]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - mm/filemap.c
Apply preempt_rt patch-4.9-rt1.patch.xz
[zynq/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                         if (node)
136                                 workingset_node_shadows_dec(node);
137                 } else {
138                         /* DAX can replace empty locked entry with a hole */
139                         WARN_ON_ONCE(p !=
140                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141                                          RADIX_DAX_ENTRY_LOCK));
142                         /* DAX accounts exceptional entries as normal pages */
143                         if (node)
144                                 workingset_node_pages_dec(node);
145                         /* Wakeup waiters for exceptional entry lock */
146                         dax_wake_mapping_entry_waiter(mapping, page->index,
147                                                       false);
148                 }
149         }
150         radix_tree_replace_slot(slot, page);
151         mapping->nrpages++;
152         if (node) {
153                 workingset_node_pages_inc(node);
154                 /*
155                  * Don't track node that contains actual pages.
156                  *
157                  * Avoid acquiring the list_lru lock if already
158                  * untracked.  The list_empty() test is safe as
159                  * node->private_list is protected by
160                  * mapping->tree_lock.
161                  */
162                 if (!list_empty(&node->private_list)) {
163                         local_lock(workingset_shadow_lock);
164                         list_lru_del(&__workingset_shadow_nodes,
165                                      &node->private_list);
166                         local_unlock(workingset_shadow_lock);
167                 }
168         }
169         return 0;
170 }
171
172 static void page_cache_tree_delete(struct address_space *mapping,
173                                    struct page *page, void *shadow)
174 {
175         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
176
177         VM_BUG_ON_PAGE(!PageLocked(page), page);
178         VM_BUG_ON_PAGE(PageTail(page), page);
179         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
180
181         for (i = 0; i < nr; i++) {
182                 struct radix_tree_node *node;
183                 void **slot;
184
185                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
186                                     &node, &slot);
187
188                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
189
190                 if (!node) {
191                         VM_BUG_ON_PAGE(nr != 1, page);
192                         /*
193                          * We need a node to properly account shadow
194                          * entries. Don't plant any without. XXX
195                          */
196                         shadow = NULL;
197                 }
198
199                 radix_tree_replace_slot(slot, shadow);
200
201                 if (!node)
202                         break;
203
204                 workingset_node_pages_dec(node);
205                 if (shadow)
206                         workingset_node_shadows_inc(node);
207                 else
208                         if (__radix_tree_delete_node(&mapping->page_tree, node))
209                                 continue;
210
211                 /*
212                  * Track node that only contains shadow entries. DAX mappings
213                  * contain no shadow entries and may contain other exceptional
214                  * entries so skip those.
215                  *
216                  * Avoid acquiring the list_lru lock if already tracked.
217                  * The list_empty() test is safe as node->private_list is
218                  * protected by mapping->tree_lock.
219                  */
220                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
221                                 list_empty(&node->private_list)) {
222                         node->private_data = mapping;
223                         local_lock(workingset_shadow_lock);
224                         list_lru_add(&__workingset_shadow_nodes,
225                                      &node->private_list);
226                         local_unlock(workingset_shadow_lock);
227                 }
228         }
229
230         if (shadow) {
231                 mapping->nrexceptional += nr;
232                 /*
233                  * Make sure the nrexceptional update is committed before
234                  * the nrpages update so that final truncate racing
235                  * with reclaim does not see both counters 0 at the
236                  * same time and miss a shadow entry.
237                  */
238                 smp_wmb();
239         }
240         mapping->nrpages -= nr;
241 }
242
243 /*
244  * Delete a page from the page cache and free it. Caller has to make
245  * sure the page is locked and that nobody else uses it - or that usage
246  * is safe.  The caller must hold the mapping's tree_lock.
247  */
248 void __delete_from_page_cache(struct page *page, void *shadow)
249 {
250         struct address_space *mapping = page->mapping;
251         int nr = hpage_nr_pages(page);
252
253         trace_mm_filemap_delete_from_page_cache(page);
254         /*
255          * if we're uptodate, flush out into the cleancache, otherwise
256          * invalidate any existing cleancache entries.  We can't leave
257          * stale data around in the cleancache once our page is gone
258          */
259         if (PageUptodate(page) && PageMappedToDisk(page))
260                 cleancache_put_page(page);
261         else
262                 cleancache_invalidate_page(mapping, page);
263
264         VM_BUG_ON_PAGE(PageTail(page), page);
265         VM_BUG_ON_PAGE(page_mapped(page), page);
266         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
267                 int mapcount;
268
269                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
270                          current->comm, page_to_pfn(page));
271                 dump_page(page, "still mapped when deleted");
272                 dump_stack();
273                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
274
275                 mapcount = page_mapcount(page);
276                 if (mapping_exiting(mapping) &&
277                     page_count(page) >= mapcount + 2) {
278                         /*
279                          * All vmas have already been torn down, so it's
280                          * a good bet that actually the page is unmapped,
281                          * and we'd prefer not to leak it: if we're wrong,
282                          * some other bad page check should catch it later.
283                          */
284                         page_mapcount_reset(page);
285                         page_ref_sub(page, mapcount);
286                 }
287         }
288
289         page_cache_tree_delete(mapping, page, shadow);
290
291         page->mapping = NULL;
292         /* Leave page->index set: truncation lookup relies upon it */
293
294         /* hugetlb pages do not participate in page cache accounting. */
295         if (!PageHuge(page))
296                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
297         if (PageSwapBacked(page)) {
298                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
299                 if (PageTransHuge(page))
300                         __dec_node_page_state(page, NR_SHMEM_THPS);
301         } else {
302                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
303         }
304
305         /*
306          * At this point page must be either written or cleaned by truncate.
307          * Dirty page here signals a bug and loss of unwritten data.
308          *
309          * This fixes dirty accounting after removing the page entirely but
310          * leaves PageDirty set: it has no effect for truncated page and
311          * anyway will be cleared before returning page into buddy allocator.
312          */
313         if (WARN_ON_ONCE(PageDirty(page)))
314                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
315 }
316
317 /**
318  * delete_from_page_cache - delete page from page cache
319  * @page: the page which the kernel is trying to remove from page cache
320  *
321  * This must be called only on pages that have been verified to be in the page
322  * cache and locked.  It will never put the page into the free list, the caller
323  * has a reference on the page.
324  */
325 void delete_from_page_cache(struct page *page)
326 {
327         struct address_space *mapping = page_mapping(page);
328         unsigned long flags;
329         void (*freepage)(struct page *);
330
331         BUG_ON(!PageLocked(page));
332
333         freepage = mapping->a_ops->freepage;
334
335         spin_lock_irqsave(&mapping->tree_lock, flags);
336         __delete_from_page_cache(page, NULL);
337         spin_unlock_irqrestore(&mapping->tree_lock, flags);
338
339         if (freepage)
340                 freepage(page);
341
342         if (PageTransHuge(page) && !PageHuge(page)) {
343                 page_ref_sub(page, HPAGE_PMD_NR);
344                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
345         } else {
346                 put_page(page);
347         }
348 }
349 EXPORT_SYMBOL(delete_from_page_cache);
350
351 int filemap_check_errors(struct address_space *mapping)
352 {
353         int ret = 0;
354         /* Check for outstanding write errors */
355         if (test_bit(AS_ENOSPC, &mapping->flags) &&
356             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
357                 ret = -ENOSPC;
358         if (test_bit(AS_EIO, &mapping->flags) &&
359             test_and_clear_bit(AS_EIO, &mapping->flags))
360                 ret = -EIO;
361         return ret;
362 }
363 EXPORT_SYMBOL(filemap_check_errors);
364
365 /**
366  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
367  * @mapping:    address space structure to write
368  * @start:      offset in bytes where the range starts
369  * @end:        offset in bytes where the range ends (inclusive)
370  * @sync_mode:  enable synchronous operation
371  *
372  * Start writeback against all of a mapping's dirty pages that lie
373  * within the byte offsets <start, end> inclusive.
374  *
375  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
376  * opposed to a regular memory cleansing writeback.  The difference between
377  * these two operations is that if a dirty page/buffer is encountered, it must
378  * be waited upon, and not just skipped over.
379  */
380 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
381                                 loff_t end, int sync_mode)
382 {
383         int ret;
384         struct writeback_control wbc = {
385                 .sync_mode = sync_mode,
386                 .nr_to_write = LONG_MAX,
387                 .range_start = start,
388                 .range_end = end,
389         };
390
391         if (!mapping_cap_writeback_dirty(mapping))
392                 return 0;
393
394         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
395         ret = do_writepages(mapping, &wbc);
396         wbc_detach_inode(&wbc);
397         return ret;
398 }
399
400 static inline int __filemap_fdatawrite(struct address_space *mapping,
401         int sync_mode)
402 {
403         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
404 }
405
406 int filemap_fdatawrite(struct address_space *mapping)
407 {
408         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
409 }
410 EXPORT_SYMBOL(filemap_fdatawrite);
411
412 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
413                                 loff_t end)
414 {
415         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
416 }
417 EXPORT_SYMBOL(filemap_fdatawrite_range);
418
419 /**
420  * filemap_flush - mostly a non-blocking flush
421  * @mapping:    target address_space
422  *
423  * This is a mostly non-blocking flush.  Not suitable for data-integrity
424  * purposes - I/O may not be started against all dirty pages.
425  */
426 int filemap_flush(struct address_space *mapping)
427 {
428         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
429 }
430 EXPORT_SYMBOL(filemap_flush);
431
432 static int __filemap_fdatawait_range(struct address_space *mapping,
433                                      loff_t start_byte, loff_t end_byte)
434 {
435         pgoff_t index = start_byte >> PAGE_SHIFT;
436         pgoff_t end = end_byte >> PAGE_SHIFT;
437         struct pagevec pvec;
438         int nr_pages;
439         int ret = 0;
440
441         if (end_byte < start_byte)
442                 goto out;
443
444         pagevec_init(&pvec, 0);
445         while ((index <= end) &&
446                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447                         PAGECACHE_TAG_WRITEBACK,
448                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
449                 unsigned i;
450
451                 for (i = 0; i < nr_pages; i++) {
452                         struct page *page = pvec.pages[i];
453
454                         /* until radix tree lookup accepts end_index */
455                         if (page->index > end)
456                                 continue;
457
458                         wait_on_page_writeback(page);
459                         if (TestClearPageError(page))
460                                 ret = -EIO;
461                 }
462                 pagevec_release(&pvec);
463                 cond_resched();
464         }
465 out:
466         return ret;
467 }
468
469 /**
470  * filemap_fdatawait_range - wait for writeback to complete
471  * @mapping:            address space structure to wait for
472  * @start_byte:         offset in bytes where the range starts
473  * @end_byte:           offset in bytes where the range ends (inclusive)
474  *
475  * Walk the list of under-writeback pages of the given address space
476  * in the given range and wait for all of them.  Check error status of
477  * the address space and return it.
478  *
479  * Since the error status of the address space is cleared by this function,
480  * callers are responsible for checking the return value and handling and/or
481  * reporting the error.
