]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - drivers/md/raid5.c
Apply preempt_rt patch-4.9-rt1.patch.xz
[zynq/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662         int inc_empty_inactive_list_flag;
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_quiescent,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675                                 sh = get_free_stripe(conf, hash);
676                                 if (!sh && !test_bit(R5_DID_ALLOC,
677                                                      &conf->cache_state))
678                                         set_bit(R5_ALLOC_MORE,
679                                                 &conf->cache_state);
680                         }
681                         if (noblock && sh == NULL)
682                                 break;
683                         if (!sh) {
684                                 set_bit(R5_INACTIVE_BLOCKED,
685                                         &conf->cache_state);
686                                 wait_event_lock_irq(
687                                         conf->wait_for_stripe,
688                                         !list_empty(conf->inactive_list + hash) &&
689                                         (atomic_read(&conf->active_stripes)
690                                          < (conf->max_nr_stripes * 3 / 4)
691                                          || !test_bit(R5_INACTIVE_BLOCKED,
692                                                       &conf->cache_state)),
693                                         *(conf->hash_locks + hash));
694                                 clear_bit(R5_INACTIVE_BLOCKED,
695                                           &conf->cache_state);
696                         } else {
697                                 init_stripe(sh, sector, previous);
698                                 atomic_inc(&sh->count);
699                         }
700                 } else if (!atomic_inc_not_zero(&sh->count)) {
701                         spin_lock(&conf->device_lock);
702                         if (!atomic_read(&sh->count)) {
703                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
704                                         atomic_inc(&conf->active_stripes);
705                                 BUG_ON(list_empty(&sh->lru) &&
706                                        !test_bit(STRIPE_EXPANDING, &sh->state));
707                                 inc_empty_inactive_list_flag = 0;
708                                 if (!list_empty(conf->inactive_list + hash))
709                                         inc_empty_inactive_list_flag = 1;
710                                 list_del_init(&sh->lru);
711                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712                                         atomic_inc(&conf->empty_inactive_list_nr);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         spin_unlock_irq(conf->hash_locks + hash);
724         return sh;
725 }
726
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         local_irq_disable();
736         if (sh1 > sh2) {
737                 spin_lock(&sh2->stripe_lock);
738                 spin_lock_nested(&sh1->stripe_lock, 1);
739         } else {
740                 spin_lock(&sh1->stripe_lock);
741                 spin_lock_nested(&sh2->stripe_lock, 1);
742         }
743 }
744
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747         spin_unlock(&sh1->stripe_lock);
748         spin_unlock(&sh2->stripe_lock);
749         local_irq_enable();
750 }
751
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755         struct r5conf *conf = sh->raid_conf;
756
757         if (conf->log)
758                 return false;
759         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761                 is_full_stripe_write(sh);
762 }
763
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767         struct stripe_head *head;
768         sector_t head_sector, tmp_sec;
769         int hash;
770         int dd_idx;
771         int inc_empty_inactive_list_flag;
772
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         inc_empty_inactive_list_flag = 0;
790                         if (!list_empty(conf->inactive_list + hash))
791                                 inc_empty_inactive_list_flag = 1;
792                         list_del_init(&head->lru);
793                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794                                 atomic_inc(&conf->empty_inactive_list_nr);
795                         if (head->group) {
796                                 head->group->stripes_cnt--;
797                                 head->group = NULL;
798                         }
799                 }
800                 atomic_inc(&head->count);
801                 spin_unlock(&conf->device_lock);
802         }
803         spin_unlock_irq(conf->hash_locks + hash);
804
805         if (!head)
806                 return;
807         if (!stripe_can_batch(head))
808                 goto out;
809
810         lock_two_stripes(head, sh);
811         /* clear_batch_ready clear the flag */
812         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813                 goto unlock_out;
814
815         if (sh->batch_head)
816                 goto unlock_out;
817
818         dd_idx = 0;
819         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820                 dd_idx++;
821         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
822             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823                 goto unlock_out;
824
825         if (head->batch_head) {
826                 spin_lock(&head->batch_head->batch_lock);
827                 /* This batch list is already running */
828                 if (!stripe_can_batch(head)) {
829                         spin_unlock(&head->batch_head->batch_lock);
830                         goto unlock_out;
831                 }
832
833                 /*
834                  * at this point, head's BATCH_READY could be cleared, but we
835                  * can still add the stripe to batch list
836                  */
837                 list_add(&sh->batch_list, &head->batch_list);
838                 spin_unlock(&head->batch_head->batch_lock);
839
840                 sh->batch_head = head->batch_head;
841         } else {
842                 head->batch_head = head;
843                 sh->batch_head = head->batch_head;
844                 spin_lock(&head->batch_lock);
845                 list_add_tail(&sh->batch_list, &head->batch_list);
846                 spin_unlock(&head->batch_lock);
847         }
848
849         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850                 if (atomic_dec_return(&conf->preread_active_stripes)
851                     < IO_THRESHOLD)
852                         md_wakeup_thread(conf->mddev->thread);
853
854         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855                 int seq = sh->bm_seq;
856                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857                     sh->batch_head->bm_seq > seq)
858                         seq = sh->batch_head->bm_seq;
859                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860                 sh->batch_head->bm_seq = seq;
861         }
862
863         atomic_inc(&sh->count);
864 unlock_out:
865         unlock_two_stripes(head, sh);
866 out:
867         raid5_release_stripe(head);
868 }
869
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871  * in this stripe_head.
872  */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875         sector_t progress = conf->reshape_progress;
876         /* Need a memory barrier to make sure we see the value
877          * of conf->generation, or ->data_offset that was set before
878          * reshape_progress was updated.
879          */
880         smp_rmb();
881         if (progress == MaxSector)
882                 return 0;
883         if (sh->generation == conf->generation - 1)
884                 return 0;
885         /* We are in a reshape, and this is a new-generation stripe,
886          * so use new_data_offset.
887          */
888         return 1;
889 }
890
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898         struct r5conf *conf = sh->raid_conf;
899         int i, disks = sh->disks;
900         struct stripe_head *head_sh = sh;
901
902         might_sleep();
903
904         if (r5l_write_stripe(conf->log, sh) == 0)
905                 return;
906         for (i = disks; i--; ) {
907                 int op, op_flags = 0;
908                 int replace_only = 0;
909                 struct bio *bi, *rbi;
910                 struct md_rdev *rdev, *rrdev = NULL;
911
912                 sh = head_sh;
913                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914                         op = REQ_OP_WRITE;
915                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916                                 op_flags = WRITE_FUA;
917                         if (test_bit(R5_Discard, &sh->dev[i].flags))
918                                 op = REQ_OP_DISCARD;
919                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920                         op = REQ_OP_READ;
921                 else if (test_and_clear_bit(R5_WantReplace,
922                                             &sh->dev[i].flags)) {
923                         op = REQ_OP_WRITE;
924                         replace_only = 1;
925                 } else
926                         continue;
927                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928                         op_flags |= REQ_SYNC;
929
930 again:
931                 bi = &sh->dev[i].req;
932                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
933
934                 rcu_read_lock();
935                 rrdev = rcu_dereference(conf->disks[i].replacement);
936                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937                 rdev = rcu_dereference(conf->disks[i].rdev);
938                 if (!rdev) {
939                         rdev = rrdev;
940                         rrdev = NULL;
941                 }
942                 if (op_is_write(op)) {
943                         if (replace_only)
944                                 rdev = NULL;
945                         if (rdev == rrdev)
946                                 /* We raced and saw duplicates */
947                                 rrdev = NULL;
948                 } else {
949                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950                                 rdev = rrdev;
951                         rrdev = NULL;
952                 }
953
954                 if (rdev && test_bit(Faulty, &rdev->flags))
955                         rdev = NULL;
956                 if (rdev)
957                         atomic_inc(&rdev->nr_pending);
958                 if (rrdev && test_bit(Faulty, &rrdev->flags))
959                         rrdev = NULL;
960                 if (rrdev)
961                         atomic_inc(&rrdev->nr_pending);
962                 rcu_read_unlock();
963
964                 /* We have already checked bad blocks for reads.  Now
965                  * need to check for writes.  We never accept write errors
966                  * on the replacement, so we don't to check rrdev.
967                  */
968                 while (op_is_write(op) && rdev &&
969                        test_bit(WriteErrorSeen, &rdev->flags)) {
970                         sector_t first_bad;
971                         int bad_sectors;
972                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973                                               &first_bad, &bad_sectors);
974                         if (!bad)
975                                 break;
976
977                         if (bad < 0) {
978                                 set_bit(BlockedBadBlocks, &rdev->flags);
979                                 if (!conf->mddev->external &&
980                                     conf->mddev->flags) {
981                                         /* It is very unlikely, but we might
982                                          * still need to write out the
983                                          * bad block log - better give it
984                                          * a chance*/
985                                         md_check_recovery(conf->mddev);
986                                 }
987                                 /*
988                                  * Because md_wait_for_blocked_rdev
989                                  * will dec nr_pending, we must
990                                  * increment it first.
991                                  */
992                                 atomic_inc(&rdev->nr_pending);
993                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
994                         } else {
995                                 /* Acknowledged bad block - skip the write */
996                                 rdev_dec_pending(rdev, conf->mddev);
997                                 rdev = NULL;
998                         }
999                 }
1000
1001                 if (rdev) {
1002                         if (s->syncing || s->expanding || s->expanded
1003                             || s->replacing)
1004                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006                         set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008                         bi->bi_bdev = rdev->bdev;
1009                         bio_set_op_attrs(bi, op, op_flags);
1010                         bi->bi_end_io = op_is_write(op)
1011                                 ? raid5_end_write_request
1012                                 : raid5_end_read_request;
1013                         bi->bi_private = sh;
1014
1015                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016                                 __func__, (unsigned long long)sh->sector,
1017                                 bi->bi_opf, i);
1018                         atomic_inc(&sh->count);
1019                         if (sh != head_sh)
1020                                 atomic_inc(&head_sh->count);
1021                         if (use_new_offset(conf, sh))
1022                                 bi->bi_iter.bi_sector = (sh->sector
1023                                                  + rdev->new_data_offset);
1024                         else
1025                                 bi->bi_iter.bi_sector = (sh->sector
1026                                                  + rdev->data_offset);
1027                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028                                 bi->bi_opf |= REQ_NOMERGE;
1029
1030                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1033                         bi->bi_vcnt = 1;
1034                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035                         bi->bi_io_vec[0].bv_offset = 0;
1036                         bi->bi_iter.bi_size = STRIPE_SIZE;
1037                         /*
1038                          * If this is discard request, set bi_vcnt 0. We don't
1039                          * want to confuse SCSI because SCSI will replace payload
1040                          */
1041                         if (op == REQ_OP_DISCARD)
1042                                 bi->bi_vcnt = 0;
1043                         if (rrdev)
1044                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046                         if (conf->mddev->gendisk)
1047                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048                                                       bi, disk_devt(conf->mddev->gendisk),
1049                                                       sh->dev[i].sector);
1050                         generic_make_request(bi);
1051                 }
1052                 if (rrdev) {
1053                         if (s->syncing || s->expanding || s->expanded
1054                             || s->replacing)
1055                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057                         set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059                         rbi->bi_bdev = rrdev->bdev;
1060                         bio_set_op_attrs(rbi, op, op_flags);
1061                         BUG_ON(!op_is_write(op));
1062                         rbi->bi_end_io = raid5_end_write_request;
1063                         rbi->bi_private = sh;
1064
1065                         pr_debug("%s: for %llu schedule op %d on "
1066                                  "replacement disc %d\n",
1067                                 __func__, (unsigned long long)sh->sector,
1068                                 rbi->bi_opf, i);
1069                         atomic_inc(&sh->count);
1070                         if (sh != head_sh)
1071                                 atomic_inc(&head_sh->count);
1072                         if (use_new_offset(conf, sh))
1073                                 rbi->bi_iter.bi_sector = (sh->sector
1074                                                   + rrdev->new_data_offset);
1075                         else
1076                                 rbi->bi_iter.bi_sector = (sh->sector
1077                                                   + rrdev->data_offset);
1078                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081                         rbi->bi_vcnt = 1;
1082                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083                         rbi->bi_io_vec[0].bv_offset = 0;
1084                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1085                         /*
1086                          * If this is discard request, set bi_vcnt 0. We don't
1087                          * want to confuse SCSI because SCSI will replace payload
1088                          */
1089                         if (op == REQ_OP_DISCARD)
1090                                 rbi->bi_vcnt = 0;
1091                         if (conf->mddev->gendisk)
1092                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093                                                       rbi, disk_devt(conf->mddev->gendisk),
1094                                                       sh->dev[i].sector);
1095                         generic_make_request(rbi);
1096                 }
1097                 if (!rdev && !rrdev) {
1098                         if (op_is_write(op))
1099                                 set_bit(STRIPE_DEGRADED, &sh->state);
1100                         pr_debug("skip op %d on disc %d for sector %llu\n",
1101                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1102                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103                         set_bit(STRIPE_HANDLE, &sh->state);
1104                 }
1105
1106                 if (!head_sh->batch_head)
1107                         continue;
1108                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109                                       batch_list);
1110                 if (sh != head_sh)
1111                         goto again;
1112         }
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 async_copy_data(int frombio, struct bio *bio, struct page **page,
1117         sector_t sector, struct dma_async_tx_descriptor *tx,
1118         struct stripe_head *sh)
1119 {
1120         struct bio_vec bvl;
1121         struct bvec_iter iter;
1122         struct page *bio_page;
1123         int page_offset;
1124         struct async_submit_ctl submit;
1125         enum async_tx_flags flags = 0;
1126
1127         if (bio->bi_iter.bi_sector >= sector)
1128                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129         else
1130                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131
1132         if (frombio)
1133                 flags |= ASYNC_TX_FENCE;
1134         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135
1136         bio_for_each_segment(bvl, bio, iter) {
1137                 int len = bvl.bv_len;
1138                 int clen;
1139                 int b_offset = 0;
1140
1141                 if (page_offset < 0) {
1142                         b_offset = -page_offset;
1143                         page_offset += b_offset;
1144                         len -= b_offset;
1145                 }
1146
1147                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1148                         clen = STRIPE_SIZE - page_offset;
1149                 else
1150                         clen = len;
1151
1152                 if (clen > 0) {
1153                         b_offset += bvl.bv_offset;
1154                         bio_page = bvl.bv_page;
1155                         if (frombio) {
1156                                 if (sh->raid_conf->skip_copy &&
1157                                     b_offset == 0 && page_offset == 0 &&
1158                                     clen == STRIPE_SIZE)
1159                                         *page = bio_page;
1160                                 else
1161                                         tx = async_memcpy(*page, bio_page, page_offset,
1162                                                   b_offset, clen, &submit);
1163                         } else
1164                                 tx = async_memcpy(bio_page, *page, b_offset,
1165                                                   page_offset, clen, &submit);
1166                 }
1167                 /* chain the operations */
1168                 submit.depend_tx = tx;
1169
1170                 if (clen < len) /* hit end of page */
1171                         break;
1172                 page_offset +=  len;
1173         }
1174
1175         return tx;
1176 }
1177
1178 static void ops_complete_biofill(void *stripe_head_ref)
1179 {
1180         struct stripe_head *sh = stripe_head_ref;
1181         struct bio_list return_bi = BIO_EMPTY_LIST;
1182         int i;
1183
1184         pr_debug("%s: stripe %llu\n", __func__,
1185                 (unsigned long long)sh->sector);
1186
1187         /* clear completed biofills */
1188         for (i = sh->disks; i--; ) {
1189                 struct r5dev *dev = &sh->dev[i];
1190
1191                 /* acknowledge completion of a biofill operation */
1192                 /* and check if we need to reply to a read request,
1193                  * new R5_Wantfill requests are held off until
1194                  * !STRIPE_BIOFILL_RUN
1195                  */
1196                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197                         struct bio *rbi, *rbi2;
1198
1199                         BUG_ON(!dev->read);
1200                         rbi = dev->read;
1201                         dev->read = NULL;
1202                         while (rbi && rbi->bi_iter.bi_sector <
1203                                 dev->sector + STRIPE_SECTORS) {
1204                                 rbi2 = r5_next_bio(rbi, dev->sector);
1205                                 if (!raid5_dec_bi_active_stripes(rbi))
1206                                         bio_list_add(&return_bi, rbi);
1207                                 rbi = rbi2;
1208                         }
1209                 }
1210         }
1211         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212
1213         return_io(&return_bi);
1214
1215         set_bit(STRIPE_HANDLE, &sh->state);
1216         raid5_release_stripe(sh);
1217 }
1218
1219 static void ops_run_biofill(struct stripe_head *sh)
1220 {
1221         struct dma_async_tx_descriptor *tx = NULL;
1222         struct async_submit_ctl submit;
1223         int i;
1224
1225         BUG_ON(sh->batch_head);
1226         pr_debug("%s: stripe %llu\n", __func__,
1227                 (unsigned long long)sh->sector);
1228
1229         for (i = sh->disks; i--; ) {
1230                 struct r5dev *dev = &sh->dev[i];
1231                 if (test_bit(R5_Wantfill, &dev->flags)) {
1232                         struct bio *rbi;
1233                         spin_lock_irq(&sh->stripe_lock);
1234                         dev->read = rbi = dev->toread;
1235                         dev->toread = NULL;
1236                         spin_unlock_irq(&sh->stripe_lock);
1237                         while (rbi && rbi->bi_iter.bi_sector <
1238                                 dev->sector + STRIPE_SECTORS) {
1239                                 tx = async_copy_data(0, rbi, &dev->page,
1240                                         dev->sector, tx, sh);
1241                                 rbi = r5_next_bio(rbi, dev->sector);
1242                         }
1243                 }
1244         }
1245
1246         atomic_inc(&sh->count);
1247         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248         async_trigger_callback(&submit);
1249 }
1250
1251 static void mark_target_uptodate(struct stripe_head *sh, int target)
1252 {
1253         struct r5dev *tgt;
1254
1255         if (target < 0)
1256                 return;
1257
1258         tgt = &sh->dev[target];
1259         set_bit(R5_UPTODATE, &tgt->flags);
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261         clear_bit(R5_Wantcompute, &tgt->flags);
1262 }
1263
1264 static void ops_complete_compute(void *stripe_head_ref)
1265 {
1266         struct stripe_head *sh = stripe_head_ref;
1267
1268         pr_debug("%s: stripe %llu\n", __func__,
1269                 (unsigned long long)sh->sector);
1270
1271         /* mark the computed target(s) as uptodate */
1272         mark_target_uptodate(sh, sh->ops.target);
1273         mark_target_uptodate(sh, sh->ops.target2);
1274
1275         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276         if (sh->check_state == check_state_compute_run)
1277                 sh->check_state = check_state_compute_result;
1278         set_bit(STRIPE_HANDLE, &sh->state);
1279         raid5_release_stripe(sh);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284                                  struct raid5_percpu *percpu, int i)
1285 {
1286         void *addr;
1287
1288         addr = flex_array_get(percpu->scribble, i);
1289         return addr + sizeof(struct page *) * (sh->disks + 2);
1290 }
1291
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294 {
1295         void *addr;
1296
1297         addr = flex_array_get(percpu->scribble, i);
1298         return addr;
1299 }
1300
1301 static struct dma_async_tx_descriptor *
1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303 {
1304         int disks = sh->disks;
1305         struct page **xor_srcs = to_addr_page(percpu, 0);
1306         int target = sh->ops.target;
1307         struct r5dev *tgt = &sh->dev[target];
1308         struct page *xor_dest = tgt->page;
1309         int count = 0;
1310         struct dma_async_tx_descriptor *tx;
1311         struct async_submit_ctl submit;
1312         int i;
1313
1314         BUG_ON(sh->batch_head);
1315
1316         pr_debug("%s: stripe %llu block: %d\n",
1317                 __func__, (unsigned long long)sh->sector, target);
1318         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319
1320         for (i = disks; i--; )
1321                 if (i != target)
1322                         xor_srcs[count++] = sh->dev[i].page;
1323
1324         atomic_inc(&sh->count);
1325
1326         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328         if (unlikely(count == 1))
1329                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330         else
1331                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332
1333         return tx;
1334 }
1335
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337  * @srcs - (struct page *) array of size sh->disks
1338  * @sh - stripe_head to parse
1339  *
1340  * Populates srcs in proper layout order for the stripe and returns the
1341  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1342  * destination buffer is recorded in srcs[count] and the Q destination
1343  * is recorded in srcs[count+1]].
