_context = NULL;
9177         } else {
9178                 event->overflow_handler = perf_event_output_forward;
9179                 event->overflow_handler_context = NULL;
9180         }
9181
9182         perf_event__state_init(event);
9183
9184         pmu = NULL;
9185
9186         hwc = &event->hw;
9187         hwc->sample_period = attr->sample_period;
9188         if (attr->freq && attr->sample_freq)
9189                 hwc->sample_period = 1;
9190         hwc->last_period = hwc->sample_period;
9191
9192         local64_set(&hwc->period_left, hwc->sample_period);
9193
9194         /*
9195          * we currently do not support PERF_FORMAT_GROUP on inherited events
9196          */
9197         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9198                 goto err_ns;
9199
9200         if (!has_branch_stack(event))
9201                 event->attr.branch_sample_type = 0;
9202
9203         if (cgroup_fd != -1) {
9204                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9205                 if (err)
9206                         goto err_ns;
9207         }
9208
9209         pmu = perf_init_event(event);
9210         if (!pmu)
9211                 goto err_ns;
9212         else if (IS_ERR(pmu)) {
9213                 err = PTR_ERR(pmu);
9214                 goto err_ns;
9215         }
9216
9217         err = exclusive_event_init(event);
9218         if (err)
9219                 goto err_pmu;
9220
9221         if (has_addr_filter(event)) {
9222                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9223                                                    sizeof(unsigned long),
9224                                                    GFP_KERNEL);
9225                 if (!event->addr_filters_offs)
9226                         goto err_per_task;
9227
9228                 /* force hw sync on the address filters */
9229                 event->addr_filters_gen = 1;
9230         }
9231
9232         if (!event->parent) {
9233                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9234                         err = get_callchain_buffers(attr->sample_max_stack);
9235                         if (err)
9236                                 goto err_addr_filters;
9237                 }
9238         }
9239
9240         /* symmetric to unaccount_event() in _free_event() */
9241         account_event(event);
9242
9243         return event;
9244
9245 err_addr_filters:
9246         kfree(event->addr_filters_offs);
9247
9248 err_per_task:
9249         exclusive_event_destroy(event);
9250
9251 err_pmu:
9252         if (event->destroy)
9253                 event->destroy(event);
9254         module_put(pmu->module);
9255 err_ns:
9256         if (is_cgroup_event(event))
9257                 perf_detach_cgroup(event);
9258         if (event->ns)
9259                 put_pid_ns(event->ns);
9260         kfree(event);
9261
9262         return ERR_PTR(err);
9263 }
9264
9265 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9266                           struct perf_event_attr *attr)
9267 {
9268         u32 size;
9269         int ret;
9270
9271         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9272                 return -EFAULT;
9273
9274         /*
9275          * zero the full structure, so that a short copy will be nice.
9276          */
9277         memset(attr, 0, sizeof(*attr));
9278
9279         ret = get_user(size, &uattr->size);
9280         if (ret)
9281                 return ret;
9282
9283         if (size > PAGE_SIZE)   /* silly large */
9284                 goto err_size;
9285
9286         if (!size)              /* abi compat */
9287                 size = PERF_ATTR_SIZE_VER0;
9288
9289         if (size < PERF_ATTR_SIZE_VER0)
9290                 goto err_size;
9291
9292         /*
9293          * If we're handed a bigger struct than we know of,
9294          * ensure all the unknown bits are 0 - i.e. new
9295          * user-space does not rely on any kernel feature
9296          * extensions we dont know about yet.
9297          */
9298         if (size > sizeof(*attr)) {
9299                 unsigned char __user *addr;
9300                 unsigned char __user *end;
9301                 unsigned char val;
9302
9303                 addr = (void __user *)uattr + sizeof(*attr);
9304                 end  = (void __user *)uattr + size;
9305
9306                 for (; addr < end; addr++) {
9307                         ret = get_user(val, addr);
9308                         if (ret)
9309                                 return ret;
9310                         if (val)
9311                                 goto err_size;
9312                 }
9313                 size = sizeof(*attr);
9314         }
9315
9316         ret = copy_from_user(attr, uattr, size);
9317         if (ret)
9318                 return -EFAULT;
9319
9320         if (attr->__reserved_1)
9321                 return -EINVAL;
9322
9323         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9324                 return -EINVAL;
9325
9326         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9327                 return -EINVAL;
9328
9329         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9330                 u64 mask = attr->branch_sample_type;
9331
9332                 /* only using defined bits */
9333                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9334                         return -EINVAL;
9335
9336                 /* at least one branch bit must be set */
9337                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9338                         return -EINVAL;
9339
9340                 /* propagate priv level, when not set for branch */
9341                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9342
9343                         /* exclude_kernel checked on syscall entry */
9344                         if (!attr->exclude_kernel)
9345                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9346
9347                         if (!attr->exclude_user)
9348                                 mask |= PERF_SAMPLE_BRANCH_USER;
9349
9350                         if (!attr->exclude_hv)
9351                                 mask |= PERF_SAMPLE_BRANCH_HV;
9352                         /*
9353                          * adjust user setting (for HW filter setup)
9354                          */
9355                         attr->branch_sample_type = mask;
9356                 }
9357                 /* privileged levels capture (kernel, hv): check permissions */
9358                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9359                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9360                         return -EACCES;
9361         }
9362
9363         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9364                 ret = perf_reg_validate(attr->sample_regs_user);
9365                 if (ret)
9366                         return ret;
9367         }
9368
9369         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9370                 if (!arch_perf_have_user_stack_dump())
9371                         return -ENOSYS;
9372
9373                 /*
9374                  * We have __u32 type for the size, but so far
9375                  * we can only use __u16 as maximum due to the
9376                  * __u16 sample size limit.