482  */
483 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
484                             loff_t end_byte)
485 {
486         int ret, ret2;
487
488         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
489         ret2 = filemap_check_errors(mapping);
490         if (!ret)
491                 ret = ret2;
492
493         return ret;
494 }
495 EXPORT_SYMBOL(filemap_fdatawait_range);
496
497 /**
498  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
499  * @mapping: address space structure to wait for
500  *
501  * Walk the list of under-writeback pages of the given address space
502  * and wait for all of them.  Unlike filemap_fdatawait(), this function
503  * does not clear error status of the address space.
504  *
505  * Use this function if callers don't handle errors themselves.  Expected
506  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
507  * fsfreeze(8)
508  */
509 void filemap_fdatawait_keep_errors(struct address_space *mapping)
510 {
511         loff_t i_size = i_size_read(mapping->host);
512
513         if (i_size == 0)
514                 return;
515
516         __filemap_fdatawait_range(mapping, 0, i_size - 1);
517 }
518
519 /**
520  * filemap_fdatawait - wait for all under-writeback pages to complete
521  * @mapping: address space structure to wait for
522  *
523  * Walk the list of under-writeback pages of the given address space
524  * and wait for all of them.  Check error status of the address space
525  * and return it.
526  *
527  * Since the error status of the address space is cleared by this function,
528  * callers are responsible for checking the return value and handling and/or
529  * reporting the error.
530  */
531 int filemap_fdatawait(struct address_space *mapping)
532 {
533         loff_t i_size = i_size_read(mapping->host);
534
535         if (i_size == 0)
536                 return 0;
537
538         return filemap_fdatawait_range(mapping, 0, i_size - 1);
539 }
540 EXPORT_SYMBOL(filemap_fdatawait);
541
542 int filemap_write_and_wait(struct address_space *mapping)
543 {
544         int err = 0;
545
546         if ((!dax_mapping(mapping) && mapping->nrpages) ||
547             (dax_mapping(mapping) && mapping->nrexceptional)) {
548                 err = filemap_fdatawrite(mapping);
549                 /*
550                  * Even if the above returned error, the pages may be
551                  * written partially (e.g. -ENOSPC), so we wait for it.
552                  * But the -EIO is special case, it may indicate the worst
553                  * thing (e.g. bug) happened, so we avoid waiting for it.
554                  */
555                 if (err != -EIO) {
556                         int err2 = filemap_fdatawait(mapping);
557                         if (!err)
558                                 err = err2;
559                 }
560         } else {
561                 err = filemap_check_errors(mapping);
562         }
563         return err;
564 }
565 EXPORT_SYMBOL(filemap_write_and_wait);
566
567 /**
568  * filemap_write_and_wait_range - write out & wait on a file range
569  * @mapping:    the address_space for the pages
570  * @lstart:     offset in bytes where the range starts
571  * @lend:       offset in bytes where the range ends (inclusive)
572  *
573  * Write out and wait upon file offsets lstart->lend, inclusive.
574  *
575  * Note that `lend' is inclusive (describes the last byte to be written) so
576  * that this function can be used to write to the very end-of-file (end = -1).
577  */
578 int filemap_write_and_wait_range(struct address_space *mapping,
579                                  loff_t lstart, loff_t lend)
580 {
581         int err = 0;
582
583         if ((!dax_mapping(mapping) && mapping->nrpages) ||
584             (dax_mapping(mapping) && mapping->nrexceptional)) {
585                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
586                                                  WB_SYNC_ALL);
587                 /* See comment of filemap_write_and_wait() */
588                 if (err != -EIO) {
589                         int err2 = filemap_fdatawait_range(mapping,
590                                                 lstart, lend);
591                         if (!err)
592                                 err = err2;
593                 }
594         } else {
595                 err = filemap_check_errors(mapping);
596         }
597         return err;
598 }
599 EXPORT_SYMBOL(filemap_write_and_wait_range);
600
601 /**
602  * replace_page_cache_page - replace a pagecache page with a new one
603  * @old:        page to be replaced
604  * @new:        page to replace with
605  * @gfp_mask:   allocation mode
606  *
607  * This function replaces a page in the pagecache with a new one.  On
608  * success it acquires the pagecache reference for the new page and
609  * drops it for the old page.  Both the old and new pages must be
610  * locked.  This function does not add the new page to the LRU, the
611  * caller must do that.
612  *
613  * The remove + add is atomic.  The only way this function can fail is
614  * memory allocation failure.
615  */
616 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
617 {
618         int error;
619
620         VM_BUG_ON_PAGE(!PageLocked(old), old);
621         VM_BUG_ON_PAGE(!PageLocked(new), new);
622         VM_BUG_ON_PAGE(new->mapping, new);
623
624         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
625         if (!error) {
626                 struct address_space *mapping = old->mapping;
627                 void (*freepage)(struct page *);
628                 unsigned long flags;
629
630                 pgoff_t offset = old->index;
631                 freepage = mapping->a_ops->freepage;
632
633                 get_page(new);
634                 new->mapping = mapping;
635                 new->index = offset;
636
637                 spin_lock_irqsave(&mapping->tree_lock, flags);
638                 __delete_from_page_cache(old, NULL);
639                 error = page_cache_tree_insert(mapping, new, NULL);
640                 BUG_ON(error);
641
642                 /*
643                  * hugetlb pages do not participate in page cache accounting.
644                  */
645                 if (!PageHuge(new))
646                         __inc_node_page_state(new, NR_FILE_PAGES);
647                 if (PageSwapBacked(new))
648                         __inc_node_page_state(new, NR_SHMEM);
649                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
650                 mem_cgroup_migrate(old, new);
651                 radix_tree_preload_end();
652                 if (freepage)
653                         freepage(old);
654                 put_page(old);
655         }
656
657         return error;
658 }
659 EXPORT_SYMBOL_GPL(replace_page_cache_page);
660
661 static int __add_to_page_cache_locked(struct page *page,
662                                       struct address_space *mapping,
663                                       pgoff_t offset, gfp_t gfp_mask,
664                                       void **shadowp)
665 {
666         int huge = PageHuge(page);
667         struct mem_cgroup *memcg;
668         int error;
669
670         VM_BUG_ON_PAGE(!PageLocked(page), page);
671         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
672
673         if (!huge) {
674                 error = mem_cgroup_try_charge(page, current->mm,
675                                               gfp_mask, &memcg, false);
676                 if (error)
677                         return error;
678         }
679
680         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
681         if (error) {
682                 if (!huge)
683                         mem_cgroup_cancel_charge(page, memcg, false);
684                 return error;
685         }
686
687         get_page(page);
688         page->mapping = mapping;
689         page->index = offset;
690
691         spin_lock_irq(&mapping->tree_lock);
692         error = page_cache_tree_insert(mapping, page, shadowp);
693         radix_tree_preload_end();
694         if (unlikely(error))
695                 goto err_insert;
696
697         /* hugetlb pages do not participate in page cache accounting. */
698         if (!huge)
699                 __inc_node_page_state(page, NR_FILE_PAGES);
700         spin_unlock_irq(&mapping->tree_lock);
701         if (!huge)
702                 mem_cgroup_commit_charge(page, memcg, false, false);
703         trace_mm_filemap_add_to_page_cache(page);
704         return 0;
705 err_insert:
706         page->mapping = NULL;
707         /* Leave page->index set: truncation relies upon it */
708         spin_unlock_irq(&mapping->tree_lock);
709         if (!huge)
710                 mem_cgroup_cancel_charge(page, memcg, false);
711         put_page(page);
712         return error;
713 }
714
715 /**
716  * add_to_page_cache_locked - add a locked page to the pagecache
717  * @page:       page to add
718  * @mapping:    the page's address_space
719  * @offset:     page index
720  * @gfp_mask:   page allocation mode
721  *
722  * This function is used to add a page to the pagecache. It must be locked.
723  * This function does not add the page to the LRU.  The caller must do that.
724  */
725 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
726                 pgoff_t offset, gfp_t gfp_mask)
727 {
728         return __add_to_page_cache_locked(page, mapping, offset,
729                                           gfp_mask, NULL);
730 }
731 EXPORT_SYMBOL(add_to_page_cache_locked);
732
733 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
734                                 pgoff_t offset, gfp_t gfp_mask)
735 {
736         void *shadow = NULL;
737         int ret;
738
739         __SetPageLocked(page);
740         ret = __add_to_page_cache_locked(page, mapping, offset,
741                                          gfp_mask, &shadow);
742         if (unlikely(ret))
743                 __ClearPageLocked(page);
744         else {
745                 /*
746                  * The page might have been evicted from cache only
747                  * recently, in which case it should be activated like
748                  * any other repeatedly accessed page.
749                  * The exception is pages getting rewritten; evicting other
750                  * data from the working set, only to cache data that will
751                  * get overwritten with something else, is a waste of memory.
752                  */
753                 if (!(gfp_mask & __GFP_WRITE) &&
754                     shadow && workingset_refault(shadow)) {
755                         SetPageActive(page);
756                         workingset_activation(page);
757                 } else
758                         ClearPageActive(page);
759                 lru_cache_add(page);
760         }
761         return ret;
762 }
763 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
764
765 #ifdef CONFIG_NUMA
766 struct page *__page_cache_alloc(gfp_t gfp)
767 {
768         int n;
769         struct page *page;
770
771         if (cpuset_do_page_mem_spread()) {
772                 unsigned int cpuset_mems_cookie;
773                 do {
774                         cpuset_mems_cookie = read_mems_allowed_begin();
775                         n = cpuset_mem_spread_node();
776                         page = __alloc_pages_node(n, gfp, 0);
777                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
778
779                 return page;
780         }
781         return alloc_pages(gfp, 0);
782 }
783 EXPORT_SYMBOL(__page_cache_alloc);
784 #endif
785
786 /*
787  * In order to wait for pages to become available there must be
788  * waitqueues associated with pages. By using a hash table of
789  * waitqueues where the bucket discipline is to maintain all
790  * waiters on the same queue and wake all when any of the pages
791  * become available, and for the woken contexts to check to be
792  * sure the appropriate page became available, this saves space
793  * at a cost of "thundering herd" phenomena during rare hash
794  * collisions.
795  */
796 wait_queue_head_t *page_waitqueue(struct page *page)
797 {
798         return bit_waitqueue(page, 0);
799 }
800 EXPORT_SYMBOL(page_waitqueue);
801
802 void wait_on_page_bit(struct page *page, int bit_nr)
803 {
804         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
805
806         if (test_bit(bit_nr, &page->flags))
807                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
808                                                         TASK_UNINTERRUPTIBLE);
809 }
810 EXPORT_SYMBOL(wait_on_page_bit);
811
812 int wait_on_page_bit_killable(struct page *page, int bit_nr)
813 {
814         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
815
816         if (!test_bit(bit_nr, &page->flags))
817                 return 0;
818
819         return __wait_on_bit(page_waitqueue(page), &wait,
820                              bit_wait_io, TASK_KILLABLE);
821 }
822
823 int wait_on_page_bit_killable_timeout(struct page *page,
824                                        int bit_nr, unsigned long timeout)
825 {
826         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
827
828         wait.key.timeout = jiffies + timeout;
829         if (!test_bit(bit_nr, &page->flags))
830                 return 0;
831         return __wait_on_bit(page_waitqueue(page), &wait,
832                              bit_wait_io_timeout, TASK_KILLABLE);
833 }
834 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
835
836 /**
837  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
838  * @page: Page defining the wait queue of interest
839  * @waiter: Waiter to add to the queue
840  *
841  * Add an arbitrary @waiter to the wait queue for the nominated @page.
