]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - fs/buffer.c
Apply preempt_rt patch-4.9-rt1.patch.xz
[zynq/linux.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
47
48 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
49 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
50                          unsigned long bio_flags,
51                          struct writeback_control *wbc);
52
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54
55 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56 {
57         bh->b_end_io = handler;
58         bh->b_private = private;
59 }
60 EXPORT_SYMBOL(init_buffer);
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64         trace_block_touch_buffer(bh);
65         mark_page_accessed(bh->b_page);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77         clear_bit_unlock(BH_Lock, &bh->b_state);
78         smp_mb__after_atomic();
79         wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84  * Returns if the page has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the PageDirty information is stale. If
86  * any of the pages are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct page *page,
89                                      bool *dirty, bool *writeback)
90 {
91         struct buffer_head *head, *bh;
92         *dirty = false;
93         *writeback = false;
94
95         BUG_ON(!PageLocked(page));
96
97         if (!page_has_buffers(page))
98                 return;
99
100         if (PageWriteback(page))
101                 *writeback = true;
102
103         head = page_buffers(page);
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116
117 /*
118  * Block until a buffer comes unlocked.  This doesn't stop it
119  * from becoming locked again - you have to lock it yourself
120  * if you want to preserve its state.
121  */
122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127
128 static void
129 __clear_page_buffers(struct page *page)
130 {
131         ClearPagePrivate(page);
132         set_page_private(page, 0);
133         put_page(page);
134 }
135
136 static void buffer_io_error(struct buffer_head *bh, char *msg)
137 {
138         if (!test_bit(BH_Quiet, &bh->b_state))
139                 printk_ratelimited(KERN_ERR
140                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
141                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
142 }
143
144 /*
145  * End-of-IO handler helper function which does not touch the bh after
146  * unlocking it.
147  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148  * a race there is benign: unlock_buffer() only use the bh's address for
149  * hashing after unlocking the buffer, so it doesn't actually touch the bh
150  * itself.
151  */
152 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153 {
154         if (uptodate) {
155                 set_buffer_uptodate(bh);
156         } else {
157                 /* This happens, due to failed read-ahead attempts. */
158                 clear_buffer_uptodate(bh);
159         }
160         unlock_buffer(bh);
161 }
162
163 /*
164  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
165  * unlock the buffer. This is what ll_rw_block uses too.
166  */
167 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168 {
169         __end_buffer_read_notouch(bh, uptodate);
170         put_bh(bh);
171 }
172 EXPORT_SYMBOL(end_buffer_read_sync);
173
174 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175 {
176         if (uptodate) {
177                 set_buffer_uptodate(bh);
178         } else {
179                 buffer_io_error(bh, ", lost sync page write");
180                 set_buffer_write_io_error(bh);
181                 clear_buffer_uptodate(bh);
182         }
183         unlock_buffer(bh);
184         put_bh(bh);
185 }
186 EXPORT_SYMBOL(end_buffer_write_sync);
187
188 /*
189  * Various filesystems appear to want __find_get_block to be non-blocking.
190  * But it's the page lock which protects the buffers.  To get around this,
191  * we get exclusion from try_to_free_buffers with the blockdev mapping's
192  * private_lock.
193  *
194  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195  * may be quite high.  This code could TryLock the page, and if that
196  * succeeds, there is no need to take private_lock. (But if
197  * private_lock is contended then so is mapping->tree_lock).
198  */
199 static struct buffer_head *
200 __find_get_block_slow(struct block_device *bdev, sector_t block)
201 {
202         struct inode *bd_inode = bdev->bd_inode;
203         struct address_space *bd_mapping = bd_inode->i_mapping;
204         struct buffer_head *ret = NULL;
205         pgoff_t index;
206         struct buffer_head *bh;
207         struct buffer_head *head;
208         struct page *page;
209         int all_mapped = 1;
210
211         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
212         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
213         if (!page)
214                 goto out;
215
216         spin_lock(&bd_mapping->private_lock);
217         if (!page_has_buffers(page))
218                 goto out_unlock;
219         head = page_buffers(page);
220         bh = head;
221         do {
222                 if (!buffer_mapped(bh))
223                         all_mapped = 0;
224                 else if (bh->b_blocknr == block) {
225                         ret = bh;
226                         get_bh(bh);
227                         goto out_unlock;
228                 }
229                 bh = bh->b_this_page;
230         } while (bh != head);
231
232         /* we might be here because some of the buffers on this page are
233          * not mapped.  This is due to various races between
234          * file io on the block device and getblk.  It gets dealt with
235          * elsewhere, don't buffer_error if we had some unmapped buffers
236          */
237         if (all_mapped) {
238                 printk("__find_get_block_slow() failed. "
239                         "block=%llu, b_blocknr=%llu\n",
240                         (unsigned long long)block,
241                         (unsigned long long)bh->b_blocknr);
242                 printk("b_state=0x%08lx, b_size=%zu\n",
243                         bh->b_state, bh->b_size);
244                 printk("device %pg blocksize: %d\n", bdev,
245                         1 << bd_inode->i_blkbits);
246         }
247 out_unlock:
248         spin_unlock(&bd_mapping->private_lock);
249         put_page(page);
250 out:
251         return ret;
252 }
253
254 /*
255  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256  */
257 static void free_more_memory(void)
258 {
259         struct zoneref *z;
260         int nid;
261
262         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263         yield();
264
265         for_each_online_node(nid) {
266
267                 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
268                                                 gfp_zone(GFP_NOFS), NULL);
269                 if (z->zone)
270                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271                                                 GFP_NOFS, NULL);
272         }
273 }
274
275 /*
276  * I/O completion handler for block_read_full_page() - pages
277  * which come unlocked at the end of I/O.
278  */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281         unsigned long flags;
282         struct buffer_head *first;
283         struct buffer_head *tmp;
284         struct page *page;
285         int page_uptodate = 1;
286
287         BUG_ON(!buffer_async_read(bh));
288
289         page = bh->b_page;
290         if (uptodate) {
291                 set_buffer_uptodate(bh);
292         } else {
293                 clear_buffer_uptodate(bh);
294                 buffer_io_error(bh, ", async page read");
295                 SetPageError(page);
296         }
297
298         /*
299          * Be _very_ careful from here on. Bad things can happen if
300          * two buffer heads end IO at almost the same time and both
301          * decide that the page is now completely done.
302          */
303         first = page_buffers(page);
304         flags = bh_uptodate_lock_irqsave(first);
305         clear_buffer_async_read(bh);
306         unlock_buffer(bh);
307         tmp = bh;
308         do {
309                 if (!buffer_uptodate(tmp))
310                         page_uptodate = 0;
311                 if (buffer_async_read(tmp)) {
312                         BUG_ON(!buffer_locked(tmp));
313                         goto still_busy;
314                 }
315                 tmp = tmp->b_this_page;
316         } while (tmp != bh);
317         bh_uptodate_unlock_irqrestore(first, flags);
318
319         /*
320          * If none of the buffers had errors and they are all
321          * uptodate then we can set the page uptodate.
322          */
323         if (page_uptodate && !PageError(page))
324                 SetPageUptodate(page);
325         unlock_page(page);
326         return;
327
328 still_busy:
329         bh_uptodate_unlock_irqrestore(first, flags);
330 }
331
332 /*
333  * Completion handler for block_write_full_page() - pages which are unlocked
334  * during I/O, and which have PageWriteback cleared upon I/O completion.
335  */
336 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
337 {
338         unsigned long flags;
339         struct buffer_head *first;
340         struct buffer_head *tmp;
341         struct page *page;
342
343         BUG_ON(!buffer_async_write(bh));
344
345         page = bh->b_page;
346         if (uptodate) {
347                 set_buffer_uptodate(bh);
348         } else {
349                 buffer_io_error(bh, ", lost async page write");
350                 mapping_set_error(page->mapping, -EIO);
351                 set_buffer_write_io_error(bh);
352                 clear_buffer_uptodate(bh);
353                 SetPageError(page);
354         }
355
356         first = page_buffers(page);
357         flags = bh_uptodate_lock_irqsave(first);
358
359         clear_buffer_async_write(bh);
360         unlock_buffer(bh);
361         tmp = bh->b_this_page;
362         while (tmp != bh) {
363                 if (buffer_async_write(tmp)) {
364                         BUG_ON(!buffer_locked(tmp));
365                         goto still_busy;
366                 }
367                 tmp = tmp->b_this_page;
368         }
369         bh_uptodate_unlock_irqrestore(first, flags);
370         end_page_writeback(page);
371         return;
372
373 still_busy:
374         bh_uptodate_unlock_irqrestore(first, flags);
375 }
376 EXPORT_SYMBOL(end_buffer_async_write);
377
378 /*
379  * If a page's buffers are under async readin (end_buffer_async_read
380  * completion) then there is a possibility that another thread of
381  * control could lock one of the buffers after it has completed
382  * but while some of the other buffers have not completed.  This
383  * locked buffer would confuse end_buffer_async_read() into not unlocking
384  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
385  * that this buffer is not under async I/O.
386  *
387  * The page comes unlocked when it has no locked buffer_async buffers
388  * left.
389  *
390  * PageLocked prevents anyone starting new async I/O reads any of
391  * the buffers.
392  *
393  * PageWriteback is used to prevent simultaneous writeout of the same
394  * page.
395  *
396  * PageLocked prevents anyone from starting writeback of a page which is
397  * under read I/O (PageWriteback is only ever set against a locked page).
398  */
399 static void mark_buffer_async_read(struct buffer_head *bh)
400 {
401         bh->b_end_io = end_buffer_async_read;
402         set_buffer_async_read(bh);
403 }
404
405 static void mark_buffer_async_write_endio(struct buffer_head *bh,
406                                           bh_end_io_t *handler)
407 {
408         bh->b_end_io = handler;
409         set_buffer_async_write(bh);
410 }
411
412 void mark_buffer_async_write(struct buffer_head *bh)
413 {
414         mark_buffer_async_write_endio(bh, end_buffer_async_write);
415 }
416 EXPORT_SYMBOL(mark_buffer_async_write);
417
418
419 /*
420  * fs/buffer.c contains helper functions for buffer-backed address space's
421  * fsync functions.  A common requirement for buffer-based filesystems is
422  * that certain data from the backing blockdev needs to be written out for
423  * a successful fsync().  For example, ext2 indirect blocks need to be
424  * written back and waited upon before fsync() returns.
425  *
426  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
427  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
428  * management of a list of dependent buffers at ->i_mapping->private_list.
429  *
430  * Locking is a little subtle: try_to_free_buffers() will remove buffers
431  * from their controlling inode's queue when they are being freed.  But
432  * try_to_free_buffers() will be operating against the *blockdev* mapping
433  * at the time, not against the S_ISREG file which depends on those buffers.
434  * So the locking for private_list is via the private_lock in the address_space
435  * which backs the buffers.  Which is different from the address_space 
436  * against which the buffers are listed.  So for a particular address_space,
437  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
438  * mapping->private_list will always be protected by the backing blockdev's
439  * ->private_lock.
440  *
441  * Which introduces a requirement: all buffers on an address_space's
442  * ->private_list must be from the same address_space: the blockdev's.
443  *
444  * address_spaces which do not place buffers at ->private_list via these
445  * utility functions are free to use private_lock and private_list for
446  * whatever they want.  The only requirement is that list_empty(private_list)
447  * be true at clear_inode() time.
448  *
449  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
450  * filesystems should do that.  invalidate_inode_buffers() should just go
451  * BUG_ON(!list_empty).
452  *
453  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
454  * take an address_space, not an inode.  And it should be called
455  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
456  * queued up.
457  *
458  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
459  * list if it is already on a list.  Because if the buffer is on a list,
460  * it *must* already be on the right one.  If not, the filesystem is being
461  * silly.  This will save a ton of locking.  But first we have to ensure
462  * that buffers are taken *off* the old inode's list when they are freed
463  * (presumably in truncate).  That requires careful auditing of all
464  * filesystems (do it inside bforget()).  It could also be done by bringing
465  * b_inode back.
466  */
467
468 /*
469  * The buffer's backing address_space's private_lock must be held
470  */
471 static void __remove_assoc_queue(struct buffer_head *bh)
472 {
473         list_del_init(&bh->b_assoc_buffers);
474         WARN_ON(!bh->b_assoc_map);
475         if (buffer_write_io_error(bh))
476                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
477         bh->b_assoc_map = NULL;
478 }
479
480 int inode_has_buffers(struct inode *inode)
481 {
482         return !list_empty(&inode->i_data.private_list);
483 }
484
485 /*
486  * osync is designed to support O_SYNC io.  It waits synchronously for
487  * all already-submitted IO to complete, but does not queue any new
488  * writes to the disk.
489  *
490  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
491  * you dirty the buffers, and then use osync_inode_buffers to wait for
492  * completion.  Any other dirty buffers which are not yet queued for
493  * write will not be flushed to disk by the osync.