9377                  */
9378                 if (attr->sample_stack_user >= USHRT_MAX)
9379                         ret = -EINVAL;
9380                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9381                         ret = -EINVAL;
9382         }
9383
9384         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9385                 ret = perf_reg_validate(attr->sample_regs_intr);
9386 out:
9387         return ret;
9388
9389 err_size:
9390         put_user(sizeof(*attr), &uattr->size);
9391         ret = -E2BIG;
9392         goto out;
9393 }
9394
9395 static int
9396 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9397 {
9398         struct ring_buffer *rb = NULL;
9399         int ret = -EINVAL;
9400
9401         if (!output_event)
9402                 goto set;
9403
9404         /* don't allow circular references */
9405         if (event == output_event)
9406                 goto out;
9407
9408         /*
9409          * Don't allow cross-cpu buffers
9410          */
9411         if (output_event->cpu != event->cpu)
9412                 goto out;
9413
9414         /*
9415          * If its not a per-cpu rb, it must be the same task.
9416          */
9417         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9418                 goto out;
9419
9420         /*
9421          * Mixing clocks in the same buffer is trouble you don't need.
9422          */
9423         if (output_event->clock != event->clock)
9424                 goto out;
9425
9426         /*
9427          * Either writing ring buffer from beginning or from end.
9428          * Mixing is not allowed.
9429          */
9430         if (is_write_backward(output_event) != is_write_backward(event))
9431                 goto out;
9432
9433         /*
9434          * If both events generate aux data, they must be on the same PMU
9435          */
9436         if (has_aux(event) && has_aux(output_event) &&
9437             event->pmu != output_event->pmu)
9438                 goto out;
9439
9440 set:
9441         mutex_lock(&event->mmap_mutex);
9442         /* Can't redirect output if we've got an active mmap() */
9443         if (atomic_read(&event->mmap_count))
9444                 goto unlock;
9445
9446         if (output_event) {
9447                 /* get the rb we want to redirect to */
9448                 rb = ring_buffer_get(output_event);
9449                 if (!rb)
9450                         goto unlock;
9451         }
9452
9453         ring_buffer_attach(event, rb);
9454
9455         ret = 0;
9456 unlock:
9457         mutex_unlock(&event->mmap_mutex);
9458
9459 out:
9460         return ret;
9461 }
9462
9463 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9464 {
9465         if (b < a)
9466                 swap(a, b);
9467
9468         mutex_lock(a);
9469         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9470 }
9471
9472 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9473 {
9474         bool nmi_safe = false;
9475
9476         switch (clk_id) {
9477         case CLOCK_MONOTONIC:
9478                 event->clock = &ktime_get_mono_fast_ns;
9479                 nmi_safe = true;
9480                 break;
9481
9482         case CLOCK_MONOTONIC_RAW:
9483                 event->clock = &ktime_get_raw_fast_ns;
9484                 nmi_safe = true;
9485                 break;
9486
9487         case CLOCK_REALTIME:
9488                 event->clock = &ktime_get_real_ns;
9489                 break;
9490
9491         case CLOCK_BOOTTIME:
9492                 event->clock = &ktime_get_boot_ns;
9493                 break;
9494
9495         case CLOCK_TAI:
9496                 event->clock = &ktime_get_tai_ns;
9497                 break;
9498
9499         default:
9500                 return -EINVAL;
9501         }
9502
9503         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9504                 return -EINVAL;
9505
9506         return 0;
9507 }
9508
9509 /**
9510  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9511  *
9512  * @attr_uptr:  event_id type attributes for monitoring/sampling
9513  * @pid:                target pid
9514  * @cpu:                target cpu
9515  * @group_fd:           group leader event fd
9516  */
9517 SYSCALL_DEFINE5(perf_event_open,
9518                 struct perf_event_attr __user *, attr_uptr,
9519                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9520 {
9521         struct perf_event *group_leader = NULL, *output_event = NULL;
9522         struct perf_event *event, *sibling;
9523         struct perf_event_attr attr;
9524         struct perf_event_context *ctx, *uninitialized_var(gctx);
9525         struct file *event_file = NULL;
9526         struct fd group = {NULL, 0};
9527         struct task_struct *task = NULL;
9528         struct pmu *pmu;
9529         int event_fd;
9530         int move_group = 0;
9531         int err;
9532         int f_flags = O_RDWR;
9533         int cgroup_fd = -1;
9534
9535         /* for future expandability... */
9536         if (flags & ~PERF_FLAG_ALL)
9537                 return -EINVAL;
9538
9539         err = perf_copy_attr(attr_uptr, &attr);
9540         if (err)
9541                 return err;
9542
9543         if (!attr.exclude_kernel) {
9544                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9545                         return -EACCES;
9546         }
9547
9548         if (attr.freq) {
9549                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9550                         return -EINVAL;
9551         } else {
9552                 if (attr.sample_period & (1ULL << 63))
9553                         return -EINVAL;
9554         }
9555
9556         if (!attr.sample_max_stack)
9557                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9558
9559         /*
9560          * In cgroup mode, the pid argument is used to pass the fd
9561          * opened to the cgroup directory in cgroupfs. The cpu argument
9562          * designates the cpu on which to monitor threads from that
9563          * cgroup.
9564          */
9565         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9566                 return -EINVAL;
9567
9568         if (flags & PERF_FLAG_FD_CLOEXEC)
9569                 f_flags |= O_CLOEXEC;
9570
9571         event_fd = get_unused_fd_flags(f_flags);
9572         if (event_fd < 0)
9573                 return event_fd;
9574
9575         if (group_fd != -1) {
9576                 err = perf_fget_light(group_fd, &group);
9577                 if (err)
9578                         goto err_fd;
9579                 group_leader = group.file->private_data;
9580                 if (flags & PERF_FLAG_FD_OUTPUT)
9581                         output_event = group_leader;
9582                 if (flags & PERF_FLAG_FD_NO_GROUP)
9583                         group_leader = NULL;
9584         }
9585
9586         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9587                 task = find_lively_task_by_vpid(pid);
9588                 if (IS_ERR(task)) {
9589                         err = PTR_ERR(task);
9590                         goto err_group_fd;
9591                 }
9592         }
9593
9594         if (task && group_leader &&
9595             group_leader->attr.inherit != attr.inherit) {
9596                 err = -EINVAL;
9597                 goto err_task;
9598         }
9599
9600         get_online_cpus();
9601
9602         if (task) {
9603                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9604                 if (err)
9605                         goto err_cpus;
9606
9607                 /*
9608                  * Reuse ptrace permission checks for now.