842  */
843 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
844 {
845         wait_queue_head_t *q = page_waitqueue(page);
846         unsigned long flags;
847
848         spin_lock_irqsave(&q->lock, flags);
849         __add_wait_queue(q, waiter);
850         spin_unlock_irqrestore(&q->lock, flags);
851 }
852 EXPORT_SYMBOL_GPL(add_page_wait_queue);
853
854 /**
855  * unlock_page - unlock a locked page
856  * @page: the page
857  *
858  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
859  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
860  * mechanism between PageLocked pages and PageWriteback pages is shared.
861  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
862  *
863  * The mb is necessary to enforce ordering between the clear_bit and the read
864  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
865  */
866 void unlock_page(struct page *page)
867 {
868         page = compound_head(page);
869         VM_BUG_ON_PAGE(!PageLocked(page), page);
870         clear_bit_unlock(PG_locked, &page->flags);
871         smp_mb__after_atomic();
872         wake_up_page(page, PG_locked);
873 }
874 EXPORT_SYMBOL(unlock_page);
875
876 /**
877  * end_page_writeback - end writeback against a page
878  * @page: the page
879  */
880 void end_page_writeback(struct page *page)
881 {
882         /*
883          * TestClearPageReclaim could be used here but it is an atomic
884          * operation and overkill in this particular case. Failing to
885          * shuffle a page marked for immediate reclaim is too mild to
886          * justify taking an atomic operation penalty at the end of
887          * ever page writeback.
888          */
889         if (PageReclaim(page)) {
890                 ClearPageReclaim(page);
891                 rotate_reclaimable_page(page);
892         }
893
894         if (!test_clear_page_writeback(page))
895                 BUG();
896
897         smp_mb__after_atomic();
898         wake_up_page(page, PG_writeback);
899 }
900 EXPORT_SYMBOL(end_page_writeback);
901
902 /*
903  * After completing I/O on a page, call this routine to update the page
904  * flags appropriately
905  */
906 void page_endio(struct page *page, bool is_write, int err)
907 {
908         if (!is_write) {
909                 if (!err) {
910                         SetPageUptodate(page);
911                 } else {
912                         ClearPageUptodate(page);
913                         SetPageError(page);
914                 }
915                 unlock_page(page);
916         } else {
917                 if (err) {
918                         SetPageError(page);
919                         if (page->mapping)
920                                 mapping_set_error(page->mapping, err);
921                 }
922                 end_page_writeback(page);
923         }
924 }
925 EXPORT_SYMBOL_GPL(page_endio);
926
927 /**
928  * __lock_page - get a lock on the page, assuming we need to sleep to get it
929  * @page: the page to lock
930  */
931 void __lock_page(struct page *page)
932 {
933         struct page *page_head = compound_head(page);
934         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
935
936         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
937                                                         TASK_UNINTERRUPTIBLE);
938 }
939 EXPORT_SYMBOL(__lock_page);
940
941 int __lock_page_killable(struct page *page)
942 {
943         struct page *page_head = compound_head(page);
944         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
945
946         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
947                                         bit_wait_io, TASK_KILLABLE);
948 }
949 EXPORT_SYMBOL_GPL(__lock_page_killable);
950
951 /*
952  * Return values:
953  * 1 - page is locked; mmap_sem is still held.
954  * 0 - page is not locked.
955  *     mmap_sem has been released (up_read()), unless flags had both
956  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
957  *     which case mmap_sem is still held.
958  *
959  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
960  * with the page locked and the mmap_sem unperturbed.
961  */
962 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
963                          unsigned int flags)
964 {
965         if (flags & FAULT_FLAG_ALLOW_RETRY) {
966                 /*
967                  * CAUTION! In this case, mmap_sem is not released
968                  * even though return 0.
969                  */
970                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
971                         return 0;
972
973                 up_read(&mm->mmap_sem);
974                 if (flags & FAULT_FLAG_KILLABLE)
975                         wait_on_page_locked_killable(page);
976                 else
977                         wait_on_page_locked(page);
978                 return 0;
979         } else {
980                 if (flags & FAULT_FLAG_KILLABLE) {
981                         int ret;
982
983                         ret = __lock_page_killable(page);
984                         if (ret) {
985                                 up_read(&mm->mmap_sem);
986                                 return 0;
987                         }
988                 } else
989                         __lock_page(page);
990                 return 1;
991         }
992 }
993
994 /**
995  * page_cache_next_hole - find the next hole (not-present entry)
996  * @mapping: mapping
997  * @index: index
998  * @max_scan: maximum range to search
999  *
1000  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1001  * lowest indexed hole.
1002  *
1003  * Returns: the index of the hole if found, otherwise returns an index
1004  * outside of the set specified (in which case 'return - index >=
1005  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1006  * be returned.
1007  *
1008  * page_cache_next_hole may be called under rcu_read_lock. However,
1009  * like radix_tree_gang_lookup, this will not atomically search a
1010  * snapshot of the tree at a single point in time. For example, if a
1011  * hole is created at index 5, then subsequently a hole is created at
1012  * index 10, page_cache_next_hole covering both indexes may return 10
1013  * if called under rcu_read_lock.
1014  */
1015 pgoff_t page_cache_next_hole(struct address_space *mapping,
1016                              pgoff_t index, unsigned long max_scan)
1017 {
1018         unsigned long i;
1019
1020         for (i = 0; i < max_scan; i++) {
1021                 struct page *page;
1022
1023                 page = radix_tree_lookup(&mapping->page_tree, index);
1024                 if (!page || radix_tree_exceptional_entry(page))
1025                         break;
1026                 index++;
1027                 if (index == 0)
1028                         break;
1029         }
1030
1031         return index;
1032 }
1033 EXPORT_SYMBOL(page_cache_next_hole);
1034
1035 /**
1036  * page_cache_prev_hole - find the prev hole (not-present entry)
1037  * @mapping: mapping
1038  * @index: index
1039  * @max_scan: maximum range to search
1040  *
1041  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1042  * the first hole.
1043  *
1044  * Returns: the index of the hole if found, otherwise returns an index
1045  * outside of the set specified (in which case 'index - return >=
1046  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1047  * will be returned.
1048  *
1049  * page_cache_prev_hole may be called under rcu_read_lock. However,
1050  * like radix_tree_gang_lookup, this will not atomically search a
1051  * snapshot of the tree at a single point in time. For example, if a
1052  * hole is created at index 10, then subsequently a hole is created at
1053  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1054  * called under rcu_read_lock.
1055  */
1056 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1057                              pgoff_t index, unsigned long max_scan)
1058 {
1059         unsigned long i;
1060
1061         for (i = 0; i < max_scan; i++) {
1062                 struct page *page;
1063
1064                 page = radix_tree_lookup(&mapping->page_tree, index);
1065                 if (!page || radix_tree_exceptional_entry(page))
1066                         break;
1067                 index--;
1068                 if (index == ULONG_MAX)
1069                         break;
1070         }
1071
1072         return index;
1073 }
1074 EXPORT_SYMBOL(page_cache_prev_hole);
1075
1076 /**
1077  * find_get_entry - find and get a page cache entry
1078  * @mapping: the address_space to search
1079  * @offset: the page cache index
1080  *
1081  * Looks up the page cache slot at @mapping & @offset.  If there is a
1082  * page cache page, it is returned with an increased refcount.
1083  *
1084  * If the slot holds a shadow entry of a previously evicted page, or a
1085  * swap entry from shmem/tmpfs, it is returned.
1086  *
1087  * Otherwise, %NULL is returned.
1088  */
1089 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1090 {
1091         void **pagep;
1092         struct page *head, *page;
1093
1094         rcu_read_lock();
1095 repeat:
1096         page = NULL;
1097         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1098         if (pagep) {
1099                 page = radix_tree_deref_slot(pagep);
1100                 if (unlikely(!page))
1101                         goto out;
1102                 if (radix_tree_exception(page)) {
1103                         if (radix_tree_deref_retry(page))
1104                                 goto repeat;
1105                         /*
1106                          * A shadow entry of a recently evicted page,
1107                          * or a swap entry from shmem/tmpfs.  Return
1108                          * it without attempting to raise page count.
1109                          */
1110                         goto out;
1111                 }
1112
1113                 head = compound_head(page);
1114                 if (!page_cache_get_speculative(head))
1115                         goto repeat;
1116
1117                 /* The page was split under us? */
1118                 if (compound_head(page) != head) {
1119                         put_page(head);
1120                         goto repeat;
1121                 }
1122
1123                 /*
1124                  * Has the page moved?
1125                  * This is part of the lockless pagecache protocol. See
1126                  * include/linux/pagemap.h for details.
1127                  */
1128                 if (unlikely(page != *pagep)) {
1129                         put_page(head);
1130                         goto repeat;
1131                 }
1132         }
1133 out:
1134         rcu_read_unlock();
1135
1136         return page;
1137 }
1138 EXPORT_SYMBOL(find_get_entry);
1139
1140 /**
1141  * find_lock_entry - locate, pin and lock a page cache entry
1142  * @mapping: the address_space to search
1143  * @offset: the page cache index
1144  *
1145  * Looks up the page cache slot at @mapping & @offset.  If there is a
1146  * page cache page, it is returned locked and with an increased
1147  * refcount.
1148  *
1149  * If the slot holds a shadow entry of a previously evicted page, or a
1150  * swap entry from shmem/tmpfs, it is returned.
1151  *
1152  * Otherwise, %NULL is returned.
1153  *
1154  * find_lock_entry() may sleep.
1155  */
1156 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1157 {
1158         struct page *page;
1159
1160 repeat:
1161         page = find_get_entry(mapping, offset);
1162         if (page && !radix_tree_exception(page)) {
1163                 lock_page(page);
1164                 /* Has the page been truncated? */
1165                 if (unlikely(page_mapping(page) != mapping)) {
1166                         unlock_page(page);
1167                         put_page(page);
1168                         goto repeat;
1169                 }
1170                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1171         }
1172         return page;
1173 }
1174 EXPORT_SYMBOL(find_lock_entry);
1175
1176 /**
1177  * pagecache_get_page - find and get a page reference
1178  * @mapping: the address_space to search
1179  * @offset: the page index
1180  * @fgp_flags: PCG flags
1181  * @gfp_mask: gfp mask to use for the page cache data page allocation
1182  *
1183  * Looks up the page cache slot at @mapping & @offset.
1184  *
1185  * PCG flags modify how the page is returned.
1186  *
1187  * FGP_ACCESSED: the page will be marked accessed
1188  * FGP_LOCK: Page is return locked
1189  * FGP_CREAT: If page is not present then a new page is allocated using
1190  *              @gfp_mask and added to the page cache and the VM's LRU
1191  *              list. The page is returned locked and with an increased
1192  *              refcount. Otherwise, %NULL is returned.
1193  *
1194  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1195  * if the GFP flags specified for FGP_CREAT are atomic.