1344  */
1345 static int set_syndrome_sources(struct page **srcs,
1346                                 struct stripe_head *sh,
1347                                 int srctype)
1348 {
1349         int disks = sh->disks;
1350         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351         int d0_idx = raid6_d0(sh);
1352         int count;
1353         int i;
1354
1355         for (i = 0; i < disks; i++)
1356                 srcs[i] = NULL;
1357
1358         count = 0;
1359         i = d0_idx;
1360         do {
1361                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362                 struct r5dev *dev = &sh->dev[i];
1363
1364                 if (i == sh->qd_idx || i == sh->pd_idx ||
1365                     (srctype == SYNDROME_SRC_ALL) ||
1366                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367                      test_bit(R5_Wantdrain, &dev->flags)) ||
1368                     (srctype == SYNDROME_SRC_WRITTEN &&
1369                      dev->written))
1370                         srcs[slot] = sh->dev[i].page;
1371                 i = raid6_next_disk(i, disks);
1372         } while (i != d0_idx);
1373
1374         return syndrome_disks;
1375 }
1376
1377 static struct dma_async_tx_descriptor *
1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379 {
1380         int disks = sh->disks;
1381         struct page **blocks = to_addr_page(percpu, 0);
1382         int target;
1383         int qd_idx = sh->qd_idx;
1384         struct dma_async_tx_descriptor *tx;
1385         struct async_submit_ctl submit;
1386         struct r5dev *tgt;
1387         struct page *dest;
1388         int i;
1389         int count;
1390
1391         BUG_ON(sh->batch_head);
1392         if (sh->ops.target < 0)
1393                 target = sh->ops.target2;
1394         else if (sh->ops.target2 < 0)
1395                 target = sh->ops.target;
1396         else
1397                 /* we should only have one valid target */
1398                 BUG();
1399         BUG_ON(target < 0);
1400         pr_debug("%s: stripe %llu block: %d\n",
1401                 __func__, (unsigned long long)sh->sector, target);
1402
1403         tgt = &sh->dev[target];
1404         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405         dest = tgt->page;
1406
1407         atomic_inc(&sh->count);
1408
1409         if (target == qd_idx) {
1410                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411                 blocks[count] = NULL; /* regenerating p is not necessary */
1412                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414                                   ops_complete_compute, sh,
1415                                   to_addr_conv(sh, percpu, 0));
1416                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417         } else {
1418                 /* Compute any data- or p-drive using XOR */
1419                 count = 0;
1420                 for (i = disks; i-- ; ) {
1421                         if (i == target || i == qd_idx)
1422                                 continue;
1423                         blocks[count++] = sh->dev[i].page;
1424                 }
1425
1426                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427                                   NULL, ops_complete_compute, sh,
1428                                   to_addr_conv(sh, percpu, 0));
1429                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430         }
1431
1432         return tx;
1433 }
1434
1435 static struct dma_async_tx_descriptor *
1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437 {
1438         int i, count, disks = sh->disks;
1439         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440         int d0_idx = raid6_d0(sh);
1441         int faila = -1, failb = -1;
1442         int target = sh->ops.target;
1443         int target2 = sh->ops.target2;
1444         struct r5dev *tgt = &sh->dev[target];
1445         struct r5dev *tgt2 = &sh->dev[target2];
1446         struct dma_async_tx_descriptor *tx;
1447         struct page **blocks = to_addr_page(percpu, 0);
1448         struct async_submit_ctl submit;
1449
1450         BUG_ON(sh->batch_head);
1451         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452                  __func__, (unsigned long long)sh->sector, target, target2);
1453         BUG_ON(target < 0 || target2 < 0);
1454         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456
1457         /* we need to open-code set_syndrome_sources to handle the
1458          * slot number conversion for 'faila' and 'failb'
1459          */
1460         for (i = 0; i < disks ; i++)
1461                 blocks[i] = NULL;
1462         count = 0;
1463         i = d0_idx;
1464         do {
1465                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466
1467                 blocks[slot] = sh->dev[i].page;
1468
1469                 if (i == target)
1470                         faila = slot;
1471                 if (i == target2)
1472                         failb = slot;
1473                 i = raid6_next_disk(i, disks);
1474         } while (i != d0_idx);
1475
1476         BUG_ON(faila == failb);
1477         if (failb < faila)
1478                 swap(faila, failb);
1479         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480                  __func__, (unsigned long long)sh->sector, faila, failb);
1481
1482         atomic_inc(&sh->count);
1483
1484         if (failb == syndrome_disks+1) {
1485                 /* Q disk is one of the missing disks */
1486                 if (faila == syndrome_disks) {
1487                         /* Missing P+Q, just recompute */
1488                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489                                           ops_complete_compute, sh,
1490                                           to_addr_conv(sh, percpu, 0));
1491                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492                                                   STRIPE_SIZE, &submit);
1493                 } else {
1494                         struct page *dest;
1495                         int data_target;
1496                         int qd_idx = sh->qd_idx;
1497
1498                         /* Missing D+Q: recompute D from P, then recompute Q */
1499                         if (target == qd_idx)
1500                                 data_target = target2;
1501                         else
1502                                 data_target = target;
1503
1504                         count = 0;
1505                         for (i = disks; i-- ; ) {
1506                                 if (i == data_target || i == qd_idx)
1507                                         continue;
1508                                 blocks[count++] = sh->dev[i].page;
1509                         }
1510                         dest = sh->dev[data_target].page;
1511                         init_async_submit(&submit,
1512                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513                                           NULL, NULL, NULL,
1514                                           to_addr_conv(sh, percpu, 0));
1515                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516                                        &submit);
1517
1518                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520                                           ops_complete_compute, sh,
1521                                           to_addr_conv(sh, percpu, 0));
1522                         return async_gen_syndrome(blocks, 0, count+2,
1523                                                   STRIPE_SIZE, &submit);
1524                 }
1525         } else {
1526                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                   ops_complete_compute, sh,
1528                                   to_addr_conv(sh, percpu, 0));
1529                 if (failb == syndrome_disks) {
1530                         /* We're missing D+P. */
1531                         return async_raid6_datap_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila,
1533                                                        blocks, &submit);
1534                 } else {
1535                         /* We're missing D+D. */
1536                         return async_raid6_2data_recov(syndrome_disks+2,
1537                                                        STRIPE_SIZE, faila, failb,
1538                                                        blocks, &submit);
1539                 }
1540         }
1541 }
1542
1543 static void ops_complete_prexor(void *stripe_head_ref)
1544 {
1545         struct stripe_head *sh = stripe_head_ref;
1546
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549 }
1550
1551 static struct dma_async_tx_descriptor *
1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553                 struct dma_async_tx_descriptor *tx)
1554 {
1555         int disks = sh->disks;
1556         struct page **xor_srcs = to_addr_page(percpu, 0);
1557         int count = 0, pd_idx = sh->pd_idx, i;
1558         struct async_submit_ctl submit;
1559
1560         /* existing parity data subtracted */
1561         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562
1563         BUG_ON(sh->batch_head);
1564         pr_debug("%s: stripe %llu\n", __func__,
1565                 (unsigned long long)sh->sector);
1566
1567         for (i = disks; i--; ) {
1568                 struct r5dev *dev = &sh->dev[i];
1569                 /* Only process blocks that are known to be uptodate */
1570                 if (test_bit(R5_Wantdrain, &dev->flags))
1571                         xor_srcs[count++] = dev->page;
1572         }
1573
1574         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577
1578         return tx;
1579 }
1580
1581 static struct dma_async_tx_descriptor *
1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583                 struct dma_async_tx_descriptor *tx)
1584 {
1585         struct page **blocks = to_addr_page(percpu, 0);
1586         int count;
1587         struct async_submit_ctl submit;
1588
1589         pr_debug("%s: stripe %llu\n", __func__,
1590                 (unsigned long long)sh->sector);
1591
1592         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593
1594         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1597
1598         return tx;
1599 }
1600
1601 static struct dma_async_tx_descriptor *
1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603 {
1604         int disks = sh->disks;
1605         int i;
1606         struct stripe_head *head_sh = sh;
1607
1608         pr_debug("%s: stripe %llu\n", __func__,
1609                 (unsigned long long)sh->sector);
1610
1611         for (i = disks; i--; ) {
1612                 struct r5dev *dev;
1613                 struct bio *chosen;
1614
1615                 sh = head_sh;
1616                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617                         struct bio *wbi;
1618
1619 again:
1620                         dev = &sh->dev[i];
1621                         spin_lock_irq(&sh->stripe_lock);
1622                         chosen = dev->towrite;
1623                         dev->towrite = NULL;
1624                         sh->overwrite_disks = 0;
1625                         BUG_ON(dev->written);
1626                         wbi = dev->written = chosen;
1627                         spin_unlock_irq(&sh->stripe_lock);
1628                         WARN_ON(dev->page != dev->orig_page);
1629
1630                         while (wbi && wbi->bi_iter.bi_sector <
1631                                 dev->sector + STRIPE_SECTORS) {
1632                                 if (wbi->bi_opf & REQ_FUA)
1633                                         set_bit(R5_WantFUA, &dev->flags);
1634                                 if (wbi->bi_opf & REQ_SYNC)
1635                                         set_bit(R5_SyncIO, &dev->flags);
1636                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1637                                         set_bit(R5_Discard, &dev->flags);
1638                                 else {
1639                                         tx = async_copy_data(1, wbi, &dev->page,
1640                                                 dev->sector, tx, sh);
1641                                         if (dev->page != dev->orig_page) {
1642                                                 set_bit(R5_SkipCopy, &dev->flags);
1643                                                 clear_bit(R5_UPTODATE, &dev->flags);
1644                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1645                                         }
1646                                 }
1647                                 wbi = r5_next_bio(wbi, dev->sector);
1648                         }
1649
1650                         if (head_sh->batch_head) {
1651                                 sh = list_first_entry(&sh->batch_list,
1652                                                       struct stripe_head,
1653                                                       batch_list);
1654                                 if (sh == head_sh)
1655                                         continue;
1656                                 goto again;
1657                         }
1658                 }
1659         }
1660
1661         return tx;
1662 }
1663
1664 static void ops_complete_reconstruct(void *stripe_head_ref)
1665 {
1666         struct stripe_head *sh = stripe_head_ref;
1667         int disks = sh->disks;
1668         int pd_idx = sh->pd_idx;
1669         int qd_idx = sh->qd_idx;
1670         int i;
1671         bool fua = false, sync = false, discard = false;
1672
1673         pr_debug("%s: stripe %llu\n", __func__,
1674                 (unsigned long long)sh->sector);
1675
1676         for (i = disks; i--; ) {
1677                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680         }
1681
1682         for (i = disks; i--; ) {
1683                 struct r5dev *dev = &sh->dev[i];
1684
1685                 if (dev->written || i == pd_idx || i == qd_idx) {
1686                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687                                 set_bit(R5_UPTODATE, &dev->flags);
1688                         if (fua)
1689                                 set_bit(R5_WantFUA, &dev->flags);
1690                         if (sync)
1691                                 set_bit(R5_SyncIO, &dev->flags);
1692                 }
1693         }
1694
1695         if (sh->reconstruct_state == reconstruct_state_drain_run)
1696                 sh->reconstruct_state = reconstruct_state_drain_result;
1697         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699         else {
1700                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701                 sh->reconstruct_state = reconstruct_state_result;
1702         }
1703
1704         set_bit(STRIPE_HANDLE, &sh->state);
1705         raid5_release_stripe(sh);
1706 }
1707
1708 static void
1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710                      struct dma_async_tx_descriptor *tx)
1711 {
1712         int disks = sh->disks;
1713         struct page **xor_srcs;
1714         struct async_submit_ctl submit;
1715         int count, pd_idx = sh->pd_idx, i;
1716         struct page *xor_dest;
1717         int prexor = 0;
1718         unsigned long flags;
1719         int j = 0;
1720         struct stripe_head *head_sh = sh;
1721         int last_stripe;
1722
1723         pr_debug("%s: stripe %llu\n", __func__,
1724                 (unsigned long long)sh->sector);
1725
1726         for (i = 0; i < sh->disks; i++) {
1727                 if (pd_idx == i)
1728                         continue;
1729                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730                         break;
1731         }
1732         if (i >= sh->disks) {
1733                 atomic_inc(&sh->count);
1734                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735                 ops_complete_reconstruct(sh);
1736                 return;
1737         }
1738 again:
1739         count = 0;
1740         xor_srcs = to_addr_page(percpu, j);
1741         /* check if prexor is active which means only process blocks
1742          * that are part of a read-modify-write (written)
1743          */
1744         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745                 prexor = 1;
1746                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747                 for (i = disks; i--; ) {
1748                         struct r5dev *dev = &sh->dev[i];
1749                         if (head_sh->dev[i].written)
1750                                 xor_srcs[count++] = dev->page;
1751                 }
1752         } else {
1753                 xor_dest = sh->dev[pd_idx].page;
1754                 for (i = disks; i--; ) {
1755                         struct r5dev *dev = &sh->dev[i];
1756                         if (i != pd_idx)
1757                                 xor_srcs[count++] = dev->page;
1758                 }
1759         }
1760
1761         /* 1/ if we prexor'd then the dest is reused as a source
1762          * 2/ if we did not prexor then we are redoing the parity
1763          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764          * for the synchronous xor case
1765          */
1766         last_stripe = !head_sh->batch_head ||
1767                 list_first_entry(&sh->batch_list,
1768                                  struct stripe_head, batch_list) == head_sh;
1769         if (last_stripe) {
1770                 flags = ASYNC_TX_ACK |
1771                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772
1773                 atomic_inc(&head_sh->count);
1774                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775                                   to_addr_conv(sh, percpu, j));
1776         } else {
1777                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778                 init_async_submit(&submit, flags, tx, NULL, NULL,
1779                                   to_addr_conv(sh, percpu, j));
1780         }
1781
1782         if (unlikely(count == 1))
1783                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784         else
1785                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786         if (!last_stripe) {
1787                 j++;
1788                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789                                       batch_list);
1790                 goto again;
1791         }
1792 }
1793
1794 static void
1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796                      struct dma_async_tx_descriptor *tx)
1797 {
1798         struct async_submit_ctl submit;
1799         struct page **blocks;
1800         int count, i, j = 0;
1801         struct stripe_head *head_sh = sh;
1802         int last_stripe;
1803         int synflags;
1804         unsigned long txflags;
1805
1806         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807
1808         for (i = 0; i < sh->disks; i++) {
1809                 if (sh->pd_idx == i || sh->qd_idx == i)
1810                         continue;
1811                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812                         break;
1813         }
1814         if (i >= sh->disks) {
1815                 atomic_inc(&sh->count);
1816                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818                 ops_complete_reconstruct(sh);
1819                 return;
1820         }
1821
1822 again:
1823         blocks = to_addr_page(percpu, j);
1824
1825         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826                 synflags = SYNDROME_SRC_WRITTEN;
1827                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828         } else {
1829                 synflags = SYNDROME_SRC_ALL;
1830                 txflags = ASYNC_TX_ACK;
1831         }
1832
1833         count = set_syndrome_sources(blocks, sh, synflags);
1834         last_stripe = !head_sh->batch_head ||
1835                 list_first_entry(&sh->batch_list,
1836                                  struct stripe_head, batch_list) == head_sh;
1837
1838         if (last_stripe) {
1839                 atomic_inc(&head_sh->count);
1840                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841                                   head_sh, to_addr_conv(sh, percpu, j));
1842         } else
1843                 init_async_submit(&submit, 0, tx, NULL, NULL,
1844                                   to_addr_conv(sh, percpu, j));
1845         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1846         if (!last_stripe) {
1847                 j++;
1848                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849                                       batch_list);
1850                 goto again;
1851         }
1852 }
1853
1854 static void ops_complete_check(void *stripe_head_ref)
1855 {
1856         struct stripe_head *sh = stripe_head_ref;
1857
1858         pr_debug("%s: stripe %llu\n", __func__,
1859                 (unsigned long long)sh->sector);
1860
1861         sh->check_state = check_state_check_result;
1862         set_bit(STRIPE_HANDLE, &sh->state);
1863         raid5_release_stripe(sh);
1864 }
1865
1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867 {
1868         int disks = sh->disks;
1869         int pd_idx = sh->pd_idx;
1870         int qd_idx = sh->qd_idx;
1871         struct page *xor_dest;
1872         struct page **xor_srcs = to_addr_page(percpu, 0);
1873         struct dma_async_tx_descriptor *tx;
1874         struct async_submit_ctl submit;
1875         int count;
1876         int i;
1877
1878         pr_debug("%s: stripe %llu\n", __func__,
1879                 (unsigned long long)sh->sector);
1880
1881         BUG_ON(sh->batch_head);
1882         count = 0;
1883         xor_dest = sh->dev[pd_idx].page;
1884         xor_srcs[count++] = xor_dest;
1885         for (i = disks; i--; ) {
1886                 if (i == pd_idx || i == qd_idx)
1887                         continue;
1888                 xor_srcs[count++] = sh->dev[i].page;
1889         }
1890
1891         init_async_submit(&submit, 0, NULL, NULL, NULL,
1892                           to_addr_conv(sh, percpu, 0));
1893         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894                            &sh->ops.zero_sum_result, &submit);
1895
1896         atomic_inc(&sh->count);
1897         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898         tx = async_trigger_callback(&submit);
1899 }
1900
1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902 {
1903         struct page **srcs = to_addr_page(percpu, 0);
1904         struct async_submit_ctl submit;
1905         int count;
1906
1907         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908                 (unsigned long long)sh->sector, checkp);
1909
1910         BUG_ON(sh->batch_head);
1911         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912         if (!checkp)
1913                 srcs[count] = NULL;
1914
1915         atomic_inc(&sh->count);
1916         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917                           sh, to_addr_conv(sh, percpu, 0));
1918         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920 }
1921
1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923 {
1924         int overlap_clear = 0, i, disks = sh->disks;
1925         struct dma_async_tx_descriptor *tx = NULL;
1926         struct r5conf *conf = sh->raid_conf;
1927         int level = conf->level;
1928         struct raid5_percpu *percpu;
1929         unsigned long cpu;
1930
1931         cpu = get_cpu_light();
1932         percpu = per_cpu_ptr(conf->percpu, cpu);
1933         spin_lock(&percpu->lock);
1934         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935                 ops_run_biofill(sh);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940                 if (level < 6)
1941                         tx = ops_run_compute5(sh, percpu);
1942                 else {
1943                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944                                 tx = ops_run_compute6_1(sh, percpu);
1945                         else
1946                                 tx = ops_run_compute6_2(sh, percpu);
1947                 }
1948                 /* terminate the chain if reconstruct is not set to be run */
1949                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950                         async_tx_ack(tx);
1951         }
1952
1953         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954                 if (level < 6)
1955                         tx = ops_run_prexor5(sh, percpu, tx);
1956                 else
1957                         tx = ops_run_prexor6(sh, percpu, tx);
1958         }
1959
1960         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961                 tx = ops_run_biodrain(sh, tx);
1962                 overlap_clear++;
1963         }
1964
1965         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966                 if (level < 6)
1967                         ops_run_reconstruct5(sh, percpu, tx);
1968                 else
1969                         ops_run_reconstruct6(sh, percpu, tx);
1970         }
1971
1972         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973                 if (sh->check_state == check_state_run)
1974                         ops_run_check_p(sh, percpu);
1975                 else if (sh->check_state == check_state_run_q)
1976                         ops_run_check_pq(sh, percpu, 0);
1977                 else if (sh->check_state == check_state_run_pq)
1978                         ops_run_check_pq(sh, percpu, 1);
1979                 else
1980                         BUG();
1981         }
1982
1983         if (overlap_clear && !sh->batch_head)
1984                 for (i = disks; i--; ) {
1985                         struct r5dev *dev = &sh->dev[i];
1986                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987                                 wake_up(&sh->raid_conf->wait_for_overlap);
1988                 }
1989         spin_unlock(&percpu->lock);
1990         put_cpu_light();
1991 }
1992
1993 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1994         int disks)
1995 {
1996         struct stripe_head *sh;
1997         int i;
1998
1999         sh = kmem_cache_zalloc(sc, gfp);
2000         if (sh) {
2001                 spin_lock_init(&sh->stripe_lock);
2002                 spin_lock_init(&sh->batch_lock);
2003                 INIT_LIST_HEAD(&sh->batch_list);
2004                 INIT_LIST_HEAD(&sh->lru);
2005                 atomic_set(&sh->count, 1);
2006                 for (i = 0; i < disks; i++) {
2007                         struct r5dev *dev = &sh->dev[i];
2008
2009                         bio_init(&dev->req);
2010                         dev->req.bi_io_vec = &dev->vec;
2011                         dev->req.bi_max_vecs = 1;
2012
2013                         bio_init(&dev->rreq);
2014                         dev->rreq.bi_io_vec = &dev->rvec;
2015                         dev->rreq.bi_max_vecs = 1;
2016                 }
2017         }
2018         return sh;
2019 }
2020 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2021 {
2022         struct stripe_head *sh;
2023
2024         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2025         if (!sh)
2026                 return 0;
2027
2028         sh->raid_conf = conf;
2029
2030         if (grow_buffers(sh, gfp)) {
2031                 shrink_buffers(sh);
2032                 kmem_cache_free(conf->slab_cache, sh);
2033                 return 0;
2034         }
2035         sh->hash_lock_index =
2036                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2037         /* we just created an active stripe so... */
2038         atomic_inc(&conf->active_stripes);
2039
2040         raid5_release_stripe(sh);
2041         conf->max_nr_stripes++;
2042         return 1;
2043 }
2044
2045 static int grow_stripes(struct r5conf *conf, int num)
2046 {
2047         struct kmem_cache *sc;
2048         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2049
2050         if (conf->mddev->gendisk)
2051                 sprintf(conf->cache_name[0],
2052                         "raid%d-%s", conf->level, mdname(conf->mddev));
2053         else
2054                 sprintf(conf->cache_name[0],
2055                         "raid%d-%p", conf->level, conf->mddev);
2056         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2057
2058         conf->active_name = 0;
2059         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2060                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2061                                0, 0, NULL);
2062         if (!sc)
2063                 return 1;
2064         conf->slab_cache = sc;
2065         conf->pool_size = devs;
2066         while (num--)
2067                 if (!grow_one_stripe(conf, GFP_KERNEL))
2068                         return 1;
2069
2070         return 0;
2071 }
2072
2073 /**
2074  * scribble_len - return the required size of the scribble region
2075  * @num - total number of disks in the array
2076  *
2077  * The size must be enough to contain:
2078  * 1/ a struct page pointer for each device in the array +2
2079  * 2/ room to convert each entry in (1) to its corresponding dma
2080  *    (dma_map_page()) or page (page_address()) address.
2081  *
2082  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2083  * calculate over all devices (not just the data blocks), using zeros in place
2084  * of the P and Q blocks.
2085  */
2086 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2087 {
2088         struct flex_array *ret;
2089         size_t len;
2090
2091         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2092         ret = flex_array_alloc(len, cnt, flags);
2093         if (!ret)
2094                 return NULL;
2095         /* always prealloc all elements, so no locking is required */
2096         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2097                 flex_array_free(ret);
2098                 return NULL;
2099         }
2100         return ret;
2101 }
2102
2103 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2104 {
2105         unsigned long cpu;
2106         int err = 0;
2107
2108         /*
2109          * Never shrink. And mddev_suspend() could deadlock if this is called
2110          * from raid5d. In that case, scribble_disks and scribble_sectors
2111          * should equal to new_disks and new_sectors
2112          */
2113         if (conf->scribble_disks >= new_disks &&
2114             conf->scribble_sectors >= new_sectors)
2115                 return 0;
2116         mddev_suspend(conf->mddev);
2117         get_online_cpus();
2118         for_each_present_cpu(cpu) {
2119                 struct raid5_percpu *percpu;
2120                 struct flex_array *scribble;
2121
2122                 percpu = per_cpu_ptr(conf->percpu, cpu);
2123                 scribble = scribble_alloc(new_disks,
2124                                           new_sectors / STRIPE_SECTORS,
2125                                           GFP_NOIO);
2126
2127                 if (scribble) {
2128                         flex_array_free(percpu->scribble);
2129                         percpu->scribble = scribble;
2130                 } else {
2131                         err = -ENOMEM;
2132                         break;
2133                 }
2134         }
2135         put_online_cpus();
2136         mddev_resume(conf->mddev);
2137         if (!err) {
2138                 conf->scribble_disks = new_disks;
2139                 conf->scribble_sectors = new_sectors;
2140         }
2141         return err;
2142 }
2143
2144 static int resize_stripes(struct r5conf *conf, int newsize)
2145 {
2146         /* Make all the stripes able to hold 'newsize' devices.
2147          * New slots in each stripe get 'page' set to a new page.
2148          *
2149          * This happens in stages:
2150          * 1/ create a new kmem_cache and allocate the required number of
2151          *    stripe_heads.
2152          * 2/ gather all the old stripe_heads and transfer the pages across
2153          *    to the new stripe_heads.  This will have the side effect of
2154          *    freezing the array as once all stripe_heads have been collected,
2155          *    no IO will be possible.  Old stripe heads are freed once their
2156          *    pages have been transferred over, and the old kmem_cache is
2157          *    freed when all stripes are done.
2158          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2159          *    we simple return a failre status - no need to clean anything up.
2160          * 4/ allocate new pages for the new slots in the new stripe_heads.
2161          *    If this fails, we don't bother trying the shrink the
2162          *    stripe_heads down again, we just leave them as they are.
2163          *    As each stripe_head is processed the new one is released into
2164          *    active service.
2165          *
2166          * Once step2 is started, we cannot afford to wait for a write,
2167          * so we use GFP_NOIO allocations.
2168          */
2169         struct stripe_head *osh, *nsh;
2170         LIST_HEAD(newstripes);
2171         struct disk_info *ndisks;
2172         int err;
2173         struct kmem_cache *sc;
2174         int i;
2175         int hash, cnt;
2176
2177         if (newsize <= conf->pool_size)
2178                 return 0; /* never bother to shrink */
2179
2180         err = md_allow_write(conf->mddev);
2181         if (err)
2182                 return err;
2183
2184         /* Step 1 */
2185         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2186                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2187                                0, 0, NULL);
2188         if (!sc)
2189                 return -ENOMEM;
2190
2191         /* Need to ensure auto-resizing doesn't interfere */
2192         mutex_lock(&conf->cache_size_mutex);
2193
2194         for (i = conf->max_nr_stripes; i; i--) {
2195                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2196                 if (!nsh)
2197                         break;
2198
2199                 nsh->raid_conf = conf;
2200                 list_add(&nsh->lru, &newstripes);
2201         }
2202         if (i) {
2203                 /* didn't get enough, give up */
2204                 while (!list_empty(&newstripes)) {
2205                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2206                         list_del(&nsh->lru);
2207                         kmem_cache_free(sc, nsh);
2208                 }
2209                 kmem_cache_destroy(sc);
2210                 mutex_unlock(&conf->cache_size_mutex);
2211                 return -ENOMEM;
2212         }
2213         /* Step 2 - Must use GFP_NOIO now.
2214          * OK, we have enough stripes, start collecting inactive
2215          * stripes and copying them over
2216          */
2217         hash = 0;
2218         cnt = 0;
2219         list_for_each_entry(nsh, &newstripes, lru) {
2220                 lock_device_hash_lock(conf, hash);
2221                 wait_event_cmd(conf->wait_for_stripe,
2222                                     !list_empty(conf->inactive_list + hash),
2223                                     unlock_device_hash_lock(conf, hash),
2224                                     lock_device_hash_lock(conf, hash));
2225                 osh = get_free_stripe(conf, hash);
2226                 unlock_device_hash_lock(conf, hash);
2227
2228                 for(i=0; i<conf->pool_size; i++) {
2229                         nsh->dev[i].page = osh->dev[i].page;
2230                         nsh->dev[i].orig_page = osh->dev[i].page;
2231                 }
2232                 nsh->hash_lock_index = hash;
2233                 kmem_cache_free(conf->slab_cache, osh);
2234                 cnt++;
2235                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2236                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2237                         hash++;
2238                         cnt = 0;
2239                 }
2240         }
2241         kmem_cache_destroy(conf->slab_cache);
2242
2243         /* Step 3.
2244          * At this point, we are holding all the stripes so the array
2245          * is completely stalled, so now is a good time to resize
2246          * conf->disks and the scribble region
2247          */
2248         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2249         if (ndisks) {
2250                 for (i=0; i<conf->raid_disks; i++)
2251                         ndisks[i] = conf->disks[i];
2252                 kfree(conf->disks);
2253                 conf->disks = ndisks;
2254         } else
2255                 err = -ENOMEM;
2256
2257         mutex_unlock(&conf->cache_size_mutex);
2258         /* Step 4, return new stripes to service */
2259         while(!list_empty(&newstripes)) {
2260                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2261                 list_del_init(&nsh->lru);
2262
2263                 for (i=conf->raid_disks; i < newsize; i++)
2264                         if (nsh->dev[i].page == NULL) {
2265                                 struct page *p = alloc_page(GFP_NOIO);
2266                                 nsh->dev[i].page = p;
2267                                 nsh->dev[i].orig_page = p;
2268                                 if (!p)
2269                                         err = -ENOMEM;
2270                         }
2271                 raid5_release_stripe(nsh);
2272         }
2273         /* critical section pass, GFP_NOIO no longer needed */
2274
2275         conf->slab_cache = sc;
2276         conf->active_name = 1-conf->active_name;
2277         if (!err)
2278                 conf->pool_size = newsize;
2279         return err;
2280 }
2281
2282 static int drop_one_stripe(struct r5conf *conf)
2283 {
2284         struct stripe_head *sh;
2285         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2286
2287         spin_lock_irq(conf->hash_locks + hash);
2288         sh = get_free_stripe(conf, hash);
2289         spin_unlock_irq(conf->hash_locks + hash);
2290         if (!sh)
2291                 return 0;
2292         BUG_ON(atomic_read(&sh->count));
2293         shrink_buffers(sh);
2294         kmem_cache_free(conf->slab_cache, sh);
2295         atomic_dec(&conf->active_stripes);
2296         conf->max_nr_stripes--;
2297         return 1;
2298 }
2299
2300 static void shrink_stripes(struct r5conf *conf)
2301 {
2302         while (conf->max_nr_stripes &&
2303                drop_one_stripe(conf))
2304                 ;
2305
2306         kmem_cache_destroy(conf->slab_cache);
2307         conf->slab_cache = NULL;
2308 }
2309
2310 static void raid5_end_read_request(struct bio * bi)
2311 {
2312         struct stripe_head *sh = bi->bi_private;
2313         struct r5conf *conf = sh->raid_conf;
2314         int disks = sh->disks, i;
2315         char b[BDEVNAME_SIZE];
2316         struct md_rdev *rdev = NULL;
2317         sector_t s;
2318
2319         for (i=0 ; i<disks; i++)
2320                 if (bi == &sh->dev[i].req)
2321                         break;
2322
2323         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2324                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2325                 bi->bi_error);
2326         if (i == disks) {
2327                 bio_reset(bi);
2328                 BUG();
2329                 return;
2330         }
2331         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2332                 /* If replacement finished while this request was outstanding,
2333                  * 'replacement' might be NULL already.
2334                  * In that case it moved down to 'rdev'.
2335                  * rdev is not removed until all requests are finished.