9609                  *
9610                  * We must hold cred_guard_mutex across this and any potential
9611                  * perf_install_in_context() call for this new event to
9612                  * serialize against exec() altering our credentials (and the
9613                  * perf_event_exit_task() that could imply).
9614                  */
9615                 err = -EACCES;
9616                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9617                         goto err_cred;
9618         }
9619
9620         if (flags & PERF_FLAG_PID_CGROUP)
9621                 cgroup_fd = pid;
9622
9623         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9624                                  NULL, NULL, cgroup_fd);
9625         if (IS_ERR(event)) {
9626                 err = PTR_ERR(event);
9627                 goto err_cred;
9628         }
9629
9630         if (is_sampling_event(event)) {
9631                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9632                         err = -EOPNOTSUPP;
9633                         goto err_alloc;
9634                 }
9635         }
9636
9637         /*
9638          * Special case software events and allow them to be part of
9639          * any hardware group.
9640          */
9641         pmu = event->pmu;
9642
9643         if (attr.use_clockid) {
9644                 err = perf_event_set_clock(event, attr.clockid);
9645                 if (err)
9646                         goto err_alloc;
9647         }
9648
9649         if (pmu->task_ctx_nr == perf_sw_context)
9650                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9651
9652         if (group_leader &&
9653             (is_software_event(event) != is_software_event(group_leader))) {
9654                 if (is_software_event(event)) {
9655                         /*
9656                          * If event and group_leader are not both a software
9657                          * event, and event is, then group leader is not.
9658                          *
9659                          * Allow the addition of software events to !software
9660                          * groups, this is safe because software events never
9661                          * fail to schedule.
9662                          */
9663                         pmu = group_leader->pmu;
9664                 } else if (is_software_event(group_leader) &&
9665                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9666                         /*
9667                          * In case the group is a pure software group, and we
9668                          * try to add a hardware event, move the whole group to
9669                          * the hardware context.
9670                          */
9671                         move_group = 1;
9672                 }
9673         }
9674
9675         /*
9676          * Get the target context (task or percpu):
9677          */
9678         ctx = find_get_context(pmu, task, event);
9679         if (IS_ERR(ctx)) {
9680                 err = PTR_ERR(ctx);
9681                 goto err_alloc;
9682         }
9683
9684         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9685                 err = -EBUSY;
9686                 goto err_context;
9687         }
9688
9689         /*
9690          * Look up the group leader (we will attach this event to it):
9691          */
9692         if (group_leader) {
9693                 err = -EINVAL;
9694
9695                 /*
9696                  * Do not allow a recursive hierarchy (this new sibling
9697                  * becoming part of another group-sibling):
9698                  */
9699                 if (group_leader->group_leader != group_leader)
9700                         goto err_context;
9701
9702                 /* All events in a group should have the same clock */
9703                 if (group_leader->clock != event->clock)
9704                         goto err_context;
9705
9706                 /*
9707                  * Do not allow to attach to a group in a different
9708                  * task or CPU context:
9709                  */
9710                 if (move_group) {
9711                         /*
9712                          * Make sure we're both on the same task, or both
9713                          * per-cpu events.
9714                          */
9715                         if (group_leader->ctx->task != ctx->task)
9716                                 goto err_context;
9717
9718                         /*
9719                          * Make sure we're both events for the same CPU;
9720                          * grouping events for different CPUs is broken; since
9721                          * you can never concurrently schedule them anyhow.
9722                          */
9723                         if (group_leader->cpu != event->cpu)
9724                                 goto err_context;
9725                 } else {
9726                         if (group_leader->ctx != ctx)
9727                                 goto err_context;
9728                 }
9729
9730                 /*
9731                  * Only a group leader can be exclusive or pinned
9732                  */
9733                 if (attr.exclusive || attr.pinned)
9734                         goto err_context;
9735         }
9736
9737         if (output_event) {
9738                 err = perf_event_set_output(event, output_event);
9739                 if (err)
9740                         goto err_context;
9741         }
9742
9743         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9744                                         f_flags);
9745         if (IS_ERR(event_file)) {
9746                 err = PTR_ERR(event_file);
9747                 event_file = NULL;
9748                 goto err_context;
9749         }
9750
9751         if (move_group) {
9752                 gctx = group_leader->ctx;
9753                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9754                 if (gctx->task == TASK_TOMBSTONE) {
9755                         err = -ESRCH;
9756                         goto err_locked;
9757                 }
9758         } else {
9759                 mutex_lock(&ctx->mutex);
9760         }
9761
9762         if (ctx->task == TASK_TOMBSTONE) {
9763                 err = -ESRCH;
9764                 goto err_locked;
9765         }
9766
9767         if (!perf_event_validate_size(event)) {
9768                 err = -E2BIG;
9769                 goto err_locked;
9770         }
9771
9772         /*
9773          * Must be under the same ctx::mutex as perf_install_in_context(),
9774          * because we need to serialize with concurrent event creation.
9775          */
9776         if (!exclusive_event_installable(event, ctx)) {
9777                 /* exclusive and group stuff are assumed mutually exclusive */
9778                 WARN_ON_ONCE(move_group);
9779
9780                 err = -EBUSY;
9781                 goto err_locked;
9782         }
9783
9784         WARN_ON_ONCE(ctx->parent_ctx);
9785
9786         /*
9787          * This is the point on no return; we cannot fail hereafter. This is
9788          * where we start modifying current state.
9789          */
9790
9791         if (move_group) {
9792                 /*
9793                  * See perf_event_ctx_lock() for comments on the details
9794                  * of swizzling perf_event::ctx.
9795                  */
9796                 perf_remove_from_context(group_leader, 0);
9797
9798                 list_for_each_entry(sibling, &group_leader->sibling_list,
9799                                     group_entry) {
9800                         perf_remove_from_context(sibling, 0);
9801                         put_ctx(gctx);
9802                 }
9803
9804                 /*
9805                  * Wait for everybody to stop referencing the events through
9806                  * the old lists, before installing it on new lists.
9807                  */
9808                 synchronize_rcu();
9809
9810                 /*
9811                  * Install the group siblings before the group leader.