494  */
495 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
496 {
497         struct buffer_head *bh;
498         struct list_head *p;
499         int err = 0;
500
501         spin_lock(lock);
502 repeat:
503         list_for_each_prev(p, list) {
504                 bh = BH_ENTRY(p);
505                 if (buffer_locked(bh)) {
506                         get_bh(bh);
507                         spin_unlock(lock);
508                         wait_on_buffer(bh);
509                         if (!buffer_uptodate(bh))
510                                 err = -EIO;
511                         brelse(bh);
512                         spin_lock(lock);
513                         goto repeat;
514                 }
515         }
516         spin_unlock(lock);
517         return err;
518 }
519
520 static void do_thaw_one(struct super_block *sb, void *unused)
521 {
522         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
523                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
524 }
525
526 static void do_thaw_all(struct work_struct *work)
527 {
528         iterate_supers(do_thaw_one, NULL);
529         kfree(work);
530         printk(KERN_WARNING "Emergency Thaw complete\n");
531 }
532
533 /**
534  * emergency_thaw_all -- forcibly thaw every frozen filesystem
535  *
536  * Used for emergency unfreeze of all filesystems via SysRq
537  */
538 void emergency_thaw_all(void)
539 {
540         struct work_struct *work;
541
542         work = kmalloc(sizeof(*work), GFP_ATOMIC);
543         if (work) {
544                 INIT_WORK(work, do_thaw_all);
545                 schedule_work(work);
546         }
547 }
548
549 /**
550  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
551  * @mapping: the mapping which wants those buffers written
552  *
553  * Starts I/O against the buffers at mapping->private_list, and waits upon
554  * that I/O.
555  *
556  * Basically, this is a convenience function for fsync().
557  * @mapping is a file or directory which needs those buffers to be written for
558  * a successful fsync().
559  */
560 int sync_mapping_buffers(struct address_space *mapping)
561 {
562         struct address_space *buffer_mapping = mapping->private_data;
563
564         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
565                 return 0;
566
567         return fsync_buffers_list(&buffer_mapping->private_lock,
568                                         &mapping->private_list);
569 }
570 EXPORT_SYMBOL(sync_mapping_buffers);
571
572 /*
573  * Called when we've recently written block `bblock', and it is known that
574  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
575  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
576  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
577  */
578 void write_boundary_block(struct block_device *bdev,
579                         sector_t bblock, unsigned blocksize)
580 {
581         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
582         if (bh) {
583                 if (buffer_dirty(bh))
584                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
585                 put_bh(bh);
586         }
587 }
588
589 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
590 {
591         struct address_space *mapping = inode->i_mapping;
592         struct address_space *buffer_mapping = bh->b_page->mapping;
593
594         mark_buffer_dirty(bh);
595         if (!mapping->private_data) {
596                 mapping->private_data = buffer_mapping;
597         } else {
598                 BUG_ON(mapping->private_data != buffer_mapping);
599         }
600         if (!bh->b_assoc_map) {
601                 spin_lock(&buffer_mapping->private_lock);
602                 list_move_tail(&bh->b_assoc_buffers,
603                                 &mapping->private_list);
604                 bh->b_assoc_map = mapping;
605                 spin_unlock(&buffer_mapping->private_lock);
606         }
607 }
608 EXPORT_SYMBOL(mark_buffer_dirty_inode);
609
610 /*
611  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
612  * dirty.
613  *
614  * If warn is true, then emit a warning if the page is not uptodate and has
615  * not been truncated.
616  *
617  * The caller must hold lock_page_memcg().
618  */
619 static void __set_page_dirty(struct page *page, struct address_space *mapping,
620                              int warn)
621 {
622         unsigned long flags;
623
624         spin_lock_irqsave(&mapping->tree_lock, flags);
625         if (page->mapping) {    /* Race with truncate? */
626                 WARN_ON_ONCE(warn && !PageUptodate(page));
627                 account_page_dirtied(page, mapping);
628                 radix_tree_tag_set(&mapping->page_tree,
629                                 page_index(page), PAGECACHE_TAG_DIRTY);
630         }
631         spin_unlock_irqrestore(&mapping->tree_lock, flags);
632 }
633
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661         int newly_dirty;
662         struct address_space *mapping = page_mapping(page);
663
664         if (unlikely(!mapping))
665                 return !TestSetPageDirty(page);
666
667         spin_lock(&mapping->private_lock);
668         if (page_has_buffers(page)) {
669                 struct buffer_head *head = page_buffers(page);
670                 struct buffer_head *bh = head;
671
672                 do {
673                         set_buffer_dirty(bh);
674                         bh = bh->b_this_page;
675                 } while (bh != head);
676         }
677         /*
678          * Lock out page->mem_cgroup migration to keep PageDirty
679          * synchronized with per-memcg dirty page counters.
680          */
681         lock_page_memcg(page);
682         newly_dirty = !TestSetPageDirty(page);
683         spin_unlock(&mapping->private_lock);
684
685         if (newly_dirty)
686                 __set_page_dirty(page, mapping, 1);
687
688         unlock_page_memcg(page);
689
690         if (newly_dirty)
691                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
692
693         return newly_dirty;
694 }
695 EXPORT_SYMBOL(__set_page_dirty_buffers);
696
697 /*
698  * Write out and wait upon a list of buffers.
699  *
700  * We have conflicting pressures: we want to make sure that all
701  * initially dirty buffers get waited on, but that any subsequently
702  * dirtied buffers don't.  After all, we don't want fsync to last
703  * forever if somebody is actively writing to the file.
704  *
705  * Do this in two main stages: first we copy dirty buffers to a
706  * temporary inode list, queueing the writes as we go.  Then we clean
707  * up, waiting for those writes to complete.
708  * 
709  * During this second stage, any subsequent updates to the file may end
710  * up refiling the buffer on the original inode's dirty list again, so
711  * there is a chance we will end up with a buffer queued for write but
712  * not yet completed on that list.  So, as a final cleanup we go through
713  * the osync code to catch these locked, dirty buffers without requeuing
714  * any newly dirty buffers for write.
715  */
716 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
717 {
718         struct buffer_head *bh;
719         struct list_head tmp;
720         struct address_space *mapping;
721         int err = 0, err2;
722         struct blk_plug plug;
723
724         INIT_LIST_HEAD(&tmp);
725         blk_start_plug(&plug);
726
727         spin_lock(lock);
728         while (!list_empty(list)) {
729                 bh = BH_ENTRY(list->next);
730                 mapping = bh->b_assoc_map;
731                 __remove_assoc_queue(bh);
732                 /* Avoid race with mark_buffer_dirty_inode() which does
733                  * a lockless check and we rely on seeing the dirty bit */
734                 smp_mb();
735                 if (buffer_dirty(bh) || buffer_locked(bh)) {
736                         list_add(&bh->b_assoc_buffers, &tmp);
737                         bh->b_assoc_map = mapping;
738                         if (buffer_dirty(bh)) {
739                                 get_bh(bh);
740                                 spin_unlock(lock);
741                                 /*
742                                  * Ensure any pending I/O completes so that
743                                  * write_dirty_buffer() actually writes the
744                                  * current contents - it is a noop if I/O is
745                                  * still in flight on potentially older
746                                  * contents.
747                                  */
748                                 write_dirty_buffer(bh, WRITE_SYNC);
749
750                                 /*
751                                  * Kick off IO for the previous mapping. Note
752                                  * that we will not run the very last mapping,
753                                  * wait_on_buffer() will do that for us
754                                  * through sync_buffer().
755                                  */
756                                 brelse(bh);
757                                 spin_lock(lock);
758                         }
759                 }
760         }
761
762         spin_unlock(lock);
763         blk_finish_plug(&plug);
764         spin_lock(lock);
765
766         while (!list_empty(&tmp)) {
767                 bh = BH_ENTRY(tmp.prev);
768                 get_bh(bh);
769                 mapping = bh->b_assoc_map;
770                 __remove_assoc_queue(bh);
771                 /* Avoid race with mark_buffer_dirty_inode() which does
772                  * a lockless check and we rely on seeing the dirty bit */
773                 smp_mb();
774                 if (buffer_dirty(bh)) {
775                         list_add(&bh->b_assoc_buffers,
776                                  &mapping->private_list);
777                         bh->b_assoc_map = mapping;
778                 }
779                 spin_unlock(lock);
780                 wait_on_buffer(bh);
781                 if (!buffer_uptodate(bh))
782                         err = -EIO;
783                 brelse(bh);
784                 spin_lock(lock);
785         }
786         
787         spin_unlock(lock);
788         err2 = osync_buffers_list(lock, list);
789         if (err)
790                 return err;
791         else
792                 return err2;
793 }
794
795 /*
796  * Invalidate any and all dirty buffers on a given inode.  We are
797  * probably unmounting the fs, but that doesn't mean we have already
798  * done a sync().  Just drop the buffers from the inode list.
799  *
800  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
801  * assumes that all the buffers are against the blockdev.  Not true
802  * for reiserfs.
803  */
804 void invalidate_inode_buffers(struct inode *inode)
805 {
806         if (inode_has_buffers(inode)) {
807                 struct address_space *mapping = &inode->i_data;
808                 struct list_head *list = &mapping->private_list;
809                 struct address_space *buffer_mapping = mapping->private_data;
810
811                 spin_lock(&buffer_mapping->private_lock);
812                 while (!list_empty(list))
813                         __remove_assoc_queue(BH_ENTRY(list->next));
814                 spin_unlock(&buffer_mapping->private_lock);
815         }
816 }
817 EXPORT_SYMBOL(invalidate_inode_buffers);
818
819 /*
820  * Remove any clean buffers from the inode's buffer list.  This is called
821  * when we're trying to free the inode itself.  Those buffers can pin it.
822  *
823  * Returns true if all buffers were removed.
824  */
825 int remove_inode_buffers(struct inode *inode)
826 {
827         int ret = 1;
828
829         if (inode_has_buffers(inode)) {
830                 struct address_space *mapping = &inode->i_data;
831                 struct list_head *list = &mapping->private_list;
832                 struct address_space *buffer_mapping = mapping->private_data;
833
834                 spin_lock(&buffer_mapping->private_lock);
835                 while (!list_empty(list)) {
836                         struct buffer_head *bh = BH_ENTRY(list->next);
837                         if (buffer_dirty(bh)) {
838                                 ret = 0;
839                                 break;
840                         }
841                         __remove_assoc_queue(bh);
842                 }
843                 spin_unlock(&buffer_mapping->private_lock);
844         }
845         return ret;
846 }
847
848 /*
849  * Create the appropriate buffers when given a page for data area and
850  * the size of each buffer.. Use the bh->b_this_page linked list to
851  * follow the buffers created.  Return NULL if unable to create more
852  * buffers.
853  *
854  * The retry flag is used to differentiate async IO (paging, swapping)
855  * which may not fail from ordinary buffer allocations.
856  */
857 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
858                 int retry)
859 {
860         struct buffer_head *bh, *head;
861         long offset;
862
863 try_again:
864         head = NULL;
865         offset = PAGE_SIZE;
866         while ((offset -= size) >= 0) {
867                 bh = alloc_buffer_head(GFP_NOFS);
868                 if (!bh)
869                         goto no_grow;
870
871                 bh->b_this_page = head;
872                 bh->b_blocknr = -1;
873                 head = bh;
874
875                 bh->b_size = size;
876
877                 /* Link the buffer to its page */
878                 set_bh_page(bh, page, offset);
879         }
880         return head;
881 /*
882  * In case anything failed, we just free everything we got.
883  */
884 no_grow:
885         if (head) {
886                 do {
887                         bh = head;
888                         head = head->b_this_page;
889                         free_buffer_head(bh);
890                 } while (head);
891         }
892
893         /*
894          * Return failure for non-async IO requests.  Async IO requests
895          * are not allowed to fail, so we have to wait until buffer heads
896          * become available.  But we don't want tasks sleeping with 
897          * partially complete buffers, so all were released above.
898          */
899         if (!retry)
900                 return NULL;
901
902         /* We're _really_ low on memory. Now we just
903          * wait for old buffer heads to become free due to
904          * finishing IO.  Since this is an async request and
905          * the reserve list is empty, we're sure there are 
906          * async buffer heads in use.
907          */
908         free_more_memory();
909         goto try_again;
910 }
911 EXPORT_SYMBOL_GPL(alloc_page_buffers);
912
913 static inline void
914 link_dev_buffers(struct page *page, struct buffer_head *head)
915 {
916         struct buffer_head *bh, *tail;
917
918         bh = head;
919         do {
920                 tail = bh;
921                 bh = bh->b_this_page;
922         } while (bh);
923         tail->b_this_page = head;
924         attach_page_buffers(page, head);
925 }
926
927 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
928 {
929         sector_t retval = ~((sector_t)0);
930         loff_t sz = i_size_read(bdev->bd_inode);
931
932         if (sz) {
933                 unsigned int sizebits = blksize_bits(size);
934                 retval = (sz >> sizebits);
935         }
936         return retval;
937 }
938
939 /*
940  * Initialise the state of a blockdev page's buffers.
941  */ 
942 static sector_t
943 init_page_buffers(struct page *page, struct block_device *bdev,
944                         sector_t block, int size)
945 {
946         struct buffer_head *head = page_buffers(page);
947         struct buffer_head *bh = head;
948         int uptodate = PageUptodate(page);
949         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
950
951         do {
952                 if (!buffer_mapped(bh)) {
953                         init_buffer(bh, NULL, NULL);
954                         bh->b_bdev = bdev;
955                         bh->b_blocknr = block;
956                         if (uptodate)
957                                 set_buffer_uptodate(bh);
958                         if (block < end_block)
959                                 set_buffer_mapped(bh);
960                 }
961                 block++;
962                 bh = bh->b_this_page;
963         } while (bh != head);
964
965         /*
966          * Caller needs to validate requested block against end of device.
967          */
968         return end_block;
969 }
970
971 /*
972  * Create the page-cache page that contains the requested block.