2336                  */
2337                 rdev = conf->disks[i].replacement;
2338         if (!rdev)
2339                 rdev = conf->disks[i].rdev;
2340
2341         if (use_new_offset(conf, sh))
2342                 s = sh->sector + rdev->new_data_offset;
2343         else
2344                 s = sh->sector + rdev->data_offset;
2345         if (!bi->bi_error) {
2346                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2347                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2348                         /* Note that this cannot happen on a
2349                          * replacement device.  We just fail those on
2350                          * any error
2351                          */
2352                         printk_ratelimited(
2353                                 KERN_INFO
2354                                 "md/raid:%s: read error corrected"
2355                                 " (%lu sectors at %llu on %s)\n",
2356                                 mdname(conf->mddev), STRIPE_SECTORS,
2357                                 (unsigned long long)s,
2358                                 bdevname(rdev->bdev, b));
2359                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2360                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2361                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2362                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2363                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2364
2365                 if (atomic_read(&rdev->read_errors))
2366                         atomic_set(&rdev->read_errors, 0);
2367         } else {
2368                 const char *bdn = bdevname(rdev->bdev, b);
2369                 int retry = 0;
2370                 int set_bad = 0;
2371
2372                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2373                 atomic_inc(&rdev->read_errors);
2374                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2375                         printk_ratelimited(
2376                                 KERN_WARNING
2377                                 "md/raid:%s: read error on replacement device "
2378                                 "(sector %llu on %s).\n",
2379                                 mdname(conf->mddev),
2380                                 (unsigned long long)s,
2381                                 bdn);
2382                 else if (conf->mddev->degraded >= conf->max_degraded) {
2383                         set_bad = 1;
2384                         printk_ratelimited(
2385                                 KERN_WARNING
2386                                 "md/raid:%s: read error not correctable "
2387                                 "(sector %llu on %s).\n",
2388                                 mdname(conf->mddev),
2389                                 (unsigned long long)s,
2390                                 bdn);
2391                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2392                         /* Oh, no!!! */
2393                         set_bad = 1;
2394                         printk_ratelimited(
2395                                 KERN_WARNING
2396                                 "md/raid:%s: read error NOT corrected!! "
2397                                 "(sector %llu on %s).\n",
2398                                 mdname(conf->mddev),
2399                                 (unsigned long long)s,
2400                                 bdn);
2401                 } else if (atomic_read(&rdev->read_errors)
2402                          > conf->max_nr_stripes)
2403                         printk(KERN_WARNING
2404                                "md/raid:%s: Too many read errors, failing device %s.\n",
2405                                mdname(conf->mddev), bdn);
2406                 else
2407                         retry = 1;
2408                 if (set_bad && test_bit(In_sync, &rdev->flags)
2409                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2410                         retry = 1;
2411                 if (retry)
2412                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2413                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2414                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2415                         } else
2416                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2417                 else {
2418                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2419                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2420                         if (!(set_bad
2421                               && test_bit(In_sync, &rdev->flags)
2422                               && rdev_set_badblocks(
2423                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2424                                 md_error(conf->mddev, rdev);
2425                 }
2426         }
2427         rdev_dec_pending(rdev, conf->mddev);
2428         bio_reset(bi);
2429         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2430         set_bit(STRIPE_HANDLE, &sh->state);
2431         raid5_release_stripe(sh);
2432 }
2433
2434 static void raid5_end_write_request(struct bio *bi)
2435 {
2436         struct stripe_head *sh = bi->bi_private;
2437         struct r5conf *conf = sh->raid_conf;
2438         int disks = sh->disks, i;
2439         struct md_rdev *uninitialized_var(rdev);
2440         sector_t first_bad;
2441         int bad_sectors;
2442         int replacement = 0;
2443
2444         for (i = 0 ; i < disks; i++) {
2445                 if (bi == &sh->dev[i].req) {
2446                         rdev = conf->disks[i].rdev;
2447                         break;
2448                 }
2449                 if (bi == &sh->dev[i].rreq) {
2450                         rdev = conf->disks[i].replacement;
2451                         if (rdev)
2452                                 replacement = 1;
2453                         else
2454                                 /* rdev was removed and 'replacement'
2455                                  * replaced it.  rdev is not removed
2456                                  * until all requests are finished.
2457                                  */
2458                                 rdev = conf->disks[i].rdev;
2459                         break;
2460                 }
2461         }
2462         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2463                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2464                 bi->bi_error);
2465         if (i == disks) {
2466                 bio_reset(bi);
2467                 BUG();
2468                 return;
2469         }
2470
2471         if (replacement) {
2472                 if (bi->bi_error)
2473                         md_error(conf->mddev, rdev);
2474                 else if (is_badblock(rdev, sh->sector,
2475                                      STRIPE_SECTORS,
2476                                      &first_bad, &bad_sectors))
2477                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2478         } else {
2479                 if (bi->bi_error) {
2480                         set_bit(STRIPE_DEGRADED, &sh->state);
2481                         set_bit(WriteErrorSeen, &rdev->flags);
2482                         set_bit(R5_WriteError, &sh->dev[i].flags);
2483                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2484                                 set_bit(MD_RECOVERY_NEEDED,
2485                                         &rdev->mddev->recovery);
2486                 } else if (is_badblock(rdev, sh->sector,
2487                                        STRIPE_SECTORS,
2488                                        &first_bad, &bad_sectors)) {
2489                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2490                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2491                                 /* That was a successful write so make
2492                                  * sure it looks like we already did
2493                                  * a re-write.
2494                                  */
2495                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2496                 }
2497         }
2498         rdev_dec_pending(rdev, conf->mddev);
2499
2500         if (sh->batch_head && bi->bi_error && !replacement)
2501                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2502
2503         bio_reset(bi);
2504         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2505                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2506         set_bit(STRIPE_HANDLE, &sh->state);
2507         raid5_release_stripe(sh);
2508
2509         if (sh->batch_head && sh != sh->batch_head)
2510                 raid5_release_stripe(sh->batch_head);
2511 }
2512
2513 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2514 {
2515         struct r5dev *dev = &sh->dev[i];
2516
2517         dev->flags = 0;
2518         dev->sector = raid5_compute_blocknr(sh, i, previous);
2519 }
2520
2521 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2522 {
2523         char b[BDEVNAME_SIZE];
2524         struct r5conf *conf = mddev->private;
2525         unsigned long flags;
2526         pr_debug("raid456: error called\n");
2527
2528         spin_lock_irqsave(&conf->device_lock, flags);
2529         clear_bit(In_sync, &rdev->flags);
2530         mddev->degraded = calc_degraded(conf);
2531         spin_unlock_irqrestore(&conf->device_lock, flags);
2532         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2533
2534         set_bit(Blocked, &rdev->flags);
2535         set_bit(Faulty, &rdev->flags);
2536         set_mask_bits(&mddev->flags, 0,
2537                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2538         printk(KERN_ALERT
2539                "md/raid:%s: Disk failure on %s, disabling device.\n"
2540                "md/raid:%s: Operation continuing on %d devices.\n",
2541                mdname(mddev),
2542                bdevname(rdev->bdev, b),
2543                mdname(mddev),
2544                conf->raid_disks - mddev->degraded);
2545 }
2546
2547 /*
2548  * Input: a 'big' sector number,
2549  * Output: index of the data and parity disk, and the sector # in them.
2550  */
2551 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2552                               int previous, int *dd_idx,
2553                               struct stripe_head *sh)
2554 {
2555         sector_t stripe, stripe2;
2556         sector_t chunk_number;
2557         unsigned int chunk_offset;
2558         int pd_idx, qd_idx;
2559         int ddf_layout = 0;
2560         sector_t new_sector;
2561         int algorithm = previous ? conf->prev_algo
2562                                  : conf->algorithm;
2563         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2564                                          : conf->chunk_sectors;
2565         int raid_disks = previous ? conf->previous_raid_disks
2566                                   : conf->raid_disks;
2567         int data_disks = raid_disks - conf->max_degraded;
2568
2569         /* First compute the information on this sector */
2570
2571         /*
2572          * Compute the chunk number and the sector offset inside the chunk
2573          */
2574         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2575         chunk_number = r_sector;
2576
2577         /*
2578          * Compute the stripe number
2579          */
2580         stripe = chunk_number;
2581         *dd_idx = sector_div(stripe, data_disks);
2582         stripe2 = stripe;
2583         /*
2584          * Select the parity disk based on the user selected algorithm.
2585          */
2586         pd_idx = qd_idx = -1;
2587         switch(conf->level) {
2588         case 4:
2589                 pd_idx = data_disks;
2590                 break;
2591         case 5:
2592                 switch (algorithm) {
2593                 case ALGORITHM_LEFT_ASYMMETRIC:
2594                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2595                         if (*dd_idx >= pd_idx)
2596                                 (*dd_idx)++;
2597                         break;
2598                 case ALGORITHM_RIGHT_ASYMMETRIC:
2599                         pd_idx = sector_div(stripe2, raid_disks);
2600                         if (*dd_idx >= pd_idx)
2601                                 (*dd_idx)++;
2602                         break;
2603                 case ALGORITHM_LEFT_SYMMETRIC:
2604                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2605                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2606                         break;
2607                 case ALGORITHM_RIGHT_SYMMETRIC:
2608                         pd_idx = sector_div(stripe2, raid_disks);
2609                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2610                         break;
2611                 case ALGORITHM_PARITY_0:
2612                         pd_idx = 0;
2613                         (*dd_idx)++;
2614                         break;
2615                 case ALGORITHM_PARITY_N:
2616                         pd_idx = data_disks;
2617                         break;
2618                 default:
2619                         BUG();
2620                 }
2621                 break;
2622         case 6:
2623
2624                 switch (algorithm) {
2625                 case ALGORITHM_LEFT_ASYMMETRIC:
2626                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2627                         qd_idx = pd_idx + 1;
2628                         if (pd_idx == raid_disks-1) {
2629                                 (*dd_idx)++;    /* Q D D D P */
2630                                 qd_idx = 0;
2631                         } else if (*dd_idx >= pd_idx)
2632                                 (*dd_idx) += 2; /* D D P Q D */
2633                         break;
2634                 case ALGORITHM_RIGHT_ASYMMETRIC:
2635                         pd_idx = sector_div(stripe2, raid_disks);
2636                         qd_idx = pd_idx + 1;
2637                         if (pd_idx == raid_disks-1) {
2638                                 (*dd_idx)++;    /* Q D D D P */
2639                                 qd_idx = 0;
2640                         } else if (*dd_idx >= pd_idx)
2641                                 (*dd_idx) += 2; /* D D P Q D */
2642                         break;
2643                 case ALGORITHM_LEFT_SYMMETRIC:
2644                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2645                         qd_idx = (pd_idx + 1) % raid_disks;
2646                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2647                         break;
2648                 case ALGORITHM_RIGHT_SYMMETRIC:
2649                         pd_idx = sector_div(stripe2, raid_disks);
2650                         qd_idx = (pd_idx + 1) % raid_disks;
2651                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2652                         break;
2653
2654                 case ALGORITHM_PARITY_0:
2655                         pd_idx = 0;
2656                         qd_idx = 1;
2657                         (*dd_idx) += 2;
2658                         break;
2659                 case ALGORITHM_PARITY_N:
2660                         pd_idx = data_disks;
2661                         qd_idx = data_disks + 1;
2662                         break;
2663
2664                 case ALGORITHM_ROTATING_ZERO_RESTART:
2665                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2666                          * of blocks for computing Q is different.
2667                          */
2668                         pd_idx = sector_div(stripe2, raid_disks);
2669                         qd_idx = pd_idx + 1;
2670                         if (pd_idx == raid_disks-1) {
2671                                 (*dd_idx)++;    /* Q D D D P */
2672                                 qd_idx = 0;
2673                         } else if (*dd_idx >= pd_idx)
2674                                 (*dd_idx) += 2; /* D D P Q D */
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_ROTATING_N_RESTART:
2679                         /* Same a left_asymmetric, by first stripe is
2680                          * D D D P Q  rather than
2681                          * Q D D D P
2682                          */
2683                         stripe2 += 1;
2684                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2685                         qd_idx = pd_idx + 1;
2686                         if (pd_idx == raid_disks-1) {
2687                                 (*dd_idx)++;    /* Q D D D P */
2688                                 qd_idx = 0;
2689                         } else if (*dd_idx >= pd_idx)
2690                                 (*dd_idx) += 2; /* D D P Q D */
2691                         ddf_layout = 1;
2692                         break;
2693
2694                 case ALGORITHM_ROTATING_N_CONTINUE:
2695                         /* Same as left_symmetric but Q is before P */
2696                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2697                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2698                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2699                         ddf_layout = 1;
2700                         break;
2701
2702                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2703                         /* RAID5 left_asymmetric, with Q on last device */
2704                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2705                         if (*dd_idx >= pd_idx)
2706                                 (*dd_idx)++;
2707                         qd_idx = raid_disks - 1;
2708                         break;
2709
2710                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2711                         pd_idx = sector_div(stripe2, raid_disks-1);
2712                         if (*dd_idx >= pd_idx)
2713                                 (*dd_idx)++;
2714                         qd_idx = raid_disks - 1;
2715                         break;
2716
2717                 case ALGORITHM_LEFT_SYMMETRIC_6:
2718                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2719                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2720                         qd_idx = raid_disks - 1;
2721                         break;
2722
2723                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2724                         pd_idx = sector_div(stripe2, raid_disks-1);
2725                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2726                         qd_idx = raid_disks - 1;
2727                         break;
2728
2729                 case ALGORITHM_PARITY_0_6:
2730                         pd_idx = 0;
2731                         (*dd_idx)++;
2732                         qd_idx = raid_disks - 1;
2733                         break;
2734
2735                 default:
2736                         BUG();
2737                 }
2738                 break;
2739         }
2740
2741         if (sh) {
2742                 sh->pd_idx = pd_idx;
2743                 sh->qd_idx = qd_idx;
2744                 sh->ddf_layout = ddf_layout;
2745         }
2746         /*
2747          * Finally, compute the new sector number
2748          */
2749         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2750         return new_sector;
2751 }
2752
2753 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2754 {
2755         struct r5conf *conf = sh->raid_conf;
2756         int raid_disks = sh->disks;
2757         int data_disks = raid_disks - conf->max_degraded;
2758         sector_t new_sector = sh->sector, check;
2759         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2760                                          : conf->chunk_sectors;
2761         int algorithm = previous ? conf->prev_algo
2762                                  : conf->algorithm;
2763         sector_t stripe;
2764         int chunk_offset;
2765         sector_t chunk_number;
2766         int dummy1, dd_idx = i;
2767         sector_t r_sector;
2768         struct stripe_head sh2;
2769
2770         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2771         stripe = new_sector;
2772
2773         if (i == sh->pd_idx)
2774                 return 0;
2775         switch(conf->level) {
2776         case 4: break;
2777         case 5:
2778                 switch (algorithm) {
2779                 case ALGORITHM_LEFT_ASYMMETRIC:
2780                 case ALGORITHM_RIGHT_ASYMMETRIC:
2781                         if (i > sh->pd_idx)
2782                                 i--;
2783                         break;
2784                 case ALGORITHM_LEFT_SYMMETRIC:
2785                 case ALGORITHM_RIGHT_SYMMETRIC:
2786                         if (i < sh->pd_idx)
2787                                 i += raid_disks;
2788                         i -= (sh->pd_idx + 1);
2789                         break;
2790                 case ALGORITHM_PARITY_0:
2791                         i -= 1;
2792                         break;
2793                 case ALGORITHM_PARITY_N:
2794                         break;
2795                 default:
2796                         BUG();
2797                 }
2798                 break;
2799         case 6:
2800                 if (i == sh->qd_idx)
2801                         return 0; /* It is the Q disk */
2802                 switch (algorithm) {
2803                 case ALGORITHM_LEFT_ASYMMETRIC:
2804                 case ALGORITHM_RIGHT_ASYMMETRIC:
2805                 case ALGORITHM_ROTATING_ZERO_RESTART:
2806                 case ALGORITHM_ROTATING_N_RESTART:
2807                         if (sh->pd_idx == raid_disks-1)
2808                                 i--;    /* Q D D D P */
2809                         else if (i > sh->pd_idx)
2810                                 i -= 2; /* D D P Q D */
2811                         break;
2812                 case ALGORITHM_LEFT_SYMMETRIC:
2813                 case ALGORITHM_RIGHT_SYMMETRIC:
2814                         if (sh->pd_idx == raid_disks-1)
2815                                 i--; /* Q D D D P */
2816                         else {
2817                                 /* D D P Q D */
2818                                 if (i < sh->pd_idx)
2819                                         i += raid_disks;
2820                                 i -= (sh->pd_idx + 2);
2821                         }
2822                         break;
2823                 case ALGORITHM_PARITY_0:
2824                         i -= 2;
2825                         break;
2826                 case ALGORITHM_PARITY_N:
2827                         break;
2828                 case ALGORITHM_ROTATING_N_CONTINUE:
2829                         /* Like left_symmetric, but P is before Q */
2830                         if (sh->pd_idx == 0)
2831                                 i--;    /* P D D D Q */
2832                         else {
2833                                 /* D D Q P D */
2834                                 if (i < sh->pd_idx)
2835                                         i += raid_disks;
2836                                 i -= (sh->pd_idx + 1);
2837                         }
2838                         break;
2839                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2840                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2841                         if (i > sh->pd_idx)
2842                                 i--;
2843                         break;
2844                 case ALGORITHM_LEFT_SYMMETRIC_6:
2845                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2846                         if (i < sh->pd_idx)
2847                                 i += data_disks + 1;
2848                         i -= (sh->pd_idx + 1);
2849                         break;
2850                 case ALGORITHM_PARITY_0_6:
2851                         i -= 1;
2852                         break;
2853                 default:
2854                         BUG();
2855                 }
2856                 break;
2857         }
2858
2859         chunk_number = stripe * data_disks + i;
2860         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2861
2862         check = raid5_compute_sector(conf, r_sector,
2863                                      previous, &dummy1, &sh2);
2864         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2865                 || sh2.qd_idx != sh->qd_idx) {
2866                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2867                        mdname(conf->mddev));
2868                 return 0;
2869         }
2870         return r_sector;
2871 }
2872
2873 static void
2874 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2875                          int rcw, int expand)
2876 {
2877         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2878         struct r5conf *conf = sh->raid_conf;
2879         int level = conf->level;
2880
2881         if (rcw) {
2882
2883                 for (i = disks; i--; ) {
2884                         struct r5dev *dev = &sh->dev[i];
2885
2886                         if (dev->towrite) {
2887                                 set_bit(R5_LOCKED, &dev->flags);
2888                                 set_bit(R5_Wantdrain, &dev->flags);
2889                                 if (!expand)
2890                                         clear_bit(R5_UPTODATE, &dev->flags);
2891                                 s->locked++;
2892                         }
2893                 }
2894                 /* if we are not expanding this is a proper write request, and
2895                  * there will be bios with new data to be drained into the
2896                  * stripe cache
2897                  */
2898                 if (!expand) {
2899                         if (!s->locked)
2900                                 /* False alarm, nothing to do */
2901                                 return;
2902                         sh->reconstruct_state = reconstruct_state_drain_run;
2903                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2904                 } else
2905                         sh->reconstruct_state = reconstruct_state_run;
2906
2907                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2908
2909                 if (s->locked + conf->max_degraded == disks)
2910                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2911                                 atomic_inc(&conf->pending_full_writes);
2912         } else {
2913                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2914                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2915                 BUG_ON(level == 6 &&
2916                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2917                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2918
2919                 for (i = disks; i--; ) {
2920                         struct r5dev *dev = &sh->dev[i];
2921                         if (i == pd_idx || i == qd_idx)
2922                                 continue;
2923
2924                         if (dev->towrite &&
2925                             (test_bit(R5_UPTODATE, &dev->flags) ||
2926                              test_bit(R5_Wantcompute, &dev->flags))) {
2927                                 set_bit(R5_Wantdrain, &dev->flags);
2928                                 set_bit(R5_LOCKED, &dev->flags);
2929                                 clear_bit(R5_UPTODATE, &dev->flags);
2930                                 s->locked++;
2931                         }
2932                 }
2933                 if (!s->locked)
2934                         /* False alarm - nothing to do */
2935                         return;
2936                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2937                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2938                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2939                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2940         }
2941
2942         /* keep the parity disk(s) locked while asynchronous operations
2943          * are in flight
2944          */
2945         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2946         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2947         s->locked++;
2948
2949         if (level == 6) {
2950                 int qd_idx = sh->qd_idx;
2951                 struct r5dev *dev = &sh->dev[qd_idx];
2952
2953                 set_bit(R5_LOCKED, &dev->flags);
2954                 clear_bit(R5_UPTODATE, &dev->flags);
2955                 s->locked++;
2956         }
2957
2958         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2959                 __func__, (unsigned long long)sh->sector,
2960                 s->locked, s->ops_request);
2961 }
2962
2963 /*
2964  * Each stripe/dev can have one or more bion attached.
2965  * toread/towrite point to the first in a chain.
2966  * The bi_next chain must be in order.
2967  */
2968 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2969                           int forwrite, int previous)
2970 {
2971         struct bio **bip;
2972         struct r5conf *conf = sh->raid_conf;
2973         int firstwrite=0;
2974
2975         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2976                 (unsigned long long)bi->bi_iter.bi_sector,
2977                 (unsigned long long)sh->sector);
2978
2979         /*
2980          * If several bio share a stripe. The bio bi_phys_segments acts as a
2981          * reference count to avoid race. The reference count should already be
2982          * increased before this function is called (for example, in
2983          * raid5_make_request()), so other bio sharing this stripe will not free the
2984          * stripe. If a stripe is owned by one stripe, the stripe lock will
2985          * protect it.
2986          */
2987         spin_lock_irq(&sh->stripe_lock);
2988         /* Don't allow new IO added to stripes in batch list */
2989         if (sh->batch_head)
2990                 goto overlap;
2991         if (forwrite) {
2992                 bip = &sh->dev[dd_idx].towrite;
2993                 if (*bip == NULL)
2994                         firstwrite = 1;
2995         } else
2996                 bip = &sh->dev[dd_idx].toread;
2997         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2998                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2999                         goto overlap;
3000                 bip = & (*bip)->bi_next;
3001         }
3002         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3003                 goto overlap;
3004
3005         if (!forwrite || previous)
3006                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3007
3008         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3009         if (*bip)
3010                 bi->bi_next = *bip;
3011         *bip = bi;
3012         raid5_inc_bi_active_stripes(bi);
3013
3014         if (forwrite) {
3015                 /* check if page is covered */
3016                 sector_t sector = sh->dev[dd_idx].sector;
3017                 for (bi=sh->dev[dd_idx].towrite;
3018                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3019                              bi && bi->bi_iter.bi_sector <= sector;
3020                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3021                         if (bio_end_sector(bi) >= sector)
3022                                 sector = bio_end_sector(bi);
3023                 }
3024                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3025                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3026                                 sh->overwrite_disks++;
3027         }
3028
3029         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3030                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3031                 (unsigned long long)sh->sector, dd_idx);
3032
3033         if (conf->mddev->bitmap && firstwrite) {
3034                 /* Cannot hold spinlock over bitmap_startwrite,
3035                  * but must ensure this isn't added to a batch until
3036                  * we have added to the bitmap and set bm_seq.
3037                  * So set STRIPE_BITMAP_PENDING to prevent
3038                  * batching.
3039                  * If multiple add_stripe_bio() calls race here they
3040                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3041                  * to complete "bitmap_startwrite" gets to set
3042                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3043                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3044                  * any more.
3045                  */
3046                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3047                 spin_unlock_irq(&sh->stripe_lock);
3048                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3049                                   STRIPE_SECTORS, 0);
3050                 spin_lock_irq(&sh->stripe_lock);
3051                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3052                 if (!sh->batch_head) {
3053                         sh->bm_seq = conf->seq_flush+1;
3054                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3055                 }
3056         }
3057         spin_unlock_irq(&sh->stripe_lock);
3058
3059         if (stripe_can_batch(sh))
3060                 stripe_add_to_batch_list(conf, sh);
3061         return 1;
3062
3063  overlap:
3064         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3065         spin_unlock_irq(&sh->stripe_lock);
3066         return 0;
3067 }
3068
3069 static void end_reshape(struct r5conf *conf);
3070
3071 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3072                             struct stripe_head *sh)
3073 {
3074         int sectors_per_chunk =
3075                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3076         int dd_idx;
3077         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3078         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3079
3080         raid5_compute_sector(conf,
3081                              stripe * (disks - conf->max_degraded)
3082                              *sectors_per_chunk + chunk_offset,
3083                              previous,
3084                              &dd_idx, sh);
3085 }
3086
3087 static void
3088 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3089                                 struct stripe_head_state *s, int disks,
3090                                 struct bio_list *return_bi)
3091 {
3092         int i;
3093         BUG_ON(sh->batch_head);
3094         for (i = disks; i--; ) {
3095                 struct bio *bi;
3096                 int bitmap_end = 0;
3097
3098                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3099                         struct md_rdev *rdev;
3100                         rcu_read_lock();
3101                         rdev = rcu_dereference(conf->disks[i].rdev);
3102                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3103                             !test_bit(Faulty, &rdev->flags))
3104                                 atomic_inc(&rdev->nr_pending);
3105                         else
3106                                 rdev = NULL;
3107                         rcu_read_unlock();
3108                         if (rdev) {
3109                                 if (!rdev_set_badblocks(
3110                                             rdev,
3111                                             sh->sector,
3112                                             STRIPE_SECTORS, 0))
3113                                         md_error(conf->mddev, rdev);
3114                                 rdev_dec_pending(rdev, conf->mddev);
3115                         }
3116                 }
3117                 spin_lock_irq(&sh->stripe_lock);
3118                 /* fail all writes first */
3119                 bi = sh->dev[i].towrite;
3120                 sh->dev[i].towrite = NULL;
3121                 sh->overwrite_disks = 0;
3122                 spin_unlock_irq(&sh->stripe_lock);
3123                 if (bi)
3124                         bitmap_end = 1;
3125
3126                 r5l_stripe_write_finished(sh);
3127
3128                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3129                         wake_up(&conf->wait_for_overlap);
3130
3131                 while (bi && bi->bi_iter.bi_sector <
3132                         sh->dev[i].sector + STRIPE_SECTORS) {
3133                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3134
3135                         bi->bi_error = -EIO;
3136                         if (!raid5_dec_bi_active_stripes(bi)) {
3137                                 md_write_end(conf->mddev);
3138                                 bio_list_add(return_bi, bi);
3139                         }
3140                         bi = nextbi;
3141                 }
3142                 if (bitmap_end)
3143                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3144                                 STRIPE_SECTORS, 0, 0);
3145                 bitmap_end = 0;
3146                 /* and fail all 'written' */
3147                 bi = sh->dev[i].written;
3148                 sh->dev[i].written = NULL;
3149                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3150                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3151                         sh->dev[i].page = sh->dev[i].orig_page;
3152                 }
3153
3154                 if (bi) bitmap_end = 1;
3155                 while (bi && bi->bi_iter.bi_sector <
3156                        sh->dev[i].sector + STRIPE_SECTORS) {
3157                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3158
3159                         bi->bi_error = -EIO;
3160                         if (!raid5_dec_bi_active_stripes(bi)) {
3161                                 md_write_end(conf->mddev);
3162                                 bio_list_add(return_bi, bi);
3163                         }
3164                         bi = bi2;
3165                 }
3166
3167                 /* fail any reads if this device is non-operational and
3168                  * the data has not reached the cache yet.
3169                  */
3170                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3171                     s->failed > conf->max_degraded &&
3172                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3173                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3174                         spin_lock_irq(&sh->stripe_lock);
3175                         bi = sh->dev[i].toread;
3176                         sh->dev[i].toread = NULL;
3177                         spin_unlock_irq(&sh->stripe_lock);
3178                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3179                                 wake_up(&conf->wait_for_overlap);
3180                         if (bi)
3181                                 s->to_read--;
3182                         while (bi && bi->bi_iter.bi_sector <
3183                                sh->dev[i].sector + STRIPE_SECTORS) {
3184                                 struct bio *nextbi =
3185                                         r5_next_bio(bi, sh->dev[i].sector);
3186
3187                                 bi->bi_error = -EIO;
3188                                 if (!raid5_dec_bi_active_stripes(bi))
3189                                         bio_list_add(return_bi, bi);
3190                                 bi = nextbi;
3191                         }
3192                 }
3193                 if (bitmap_end)
3194                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3195                                         STRIPE_SECTORS, 0, 0);
3196                 /* If we were in the middle of a write the parity block might
3197                  * still be locked - so just clear all R5_LOCKED flags
3198                  */
3199                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3200         }
3201         s->to_write = 0;
3202         s->written = 0;
3203
3204         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3205                 if (atomic_dec_and_test(&conf->pending_full_writes))
3206                         md_wakeup_thread(conf->mddev->thread);
3207 }
3208
3209 static void
3210 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3211                    struct stripe_head_state *s)
3212 {
3213         int abort = 0;
3214         int i;
3215
3216         BUG_ON(sh->batch_head);
3217         clear_bit(STRIPE_SYNCING, &sh->state);
3218         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3219                 wake_up(&conf->wait_for_overlap);
3220         s->syncing = 0;
3221         s->replacing = 0;
3222         /* There is nothing more to do for sync/check/repair.