9812                  *
9813                  * Because a group leader will try and install the entire group
9814                  * (through the sibling list, which is still in-tact), we can
9815                  * end up with siblings installed in the wrong context.
9816                  *
9817                  * By installing siblings first we NO-OP because they're not
9818                  * reachable through the group lists.
9819                  */
9820                 list_for_each_entry(sibling, &group_leader->sibling_list,
9821                                     group_entry) {
9822                         perf_event__state_init(sibling);
9823                         perf_install_in_context(ctx, sibling, sibling->cpu);
9824                         get_ctx(ctx);
9825                 }
9826
9827                 /*
9828                  * Removing from the context ends up with disabled
9829                  * event. What we want here is event in the initial
9830                  * startup state, ready to be add into new context.
9831                  */
9832                 perf_event__state_init(group_leader);
9833                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9834                 get_ctx(ctx);
9835
9836                 /*
9837                  * Now that all events are installed in @ctx, nothing
9838                  * references @gctx anymore, so drop the last reference we have
9839                  * on it.
9840                  */
9841                 put_ctx(gctx);
9842         }
9843
9844         /*
9845          * Precalculate sample_data sizes; do while holding ctx::mutex such
9846          * that we're serialized against further additions and before
9847          * perf_install_in_context() which is the point the event is active and
9848          * can use these values.
9849          */
9850         perf_event__header_size(event);
9851         perf_event__id_header_size(event);
9852
9853         event->owner = current;
9854
9855         perf_install_in_context(ctx, event, event->cpu);
9856         perf_unpin_context(ctx);
9857
9858         if (move_group)
9859                 mutex_unlock(&gctx->mutex);
9860         mutex_unlock(&ctx->mutex);
9861
9862         if (task) {
9863                 mutex_unlock(&task->signal->cred_guard_mutex);
9864                 put_task_struct(task);
9865         }
9866
9867         put_online_cpus();
9868
9869         mutex_lock(&current->perf_event_mutex);
9870         list_add_tail(&event->owner_entry, &current->perf_event_list);
9871         mutex_unlock(&current->perf_event_mutex);
9872
9873         /*
9874          * Drop the reference on the group_event after placing the
9875          * new event on the sibling_list. This ensures destruction
9876          * of the group leader will find the pointer to itself in
9877          * perf_group_detach().
9878          */
9879         fdput(group);
9880         fd_install(event_fd, event_file);
9881         return event_fd;
9882
9883 err_locked:
9884         if (move_group)
9885                 mutex_unlock(&gctx->mutex);
9886         mutex_unlock(&ctx->mutex);
9887 /* err_file: */
9888         fput(event_file);
9889 err_context:
9890         perf_unpin_context(ctx);
9891         put_ctx(ctx);
9892 err_alloc:
9893         /*
9894          * If event_file is set, the fput() above will have called ->release()
9895          * and that will take care of freeing the event.
9896          */
9897         if (!event_file)
9898                 free_event(event);
9899 err_cred:
9900         if (task)
9901                 mutex_unlock(&task->signal->cred_guard_mutex);
9902 err_cpus:
9903         put_online_cpus();
9904 err_task:
9905         if (task)
9906                 put_task_struct(task);
9907 err_group_fd:
9908         fdput(group);
9909 err_fd:
9910         put_unused_fd(event_fd);
9911         return err;
9912 }
9913
9914 /**
9915  * perf_event_create_kernel_counter
9916  *
9917  * @attr: attributes of the counter to create
9918  * @cpu: cpu in which the counter is bound
9919  * @task: task to profile (NULL for percpu)
9920  */
9921 struct perf_event *
9922 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9923                                  struct task_struct *task,
9924                                  perf_overflow_handler_t overflow_handler,
9925                                  void *context)
9926 {
9927         struct perf_event_context *ctx;
9928         struct perf_event *event;
9929         int err;
9930
9931         /*
9932          * Get the target context (task or percpu):
9933          */
9934
9935         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9936                                  overflow_handler, context, -1);
9937         if (IS_ERR(event)) {
9938                 err = PTR_ERR(event);
9939                 goto err;
9940         }
9941
9942         /* Mark owner so we could distinguish it from user events. */
9943         event->owner = TASK_TOMBSTONE;
9944
9945         ctx = find_get_context(event->pmu, task, event);
9946         if (IS_ERR(ctx)) {
9947                 err = PTR_ERR(ctx);
9948                 goto err_free;
9949         }
9950
9951         WARN_ON_ONCE(ctx->parent_ctx);
9952         mutex_lock(&ctx->mutex);
9953         if (ctx->task == TASK_TOMBSTONE) {
9954                 err = -ESRCH;
9955                 goto err_unlock;
9956         }
9957
9958         if (!exclusive_event_installable(event, ctx)) {
9959                 err = -EBUSY;
9960                 goto err_unlock;
9961         }
9962
9963         perf_install_in_context(ctx, event, cpu);
9964         perf_unpin_context(ctx);
9965         mutex_unlock(&ctx->mutex);
9966
9967         return event;
9968
9969 err_unlock:
9970         mutex_unlock(&ctx->mutex);
9971         perf_unpin_context(ctx);
9972         put_ctx(ctx);
9973 err_free:
9974         free_event(event);
9975 err:
9976         return ERR_PTR(err);
9977 }
9978 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9979
9980 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9981 {
9982         struct perf_event_context *src_ctx;
9983         struct perf_event_context *dst_ctx;
9984         struct perf_event *event, *tmp;
9985         LIST_HEAD(events);
9986
9987         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9988         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9989
9990         /*
9991          * See perf_event_ctx_lock() for comments on the details
9992          * of swizzling perf_event::ctx.
9993          */
9994         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9995         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9996                                  event_entry) {
9997                 perf_remove_from_context(event, 0);
9998                 unaccount_event_cpu(event, src_cpu);
9999                 put_ctx(src_ctx);
10000                 list_add(&event->migrate_entry, &events);
10001         }
10002
10003         /*
10004          * Wait for the events to quiesce before re-instating them.
10005          */
10006         synchronize_rcu();
10007
10008         /*
10009          * Re-instate events in 2 passes.