973  *
974  * This is used purely for blockdev mappings.
975  */
976 static int
977 grow_dev_page(struct block_device *bdev, sector_t block,
978               pgoff_t index, int size, int sizebits, gfp_t gfp)
979 {
980         struct inode *inode = bdev->bd_inode;
981         struct page *page;
982         struct buffer_head *bh;
983         sector_t end_block;
984         int ret = 0;            /* Will call free_more_memory() */
985         gfp_t gfp_mask;
986
987         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
988
989         /*
990          * XXX: __getblk_slow() can not really deal with failure and
991          * will endlessly loop on improvised global reclaim.  Prefer
992          * looping in the allocator rather than here, at least that
993          * code knows what it's doing.
994          */
995         gfp_mask |= __GFP_NOFAIL;
996
997         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
998         if (!page)
999                 return ret;
1000
1001         BUG_ON(!PageLocked(page));
1002
1003         if (page_has_buffers(page)) {
1004                 bh = page_buffers(page);
1005                 if (bh->b_size == size) {
1006                         end_block = init_page_buffers(page, bdev,
1007                                                 (sector_t)index << sizebits,
1008                                                 size);
1009                         goto done;
1010                 }
1011                 if (!try_to_free_buffers(page))
1012                         goto failed;
1013         }
1014
1015         /*
1016          * Allocate some buffers for this page
1017          */
1018         bh = alloc_page_buffers(page, size, 0);
1019         if (!bh)
1020                 goto failed;
1021
1022         /*
1023          * Link the page to the buffers and initialise them.  Take the
1024          * lock to be atomic wrt __find_get_block(), which does not
1025          * run under the page lock.
1026          */
1027         spin_lock(&inode->i_mapping->private_lock);
1028         link_dev_buffers(page, bh);
1029         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1030                         size);
1031         spin_unlock(&inode->i_mapping->private_lock);
1032 done:
1033         ret = (block < end_block) ? 1 : -ENXIO;
1034 failed:
1035         unlock_page(page);
1036         put_page(page);
1037         return ret;
1038 }
1039
1040 /*
1041  * Create buffers for the specified block device block's page.  If
1042  * that page was dirty, the buffers are set dirty also.
1043  */
1044 static int
1045 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1046 {
1047         pgoff_t index;
1048         int sizebits;
1049
1050         sizebits = -1;
1051         do {
1052                 sizebits++;
1053         } while ((size << sizebits) < PAGE_SIZE);
1054
1055         index = block >> sizebits;
1056
1057         /*
1058          * Check for a block which wants to lie outside our maximum possible
1059          * pagecache index.  (this comparison is done using sector_t types).
1060          */
1061         if (unlikely(index != block >> sizebits)) {
1062                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063                         "device %pg\n",
1064                         __func__, (unsigned long long)block,
1065                         bdev);
1066                 return -EIO;
1067         }
1068
1069         /* Create a page with the proper size buffers.. */
1070         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1071 }
1072
1073 static struct buffer_head *
1074 __getblk_slow(struct block_device *bdev, sector_t block,
1075              unsigned size, gfp_t gfp)
1076 {
1077         /* Size must be multiple of hard sectorsize */
1078         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1079                         (size < 512 || size > PAGE_SIZE))) {
1080                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1081                                         size);
1082                 printk(KERN_ERR "logical block size: %d\n",
1083                                         bdev_logical_block_size(bdev));
1084
1085                 dump_stack();
1086                 return NULL;
1087         }
1088
1089         for (;;) {
1090                 struct buffer_head *bh;
1091                 int ret;
1092
1093                 bh = __find_get_block(bdev, block, size);
1094                 if (bh)
1095                         return bh;
1096
1097                 ret = grow_buffers(bdev, block, size, gfp);
1098                 if (ret < 0)
1099                         return NULL;
1100                 if (ret == 0)
1101                         free_more_memory();
1102         }
1103 }
1104
1105 /*
1106  * The relationship between dirty buffers and dirty pages:
1107  *
1108  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1109  * the page is tagged dirty in its radix tree.
1110  *
1111  * At all times, the dirtiness of the buffers represents the dirtiness of
1112  * subsections of the page.  If the page has buffers, the page dirty bit is
1113  * merely a hint about the true dirty state.
1114  *
1115  * When a page is set dirty in its entirety, all its buffers are marked dirty
1116  * (if the page has buffers).
1117  *
1118  * When a buffer is marked dirty, its page is dirtied, but the page's other
1119  * buffers are not.
1120  *
1121  * Also.  When blockdev buffers are explicitly read with bread(), they
1122  * individually become uptodate.  But their backing page remains not
1123  * uptodate - even if all of its buffers are uptodate.  A subsequent
1124  * block_read_full_page() against that page will discover all the uptodate
1125  * buffers, will set the page uptodate and will perform no I/O.
1126  */
1127
1128 /**
1129  * mark_buffer_dirty - mark a buffer_head as needing writeout
1130  * @bh: the buffer_head to mark dirty
1131  *
1132  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1133  * backing page dirty, then tag the page as dirty in its address_space's radix
1134  * tree and then attach the address_space's inode to its superblock's dirty
1135  * inode list.
1136  *
1137  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1138  * mapping->tree_lock and mapping->host->i_lock.
1139  */
1140 void mark_buffer_dirty(struct buffer_head *bh)
1141 {
1142         WARN_ON_ONCE(!buffer_uptodate(bh));
1143
1144         trace_block_dirty_buffer(bh);
1145
1146         /*
1147          * Very *carefully* optimize the it-is-already-dirty case.
1148          *
1149          * Don't let the final "is it dirty" escape to before we
1150          * perhaps modified the buffer.
1151          */
1152         if (buffer_dirty(bh)) {
1153                 smp_mb();
1154                 if (buffer_dirty(bh))
1155                         return;
1156         }
1157
1158         if (!test_set_buffer_dirty(bh)) {
1159                 struct page *page = bh->b_page;
1160                 struct address_space *mapping = NULL;
1161
1162                 lock_page_memcg(page);
1163                 if (!TestSetPageDirty(page)) {
1164                         mapping = page_mapping(page);
1165                         if (mapping)
1166                                 __set_page_dirty(page, mapping, 0);
1167                 }
1168                 unlock_page_memcg(page);
1169                 if (mapping)
1170                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1171         }
1172 }
1173 EXPORT_SYMBOL(mark_buffer_dirty);
1174
1175 /*
1176  * Decrement a buffer_head's reference count.  If all buffers against a page
1177  * have zero reference count, are clean and unlocked, and if the page is clean
1178  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180  * a page but it ends up not being freed, and buffers may later be reattached).
1181  */
1182 void __brelse(struct buffer_head * buf)
1183 {
1184         if (atomic_read(&buf->b_count)) {
1185                 put_bh(buf);
1186                 return;
1187         }
1188         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189 }
1190 EXPORT_SYMBOL(__brelse);
1191
1192 /*
1193  * bforget() is like brelse(), except it discards any
1194  * potentially dirty data.
1195  */
1196 void __bforget(struct buffer_head *bh)
1197 {
1198         clear_buffer_dirty(bh);
1199         if (bh->b_assoc_map) {
1200                 struct address_space *buffer_mapping = bh->b_page->mapping;
1201
1202                 spin_lock(&buffer_mapping->private_lock);
1203                 list_del_init(&bh->b_assoc_buffers);
1204                 bh->b_assoc_map = NULL;
1205                 spin_unlock(&buffer_mapping->private_lock);
1206         }
1207         __brelse(bh);
1208 }
1209 EXPORT_SYMBOL(__bforget);
1210
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 {
1213         lock_buffer(bh);
1214         if (buffer_uptodate(bh)) {
1215                 unlock_buffer(bh);
1216                 return bh;
1217         } else {
1218                 get_bh(bh);
1219                 bh->b_end_io = end_buffer_read_sync;
1220                 submit_bh(REQ_OP_READ, 0, bh);
1221                 wait_on_buffer(bh);
1222                 if (buffer_uptodate(bh))
1223                         return bh;
1224         }
1225         brelse(bh);
1226         return NULL;
1227 }
1228
1229 /*
1230  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1231  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1232  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1233  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1234  * CPU's LRUs at the same time.
1235  *
1236  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237  * sb_find_get_block().
1238  *
1239  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1240  * a local interrupt disable for that.
1241  */
1242
1243 #define BH_LRU_SIZE     16
1244
1245 struct bh_lru {
1246         struct buffer_head *bhs[BH_LRU_SIZE];
1247 };
1248
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock()   local_irq_disable()
1253 #define bh_lru_unlock() local_irq_enable()
1254 #else
1255 #define bh_lru_lock()   preempt_disable()
1256 #define bh_lru_unlock() preempt_enable()
1257 #endif
1258
1259 static inline void check_irqs_on(void)
1260 {
1261 #ifdef irqs_disabled
1262         BUG_ON(irqs_disabled());
1263 #endif
1264 }
1265
1266 /*
1267  * The LRU management algorithm is dopey-but-simple.  Sorry.
1268  */
1269 static void bh_lru_install(struct buffer_head *bh)
1270 {
1271         struct buffer_head *evictee = NULL;
1272
1273         check_irqs_on();
1274         bh_lru_lock();
1275         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1276                 struct buffer_head *bhs[BH_LRU_SIZE];
1277                 int in;
1278                 int out = 0;
1279
1280                 get_bh(bh);
1281                 bhs[out++] = bh;
1282                 for (in = 0; in < BH_LRU_SIZE; in++) {
1283                         struct buffer_head *bh2 =
1284                                 __this_cpu_read(bh_lrus.bhs[in]);
1285
1286                         if (bh2 == bh) {
1287                                 __brelse(bh2);
1288                         } else {
1289                                 if (out >= BH_LRU_SIZE) {
1290                                         BUG_ON(evictee != NULL);
1291                                         evictee = bh2;
1292                                 } else {
1293                                         bhs[out++] = bh2;
1294                                 }
1295                         }
1296                 }
1297                 while (out < BH_LRU_SIZE)
1298                         bhs[out++] = NULL;
1299                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1300         }
1301         bh_lru_unlock();
1302
1303         if (evictee)
1304                 __brelse(evictee);
1305 }
1306
1307 /*
1308  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1309  */
1310 static struct buffer_head *
1311 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1312 {
1313         struct buffer_head *ret = NULL;
1314         unsigned int i;
1315
1316         check_irqs_on();
1317         bh_lru_lock();
1318         for (i = 0; i < BH_LRU_SIZE; i++) {
1319                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1320
1321                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1322                     bh->b_size == size) {
1323                         if (i) {
1324                                 while (i) {
1325                                         __this_cpu_write(bh_lrus.bhs[i],
1326                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1327                                         i--;
1328                                 }
1329                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1330                         }
1331                         get_bh(bh);
1332                         ret = bh;
1333                         break;
1334                 }
1335         }
1336         bh_lru_unlock();
1337         return ret;
1338 }
1339
1340 /*
1341  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342  * it in the LRU and mark it as accessed.  If it is not present then return
1343  * NULL
1344  */
1345 struct buffer_head *
1346 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350         if (bh == NULL) {
1351                 /* __find_get_block_slow will mark the page accessed */
1352                 bh = __find_get_block_slow(bdev, block);
1353                 if (bh)
1354                         bh_lru_install(bh);
1355         } else
1356                 touch_buffer(bh);
1357
1358         return bh;
1359 }
1360 EXPORT_SYMBOL(__find_get_block);
1361
1362 /*
1363  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1364  * which corresponds to the passed block_device, block and size. The
1365  * returned buffer has its reference count incremented.
1366  *
1367  * __getblk_gfp() will lock up the machine if grow_dev_page's
1368  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1369  */
1370 struct buffer_head *
1371 __getblk_gfp(struct block_device *bdev, sector_t block,
1372              unsigned size, gfp_t gfp)
1373 {
1374         struct buffer_head *bh = __find_get_block(bdev, block, size);
1375
1376         might_sleep();
1377         if (bh == NULL)
1378                 bh = __getblk_slow(bdev, block, size, gfp);
1379         return bh;
1380 }
1381 EXPORT_SYMBOL(__getblk_gfp);
1382
1383 /*
1384  * Do async read-ahead on a buffer..
1385  */
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388         struct buffer_head *bh = __getblk(bdev, block, size);
1389         if (likely(bh)) {
1390                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1391                 brelse(bh);
1392         }
1393 }
1394 EXPORT_SYMBOL(__breadahead);
1395
1396 /**
1397  *  __bread_gfp() - reads a specified block and returns the bh
1398  *  @bdev: the block_device to read from
1399  *  @block: number of block
1400  *  @size: size (in bytes) to read
1401  *  @gfp: page allocation flag
1402  *
1403  *  Reads a specified block, and returns buffer head that contains it.
1404  *  The page cache can be allocated from non-movable area
1405  *  not to prevent page migration if you set gfp to zero.
1406  *  It returns NULL if the block was unreadable.
1407  */
1408 struct buffer_head *
1409 __bread_gfp(struct block_device *bdev, sector_t block,
1410                    unsigned size, gfp_t gfp)
1411 {
1412         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1413
1414         if (likely(bh) && !buffer_uptodate(bh))
1415                 bh = __bread_slow(bh);
1416         return bh;
1417 }
1418 EXPORT_SYMBOL(__bread_gfp);
1419
1420 /*
1421  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1422  * This doesn't race because it runs in each cpu either in irq
1423  * or with preempt disabled.