1196  *
1197  * If there is a page cache page, it is returned with an increased refcount.
1198  */
1199 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1200         int fgp_flags, gfp_t gfp_mask)
1201 {
1202         struct page *page;
1203
1204 repeat:
1205         page = find_get_entry(mapping, offset);
1206         if (radix_tree_exceptional_entry(page))
1207                 page = NULL;
1208         if (!page)
1209                 goto no_page;
1210
1211         if (fgp_flags & FGP_LOCK) {
1212                 if (fgp_flags & FGP_NOWAIT) {
1213                         if (!trylock_page(page)) {
1214                                 put_page(page);
1215                                 return NULL;
1216                         }
1217                 } else {
1218                         lock_page(page);
1219                 }
1220
1221                 /* Has the page been truncated? */
1222                 if (unlikely(page->mapping != mapping)) {
1223                         unlock_page(page);
1224                         put_page(page);
1225                         goto repeat;
1226                 }
1227                 VM_BUG_ON_PAGE(page->index != offset, page);
1228         }
1229
1230         if (page && (fgp_flags & FGP_ACCESSED))
1231                 mark_page_accessed(page);
1232
1233 no_page:
1234         if (!page && (fgp_flags & FGP_CREAT)) {
1235                 int err;
1236                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1237                         gfp_mask |= __GFP_WRITE;
1238                 if (fgp_flags & FGP_NOFS)
1239                         gfp_mask &= ~__GFP_FS;
1240
1241                 page = __page_cache_alloc(gfp_mask);
1242                 if (!page)
1243                         return NULL;
1244
1245                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1246                         fgp_flags |= FGP_LOCK;
1247
1248                 /* Init accessed so avoid atomic mark_page_accessed later */
1249                 if (fgp_flags & FGP_ACCESSED)
1250                         __SetPageReferenced(page);
1251
1252                 err = add_to_page_cache_lru(page, mapping, offset,
1253                                 gfp_mask & GFP_RECLAIM_MASK);
1254                 if (unlikely(err)) {
1255                         put_page(page);
1256                         page = NULL;
1257                         if (err == -EEXIST)
1258                                 goto repeat;
1259                 }
1260         }
1261
1262         return page;
1263 }
1264 EXPORT_SYMBOL(pagecache_get_page);
1265
1266 /**
1267  * find_get_entries - gang pagecache lookup
1268  * @mapping:    The address_space to search
1269  * @start:      The starting page cache index
1270  * @nr_entries: The maximum number of entries
1271  * @entries:    Where the resulting entries are placed
1272  * @indices:    The cache indices corresponding to the entries in @entries
1273  *
1274  * find_get_entries() will search for and return a group of up to
1275  * @nr_entries entries in the mapping.  The entries are placed at
1276  * @entries.  find_get_entries() takes a reference against any actual
1277  * pages it returns.
1278  *
1279  * The search returns a group of mapping-contiguous page cache entries
1280  * with ascending indexes.  There may be holes in the indices due to
1281  * not-present pages.
1282  *
1283  * Any shadow entries of evicted pages, or swap entries from
1284  * shmem/tmpfs, are included in the returned array.
1285  *
1286  * find_get_entries() returns the number of pages and shadow entries
1287  * which were found.
1288  */
1289 unsigned find_get_entries(struct address_space *mapping,
1290                           pgoff_t start, unsigned int nr_entries,
1291                           struct page **entries, pgoff_t *indices)
1292 {
1293         void **slot;
1294         unsigned int ret = 0;
1295         struct radix_tree_iter iter;
1296
1297         if (!nr_entries)
1298                 return 0;
1299
1300         rcu_read_lock();
1301         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1302                 struct page *head, *page;
1303 repeat:
1304                 page = radix_tree_deref_slot(slot);
1305                 if (unlikely(!page))
1306                         continue;
1307                 if (radix_tree_exception(page)) {
1308                         if (radix_tree_deref_retry(page)) {
1309                                 slot = radix_tree_iter_retry(&iter);
1310                                 continue;
1311                         }
1312                         /*
1313                          * A shadow entry of a recently evicted page, a swap
1314                          * entry from shmem/tmpfs or a DAX entry.  Return it
1315                          * without attempting to raise page count.
1316                          */
1317                         goto export;
1318                 }
1319
1320                 head = compound_head(page);
1321                 if (!page_cache_get_speculative(head))
1322                         goto repeat;
1323
1324                 /* The page was split under us? */
1325                 if (compound_head(page) != head) {
1326                         put_page(head);
1327                         goto repeat;
1328                 }
1329
1330                 /* Has the page moved? */
1331                 if (unlikely(page != *slot)) {
1332                         put_page(head);
1333                         goto repeat;
1334                 }
1335 export:
1336                 indices[ret] = iter.index;
1337                 entries[ret] = page;
1338                 if (++ret == nr_entries)
1339                         break;
1340         }
1341         rcu_read_unlock();
1342         return ret;
1343 }
1344
1345 /**
1346  * find_get_pages - gang pagecache lookup
1347  * @mapping:    The address_space to search
1348  * @start:      The starting page index
1349  * @nr_pages:   The maximum number of pages
1350  * @pages:      Where the resulting pages are placed
1351  *
1352  * find_get_pages() will search for and return a group of up to
1353  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1354  * find_get_pages() takes a reference against the returned pages.
1355  *
1356  * The search returns a group of mapping-contiguous pages with ascending
1357  * indexes.  There may be holes in the indices due to not-present pages.
1358  *
1359  * find_get_pages() returns the number of pages which were found.
1360  */
1361 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1362                             unsigned int nr_pages, struct page **pages)
1363 {
1364         struct radix_tree_iter iter;
1365         void **slot;
1366         unsigned ret = 0;
1367
1368         if (unlikely(!nr_pages))
1369                 return 0;
1370
1371         rcu_read_lock();
1372         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1373                 struct page *head, *page;
1374 repeat:
1375                 page = radix_tree_deref_slot(slot);
1376                 if (unlikely(!page))
1377                         continue;
1378
1379                 if (radix_tree_exception(page)) {
1380                         if (radix_tree_deref_retry(page)) {
1381                                 slot = radix_tree_iter_retry(&iter);
1382                                 continue;
1383                         }
1384                         /*
1385                          * A shadow entry of a recently evicted page,
1386                          * or a swap entry from shmem/tmpfs.  Skip
1387                          * over it.
1388                          */
1389                         continue;
1390                 }
1391
1392                 head = compound_head(page);
1393                 if (!page_cache_get_speculative(head))
1394                         goto repeat;
1395
1396                 /* The page was split under us? */
1397                 if (compound_head(page) != head) {
1398                         put_page(head);
1399                         goto repeat;
1400                 }
1401
1402                 /* Has the page moved? */
1403                 if (unlikely(page != *slot)) {
1404                         put_page(head);
1405                         goto repeat;
1406                 }
1407
1408                 pages[ret] = page;
1409                 if (++ret == nr_pages)
1410                         break;
1411         }
1412
1413         rcu_read_unlock();
1414         return ret;
1415 }
1416
1417 /**
1418  * find_get_pages_contig - gang contiguous pagecache lookup
1419  * @mapping:    The address_space to search
1420  * @index:      The starting page index
1421  * @nr_pages:   The maximum number of pages
1422  * @pages:      Where the resulting pages are placed
1423  *
1424  * find_get_pages_contig() works exactly like find_get_pages(), except
1425  * that the returned number of pages are guaranteed to be contiguous.
1426  *
1427  * find_get_pages_contig() returns the number of pages which were found.
1428  */
1429 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1430                                unsigned int nr_pages, struct page **pages)
1431 {
1432         struct radix_tree_iter iter;
1433         void **slot;
1434         unsigned int ret = 0;
1435
1436         if (unlikely(!nr_pages))
1437                 return 0;
1438
1439         rcu_read_lock();
1440         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1441                 struct page *head, *page;
1442 repeat:
1443                 page = radix_tree_deref_slot(slot);
1444                 /* The hole, there no reason to continue */
1445                 if (unlikely(!page))
1446                         break;
1447
1448                 if (radix_tree_exception(page)) {
1449                         if (radix_tree_deref_retry(page)) {
1450                                 slot = radix_tree_iter_retry(&iter);
1451                                 continue;
1452                         }
1453                         /*
1454                          * A shadow entry of a recently evicted page,
1455                          * or a swap entry from shmem/tmpfs.  Stop
1456                          * looking for contiguous pages.
1457                          */
1458                         break;
1459                 }
1460
1461                 head = compound_head(page);
1462                 if (!page_cache_get_speculative(head))
1463                         goto repeat;
1464
1465                 /* The page was split under us? */
1466                 if (compound_head(page) != head) {
1467                         put_page(head);
1468                         goto repeat;
1469                 }
1470
1471                 /* Has the page moved? */
1472                 if (unlikely(page != *slot)) {
1473                         put_page(head);
1474                         goto repeat;
1475                 }
1476
1477                 /*
1478                  * must check mapping and index after taking the ref.
1479                  * otherwise we can get both false positives and false
1480                  * negatives, which is just confusing to the caller.
1481                  */
1482                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1483                         put_page(page);
1484                         break;
1485                 }
1486
1487                 pages[ret] = page;
1488                 if (++ret == nr_pages)
1489                         break;
1490         }
1491         rcu_read_unlock();
1492         return ret;
1493 }
1494 EXPORT_SYMBOL(find_get_pages_contig);
1495
1496 /**
1497  * find_get_pages_tag - find and return pages that match @tag
1498  * @mapping:    the address_space to search
1499  * @index:      the starting page index
1500  * @tag:        the tag index
1501  * @nr_pages:   the maximum number of pages
1502  * @pages:      where the resulting pages are placed
1503  *
1504  * Like find_get_pages, except we only return pages which are tagged with
1505  * @tag.   We update @index to index the next page for the traversal.
1506  */
1507 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1508                         int tag, unsigned int nr_pages, struct page **pages)
1509 {
1510         struct radix_tree_iter iter;
1511         void **slot;
1512         unsigned ret = 0;
1513
1514         if (unlikely(!nr_pages))
1515                 return 0;
1516
1517         rcu_read_lock();
1518         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1519                                    &iter, *index, tag) {
1520                 struct page *head, *page;
1521 repeat:
1522                 page = radix_tree_deref_slot(slot);
1523                 if (unlikely(!page))
1524                         continue;
1525
1526                 if (radix_tree_exception(page)) {
1527                         if (radix_tree_deref_retry(page)) {
1528                                 slot = radix_tree_iter_retry(&iter);
1529                                 continue;
1530                         }
1531                         /*
1532                          * A shadow entry of a recently evicted page.
1533                          *
1534                          * Those entries should never be tagged, but
1535                          * this tree walk is lockless and the tags are
1536                          * looked up in bulk, one radix tree node at a
1537                          * time, so there is a sizable window for page
1538                          * reclaim to evict a page we saw tagged.
1539                          *
1540                          * Skip over it.