10010          *
10011          * Skip over group leaders and only install siblings on this first
10012          * pass, siblings will not get enabled without a leader, however a
10013          * leader will enable its siblings, even if those are still on the old
10014          * context.
10015          */
10016         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10017                 if (event->group_leader == event)
10018                         continue;
10019
10020                 list_del(&event->migrate_entry);
10021                 if (event->state >= PERF_EVENT_STATE_OFF)
10022                         event->state = PERF_EVENT_STATE_INACTIVE;
10023                 account_event_cpu(event, dst_cpu);
10024                 perf_install_in_context(dst_ctx, event, dst_cpu);
10025                 get_ctx(dst_ctx);
10026         }
10027
10028         /*
10029          * Once all the siblings are setup properly, install the group leaders
10030          * to make it go.
10031          */
10032         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10033                 list_del(&event->migrate_entry);
10034                 if (event->state >= PERF_EVENT_STATE_OFF)
10035                         event->state = PERF_EVENT_STATE_INACTIVE;
10036                 account_event_cpu(event, dst_cpu);
10037                 perf_install_in_context(dst_ctx, event, dst_cpu);
10038                 get_ctx(dst_ctx);
10039         }
10040         mutex_unlock(&dst_ctx->mutex);
10041         mutex_unlock(&src_ctx->mutex);
10042 }
10043 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10044
10045 static void sync_child_event(struct perf_event *child_event,
10046                                struct task_struct *child)
10047 {
10048         struct perf_event *parent_event = child_event->parent;
10049         u64 child_val;
10050
10051         if (child_event->attr.inherit_stat)
10052                 perf_event_read_event(child_event, child);
10053
10054         child_val = perf_event_count(child_event);
10055
10056         /*
10057          * Add back the child's count to the parent's count:
10058          */
10059         atomic64_add(child_val, &parent_event->child_count);
10060         atomic64_add(child_event->total_time_enabled,
10061                      &parent_event->child_total_time_enabled);
10062         atomic64_add(child_event->total_time_running,
10063                      &parent_event->child_total_time_running);
10064 }
10065
10066 static void
10067 perf_event_exit_event(struct perf_event *child_event,
10068                       struct perf_event_context *child_ctx,
10069                       struct task_struct *child)
10070 {
10071         struct perf_event *parent_event = child_event->parent;
10072
10073         /*
10074          * Do not destroy the 'original' grouping; because of the context
10075          * switch optimization the original events could've ended up in a
10076          * random child task.
10077          *
10078          * If we were to destroy the original group, all group related
10079          * operations would cease to function properly after this random
10080          * child dies.
10081          *
10082          * Do destroy all inherited groups, we don't care about those
10083          * and being thorough is better.
10084          */
10085         raw_spin_lock_irq(&child_ctx->lock);
10086         WARN_ON_ONCE(child_ctx->is_active);
10087
10088         if (parent_event)
10089                 perf_group_detach(child_event);
10090         list_del_event(child_event, child_ctx);
10091         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10092         raw_spin_unlock_irq(&child_ctx->lock);
10093
10094         /*
10095          * Parent events are governed by their filedesc, retain them.
10096          */
10097         if (!parent_event) {
10098                 perf_event_wakeup(child_event);
10099                 return;
10100         }
10101         /*
10102          * Child events can be cleaned up.
10103          */
10104
10105         sync_child_event(child_event, child);
10106
10107         /*
10108          * Remove this event from the parent's list
10109          */
10110         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10111         mutex_lock(&parent_event->child_mutex);
10112         list_del_init(&child_event->child_list);
10113         mutex_unlock(&parent_event->child_mutex);
10114
10115         /*
10116          * Kick perf_poll() for is_event_hup().
10117          */
10118         perf_event_wakeup(parent_event);
10119         free_event(child_event);
10120         put_event(parent_event);
10121 }
10122
10123 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10124 {
10125         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10126         struct perf_event *child_event, *next;
10127
10128         WARN_ON_ONCE(child != current);
10129
10130         child_ctx = perf_pin_task_context(child, ctxn);
10131         if (!child_ctx)
10132                 return;
10133
10134         /*
10135          * In order to reduce the amount of tricky in ctx tear-down, we hold
10136          * ctx::mutex over the entire thing. This serializes against almost
10137          * everything that wants to access the ctx.
10138          *
10139          * The exception is sys_perf_event_open() /
10140          * perf_event_create_kernel_count() which does find_get_context()
10141          * without ctx::mutex (it cannot because of the move_group double mutex
10142          * lock thing). See the comments in perf_install_in_context().
10143          */
10144         mutex_lock(&child_ctx->mutex);
10145
10146         /*
10147          * In a single ctx::lock section, de-schedule the events and detach the
10148          * context from the task such that we cannot ever get it scheduled back
10149          * in.
10150          */
10151         raw_spin_lock_irq(&child_ctx->lock);
10152         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10153
10154         /*
10155          * Now that the context is inactive, destroy the task <-> ctx relation
10156          * and mark the context dead.
10157          */
10158         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10159         put_ctx(child_ctx); /* cannot be last */
10160         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10161         put_task_struct(current); /* cannot be last */
10162
10163         clone_ctx = unclone_ctx(child_ctx);
10164         raw_spin_unlock_irq(&child_ctx->lock);
10165
10166         if (clone_ctx)
10167                 put_ctx(clone_ctx);
10168
10169         /*
10170          * Report the task dead after unscheduling the events so that we
10171          * won't get any samples after PERF_RECORD_EXIT. We can however still
10172          * get a few PERF_RECORD_READ events.
10173          */
10174         perf_event_task(child, child_ctx, 0);
10175
10176         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10177                 perf_event_exit_event(child_event, child_ctx, child);
10178
10179         mutex_unlock(&child_ctx->mutex);
10180
10181         put_ctx(child_ctx);
10182 }
10183
10184 /*
10185  * When a child task exits, feed back event values to parent events.
10186  *
10187  * Can be called with cred_guard_mutex held when called from
10188  * install_exec_creds().