3223          * Don't even need to abort as that is handled elsewhere
3224          * if needed, and not always wanted e.g. if there is a known
3225          * bad block here.
3226          * For recover/replace we need to record a bad block on all
3227          * non-sync devices, or abort the recovery
3228          */
3229         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3230                 /* During recovery devices cannot be removed, so
3231                  * locking and refcounting of rdevs is not needed
3232                  */
3233                 rcu_read_lock();
3234                 for (i = 0; i < conf->raid_disks; i++) {
3235                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3236                         if (rdev
3237                             && !test_bit(Faulty, &rdev->flags)
3238                             && !test_bit(In_sync, &rdev->flags)
3239                             && !rdev_set_badblocks(rdev, sh->sector,
3240                                                    STRIPE_SECTORS, 0))
3241                                 abort = 1;
3242                         rdev = rcu_dereference(conf->disks[i].replacement);
3243                         if (rdev
3244                             && !test_bit(Faulty, &rdev->flags)
3245                             && !test_bit(In_sync, &rdev->flags)
3246                             && !rdev_set_badblocks(rdev, sh->sector,
3247                                                    STRIPE_SECTORS, 0))
3248                                 abort = 1;
3249                 }
3250                 rcu_read_unlock();
3251                 if (abort)
3252                         conf->recovery_disabled =
3253                                 conf->mddev->recovery_disabled;
3254         }
3255         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3256 }
3257
3258 static int want_replace(struct stripe_head *sh, int disk_idx)
3259 {
3260         struct md_rdev *rdev;
3261         int rv = 0;
3262
3263         rcu_read_lock();
3264         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3265         if (rdev
3266             && !test_bit(Faulty, &rdev->flags)
3267             && !test_bit(In_sync, &rdev->flags)
3268             && (rdev->recovery_offset <= sh->sector
3269                 || rdev->mddev->recovery_cp <= sh->sector))
3270                 rv = 1;
3271         rcu_read_unlock();
3272         return rv;
3273 }
3274
3275 /* fetch_block - checks the given member device to see if its data needs
3276  * to be read or computed to satisfy a request.
3277  *
3278  * Returns 1 when no more member devices need to be checked, otherwise returns
3279  * 0 to tell the loop in handle_stripe_fill to continue
3280  */
3281
3282 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3283                            int disk_idx, int disks)
3284 {
3285         struct r5dev *dev = &sh->dev[disk_idx];
3286         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3287                                   &sh->dev[s->failed_num[1]] };
3288         int i;
3289
3290
3291         if (test_bit(R5_LOCKED, &dev->flags) ||
3292             test_bit(R5_UPTODATE, &dev->flags))
3293                 /* No point reading this as we already have it or have
3294                  * decided to get it.
3295                  */
3296                 return 0;
3297
3298         if (dev->toread ||
3299             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3300                 /* We need this block to directly satisfy a request */
3301                 return 1;
3302
3303         if (s->syncing || s->expanding ||
3304             (s->replacing && want_replace(sh, disk_idx)))
3305                 /* When syncing, or expanding we read everything.
3306                  * When replacing, we need the replaced block.
3307                  */
3308                 return 1;
3309
3310         if ((s->failed >= 1 && fdev[0]->toread) ||
3311             (s->failed >= 2 && fdev[1]->toread))
3312                 /* If we want to read from a failed device, then
3313                  * we need to actually read every other device.
3314                  */
3315                 return 1;
3316
3317         /* Sometimes neither read-modify-write nor reconstruct-write
3318          * cycles can work.  In those cases we read every block we
3319          * can.  Then the parity-update is certain to have enough to
3320          * work with.
3321          * This can only be a problem when we need to write something,
3322          * and some device has failed.  If either of those tests
3323          * fail we need look no further.
3324          */
3325         if (!s->failed || !s->to_write)
3326                 return 0;
3327
3328         if (test_bit(R5_Insync, &dev->flags) &&
3329             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3330                 /* Pre-reads at not permitted until after short delay
3331                  * to gather multiple requests.  However if this
3332                  * device is no Insync, the block could only be be computed
3333                  * and there is no need to delay that.
3334                  */
3335                 return 0;
3336
3337         for (i = 0; i < s->failed && i < 2; i++) {
3338                 if (fdev[i]->towrite &&
3339                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341                         /* If we have a partial write to a failed
3342                          * device, then we will need to reconstruct
3343                          * the content of that device, so all other
3344                          * devices must be read.
3345                          */
3346                         return 1;
3347         }
3348
3349         /* If we are forced to do a reconstruct-write, either because
3350          * the current RAID6 implementation only supports that, or
3351          * or because parity cannot be trusted and we are currently
3352          * recovering it, there is extra need to be careful.
3353          * If one of the devices that we would need to read, because
3354          * it is not being overwritten (and maybe not written at all)
3355          * is missing/faulty, then we need to read everything we can.
3356          */
3357         if (sh->raid_conf->level != 6 &&
3358             sh->sector < sh->raid_conf->mddev->recovery_cp)
3359                 /* reconstruct-write isn't being forced */
3360                 return 0;
3361         for (i = 0; i < s->failed && i < 2; i++) {
3362                 if (s->failed_num[i] != sh->pd_idx &&
3363                     s->failed_num[i] != sh->qd_idx &&
3364                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3365                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3366                         return 1;
3367         }
3368
3369         return 0;
3370 }
3371
3372 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3373                        int disk_idx, int disks)
3374 {
3375         struct r5dev *dev = &sh->dev[disk_idx];
3376
3377         /* is the data in this block needed, and can we get it? */
3378         if (need_this_block(sh, s, disk_idx, disks)) {
3379                 /* we would like to get this block, possibly by computing it,
3380                  * otherwise read it if the backing disk is insync
3381                  */
3382                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3383                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3384                 BUG_ON(sh->batch_head);
3385                 if ((s->uptodate == disks - 1) &&
3386                     (s->failed && (disk_idx == s->failed_num[0] ||
3387                                    disk_idx == s->failed_num[1]))) {
3388                         /* have disk failed, and we're requested to fetch it;
3389                          * do compute it
3390                          */
3391                         pr_debug("Computing stripe %llu block %d\n",
3392                                (unsigned long long)sh->sector, disk_idx);
3393                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3394                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3395                         set_bit(R5_Wantcompute, &dev->flags);
3396                         sh->ops.target = disk_idx;
3397                         sh->ops.target2 = -1; /* no 2nd target */
3398                         s->req_compute = 1;
3399                         /* Careful: from this point on 'uptodate' is in the eye
3400                          * of raid_run_ops which services 'compute' operations
3401                          * before writes. R5_Wantcompute flags a block that will
3402                          * be R5_UPTODATE by the time it is needed for a
3403                          * subsequent operation.
3404                          */
3405                         s->uptodate++;
3406                         return 1;
3407                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3408                         /* Computing 2-failure is *very* expensive; only
3409                          * do it if failed >= 2
3410                          */
3411                         int other;
3412                         for (other = disks; other--; ) {
3413                                 if (other == disk_idx)
3414                                         continue;
3415                                 if (!test_bit(R5_UPTODATE,
3416                                       &sh->dev[other].flags))
3417                                         break;
3418                         }
3419                         BUG_ON(other < 0);
3420                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3421                                (unsigned long long)sh->sector,
3422                                disk_idx, other);
3423                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3424                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3425                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3426                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3427                         sh->ops.target = disk_idx;
3428                         sh->ops.target2 = other;
3429                         s->uptodate += 2;
3430                         s->req_compute = 1;
3431                         return 1;
3432                 } else if (test_bit(R5_Insync, &dev->flags)) {
3433                         set_bit(R5_LOCKED, &dev->flags);
3434                         set_bit(R5_Wantread, &dev->flags);
3435                         s->locked++;
3436                         pr_debug("Reading block %d (sync=%d)\n",
3437                                 disk_idx, s->syncing);
3438                 }
3439         }
3440
3441         return 0;
3442 }
3443
3444 /**
3445  * handle_stripe_fill - read or compute data to satisfy pending requests.
3446  */
3447 static void handle_stripe_fill(struct stripe_head *sh,
3448                                struct stripe_head_state *s,
3449                                int disks)
3450 {
3451         int i;
3452
3453         /* look for blocks to read/compute, skip this if a compute
3454          * is already in flight, or if the stripe contents are in the
3455          * midst of changing due to a write
3456          */
3457         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3458             !sh->reconstruct_state)
3459                 for (i = disks; i--; )
3460                         if (fetch_block(sh, s, i, disks))
3461                                 break;
3462         set_bit(STRIPE_HANDLE, &sh->state);
3463 }
3464
3465 static void break_stripe_batch_list(struct stripe_head *head_sh,
3466                                     unsigned long handle_flags);
3467 /* handle_stripe_clean_event
3468  * any written block on an uptodate or failed drive can be returned.
3469  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3470  * never LOCKED, so we don't need to test 'failed' directly.
3471  */
3472 static void handle_stripe_clean_event(struct r5conf *conf,
3473         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3474 {
3475         int i;
3476         struct r5dev *dev;
3477         int discard_pending = 0;
3478         struct stripe_head *head_sh = sh;
3479         bool do_endio = false;
3480
3481         for (i = disks; i--; )
3482                 if (sh->dev[i].written) {
3483                         dev = &sh->dev[i];
3484                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3485                             (test_bit(R5_UPTODATE, &dev->flags) ||
3486                              test_bit(R5_Discard, &dev->flags) ||
3487                              test_bit(R5_SkipCopy, &dev->flags))) {
3488                                 /* We can return any write requests */
3489                                 struct bio *wbi, *wbi2;
3490                                 pr_debug("Return write for disc %d\n", i);
3491                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3492                                         clear_bit(R5_UPTODATE, &dev->flags);
3493                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3494                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3495                                 }
3496                                 do_endio = true;
3497
3498 returnbi:
3499                                 dev->page = dev->orig_page;
3500                                 wbi = dev->written;
3501                                 dev->written = NULL;
3502                                 while (wbi && wbi->bi_iter.bi_sector <
3503                                         dev->sector + STRIPE_SECTORS) {
3504                                         wbi2 = r5_next_bio(wbi, dev->sector);
3505                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3506                                                 md_write_end(conf->mddev);
3507                                                 bio_list_add(return_bi, wbi);
3508                                         }
3509                                         wbi = wbi2;
3510                                 }
3511                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3512                                                 STRIPE_SECTORS,
3513                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3514                                                 0);
3515                                 if (head_sh->batch_head) {
3516                                         sh = list_first_entry(&sh->batch_list,
3517                                                               struct stripe_head,
3518                                                               batch_list);
3519                                         if (sh != head_sh) {
3520                                                 dev = &sh->dev[i];
3521                                                 goto returnbi;
3522                                         }
3523                                 }
3524                                 sh = head_sh;
3525                                 dev = &sh->dev[i];
3526                         } else if (test_bit(R5_Discard, &dev->flags))
3527                                 discard_pending = 1;
3528                 }
3529
3530         r5l_stripe_write_finished(sh);
3531
3532         if (!discard_pending &&
3533             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3534                 int hash;
3535                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3536                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3537                 if (sh->qd_idx >= 0) {
3538                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3539                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3540                 }
3541                 /* now that discard is done we can proceed with any sync */
3542                 clear_bit(STRIPE_DISCARD, &sh->state);
3543                 /*
3544                  * SCSI discard will change some bio fields and the stripe has
3545                  * no updated data, so remove it from hash list and the stripe
3546                  * will be reinitialized
3547                  */
3548 unhash:
3549                 hash = sh->hash_lock_index;
3550                 spin_lock_irq(conf->hash_locks + hash);
3551                 remove_hash(sh);
3552                 spin_unlock_irq(conf->hash_locks + hash);
3553                 if (head_sh->batch_head) {
3554                         sh = list_first_entry(&sh->batch_list,
3555                                               struct stripe_head, batch_list);
3556                         if (sh != head_sh)
3557                                         goto unhash;
3558                 }
3559                 sh = head_sh;
3560
3561                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3562                         set_bit(STRIPE_HANDLE, &sh->state);
3563
3564         }
3565
3566         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3567                 if (atomic_dec_and_test(&conf->pending_full_writes))
3568                         md_wakeup_thread(conf->mddev->thread);
3569
3570         if (head_sh->batch_head && do_endio)
3571                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3572 }
3573
3574 static void handle_stripe_dirtying(struct r5conf *conf,
3575                                    struct stripe_head *sh,
3576                                    struct stripe_head_state *s,
3577                                    int disks)
3578 {
3579         int rmw = 0, rcw = 0, i;
3580         sector_t recovery_cp = conf->mddev->recovery_cp;
3581
3582         /* Check whether resync is now happening or should start.
3583          * If yes, then the array is dirty (after unclean shutdown or
3584          * initial creation), so parity in some stripes might be inconsistent.
3585          * In this case, we need to always do reconstruct-write, to ensure
3586          * that in case of drive failure or read-error correction, we
3587          * generate correct data from the parity.
3588          */
3589         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3590             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3591              s->failed == 0)) {
3592                 /* Calculate the real rcw later - for now make it
3593                  * look like rcw is cheaper
3594                  */
3595                 rcw = 1; rmw = 2;
3596                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3597                          conf->rmw_level, (unsigned long long)recovery_cp,
3598                          (unsigned long long)sh->sector);
3599         } else for (i = disks; i--; ) {
3600                 /* would I have to read this buffer for read_modify_write */
3601                 struct r5dev *dev = &sh->dev[i];
3602                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3603                     !test_bit(R5_LOCKED, &dev->flags) &&
3604                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3605                       test_bit(R5_Wantcompute, &dev->flags))) {
3606                         if (test_bit(R5_Insync, &dev->flags))
3607                                 rmw++;
3608                         else
3609                                 rmw += 2*disks;  /* cannot read it */
3610                 }
3611                 /* Would I have to read this buffer for reconstruct_write */
3612                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3613                     i != sh->pd_idx && i != sh->qd_idx &&
3614                     !test_bit(R5_LOCKED, &dev->flags) &&
3615                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3616                     test_bit(R5_Wantcompute, &dev->flags))) {
3617                         if (test_bit(R5_Insync, &dev->flags))
3618                                 rcw++;
3619                         else
3620                                 rcw += 2*disks;
3621                 }
3622         }
3623         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3624                 (unsigned long long)sh->sector, rmw, rcw);
3625         set_bit(STRIPE_HANDLE, &sh->state);
3626         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3627                 /* prefer read-modify-write, but need to get some data */
3628                 if (conf->mddev->queue)
3629                         blk_add_trace_msg(conf->mddev->queue,
3630                                           "raid5 rmw %llu %d",
3631                                           (unsigned long long)sh->sector, rmw);
3632                 for (i = disks; i--; ) {
3633                         struct r5dev *dev = &sh->dev[i];
3634                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3635                             !test_bit(R5_LOCKED, &dev->flags) &&
3636                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3637                             test_bit(R5_Wantcompute, &dev->flags)) &&
3638                             test_bit(R5_Insync, &dev->flags)) {
3639                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3640                                              &sh->state)) {
3641                                         pr_debug("Read_old block %d for r-m-w\n",
3642                                                  i);
3643                                         set_bit(R5_LOCKED, &dev->flags);
3644                                         set_bit(R5_Wantread, &dev->flags);
3645                                         s->locked++;
3646                                 } else {
3647                                         set_bit(STRIPE_DELAYED, &sh->state);
3648                                         set_bit(STRIPE_HANDLE, &sh->state);
3649                                 }
3650                         }
3651                 }
3652         }
3653         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3654                 /* want reconstruct write, but need to get some data */
3655                 int qread =0;
3656                 rcw = 0;
3657                 for (i = disks; i--; ) {
3658                         struct r5dev *dev = &sh->dev[i];
3659                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3660                             i != sh->pd_idx && i != sh->qd_idx &&
3661                             !test_bit(R5_LOCKED, &dev->flags) &&
3662                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3663                               test_bit(R5_Wantcompute, &dev->flags))) {
3664                                 rcw++;
3665                                 if (test_bit(R5_Insync, &dev->flags) &&
3666                                     test_bit(STRIPE_PREREAD_ACTIVE,
3667                                              &sh->state)) {
3668                                         pr_debug("Read_old block "
3669                                                 "%d for Reconstruct\n", i);
3670                                         set_bit(R5_LOCKED, &dev->flags);
3671                                         set_bit(R5_Wantread, &dev->flags);
3672                                         s->locked++;
3673                                         qread++;
3674                                 } else {
3675                                         set_bit(STRIPE_DELAYED, &sh->state);
3676                                         set_bit(STRIPE_HANDLE, &sh->state);
3677                                 }
3678                         }
3679                 }
3680                 if (rcw && conf->mddev->queue)
3681                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3682                                           (unsigned long long)sh->sector,
3683                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3684         }
3685
3686         if (rcw > disks && rmw > disks &&
3687             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3688                 set_bit(STRIPE_DELAYED, &sh->state);
3689
3690         /* now if nothing is locked, and if we have enough data,
3691          * we can start a write request
3692          */
3693         /* since handle_stripe can be called at any time we need to handle the
3694          * case where a compute block operation has been submitted and then a
3695          * subsequent call wants to start a write request.  raid_run_ops only
3696          * handles the case where compute block and reconstruct are requested
3697          * simultaneously.  If this is not the case then new writes need to be
3698          * held off until the compute completes.
3699          */
3700         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3701             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3702             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3703                 schedule_reconstruction(sh, s, rcw == 0, 0);
3704 }
3705
3706 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3707                                 struct stripe_head_state *s, int disks)
3708 {
3709         struct r5dev *dev = NULL;
3710
3711         BUG_ON(sh->batch_head);
3712         set_bit(STRIPE_HANDLE, &sh->state);
3713
3714         switch (sh->check_state) {
3715         case check_state_idle:
3716                 /* start a new check operation if there are no failures */
3717                 if (s->failed == 0) {
3718                         BUG_ON(s->uptodate != disks);
3719                         sh->check_state = check_state_run;
3720                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3721                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3722                         s->uptodate--;
3723                         break;
3724                 }
3725                 dev = &sh->dev[s->failed_num[0]];
3726                 /* fall through */
3727         case check_state_compute_result:
3728                 sh->check_state = check_state_idle;
3729                 if (!dev)
3730                         dev = &sh->dev[sh->pd_idx];
3731
3732                 /* check that a write has not made the stripe insync */
3733                 if (test_bit(STRIPE_INSYNC, &sh->state))
3734                         break;
3735
3736                 /* either failed parity check, or recovery is happening */
3737                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3738                 BUG_ON(s->uptodate != disks);
3739
3740                 set_bit(R5_LOCKED, &dev->flags);
3741                 s->locked++;
3742                 set_bit(R5_Wantwrite, &dev->flags);
3743
3744                 clear_bit(STRIPE_DEGRADED, &sh->state);
3745                 set_bit(STRIPE_INSYNC, &sh->state);
3746                 break;
3747         case check_state_run:
3748                 break; /* we will be called again upon completion */
3749         case check_state_check_result:
3750                 sh->check_state = check_state_idle;
3751
3752                 /* if a failure occurred during the check operation, leave
3753                  * STRIPE_INSYNC not set and let the stripe be handled again
3754                  */
3755                 if (s->failed)
3756                         break;
3757
3758                 /* handle a successful check operation, if parity is correct
3759                  * we are done.  Otherwise update the mismatch count and repair
3760                  * parity if !MD_RECOVERY_CHECK
3761                  */
3762                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3763                         /* parity is correct (on disc,
3764                          * not in buffer any more)
3765                          */
3766                         set_bit(STRIPE_INSYNC, &sh->state);
3767                 else {
3768                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3769                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3770                                 /* don't try to repair!! */
3771                                 set_bit(STRIPE_INSYNC, &sh->state);
3772                         else {
3773                                 sh->check_state = check_state_compute_run;
3774                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3775                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3776                                 set_bit(R5_Wantcompute,
3777                                         &sh->dev[sh->pd_idx].flags);
3778                                 sh->ops.target = sh->pd_idx;
3779                                 sh->ops.target2 = -1;
3780                                 s->uptodate++;
3781                         }
3782                 }
3783                 break;
3784         case check_state_compute_run:
3785                 break;
3786         default:
3787                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3788                        __func__, sh->check_state,
3789                        (unsigned long long) sh->sector);
3790                 BUG();
3791         }
3792 }
3793
3794 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3795                                   struct stripe_head_state *s,
3796                                   int disks)
3797 {
3798         int pd_idx = sh->pd_idx;
3799         int qd_idx = sh->qd_idx;
3800         struct r5dev *dev;
3801
3802         BUG_ON(sh->batch_head);
3803         set_bit(STRIPE_HANDLE, &sh->state);
3804
3805         BUG_ON(s->failed > 2);
3806
3807         /* Want to check and possibly repair P and Q.
3808          * However there could be one 'failed' device, in which
3809          * case we can only check one of them, possibly using the
3810          * other to generate missing data
3811          */
3812
3813         switch (sh->check_state) {
3814         case check_state_idle:
3815                 /* start a new check operation if there are < 2 failures */
3816                 if (s->failed == s->q_failed) {
3817                         /* The only possible failed device holds Q, so it
3818                          * makes sense to check P (If anything else were failed,
3819                          * we would have used P to recreate it).
3820                          */
3821                         sh->check_state = check_state_run;
3822                 }
3823                 if (!s->q_failed && s->failed < 2) {
3824                         /* Q is not failed, and we didn't use it to generate
3825                          * anything, so it makes sense to check it
3826                          */
3827                         if (sh->check_state == check_state_run)
3828                                 sh->check_state = check_state_run_pq;
3829                         else
3830                                 sh->check_state = check_state_run_q;
3831                 }
3832
3833                 /* discard potentially stale zero_sum_result */
3834                 sh->ops.zero_sum_result = 0;
3835
3836                 if (sh->check_state == check_state_run) {
3837                         /* async_xor_zero_sum destroys the contents of P */
3838                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3839                         s->uptodate--;
3840                 }
3841                 if (sh->check_state >= check_state_run &&
3842                     sh->check_state <= check_state_run_pq) {
3843                         /* async_syndrome_zero_sum preserves P and Q, so
3844                          * no need to mark them !uptodate here
3845                          */
3846                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3847                         break;
3848                 }
3849
3850                 /* we have 2-disk failure */
3851                 BUG_ON(s->failed != 2);
3852                 /* fall through */
3853         case check_state_compute_result:
3854                 sh->check_state = check_state_idle;
3855
3856                 /* check that a write has not made the stripe insync */
3857                 if (test_bit(STRIPE_INSYNC, &sh->state))
3858                         break;
3859
3860                 /* now write out any block on a failed drive,
3861                  * or P or Q if they were recomputed
3862                  */
3863                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3864                 if (s->failed == 2) {
3865                         dev = &sh->dev[s->failed_num[1]];
3866                         s->locked++;
3867                         set_bit(R5_LOCKED, &dev->flags);
3868                         set_bit(R5_Wantwrite, &dev->flags);
3869                 }
3870                 if (s->failed >= 1) {
3871                         dev = &sh->dev[s->failed_num[0]];
3872                         s->locked++;
3873                         set_bit(R5_LOCKED, &dev->flags);
3874                         set_bit(R5_Wantwrite, &dev->flags);
3875                 }
3876                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3877                         dev = &sh->dev[pd_idx];
3878                         s->locked++;
3879                         set_bit(R5_LOCKED, &dev->flags);
3880                         set_bit(R5_Wantwrite, &dev->flags);
3881                 }
3882                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3883                         dev = &sh->dev[qd_idx];
3884                         s->locked++;
3885                         set_bit(R5_LOCKED, &dev->flags);
3886                         set_bit(R5_Wantwrite, &dev->flags);
3887                 }
3888                 clear_bit(STRIPE_DEGRADED, &sh->state);
3889
3890                 set_bit(STRIPE_INSYNC, &sh->state);
3891                 break;
3892         case check_state_run:
3893         case check_state_run_q:
3894         case check_state_run_pq:
3895                 break; /* we will be called again upon completion */
3896         case check_state_check_result:
3897                 sh->check_state = check_state_idle;
3898
3899                 /* handle a successful check operation, if parity is correct
3900                  * we are done.  Otherwise update the mismatch count and repair
3901                  * parity if !MD_RECOVERY_CHECK
3902                  */
3903                 if (sh->ops.zero_sum_result == 0) {
3904                         /* both parities are correct */
3905                         if (!s->failed)
3906                                 set_bit(STRIPE_INSYNC, &sh->state);
3907                         else {
3908                                 /* in contrast to the raid5 case we can validate
3909                                  * parity, but still have a failure to write
3910                                  * back
3911                                  */
3912                                 sh->check_state = check_state_compute_result;
3913                                 /* Returning at this point means that we may go
3914                                  * off and bring p and/or q uptodate again so
3915                                  * we make sure to check zero_sum_result again
3916                                  * to verify if p or q need writeback
3917                                  */
3918                         }
3919                 } else {
3920                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3921                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3922                                 /* don't try to repair!! */
3923                                 set_bit(STRIPE_INSYNC, &sh->state);
3924                         else {
3925                                 int *target = &sh->ops.target;
3926
3927                                 sh->ops.target = -1;
3928                                 sh->ops.target2 = -1;
3929                                 sh->check_state = check_state_compute_run;
3930                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3931                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3932                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3933                                         set_bit(R5_Wantcompute,
3934                                                 &sh->dev[pd_idx].flags);
3935                                         *target = pd_idx;
3936                                         target = &sh->ops.target2;
3937                                         s->uptodate++;
3938                                 }
3939                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3940                                         set_bit(R5_Wantcompute,
3941                                                 &sh->dev[qd_idx].flags);
3942                                         *target = qd_idx;
3943                                         s->uptodate++;
3944                                 }
3945                         }
3946                 }
3947                 break;
3948         case check_state_compute_run:
3949                 break;
3950         default:
3951                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3952                        __func__, sh->check_state,
3953                        (unsigned long long) sh->sector);
3954                 BUG();
3955         }
3956 }
3957
3958 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3959 {
3960         int i;
3961
3962         /* We have read all the blocks in this stripe and now we need to
3963          * copy some of them into a target stripe for expand.