1424  */
1425 static void invalidate_bh_lru(void *arg)
1426 {
1427         struct bh_lru *b = &get_cpu_var(bh_lrus);
1428         int i;
1429
1430         for (i = 0; i < BH_LRU_SIZE; i++) {
1431                 brelse(b->bhs[i]);
1432                 b->bhs[i] = NULL;
1433         }
1434         put_cpu_var(bh_lrus);
1435 }
1436
1437 static bool has_bh_in_lru(int cpu, void *dummy)
1438 {
1439         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1440         int i;
1441         
1442         for (i = 0; i < BH_LRU_SIZE; i++) {
1443                 if (b->bhs[i])
1444                         return 1;
1445         }
1446
1447         return 0;
1448 }
1449
1450 void invalidate_bh_lrus(void)
1451 {
1452         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1453 }
1454 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1455
1456 void set_bh_page(struct buffer_head *bh,
1457                 struct page *page, unsigned long offset)
1458 {
1459         bh->b_page = page;
1460         BUG_ON(offset >= PAGE_SIZE);
1461         if (PageHighMem(page))
1462                 /*
1463                  * This catches illegal uses and preserves the offset:
1464                  */
1465                 bh->b_data = (char *)(0 + offset);
1466         else
1467                 bh->b_data = page_address(page) + offset;
1468 }
1469 EXPORT_SYMBOL(set_bh_page);
1470
1471 /*
1472  * Called when truncating a buffer on a page completely.
1473  */
1474
1475 /* Bits that are cleared during an invalidate */
1476 #define BUFFER_FLAGS_DISCARD \
1477         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1478          1 << BH_Delay | 1 << BH_Unwritten)
1479
1480 static void discard_buffer(struct buffer_head * bh)
1481 {
1482         unsigned long b_state, b_state_old;
1483
1484         lock_buffer(bh);
1485         clear_buffer_dirty(bh);
1486         bh->b_bdev = NULL;
1487         b_state = bh->b_state;
1488         for (;;) {
1489                 b_state_old = cmpxchg(&bh->b_state, b_state,
1490                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1491                 if (b_state_old == b_state)
1492                         break;
1493                 b_state = b_state_old;
1494         }
1495         unlock_buffer(bh);
1496 }
1497
1498 /**
1499  * block_invalidatepage - invalidate part or all of a buffer-backed page
1500  *
1501  * @page: the page which is affected
1502  * @offset: start of the range to invalidate
1503  * @length: length of the range to invalidate
1504  *
1505  * block_invalidatepage() is called when all or part of the page has become
1506  * invalidated by a truncate operation.
1507  *
1508  * block_invalidatepage() does not have to release all buffers, but it must
1509  * ensure that no dirty buffer is left outside @offset and that no I/O
1510  * is underway against any of the blocks which are outside the truncation
1511  * point.  Because the caller is about to free (and possibly reuse) those
1512  * blocks on-disk.
1513  */
1514 void block_invalidatepage(struct page *page, unsigned int offset,
1515                           unsigned int length)
1516 {
1517         struct buffer_head *head, *bh, *next;
1518         unsigned int curr_off = 0;
1519         unsigned int stop = length + offset;
1520
1521         BUG_ON(!PageLocked(page));
1522         if (!page_has_buffers(page))
1523                 goto out;
1524
1525         /*
1526          * Check for overflow
1527          */
1528         BUG_ON(stop > PAGE_SIZE || stop < length);
1529
1530         head = page_buffers(page);
1531         bh = head;
1532         do {
1533                 unsigned int next_off = curr_off + bh->b_size;
1534                 next = bh->b_this_page;
1535
1536                 /*
1537                  * Are we still fully in range ?
1538                  */
1539                 if (next_off > stop)
1540                         goto out;
1541
1542                 /*
1543                  * is this block fully invalidated?
1544                  */
1545                 if (offset <= curr_off)
1546                         discard_buffer(bh);
1547                 curr_off = next_off;
1548                 bh = next;
1549         } while (bh != head);
1550
1551         /*
1552          * We release buffers only if the entire page is being invalidated.
1553          * The get_block cached value has been unconditionally invalidated,
1554          * so real IO is not possible anymore.
1555          */
1556         if (offset == 0)
1557                 try_to_release_page(page, 0);
1558 out:
1559         return;
1560 }
1561 EXPORT_SYMBOL(block_invalidatepage);
1562
1563
1564 /*
1565  * We attach and possibly dirty the buffers atomically wrt
1566  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1567  * is already excluded via the page lock.
1568  */
1569 void create_empty_buffers(struct page *page,
1570                         unsigned long blocksize, unsigned long b_state)
1571 {
1572         struct buffer_head *bh, *head, *tail;
1573
1574         head = alloc_page_buffers(page, blocksize, 1);
1575         bh = head;
1576         do {
1577                 bh->b_state |= b_state;
1578                 tail = bh;
1579                 bh = bh->b_this_page;
1580         } while (bh);
1581         tail->b_this_page = head;
1582
1583         spin_lock(&page->mapping->private_lock);
1584         if (PageUptodate(page) || PageDirty(page)) {
1585                 bh = head;
1586                 do {
1587                         if (PageDirty(page))
1588                                 set_buffer_dirty(bh);
1589                         if (PageUptodate(page))
1590                                 set_buffer_uptodate(bh);
1591                         bh = bh->b_this_page;
1592                 } while (bh != head);
1593         }
1594         attach_page_buffers(page, head);
1595         spin_unlock(&page->mapping->private_lock);
1596 }
1597 EXPORT_SYMBOL(create_empty_buffers);
1598
1599 /*
1600  * We are taking a block for data and we don't want any output from any
1601  * buffer-cache aliases starting from return from that function and
1602  * until the moment when something will explicitly mark the buffer
1603  * dirty (hopefully that will not happen until we will free that block ;-)
1604  * We don't even need to mark it not-uptodate - nobody can expect
1605  * anything from a newly allocated buffer anyway. We used to used
1606  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1607  * don't want to mark the alias unmapped, for example - it would confuse
1608  * anyone who might pick it with bread() afterwards...
1609  *
1610  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1611  * be writeout I/O going on against recently-freed buffers.  We don't
1612  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1613  * only if we really need to.  That happens here.
1614  */
1615 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1616 {
1617         struct buffer_head *old_bh;
1618
1619         might_sleep();
1620
1621         old_bh = __find_get_block_slow(bdev, block);
1622         if (old_bh) {
1623                 clear_buffer_dirty(old_bh);
1624                 wait_on_buffer(old_bh);
1625                 clear_buffer_req(old_bh);
1626                 __brelse(old_bh);
1627         }
1628 }
1629 EXPORT_SYMBOL(unmap_underlying_metadata);
1630
1631 /*
1632  * Size is a power-of-two in the range 512..PAGE_SIZE,
1633  * and the case we care about most is PAGE_SIZE.
1634  *
1635  * So this *could* possibly be written with those
1636  * constraints in mind (relevant mostly if some
1637  * architecture has a slow bit-scan instruction)
1638  */
1639 static inline int block_size_bits(unsigned int blocksize)
1640 {
1641         return ilog2(blocksize);
1642 }
1643
1644 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1645 {
1646         BUG_ON(!PageLocked(page));
1647
1648         if (!page_has_buffers(page))
1649                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1650         return page_buffers(page);
1651 }
1652
1653 /*
1654  * NOTE! All mapped/uptodate combinations are valid:
1655  *
1656  *      Mapped  Uptodate        Meaning
1657  *
1658  *      No      No              "unknown" - must do get_block()
1659  *      No      Yes             "hole" - zero-filled
1660  *      Yes     No              "allocated" - allocated on disk, not read in
1661  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1662  *
1663  * "Dirty" is valid only with the last case (mapped+uptodate).
1664  */
1665
1666 /*
1667  * While block_write_full_page is writing back the dirty buffers under
1668  * the page lock, whoever dirtied the buffers may decide to clean them
1669  * again at any time.  We handle that by only looking at the buffer
1670  * state inside lock_buffer().
1671  *
1672  * If block_write_full_page() is called for regular writeback
1673  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1674  * locked buffer.   This only can happen if someone has written the buffer
1675  * directly, with submit_bh().  At the address_space level PageWriteback
1676  * prevents this contention from occurring.
1677  *
1678  * If block_write_full_page() is called with wbc->sync_mode ==
1679  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1680  * causes the writes to be flagged as synchronous writes.
1681  */
1682 int __block_write_full_page(struct inode *inode, struct page *page,
1683                         get_block_t *get_block, struct writeback_control *wbc,
1684                         bh_end_io_t *handler)
1685 {
1686         int err;
1687         sector_t block;
1688         sector_t last_block;
1689         struct buffer_head *bh, *head;
1690         unsigned int blocksize, bbits;
1691         int nr_underway = 0;
1692         int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
1693
1694         head = create_page_buffers(page, inode,
1695                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1696
1697         /*
1698          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1699          * here, and the (potentially unmapped) buffers may become dirty at
1700          * any time.  If a buffer becomes dirty here after we've inspected it
1701          * then we just miss that fact, and the page stays dirty.
1702          *
1703          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1704          * handle that here by just cleaning them.
1705          */
1706
1707         bh = head;
1708         blocksize = bh->b_size;
1709         bbits = block_size_bits(blocksize);
1710
1711         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1712         last_block = (i_size_read(inode) - 1) >> bbits;
1713
1714         /*
1715          * Get all the dirty buffers mapped to disk addresses and
1716          * handle any aliases from the underlying blockdev's mapping.
1717          */
1718         do {
1719                 if (block > last_block) {
1720                         /*
1721                          * mapped buffers outside i_size will occur, because
1722                          * this page can be outside i_size when there is a
1723                          * truncate in progress.
1724                          */
1725                         /*
1726                          * The buffer was zeroed by block_write_full_page()
1727                          */
1728                         clear_buffer_dirty(bh);
1729                         set_buffer_uptodate(bh);
1730                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1731                            buffer_dirty(bh)) {
1732                         WARN_ON(bh->b_size != blocksize);
1733                         err = get_block(inode, block, bh, 1);
1734                         if (err)
1735                                 goto recover;
1736                         clear_buffer_delay(bh);
1737                         if (buffer_new(bh)) {
1738                                 /* blockdev mappings never come here */
1739                                 clear_buffer_new(bh);
1740                                 unmap_underlying_metadata(bh->b_bdev,
1741                                                         bh->b_blocknr);
1742                         }
1743                 }
1744                 bh = bh->b_this_page;
1745                 block++;
1746         } while (bh != head);
1747
1748         do {
1749                 if (!buffer_mapped(bh))
1750                         continue;
1751                 /*
1752                  * If it's a fully non-blocking write attempt and we cannot
1753                  * lock the buffer then redirty the page.  Note that this can
1754                  * potentially cause a busy-wait loop from writeback threads
1755                  * and kswapd activity, but those code paths have their own
1756                  * higher-level throttling.
1757                  */
1758                 if (wbc->sync_mode != WB_SYNC_NONE) {
1759                         lock_buffer(bh);
1760                 } else if (!trylock_buffer(bh)) {
1761                         redirty_page_for_writepage(wbc, page);
1762                         continue;
1763                 }
1764                 if (test_clear_buffer_dirty(bh)) {
1765                         mark_buffer_async_write_endio(bh, handler);
1766                 } else {
1767                         unlock_buffer(bh);
1768                 }
1769         } while ((bh = bh->b_this_page) != head);
1770
1771         /*
1772          * The page and its buffers are protected by PageWriteback(), so we can
1773          * drop the bh refcounts early.
1774          */
1775         BUG_ON(PageWriteback(page));
1776         set_page_writeback(page);
1777
1778         do {
1779                 struct buffer_head *next = bh->b_this_page;
1780                 if (buffer_async_write(bh)) {
1781                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1782                         nr_underway++;
1783                 }
1784                 bh = next;
1785         } while (bh != head);
1786         unlock_page(page);
1787
1788         err = 0;
1789 done:
1790         if (nr_underway == 0) {
1791                 /*
1792                  * The page was marked dirty, but the buffers were
1793                  * clean.  Someone wrote them back by hand with
1794                  * ll_rw_block/submit_bh.  A rare case.
1795                  */
1796                 end_page_writeback(page);
1797
1798                 /*
1799                  * The page and buffer_heads can be released at any time from
1800                  * here on.
1801                  */
1802         }
1803         return err;
1804
1805 recover:
1806         /*
1807          * ENOSPC, or some other error.  We may already have added some
1808          * blocks to the file, so we need to write these out to avoid
1809          * exposing stale data.
1810          * The page is currently locked and not marked for writeback
1811          */
1812         bh = head;
1813         /* Recovery: lock and submit the mapped buffers */
1814         do {
1815                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1816                     !buffer_delay(bh)) {
1817                         lock_buffer(bh);
1818                         mark_buffer_async_write_endio(bh, handler);
1819                 } else {
1820                         /*
1821                          * The buffer may have been set dirty during
1822                          * attachment to a dirty page.