1541                          */
1542                         continue;
1543                 }
1544
1545                 head = compound_head(page);
1546                 if (!page_cache_get_speculative(head))
1547                         goto repeat;
1548
1549                 /* The page was split under us? */
1550                 if (compound_head(page) != head) {
1551                         put_page(head);
1552                         goto repeat;
1553                 }
1554
1555                 /* Has the page moved? */
1556                 if (unlikely(page != *slot)) {
1557                         put_page(head);
1558                         goto repeat;
1559                 }
1560
1561                 pages[ret] = page;
1562                 if (++ret == nr_pages)
1563                         break;
1564         }
1565
1566         rcu_read_unlock();
1567
1568         if (ret)
1569                 *index = pages[ret - 1]->index + 1;
1570
1571         return ret;
1572 }
1573 EXPORT_SYMBOL(find_get_pages_tag);
1574
1575 /**
1576  * find_get_entries_tag - find and return entries that match @tag
1577  * @mapping:    the address_space to search
1578  * @start:      the starting page cache index
1579  * @tag:        the tag index
1580  * @nr_entries: the maximum number of entries
1581  * @entries:    where the resulting entries are placed
1582  * @indices:    the cache indices corresponding to the entries in @entries
1583  *
1584  * Like find_get_entries, except we only return entries which are tagged with
1585  * @tag.
1586  */
1587 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1588                         int tag, unsigned int nr_entries,
1589                         struct page **entries, pgoff_t *indices)
1590 {
1591         void **slot;
1592         unsigned int ret = 0;
1593         struct radix_tree_iter iter;
1594
1595         if (!nr_entries)
1596                 return 0;
1597
1598         rcu_read_lock();
1599         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1600                                    &iter, start, tag) {
1601                 struct page *head, *page;
1602 repeat:
1603                 page = radix_tree_deref_slot(slot);
1604                 if (unlikely(!page))
1605                         continue;
1606                 if (radix_tree_exception(page)) {
1607                         if (radix_tree_deref_retry(page)) {
1608                                 slot = radix_tree_iter_retry(&iter);
1609                                 continue;
1610                         }
1611
1612                         /*
1613                          * A shadow entry of a recently evicted page, a swap
1614                          * entry from shmem/tmpfs or a DAX entry.  Return it
1615                          * without attempting to raise page count.
1616                          */
1617                         goto export;
1618                 }
1619
1620                 head = compound_head(page);
1621                 if (!page_cache_get_speculative(head))
1622                         goto repeat;
1623
1624                 /* The page was split under us? */
1625                 if (compound_head(page) != head) {
1626                         put_page(head);
1627                         goto repeat;
1628                 }
1629
1630                 /* Has the page moved? */
1631                 if (unlikely(page != *slot)) {
1632                         put_page(head);
1633                         goto repeat;
1634                 }
1635 export:
1636                 indices[ret] = iter.index;
1637                 entries[ret] = page;
1638                 if (++ret == nr_entries)
1639                         break;
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644 EXPORT_SYMBOL(find_get_entries_tag);
1645
1646 /*
1647  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1648  * a _large_ part of the i/o request. Imagine the worst scenario:
1649  *
1650  *      ---R__________________________________________B__________
1651  *         ^ reading here                             ^ bad block(assume 4k)
1652  *
1653  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1654  * => failing the whole request => read(R) => read(R+1) =>
1655  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1656  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1657  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1658  *
1659  * It is going insane. Fix it by quickly scaling down the readahead size.
1660  */
1661 static void shrink_readahead_size_eio(struct file *filp,
1662                                         struct file_ra_state *ra)
1663 {
1664         ra->ra_pages /= 4;
1665 }
1666
1667 /**
1668  * do_generic_file_read - generic file read routine
1669  * @filp:       the file to read
1670  * @ppos:       current file position
1671  * @iter:       data destination
1672  * @written:    already copied
1673  *
1674  * This is a generic file read routine, and uses the
1675  * mapping->a_ops->readpage() function for the actual low-level stuff.
1676  *
1677  * This is really ugly. But the goto's actually try to clarify some
1678  * of the logic when it comes to error handling etc.
1679  */
1680 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1681                 struct iov_iter *iter, ssize_t written)
1682 {
1683         struct address_space *mapping = filp->f_mapping;
1684         struct inode *inode = mapping->host;
1685         struct file_ra_state *ra = &filp->f_ra;
1686         pgoff_t index;
1687         pgoff_t last_index;
1688         pgoff_t prev_index;
1689         unsigned long offset;      /* offset into pagecache page */
1690         unsigned int prev_offset;
1691         int error = 0;
1692
1693         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1694                 return -EINVAL;
1695         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1696
1697         index = *ppos >> PAGE_SHIFT;
1698         prev_index = ra->prev_pos >> PAGE_SHIFT;
1699         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1700         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1701         offset = *ppos & ~PAGE_MASK;
1702
1703         for (;;) {
1704                 struct page *page;
1705                 pgoff_t end_index;
1706                 loff_t isize;
1707                 unsigned long nr, ret;
1708
1709                 cond_resched();
1710 find_page:
1711                 page = find_get_page(mapping, index);
1712                 if (!page) {
1713                         page_cache_sync_readahead(mapping,
1714                                         ra, filp,
1715                                         index, last_index - index);
1716                         page = find_get_page(mapping, index);
1717                         if (unlikely(page == NULL))
1718                                 goto no_cached_page;
1719                 }
1720                 if (PageReadahead(page)) {
1721                         page_cache_async_readahead(mapping,
1722                                         ra, filp, page,
1723                                         index, last_index - index);
1724                 }
1725                 if (!PageUptodate(page)) {
1726                         /*
1727                          * See comment in do_read_cache_page on why
1728                          * wait_on_page_locked is used to avoid unnecessarily
1729                          * serialisations and why it's safe.
1730                          */
1731                         error = wait_on_page_locked_killable(page);
1732                         if (unlikely(error))
1733                                 goto readpage_error;
1734                         if (PageUptodate(page))
1735                                 goto page_ok;
1736
1737                         if (inode->i_blkbits == PAGE_SHIFT ||
1738                                         !mapping->a_ops->is_partially_uptodate)
1739                                 goto page_not_up_to_date;
1740                         /* pipes can't handle partially uptodate pages */
1741                         if (unlikely(iter->type & ITER_PIPE))
1742                                 goto page_not_up_to_date;
1743                         if (!trylock_page(page))
1744                                 goto page_not_up_to_date;
1745                         /* Did it get truncated before we got the lock? */
1746                         if (!page->mapping)
1747                                 goto page_not_up_to_date_locked;
1748                         if (!mapping->a_ops->is_partially_uptodate(page,
1749                                                         offset, iter->count))
1750                                 goto page_not_up_to_date_locked;
1751                         unlock_page(page);
1752                 }
1753 page_ok:
1754                 /*
1755                  * i_size must be checked after we know the page is Uptodate.
1756                  *
1757                  * Checking i_size after the check allows us to calculate
1758                  * the correct value for "nr", which means the zero-filled
1759                  * part of the page is not copied back to userspace (unless
1760                  * another truncate extends the file - this is desired though).
1761                  */
1762
1763                 isize = i_size_read(inode);
1764                 end_index = (isize - 1) >> PAGE_SHIFT;
1765                 if (unlikely(!isize || index > end_index)) {
1766                         put_page(page);
1767                         goto out;
1768                 }
1769
1770                 /* nr is the maximum number of bytes to copy from this page */
1771                 nr = PAGE_SIZE;
1772                 if (index == end_index) {
1773                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1774                         if (nr <= offset) {
1775                                 put_page(page);
1776                                 goto out;
1777                         }
1778                 }
1779                 nr = nr - offset;
1780
1781                 /* If users can be writing to this page using arbitrary
1782                  * virtual addresses, take care about potential aliasing
1783                  * before reading the page on the kernel side.
1784                  */
1785                 if (mapping_writably_mapped(mapping))
1786                         flush_dcache_page(page);
1787
1788                 /*
1789                  * When a sequential read accesses a page several times,
1790                  * only mark it as accessed the first time.
1791                  */
1792                 if (prev_index != index || offset != prev_offset)
1793                         mark_page_accessed(page);
1794                 prev_index = index;
1795
1796                 /*
1797                  * Ok, we have the page, and it's up-to-date, so
1798                  * now we can copy it to user space...
1799                  */
1800
1801                 ret = copy_page_to_iter(page, offset, nr, iter);
1802                 offset += ret;
1803                 index += offset >> PAGE_SHIFT;
1804                 offset &= ~PAGE_MASK;
1805                 prev_offset = offset;
1806
1807                 put_page(page);
1808                 written += ret;
1809                 if (!iov_iter_count(iter))
1810                         goto out;
1811                 if (ret < nr) {
1812                         error = -EFAULT;
1813                         goto out;
1814                 }
1815                 continue;
1816
1817 page_not_up_to_date:
1818                 /* Get exclusive access to the page ... */
1819                 error = lock_page_killable(page);
1820                 if (unlikely(error))
1821                         goto readpage_error;
1822
1823 page_not_up_to_date_locked:
1824                 /* Did it get truncated before we got the lock? */
1825                 if (!page->mapping) {
1826                         unlock_page(page);
1827                         put_page(page);
1828                         continue;
1829                 }
1830
1831                 /* Did somebody else fill it already? */
1832                 if (PageUptodate(page)) {
1833                         unlock_page(page);
1834                         goto page_ok;
1835                 }
1836
1837 readpage:
1838                 /*
1839                  * A previous I/O error may have been due to temporary
1840                  * failures, eg. multipath errors.
1841                  * PG_error will be set again if readpage fails.
1842                  */
1843                 ClearPageError(page);
1844                 /* Start the actual read. The read will unlock the page. */
1845                 error = mapping->a_ops->readpage(filp, page);
1846
1847                 if (unlikely(error)) {
1848                         if (error == AOP_TRUNCATED_PAGE) {
1849                                 put_page(page);
1850                                 error = 0;
1851                                 goto find_page;
1852                         }
1853                         goto readpage_error;
1854                 }
1855
1856                 if (!PageUptodate(page)) {
1857                         error = lock_page_killable(page);
1858                         if (unlikely(error))
1859                                 goto readpage_error;
1860                         if (!PageUptodate(page)) {
1861                                 if (page->mapping == NULL) {
1862                                         /*
1863                                          * invalidate_mapping_pages got it
1864                                          */
1865                                         unlock_page(page);
1866                                         put_page(page);
1867                                         goto find_page;
1868                                 }
1869                                 unlock_page(page);
1870                                 shrink_readahead_size_eio(filp, ra);
1871                                 error = -EIO;
1872                                 goto readpage_error;
1873                         }
1874                         unlock_page(page);
1875                 }
1876
1877                 goto page_ok;
1878
1879 readpage_error:
1880                 /* UHHUH! A synchronous read error occurred. Report it */
1881                 put_page(page);
1882                 goto out;
1883
1884 no_cached_page:
1885                 /*
1886                  * Ok, it wasn't cached, so we need to create a new
1887                  * page..