3964          */
3965         struct dma_async_tx_descriptor *tx = NULL;
3966         BUG_ON(sh->batch_head);
3967         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3968         for (i = 0; i < sh->disks; i++)
3969                 if (i != sh->pd_idx && i != sh->qd_idx) {
3970                         int dd_idx, j;
3971                         struct stripe_head *sh2;
3972                         struct async_submit_ctl submit;
3973
3974                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3975                         sector_t s = raid5_compute_sector(conf, bn, 0,
3976                                                           &dd_idx, NULL);
3977                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3978                         if (sh2 == NULL)
3979                                 /* so far only the early blocks of this stripe
3980                                  * have been requested.  When later blocks
3981                                  * get requested, we will try again
3982                                  */
3983                                 continue;
3984                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3985                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3986                                 /* must have already done this block */
3987                                 raid5_release_stripe(sh2);
3988                                 continue;
3989                         }
3990
3991                         /* place all the copies on one channel */
3992                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3993                         tx = async_memcpy(sh2->dev[dd_idx].page,
3994                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3995                                           &submit);
3996
3997                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3998                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3999                         for (j = 0; j < conf->raid_disks; j++)
4000                                 if (j != sh2->pd_idx &&
4001                                     j != sh2->qd_idx &&
4002                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4003                                         break;
4004                         if (j == conf->raid_disks) {
4005                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4006                                 set_bit(STRIPE_HANDLE, &sh2->state);
4007                         }
4008                         raid5_release_stripe(sh2);
4009
4010                 }
4011         /* done submitting copies, wait for them to complete */
4012         async_tx_quiesce(&tx);
4013 }
4014
4015 /*
4016  * handle_stripe - do things to a stripe.
4017  *
4018  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4019  * state of various bits to see what needs to be done.
4020  * Possible results:
4021  *    return some read requests which now have data
4022  *    return some write requests which are safely on storage
4023  *    schedule a read on some buffers
4024  *    schedule a write of some buffers
4025  *    return confirmation of parity correctness
4026  *
4027  */
4028
4029 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4030 {
4031         struct r5conf *conf = sh->raid_conf;
4032         int disks = sh->disks;
4033         struct r5dev *dev;
4034         int i;
4035         int do_recovery = 0;
4036
4037         memset(s, 0, sizeof(*s));
4038
4039         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4040         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4041         s->failed_num[0] = -1;
4042         s->failed_num[1] = -1;
4043         s->log_failed = r5l_log_disk_error(conf);
4044
4045         /* Now to look around and see what can be done */
4046         rcu_read_lock();
4047         for (i=disks; i--; ) {
4048                 struct md_rdev *rdev;
4049                 sector_t first_bad;
4050                 int bad_sectors;
4051                 int is_bad = 0;
4052
4053                 dev = &sh->dev[i];
4054
4055                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4056                          i, dev->flags,
4057                          dev->toread, dev->towrite, dev->written);
4058                 /* maybe we can reply to a read
4059                  *
4060                  * new wantfill requests are only permitted while
4061                  * ops_complete_biofill is guaranteed to be inactive
4062                  */
4063                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4064                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4065                         set_bit(R5_Wantfill, &dev->flags);
4066
4067                 /* now count some things */
4068                 if (test_bit(R5_LOCKED, &dev->flags))
4069                         s->locked++;
4070                 if (test_bit(R5_UPTODATE, &dev->flags))
4071                         s->uptodate++;
4072                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4073                         s->compute++;
4074                         BUG_ON(s->compute > 2);
4075                 }
4076
4077                 if (test_bit(R5_Wantfill, &dev->flags))
4078                         s->to_fill++;
4079                 else if (dev->toread)
4080                         s->to_read++;
4081                 if (dev->towrite) {
4082                         s->to_write++;
4083                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4084                                 s->non_overwrite++;
4085                 }
4086                 if (dev->written)
4087                         s->written++;
4088                 /* Prefer to use the replacement for reads, but only
4089                  * if it is recovered enough and has no bad blocks.
4090                  */
4091                 rdev = rcu_dereference(conf->disks[i].replacement);
4092                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4093                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4094                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4095                                  &first_bad, &bad_sectors))
4096                         set_bit(R5_ReadRepl, &dev->flags);
4097                 else {
4098                         if (rdev && !test_bit(Faulty, &rdev->flags))
4099                                 set_bit(R5_NeedReplace, &dev->flags);
4100                         else
4101                                 clear_bit(R5_NeedReplace, &dev->flags);
4102                         rdev = rcu_dereference(conf->disks[i].rdev);
4103                         clear_bit(R5_ReadRepl, &dev->flags);
4104                 }
4105                 if (rdev && test_bit(Faulty, &rdev->flags))
4106                         rdev = NULL;
4107                 if (rdev) {
4108                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4109                                              &first_bad, &bad_sectors);
4110                         if (s->blocked_rdev == NULL
4111                             && (test_bit(Blocked, &rdev->flags)
4112                                 || is_bad < 0)) {
4113                                 if (is_bad < 0)
4114                                         set_bit(BlockedBadBlocks,
4115                                                 &rdev->flags);
4116                                 s->blocked_rdev = rdev;
4117                                 atomic_inc(&rdev->nr_pending);
4118                         }
4119                 }
4120                 clear_bit(R5_Insync, &dev->flags);
4121                 if (!rdev)
4122                         /* Not in-sync */;
4123                 else if (is_bad) {
4124                         /* also not in-sync */
4125                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4126                             test_bit(R5_UPTODATE, &dev->flags)) {
4127                                 /* treat as in-sync, but with a read error
4128                                  * which we can now try to correct
4129                                  */
4130                                 set_bit(R5_Insync, &dev->flags);
4131                                 set_bit(R5_ReadError, &dev->flags);
4132                         }
4133                 } else if (test_bit(In_sync, &rdev->flags))
4134                         set_bit(R5_Insync, &dev->flags);
4135                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4136                         /* in sync if before recovery_offset */
4137                         set_bit(R5_Insync, &dev->flags);
4138                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4139                          test_bit(R5_Expanded, &dev->flags))
4140                         /* If we've reshaped into here, we assume it is Insync.
4141                          * We will shortly update recovery_offset to make
4142                          * it official.
4143                          */
4144                         set_bit(R5_Insync, &dev->flags);
4145
4146                 if (test_bit(R5_WriteError, &dev->flags)) {
4147                         /* This flag does not apply to '.replacement'
4148                          * only to .rdev, so make sure to check that*/
4149                         struct md_rdev *rdev2 = rcu_dereference(
4150                                 conf->disks[i].rdev);
4151                         if (rdev2 == rdev)
4152                                 clear_bit(R5_Insync, &dev->flags);
4153                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4154                                 s->handle_bad_blocks = 1;
4155                                 atomic_inc(&rdev2->nr_pending);
4156                         } else
4157                                 clear_bit(R5_WriteError, &dev->flags);
4158                 }
4159                 if (test_bit(R5_MadeGood, &dev->flags)) {
4160                         /* This flag does not apply to '.replacement'
4161                          * only to .rdev, so make sure to check that*/
4162                         struct md_rdev *rdev2 = rcu_dereference(
4163                                 conf->disks[i].rdev);
4164                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4165                                 s->handle_bad_blocks = 1;
4166                                 atomic_inc(&rdev2->nr_pending);
4167                         } else
4168                                 clear_bit(R5_MadeGood, &dev->flags);
4169                 }
4170                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4171                         struct md_rdev *rdev2 = rcu_dereference(
4172                                 conf->disks[i].replacement);
4173                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4174                                 s->handle_bad_blocks = 1;
4175                                 atomic_inc(&rdev2->nr_pending);
4176                         } else
4177                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4178                 }
4179                 if (!test_bit(R5_Insync, &dev->flags)) {
4180                         /* The ReadError flag will just be confusing now */
4181                         clear_bit(R5_ReadError, &dev->flags);
4182                         clear_bit(R5_ReWrite, &dev->flags);
4183                 }
4184                 if (test_bit(R5_ReadError, &dev->flags))
4185                         clear_bit(R5_Insync, &dev->flags);
4186                 if (!test_bit(R5_Insync, &dev->flags)) {
4187                         if (s->failed < 2)
4188                                 s->failed_num[s->failed] = i;
4189                         s->failed++;
4190                         if (rdev && !test_bit(Faulty, &rdev->flags))
4191                                 do_recovery = 1;
4192                 }
4193         }
4194         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4195                 /* If there is a failed device being replaced,
4196                  *     we must be recovering.
4197                  * else if we are after recovery_cp, we must be syncing
4198                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4199                  * else we can only be replacing
4200                  * sync and recovery both need to read all devices, and so
4201                  * use the same flag.
4202                  */
4203                 if (do_recovery ||
4204                     sh->sector >= conf->mddev->recovery_cp ||
4205                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4206                         s->syncing = 1;
4207                 else
4208                         s->replacing = 1;
4209         }
4210         rcu_read_unlock();
4211 }
4212
4213 static int clear_batch_ready(struct stripe_head *sh)
4214 {
4215         /* Return '1' if this is a member of batch, or
4216          * '0' if it is a lone stripe or a head which can now be
4217          * handled.
4218          */
4219         struct stripe_head *tmp;
4220         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4221                 return (sh->batch_head && sh->batch_head != sh);
4222         spin_lock(&sh->stripe_lock);
4223         if (!sh->batch_head) {
4224                 spin_unlock(&sh->stripe_lock);
4225                 return 0;
4226         }
4227
4228         /*
4229          * this stripe could be added to a batch list before we check
4230          * BATCH_READY, skips it
4231          */
4232         if (sh->batch_head != sh) {
4233                 spin_unlock(&sh->stripe_lock);
4234                 return 1;
4235         }
4236         spin_lock(&sh->batch_lock);
4237         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4238                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4239         spin_unlock(&sh->batch_lock);
4240         spin_unlock(&sh->stripe_lock);
4241
4242         /*
4243          * BATCH_READY is cleared, no new stripes can be added.
4244          * batch_list can be accessed without lock
4245          */
4246         return 0;
4247 }
4248
4249 static void break_stripe_batch_list(struct stripe_head *head_sh,
4250                                     unsigned long handle_flags)
4251 {
4252         struct stripe_head *sh, *next;
4253         int i;
4254         int do_wakeup = 0;
4255
4256         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4257
4258                 list_del_init(&sh->batch_list);
4259
4260                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4261                                           (1 << STRIPE_SYNCING) |
4262                                           (1 << STRIPE_REPLACED) |
4263                                           (1 << STRIPE_DELAYED) |
4264                                           (1 << STRIPE_BIT_DELAY) |
4265                                           (1 << STRIPE_FULL_WRITE) |
4266                                           (1 << STRIPE_BIOFILL_RUN) |
4267                                           (1 << STRIPE_COMPUTE_RUN)  |
4268                                           (1 << STRIPE_OPS_REQ_PENDING) |
4269                                           (1 << STRIPE_DISCARD) |
4270                                           (1 << STRIPE_BATCH_READY) |
4271                                           (1 << STRIPE_BATCH_ERR) |
4272                                           (1 << STRIPE_BITMAP_PENDING)),
4273                         "stripe state: %lx\n", sh->state);
4274                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4275                                               (1 << STRIPE_REPLACED)),
4276                         "head stripe state: %lx\n", head_sh->state);
4277
4278                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4279                                             (1 << STRIPE_PREREAD_ACTIVE) |
4280                                             (1 << STRIPE_DEGRADED)),
4281                               head_sh->state & (1 << STRIPE_INSYNC));
4282
4283                 sh->check_state = head_sh->check_state;
4284                 sh->reconstruct_state = head_sh->reconstruct_state;
4285                 for (i = 0; i < sh->disks; i++) {
4286                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4287                                 do_wakeup = 1;
4288                         sh->dev[i].flags = head_sh->dev[i].flags &
4289                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4290                 }
4291                 spin_lock_irq(&sh->stripe_lock);
4292                 sh->batch_head = NULL;
4293                 spin_unlock_irq(&sh->stripe_lock);
4294                 if (handle_flags == 0 ||
4295                     sh->state & handle_flags)
4296                         set_bit(STRIPE_HANDLE, &sh->state);
4297                 raid5_release_stripe(sh);
4298         }
4299         spin_lock_irq(&head_sh->stripe_lock);
4300         head_sh->batch_head = NULL;
4301         spin_unlock_irq(&head_sh->stripe_lock);
4302         for (i = 0; i < head_sh->disks; i++)
4303                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4304                         do_wakeup = 1;
4305         if (head_sh->state & handle_flags)
4306                 set_bit(STRIPE_HANDLE, &head_sh->state);
4307
4308         if (do_wakeup)
4309                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4310 }
4311
4312 static void handle_stripe(struct stripe_head *sh)
4313 {
4314         struct stripe_head_state s;
4315         struct r5conf *conf = sh->raid_conf;
4316         int i;
4317         int prexor;
4318         int disks = sh->disks;
4319         struct r5dev *pdev, *qdev;
4320
4321         clear_bit(STRIPE_HANDLE, &sh->state);
4322         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4323                 /* already being handled, ensure it gets handled
4324                  * again when current action finishes */
4325                 set_bit(STRIPE_HANDLE, &sh->state);
4326                 return;
4327         }
4328
4329         if (clear_batch_ready(sh) ) {
4330                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4331                 return;
4332         }
4333
4334         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4335                 break_stripe_batch_list(sh, 0);
4336
4337         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4338                 spin_lock(&sh->stripe_lock);
4339                 /* Cannot process 'sync' concurrently with 'discard' */
4340                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4341                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4342                         set_bit(STRIPE_SYNCING, &sh->state);
4343                         clear_bit(STRIPE_INSYNC, &sh->state);
4344                         clear_bit(STRIPE_REPLACED, &sh->state);
4345                 }
4346                 spin_unlock(&sh->stripe_lock);
4347         }
4348         clear_bit(STRIPE_DELAYED, &sh->state);
4349
4350         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4351                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4352                (unsigned long long)sh->sector, sh->state,
4353                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4354                sh->check_state, sh->reconstruct_state);
4355
4356         analyse_stripe(sh, &s);
4357
4358         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4359                 goto finish;
4360
4361         if (s.handle_bad_blocks) {
4362                 set_bit(STRIPE_HANDLE, &sh->state);
4363                 goto finish;
4364         }
4365
4366         if (unlikely(s.blocked_rdev)) {
4367                 if (s.syncing || s.expanding || s.expanded ||
4368                     s.replacing || s.to_write || s.written) {
4369                         set_bit(STRIPE_HANDLE, &sh->state);
4370                         goto finish;
4371                 }
4372                 /* There is nothing for the blocked_rdev to block */
4373                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4374                 s.blocked_rdev = NULL;
4375         }
4376
4377         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4378                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4379                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4380         }
4381
4382         pr_debug("locked=%d uptodate=%d to_read=%d"
4383                " to_write=%d failed=%d failed_num=%d,%d\n",
4384                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4385                s.failed_num[0], s.failed_num[1]);
4386         /* check if the array has lost more than max_degraded devices and,
4387          * if so, some requests might need to be failed.
4388          */
4389         if (s.failed > conf->max_degraded || s.log_failed) {
4390                 sh->check_state = 0;
4391                 sh->reconstruct_state = 0;
4392                 break_stripe_batch_list(sh, 0);
4393                 if (s.to_read+s.to_write+s.written)
4394                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4395                 if (s.syncing + s.replacing)
4396                         handle_failed_sync(conf, sh, &s);
4397         }
4398
4399         /* Now we check to see if any write operations have recently
4400          * completed
4401          */
4402         prexor = 0;
4403         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4404                 prexor = 1;
4405         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4406             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4407                 sh->reconstruct_state = reconstruct_state_idle;
4408
4409                 /* All the 'written' buffers and the parity block are ready to
4410                  * be written back to disk
4411                  */
4412                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4413                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4414                 BUG_ON(sh->qd_idx >= 0 &&
4415                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4416                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4417                 for (i = disks; i--; ) {
4418                         struct r5dev *dev = &sh->dev[i];
4419                         if (test_bit(R5_LOCKED, &dev->flags) &&
4420                                 (i == sh->pd_idx || i == sh->qd_idx ||
4421                                  dev->written)) {
4422                                 pr_debug("Writing block %d\n", i);
4423                                 set_bit(R5_Wantwrite, &dev->flags);
4424                                 if (prexor)
4425                                         continue;
4426                                 if (s.failed > 1)
4427                                         continue;
4428                                 if (!test_bit(R5_Insync, &dev->flags) ||
4429                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4430                                      s.failed == 0))
4431                                         set_bit(STRIPE_INSYNC, &sh->state);
4432                         }
4433                 }
4434                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4435                         s.dec_preread_active = 1;
4436         }
4437
4438         /*
4439          * might be able to return some write requests if the parity blocks
4440          * are safe, or on a failed drive
4441          */
4442         pdev = &sh->dev[sh->pd_idx];
4443         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4444                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4445         qdev = &sh->dev[sh->qd_idx];
4446         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4447                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4448                 || conf->level < 6;
4449
4450         if (s.written &&
4451             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4452                              && !test_bit(R5_LOCKED, &pdev->flags)
4453                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4454                                  test_bit(R5_Discard, &pdev->flags))))) &&
4455             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4456                              && !test_bit(R5_LOCKED, &qdev->flags)
4457                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4458                                  test_bit(R5_Discard, &qdev->flags))))))
4459                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4460
4461         /* Now we might consider reading some blocks, either to check/generate
4462          * parity, or to satisfy requests
4463          * or to load a block that is being partially written.
4464          */
4465         if (s.to_read || s.non_overwrite
4466             || (conf->level == 6 && s.to_write && s.failed)
4467             || (s.syncing && (s.uptodate + s.compute < disks))
4468             || s.replacing
4469             || s.expanding)
4470                 handle_stripe_fill(sh, &s, disks);
4471
4472         /* Now to consider new write requests and what else, if anything
4473          * should be read.  We do not handle new writes when:
4474          * 1/ A 'write' operation (copy+xor) is already in flight.
4475          * 2/ A 'check' operation is in flight, as it may clobber the parity
4476          *    block.
4477          */
4478         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4479                 handle_stripe_dirtying(conf, sh, &s, disks);
4480
4481         /* maybe we need to check and possibly fix the parity for this stripe
4482          * Any reads will already have been scheduled, so we just see if enough
4483          * data is available.  The parity check is held off while parity
4484          * dependent operations are in flight.
4485          */
4486         if (sh->check_state ||
4487             (s.syncing && s.locked == 0 &&
4488              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4489              !test_bit(STRIPE_INSYNC, &sh->state))) {
4490                 if (conf->level == 6)
4491                         handle_parity_checks6(conf, sh, &s, disks);
4492                 else
4493                         handle_parity_checks5(conf, sh, &s, disks);
4494         }
4495
4496         if ((s.replacing || s.syncing) && s.locked == 0
4497             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4498             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4499                 /* Write out to replacement devices where possible */
4500                 for (i = 0; i < conf->raid_disks; i++)
4501                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4502                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4503                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4504                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4505                                 s.locked++;
4506                         }
4507                 if (s.replacing)
4508                         set_bit(STRIPE_INSYNC, &sh->state);
4509                 set_bit(STRIPE_REPLACED, &sh->state);
4510         }
4511         if ((s.syncing || s.replacing) && s.locked == 0 &&
4512             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4513             test_bit(STRIPE_INSYNC, &sh->state)) {
4514                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4515                 clear_bit(STRIPE_SYNCING, &sh->state);
4516                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4517                         wake_up(&conf->wait_for_overlap);
4518         }
4519
4520         /* If the failed drives are just a ReadError, then we might need
4521          * to progress the repair/check process
4522          */
4523         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4524                 for (i = 0; i < s.failed; i++) {
4525                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4526                         if (test_bit(R5_ReadError, &dev->flags)
4527                             && !test_bit(R5_LOCKED, &dev->flags)
4528                             && test_bit(R5_UPTODATE, &dev->flags)
4529                                 ) {
4530                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4531                                         set_bit(R5_Wantwrite, &dev->flags);
4532                                         set_bit(R5_ReWrite, &dev->flags);
4533                                         set_bit(R5_LOCKED, &dev->flags);
4534                                         s.locked++;
4535                                 } else {
4536                                         /* let's read it back */
4537                                         set_bit(R5_Wantread, &dev->flags);
4538                                         set_bit(R5_LOCKED, &dev->flags);
4539                                         s.locked++;
4540                                 }
4541                         }
4542                 }
4543
4544         /* Finish reconstruct operations initiated by the expansion process */
4545         if (sh->reconstruct_state == reconstruct_state_result) {
4546                 struct stripe_head *sh_src
4547                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4548                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4549                         /* sh cannot be written until sh_src has been read.
4550                          * so arrange for sh to be delayed a little
4551                          */
4552                         set_bit(STRIPE_DELAYED, &sh->state);
4553                         set_bit(STRIPE_HANDLE, &sh->state);
4554                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4555                                               &sh_src->state))
4556                                 atomic_inc(&conf->preread_active_stripes);
4557                         raid5_release_stripe(sh_src);
4558                         goto finish;
4559                 }
4560                 if (sh_src)
4561                         raid5_release_stripe(sh_src);
4562
4563                 sh->reconstruct_state = reconstruct_state_idle;
4564                 clear_bit(STRIPE_EXPANDING, &sh->state);
4565                 for (i = conf->raid_disks; i--; ) {
4566                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4567                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4568                         s.locked++;
4569                 }
4570         }
4571
4572         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4573             !sh->reconstruct_state) {
4574                 /* Need to write out all blocks after computing parity */
4575                 sh->disks = conf->raid_disks;
4576                 stripe_set_idx(sh->sector, conf, 0, sh);
4577                 schedule_reconstruction(sh, &s, 1, 1);
4578         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4579                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4580                 atomic_dec(&conf->reshape_stripes);
4581                 wake_up(&conf->wait_for_overlap);
4582                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4583         }
4584
4585         if (s.expanding && s.locked == 0 &&
4586             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4587                 handle_stripe_expansion(conf, sh);
4588
4589 finish:
4590         /* wait for this device to become unblocked */
4591         if (unlikely(s.blocked_rdev)) {
4592                 if (conf->mddev->external)
4593                         md_wait_for_blocked_rdev(s.blocked_rdev,
4594                                                  conf->mddev);
4595                 else
4596                         /* Internal metadata will immediately
4597                          * be written by raid5d, so we don't
4598                          * need to wait here.
4599                          */
4600                         rdev_dec_pending(s.blocked_rdev,
4601                                          conf->mddev);
4602         }
4603
4604         if (s.handle_bad_blocks)
4605                 for (i = disks; i--; ) {
4606                         struct md_rdev *rdev;
4607                         struct r5dev *dev = &sh->dev[i];
4608                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4609                                 /* We own a safe reference to the rdev */
4610                                 rdev = conf->disks[i].rdev;
4611                                 if (!rdev_set_badblocks(rdev, sh->sector,
4612                                                         STRIPE_SECTORS, 0))
4613                                         md_error(conf->mddev, rdev);
4614                                 rdev_dec_pending(rdev, conf->mddev);
4615                         }
4616                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4617                                 rdev = conf->disks[i].rdev;
4618                                 rdev_clear_badblocks(rdev, sh->sector,
4619                                                      STRIPE_SECTORS, 0);
4620                                 rdev_dec_pending(rdev, conf->mddev);
4621                         }
4622                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4623                                 rdev = conf->disks[i].replacement;
4624                                 if (!rdev)
4625                                         /* rdev have been moved down */
4626                                         rdev = conf->disks[i].rdev;
4627                                 rdev_clear_badblocks(rdev, sh->sector,
4628                                                      STRIPE_SECTORS, 0);
4629                                 rdev_dec_pending(rdev, conf->mddev);
4630                         }
4631                 }
4632
4633         if (s.ops_request)
4634                 raid_run_ops(sh, s.ops_request);
4635
4636         ops_run_io(sh, &s);
4637
4638         if (s.dec_preread_active) {
4639                 /* We delay this until after ops_run_io so that if make_request
4640                  * is waiting on a flush, it won't continue until the writes
4641                  * have actually been submitted.
4642                  */
4643                 atomic_dec(&conf->preread_active_stripes);
4644                 if (atomic_read(&conf->preread_active_stripes) <
4645                     IO_THRESHOLD)
4646                         md_wakeup_thread(conf->mddev->thread);
4647         }
4648
4649         if (!bio_list_empty(&s.return_bi)) {
4650                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4651                                 (s.failed <= conf->max_degraded ||
4652                                         conf->mddev->external == 0)) {
4653                         spin_lock_irq(&conf->device_lock);
4654                         bio_list_merge(&conf->return_bi, &s.return_bi);
4655                         spin_unlock_irq(&conf->device_lock);
4656                         md_wakeup_thread(conf->mddev->thread);
4657                 } else
4658                         return_io(&s.return_bi);
4659         }
4660
4661         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662 }
4663
4664 static void raid5_activate_delayed(struct r5conf *conf)
4665 {
4666         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4667                 while (!list_empty(&conf->delayed_list)) {
4668                         struct list_head *l = conf->delayed_list.next;
4669                         struct stripe_head *sh;
4670                         sh = list_entry(l, struct stripe_head, lru);
4671                         list_del_init(l);
4672                         clear_bit(STRIPE_DELAYED, &sh->state);
4673                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4674                                 atomic_inc(&conf->preread_active_stripes);
4675                         list_add_tail(&sh->lru, &conf->hold_list);
4676                         raid5_wakeup_stripe_thread(sh);
4677                 }
4678         }
4679 }
4680
4681 static void activate_bit_delay(struct r5conf *conf,
4682         struct list_head *temp_inactive_list)
4683 {
4684         /* device_lock is held */
4685         struct list_head head;
4686         list_add(&head, &conf->bitmap_list);
4687         list_del_init(&conf->bitmap_list);
4688         while (!list_empty(&head)) {
4689                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4690                 int hash;
4691                 list_del_init(&sh->lru);
4692                 atomic_inc(&sh->count);
4693                 hash = sh->hash_lock_index;
4694                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4695         }
4696 }
4697
4698 static int raid5_congested(struct mddev *mddev, int bits)
4699 {
4700         struct r5conf *conf = mddev->private;
4701
4702         /* No difference between reads and writes.  Just check
4703          * how busy the stripe_cache is
4704          */
4705
4706         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4707                 return 1;
4708         if (conf->quiesce)
4709                 return 1;
4710         if (atomic_read(&conf->empty_inactive_list_nr))
4711                 return 1;
4712
4713         return 0;
4714 }
4715
4716 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4717 {
4718         struct r5conf *conf = mddev->private;
4719         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4720         unsigned int chunk_sectors;
4721         unsigned int bio_sectors = bio_sectors(bio);
4722
4723         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4724         return  chunk_sectors >=
4725                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4726 }
4727
4728 /*
4729  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4730  *  later sampled by raid5d.