1823                          */
1824                         clear_buffer_dirty(bh);
1825                 }
1826         } while ((bh = bh->b_this_page) != head);
1827         SetPageError(page);
1828         BUG_ON(PageWriteback(page));
1829         mapping_set_error(page->mapping, err);
1830         set_page_writeback(page);
1831         do {
1832                 struct buffer_head *next = bh->b_this_page;
1833                 if (buffer_async_write(bh)) {
1834                         clear_buffer_dirty(bh);
1835                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1836                         nr_underway++;
1837                 }
1838                 bh = next;
1839         } while (bh != head);
1840         unlock_page(page);
1841         goto done;
1842 }
1843 EXPORT_SYMBOL(__block_write_full_page);
1844
1845 /*
1846  * If a page has any new buffers, zero them out here, and mark them uptodate
1847  * and dirty so they'll be written out (in order to prevent uninitialised
1848  * block data from leaking). And clear the new bit.
1849  */
1850 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1851 {
1852         unsigned int block_start, block_end;
1853         struct buffer_head *head, *bh;
1854
1855         BUG_ON(!PageLocked(page));
1856         if (!page_has_buffers(page))
1857                 return;
1858
1859         bh = head = page_buffers(page);
1860         block_start = 0;
1861         do {
1862                 block_end = block_start + bh->b_size;
1863
1864                 if (buffer_new(bh)) {
1865                         if (block_end > from && block_start < to) {
1866                                 if (!PageUptodate(page)) {
1867                                         unsigned start, size;
1868
1869                                         start = max(from, block_start);
1870                                         size = min(to, block_end) - start;
1871
1872                                         zero_user(page, start, size);
1873                                         set_buffer_uptodate(bh);
1874                                 }
1875
1876                                 clear_buffer_new(bh);
1877                                 mark_buffer_dirty(bh);
1878                         }
1879                 }
1880
1881                 block_start = block_end;
1882                 bh = bh->b_this_page;
1883         } while (bh != head);
1884 }
1885 EXPORT_SYMBOL(page_zero_new_buffers);
1886
1887 static void
1888 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1889                 struct iomap *iomap)
1890 {
1891         loff_t offset = block << inode->i_blkbits;
1892
1893         bh->b_bdev = iomap->bdev;
1894
1895         /*
1896          * Block points to offset in file we need to map, iomap contains
1897          * the offset at which the map starts. If the map ends before the
1898          * current block, then do not map the buffer and let the caller
1899          * handle it.
1900          */
1901         BUG_ON(offset >= iomap->offset + iomap->length);
1902
1903         switch (iomap->type) {
1904         case IOMAP_HOLE:
1905                 /*
1906                  * If the buffer is not up to date or beyond the current EOF,
1907                  * we need to mark it as new to ensure sub-block zeroing is
1908                  * executed if necessary.
1909                  */
1910                 if (!buffer_uptodate(bh) ||
1911                     (offset >= i_size_read(inode)))
1912                         set_buffer_new(bh);
1913                 break;
1914         case IOMAP_DELALLOC:
1915                 if (!buffer_uptodate(bh) ||
1916                     (offset >= i_size_read(inode)))
1917                         set_buffer_new(bh);
1918                 set_buffer_uptodate(bh);
1919                 set_buffer_mapped(bh);
1920                 set_buffer_delay(bh);
1921                 break;
1922         case IOMAP_UNWRITTEN:
1923                 /*
1924                  * For unwritten regions, we always need to ensure that
1925                  * sub-block writes cause the regions in the block we are not
1926                  * writing to are zeroed. Set the buffer as new to ensure this.
1927                  */
1928                 set_buffer_new(bh);
1929                 set_buffer_unwritten(bh);
1930                 /* FALLTHRU */
1931         case IOMAP_MAPPED:
1932                 if (offset >= i_size_read(inode))
1933                         set_buffer_new(bh);
1934                 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1935                                 ((offset - iomap->offset) >> inode->i_blkbits);
1936                 set_buffer_mapped(bh);
1937                 break;
1938         }
1939 }
1940
1941 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1942                 get_block_t *get_block, struct iomap *iomap)
1943 {
1944         unsigned from = pos & (PAGE_SIZE - 1);
1945         unsigned to = from + len;
1946         struct inode *inode = page->mapping->host;
1947         unsigned block_start, block_end;
1948         sector_t block;
1949         int err = 0;
1950         unsigned blocksize, bbits;
1951         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1952
1953         BUG_ON(!PageLocked(page));
1954         BUG_ON(from > PAGE_SIZE);
1955         BUG_ON(to > PAGE_SIZE);
1956         BUG_ON(from > to);
1957
1958         head = create_page_buffers(page, inode, 0);
1959         blocksize = head->b_size;
1960         bbits = block_size_bits(blocksize);
1961
1962         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1963
1964         for(bh = head, block_start = 0; bh != head || !block_start;
1965             block++, block_start=block_end, bh = bh->b_this_page) {
1966                 block_end = block_start + blocksize;
1967                 if (block_end <= from || block_start >= to) {
1968                         if (PageUptodate(page)) {
1969                                 if (!buffer_uptodate(bh))
1970                                         set_buffer_uptodate(bh);
1971                         }
1972                         continue;
1973                 }
1974                 if (buffer_new(bh))
1975                         clear_buffer_new(bh);
1976                 if (!buffer_mapped(bh)) {
1977                         WARN_ON(bh->b_size != blocksize);
1978                         if (get_block) {
1979                                 err = get_block(inode, block, bh, 1);
1980                                 if (err)
1981                                         break;
1982                         } else {
1983                                 iomap_to_bh(inode, block, bh, iomap);
1984                         }
1985
1986                         if (buffer_new(bh)) {
1987                                 unmap_underlying_metadata(bh->b_bdev,
1988                                                         bh->b_blocknr);
1989                                 if (PageUptodate(page)) {
1990                                         clear_buffer_new(bh);
1991                                         set_buffer_uptodate(bh);
1992                                         mark_buffer_dirty(bh);
1993                                         continue;
1994                                 }
1995                                 if (block_end > to || block_start < from)
1996                                         zero_user_segments(page,
1997                                                 to, block_end,
1998                                                 block_start, from);
1999                                 continue;
2000                         }
2001                 }
2002                 if (PageUptodate(page)) {
2003                         if (!buffer_uptodate(bh))
2004                                 set_buffer_uptodate(bh);
2005                         continue; 
2006                 }
2007                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2008                     !buffer_unwritten(bh) &&
2009                      (block_start < from || block_end > to)) {
2010                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2011                         *wait_bh++=bh;
2012                 }
2013         }
2014         /*
2015          * If we issued read requests - let them complete.
2016          */
2017         while(wait_bh > wait) {
2018                 wait_on_buffer(*--wait_bh);
2019                 if (!buffer_uptodate(*wait_bh))
2020                         err = -EIO;
2021         }
2022         if (unlikely(err))
2023                 page_zero_new_buffers(page, from, to);
2024         return err;
2025 }
2026
2027 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2028                 get_block_t *get_block)
2029 {
2030         return __block_write_begin_int(page, pos, len, get_block, NULL);
2031 }
2032 EXPORT_SYMBOL(__block_write_begin);
2033
2034 static int __block_commit_write(struct inode *inode, struct page *page,
2035                 unsigned from, unsigned to)
2036 {
2037         unsigned block_start, block_end;
2038         int partial = 0;
2039         unsigned blocksize;
2040         struct buffer_head *bh, *head;
2041
2042         bh = head = page_buffers(page);
2043         blocksize = bh->b_size;
2044
2045         block_start = 0;
2046         do {
2047                 block_end = block_start + blocksize;
2048                 if (block_end <= from || block_start >= to) {
2049                         if (!buffer_uptodate(bh))
2050                                 partial = 1;
2051                 } else {
2052                         set_buffer_uptodate(bh);
2053                         mark_buffer_dirty(bh);
2054                 }
2055                 clear_buffer_new(bh);
2056
2057                 block_start = block_end;
2058                 bh = bh->b_this_page;
2059         } while (bh != head);
2060
2061         /*
2062          * If this is a partial write which happened to make all buffers
2063          * uptodate then we can optimize away a bogus readpage() for
2064          * the next read(). Here we 'discover' whether the page went
2065          * uptodate as a result of this (potentially partial) write.
2066          */
2067         if (!partial)
2068                 SetPageUptodate(page);
2069         return 0;
2070 }
2071
2072 /*
2073  * block_write_begin takes care of the basic task of block allocation and
2074  * bringing partial write blocks uptodate first.
2075  *
2076  * The filesystem needs to handle block truncation upon failure.
2077  */
2078 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2079                 unsigned flags, struct page **pagep, get_block_t *get_block)
2080 {
2081         pgoff_t index = pos >> PAGE_SHIFT;
2082         struct page *page;
2083         int status;
2084
2085         page = grab_cache_page_write_begin(mapping, index, flags);
2086         if (!page)
2087                 return -ENOMEM;
2088
2089         status = __block_write_begin(page, pos, len, get_block);
2090         if (unlikely(status)) {
2091                 unlock_page(page);
2092                 put_page(page);
2093                 page = NULL;
2094         }
2095
2096         *pagep = page;
2097         return status;
2098 }
2099 EXPORT_SYMBOL(block_write_begin);
2100
2101 int block_write_end(struct file *file, struct address_space *mapping,
2102                         loff_t pos, unsigned len, unsigned copied,
2103                         struct page *page, void *fsdata)
2104 {
2105         struct inode *inode = mapping->host;
2106         unsigned start;
2107
2108         start = pos & (PAGE_SIZE - 1);
2109
2110         if (unlikely(copied < len)) {
2111                 /*
2112                  * The buffers that were written will now be uptodate, so we
2113                  * don't have to worry about a readpage reading them and
2114                  * overwriting a partial write. However if we have encountered
2115                  * a short write and only partially written into a buffer, it
2116                  * will not be marked uptodate, so a readpage might come in and
2117                  * destroy our partial write.
2118                  *
2119                  * Do the simplest thing, and just treat any short write to a
2120                  * non uptodate page as a zero-length write, and force the
2121                  * caller to redo the whole thing.
2122                  */
2123                 if (!PageUptodate(page))
2124                         copied = 0;
2125
2126                 page_zero_new_buffers(page, start+copied, start+len);
2127         }
2128         flush_dcache_page(page);
2129
2130         /* This could be a short (even 0-length) commit */
2131         __block_commit_write(inode, page, start, start+copied);
2132
2133         return copied;
2134 }
2135 EXPORT_SYMBOL(block_write_end);
2136
2137 int generic_write_end(struct file *file, struct address_space *mapping,
2138                         loff_t pos, unsigned len, unsigned copied,
2139                         struct page *page, void *fsdata)
2140 {
2141         struct inode *inode = mapping->host;
2142         loff_t old_size = inode->i_size;
2143         int i_size_changed = 0;
2144
2145         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2146
2147         /*
2148          * No need to use i_size_read() here, the i_size
2149          * cannot change under us because we hold i_mutex.
2150          *
2151          * But it's important to update i_size while still holding page lock:
2152          * page writeout could otherwise come in and zero beyond i_size.
2153          */
2154         if (pos+copied > inode->i_size) {
2155                 i_size_write(inode, pos+copied);
2156                 i_size_changed = 1;
2157         }
2158
2159         unlock_page(page);
2160         put_page(page);
2161
2162         if (old_size < pos)
2163                 pagecache_isize_extended(inode, old_size, pos);
2164         /*
2165          * Don't mark the inode dirty under page lock. First, it unnecessarily
2166          * makes the holding time of page lock longer. Second, it forces lock
2167          * ordering of page lock and transaction start for journaling
2168          * filesystems.
2169          */
2170         if (i_size_changed)
2171                 mark_inode_dirty(inode);
2172
2173         return copied;
2174 }
2175 EXPORT_SYMBOL(generic_write_end);
2176
2177 /*
2178  * block_is_partially_uptodate checks whether buffers within a page are
2179  * uptodate or not.
2180  *
2181  * Returns true if all buffers which correspond to a file portion
2182  * we want to read are uptodate.
2183  */
2184 int block_is_partially_uptodate(struct page *page, unsigned long from,
2185                                         unsigned long count)
2186 {
2187         unsigned block_start, block_end, blocksize;
2188         unsigned to;
2189         struct buffer_head *bh, *head;
2190         int ret = 1;
2191
2192         if (!page_has_buffers(page))
2193                 return 0;
2194
2195         head = page_buffers(page);
2196         blocksize = head->b_size;
2197         to = min_t(unsigned, PAGE_SIZE - from, count);
2198         to = from + to;
2199         if (from < blocksize && to > PAGE_SIZE - blocksize)
2200                 return 0;
2201
2202         bh = head;
2203         block_start = 0;
2204         do {
2205                 block_end = block_start + blocksize;
2206                 if (block_end > from && block_start < to) {
2207                         if (!buffer_uptodate(bh)) {
2208                                 ret = 0;
2209                                 break;
2210                         }
2211                         if (block_end >= to)
2212                                 break;
2213                 }
2214                 block_start = block_end;
2215                 bh = bh->b_this_page;
2216         } while (bh != head);
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL(block_is_partially_uptodate);
2221
2222 /*
2223  * Generic "read page" function for block devices that have the normal
2224  * get_block functionality. This is most of the block device filesystems.
2225  * Reads the page asynchronously --- the unlock_buffer() and
2226  * set/clear_buffer_uptodate() functions propagate buffer state into the
2227  * page struct once IO has completed.