1888                  */
1889                 page = page_cache_alloc_cold(mapping);
1890                 if (!page) {
1891                         error = -ENOMEM;
1892                         goto out;
1893                 }
1894                 error = add_to_page_cache_lru(page, mapping, index,
1895                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1896                 if (error) {
1897                         put_page(page);
1898                         if (error == -EEXIST) {
1899                                 error = 0;
1900                                 goto find_page;
1901                         }
1902                         goto out;
1903                 }
1904                 goto readpage;
1905         }
1906
1907 out:
1908         ra->prev_pos = prev_index;
1909         ra->prev_pos <<= PAGE_SHIFT;
1910         ra->prev_pos |= prev_offset;
1911
1912         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1913         file_accessed(filp);
1914         return written ? written : error;
1915 }
1916
1917 /**
1918  * generic_file_read_iter - generic filesystem read routine
1919  * @iocb:       kernel I/O control block
1920  * @iter:       destination for the data read
1921  *
1922  * This is the "read_iter()" routine for all filesystems
1923  * that can use the page cache directly.
1924  */
1925 ssize_t
1926 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1927 {
1928         struct file *file = iocb->ki_filp;
1929         ssize_t retval = 0;
1930         size_t count = iov_iter_count(iter);
1931
1932         if (!count)
1933                 goto out; /* skip atime */
1934
1935         if (iocb->ki_flags & IOCB_DIRECT) {
1936                 struct address_space *mapping = file->f_mapping;
1937                 struct inode *inode = mapping->host;
1938                 struct iov_iter data = *iter;
1939                 loff_t size;
1940
1941                 size = i_size_read(inode);
1942                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1943                                         iocb->ki_pos + count - 1);
1944                 if (retval < 0)
1945                         goto out;
1946
1947                 file_accessed(file);
1948
1949                 retval = mapping->a_ops->direct_IO(iocb, &data);
1950                 if (retval >= 0) {
1951                         iocb->ki_pos += retval;
1952                         iov_iter_advance(iter, retval);
1953                 }
1954
1955                 /*
1956                  * Btrfs can have a short DIO read if we encounter
1957                  * compressed extents, so if there was an error, or if
1958                  * we've already read everything we wanted to, or if
1959                  * there was a short read because we hit EOF, go ahead
1960                  * and return.  Otherwise fallthrough to buffered io for
1961                  * the rest of the read.  Buffered reads will not work for
1962                  * DAX files, so don't bother trying.
1963                  */
1964                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1965                     IS_DAX(inode))
1966                         goto out;
1967         }
1968
1969         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1970 out:
1971         return retval;
1972 }
1973 EXPORT_SYMBOL(generic_file_read_iter);
1974
1975 #ifdef CONFIG_MMU
1976 /**
1977  * page_cache_read - adds requested page to the page cache if not already there
1978  * @file:       file to read
1979  * @offset:     page index
1980  * @gfp_mask:   memory allocation flags
1981  *
1982  * This adds the requested page to the page cache if it isn't already there,
1983  * and schedules an I/O to read in its contents from disk.
1984  */
1985 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1986 {
1987         struct address_space *mapping = file->f_mapping;
1988         struct page *page;
1989         int ret;
1990
1991         do {
1992                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1993                 if (!page)
1994                         return -ENOMEM;
1995
1996                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1997                 if (ret == 0)
1998                         ret = mapping->a_ops->readpage(file, page);
1999                 else if (ret == -EEXIST)
2000                         ret = 0; /* losing race to add is OK */
2001
2002                 put_page(page);
2003
2004         } while (ret == AOP_TRUNCATED_PAGE);
2005
2006         return ret;
2007 }
2008
2009 #define MMAP_LOTSAMISS  (100)
2010
2011 /*
2012  * Synchronous readahead happens when we don't even find
2013  * a page in the page cache at all.
2014  */
2015 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2016                                    struct file_ra_state *ra,
2017                                    struct file *file,
2018                                    pgoff_t offset)
2019 {
2020         struct address_space *mapping = file->f_mapping;
2021
2022         /* If we don't want any read-ahead, don't bother */
2023         if (vma->vm_flags & VM_RAND_READ)
2024                 return;
2025         if (!ra->ra_pages)
2026                 return;
2027
2028         if (vma->vm_flags & VM_SEQ_READ) {
2029                 page_cache_sync_readahead(mapping, ra, file, offset,
2030                                           ra->ra_pages);
2031                 return;
2032         }
2033
2034         /* Avoid banging the cache line if not needed */
2035         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2036                 ra->mmap_miss++;
2037
2038         /*
2039          * Do we miss much more than hit in this file? If so,
2040          * stop bothering with read-ahead. It will only hurt.
2041          */
2042         if (ra->mmap_miss > MMAP_LOTSAMISS)
2043                 return;
2044
2045         /*
2046          * mmap read-around
2047          */
2048         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2049         ra->size = ra->ra_pages;
2050         ra->async_size = ra->ra_pages / 4;
2051         ra_submit(ra, mapping, file);
2052 }
2053
2054 /*
2055  * Asynchronous readahead happens when we find the page and PG_readahead,
2056  * so we want to possibly extend the readahead further..
2057  */
2058 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2059                                     struct file_ra_state *ra,
2060                                     struct file *file,
2061                                     struct page *page,
2062                                     pgoff_t offset)
2063 {
2064         struct address_space *mapping = file->f_mapping;
2065
2066         /* If we don't want any read-ahead, don't bother */
2067         if (vma->vm_flags & VM_RAND_READ)
2068                 return;
2069         if (ra->mmap_miss > 0)
2070                 ra->mmap_miss--;
2071         if (PageReadahead(page))
2072                 page_cache_async_readahead(mapping, ra, file,
2073                                            page, offset, ra->ra_pages);
2074 }
2075
2076 /**
2077  * filemap_fault - read in file data for page fault handling
2078  * @vma:        vma in which the fault was taken
2079  * @vmf:        struct vm_fault containing details of the fault
2080  *
2081  * filemap_fault() is invoked via the vma operations vector for a
2082  * mapped memory region to read in file data during a page fault.
2083  *
2084  * The goto's are kind of ugly, but this streamlines the normal case of having
2085  * it in the page cache, and handles the special cases reasonably without
2086  * having a lot of duplicated code.
2087  *
2088  * vma->vm_mm->mmap_sem must be held on entry.
2089  *
2090  * If our return value has VM_FAULT_RETRY set, it's because
2091  * lock_page_or_retry() returned 0.
2092  * The mmap_sem has usually been released in this case.
2093  * See __lock_page_or_retry() for the exception.
2094  *
2095  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2096  * has not been released.
2097  *
2098  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2099  */
2100 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101 {
2102         int error;
2103         struct file *file = vma->vm_file;
2104         struct address_space *mapping = file->f_mapping;
2105         struct file_ra_state *ra = &file->f_ra;
2106         struct inode *inode = mapping->host;
2107         pgoff_t offset = vmf->pgoff;
2108         struct page *page;
2109         loff_t size;
2110         int ret = 0;
2111
2112         size = round_up(i_size_read(inode), PAGE_SIZE);
2113         if (offset >= size >> PAGE_SHIFT)
2114                 return VM_FAULT_SIGBUS;
2115
2116         /*
2117          * Do we have something in the page cache already?
2118          */
2119         page = find_get_page(mapping, offset);
2120         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2121                 /*
2122                  * We found the page, so try async readahead before
2123                  * waiting for the lock.
2124                  */
2125                 do_async_mmap_readahead(vma, ra, file, page, offset);
2126         } else if (!page) {
2127                 /* No page in the page cache at all */
2128                 do_sync_mmap_readahead(vma, ra, file, offset);
2129                 count_vm_event(PGMAJFAULT);
2130                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2131                 ret = VM_FAULT_MAJOR;
2132 retry_find:
2133                 page = find_get_page(mapping, offset);
2134                 if (!page)
2135                         goto no_cached_page;
2136         }
2137
2138         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2139                 put_page(page);
2140                 return ret | VM_FAULT_RETRY;
2141         }
2142
2143         /* Did it get truncated? */
2144         if (unlikely(page->mapping != mapping)) {
2145                 unlock_page(page);
2146                 put_page(page);
2147                 goto retry_find;
2148         }
2149         VM_BUG_ON_PAGE(page->index != offset, page);
2150
2151         /*
2152          * We have a locked page in the page cache, now we need to check
2153          * that it's up-to-date. If not, it is going to be due to an error.
2154          */
2155         if (unlikely(!PageUptodate(page)))
2156                 goto page_not_uptodate;
2157
2158         /*
2159          * Found the page and have a reference on it.
2160          * We must recheck i_size under page lock.
2161          */
2162         size = round_up(i_size_read(inode), PAGE_SIZE);
2163         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2164                 unlock_page(page);
2165                 put_page(page);
2166                 return VM_FAULT_SIGBUS;
2167         }
2168
2169         vmf->page = page;
2170         return ret | VM_FAULT_LOCKED;
2171
2172 no_cached_page:
2173         /*
2174          * We're only likely to ever get here if MADV_RANDOM is in
2175          * effect.
2176          */
2177         error = page_cache_read(file, offset, vmf->gfp_mask);
2178
2179         /*
2180          * The page we want has now been added to the page cache.
2181          * In the unlikely event that someone removed it in the
2182          * meantime, we'll just come back here and read it again.
2183          */
2184         if (error >= 0)
2185                 goto retry_find;
2186
2187         /*
2188          * An error return from page_cache_read can result if the
2189          * system is low on memory, or a problem occurs while trying
2190          * to schedule I/O.
2191          */
2192         if (error == -ENOMEM)
2193                 return VM_FAULT_OOM;
2194         return VM_FAULT_SIGBUS;
2195
2196 page_not_uptodate:
2197         /*
2198          * Umm, take care of errors if the page isn't up-to-date.
2199          * Try to re-read it _once_. We do this synchronously,
2200          * because there really aren't any performance issues here
2201          * and we need to check for errors.