4731  */
4732 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4733 {
4734         unsigned long flags;
4735
4736         spin_lock_irqsave(&conf->device_lock, flags);
4737
4738         bi->bi_next = conf->retry_read_aligned_list;
4739         conf->retry_read_aligned_list = bi;
4740
4741         spin_unlock_irqrestore(&conf->device_lock, flags);
4742         md_wakeup_thread(conf->mddev->thread);
4743 }
4744
4745 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4746 {
4747         struct bio *bi;
4748
4749         bi = conf->retry_read_aligned;
4750         if (bi) {
4751                 conf->retry_read_aligned = NULL;
4752                 return bi;
4753         }
4754         bi = conf->retry_read_aligned_list;
4755         if(bi) {
4756                 conf->retry_read_aligned_list = bi->bi_next;
4757                 bi->bi_next = NULL;
4758                 /*
4759                  * this sets the active strip count to 1 and the processed
4760                  * strip count to zero (upper 8 bits)
4761                  */
4762                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4763         }
4764
4765         return bi;
4766 }
4767
4768 /*
4769  *  The "raid5_align_endio" should check if the read succeeded and if it
4770  *  did, call bio_endio on the original bio (having bio_put the new bio
4771  *  first).
4772  *  If the read failed..
4773  */
4774 static void raid5_align_endio(struct bio *bi)
4775 {
4776         struct bio* raid_bi  = bi->bi_private;
4777         struct mddev *mddev;
4778         struct r5conf *conf;
4779         struct md_rdev *rdev;
4780         int error = bi->bi_error;
4781
4782         bio_put(bi);
4783
4784         rdev = (void*)raid_bi->bi_next;
4785         raid_bi->bi_next = NULL;
4786         mddev = rdev->mddev;
4787         conf = mddev->private;
4788
4789         rdev_dec_pending(rdev, conf->mddev);
4790
4791         if (!error) {
4792                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4793                                          raid_bi, 0);
4794                 bio_endio(raid_bi);
4795                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4796                         wake_up(&conf->wait_for_quiescent);
4797                 return;
4798         }
4799
4800         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4801
4802         add_bio_to_retry(raid_bi, conf);
4803 }
4804
4805 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4806 {
4807         struct r5conf *conf = mddev->private;
4808         int dd_idx;
4809         struct bio* align_bi;
4810         struct md_rdev *rdev;
4811         sector_t end_sector;
4812
4813         if (!in_chunk_boundary(mddev, raid_bio)) {
4814                 pr_debug("%s: non aligned\n", __func__);
4815                 return 0;
4816         }
4817         /*
4818          * use bio_clone_mddev to make a copy of the bio
4819          */
4820         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4821         if (!align_bi)
4822                 return 0;
4823         /*
4824          *   set bi_end_io to a new function, and set bi_private to the
4825          *     original bio.
4826          */
4827         align_bi->bi_end_io  = raid5_align_endio;
4828         align_bi->bi_private = raid_bio;
4829         /*
4830          *      compute position
4831          */
4832         align_bi->bi_iter.bi_sector =
4833                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4834                                      0, &dd_idx, NULL);
4835
4836         end_sector = bio_end_sector(align_bi);
4837         rcu_read_lock();
4838         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4839         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4840             rdev->recovery_offset < end_sector) {
4841                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4842                 if (rdev &&
4843                     (test_bit(Faulty, &rdev->flags) ||
4844                     !(test_bit(In_sync, &rdev->flags) ||
4845                       rdev->recovery_offset >= end_sector)))
4846                         rdev = NULL;
4847         }
4848         if (rdev) {
4849                 sector_t first_bad;
4850                 int bad_sectors;
4851
4852                 atomic_inc(&rdev->nr_pending);
4853                 rcu_read_unlock();
4854                 raid_bio->bi_next = (void*)rdev;
4855                 align_bi->bi_bdev =  rdev->bdev;
4856                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4857
4858                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4859                                 bio_sectors(align_bi),
4860                                 &first_bad, &bad_sectors)) {
4861                         bio_put(align_bi);
4862                         rdev_dec_pending(rdev, mddev);
4863                         return 0;
4864                 }
4865
4866                 /* No reshape active, so we can trust rdev->data_offset */
4867                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4868
4869                 spin_lock_irq(&conf->device_lock);
4870                 wait_event_lock_irq(conf->wait_for_quiescent,
4871                                     conf->quiesce == 0,
4872                                     conf->device_lock);
4873                 atomic_inc(&conf->active_aligned_reads);
4874                 spin_unlock_irq(&conf->device_lock);
4875
4876                 if (mddev->gendisk)
4877                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4878                                               align_bi, disk_devt(mddev->gendisk),
4879                                               raid_bio->bi_iter.bi_sector);
4880                 generic_make_request(align_bi);
4881                 return 1;
4882         } else {
4883                 rcu_read_unlock();
4884                 bio_put(align_bi);
4885                 return 0;
4886         }
4887 }
4888
4889 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4890 {
4891         struct bio *split;
4892
4893         do {
4894                 sector_t sector = raid_bio->bi_iter.bi_sector;
4895                 unsigned chunk_sects = mddev->chunk_sectors;
4896                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4897
4898                 if (sectors < bio_sectors(raid_bio)) {
4899                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4900                         bio_chain(split, raid_bio);
4901                 } else
4902                         split = raid_bio;
4903
4904                 if (!raid5_read_one_chunk(mddev, split)) {
4905                         if (split != raid_bio)
4906                                 generic_make_request(raid_bio);
4907                         return split;
4908                 }
4909         } while (split != raid_bio);
4910
4911         return NULL;
4912 }
4913
4914 /* __get_priority_stripe - get the next stripe to process
4915  *
4916  * Full stripe writes are allowed to pass preread active stripes up until
4917  * the bypass_threshold is exceeded.  In general the bypass_count
4918  * increments when the handle_list is handled before the hold_list; however, it
4919  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4920  * stripe with in flight i/o.  The bypass_count will be reset when the
4921  * head of the hold_list has changed, i.e. the head was promoted to the
4922  * handle_list.
4923  */
4924 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4925 {
4926         struct stripe_head *sh = NULL, *tmp;
4927         struct list_head *handle_list = NULL;
4928         struct r5worker_group *wg = NULL;
4929
4930         if (conf->worker_cnt_per_group == 0) {
4931                 handle_list = &conf->handle_list;
4932         } else if (group != ANY_GROUP) {
4933                 handle_list = &conf->worker_groups[group].handle_list;
4934                 wg = &conf->worker_groups[group];
4935         } else {
4936                 int i;
4937                 for (i = 0; i < conf->group_cnt; i++) {
4938                         handle_list = &conf->worker_groups[i].handle_list;
4939                         wg = &conf->worker_groups[i];
4940                         if (!list_empty(handle_list))
4941                                 break;
4942                 }
4943         }
4944
4945         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4946                   __func__,
4947                   list_empty(handle_list) ? "empty" : "busy",
4948                   list_empty(&conf->hold_list) ? "empty" : "busy",
4949                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4950
4951         if (!list_empty(handle_list)) {
4952                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4953
4954                 if (list_empty(&conf->hold_list))
4955                         conf->bypass_count = 0;
4956                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4957                         if (conf->hold_list.next == conf->last_hold)
4958                                 conf->bypass_count++;
4959                         else {
4960                                 conf->last_hold = conf->hold_list.next;
4961                                 conf->bypass_count -= conf->bypass_threshold;
4962                                 if (conf->bypass_count < 0)
4963                                         conf->bypass_count = 0;
4964                         }
4965                 }
4966         } else if (!list_empty(&conf->hold_list) &&
4967                    ((conf->bypass_threshold &&
4968                      conf->bypass_count > conf->bypass_threshold) ||
4969                     atomic_read(&conf->pending_full_writes) == 0)) {
4970
4971                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4972                         if (conf->worker_cnt_per_group == 0 ||
4973                             group == ANY_GROUP ||
4974                             !cpu_online(tmp->cpu) ||
4975                             cpu_to_group(tmp->cpu) == group) {
4976                                 sh = tmp;
4977                                 break;
4978                         }
4979                 }
4980
4981                 if (sh) {
4982                         conf->bypass_count -= conf->bypass_threshold;
4983                         if (conf->bypass_count < 0)
4984                                 conf->bypass_count = 0;
4985                 }
4986                 wg = NULL;
4987         }
4988
4989         if (!sh)
4990                 return NULL;
4991
4992         if (wg) {
4993                 wg->stripes_cnt--;
4994                 sh->group = NULL;
4995         }
4996         list_del_init(&sh->lru);
4997         BUG_ON(atomic_inc_return(&sh->count) != 1);
4998         return sh;
4999 }
5000
5001 struct raid5_plug_cb {
5002         struct blk_plug_cb      cb;
5003         struct list_head        list;
5004         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5005 };
5006
5007 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5008 {
5009         struct raid5_plug_cb *cb = container_of(
5010                 blk_cb, struct raid5_plug_cb, cb);
5011         struct stripe_head *sh;
5012         struct mddev *mddev = cb->cb.data;
5013         struct r5conf *conf = mddev->private;
5014         int cnt = 0;
5015         int hash;
5016
5017         if (cb->list.next && !list_empty(&cb->list)) {
5018                 spin_lock_irq(&conf->device_lock);
5019                 while (!list_empty(&cb->list)) {
5020                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5021                         list_del_init(&sh->lru);
5022                         /*
5023                          * avoid race release_stripe_plug() sees
5024                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5025                          * is still in our list
5026                          */
5027                         smp_mb__before_atomic();
5028                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5029                         /*
5030                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5031                          * case, the count is always > 1 here
5032                          */
5033                         hash = sh->hash_lock_index;
5034                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5035                         cnt++;
5036                 }
5037                 spin_unlock_irq(&conf->device_lock);
5038         }
5039         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5040                                      NR_STRIPE_HASH_LOCKS);
5041         if (mddev->queue)
5042                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5043         kfree(cb);
5044 }
5045
5046 static void release_stripe_plug(struct mddev *mddev,
5047                                 struct stripe_head *sh)
5048 {
5049         struct blk_plug_cb *blk_cb = blk_check_plugged(
5050                 raid5_unplug, mddev,
5051                 sizeof(struct raid5_plug_cb));
5052         struct raid5_plug_cb *cb;
5053
5054         if (!blk_cb) {
5055                 raid5_release_stripe(sh);
5056                 return;
5057         }
5058
5059         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5060
5061         if (cb->list.next == NULL) {
5062                 int i;
5063                 INIT_LIST_HEAD(&cb->list);
5064                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5065                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5066         }
5067
5068         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5069                 list_add_tail(&sh->lru, &cb->list);
5070         else
5071                 raid5_release_stripe(sh);
5072 }
5073
5074 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5075 {
5076         struct r5conf *conf = mddev->private;
5077         sector_t logical_sector, last_sector;
5078         struct stripe_head *sh;
5079         int remaining;
5080         int stripe_sectors;
5081
5082         if (mddev->reshape_position != MaxSector)
5083                 /* Skip discard while reshape is happening */
5084                 return;
5085
5086         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5087         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5088
5089         bi->bi_next = NULL;
5090         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5091
5092         stripe_sectors = conf->chunk_sectors *
5093                 (conf->raid_disks - conf->max_degraded);
5094         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5095                                                stripe_sectors);
5096         sector_div(last_sector, stripe_sectors);
5097
5098         logical_sector *= conf->chunk_sectors;
5099         last_sector *= conf->chunk_sectors;
5100
5101         for (; logical_sector < last_sector;
5102              logical_sector += STRIPE_SECTORS) {
5103                 DEFINE_WAIT(w);
5104                 int d;
5105         again:
5106                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5107                 prepare_to_wait(&conf->wait_for_overlap, &w,
5108                                 TASK_UNINTERRUPTIBLE);
5109                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5110                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5111                         raid5_release_stripe(sh);
5112                         schedule();
5113                         goto again;
5114                 }
5115                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5116                 spin_lock_irq(&sh->stripe_lock);
5117                 for (d = 0; d < conf->raid_disks; d++) {
5118                         if (d == sh->pd_idx || d == sh->qd_idx)
5119                                 continue;
5120                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5121                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5122                                 spin_unlock_irq(&sh->stripe_lock);
5123                                 raid5_release_stripe(sh);
5124                                 schedule();
5125                                 goto again;
5126                         }
5127                 }
5128                 set_bit(STRIPE_DISCARD, &sh->state);
5129                 finish_wait(&conf->wait_for_overlap, &w);
5130                 sh->overwrite_disks = 0;
5131                 for (d = 0; d < conf->raid_disks; d++) {
5132                         if (d == sh->pd_idx || d == sh->qd_idx)
5133                                 continue;
5134                         sh->dev[d].towrite = bi;
5135                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5136                         raid5_inc_bi_active_stripes(bi);
5137                         sh->overwrite_disks++;
5138                 }
5139                 spin_unlock_irq(&sh->stripe_lock);
5140                 if (conf->mddev->bitmap) {
5141                         for (d = 0;
5142                              d < conf->raid_disks - conf->max_degraded;
5143                              d++)
5144                                 bitmap_startwrite(mddev->bitmap,
5145                                                   sh->sector,
5146                                                   STRIPE_SECTORS,
5147                                                   0);
5148                         sh->bm_seq = conf->seq_flush + 1;
5149                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5150                 }
5151
5152                 set_bit(STRIPE_HANDLE, &sh->state);
5153                 clear_bit(STRIPE_DELAYED, &sh->state);
5154                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5155                         atomic_inc(&conf->preread_active_stripes);
5156                 release_stripe_plug(mddev, sh);
5157         }
5158
5159         remaining = raid5_dec_bi_active_stripes(bi);
5160         if (remaining == 0) {
5161                 md_write_end(mddev);
5162                 bio_endio(bi);
5163         }
5164 }
5165
5166 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5167 {
5168         struct r5conf *conf = mddev->private;
5169         int dd_idx;
5170         sector_t new_sector;
5171         sector_t logical_sector, last_sector;
5172         struct stripe_head *sh;
5173         const int rw = bio_data_dir(bi);
5174         int remaining;
5175         DEFINE_WAIT(w);
5176         bool do_prepare;
5177
5178         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5179                 int ret = r5l_handle_flush_request(conf->log, bi);
5180
5181                 if (ret == 0)
5182                         return;
5183                 if (ret == -ENODEV) {
5184                         md_flush_request(mddev, bi);
5185                         return;
5186                 }
5187                 /* ret == -EAGAIN, fallback */
5188         }
5189
5190         md_write_start(mddev, bi);
5191
5192         /*
5193          * If array is degraded, better not do chunk aligned read because
5194          * later we might have to read it again in order to reconstruct
5195          * data on failed drives.
5196          */
5197         if (rw == READ && mddev->degraded == 0 &&
5198             mddev->reshape_position == MaxSector) {
5199                 bi = chunk_aligned_read(mddev, bi);
5200                 if (!bi)
5201                         return;
5202         }
5203
5204         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5205                 make_discard_request(mddev, bi);
5206                 return;
5207         }
5208
5209         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5210         last_sector = bio_end_sector(bi);
5211         bi->bi_next = NULL;
5212         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5213
5214         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5215         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5216                 int previous;
5217                 int seq;
5218
5219                 do_prepare = false;
5220         retry:
5221                 seq = read_seqcount_begin(&conf->gen_lock);
5222                 previous = 0;
5223                 if (do_prepare)
5224                         prepare_to_wait(&conf->wait_for_overlap, &w,
5225                                 TASK_UNINTERRUPTIBLE);
5226                 if (unlikely(conf->reshape_progress != MaxSector)) {
5227                         /* spinlock is needed as reshape_progress may be
5228                          * 64bit on a 32bit platform, and so it might be
5229                          * possible to see a half-updated value
5230                          * Of course reshape_progress could change after
5231                          * the lock is dropped, so once we get a reference
5232                          * to the stripe that we think it is, we will have
5233                          * to check again.
5234                          */
5235                         spin_lock_irq(&conf->device_lock);
5236                         if (mddev->reshape_backwards
5237                             ? logical_sector < conf->reshape_progress
5238                             : logical_sector >= conf->reshape_progress) {
5239                                 previous = 1;
5240                         } else {
5241                                 if (mddev->reshape_backwards
5242                                     ? logical_sector < conf->reshape_safe
5243                                     : logical_sector >= conf->reshape_safe) {
5244                                         spin_unlock_irq(&conf->device_lock);
5245                                         schedule();
5246                                         do_prepare = true;
5247                                         goto retry;
5248                                 }
5249                         }
5250                         spin_unlock_irq(&conf->device_lock);
5251                 }
5252
5253                 new_sector = raid5_compute_sector(conf, logical_sector,
5254                                                   previous,
5255                                                   &dd_idx, NULL);
5256                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5257                         (unsigned long long)new_sector,
5258                         (unsigned long long)logical_sector);
5259
5260                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5261                                        (bi->bi_opf & REQ_RAHEAD), 0);
5262                 if (sh) {
5263                         if (unlikely(previous)) {
5264                                 /* expansion might have moved on while waiting for a
5265                                  * stripe, so we must do the range check again.
5266                                  * Expansion could still move past after this
5267                                  * test, but as we are holding a reference to
5268                                  * 'sh', we know that if that happens,
5269                                  *  STRIPE_EXPANDING will get set and the expansion
5270                                  * won't proceed until we finish with the stripe.
5271                                  */
5272                                 int must_retry = 0;
5273                                 spin_lock_irq(&conf->device_lock);
5274                                 if (mddev->reshape_backwards
5275                                     ? logical_sector >= conf->reshape_progress
5276                                     : logical_sector < conf->reshape_progress)
5277                                         /* mismatch, need to try again */
5278                                         must_retry = 1;
5279                                 spin_unlock_irq(&conf->device_lock);
5280                                 if (must_retry) {
5281                                         raid5_release_stripe(sh);
5282                                         schedule();
5283                                         do_prepare = true;
5284                                         goto retry;
5285                                 }
5286                         }
5287                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5288                                 /* Might have got the wrong stripe_head
5289                                  * by accident
5290                                  */
5291                                 raid5_release_stripe(sh);
5292                                 goto retry;
5293                         }
5294
5295                         if (rw == WRITE &&
5296                             logical_sector >= mddev->suspend_lo &&
5297                             logical_sector < mddev->suspend_hi) {
5298                                 raid5_release_stripe(sh);
5299                                 /* As the suspend_* range is controlled by
5300                                  * userspace, we want an interruptible
5301                                  * wait.
5302                                  */
5303                                 flush_signals(current);
5304                                 prepare_to_wait(&conf->wait_for_overlap,
5305                                                 &w, TASK_INTERRUPTIBLE);
5306                                 if (logical_sector >= mddev->suspend_lo &&
5307                                     logical_sector < mddev->suspend_hi) {
5308                                         schedule();
5309                                         do_prepare = true;
5310                                 }
5311                                 goto retry;
5312                         }
5313
5314                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5315                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5316                                 /* Stripe is busy expanding or
5317                                  * add failed due to overlap.  Flush everything
5318                                  * and wait a while
5319                                  */
5320                                 md_wakeup_thread(mddev->thread);
5321                                 raid5_release_stripe(sh);
5322                                 schedule();
5323                                 do_prepare = true;
5324                                 goto retry;
5325                         }
5326                         set_bit(STRIPE_HANDLE, &sh->state);
5327                         clear_bit(STRIPE_DELAYED, &sh->state);
5328                         if ((!sh->batch_head || sh == sh->batch_head) &&
5329                             (bi->bi_opf & REQ_SYNC) &&
5330                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5331                                 atomic_inc(&conf->preread_active_stripes);
5332                         release_stripe_plug(mddev, sh);
5333                 } else {
5334                         /* cannot get stripe for read-ahead, just give-up */
5335                         bi->bi_error = -EIO;
5336                         break;
5337                 }
5338         }
5339         finish_wait(&conf->wait_for_overlap, &w);
5340
5341         remaining = raid5_dec_bi_active_stripes(bi);
5342         if (remaining == 0) {
5343
5344                 if ( rw == WRITE )
5345                         md_write_end(mddev);
5346
5347                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5348                                          bi, 0);
5349                 bio_endio(bi);
5350         }
5351 }
5352
5353 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5354
5355 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5356 {
5357         /* reshaping is quite different to recovery/resync so it is
5358          * handled quite separately ... here.
5359          *
5360          * On each call to sync_request, we gather one chunk worth of
5361          * destination stripes and flag them as expanding.
5362          * Then we find all the source stripes and request reads.
5363          * As the reads complete, handle_stripe will copy the data
5364          * into the destination stripe and release that stripe.
5365          */
5366         struct r5conf *conf = mddev->private;
5367         struct stripe_head *sh;
5368         sector_t first_sector, last_sector;
5369         int raid_disks = conf->previous_raid_disks;
5370         int data_disks = raid_disks - conf->max_degraded;
5371         int new_data_disks = conf->raid_disks - conf->max_degraded;
5372         int i;
5373         int dd_idx;
5374         sector_t writepos, readpos, safepos;
5375         sector_t stripe_addr;
5376         int reshape_sectors;
5377         struct list_head stripes;
5378         sector_t retn;
5379
5380         if (sector_nr == 0) {
5381                 /* If restarting in the middle, skip the initial sectors */
5382                 if (mddev->reshape_backwards &&
5383                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5384                         sector_nr = raid5_size(mddev, 0, 0)
5385                                 - conf->reshape_progress;
5386                 } else if (mddev->reshape_backwards &&
5387                            conf->reshape_progress == MaxSector) {
5388                         /* shouldn't happen, but just in case, finish up.*/
5389                         sector_nr = MaxSector;
5390                 } else if (!mddev->reshape_backwards &&
5391                            conf->reshape_progress > 0)
5392                         sector_nr = conf->reshape_progress;
5393                 sector_div(sector_nr, new_data_disks);
5394                 if (sector_nr) {
5395                         mddev->curr_resync_completed = sector_nr;
5396                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5397                         *skipped = 1;
5398                         retn = sector_nr;
5399                         goto finish;
5400                 }
5401         }
5402
5403         /* We need to process a full chunk at a time.
5404          * If old and new chunk sizes differ, we need to process the
5405          * largest of these
5406          */
5407
5408         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5409
5410         /* We update the metadata at least every 10 seconds, or when
5411          * the data about to be copied would over-write the source of
5412          * the data at the front of the range.  i.e. one new_stripe
5413          * along from reshape_progress new_maps to after where
5414          * reshape_safe old_maps to
5415          */
5416         writepos = conf->reshape_progress;
5417         sector_div(writepos, new_data_disks);
5418         readpos = conf->reshape_progress;
5419         sector_div(readpos, data_disks);
5420         safepos = conf->reshape_safe;
5421         sector_div(safepos, data_disks);
5422         if (mddev->reshape_backwards) {
5423                 BUG_ON(writepos < reshape_sectors);
5424                 writepos -= reshape_sectors;
5425                 readpos += reshape_sectors;
5426                 safepos += reshape_sectors;
5427         } else {
5428                 writepos += reshape_sectors;
5429                 /* readpos and safepos are worst-case calculations.
5430                  * A negative number is overly pessimistic, and causes
5431                  * obvious problems for unsigned storage.  So clip to 0.
5432                  */
5433                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5434                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5435         }
5436
5437         /* Having calculated the 'writepos' possibly use it
5438          * to set 'stripe_addr' which is where we will write to.
5439          */
5440         if (mddev->reshape_backwards) {
5441                 BUG_ON(conf->reshape_progress == 0);
5442                 stripe_addr = writepos;
5443                 BUG_ON((mddev->dev_sectors &
5444                         ~((sector_t)reshape_sectors - 1))
5445                        - reshape_sectors - stripe_addr
5446                        != sector_nr);
5447         } else {
5448                 BUG_ON(writepos != sector_nr + reshape_sectors);
5449                 stripe_addr = sector_nr;
5450         }
5451
5452         /* 'writepos' is the most advanced device address we might write.
5453          * 'readpos' is the least advanced device address we might read.
5454          * 'safepos' is the least address recorded in the metadata as having
5455          *     been reshaped.
5456          * If there is a min_offset_diff, these are adjusted either by
5457          * increasing the safepos/readpos if diff is negative, or
5458          * increasing writepos if diff is positive.
5459          * If 'readpos' is then behind 'writepos', there is no way that we can
5460          * ensure safety in the face of a crash - that must be done by userspace
5461          * making a backup of the data.  So in that case there is no particular
5462          * rush to update metadata.
5463          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5464          * update the metadata to advance 'safepos' to match 'readpos' so that
5465          * we can be safe in the event of a crash.
5466          * So we insist on updating metadata if safepos is behind writepos and
5467          * readpos is beyond writepos.
5468          * In any case, update the metadata every 10 seconds.
5469          * Maybe that number should be configurable, but I'm not sure it is
5470          * worth it.... maybe it could be a multiple of safemode_delay???
5471          */
5472         if (conf->min_offset_diff < 0) {
5473                 safepos += -conf->min_offset_diff;
5474                 readpos += -conf->min_offset_diff;
5475         } else
5476                 writepos += conf->min_offset_diff;
5477
5478         if ((mddev->reshape_backwards
5479              ? (safepos > writepos && readpos < writepos)
5480              : (safepos < writepos && readpos > writepos)) ||
5481             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5482                 /* Cannot proceed until we've updated the superblock... */
5483                 wait_event(conf->wait_for_overlap,
5484                            atomic_read(&conf->reshape_stripes)==0
5485                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5486                 if (atomic_read(&conf->reshape_stripes) != 0)
5487                         return 0;
5488                 mddev->reshape_position = conf->reshape_progress;
5489                 mddev->curr_resync_completed = sector_nr;
5490                 conf->reshape_checkpoint = jiffies;
5491                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5492                 md_wakeup_thread(mddev->thread);
5493                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5494                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5495                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5496                         return 0;
5497                 spin_lock_irq(&conf->device_lock);
5498                 conf->reshape_safe = mddev->reshape_position;
5499                 spin_unlock_irq(&conf->device_lock);
5500                 wake_up(&conf->wait_for_overlap);
5501                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5502         }
5503
5504         INIT_LIST_HEAD(&stripes);
5505         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5506                 int j;
5507                 int skipped_disk = 0;
5508                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5509                 set_bit(STRIPE_EXPANDING, &sh->state);
5510                 atomic_inc(&conf->reshape_stripes);
5511                 /* If any of this stripe is beyond the end of the old
5512                  * array, then we need to zero those blocks
5513                  */
5514                 for (j=sh->disks; j--;) {
5515                         sector_t s;
5516                         if (j == sh->pd_idx)
5517                                 continue;
5518                         if (conf->level == 6 &&
5519                             j == sh->qd_idx)
5520                                 continue;
5521                         s = raid5_compute_blocknr(sh, j, 0);
5522                         if (s < raid5_size(mddev, 0, 0)) {
5523                                 skipped_disk = 1;
5524                                 continue;
5525                         }
5526                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5527                         set_bit(R5_Expanded, &sh->dev[j].flags);
5528                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5529                 }
5530                 if (!skipped_disk) {
5531                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5532                         set_bit(STRIPE_HANDLE, &sh->state);
5533                 }
5534                 list_add(&sh->lru, &stripes);
5535         }
5536         spin_lock_irq(&conf->device_lock);
5537         if (mddev->reshape_backwards)
5538                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5539         else
5540                 conf->reshape_progress += reshape_sectors * new_data_disks;
5541         spin_unlock_irq(&conf->device_lock);
5542         /* Ok, those stripe are ready. We can start scheduling
5543          * reads on the source stripes.