2228  */
2229 int block_read_full_page(struct page *page, get_block_t *get_block)
2230 {
2231         struct inode *inode = page->mapping->host;
2232         sector_t iblock, lblock;
2233         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2234         unsigned int blocksize, bbits;
2235         int nr, i;
2236         int fully_mapped = 1;
2237
2238         head = create_page_buffers(page, inode, 0);
2239         blocksize = head->b_size;
2240         bbits = block_size_bits(blocksize);
2241
2242         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2243         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2244         bh = head;
2245         nr = 0;
2246         i = 0;
2247
2248         do {
2249                 if (buffer_uptodate(bh))
2250                         continue;
2251
2252                 if (!buffer_mapped(bh)) {
2253                         int err = 0;
2254
2255                         fully_mapped = 0;
2256                         if (iblock < lblock) {
2257                                 WARN_ON(bh->b_size != blocksize);
2258                                 err = get_block(inode, iblock, bh, 0);
2259                                 if (err)
2260                                         SetPageError(page);
2261                         }
2262                         if (!buffer_mapped(bh)) {
2263                                 zero_user(page, i * blocksize, blocksize);
2264                                 if (!err)
2265                                         set_buffer_uptodate(bh);
2266                                 continue;
2267                         }
2268                         /*
2269                          * get_block() might have updated the buffer
2270                          * synchronously
2271                          */
2272                         if (buffer_uptodate(bh))
2273                                 continue;
2274                 }
2275                 arr[nr++] = bh;
2276         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2277
2278         if (fully_mapped)
2279                 SetPageMappedToDisk(page);
2280
2281         if (!nr) {
2282                 /*
2283                  * All buffers are uptodate - we can set the page uptodate
2284                  * as well. But not if get_block() returned an error.
2285                  */
2286                 if (!PageError(page))
2287                         SetPageUptodate(page);
2288                 unlock_page(page);
2289                 return 0;
2290         }
2291
2292         /* Stage two: lock the buffers */
2293         for (i = 0; i < nr; i++) {
2294                 bh = arr[i];
2295                 lock_buffer(bh);
2296                 mark_buffer_async_read(bh);
2297         }
2298
2299         /*
2300          * Stage 3: start the IO.  Check for uptodateness
2301          * inside the buffer lock in case another process reading
2302          * the underlying blockdev brought it uptodate (the sct fix).
2303          */
2304         for (i = 0; i < nr; i++) {
2305                 bh = arr[i];
2306                 if (buffer_uptodate(bh))
2307                         end_buffer_async_read(bh, 1);
2308                 else
2309                         submit_bh(REQ_OP_READ, 0, bh);
2310         }
2311         return 0;
2312 }
2313 EXPORT_SYMBOL(block_read_full_page);
2314
2315 /* utility function for filesystems that need to do work on expanding
2316  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2317  * deal with the hole.  
2318  */
2319 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2320 {
2321         struct address_space *mapping = inode->i_mapping;
2322         struct page *page;
2323         void *fsdata;
2324         int err;
2325
2326         err = inode_newsize_ok(inode, size);
2327         if (err)
2328                 goto out;
2329
2330         err = pagecache_write_begin(NULL, mapping, size, 0,
2331                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2332                                 &page, &fsdata);
2333         if (err)
2334                 goto out;
2335
2336         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337         BUG_ON(err > 0);
2338
2339 out:
2340         return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343
2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345                             loff_t pos, loff_t *bytes)
2346 {
2347         struct inode *inode = mapping->host;
2348         unsigned blocksize = 1 << inode->i_blkbits;
2349         struct page *page;
2350         void *fsdata;
2351         pgoff_t index, curidx;
2352         loff_t curpos;
2353         unsigned zerofrom, offset, len;
2354         int err = 0;
2355
2356         index = pos >> PAGE_SHIFT;
2357         offset = pos & ~PAGE_MASK;
2358
2359         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360                 zerofrom = curpos & ~PAGE_MASK;
2361                 if (zerofrom & (blocksize-1)) {
2362                         *bytes |= (blocksize-1);
2363                         (*bytes)++;
2364                 }
2365                 len = PAGE_SIZE - zerofrom;
2366
2367                 err = pagecache_write_begin(file, mapping, curpos, len,
2368                                                 AOP_FLAG_UNINTERRUPTIBLE,
2369                                                 &page, &fsdata);
2370                 if (err)
2371                         goto out;
2372                 zero_user(page, zerofrom, len);
2373                 err = pagecache_write_end(file, mapping, curpos, len, len,
2374                                                 page, fsdata);
2375                 if (err < 0)
2376                         goto out;
2377                 BUG_ON(err != len);
2378                 err = 0;
2379
2380                 balance_dirty_pages_ratelimited(mapping);
2381
2382                 if (unlikely(fatal_signal_pending(current))) {
2383                         err = -EINTR;
2384                         goto out;
2385                 }
2386         }
2387
2388         /* page covers the boundary, find the boundary offset */
2389         if (index == curidx) {
2390                 zerofrom = curpos & ~PAGE_MASK;
2391                 /* if we will expand the thing last block will be filled */
2392                 if (offset <= zerofrom) {
2393                         goto out;
2394                 }
2395                 if (zerofrom & (blocksize-1)) {
2396                         *bytes |= (blocksize-1);
2397                         (*bytes)++;
2398                 }
2399                 len = offset - zerofrom;
2400
2401                 err = pagecache_write_begin(file, mapping, curpos, len,
2402                                                 AOP_FLAG_UNINTERRUPTIBLE,
2403                                                 &page, &fsdata);
2404                 if (err)
2405                         goto out;
2406                 zero_user(page, zerofrom, len);
2407                 err = pagecache_write_end(file, mapping, curpos, len, len,
2408                                                 page, fsdata);
2409                 if (err < 0)
2410                         goto out;
2411                 BUG_ON(err != len);
2412                 err = 0;
2413         }
2414 out:
2415         return err;
2416 }
2417
2418 /*
2419  * For moronic filesystems that do not allow holes in file.
2420  * We may have to extend the file.
2421  */
2422 int cont_write_begin(struct file *file, struct address_space *mapping,
2423                         loff_t pos, unsigned len, unsigned flags,
2424                         struct page **pagep, void **fsdata,
2425                         get_block_t *get_block, loff_t *bytes)
2426 {
2427         struct inode *inode = mapping->host;
2428         unsigned blocksize = 1 << inode->i_blkbits;
2429         unsigned zerofrom;
2430         int err;
2431
2432         err = cont_expand_zero(file, mapping, pos, bytes);
2433         if (err)
2434                 return err;
2435
2436         zerofrom = *bytes & ~PAGE_MASK;
2437         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2438                 *bytes |= (blocksize-1);
2439                 (*bytes)++;
2440         }
2441
2442         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2443 }
2444 EXPORT_SYMBOL(cont_write_begin);
2445
2446 int block_commit_write(struct page *page, unsigned from, unsigned to)
2447 {
2448         struct inode *inode = page->mapping->host;
2449         __block_commit_write(inode,page,from,to);
2450         return 0;
2451 }
2452 EXPORT_SYMBOL(block_commit_write);
2453
2454 /*
2455  * block_page_mkwrite() is not allowed to change the file size as it gets
2456  * called from a page fault handler when a page is first dirtied. Hence we must
2457  * be careful to check for EOF conditions here. We set the page up correctly
2458  * for a written page which means we get ENOSPC checking when writing into
2459  * holes and correct delalloc and unwritten extent mapping on filesystems that
2460  * support these features.
2461  *
2462  * We are not allowed to take the i_mutex here so we have to play games to
2463  * protect against truncate races as the page could now be beyond EOF.  Because
2464  * truncate writes the inode size before removing pages, once we have the
2465  * page lock we can determine safely if the page is beyond EOF. If it is not
2466  * beyond EOF, then the page is guaranteed safe against truncation until we
2467  * unlock the page.
2468  *
2469  * Direct callers of this function should protect against filesystem freezing
2470  * using sb_start_pagefault() - sb_end_pagefault() functions.
2471  */
2472 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2473                          get_block_t get_block)
2474 {
2475         struct page *page = vmf->page;
2476         struct inode *inode = file_inode(vma->vm_file);
2477         unsigned long end;
2478         loff_t size;
2479         int ret;
2480
2481         lock_page(page);
2482         size = i_size_read(inode);
2483         if ((page->mapping != inode->i_mapping) ||
2484             (page_offset(page) > size)) {
2485                 /* We overload EFAULT to mean page got truncated */
2486                 ret = -EFAULT;
2487                 goto out_unlock;
2488         }
2489
2490         /* page is wholly or partially inside EOF */
2491         if (((page->index + 1) << PAGE_SHIFT) > size)
2492                 end = size & ~PAGE_MASK;
2493         else
2494                 end = PAGE_SIZE;
2495
2496         ret = __block_write_begin(page, 0, end, get_block);
2497         if (!ret)
2498                 ret = block_commit_write(page, 0, end);
2499
2500         if (unlikely(ret < 0))
2501                 goto out_unlock;
2502         set_page_dirty(page);
2503         wait_for_stable_page(page);
2504         return 0;
2505 out_unlock:
2506         unlock_page(page);
2507         return ret;
2508 }
2509 EXPORT_SYMBOL(block_page_mkwrite);
2510
2511 /*
2512  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2513  * immediately, while under the page lock.  So it needs a special end_io
2514  * handler which does not touch the bh after unlocking it.
2515  */
2516 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2517 {
2518         __end_buffer_read_notouch(bh, uptodate);
2519 }
2520
2521 /*
2522  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2523  * the page (converting it to circular linked list and taking care of page
2524  * dirty races).
2525  */
2526 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2527 {
2528         struct buffer_head *bh;
2529
2530         BUG_ON(!PageLocked(page));
2531
2532         spin_lock(&page->mapping->private_lock);
2533         bh = head;
2534         do {
2535                 if (PageDirty(page))
2536                         set_buffer_dirty(bh);
2537                 if (!bh->b_this_page)
2538                         bh->b_this_page = head;
2539                 bh = bh->b_this_page;
2540         } while (bh != head);
2541         attach_page_buffers(page, head);
2542         spin_unlock(&page->mapping->private_lock);
2543 }
2544
2545 /*
2546  * On entry, the page is fully not uptodate.
2547  * On exit the page is fully uptodate in the areas outside (from,to)
2548  * The filesystem needs to handle block truncation upon failure.
2549  */
2550 int nobh_write_begin(struct address_space *mapping,
2551                         loff_t pos, unsigned len, unsigned flags,
2552                         struct page **pagep, void **fsdata,
2553                         get_block_t *get_block)
2554 {
2555         struct inode *inode = mapping->host;
2556         const unsigned blkbits = inode->i_blkbits;
2557         const unsigned blocksize = 1 << blkbits;
2558         struct buffer_head *head, *bh;
2559         struct page *page;
2560         pgoff_t index;
2561         unsigned from, to;
2562         unsigned block_in_page;
2563         unsigned block_start, block_end;
2564         sector_t block_in_file;
2565         int nr_reads = 0;
2566         int ret = 0;
2567         int is_mapped_to_disk = 1;
2568
2569         index = pos >> PAGE_SHIFT;
2570         from = pos & (PAGE_SIZE - 1);
2571         to = from + len;
2572
2573         page = grab_cache_page_write_begin(mapping, index, flags);
2574         if (!page)
2575                 return -ENOMEM;
2576         *pagep = page;
2577         *fsdata = NULL;
2578
2579         if (page_has_buffers(page)) {
2580                 ret = __block_write_begin(page, pos, len, get_block);
2581                 if (unlikely(ret))
2582                         goto out_release;
2583                 return ret;
2584         }
2585
2586         if (PageMappedToDisk(page))
2587                 return 0;
2588
2589         /*
2590          * Allocate buffers so that we can keep track of state, and potentially
2591          * attach them to the page if an error occurs. In the common case of
2592          * no error, they will just be freed again without ever being attached
2593          * to the page (which is all OK, because we're under the page lock).
2594          *
2595          * Be careful: the buffer linked list is a NULL terminated one, rather
2596          * than the circular one we're used to.
2597          */
2598         head = alloc_page_buffers(page, blocksize, 0);
2599         if (!head) {
2600                 ret = -ENOMEM;
2601                 goto out_release;
2602         }
2603
2604         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2605
2606         /*
2607          * We loop across all blocks in the page, whether or not they are
2608          * part of the affected region.  This is so we can discover if the
2609          * page is fully mapped-to-disk.
2610          */
2611         for (block_start = 0, block_in_page = 0, bh = head;
2612                   block_start < PAGE_SIZE;
2613                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2614                 int create;
2615
2616                 block_end = block_start + blocksize;
2617                 bh->b_state = 0;
2618                 create = 1;
2619                 if (block_start >= to)
2620                         create = 0;
2621                 ret = get_block(inode, block_in_file + block_in_page,
2622                                         bh, create);
2623                 if (ret)
2624                         goto failed;
2625                 if (!buffer_mapped(bh))
2626                         is_mapped_to_disk = 0;
2627                 if (buffer_new(bh))
2628                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2629                 if (PageUptodate(page)) {
2630                         set_buffer_uptodate(bh);
2631                         continue;
2632                 }
2633                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2634                         zero_user_segments(page, block_start, from,
2635                                                         to, block_end);
2636                         continue;
2637                 }
2638                 if (buffer_uptodate(bh))
2639                         continue;       /* reiserfs does this */
2640                 if (block_start < from || block_end > to) {
2641                         lock_buffer(bh);
2642                         bh->b_end_io = end_buffer_read_nobh;
2643                         submit_bh(REQ_OP_READ, 0, bh);
2644                         nr_reads++;
2645                 }
2646         }
2647
2648         if (nr_reads) {
2649                 /*
2650                  * The page is locked, so these buffers are protected from
2651                  * any VM or truncate activity.  Hence we don't need to care
2652                  * for the buffer_head refcounts.