2202          */
2203         ClearPageError(page);
2204         error = mapping->a_ops->readpage(file, page);
2205         if (!error) {
2206                 wait_on_page_locked(page);
2207                 if (!PageUptodate(page))
2208                         error = -EIO;
2209         }
2210         put_page(page);
2211
2212         if (!error || error == AOP_TRUNCATED_PAGE)
2213                 goto retry_find;
2214
2215         /* Things didn't work out. Return zero to tell the mm layer so. */
2216         shrink_readahead_size_eio(file, ra);
2217         return VM_FAULT_SIGBUS;
2218 }
2219 EXPORT_SYMBOL(filemap_fault);
2220
2221 void filemap_map_pages(struct fault_env *fe,
2222                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2223 {
2224         struct radix_tree_iter iter;
2225         void **slot;
2226         struct file *file = fe->vma->vm_file;
2227         struct address_space *mapping = file->f_mapping;
2228         pgoff_t last_pgoff = start_pgoff;
2229         loff_t size;
2230         struct page *head, *page;
2231
2232         rcu_read_lock();
2233         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2234                         start_pgoff) {
2235                 if (iter.index > end_pgoff)
2236                         break;
2237 repeat:
2238                 page = radix_tree_deref_slot(slot);
2239                 if (unlikely(!page))
2240                         goto next;
2241                 if (radix_tree_exception(page)) {
2242                         if (radix_tree_deref_retry(page)) {
2243                                 slot = radix_tree_iter_retry(&iter);
2244                                 continue;
2245                         }
2246                         goto next;
2247                 }
2248
2249                 head = compound_head(page);
2250                 if (!page_cache_get_speculative(head))
2251                         goto repeat;
2252
2253                 /* The page was split under us? */
2254                 if (compound_head(page) != head) {
2255                         put_page(head);
2256                         goto repeat;
2257                 }
2258
2259                 /* Has the page moved? */
2260                 if (unlikely(page != *slot)) {
2261                         put_page(head);
2262                         goto repeat;
2263                 }
2264
2265                 if (!PageUptodate(page) ||
2266                                 PageReadahead(page) ||
2267                                 PageHWPoison(page))
2268                         goto skip;
2269                 if (!trylock_page(page))
2270                         goto skip;
2271
2272                 if (page->mapping != mapping || !PageUptodate(page))
2273                         goto unlock;
2274
2275                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2276                 if (page->index >= size >> PAGE_SHIFT)
2277                         goto unlock;
2278
2279                 if (file->f_ra.mmap_miss > 0)
2280                         file->f_ra.mmap_miss--;
2281
2282                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2283                 if (fe->pte)
2284                         fe->pte += iter.index - last_pgoff;
2285                 last_pgoff = iter.index;
2286                 if (alloc_set_pte(fe, NULL, page))
2287                         goto unlock;
2288                 unlock_page(page);
2289                 goto next;
2290 unlock:
2291                 unlock_page(page);
2292 skip:
2293                 put_page(page);
2294 next:
2295                 /* Huge page is mapped? No need to proceed. */
2296                 if (pmd_trans_huge(*fe->pmd))
2297                         break;
2298                 if (iter.index == end_pgoff)
2299                         break;
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL(filemap_map_pages);
2304
2305 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2306 {
2307         struct page *page = vmf->page;
2308         struct inode *inode = file_inode(vma->vm_file);
2309         int ret = VM_FAULT_LOCKED;
2310
2311         sb_start_pagefault(inode->i_sb);
2312         file_update_time(vma->vm_file);
2313         lock_page(page);
2314         if (page->mapping != inode->i_mapping) {
2315                 unlock_page(page);
2316                 ret = VM_FAULT_NOPAGE;
2317                 goto out;
2318         }
2319         /*
2320          * We mark the page dirty already here so that when freeze is in
2321          * progress, we are guaranteed that writeback during freezing will
2322          * see the dirty page and writeprotect it again.
2323          */
2324         set_page_dirty(page);
2325         wait_for_stable_page(page);
2326 out:
2327         sb_end_pagefault(inode->i_sb);
2328         return ret;
2329 }
2330 EXPORT_SYMBOL(filemap_page_mkwrite);
2331
2332 const struct vm_operations_struct generic_file_vm_ops = {
2333         .fault          = filemap_fault,
2334         .map_pages      = filemap_map_pages,
2335         .page_mkwrite   = filemap_page_mkwrite,
2336 };
2337
2338 /* This is used for a general mmap of a disk file */
2339
2340 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2341 {
2342         struct address_space *mapping = file->f_mapping;
2343
2344         if (!mapping->a_ops->readpage)
2345                 return -ENOEXEC;
2346         file_accessed(file);
2347         vma->vm_ops = &generic_file_vm_ops;
2348         return 0;
2349 }
2350
2351 /*
2352  * This is for filesystems which do not implement ->writepage.
2353  */
2354 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2355 {
2356         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2357                 return -EINVAL;
2358         return generic_file_mmap(file, vma);
2359 }
2360 #else
2361 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2362 {
2363         return -ENOSYS;
2364 }
2365 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2366 {
2367         return -ENOSYS;
2368 }
2369 #endif /* CONFIG_MMU */
2370
2371 EXPORT_SYMBOL(generic_file_mmap);
2372 EXPORT_SYMBOL(generic_file_readonly_mmap);
2373
2374 static struct page *wait_on_page_read(struct page *page)
2375 {
2376         if (!IS_ERR(page)) {
2377                 wait_on_page_locked(page);
2378                 if (!PageUptodate(page)) {
2379                         put_page(page);
2380                         page = ERR_PTR(-EIO);
2381                 }
2382         }
2383         return page;
2384 }
2385
2386 static struct page *do_read_cache_page(struct address_space *mapping,
2387                                 pgoff_t index,
2388                                 int (*filler)(void *, struct page *),
2389                                 void *data,
2390                                 gfp_t gfp)
2391 {
2392         struct page *page;
2393         int err;
2394 repeat:
2395         page = find_get_page(mapping, index);
2396         if (!page) {
2397                 page = __page_cache_alloc(gfp | __GFP_COLD);
2398                 if (!page)
2399                         return ERR_PTR(-ENOMEM);
2400                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2401                 if (unlikely(err)) {
2402                         put_page(page);
2403                         if (err == -EEXIST)
2404                                 goto repeat;
2405                         /* Presumably ENOMEM for radix tree node */
2406                         return ERR_PTR(err);
2407                 }
2408
2409 filler:
2410                 err = filler(data, page);
2411                 if (err < 0) {
2412                         put_page(page);
2413                         return ERR_PTR(err);
2414                 }
2415
2416                 page = wait_on_page_read(page);
2417                 if (IS_ERR(page))
2418                         return page;
2419                 goto out;
2420         }
2421         if (PageUptodate(page))
2422                 goto out;
2423
2424         /*
2425          * Page is not up to date and may be locked due one of the following
2426          * case a: Page is being filled and the page lock is held
2427          * case b: Read/write error clearing the page uptodate status
2428          * case c: Truncation in progress (page locked)
2429          * case d: Reclaim in progress
2430          *
2431          * Case a, the page will be up to date when the page is unlocked.
2432          *    There is no need to serialise on the page lock here as the page
2433          *    is pinned so the lock gives no additional protection. Even if the
2434          *    the page is truncated, the data is still valid if PageUptodate as
2435          *    it's a race vs truncate race.
2436          * Case b, the page will not be up to date
2437          * Case c, the page may be truncated but in itself, the data may still
2438          *    be valid after IO completes as it's a read vs truncate race. The
2439          *    operation must restart if the page is not uptodate on unlock but
2440          *    otherwise serialising on page lock to stabilise the mapping gives
2441          *    no additional guarantees to the caller as the page lock is
2442          *    released before return.
2443          * Case d, similar to truncation. If reclaim holds the page lock, it
2444          *    will be a race with remove_mapping that determines if the mapping
2445          *    is valid on unlock but otherwise the data is valid and there is
2446          *    no need to serialise with page lock.
2447          *
2448          * As the page lock gives no additional guarantee, we optimistically
2449          * wait on the page to be unlocked and check if it's up to date and
2450          * use the page if it is. Otherwise, the page lock is required to
2451          * distinguish between the different cases. The motivation is that we
2452          * avoid spurious serialisations and wakeups when multiple processes
2453          * wait on the same page for IO to complete.
2454          */
2455         wait_on_page_locked(page);
2456         if (PageUptodate(page))
2457                 goto out;
2458
2459         /* Distinguish between all the cases under the safety of the lock */
2460         lock_page(page);
2461
2462         /* Case c or d, restart the operation */
2463         if (!page->mapping) {
2464                 unlock_page(page);
2465                 put_page(page);
2466                 goto repeat;
2467         }
2468
2469         /* Someone else locked and filled the page in a very small window */
2470         if (PageUptodate(page)) {
2471                 unlock_page(page);
2472                 goto out;
2473         }
2474         goto filler;
2475
2476 out:
2477         mark_page_accessed(page);
2478         return page;
2479 }
2480
2481 /**
2482  * read_cache_page - read into page cache, fill it if needed
2483  * @mapping:    the page's address_space
2484  * @index:      the page index
2485  * @filler:     function to perform the read
2486  * @data:       first arg to filler(data, page) function, often left as NULL
2487  *
2488  * Read into the page cache. If a page already exists, and PageUptodate() is
2489  * not set, try to fill the page and wait for it to become unlocked.
2490  *
2491  * If the page does not get brought uptodate, return -EIO.
2492  */
2493 struct page *read_cache_page(struct address_space *mapping,
2494                                 pgoff_t index,
2495                                 int (*filler)(void *, struct page *),
2496                                 void *data)
2497 {
2498         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2499 }
2500 EXPORT_SYMBOL(read_cache_page);
2501
2502 /**
2503  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2504  * @mapping:    the page's address_space
2505  * @index:      the page index
2506  * @gfp:        the page allocator flags to use if allocating
2507  *
2508  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2509  * any new page allocations done using the specified allocation flags.
2510  *
2511  * If the page does not get brought uptodate, return -EIO.
2512  */
2513 struct page *read_cache_page_gfp(struct address_space *mapping,
2514                                 pgoff_t index,
2515                                 gfp_t gfp)
2516 {
2517         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2518
2519         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2520 }
2521 EXPORT_SYMBOL(read_cache_page_gfp);
2522
2523 /*
2524  * Performs necessary checks before doing a write
2525  *
2526  * Can adjust writing position or amount of bytes to write.
2527  * Returns appropriate error code that caller should return or
2528  * zero in case that write should be allowed.
2529  */
2530 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2531 {
2532         struct file *file = iocb->ki_filp;
2533         struct inode *inode = file->f_mapping->host;
2534         unsigned long limit = rlimit(RLIMIT_FSIZE);
2535         loff_t pos;
2536
2537         if (!iov_iter_count(from))
2538                 return 0;
2539
2540         /* FIXME: this is for backwards compatibility with 2.4 */
2541         if (iocb->ki_flags & IOCB_APPEND)
2542                 iocb->ki_pos = i_size_read(inode);
2543
2544         pos = iocb->ki_pos;
2545
2546         if (limit != RLIM_INFINITY) {
2547                 if (iocb->ki_pos >= limit) {
2548                         send_sig(SIGXFSZ, current, 0);
2549                         return -EFBIG;
2550                 }
2551                 iov_iter_truncate(from, limit - (unsigned long)pos);
2552         }
2553
2554         /*
2555          * LFS rule
2556          */
2557         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2558                                 !(file->f_flags & O_LARGEFILE))) {
2559                 if (pos >= MAX_NON_LFS)
2560                         return -EFBIG;
2561                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2562         }
2563
2564         /*
2565          * Are we about to exceed the fs block limit ?
2566          *
2567          * If we have written data it becomes a short write.  If we have
2568          * exceeded without writing data we send a signal and return EFBIG.
2569          * Linus frestrict idea will clean these up nicely..