5544          * The source stripes are determined by mapping the first and last
5545          * block on the destination stripes.
5546          */
5547         first_sector =
5548                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5549                                      1, &dd_idx, NULL);
5550         last_sector =
5551                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5552                                             * new_data_disks - 1),
5553                                      1, &dd_idx, NULL);
5554         if (last_sector >= mddev->dev_sectors)
5555                 last_sector = mddev->dev_sectors - 1;
5556         while (first_sector <= last_sector) {
5557                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5558                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5559                 set_bit(STRIPE_HANDLE, &sh->state);
5560                 raid5_release_stripe(sh);
5561                 first_sector += STRIPE_SECTORS;
5562         }
5563         /* Now that the sources are clearly marked, we can release
5564          * the destination stripes
5565          */
5566         while (!list_empty(&stripes)) {
5567                 sh = list_entry(stripes.next, struct stripe_head, lru);
5568                 list_del_init(&sh->lru);
5569                 raid5_release_stripe(sh);
5570         }
5571         /* If this takes us to the resync_max point where we have to pause,
5572          * then we need to write out the superblock.
5573          */
5574         sector_nr += reshape_sectors;
5575         retn = reshape_sectors;
5576 finish:
5577         if (mddev->curr_resync_completed > mddev->resync_max ||
5578             (sector_nr - mddev->curr_resync_completed) * 2
5579             >= mddev->resync_max - mddev->curr_resync_completed) {
5580                 /* Cannot proceed until we've updated the superblock... */
5581                 wait_event(conf->wait_for_overlap,
5582                            atomic_read(&conf->reshape_stripes) == 0
5583                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5584                 if (atomic_read(&conf->reshape_stripes) != 0)
5585                         goto ret;
5586                 mddev->reshape_position = conf->reshape_progress;
5587                 mddev->curr_resync_completed = sector_nr;
5588                 conf->reshape_checkpoint = jiffies;
5589                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5590                 md_wakeup_thread(mddev->thread);
5591                 wait_event(mddev->sb_wait,
5592                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5593                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5594                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5595                         goto ret;
5596                 spin_lock_irq(&conf->device_lock);
5597                 conf->reshape_safe = mddev->reshape_position;
5598                 spin_unlock_irq(&conf->device_lock);
5599                 wake_up(&conf->wait_for_overlap);
5600                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5601         }
5602 ret:
5603         return retn;
5604 }
5605
5606 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5607                                           int *skipped)
5608 {
5609         struct r5conf *conf = mddev->private;
5610         struct stripe_head *sh;
5611         sector_t max_sector = mddev->dev_sectors;
5612         sector_t sync_blocks;
5613         int still_degraded = 0;
5614         int i;
5615
5616         if (sector_nr >= max_sector) {
5617                 /* just being told to finish up .. nothing much to do */
5618
5619                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5620                         end_reshape(conf);
5621                         return 0;
5622                 }
5623
5624                 if (mddev->curr_resync < max_sector) /* aborted */
5625                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5626                                         &sync_blocks, 1);
5627                 else /* completed sync */
5628                         conf->fullsync = 0;
5629                 bitmap_close_sync(mddev->bitmap);
5630
5631                 return 0;
5632         }
5633
5634         /* Allow raid5_quiesce to complete */
5635         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5636
5637         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5638                 return reshape_request(mddev, sector_nr, skipped);
5639
5640         /* No need to check resync_max as we never do more than one
5641          * stripe, and as resync_max will always be on a chunk boundary,
5642          * if the check in md_do_sync didn't fire, there is no chance
5643          * of overstepping resync_max here
5644          */
5645
5646         /* if there is too many failed drives and we are trying
5647          * to resync, then assert that we are finished, because there is
5648          * nothing we can do.
5649          */
5650         if (mddev->degraded >= conf->max_degraded &&
5651             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5652                 sector_t rv = mddev->dev_sectors - sector_nr;
5653                 *skipped = 1;
5654                 return rv;
5655         }
5656         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5657             !conf->fullsync &&
5658             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5659             sync_blocks >= STRIPE_SECTORS) {
5660                 /* we can skip this block, and probably more */
5661                 sync_blocks /= STRIPE_SECTORS;
5662                 *skipped = 1;
5663                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5664         }
5665
5666         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5667
5668         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5669         if (sh == NULL) {
5670                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5671                 /* make sure we don't swamp the stripe cache if someone else
5672                  * is trying to get access
5673                  */
5674                 schedule_timeout_uninterruptible(1);
5675         }
5676         /* Need to check if array will still be degraded after recovery/resync
5677          * Note in case of > 1 drive failures it's possible we're rebuilding
5678          * one drive while leaving another faulty drive in array.
5679          */
5680         rcu_read_lock();
5681         for (i = 0; i < conf->raid_disks; i++) {
5682                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5683
5684                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5685                         still_degraded = 1;
5686         }
5687         rcu_read_unlock();
5688
5689         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5690
5691         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5692         set_bit(STRIPE_HANDLE, &sh->state);
5693
5694         raid5_release_stripe(sh);
5695
5696         return STRIPE_SECTORS;
5697 }
5698
5699 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5700 {
5701         /* We may not be able to submit a whole bio at once as there
5702          * may not be enough stripe_heads available.
5703          * We cannot pre-allocate enough stripe_heads as we may need
5704          * more than exist in the cache (if we allow ever large chunks).
5705          * So we do one stripe head at a time and record in
5706          * ->bi_hw_segments how many have been done.
5707          *
5708          * We *know* that this entire raid_bio is in one chunk, so
5709          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5710          */
5711         struct stripe_head *sh;
5712         int dd_idx;
5713         sector_t sector, logical_sector, last_sector;
5714         int scnt = 0;
5715         int remaining;
5716         int handled = 0;
5717
5718         logical_sector = raid_bio->bi_iter.bi_sector &
5719                 ~((sector_t)STRIPE_SECTORS-1);
5720         sector = raid5_compute_sector(conf, logical_sector,
5721                                       0, &dd_idx, NULL);
5722         last_sector = bio_end_sector(raid_bio);
5723
5724         for (; logical_sector < last_sector;
5725              logical_sector += STRIPE_SECTORS,
5726                      sector += STRIPE_SECTORS,
5727                      scnt++) {
5728
5729                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5730                         /* already done this stripe */
5731                         continue;
5732
5733                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5734
5735                 if (!sh) {
5736                         /* failed to get a stripe - must wait */
5737                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5738                         conf->retry_read_aligned = raid_bio;
5739                         return handled;
5740                 }
5741
5742                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5743                         raid5_release_stripe(sh);
5744                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5745                         conf->retry_read_aligned = raid_bio;
5746                         return handled;
5747                 }
5748
5749                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5750                 handle_stripe(sh);
5751                 raid5_release_stripe(sh);
5752                 handled++;
5753         }
5754         remaining = raid5_dec_bi_active_stripes(raid_bio);
5755         if (remaining == 0) {
5756                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5757                                          raid_bio, 0);
5758                 bio_endio(raid_bio);
5759         }
5760         if (atomic_dec_and_test(&conf->active_aligned_reads))
5761                 wake_up(&conf->wait_for_quiescent);
5762         return handled;
5763 }
5764
5765 static int handle_active_stripes(struct r5conf *conf, int group,
5766                                  struct r5worker *worker,
5767                                  struct list_head *temp_inactive_list)
5768 {
5769         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5770         int i, batch_size = 0, hash;
5771         bool release_inactive = false;
5772
5773         while (batch_size < MAX_STRIPE_BATCH &&
5774                         (sh = __get_priority_stripe(conf, group)) != NULL)
5775                 batch[batch_size++] = sh;
5776
5777         if (batch_size == 0) {
5778                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5779                         if (!list_empty(temp_inactive_list + i))
5780                                 break;
5781                 if (i == NR_STRIPE_HASH_LOCKS) {
5782                         spin_unlock_irq(&conf->device_lock);
5783                         r5l_flush_stripe_to_raid(conf->log);
5784                         spin_lock_irq(&conf->device_lock);
5785                         return batch_size;
5786                 }
5787                 release_inactive = true;
5788         }
5789         spin_unlock_irq(&conf->device_lock);
5790
5791         release_inactive_stripe_list(conf, temp_inactive_list,
5792                                      NR_STRIPE_HASH_LOCKS);
5793
5794         r5l_flush_stripe_to_raid(conf->log);
5795         if (release_inactive) {
5796                 spin_lock_irq(&conf->device_lock);
5797                 return 0;
5798         }
5799
5800         for (i = 0; i < batch_size; i++)
5801                 handle_stripe(batch[i]);
5802         r5l_write_stripe_run(conf->log);
5803
5804         cond_resched();
5805
5806         spin_lock_irq(&conf->device_lock);
5807         for (i = 0; i < batch_size; i++) {
5808                 hash = batch[i]->hash_lock_index;
5809                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5810         }
5811         return batch_size;
5812 }
5813
5814 static void raid5_do_work(struct work_struct *work)
5815 {
5816         struct r5worker *worker = container_of(work, struct r5worker, work);
5817         struct r5worker_group *group = worker->group;
5818         struct r5conf *conf = group->conf;
5819         int group_id = group - conf->worker_groups;
5820         int handled;
5821         struct blk_plug plug;
5822
5823         pr_debug("+++ raid5worker active\n");
5824
5825         blk_start_plug(&plug);
5826         handled = 0;
5827         spin_lock_irq(&conf->device_lock);
5828         while (1) {
5829                 int batch_size, released;
5830
5831                 released = release_stripe_list(conf, worker->temp_inactive_list);
5832
5833                 batch_size = handle_active_stripes(conf, group_id, worker,
5834                                                    worker->temp_inactive_list);
5835                 worker->working = false;
5836                 if (!batch_size && !released)
5837                         break;
5838                 handled += batch_size;
5839         }
5840         pr_debug("%d stripes handled\n", handled);
5841
5842         spin_unlock_irq(&conf->device_lock);
5843         blk_finish_plug(&plug);
5844
5845         pr_debug("--- raid5worker inactive\n");
5846 }
5847
5848 /*
5849  * This is our raid5 kernel thread.
5850  *
5851  * We scan the hash table for stripes which can be handled now.
5852  * During the scan, completed stripes are saved for us by the interrupt
5853  * handler, so that they will not have to wait for our next wakeup.
5854  */
5855 static void raid5d(struct md_thread *thread)
5856 {
5857         struct mddev *mddev = thread->mddev;
5858         struct r5conf *conf = mddev->private;
5859         int handled;
5860         struct blk_plug plug;
5861
5862         pr_debug("+++ raid5d active\n");
5863
5864         md_check_recovery(mddev);
5865
5866         if (!bio_list_empty(&conf->return_bi) &&
5867             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5868                 struct bio_list tmp = BIO_EMPTY_LIST;
5869                 spin_lock_irq(&conf->device_lock);
5870                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5871                         bio_list_merge(&tmp, &conf->return_bi);
5872                         bio_list_init(&conf->return_bi);
5873                 }
5874                 spin_unlock_irq(&conf->device_lock);
5875                 return_io(&tmp);
5876         }
5877
5878         blk_start_plug(&plug);
5879         handled = 0;
5880         spin_lock_irq(&conf->device_lock);
5881         while (1) {
5882                 struct bio *bio;
5883                 int batch_size, released;
5884
5885                 released = release_stripe_list(conf, conf->temp_inactive_list);
5886                 if (released)
5887                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5888
5889                 if (
5890                     !list_empty(&conf->bitmap_list)) {
5891                         /* Now is a good time to flush some bitmap updates */
5892                         conf->seq_flush++;
5893                         spin_unlock_irq(&conf->device_lock);
5894                         bitmap_unplug(mddev->bitmap);
5895                         spin_lock_irq(&conf->device_lock);
5896                         conf->seq_write = conf->seq_flush;
5897                         activate_bit_delay(conf, conf->temp_inactive_list);
5898                 }
5899                 raid5_activate_delayed(conf);
5900
5901                 while ((bio = remove_bio_from_retry(conf))) {
5902                         int ok;
5903                         spin_unlock_irq(&conf->device_lock);
5904                         ok = retry_aligned_read(conf, bio);
5905                         spin_lock_irq(&conf->device_lock);
5906                         if (!ok)
5907                                 break;
5908                         handled++;
5909                 }
5910
5911                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5912                                                    conf->temp_inactive_list);
5913                 if (!batch_size && !released)
5914                         break;
5915                 handled += batch_size;
5916
5917                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5918                         spin_unlock_irq(&conf->device_lock);
5919                         md_check_recovery(mddev);
5920                         spin_lock_irq(&conf->device_lock);
5921                 }
5922         }
5923         pr_debug("%d stripes handled\n", handled);
5924
5925         spin_unlock_irq(&conf->device_lock);
5926         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5927             mutex_trylock(&conf->cache_size_mutex)) {
5928                 grow_one_stripe(conf, __GFP_NOWARN);
5929                 /* Set flag even if allocation failed.  This helps
5930                  * slow down allocation requests when mem is short
5931                  */
5932                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5933                 mutex_unlock(&conf->cache_size_mutex);
5934         }
5935
5936         r5l_flush_stripe_to_raid(conf->log);
5937
5938         async_tx_issue_pending_all();
5939         blk_finish_plug(&plug);
5940
5941         pr_debug("--- raid5d inactive\n");
5942 }
5943
5944 static ssize_t
5945 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5946 {
5947         struct r5conf *conf;
5948         int ret = 0;
5949         spin_lock(&mddev->lock);
5950         conf = mddev->private;
5951         if (conf)
5952                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5953         spin_unlock(&mddev->lock);
5954         return ret;
5955 }
5956
5957 int
5958 raid5_set_cache_size(struct mddev *mddev, int size)
5959 {
5960         struct r5conf *conf = mddev->private;
5961         int err;
5962
5963         if (size <= 16 || size > 32768)
5964                 return -EINVAL;
5965
5966         conf->min_nr_stripes = size;
5967         mutex_lock(&conf->cache_size_mutex);
5968         while (size < conf->max_nr_stripes &&
5969                drop_one_stripe(conf))
5970                 ;
5971         mutex_unlock(&conf->cache_size_mutex);
5972
5973
5974         err = md_allow_write(mddev);
5975         if (err)
5976                 return err;
5977
5978         mutex_lock(&conf->cache_size_mutex);
5979         while (size > conf->max_nr_stripes)
5980                 if (!grow_one_stripe(conf, GFP_KERNEL))
5981                         break;
5982         mutex_unlock(&conf->cache_size_mutex);
5983
5984         return 0;
5985 }
5986 EXPORT_SYMBOL(raid5_set_cache_size);
5987
5988 static ssize_t
5989 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5990 {
5991         struct r5conf *conf;
5992         unsigned long new;
5993         int err;
5994
5995         if (len >= PAGE_SIZE)
5996                 return -EINVAL;
5997         if (kstrtoul(page, 10, &new))
5998                 return -EINVAL;
5999         err = mddev_lock(mddev);
6000         if (err)
6001                 return err;
6002         conf = mddev->private;
6003         if (!conf)
6004                 err = -ENODEV;
6005         else
6006                 err = raid5_set_cache_size(mddev, new);
6007         mddev_unlock(mddev);
6008
6009         return err ?: len;
6010 }
6011
6012 static struct md_sysfs_entry
6013 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6014                                 raid5_show_stripe_cache_size,
6015                                 raid5_store_stripe_cache_size);
6016
6017 static ssize_t
6018 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6019 {
6020         struct r5conf *conf = mddev->private;
6021         if (conf)
6022                 return sprintf(page, "%d\n", conf->rmw_level);
6023         else
6024                 return 0;
6025 }
6026
6027 static ssize_t
6028 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6029 {
6030         struct r5conf *conf = mddev->private;
6031         unsigned long new;
6032
6033         if (!conf)
6034                 return -ENODEV;
6035
6036         if (len >= PAGE_SIZE)
6037                 return -EINVAL;
6038
6039         if (kstrtoul(page, 10, &new))
6040                 return -EINVAL;
6041
6042         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6043                 return -EINVAL;
6044
6045         if (new != PARITY_DISABLE_RMW &&
6046             new != PARITY_ENABLE_RMW &&
6047             new != PARITY_PREFER_RMW)
6048                 return -EINVAL;
6049
6050         conf->rmw_level = new;
6051         return len;
6052 }
6053
6054 static struct md_sysfs_entry
6055 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6056                          raid5_show_rmw_level,
6057                          raid5_store_rmw_level);
6058
6059
6060 static ssize_t
6061 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6062 {
6063         struct r5conf *conf;
6064         int ret = 0;
6065         spin_lock(&mddev->lock);
6066         conf = mddev->private;
6067         if (conf)
6068                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6069         spin_unlock(&mddev->lock);
6070         return ret;
6071 }
6072
6073 static ssize_t
6074 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6075 {
6076         struct r5conf *conf;
6077         unsigned long new;
6078         int err;
6079
6080         if (len >= PAGE_SIZE)
6081                 return -EINVAL;
6082         if (kstrtoul(page, 10, &new))
6083                 return -EINVAL;
6084
6085         err = mddev_lock(mddev);
6086         if (err)
6087                 return err;
6088         conf = mddev->private;
6089         if (!conf)
6090                 err = -ENODEV;
6091         else if (new > conf->min_nr_stripes)
6092                 err = -EINVAL;
6093         else
6094                 conf->bypass_threshold = new;
6095         mddev_unlock(mddev);
6096         return err ?: len;
6097 }
6098
6099 static struct md_sysfs_entry
6100 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6101                                         S_IRUGO | S_IWUSR,
6102                                         raid5_show_preread_threshold,
6103                                         raid5_store_preread_threshold);
6104
6105 static ssize_t
6106 raid5_show_skip_copy(struct mddev *mddev, char *page)
6107 {
6108         struct r5conf *conf;
6109         int ret = 0;
6110         spin_lock(&mddev->lock);
6111         conf = mddev->private;
6112         if (conf)
6113                 ret = sprintf(page, "%d\n", conf->skip_copy);
6114         spin_unlock(&mddev->lock);
6115         return ret;
6116 }
6117
6118 static ssize_t
6119 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6120 {
6121         struct r5conf *conf;
6122         unsigned long new;
6123         int err;
6124
6125         if (len >= PAGE_SIZE)
6126                 return -EINVAL;
6127         if (kstrtoul(page, 10, &new))
6128                 return -EINVAL;
6129         new = !!new;
6130
6131         err = mddev_lock(mddev);
6132         if (err)
6133                 return err;
6134         conf = mddev->private;
6135         if (!conf)
6136                 err = -ENODEV;
6137         else if (new != conf->skip_copy) {
6138                 mddev_suspend(mddev);
6139                 conf->skip_copy = new;
6140                 if (new)
6141                         mddev->queue->backing_dev_info.capabilities |=
6142                                 BDI_CAP_STABLE_WRITES;
6143                 else
6144                         mddev->queue->backing_dev_info.capabilities &=
6145                                 ~BDI_CAP_STABLE_WRITES;
6146                 mddev_resume(mddev);
6147         }
6148         mddev_unlock(mddev);
6149         return err ?: len;
6150 }
6151
6152 static struct md_sysfs_entry
6153 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6154                                         raid5_show_skip_copy,
6155                                         raid5_store_skip_copy);
6156
6157 static ssize_t
6158 stripe_cache_active_show(struct mddev *mddev, char *page)
6159 {
6160         struct r5conf *conf = mddev->private;
6161         if (conf)
6162                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6163         else
6164                 return 0;
6165 }
6166
6167 static struct md_sysfs_entry
6168 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6169
6170 static ssize_t
6171 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6172 {
6173         struct r5conf *conf;
6174         int ret = 0;
6175         spin_lock(&mddev->lock);
6176         conf = mddev->private;
6177         if (conf)
6178                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6179         spin_unlock(&mddev->lock);
6180         return ret;
6181 }
6182
6183 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6184                                int *group_cnt,
6185                                int *worker_cnt_per_group,
6186                                struct r5worker_group **worker_groups);
6187 static ssize_t
6188 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6189 {
6190         struct r5conf *conf;
6191         unsigned long new;
6192         int err;
6193         struct r5worker_group *new_groups, *old_groups;
6194         int group_cnt, worker_cnt_per_group;
6195
6196         if (len >= PAGE_SIZE)
6197                 return -EINVAL;
6198         if (kstrtoul(page, 10, &new))
6199                 return -EINVAL;
6200
6201         err = mddev_lock(mddev);
6202         if (err)
6203                 return err;
6204         conf = mddev->private;
6205         if (!conf)
6206                 err = -ENODEV;
6207         else if (new != conf->worker_cnt_per_group) {
6208                 mddev_suspend(mddev);
6209
6210                 old_groups = conf->worker_groups;
6211                 if (old_groups)
6212                         flush_workqueue(raid5_wq);
6213
6214                 err = alloc_thread_groups(conf, new,
6215                                           &group_cnt, &worker_cnt_per_group,
6216                                           &new_groups);
6217                 if (!err) {
6218                         spin_lock_irq(&conf->device_lock);
6219                         conf->group_cnt = group_cnt;
6220                         conf->worker_cnt_per_group = worker_cnt_per_group;
6221                         conf->worker_groups = new_groups;
6222                         spin_unlock_irq(&conf->device_lock);
6223
6224                         if (old_groups)
6225                                 kfree(old_groups[0].workers);
6226                         kfree(old_groups);
6227                 }
6228                 mddev_resume(mddev);
6229         }
6230         mddev_unlock(mddev);
6231
6232         return err ?: len;
6233 }
6234
6235 static struct md_sysfs_entry
6236 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6237                                 raid5_show_group_thread_cnt,
6238                                 raid5_store_group_thread_cnt);
6239
6240 static struct attribute *raid5_attrs[] =  {
6241         &raid5_stripecache_size.attr,
6242         &raid5_stripecache_active.attr,
6243         &raid5_preread_bypass_threshold.attr,
6244         &raid5_group_thread_cnt.attr,
6245         &raid5_skip_copy.attr,
6246         &raid5_rmw_level.attr,
6247         NULL,
6248 };
6249 static struct attribute_group raid5_attrs_group = {
6250         .name = NULL,
6251         .attrs = raid5_attrs,
6252 };
6253
6254 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6255                                int *group_cnt,
6256                                int *worker_cnt_per_group,
6257                                struct r5worker_group **worker_groups)
6258 {
6259         int i, j, k;
6260         ssize_t size;
6261         struct r5worker *workers;
6262
6263         *worker_cnt_per_group = cnt;
6264         if (cnt == 0) {
6265                 *group_cnt = 0;
6266                 *worker_groups = NULL;
6267                 return 0;
6268         }
6269         *group_cnt = num_possible_nodes();
6270         size = sizeof(struct r5worker) * cnt;
6271         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6272         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6273                                 *group_cnt, GFP_NOIO);
6274         if (!*worker_groups || !workers) {
6275                 kfree(workers);
6276                 kfree(*worker_groups);
6277                 return -ENOMEM;
6278         }
6279
6280         for (i = 0; i < *group_cnt; i++) {
6281                 struct r5worker_group *group;
6282
6283                 group = &(*worker_groups)[i];
6284                 INIT_LIST_HEAD(&group->handle_list);
6285                 group->conf = conf;
6286                 group->workers = workers + i * cnt;
6287
6288                 for (j = 0; j < cnt; j++) {
6289                         struct r5worker *worker = group->workers + j;
6290                         worker->group = group;
6291                         INIT_WORK(&worker->work, raid5_do_work);
6292
6293                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6294                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6295                 }
6296         }
6297
6298         return 0;
6299 }
6300
6301 static void free_thread_groups(struct r5conf *conf)
6302 {
6303         if (conf->worker_groups)
6304                 kfree(conf->worker_groups[0].workers);
6305         kfree(conf->worker_groups);
6306         conf->worker_groups = NULL;
6307 }
6308
6309 static sector_t
6310 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6311 {
6312         struct r5conf *conf = mddev->private;
6313
6314         if (!sectors)
6315                 sectors = mddev->dev_sectors;
6316         if (!raid_disks)
6317                 /* size is defined by the smallest of previous and new size */
6318                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6319
6320         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6321         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6322         return sectors * (raid_disks - conf->max_degraded);
6323 }
6324
6325 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6326 {
6327         safe_put_page(percpu->spare_page);
6328         if (percpu->scribble)
6329                 flex_array_free(percpu->scribble);
6330         percpu->spare_page = NULL;
6331         percpu->scribble = NULL;
6332 }
6333
6334 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6335 {
6336         if (conf->level == 6 && !percpu->spare_page)
6337                 percpu->spare_page = alloc_page(GFP_KERNEL);
6338         if (!percpu->scribble)
6339                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6340                                                       conf->previous_raid_disks),
6341                                                   max(conf->chunk_sectors,
6342                                                       conf->prev_chunk_sectors)
6343                                                    / STRIPE_SECTORS,
6344                                                   GFP_KERNEL);
6345
6346         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6347                 free_scratch_buffer(conf, percpu);
6348                 return -ENOMEM;
6349         }
6350
6351         return 0;
6352 }
6353
6354 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6355 {
6356         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6357
6358         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6359         return 0;
6360 }
6361
6362 static void raid5_free_percpu(struct r5conf *conf)
6363 {
6364         if (!conf->percpu)
6365                 return;
6366
6367         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6368         free_percpu(conf->percpu);
6369 }
6370
6371 static void free_conf(struct r5conf *conf)
6372 {
6373         if (conf->log)
6374                 r5l_exit_log(conf->log);
6375         if (conf->shrinker.nr_deferred)
6376                 unregister_shrinker(&conf->shrinker);
6377
6378         free_thread_groups(conf);
6379         shrink_stripes(conf);
6380         raid5_free_percpu(conf);
6381         kfree(conf->disks);
6382         kfree(conf->stripe_hashtbl);
6383         kfree(conf);
6384 }
6385
6386 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6387 {
6388         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6389         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6390
6391         if (alloc_scratch_buffer(conf, percpu)) {
6392                 pr_err("%s: failed memory allocation for cpu%u\n",
6393                        __func__, cpu);
6394                 return -ENOMEM;
6395         }
6396         spin_lock_init(&per_cpu_ptr(conf->percpu, cpu)->lock);
6397         return 0;
6398 }
6399
6400 static int raid5_alloc_percpu(struct r5conf *conf)
6401 {
6402         int err = 0;
6403
6404         conf->percpu = alloc_percpu(struct raid5_percpu);
6405         if (!conf->percpu)
6406                 return -ENOMEM;
6407         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6408         if (!err) {
6409                 conf->scribble_disks = max(conf->raid_disks,
6410                         conf->previous_raid_disks);
6411                 conf->scribble_sectors = max(conf->chunk_sectors,
6412                         conf->prev_chunk_sectors);
6413         }
6414         return err;
6415 }
6416
6417 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6418                                       struct shrink_control *sc)
6419 {
6420         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6421         unsigned long ret = SHRINK_STOP;
6422
6423         if (mutex_trylock(&conf->cache_size_mutex)) {
6424                 ret= 0;
6425                 while (ret < sc->nr_to_scan &&
6426                        conf->max_nr_stripes > conf->min_nr_stripes) {
6427                         if (drop_one_stripe(conf) == 0) {
6428                                 ret = SHRINK_STOP;
6429                                 break;
6430                         }
6431                         ret++;
6432                 }
6433                 mutex_unlock(&conf->cache_size_mutex);
6434         }
6435         return ret;
6436 }
6437
6438 static unsigned long raid5_cache_count(struct shrinker *shrink,
6439                                        struct shrink_control *sc)
6440 {
6441         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6442
6443         if (conf->max_nr_stripes < conf->min_nr_stripes)
6444                 /* unlikely, but not impossible */
6445                 return 0;
6446         return conf->max_nr_stripes - conf->min_nr_stripes;
6447 }
6448
6449 static struct r5conf *setup_conf(struct mddev *mddev)
6450 {
6451         struct r5conf *conf;
6452         int raid_disk, memory, max_disks;
6453         struct md_rdev *rdev;
6454         struct disk_info *disk;
6455         char pers_name[6];
6456         int i;
6457         int group_cnt, worker_cnt_per_group;
6458         struct r5worker_group *new_group;
6459
6460         if (mddev->new_level != 5
6461             && mddev->new_level != 4
6462             && mddev->new_level != 6) {
6463                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6464                        mdname(mddev), mddev->new_level);
6465                 return ERR_PTR(-EIO);
6466         }
6467         if ((mddev->new_level == 5
6468              && !algorithm_valid_raid5(mddev->new_layout)) ||
6469             (mddev->new_level == 6
6470              && !algorithm_valid_raid6(mddev->new_layout))) {
6471                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6472                        mdname(mddev), mddev->new_layout);
6473                 return ERR_PTR(-EIO);
6474         }
6475         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6476                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6477                        mdname(mddev), mddev->raid_disks);
6478                 return ERR_PTR(-EINVAL);
6479         }
6480
6481         if (!mddev->new_chunk_sectors ||
6482             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6483             !is_power_of_2(mddev->new_chunk_sectors)) {
6484                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6485                        mdname(mddev), mddev->new_chunk_sectors << 9);
6486                 return ERR_PTR(-EINVAL);
6487         }
6488
6489         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6490         if (conf == NULL)
6491                 goto abort;
6492         /* Don't enable multi-threading by default*/
6493         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6494                                  &new_group)) {
6495                 conf->group_cnt = group_cnt;
6496                 conf->worker_cnt_per_group = worker_cnt_per_group;
6497                 conf->worker_groups = new_group;
6498         } else
6499                 goto abort;
6500         spin_lock_init(&conf->device_lock);
6501         seqcount_init(&conf->gen_lock);
6502         mutex_init(&conf->cache_size_mutex);
6503         init_waitqueue_head(&conf->wait_for_quiescent);
6504         init_waitqueue_head(&conf->wait_for_stripe);
6505         init_waitqueue_head(&conf->wait_for_overlap);
6506         INIT_LIST_HEAD(&conf->handle_list);
6507         INIT_LIST_HEAD(&conf->hold_list);
6508         INIT_LIST_HEAD(&conf->delayed_list);
6509         INIT_LIST_HEAD(&conf->bitmap_list);
6510         bio_list_init(&conf->return_bi);
6511         init_llist_head(&conf->released_stripes);
6512         atomic_set(&conf->active_stripes, 0);
6513         atomic_set(&conf->preread_active_stripes, 0);
6514         atomic_set(&conf->active_aligned_reads, 0);
6515         conf->bypass_threshold = BYPASS_THRESHOLD;
6516         conf->recovery_disabled = mddev->recovery_disabled - 1;
6517
6518         conf->raid_disks = mddev->raid_disks;
6519         if (mddev->reshape_position == MaxSector)
6520                 conf->previous_raid_disks = mddev->raid_disks;
6521         else
6522                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6523         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6524
6525         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6526                               GFP_KERNEL);
6527         if (!conf->disks)
6528                 goto abort;
6529
6530         conf->mddev = mddev;
6531
6532         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6533                 goto abort;
6534
6535         /* We init hash_locks[0] separately to that it can be used
6536          * as the reference lock in the spin_lock_nest_lock() call
6537          * in lock_all_device_hash_locks_irq in order to convince
6538          * lockdep that we know what we are doing.