2653                  */
2654                 for (bh = head; bh; bh = bh->b_this_page) {
2655                         wait_on_buffer(bh);
2656                         if (!buffer_uptodate(bh))
2657                                 ret = -EIO;
2658                 }
2659                 if (ret)
2660                         goto failed;
2661         }
2662
2663         if (is_mapped_to_disk)
2664                 SetPageMappedToDisk(page);
2665
2666         *fsdata = head; /* to be released by nobh_write_end */
2667
2668         return 0;
2669
2670 failed:
2671         BUG_ON(!ret);
2672         /*
2673          * Error recovery is a bit difficult. We need to zero out blocks that
2674          * were newly allocated, and dirty them to ensure they get written out.
2675          * Buffers need to be attached to the page at this point, otherwise
2676          * the handling of potential IO errors during writeout would be hard
2677          * (could try doing synchronous writeout, but what if that fails too?)
2678          */
2679         attach_nobh_buffers(page, head);
2680         page_zero_new_buffers(page, from, to);
2681
2682 out_release:
2683         unlock_page(page);
2684         put_page(page);
2685         *pagep = NULL;
2686
2687         return ret;
2688 }
2689 EXPORT_SYMBOL(nobh_write_begin);
2690
2691 int nobh_write_end(struct file *file, struct address_space *mapping,
2692                         loff_t pos, unsigned len, unsigned copied,
2693                         struct page *page, void *fsdata)
2694 {
2695         struct inode *inode = page->mapping->host;
2696         struct buffer_head *head = fsdata;
2697         struct buffer_head *bh;
2698         BUG_ON(fsdata != NULL && page_has_buffers(page));
2699
2700         if (unlikely(copied < len) && head)
2701                 attach_nobh_buffers(page, head);
2702         if (page_has_buffers(page))
2703                 return generic_write_end(file, mapping, pos, len,
2704                                         copied, page, fsdata);
2705
2706         SetPageUptodate(page);
2707         set_page_dirty(page);
2708         if (pos+copied > inode->i_size) {
2709                 i_size_write(inode, pos+copied);
2710                 mark_inode_dirty(inode);
2711         }
2712
2713         unlock_page(page);
2714         put_page(page);
2715
2716         while (head) {
2717                 bh = head;
2718                 head = head->b_this_page;
2719                 free_buffer_head(bh);
2720         }
2721
2722         return copied;
2723 }
2724 EXPORT_SYMBOL(nobh_write_end);
2725
2726 /*
2727  * nobh_writepage() - based on block_full_write_page() except
2728  * that it tries to operate without attaching bufferheads to
2729  * the page.
2730  */
2731 int nobh_writepage(struct page *page, get_block_t *get_block,
2732                         struct writeback_control *wbc)
2733 {
2734         struct inode * const inode = page->mapping->host;
2735         loff_t i_size = i_size_read(inode);
2736         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2737         unsigned offset;
2738         int ret;
2739
2740         /* Is the page fully inside i_size? */
2741         if (page->index < end_index)
2742                 goto out;
2743
2744         /* Is the page fully outside i_size? (truncate in progress) */
2745         offset = i_size & (PAGE_SIZE-1);
2746         if (page->index >= end_index+1 || !offset) {
2747                 /*
2748                  * The page may have dirty, unmapped buffers.  For example,
2749                  * they may have been added in ext3_writepage().  Make them
2750                  * freeable here, so the page does not leak.
2751                  */
2752 #if 0
2753                 /* Not really sure about this  - do we need this ? */
2754                 if (page->mapping->a_ops->invalidatepage)
2755                         page->mapping->a_ops->invalidatepage(page, offset);
2756 #endif
2757                 unlock_page(page);
2758                 return 0; /* don't care */
2759         }
2760
2761         /*
2762          * The page straddles i_size.  It must be zeroed out on each and every
2763          * writepage invocation because it may be mmapped.  "A file is mapped
2764          * in multiples of the page size.  For a file that is not a multiple of
2765          * the  page size, the remaining memory is zeroed when mapped, and
2766          * writes to that region are not written out to the file."
2767          */
2768         zero_user_segment(page, offset, PAGE_SIZE);
2769 out:
2770         ret = mpage_writepage(page, get_block, wbc);
2771         if (ret == -EAGAIN)
2772                 ret = __block_write_full_page(inode, page, get_block, wbc,
2773                                               end_buffer_async_write);
2774         return ret;
2775 }
2776 EXPORT_SYMBOL(nobh_writepage);
2777
2778 int nobh_truncate_page(struct address_space *mapping,
2779                         loff_t from, get_block_t *get_block)
2780 {
2781         pgoff_t index = from >> PAGE_SHIFT;
2782         unsigned offset = from & (PAGE_SIZE-1);
2783         unsigned blocksize;
2784         sector_t iblock;
2785         unsigned length, pos;
2786         struct inode *inode = mapping->host;
2787         struct page *page;
2788         struct buffer_head map_bh;
2789         int err;
2790
2791         blocksize = 1 << inode->i_blkbits;
2792         length = offset & (blocksize - 1);
2793
2794         /* Block boundary? Nothing to do */
2795         if (!length)
2796                 return 0;
2797
2798         length = blocksize - length;
2799         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2800
2801         page = grab_cache_page(mapping, index);
2802         err = -ENOMEM;
2803         if (!page)
2804                 goto out;
2805
2806         if (page_has_buffers(page)) {
2807 has_buffers:
2808                 unlock_page(page);
2809                 put_page(page);
2810                 return block_truncate_page(mapping, from, get_block);
2811         }
2812
2813         /* Find the buffer that contains "offset" */
2814         pos = blocksize;
2815         while (offset >= pos) {
2816                 iblock++;
2817                 pos += blocksize;
2818         }
2819
2820         map_bh.b_size = blocksize;
2821         map_bh.b_state = 0;
2822         err = get_block(inode, iblock, &map_bh, 0);
2823         if (err)
2824                 goto unlock;
2825         /* unmapped? It's a hole - nothing to do */
2826         if (!buffer_mapped(&map_bh))
2827                 goto unlock;
2828
2829         /* Ok, it's mapped. Make sure it's up-to-date */
2830         if (!PageUptodate(page)) {
2831                 err = mapping->a_ops->readpage(NULL, page);
2832                 if (err) {
2833                         put_page(page);
2834                         goto out;
2835                 }
2836                 lock_page(page);
2837                 if (!PageUptodate(page)) {
2838                         err = -EIO;
2839                         goto unlock;
2840                 }
2841                 if (page_has_buffers(page))
2842                         goto has_buffers;
2843         }
2844         zero_user(page, offset, length);
2845         set_page_dirty(page);
2846         err = 0;
2847
2848 unlock:
2849         unlock_page(page);
2850         put_page(page);
2851 out:
2852         return err;
2853 }
2854 EXPORT_SYMBOL(nobh_truncate_page);
2855
2856 int block_truncate_page(struct address_space *mapping,
2857                         loff_t from, get_block_t *get_block)
2858 {
2859         pgoff_t index = from >> PAGE_SHIFT;
2860         unsigned offset = from & (PAGE_SIZE-1);
2861         unsigned blocksize;
2862         sector_t iblock;
2863         unsigned length, pos;
2864         struct inode *inode = mapping->host;
2865         struct page *page;
2866         struct buffer_head *bh;
2867         int err;
2868
2869         blocksize = 1 << inode->i_blkbits;
2870         length = offset & (blocksize - 1);
2871
2872         /* Block boundary? Nothing to do */
2873         if (!length)
2874                 return 0;
2875
2876         length = blocksize - length;
2877         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2878         
2879         page = grab_cache_page(mapping, index);
2880         err = -ENOMEM;
2881         if (!page)
2882                 goto out;
2883
2884         if (!page_has_buffers(page))
2885                 create_empty_buffers(page, blocksize, 0);
2886
2887         /* Find the buffer that contains "offset" */
2888         bh = page_buffers(page);
2889         pos = blocksize;
2890         while (offset >= pos) {
2891                 bh = bh->b_this_page;
2892                 iblock++;
2893                 pos += blocksize;
2894         }
2895
2896         err = 0;
2897         if (!buffer_mapped(bh)) {
2898                 WARN_ON(bh->b_size != blocksize);
2899                 err = get_block(inode, iblock, bh, 0);
2900                 if (err)
2901                         goto unlock;
2902                 /* unmapped? It's a hole - nothing to do */
2903                 if (!buffer_mapped(bh))
2904                         goto unlock;
2905         }
2906
2907         /* Ok, it's mapped. Make sure it's up-to-date */
2908         if (PageUptodate(page))
2909                 set_buffer_uptodate(bh);
2910
2911         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2912                 err = -EIO;
2913                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2914                 wait_on_buffer(bh);
2915                 /* Uhhuh. Read error. Complain and punt. */
2916                 if (!buffer_uptodate(bh))
2917                         goto unlock;
2918         }
2919
2920         zero_user(page, offset, length);
2921         mark_buffer_dirty(bh);
2922         err = 0;
2923
2924 unlock:
2925         unlock_page(page);
2926         put_page(page);
2927 out:
2928         return err;
2929 }
2930 EXPORT_SYMBOL(block_truncate_page);
2931
2932 /*
2933  * The generic ->writepage function for buffer-backed address_spaces
2934  */
2935 int block_write_full_page(struct page *page, get_block_t *get_block,
2936                         struct writeback_control *wbc)
2937 {
2938         struct inode * const inode = page->mapping->host;
2939         loff_t i_size = i_size_read(inode);
2940         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2941         unsigned offset;
2942
2943         /* Is the page fully inside i_size? */
2944         if (page->index < end_index)
2945                 return __block_write_full_page(inode, page, get_block, wbc,
2946                                                end_buffer_async_write);
2947
2948         /* Is the page fully outside i_size? (truncate in progress) */
2949         offset = i_size & (PAGE_SIZE-1);
2950         if (page->index >= end_index+1 || !offset) {
2951                 /*
2952                  * The page may have dirty, unmapped buffers.  For example,
2953                  * they may have been added in ext3_writepage().  Make them
2954                  * freeable here, so the page does not leak.
2955                  */
2956                 do_invalidatepage(page, 0, PAGE_SIZE);
2957                 unlock_page(page);
2958                 return 0; /* don't care */
2959         }
2960
2961         /*
2962          * The page straddles i_size.  It must be zeroed out on each and every
2963          * writepage invocation because it may be mmapped.  "A file is mapped
2964          * in multiples of the page size.  For a file that is not a multiple of
2965          * the  page size, the remaining memory is zeroed when mapped, and
2966          * writes to that region are not written out to the file."
2967          */
2968         zero_user_segment(page, offset, PAGE_SIZE);
2969         return __block_write_full_page(inode, page, get_block, wbc,
2970                                                         end_buffer_async_write);
2971 }
2972 EXPORT_SYMBOL(block_write_full_page);
2973
2974 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2975                             get_block_t *get_block)
2976 {
2977         struct buffer_head tmp;
2978         struct inode *inode = mapping->host;
2979         tmp.b_state = 0;
2980         tmp.b_blocknr = 0;
2981         tmp.b_size = 1 << inode->i_blkbits;
2982         get_block(inode, block, &tmp, 0);
2983         return tmp.b_blocknr;
2984 }
2985 EXPORT_SYMBOL(generic_block_bmap);
2986
2987 static void end_bio_bh_io_sync(struct bio *bio)
2988 {
2989         struct buffer_head *bh = bio->bi_private;
2990
2991         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2992                 set_bit(BH_Quiet, &bh->b_state);
2993
2994         bh->b_end_io(bh, !bio->bi_error);
2995         bio_put(bio);
2996 }
2997
2998 /*
2999  * This allows us to do IO even on the odd last sectors
3000  * of a device, even if the block size is some multiple
3001  * of the physical sector size.
3002  *
3003  * We'll just truncate the bio to the size of the device,
3004  * and clear the end of the buffer head manually.
3005  *
3006  * Truly out-of-range accesses will turn into actual IO
3007  * errors, this only handles the "we need to be able to
3008  * do IO at the final sector" case.
3009  */
3010 void guard_bio_eod(int op, struct bio *bio)
3011 {
3012         sector_t maxsector;
3013         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3014         unsigned truncated_bytes;
3015
3016         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3017         if (!maxsector)
3018                 return;
3019
3020         /*
3021          * If the *whole* IO is past the end of the device,
3022          * let it through, and the IO layer will turn it into
3023          * an EIO.