2570          */
2571         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2572                 return -EFBIG;
2573
2574         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2575         return iov_iter_count(from);
2576 }
2577 EXPORT_SYMBOL(generic_write_checks);
2578
2579 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2580                                 loff_t pos, unsigned len, unsigned flags,
2581                                 struct page **pagep, void **fsdata)
2582 {
2583         const struct address_space_operations *aops = mapping->a_ops;
2584
2585         return aops->write_begin(file, mapping, pos, len, flags,
2586                                                         pagep, fsdata);
2587 }
2588 EXPORT_SYMBOL(pagecache_write_begin);
2589
2590 int pagecache_write_end(struct file *file, struct address_space *mapping,
2591                                 loff_t pos, unsigned len, unsigned copied,
2592                                 struct page *page, void *fsdata)
2593 {
2594         const struct address_space_operations *aops = mapping->a_ops;
2595
2596         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2597 }
2598 EXPORT_SYMBOL(pagecache_write_end);
2599
2600 ssize_t
2601 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2602 {
2603         struct file     *file = iocb->ki_filp;
2604         struct address_space *mapping = file->f_mapping;
2605         struct inode    *inode = mapping->host;
2606         loff_t          pos = iocb->ki_pos;
2607         ssize_t         written;
2608         size_t          write_len;
2609         pgoff_t         end;
2610         struct iov_iter data;
2611
2612         write_len = iov_iter_count(from);
2613         end = (pos + write_len - 1) >> PAGE_SHIFT;
2614
2615         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2616         if (written)
2617                 goto out;
2618
2619         /*
2620          * After a write we want buffered reads to be sure to go to disk to get
2621          * the new data.  We invalidate clean cached page from the region we're
2622          * about to write.  We do this *before* the write so that we can return
2623          * without clobbering -EIOCBQUEUED from ->direct_IO().
2624          */
2625         if (mapping->nrpages) {
2626                 written = invalidate_inode_pages2_range(mapping,
2627                                         pos >> PAGE_SHIFT, end);
2628                 /*
2629                  * If a page can not be invalidated, return 0 to fall back
2630                  * to buffered write.
2631                  */
2632                 if (written) {
2633                         if (written == -EBUSY)
2634                                 return 0;
2635                         goto out;
2636                 }
2637         }
2638
2639         data = *from;
2640         written = mapping->a_ops->direct_IO(iocb, &data);
2641
2642         /*
2643          * Finally, try again to invalidate clean pages which might have been
2644          * cached by non-direct readahead, or faulted in by get_user_pages()
2645          * if the source of the write was an mmap'ed region of the file
2646          * we're writing.  Either one is a pretty crazy thing to do,
2647          * so we don't support it 100%.  If this invalidation
2648          * fails, tough, the write still worked...
2649          */
2650         if (mapping->nrpages) {
2651                 invalidate_inode_pages2_range(mapping,
2652                                               pos >> PAGE_SHIFT, end);
2653         }
2654
2655         if (written > 0) {
2656                 pos += written;
2657                 iov_iter_advance(from, written);
2658                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2659                         i_size_write(inode, pos);
2660                         mark_inode_dirty(inode);
2661                 }
2662                 iocb->ki_pos = pos;
2663         }
2664 out:
2665         return written;
2666 }
2667 EXPORT_SYMBOL(generic_file_direct_write);
2668
2669 /*
2670  * Find or create a page at the given pagecache position. Return the locked
2671  * page. This function is specifically for buffered writes.
2672  */
2673 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2674                                         pgoff_t index, unsigned flags)
2675 {
2676         struct page *page;
2677         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2678
2679         if (flags & AOP_FLAG_NOFS)
2680                 fgp_flags |= FGP_NOFS;
2681
2682         page = pagecache_get_page(mapping, index, fgp_flags,
2683                         mapping_gfp_mask(mapping));
2684         if (page)
2685                 wait_for_stable_page(page);
2686
2687         return page;
2688 }
2689 EXPORT_SYMBOL(grab_cache_page_write_begin);
2690
2691 ssize_t generic_perform_write(struct file *file,
2692                                 struct iov_iter *i, loff_t pos)
2693 {
2694         struct address_space *mapping = file->f_mapping;
2695         const struct address_space_operations *a_ops = mapping->a_ops;
2696         long status = 0;
2697         ssize_t written = 0;
2698         unsigned int flags = 0;
2699
2700         /*
2701          * Copies from kernel address space cannot fail (NFSD is a big user).
2702          */
2703         if (!iter_is_iovec(i))
2704                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2705
2706         do {
2707                 struct page *page;
2708                 unsigned long offset;   /* Offset into pagecache page */
2709                 unsigned long bytes;    /* Bytes to write to page */
2710                 size_t copied;          /* Bytes copied from user */
2711                 void *fsdata;
2712
2713                 offset = (pos & (PAGE_SIZE - 1));
2714                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2715                                                 iov_iter_count(i));
2716
2717 again:
2718                 /*
2719                  * Bring in the user page that we will copy from _first_.
2720                  * Otherwise there's a nasty deadlock on copying from the
2721                  * same page as we're writing to, without it being marked
2722                  * up-to-date.
2723                  *
2724                  * Not only is this an optimisation, but it is also required
2725                  * to check that the address is actually valid, when atomic
2726                  * usercopies are used, below.
2727                  */
2728                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2729                         status = -EFAULT;
2730                         break;
2731                 }
2732
2733                 if (fatal_signal_pending(current)) {
2734                         status = -EINTR;
2735                         break;
2736                 }
2737
2738                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2739                                                 &page, &fsdata);
2740                 if (unlikely(status < 0))
2741                         break;
2742
2743                 if (mapping_writably_mapped(mapping))
2744                         flush_dcache_page(page);
2745
2746                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2747                 flush_dcache_page(page);
2748
2749                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2750                                                 page, fsdata);
2751                 if (unlikely(status < 0))
2752                         break;
2753                 copied = status;
2754
2755                 cond_resched();
2756
2757                 iov_iter_advance(i, copied);
2758                 if (unlikely(copied == 0)) {
2759                         /*
2760                          * If we were unable to copy any data at all, we must
2761                          * fall back to a single segment length write.
2762                          *
2763                          * If we didn't fallback here, we could livelock
2764                          * because not all segments in the iov can be copied at
2765                          * once without a pagefault.
2766                          */
2767                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2768                                                 iov_iter_single_seg_count(i));
2769                         goto again;
2770                 }
2771                 pos += copied;
2772                 written += copied;
2773
2774                 balance_dirty_pages_ratelimited(mapping);
2775         } while (iov_iter_count(i));
2776
2777         return written ? written : status;
2778 }
2779 EXPORT_SYMBOL(generic_perform_write);
2780
2781 /**
2782  * __generic_file_write_iter - write data to a file
2783  * @iocb:       IO state structure (file, offset, etc.)
2784  * @from:       iov_iter with data to write
2785  *
2786  * This function does all the work needed for actually writing data to a
2787  * file. It does all basic checks, removes SUID from the file, updates
2788  * modification times and calls proper subroutines depending on whether we
2789  * do direct IO or a standard buffered write.
2790  *
2791  * It expects i_mutex to be grabbed unless we work on a block device or similar
2792  * object which does not need locking at all.
2793  *
2794  * This function does *not* take care of syncing data in case of O_SYNC write.
2795  * A caller has to handle it. This is mainly due to the fact that we want to
2796  * avoid syncing under i_mutex.
2797  */
2798 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2799 {
2800         struct file *file = iocb->ki_filp;
2801         struct address_space * mapping = file->f_mapping;
2802         struct inode    *inode = mapping->host;
2803         ssize_t         written = 0;
2804         ssize_t         err;
2805         ssize_t         status;
2806
2807         /* We can write back this queue in page reclaim */
2808         current->backing_dev_info = inode_to_bdi(inode);
2809         err = file_remove_privs(file);
2810         if (err)
2811                 goto out;
2812
2813         err = file_update_time(file);
2814         if (err)
2815                 goto out;
2816
2817         if (iocb->ki_flags & IOCB_DIRECT) {
2818                 loff_t pos, endbyte;
2819
2820                 written = generic_file_direct_write(iocb, from);
2821                 /*
2822                  * If the write stopped short of completing, fall back to
2823                  * buffered writes.  Some filesystems do this for writes to
2824                  * holes, for example.  For DAX files, a buffered write will
2825                  * not succeed (even if it did, DAX does not handle dirty
2826                  * page-cache pages correctly).
2827                  */
2828                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2829                         goto out;
2830
2831                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2832                 /*
2833                  * If generic_perform_write() returned a synchronous error
2834                  * then we want to return the number of bytes which were
2835                  * direct-written, or the error code if that was zero.  Note
2836                  * that this differs from normal direct-io semantics, which
2837                  * will return -EFOO even if some bytes were written.
2838                  */
2839                 if (unlikely(status < 0)) {
2840                         err = status;
2841                         goto out;
2842                 }
2843                 /*
2844                  * We need to ensure that the page cache pages are written to
2845                  * disk and invalidated to preserve the expected O_DIRECT
2846                  * semantics.
2847                  */
2848                 endbyte = pos + status - 1;
2849                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2850                 if (err == 0) {
2851                         iocb->ki_pos = endbyte + 1;
2852                         written += status;
2853                         invalidate_mapping_pages(mapping,
2854                                                  pos >> PAGE_SHIFT,
2855                                                  endbyte >> PAGE_SHIFT);
2856                 } else {
2857                         /*
2858                          * We don't know how much we wrote, so just return
2859                          * the number of bytes which were direct-written
2860                          */
2861                 }
2862         } else {
2863                 written = generic_perform_write(file, from, iocb->ki_pos);
2864                 if (likely(written > 0))
2865                         iocb->ki_pos += written;
2866         }
2867 out:
2868         current->backing_dev_info = NULL;
2869         return written ? written : err;
2870 }
2871 EXPORT_SYMBOL(__generic_file_write_iter);
2872
2873 /**
2874  * generic_file_write_iter - write data to a file
2875  * @iocb:       IO state structure
2876  * @from:       iov_iter with data to write
2877  *
2878  * This is a wrapper around __generic_file_write_iter() to be used by most
2879  * filesystems. It takes care of syncing the file in case of O_SYNC file
2880  * and acquires i_mutex as needed.
2881  */
2882 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2883 {
2884         struct file *file = iocb->ki_filp;
2885         struct inode *inode = file->f_mapping->host;
2886         ssize_t ret;
2887
2888         inode_lock(inode);
2889         ret = generic_write_checks(iocb, from);
2890         if (ret > 0)
2891                 ret = __generic_file_write_iter(iocb, from);
2892         inode_unlock(inode);
2893
2894         if (ret > 0)
2895                 ret = generic_write_sync(iocb, ret);
2896         return ret;
2897 }
2898 EXPORT_SYMBOL(generic_file_write_iter);
2899
2900 /**
2901  * try_to_release_page() - release old fs-specific metadata on a page
2902  *
2903  * @page: the page which the kernel is trying to free
2904  * @gfp_mask: memory allocation flags (and I/O mode)
2905  *
2906  * The address_space is to try to release any data against the page
2907  * (presumably at page->private).  If the release was successful, return `1'.
2908  * Otherwise return zero.
2909  *
2910  * This may also be called if PG_fscache is set on a page, indicating that the
2911  * page is known to the local caching routines.
2912  *
2913  * The @gfp_mask argument specifies whether I/O may be performed to release
2914  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2915  *
2916  */
2917 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2918 {
2919         struct address_space * const mapping = page->mapping;
2920
2921         BUG_ON(!PageLocked(page));
2922         if (PageWriteback(page))
2923                 return 0;
2924
2925         if (mapping && mapping->a_ops->releasepage)
2926                 return mapping->a_ops->releasepage(page, gfp_mask);
2927         return try_to_free_buffers(page);
2928 }
2929
2930 EXPORT_SYMBOL(try_to_release_page);