10189  */
10190 void perf_event_exit_task(struct task_struct *child)
10191 {
10192         struct perf_event *event, *tmp;
10193         int ctxn;
10194
10195         mutex_lock(&child->perf_event_mutex);
10196         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10197                                  owner_entry) {
10198                 list_del_init(&event->owner_entry);
10199
10200                 /*
10201                  * Ensure the list deletion is visible before we clear
10202                  * the owner, closes a race against perf_release() where
10203                  * we need to serialize on the owner->perf_event_mutex.
10204                  */
10205                 smp_store_release(&event->owner, NULL);
10206         }
10207         mutex_unlock(&child->perf_event_mutex);
10208
10209         for_each_task_context_nr(ctxn)
10210                 perf_event_exit_task_context(child, ctxn);
10211
10212         /*
10213          * The perf_event_exit_task_context calls perf_event_task
10214          * with child's task_ctx, which generates EXIT events for
10215          * child contexts and sets child->perf_event_ctxp[] to NULL.
10216          * At this point we need to send EXIT events to cpu contexts.
10217          */
10218         perf_event_task(child, NULL, 0);
10219 }
10220
10221 static void perf_free_event(struct perf_event *event,
10222                             struct perf_event_context *ctx)
10223 {
10224         struct perf_event *parent = event->parent;
10225
10226         if (WARN_ON_ONCE(!parent))
10227                 return;
10228
10229         mutex_lock(&parent->child_mutex);
10230         list_del_init(&event->child_list);
10231         mutex_unlock(&parent->child_mutex);
10232
10233         put_event(parent);
10234
10235         raw_spin_lock_irq(&ctx->lock);
10236         perf_group_detach(event);
10237         list_del_event(event, ctx);
10238         raw_spin_unlock_irq(&ctx->lock);
10239         free_event(event);
10240 }
10241
10242 /*
10243  * Free an unexposed, unused context as created by inheritance by
10244  * perf_event_init_task below, used by fork() in case of fail.
10245  *
10246  * Not all locks are strictly required, but take them anyway to be nice and
10247  * help out with the lockdep assertions.
10248  */
10249 void perf_event_free_task(struct task_struct *task)
10250 {
10251         struct perf_event_context *ctx;
10252         struct perf_event *event, *tmp;
10253         int ctxn;
10254
10255         for_each_task_context_nr(ctxn) {
10256                 ctx = task->perf_event_ctxp[ctxn];
10257                 if (!ctx)
10258                         continue;
10259
10260                 mutex_lock(&ctx->mutex);
10261 again:
10262                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10263                                 group_entry)
10264                         perf_free_event(event, ctx);
10265
10266                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10267                                 group_entry)
10268                         perf_free_event(event, ctx);
10269
10270                 if (!list_empty(&ctx->pinned_groups) ||
10271                                 !list_empty(&ctx->flexible_groups))
10272                         goto again;
10273
10274                 mutex_unlock(&ctx->mutex);
10275
10276                 put_ctx(ctx);
10277         }
10278 }
10279
10280 void perf_event_delayed_put(struct task_struct *task)
10281 {
10282         int ctxn;
10283
10284         for_each_task_context_nr(ctxn)
10285                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10286 }
10287
10288 struct file *perf_event_get(unsigned int fd)
10289 {
10290         struct file *file;
10291
10292         file = fget_raw(fd);
10293         if (!file)
10294                 return ERR_PTR(-EBADF);
10295
10296         if (file->f_op != &perf_fops) {
10297                 fput(file);
10298                 return ERR_PTR(-EBADF);
10299         }
10300
10301         return file;
10302 }
10303
10304 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10305 {
10306         if (!event)
10307                 return ERR_PTR(-EINVAL);
10308
10309         return &event->attr;
10310 }
10311
10312 /*
10313  * inherit a event from parent task to child task:
10314  */
10315 static struct perf_event *
10316 inherit_event(struct perf_event *parent_event,
10317               struct task_struct *parent,
10318               struct perf_event_context *parent_ctx,
10319               struct task_struct *child,
10320               struct perf_event *group_leader,
10321               struct perf_event_context *child_ctx)
10322 {
10323         enum perf_event_active_state parent_state = parent_event->state;
10324         struct perf_event *child_event;
10325         unsigned long flags;
10326
10327         /*
10328          * Instead of creating recursive hierarchies of events,
10329          * we link inherited events back to the original parent,
10330          * which has a filp for sure, which we use as the reference
10331          * count:
10332          */
10333         if (parent_event->parent)
10334                 parent_event = parent_event->parent;
10335
10336         child_event = perf_event_alloc(&parent_event->attr,
10337                                            parent_event->cpu,
10338                                            child,
10339                                            group_leader, parent_event,
10340                                            NULL, NULL, -1);
10341         if (IS_ERR(child_event))
10342                 return child_event;
10343
10344         /*
10345          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10346          * must be under the same lock in order to serialize against
10347          * perf_event_release_kernel(), such that either we must observe
10348          * is_orphaned_event() or they will observe us on the child_list.
10349          */
10350         mutex_lock(&parent_event->child_mutex);
10351         if (is_orphaned_event(parent_event) ||
10352             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10353                 mutex_unlock(&parent_event->child_mutex);
10354                 free_event(child_event);
10355                 return NULL;
10356         }
10357
10358         get_ctx(child_ctx);
10359
10360         /*
10361          * Make the child state follow the state of the parent event,
10362          * not its attr.disabled bit.  We hold the parent's mutex,
10363          * so we won't race with perf_event_{en, dis}able_family.