3024          */
3025         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3026                 return;
3027
3028         maxsector -= bio->bi_iter.bi_sector;
3029         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3030                 return;
3031
3032         /* Uhhuh. We've got a bio that straddles the device size! */
3033         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3034
3035         /* Truncate the bio.. */
3036         bio->bi_iter.bi_size -= truncated_bytes;
3037         bvec->bv_len -= truncated_bytes;
3038
3039         /* ..and clear the end of the buffer for reads */
3040         if (op == REQ_OP_READ) {
3041                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3042                                 truncated_bytes);
3043         }
3044 }
3045
3046 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3047                          unsigned long bio_flags, struct writeback_control *wbc)
3048 {
3049         struct bio *bio;
3050
3051         BUG_ON(!buffer_locked(bh));
3052         BUG_ON(!buffer_mapped(bh));
3053         BUG_ON(!bh->b_end_io);
3054         BUG_ON(buffer_delay(bh));
3055         BUG_ON(buffer_unwritten(bh));
3056
3057         /*
3058          * Only clear out a write error when rewriting
3059          */
3060         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3061                 clear_buffer_write_io_error(bh);
3062
3063         /*
3064          * from here on down, it's all bio -- do the initial mapping,
3065          * submit_bio -> generic_make_request may further map this bio around
3066          */
3067         bio = bio_alloc(GFP_NOIO, 1);
3068
3069         if (wbc) {
3070                 wbc_init_bio(wbc, bio);
3071                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3072         }
3073
3074         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3075         bio->bi_bdev = bh->b_bdev;
3076
3077         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3078         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3079
3080         bio->bi_end_io = end_bio_bh_io_sync;
3081         bio->bi_private = bh;
3082         bio->bi_flags |= bio_flags;
3083
3084         /* Take care of bh's that straddle the end of the device */
3085         guard_bio_eod(op, bio);
3086
3087         if (buffer_meta(bh))
3088                 op_flags |= REQ_META;
3089         if (buffer_prio(bh))
3090                 op_flags |= REQ_PRIO;
3091         bio_set_op_attrs(bio, op, op_flags);
3092
3093         submit_bio(bio);
3094         return 0;
3095 }
3096
3097 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3098                unsigned long bio_flags)
3099 {
3100         return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3101 }
3102 EXPORT_SYMBOL_GPL(_submit_bh);
3103
3104 int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3105 {
3106         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3107 }
3108 EXPORT_SYMBOL(submit_bh);
3109
3110 /**
3111  * ll_rw_block: low-level access to block devices (DEPRECATED)
3112  * @op: whether to %READ or %WRITE
3113  * @op_flags: rq_flag_bits
3114  * @nr: number of &struct buffer_heads in the array
3115  * @bhs: array of pointers to &struct buffer_head
3116  *
3117  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3118  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3119  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3120  * %REQ_RAHEAD.
3121  *
3122  * This function drops any buffer that it cannot get a lock on (with the
3123  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3124  * request, and any buffer that appears to be up-to-date when doing read
3125  * request.  Further it marks as clean buffers that are processed for
3126  * writing (the buffer cache won't assume that they are actually clean
3127  * until the buffer gets unlocked).
3128  *
3129  * ll_rw_block sets b_end_io to simple completion handler that marks
3130  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3131  * any waiters. 
3132  *
3133  * All of the buffers must be for the same device, and must also be a
3134  * multiple of the current approved size for the device.
3135  */
3136 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3137 {
3138         int i;
3139
3140         for (i = 0; i < nr; i++) {
3141                 struct buffer_head *bh = bhs[i];
3142
3143                 if (!trylock_buffer(bh))
3144                         continue;
3145                 if (op == WRITE) {
3146                         if (test_clear_buffer_dirty(bh)) {
3147                                 bh->b_end_io = end_buffer_write_sync;
3148                                 get_bh(bh);
3149                                 submit_bh(op, op_flags, bh);
3150                                 continue;
3151                         }
3152                 } else {
3153                         if (!buffer_uptodate(bh)) {
3154                                 bh->b_end_io = end_buffer_read_sync;
3155                                 get_bh(bh);
3156                                 submit_bh(op, op_flags, bh);
3157                                 continue;
3158                         }
3159                 }
3160                 unlock_buffer(bh);
3161         }
3162 }
3163 EXPORT_SYMBOL(ll_rw_block);
3164
3165 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3166 {
3167         lock_buffer(bh);
3168         if (!test_clear_buffer_dirty(bh)) {
3169                 unlock_buffer(bh);
3170                 return;
3171         }
3172         bh->b_end_io = end_buffer_write_sync;
3173         get_bh(bh);
3174         submit_bh(REQ_OP_WRITE, op_flags, bh);
3175 }
3176 EXPORT_SYMBOL(write_dirty_buffer);
3177
3178 /*
3179  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3180  * and then start new I/O and then wait upon it.  The caller must have a ref on
3181  * the buffer_head.
3182  */
3183 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3184 {
3185         int ret = 0;
3186
3187         WARN_ON(atomic_read(&bh->b_count) < 1);
3188         lock_buffer(bh);
3189         if (test_clear_buffer_dirty(bh)) {
3190                 get_bh(bh);
3191                 bh->b_end_io = end_buffer_write_sync;
3192                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3193                 wait_on_buffer(bh);
3194                 if (!ret && !buffer_uptodate(bh))
3195                         ret = -EIO;
3196         } else {
3197                 unlock_buffer(bh);
3198         }
3199         return ret;
3200 }
3201 EXPORT_SYMBOL(__sync_dirty_buffer);
3202
3203 int sync_dirty_buffer(struct buffer_head *bh)
3204 {
3205         return __sync_dirty_buffer(bh, WRITE_SYNC);
3206 }
3207 EXPORT_SYMBOL(sync_dirty_buffer);
3208
3209 /*
3210  * try_to_free_buffers() checks if all the buffers on this particular page
3211  * are unused, and releases them if so.
3212  *
3213  * Exclusion against try_to_free_buffers may be obtained by either
3214  * locking the page or by holding its mapping's private_lock.
3215  *
3216  * If the page is dirty but all the buffers are clean then we need to
3217  * be sure to mark the page clean as well.  This is because the page
3218  * may be against a block device, and a later reattachment of buffers
3219  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3220  * filesystem data on the same device.
3221  *
3222  * The same applies to regular filesystem pages: if all the buffers are
3223  * clean then we set the page clean and proceed.  To do that, we require
3224  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3225  * private_lock.
3226  *
3227  * try_to_free_buffers() is non-blocking.
3228  */
3229 static inline int buffer_busy(struct buffer_head *bh)
3230 {
3231         return atomic_read(&bh->b_count) |
3232                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3233 }
3234
3235 static int
3236 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3237 {
3238         struct buffer_head *head = page_buffers(page);
3239         struct buffer_head *bh;
3240
3241         bh = head;
3242         do {
3243                 if (buffer_write_io_error(bh) && page->mapping)
3244                         mapping_set_error(page->mapping, -EIO);
3245                 if (buffer_busy(bh))
3246                         goto failed;
3247                 bh = bh->b_this_page;
3248         } while (bh != head);
3249
3250         do {
3251                 struct buffer_head *next = bh->b_this_page;
3252
3253                 if (bh->b_assoc_map)
3254                         __remove_assoc_queue(bh);
3255                 bh = next;
3256         } while (bh != head);
3257         *buffers_to_free = head;
3258         __clear_page_buffers(page);
3259         return 1;
3260 failed:
3261         return 0;
3262 }
3263
3264 int try_to_free_buffers(struct page *page)
3265 {
3266         struct address_space * const mapping = page->mapping;
3267         struct buffer_head *buffers_to_free = NULL;
3268         int ret = 0;
3269
3270         BUG_ON(!PageLocked(page));
3271         if (PageWriteback(page))
3272                 return 0;
3273
3274         if (mapping == NULL) {          /* can this still happen? */
3275                 ret = drop_buffers(page, &buffers_to_free);
3276                 goto out;
3277         }
3278
3279         spin_lock(&mapping->private_lock);
3280         ret = drop_buffers(page, &buffers_to_free);
3281
3282         /*
3283          * If the filesystem writes its buffers by hand (eg ext3)
3284          * then we can have clean buffers against a dirty page.  We
3285          * clean the page here; otherwise the VM will never notice
3286          * that the filesystem did any IO at all.
3287          *
3288          * Also, during truncate, discard_buffer will have marked all
3289          * the page's buffers clean.  We discover that here and clean
3290          * the page also.
3291          *
3292          * private_lock must be held over this entire operation in order
3293          * to synchronise against __set_page_dirty_buffers and prevent the
3294          * dirty bit from being lost.
3295          */
3296         if (ret)
3297                 cancel_dirty_page(page);
3298         spin_unlock(&mapping->private_lock);
3299 out:
3300         if (buffers_to_free) {
3301                 struct buffer_head *bh = buffers_to_free;
3302
3303                 do {
3304                         struct buffer_head *next = bh->b_this_page;
3305                         free_buffer_head(bh);
3306                         bh = next;
3307                 } while (bh != buffers_to_free);
3308         }
3309         return ret;
3310 }
3311 EXPORT_SYMBOL(try_to_free_buffers);
3312
3313 /*
3314  * There are no bdflush tunables left.  But distributions are
3315  * still running obsolete flush daemons, so we terminate them here.
3316  *
3317  * Use of bdflush() is deprecated and will be removed in a future kernel.
3318  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3319  */
3320 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3321 {
3322         static int msg_count;
3323
3324         if (!capable(CAP_SYS_ADMIN))
3325                 return -EPERM;
3326
3327         if (msg_count < 5) {
3328                 msg_count++;
3329                 printk(KERN_INFO
3330                         "warning: process `%s' used the obsolete bdflush"
3331                         " system call\n", current->comm);
3332                 printk(KERN_INFO "Fix your initscripts?\n");
3333         }
3334
3335         if (func == 1)
3336                 do_exit(0);
3337         return 0;
3338 }
3339
3340 /*
3341  * Buffer-head allocation
3342  */
3343 static struct kmem_cache *bh_cachep __read_mostly;
3344
3345 /*
3346  * Once the number of bh's in the machine exceeds this level, we start
3347  * stripping them in writeback.
3348  */
3349 static unsigned long max_buffer_heads;
3350
3351 int buffer_heads_over_limit;
3352
3353 struct bh_accounting {
3354         int nr;                 /* Number of live bh's */
3355         int ratelimit;          /* Limit cacheline bouncing */
3356 };
3357
3358 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3359
3360 static void recalc_bh_state(void)
3361 {
3362         int i;
3363         int tot = 0;
3364
3365         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3366                 return;
3367         __this_cpu_write(bh_accounting.ratelimit, 0);
3368         for_each_online_cpu(i)
3369                 tot += per_cpu(bh_accounting, i).nr;
3370         buffer_heads_over_limit = (tot > max_buffer_heads);
3371 }
3372
3373 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3374 {
3375         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3376         if (ret) {
3377                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3378                 buffer_head_init_locks(ret);
3379                 preempt_disable();
3380                 __this_cpu_inc(bh_accounting.nr);
3381                 recalc_bh_state();
3382                 preempt_enable();
3383         }
3384         return ret;
3385 }
3386 EXPORT_SYMBOL(alloc_buffer_head);
3387
3388 void free_buffer_head(struct buffer_head *bh)
3389 {
3390         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3391         kmem_cache_free(bh_cachep, bh);
3392         preempt_disable();
3393         __this_cpu_dec(bh_accounting.nr);
3394         recalc_bh_state();
3395         preempt_enable();
3396 }
3397 EXPORT_SYMBOL(free_buffer_head);
3398
3399 static void buffer_exit_cpu(int cpu)
3400 {
3401         int i;
3402         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3403
3404         for (i = 0; i < BH_LRU_SIZE; i++) {
3405                 brelse(b->bhs[i]);
3406                 b->bhs[i] = NULL;
3407         }
3408         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3409         per_cpu(bh_accounting, cpu).nr = 0;
3410 }
3411
3412 static int buffer_cpu_notify(struct notifier_block *self,
3413                               unsigned long action, void *hcpu)
3414 {
3415         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3416                 buffer_exit_cpu((unsigned long)hcpu);
3417         return NOTIFY_OK;
3418 }
3419
3420 /**
3421  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3422  * @bh: struct buffer_head
3423  *
3424  * Return true if the buffer is up-to-date and false,
3425  * with the buffer locked, if not.
3426  */
3427 int bh_uptodate_or_lock(struct buffer_head *bh)
3428 {
3429         if (!buffer_uptodate(bh)) {
3430                 lock_buffer(bh);
3431                 if (!buffer_uptodate(bh))
3432                         return 0;
3433                 unlock_buffer(bh);
3434         }
3435         return 1;
3436 }
3437 EXPORT_SYMBOL(bh_uptodate_or_lock);
3438
3439 /**
3440  * bh_submit_read - Submit a locked buffer for reading
3441  * @bh: struct buffer_head
3442  *
3443  * Returns zero on success and -EIO on error.
3444  */
3445 int bh_submit_read(struct buffer_head *bh)
3446 {
3447         BUG_ON(!buffer_locked(bh));
3448
3449         if (buffer_uptodate(bh)) {
3450                 unlock_buffer(bh);
3451                 return 0;
3452         }
3453
3454         get_bh(bh);
3455         bh->b_end_io = end_buffer_read_sync;
3456         submit_bh(REQ_OP_READ, 0, bh);
3457         wait_on_buffer(bh);
3458         if (buffer_uptodate(bh))
3459                 return 0;
3460         return -EIO;
3461 }
3462 EXPORT_SYMBOL(bh_submit_read);
3463
3464 void __init buffer_init(void)
3465 {
3466         unsigned long nrpages;
3467
3468         bh_cachep = kmem_cache_create("buffer_head",
3469                         sizeof(struct buffer_head), 0,
3470                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3471                                 SLAB_MEM_SPREAD),
3472                                 NULL);
3473
3474         /*
3475          * Limit the bh occupancy to 10% of ZONE_NORMAL
3476          */
3477         nrpages = (nr_free_buffer_pages() * 10) / 100;
3478         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3479         hotcpu_notifier(buffer_cpu_notify, 0);
3480 }