10364          */
10365         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10366                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10367         else
10368                 child_event->state = PERF_EVENT_STATE_OFF;
10369
10370         if (parent_event->attr.freq) {
10371                 u64 sample_period = parent_event->hw.sample_period;
10372                 struct hw_perf_event *hwc = &child_event->hw;
10373
10374                 hwc->sample_period = sample_period;
10375                 hwc->last_period   = sample_period;
10376
10377                 local64_set(&hwc->period_left, sample_period);
10378         }
10379
10380         child_event->ctx = child_ctx;
10381         child_event->overflow_handler = parent_event->overflow_handler;
10382         child_event->overflow_handler_context
10383                 = parent_event->overflow_handler_context;
10384
10385         /*
10386          * Precalculate sample_data sizes
10387          */
10388         perf_event__header_size(child_event);
10389         perf_event__id_header_size(child_event);
10390
10391         /*
10392          * Link it up in the child's context:
10393          */
10394         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10395         add_event_to_ctx(child_event, child_ctx);
10396         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10397
10398         /*
10399          * Link this into the parent event's child list
10400          */
10401         list_add_tail(&child_event->child_list, &parent_event->child_list);
10402         mutex_unlock(&parent_event->child_mutex);
10403
10404         return child_event;
10405 }
10406
10407 static int inherit_group(struct perf_event *parent_event,
10408               struct task_struct *parent,
10409               struct perf_event_context *parent_ctx,
10410               struct task_struct *child,
10411               struct perf_event_context *child_ctx)
10412 {
10413         struct perf_event *leader;
10414         struct perf_event *sub;
10415         struct perf_event *child_ctr;
10416
10417         leader = inherit_event(parent_event, parent, parent_ctx,
10418                                  child, NULL, child_ctx);
10419         if (IS_ERR(leader))
10420                 return PTR_ERR(leader);
10421         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10422                 child_ctr = inherit_event(sub, parent, parent_ctx,
10423                                             child, leader, child_ctx);
10424                 if (IS_ERR(child_ctr))
10425                         return PTR_ERR(child_ctr);
10426         }
10427         return 0;
10428 }
10429
10430 static int
10431 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10432                    struct perf_event_context *parent_ctx,
10433                    struct task_struct *child, int ctxn,
10434                    int *inherited_all)
10435 {
10436         int ret;
10437         struct perf_event_context *child_ctx;
10438
10439         if (!event->attr.inherit) {
10440                 *inherited_all = 0;
10441                 return 0;
10442         }
10443
10444         child_ctx = child->perf_event_ctxp[ctxn];
10445         if (!child_ctx) {
10446                 /*
10447                  * This is executed from the parent task context, so
10448                  * inherit events that have been marked for cloning.
10449                  * First allocate and initialize a context for the
10450                  * child.
10451                  */
10452
10453                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10454                 if (!child_ctx)
10455                         return -ENOMEM;
10456
10457                 child->perf_event_ctxp[ctxn] = child_ctx;
10458         }
10459
10460         ret = inherit_group(event, parent, parent_ctx,
10461                             child, child_ctx);
10462
10463         if (ret)
10464                 *inherited_all = 0;
10465
10466         return ret;
10467 }
10468
10469 /*
10470  * Initialize the perf_event context in task_struct
10471  */
10472 static int perf_event_init_context(struct task_struct *child, int ctxn)
10473 {
10474         struct perf_event_context *child_ctx, *parent_ctx;
10475         struct perf_event_context *cloned_ctx;
10476         struct perf_event *event;
10477         struct task_struct *parent = current;
10478         int inherited_all = 1;
10479         unsigned long flags;
10480         int ret = 0;
10481
10482         if (likely(!parent->perf_event_ctxp[ctxn]))
10483                 return 0;
10484
10485         /*
10486          * If the parent's context is a clone, pin it so it won't get
10487          * swapped under us.
10488          */
10489         parent_ctx = perf_pin_task_context(parent, ctxn);
10490         if (!parent_ctx)
10491                 return 0;
10492
10493         /*
10494          * No need to check if parent_ctx != NULL here; since we saw
10495          * it non-NULL earlier, the only reason for it to become NULL
10496          * is if we exit, and since we're currently in the middle of
10497          * a fork we can't be exiting at the same time.
10498          */
10499
10500         /*
10501          * Lock the parent list. No need to lock the child - not PID
10502          * hashed yet and not running, so nobody can access it.
10503          */
10504         mutex_lock(&parent_ctx->mutex);
10505
10506         /*
10507          * We dont have to disable NMIs - we are only looking at
10508          * the list, not manipulating it:
10509          */
10510         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10511                 ret = inherit_task_group(event, parent, parent_ctx,
10512                                          child, ctxn, &inherited_all);
10513                 if (ret)
10514                         break;
10515         }
10516
10517         /*
10518          * We can't hold ctx->lock when iterating the ->flexible_group list due
10519          * to allocations, but we need to prevent rotation because
10520          * rotate_ctx() will change the list from interrupt context.
10521          */
10522         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10523         parent_ctx->rotate_disable = 1;
10524         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10525
10526         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10527                 ret = inherit_task_group(event, parent, parent_ctx,
10528                                          child, ctxn, &inherited_all);
10529                 if (ret)
10530                         break;
10531         }
10532
10533         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10534         parent_ctx->rotate_disable = 0;
10535
10536         child_ctx = child->perf_event_ctxp[ctxn];
10537
10538         if (child_ctx && inherited_all) {
10539                 /*
10540                  * Mark the child context as a clone of the parent
10541                  * context, or of whatever the parent is a clone of.
10542                  *
10543                  * Note that if the parent is a clone, the holding of
10544                  * parent_ctx->lock avoids it from being uncloned.
10545                  */
10546                 cloned_ctx = parent_ctx->parent_ctx;
10547                 if (cloned_ctx) {
10548                         child_ctx->parent_ctx = cloned_ctx;
10549                         child_ctx->parent_gen = parent_ctx->parent_gen;
10550                 } else {
10551                         child_ctx->parent_ctx = parent_ctx;
10552                         child_ctx->parent_gen = parent_ctx->generation;
10553                 }
10554                 get_ctx(child_ctx->parent_ctx);
10555         }
10556
10557         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10558         mutex_unlock(&parent_ctx->mutex);
10559
10560         perf_unpin_context(parent_ctx);
10561         put_ctx(parent_ctx);
10562
10563         return ret;
10564 }
10565
10566 /*
10567  * Initialize the perf_event context in task_struct
10568  */
10569 int perf_event_init_task(struct task_struct *child)
10570 {
10571         int ctxn, ret;
10572
10573         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10574         mutex_init(&child->perf_event_mutex);
10575         INIT_LIST_HEAD(&child->perf_event_list);
10576
10577         for_each_task_context_nr(ctxn) {
10578                 ret = perf_event_init_context(child, ctxn);
10579                 if (ret) {
10580                         perf_event_free_task(child);
10581                         return ret;
10582                 }
10583         }
10584
10585         return 0;
10586 }
10587
10588 static void __init perf_event_init_all_cpus(void)
10589 {
10590         struct swevent_htable *swhash;
10591         int cpu;
10592
10593         for_each_possible_cpu(cpu) {
10594                 swhash = &per_cpu(swevent_htable, cpu);
10595                 mutex_init(&swhash->hlist_mutex);
10596                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10597
10598                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10599                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10600
10601                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10602         }
10603 }
10604
10605 int perf_event_init_cpu(unsigned int cpu)
10606 {
10607         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10608
10609         mutex_lock(&swhash->hlist_mutex);
10610         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10611                 struct swevent_hlist *hlist;
10612
10613                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10614                 WARN_ON(!hlist);
10615                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10616         }
10617         mutex_unlock(&swhash->hlist_mutex);
10618         return 0;
10619 }
10620
10621 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10622 static void __perf_event_exit_context(void *__info)
10623 {
10624         struct perf_event_context *ctx = __info;
10625         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10626         struct perf_event *event;
10627
10628         raw_spin_lock(&ctx->lock);
10629         list_for_each_entry(event, &ctx->event_list, event_entry)
10630                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10631         raw_spin_unlock(&ctx->lock);
10632 }
10633
10634 static void perf_event_exit_cpu_context(int cpu)
10635 {
10636         struct perf_event_context *ctx;
10637         struct pmu *pmu;
10638         int idx;
10639
10640         idx = srcu_read_lock(&pmus_srcu);
10641         list_for_each_entry_rcu(pmu, &pmus, entry) {
10642                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10643
10644                 mutex_lock(&ctx->mutex);
10645                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10646                 mutex_unlock(&ctx->mutex);
10647         }
10648         srcu_read_unlock(&pmus_srcu, idx);
10649 }
10650 #else
10651
10652 static void perf_event_exit_cpu_context(int cpu) { }
10653
10654 #endif
10655
10656 int perf_event_exit_cpu(unsigned int cpu)
10657 {
10658         perf_event_exit_cpu_context(cpu);
10659         return 0;
10660 }
10661
10662 static int
10663 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10664 {
10665         int cpu;
10666
10667         for_each_online_cpu(cpu)
10668                 perf_event_exit_cpu(cpu);
10669
10670         return NOTIFY_OK;
10671 }
10672
10673 /*
10674  * Run the perf reboot notifier at the very last possible moment so that
10675  * the generic watchdog code runs as long as possible.
10676  */
10677 static struct notifier_block perf_reboot_notifier = {
10678         .notifier_call = perf_reboot,
10679         .priority = INT_MIN,
10680 };
10681
10682 void __init perf_event_init(void)
10683 {
10684         int ret;
10685
10686         idr_init(&pmu_idr);
10687
10688         perf_event_init_all_cpus();
10689         init_srcu_struct(&pmus_srcu);
10690         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10691         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10692         perf_pmu_register(&perf_task_clock, NULL, -1);
10693         perf_tp_register();
10694         perf_event_init_cpu(smp_processor_id());
10695         register_reboot_notifier(&perf_reboot_notifier);
10696
10697         ret = init_hw_breakpoint();
10698         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10699
10700         /*
10701          * Build time assertion that we keep the data_head at the intended
10702          * location.  IOW, validation we got the __reserved[] size right.
10703          */
10704         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10705                      != 1024);
10706 }
10707
10708 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10709                               char *page)
10710 {
10711         struct perf_pmu_events_attr *pmu_attr =
10712                 container_of(attr, struct perf_pmu_events_attr, attr);
10713
10714         if (pmu_attr->event_str)
10715                 return sprintf(page, "%s\n", pmu_attr->event_str);
10716
10717         return 0;
10718 }
10719 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10720
10721 static int __init perf_event_sysfs_init(void)
10722 {
10723         struct pmu *pmu;
10724         int ret;
10725
10726         mutex_lock(&pmus_lock);
10727
10728         ret = bus_register(&pmu_bus);
10729         if (ret)
10730                 goto unlock;
10731
10732         list_for_each_entry(pmu, &pmus, entry) {
10733                 if (!pmu->name || pmu->type < 0)
10734                         continue;
10735
10736                 ret = pmu_dev_alloc(pmu);
10737                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10738         }
10739         pmu_bus_running = 1;
10740         ret = 0;
10741
10742 unlock:
10743         mutex_unlock(&pmus_lock);
10744
10745         return ret;
10746 }
10747 device_initcall(perf_event_sysfs_init);
10748
10749 #ifdef CONFIG_CGROUP_PERF
10750 static struct cgroup_subsys_state *
10751 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10752 {
10753         struct perf_cgroup *jc;
10754
10755         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10756         if (!jc)
10757                 return ERR_PTR(-ENOMEM);
10758
10759         jc->info = alloc_percpu(struct perf_cgroup_info);
10760         if (!jc->info) {
10761                 kfree(jc);
10762                 return ERR_PTR(-ENOMEM);
10763         }
10764
10765         return &jc->css;
10766 }
10767
10768 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10769 {
10770         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10771
10772         free_percpu(jc->info);
10773         kfree(jc);
10774 }
10775
10776 static int __perf_cgroup_move(void *info)
10777 {
10778         struct task_struct *task = info;
10779         rcu_read_lock();
10780         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10781         rcu_read_unlock();
10782         return 0;
10783 }
10784
10785 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10786 {
10787         struct task_struct *task;
10788         struct cgroup_subsys_state *css;
10789
10790         cgroup_taskset_for_each(task, css, tset)
10791                 task_function_call(task, __perf_cgroup_move, task);
10792 }
10793
10794 struct cgroup_subsys perf_event_cgrp_subsys = {
10795         .css_alloc      = perf_cgroup_css_alloc,
10796         .css_free       = perf_cgroup_css_free,
10797         .attach         = perf_cgroup_attach,
10798 };
10799 #endif /* CONFIG_CGROUP_PERF */