6539          */
6540         spin_lock_init(conf->hash_locks);
6541         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6542                 spin_lock_init(conf->hash_locks + i);
6543
6544         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6545                 INIT_LIST_HEAD(conf->inactive_list + i);
6546
6547         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6548                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6549
6550         conf->level = mddev->new_level;
6551         conf->chunk_sectors = mddev->new_chunk_sectors;
6552         if (raid5_alloc_percpu(conf) != 0)
6553                 goto abort;
6554
6555         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6556
6557         rdev_for_each(rdev, mddev) {
6558                 raid_disk = rdev->raid_disk;
6559                 if (raid_disk >= max_disks
6560                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6561                         continue;
6562                 disk = conf->disks + raid_disk;
6563
6564                 if (test_bit(Replacement, &rdev->flags)) {
6565                         if (disk->replacement)
6566                                 goto abort;
6567                         disk->replacement = rdev;
6568                 } else {
6569                         if (disk->rdev)
6570                                 goto abort;
6571                         disk->rdev = rdev;
6572                 }
6573
6574                 if (test_bit(In_sync, &rdev->flags)) {
6575                         char b[BDEVNAME_SIZE];
6576                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6577                                " disk %d\n",
6578                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6579                 } else if (rdev->saved_raid_disk != raid_disk)
6580                         /* Cannot rely on bitmap to complete recovery */
6581                         conf->fullsync = 1;
6582         }
6583
6584         conf->level = mddev->new_level;
6585         if (conf->level == 6) {
6586                 conf->max_degraded = 2;
6587                 if (raid6_call.xor_syndrome)
6588                         conf->rmw_level = PARITY_ENABLE_RMW;
6589                 else
6590                         conf->rmw_level = PARITY_DISABLE_RMW;
6591         } else {
6592                 conf->max_degraded = 1;
6593                 conf->rmw_level = PARITY_ENABLE_RMW;
6594         }
6595         conf->algorithm = mddev->new_layout;
6596         conf->reshape_progress = mddev->reshape_position;
6597         if (conf->reshape_progress != MaxSector) {
6598                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6599                 conf->prev_algo = mddev->layout;
6600         } else {
6601                 conf->prev_chunk_sectors = conf->chunk_sectors;
6602                 conf->prev_algo = conf->algorithm;
6603         }
6604
6605         conf->min_nr_stripes = NR_STRIPES;
6606         if (mddev->reshape_position != MaxSector) {
6607                 int stripes = max_t(int,
6608                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6609                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6610                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6611                 if (conf->min_nr_stripes != NR_STRIPES)
6612                         printk(KERN_INFO
6613                                 "md/raid:%s: force stripe size %d for reshape\n",
6614                                 mdname(mddev), conf->min_nr_stripes);
6615         }
6616         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6617                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6618         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6619         if (grow_stripes(conf, conf->min_nr_stripes)) {
6620                 printk(KERN_ERR
6621                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6622                        mdname(mddev), memory);
6623                 goto abort;
6624         } else
6625                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6626                        mdname(mddev), memory);
6627         /*
6628          * Losing a stripe head costs more than the time to refill it,
6629          * it reduces the queue depth and so can hurt throughput.
6630          * So set it rather large, scaled by number of devices.
6631          */
6632         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6633         conf->shrinker.scan_objects = raid5_cache_scan;
6634         conf->shrinker.count_objects = raid5_cache_count;
6635         conf->shrinker.batch = 128;
6636         conf->shrinker.flags = 0;
6637         if (register_shrinker(&conf->shrinker)) {
6638                 printk(KERN_ERR
6639                        "md/raid:%s: couldn't register shrinker.\n",
6640                        mdname(mddev));
6641                 goto abort;
6642         }
6643
6644         sprintf(pers_name, "raid%d", mddev->new_level);
6645         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6646         if (!conf->thread) {
6647                 printk(KERN_ERR
6648                        "md/raid:%s: couldn't allocate thread.\n",
6649                        mdname(mddev));
6650                 goto abort;
6651         }
6652
6653         return conf;
6654
6655  abort:
6656         if (conf) {
6657                 free_conf(conf);
6658                 return ERR_PTR(-EIO);
6659         } else
6660                 return ERR_PTR(-ENOMEM);
6661 }
6662
6663 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6664 {
6665         switch (algo) {
6666         case ALGORITHM_PARITY_0:
6667                 if (raid_disk < max_degraded)
6668                         return 1;
6669                 break;
6670         case ALGORITHM_PARITY_N:
6671                 if (raid_disk >= raid_disks - max_degraded)
6672                         return 1;
6673                 break;
6674         case ALGORITHM_PARITY_0_6:
6675                 if (raid_disk == 0 ||
6676                     raid_disk == raid_disks - 1)
6677                         return 1;
6678                 break;
6679         case ALGORITHM_LEFT_ASYMMETRIC_6:
6680         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6681         case ALGORITHM_LEFT_SYMMETRIC_6:
6682         case ALGORITHM_RIGHT_SYMMETRIC_6:
6683                 if (raid_disk == raid_disks - 1)
6684                         return 1;
6685         }
6686         return 0;
6687 }
6688
6689 static int raid5_run(struct mddev *mddev)
6690 {
6691         struct r5conf *conf;
6692         int working_disks = 0;
6693         int dirty_parity_disks = 0;
6694         struct md_rdev *rdev;
6695         struct md_rdev *journal_dev = NULL;
6696         sector_t reshape_offset = 0;
6697         int i;
6698         long long min_offset_diff = 0;
6699         int first = 1;
6700
6701         if (mddev->recovery_cp != MaxSector)
6702                 printk(KERN_NOTICE "md/raid:%s: not clean"
6703                        " -- starting background reconstruction\n",
6704                        mdname(mddev));
6705
6706         rdev_for_each(rdev, mddev) {
6707                 long long diff;
6708
6709                 if (test_bit(Journal, &rdev->flags)) {
6710                         journal_dev = rdev;
6711                         continue;
6712                 }
6713                 if (rdev->raid_disk < 0)
6714                         continue;
6715                 diff = (rdev->new_data_offset - rdev->data_offset);
6716                 if (first) {
6717                         min_offset_diff = diff;
6718                         first = 0;
6719                 } else if (mddev->reshape_backwards &&
6720                          diff < min_offset_diff)
6721                         min_offset_diff = diff;
6722                 else if (!mddev->reshape_backwards &&
6723                          diff > min_offset_diff)
6724                         min_offset_diff = diff;
6725         }
6726
6727         if (mddev->reshape_position != MaxSector) {
6728                 /* Check that we can continue the reshape.
6729                  * Difficulties arise if the stripe we would write to
6730                  * next is at or after the stripe we would read from next.
6731                  * For a reshape that changes the number of devices, this
6732                  * is only possible for a very short time, and mdadm makes
6733                  * sure that time appears to have past before assembling
6734                  * the array.  So we fail if that time hasn't passed.
6735                  * For a reshape that keeps the number of devices the same
6736                  * mdadm must be monitoring the reshape can keeping the
6737                  * critical areas read-only and backed up.  It will start
6738                  * the array in read-only mode, so we check for that.
6739                  */
6740                 sector_t here_new, here_old;
6741                 int old_disks;
6742                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6743                 int chunk_sectors;
6744                 int new_data_disks;
6745
6746                 if (journal_dev) {
6747                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6748                                mdname(mddev));
6749                         return -EINVAL;
6750                 }
6751
6752                 if (mddev->new_level != mddev->level) {
6753                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6754                                "required - aborting.\n",
6755                                mdname(mddev));
6756                         return -EINVAL;
6757                 }
6758                 old_disks = mddev->raid_disks - mddev->delta_disks;
6759                 /* reshape_position must be on a new-stripe boundary, and one
6760                  * further up in new geometry must map after here in old
6761                  * geometry.
6762                  * If the chunk sizes are different, then as we perform reshape
6763                  * in units of the largest of the two, reshape_position needs
6764                  * be a multiple of the largest chunk size times new data disks.
6765                  */
6766                 here_new = mddev->reshape_position;
6767                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6768                 new_data_disks = mddev->raid_disks - max_degraded;
6769                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6770                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6771                                "on a stripe boundary\n", mdname(mddev));
6772                         return -EINVAL;
6773                 }
6774                 reshape_offset = here_new * chunk_sectors;
6775                 /* here_new is the stripe we will write to */
6776                 here_old = mddev->reshape_position;
6777                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6778                 /* here_old is the first stripe that we might need to read
6779                  * from */
6780                 if (mddev->delta_disks == 0) {
6781                         /* We cannot be sure it is safe to start an in-place
6782                          * reshape.  It is only safe if user-space is monitoring
6783                          * and taking constant backups.
6784                          * mdadm always starts a situation like this in
6785                          * readonly mode so it can take control before
6786                          * allowing any writes.  So just check for that.
6787                          */
6788                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6789                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6790                                 /* not really in-place - so OK */;
6791                         else if (mddev->ro == 0) {
6792                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6793                                        "must be started in read-only mode "
6794                                        "- aborting\n",
6795                                        mdname(mddev));
6796                                 return -EINVAL;
6797                         }
6798                 } else if (mddev->reshape_backwards
6799                     ? (here_new * chunk_sectors + min_offset_diff <=
6800                        here_old * chunk_sectors)
6801                     : (here_new * chunk_sectors >=
6802                        here_old * chunk_sectors + (-min_offset_diff))) {
6803                         /* Reading from the same stripe as writing to - bad */
6804                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6805                                "auto-recovery - aborting.\n",
6806                                mdname(mddev));
6807                         return -EINVAL;
6808                 }
6809                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6810                        mdname(mddev));
6811                 /* OK, we should be able to continue; */
6812         } else {
6813                 BUG_ON(mddev->level != mddev->new_level);
6814                 BUG_ON(mddev->layout != mddev->new_layout);
6815                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6816                 BUG_ON(mddev->delta_disks != 0);
6817         }
6818
6819         if (mddev->private == NULL)
6820                 conf = setup_conf(mddev);
6821         else
6822                 conf = mddev->private;
6823
6824         if (IS_ERR(conf))
6825                 return PTR_ERR(conf);
6826
6827         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6828                 if (!journal_dev) {
6829                         pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6830                                mdname(mddev));
6831                         mddev->ro = 1;
6832                         set_disk_ro(mddev->gendisk, 1);
6833                 } else if (mddev->recovery_cp == MaxSector)
6834                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6835         }
6836
6837         conf->min_offset_diff = min_offset_diff;
6838         mddev->thread = conf->thread;
6839         conf->thread = NULL;
6840         mddev->private = conf;
6841
6842         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6843              i++) {
6844                 rdev = conf->disks[i].rdev;
6845                 if (!rdev && conf->disks[i].replacement) {
6846                         /* The replacement is all we have yet */
6847                         rdev = conf->disks[i].replacement;
6848                         conf->disks[i].replacement = NULL;
6849                         clear_bit(Replacement, &rdev->flags);
6850                         conf->disks[i].rdev = rdev;
6851                 }
6852                 if (!rdev)
6853                         continue;
6854                 if (conf->disks[i].replacement &&
6855                     conf->reshape_progress != MaxSector) {
6856                         /* replacements and reshape simply do not mix. */
6857                         printk(KERN_ERR "md: cannot handle concurrent "
6858                                "replacement and reshape.\n");
6859                         goto abort;
6860                 }
6861                 if (test_bit(In_sync, &rdev->flags)) {
6862                         working_disks++;
6863                         continue;
6864                 }
6865                 /* This disc is not fully in-sync.  However if it
6866                  * just stored parity (beyond the recovery_offset),
6867                  * when we don't need to be concerned about the
6868                  * array being dirty.
6869                  * When reshape goes 'backwards', we never have
6870                  * partially completed devices, so we only need
6871                  * to worry about reshape going forwards.
6872                  */
6873                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6874                 if (mddev->major_version == 0 &&
6875                     mddev->minor_version > 90)
6876                         rdev->recovery_offset = reshape_offset;
6877
6878                 if (rdev->recovery_offset < reshape_offset) {
6879                         /* We need to check old and new layout */
6880                         if (!only_parity(rdev->raid_disk,
6881                                          conf->algorithm,
6882                                          conf->raid_disks,
6883                                          conf->max_degraded))
6884                                 continue;
6885                 }
6886                 if (!only_parity(rdev->raid_disk,
6887                                  conf->prev_algo,
6888                                  conf->previous_raid_disks,
6889                                  conf->max_degraded))
6890                         continue;
6891                 dirty_parity_disks++;
6892         }
6893
6894         /*
6895          * 0 for a fully functional array, 1 or 2 for a degraded array.
6896          */
6897         mddev->degraded = calc_degraded(conf);
6898
6899         if (has_failed(conf)) {
6900                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6901                         " (%d/%d failed)\n",
6902                         mdname(mddev), mddev->degraded, conf->raid_disks);
6903                 goto abort;
6904         }
6905
6906         /* device size must be a multiple of chunk size */
6907         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6908         mddev->resync_max_sectors = mddev->dev_sectors;
6909
6910         if (mddev->degraded > dirty_parity_disks &&
6911             mddev->recovery_cp != MaxSector) {
6912                 if (mddev->ok_start_degraded)
6913                         printk(KERN_WARNING
6914                                "md/raid:%s: starting dirty degraded array"
6915                                " - data corruption possible.\n",
6916                                mdname(mddev));
6917                 else {
6918                         printk(KERN_ERR
6919                                "md/raid:%s: cannot start dirty degraded array.\n",
6920                                mdname(mddev));
6921                         goto abort;
6922                 }
6923         }
6924
6925         if (mddev->degraded == 0)
6926                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6927                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6928                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6929                        mddev->new_layout);
6930         else
6931                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6932                        " out of %d devices, algorithm %d\n",
6933                        mdname(mddev), conf->level,
6934                        mddev->raid_disks - mddev->degraded,
6935                        mddev->raid_disks, mddev->new_layout);
6936
6937         print_raid5_conf(conf);
6938
6939         if (conf->reshape_progress != MaxSector) {
6940                 conf->reshape_safe = conf->reshape_progress;
6941                 atomic_set(&conf->reshape_stripes, 0);
6942                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6943                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6944                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6945                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6946                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6947                                                         "reshape");
6948         }
6949
6950         /* Ok, everything is just fine now */
6951         if (mddev->to_remove == &raid5_attrs_group)
6952                 mddev->to_remove = NULL;
6953         else if (mddev->kobj.sd &&
6954             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6955                 printk(KERN_WARNING
6956                        "raid5: failed to create sysfs attributes for %s\n",
6957                        mdname(mddev));
6958         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6959
6960         if (mddev->queue) {
6961                 int chunk_size;
6962                 bool discard_supported = true;
6963                 /* read-ahead size must cover two whole stripes, which
6964                  * is 2 * (datadisks) * chunksize where 'n' is the
6965                  * number of raid devices
6966                  */
6967                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6968                 int stripe = data_disks *
6969                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6970                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6971                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6972
6973                 chunk_size = mddev->chunk_sectors << 9;
6974                 blk_queue_io_min(mddev->queue, chunk_size);
6975                 blk_queue_io_opt(mddev->queue, chunk_size *
6976                                  (conf->raid_disks - conf->max_degraded));
6977                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6978                 /*
6979                  * We can only discard a whole stripe. It doesn't make sense to
6980                  * discard data disk but write parity disk
6981                  */
6982                 stripe = stripe * PAGE_SIZE;
6983                 /* Round up to power of 2, as discard handling
6984                  * currently assumes that */
6985                 while ((stripe-1) & stripe)
6986                         stripe = (stripe | (stripe-1)) + 1;
6987                 mddev->queue->limits.discard_alignment = stripe;
6988                 mddev->queue->limits.discard_granularity = stripe;
6989                 /*
6990                  * unaligned part of discard request will be ignored, so can't
6991                  * guarantee discard_zeroes_data
6992                  */
6993                 mddev->queue->limits.discard_zeroes_data = 0;
6994
6995                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6996
6997                 rdev_for_each(rdev, mddev) {
6998                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6999                                           rdev->data_offset << 9);
7000                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7001                                           rdev->new_data_offset << 9);
7002                         /*
7003                          * discard_zeroes_data is required, otherwise data
7004                          * could be lost. Consider a scenario: discard a stripe
7005                          * (the stripe could be inconsistent if
7006                          * discard_zeroes_data is 0); write one disk of the
7007                          * stripe (the stripe could be inconsistent again
7008                          * depending on which disks are used to calculate
7009                          * parity); the disk is broken; The stripe data of this
7010                          * disk is lost.
7011                          */
7012                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7013                             !bdev_get_queue(rdev->bdev)->
7014                                                 limits.discard_zeroes_data)
7015                                 discard_supported = false;
7016                         /* Unfortunately, discard_zeroes_data is not currently
7017                          * a guarantee - just a hint.  So we only allow DISCARD
7018                          * if the sysadmin has confirmed that only safe devices
7019                          * are in use by setting a module parameter.
7020                          */
7021                         if (!devices_handle_discard_safely) {
7022                                 if (discard_supported) {
7023                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7024                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7025                                 }
7026                                 discard_supported = false;
7027                         }
7028                 }
7029
7030                 if (discard_supported &&
7031                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7032                     mddev->queue->limits.discard_granularity >= stripe)
7033                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7034                                                 mddev->queue);
7035                 else
7036                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7037                                                 mddev->queue);
7038
7039                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7040         }
7041
7042         if (journal_dev) {
7043                 char b[BDEVNAME_SIZE];
7044
7045                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7046                        mdname(mddev), bdevname(journal_dev->bdev, b));
7047                 r5l_init_log(conf, journal_dev);
7048         }
7049
7050         return 0;
7051 abort:
7052         md_unregister_thread(&mddev->thread);
7053         print_raid5_conf(conf);
7054         free_conf(conf);
7055         mddev->private = NULL;
7056         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7057         return -EIO;
7058 }
7059
7060 static void raid5_free(struct mddev *mddev, void *priv)
7061 {
7062         struct r5conf *conf = priv;
7063
7064         free_conf(conf);
7065         mddev->to_remove = &raid5_attrs_group;
7066 }
7067
7068 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7069 {
7070         struct r5conf *conf = mddev->private;
7071         int i;
7072
7073         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7074                 conf->chunk_sectors / 2, mddev->layout);
7075         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7076         rcu_read_lock();
7077         for (i = 0; i < conf->raid_disks; i++) {
7078                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7079                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7080         }
7081         rcu_read_unlock();
7082         seq_printf (seq, "]");
7083 }
7084
7085 static void print_raid5_conf (struct r5conf *conf)
7086 {
7087         int i;
7088         struct disk_info *tmp;
7089
7090         printk(KERN_DEBUG "RAID conf printout:\n");
7091         if (!conf) {
7092                 printk("(conf==NULL)\n");
7093                 return;
7094         }
7095         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7096                conf->raid_disks,
7097                conf->raid_disks - conf->mddev->degraded);
7098
7099         for (i = 0; i < conf->raid_disks; i++) {
7100                 char b[BDEVNAME_SIZE];
7101                 tmp = conf->disks + i;
7102                 if (tmp->rdev)
7103                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7104                                i, !test_bit(Faulty, &tmp->rdev->flags),
7105                                bdevname(tmp->rdev->bdev, b));
7106         }
7107 }
7108
7109 static int raid5_spare_active(struct mddev *mddev)
7110 {
7111         int i;
7112         struct r5conf *conf = mddev->private;
7113         struct disk_info *tmp;
7114         int count = 0;
7115         unsigned long flags;
7116
7117         for (i = 0; i < conf->raid_disks; i++) {
7118                 tmp = conf->disks + i;
7119                 if (tmp->replacement
7120                     && tmp->replacement->recovery_offset == MaxSector
7121                     && !test_bit(Faulty, &tmp->replacement->flags)
7122                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7123                         /* Replacement has just become active. */
7124                         if (!tmp->rdev
7125                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7126                                 count++;
7127                         if (tmp->rdev) {
7128                                 /* Replaced device not technically faulty,
7129                                  * but we need to be sure it gets removed
7130                                  * and never re-added.
7131                                  */
7132                                 set_bit(Faulty, &tmp->rdev->flags);
7133                                 sysfs_notify_dirent_safe(
7134                                         tmp->rdev->sysfs_state);
7135                         }
7136                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7137                 } else if (tmp->rdev
7138                     && tmp->rdev->recovery_offset == MaxSector
7139                     && !test_bit(Faulty, &tmp->rdev->flags)
7140                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7141                         count++;
7142                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7143                 }
7144         }
7145         spin_lock_irqsave(&conf->device_lock, flags);
7146         mddev->degraded = calc_degraded(conf);
7147         spin_unlock_irqrestore(&conf->device_lock, flags);
7148         print_raid5_conf(conf);
7149         return count;
7150 }
7151
7152 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7153 {
7154         struct r5conf *conf = mddev->private;
7155         int err = 0;
7156         int number = rdev->raid_disk;
7157         struct md_rdev **rdevp;
7158         struct disk_info *p = conf->disks + number;
7159
7160         print_raid5_conf(conf);
7161         if (test_bit(Journal, &rdev->flags) && conf->log) {
7162                 struct r5l_log *log;
7163                 /*
7164                  * we can't wait pending write here, as this is called in
7165                  * raid5d, wait will deadlock.
7166                  */
7167                 if (atomic_read(&mddev->writes_pending))
7168                         return -EBUSY;
7169                 log = conf->log;
7170                 conf->log = NULL;
7171                 synchronize_rcu();
7172                 r5l_exit_log(log);
7173                 return 0;
7174         }
7175         if (rdev == p->rdev)
7176                 rdevp = &p->rdev;
7177         else if (rdev == p->replacement)
7178                 rdevp = &p->replacement;
7179         else
7180                 return 0;
7181
7182         if (number >= conf->raid_disks &&
7183             conf->reshape_progress == MaxSector)
7184                 clear_bit(In_sync, &rdev->flags);
7185
7186         if (test_bit(In_sync, &rdev->flags) ||
7187             atomic_read(&rdev->nr_pending)) {
7188                 err = -EBUSY;
7189                 goto abort;
7190         }
7191         /* Only remove non-faulty devices if recovery
7192          * isn't possible.
7193          */
7194         if (!test_bit(Faulty, &rdev->flags) &&
7195             mddev->recovery_disabled != conf->recovery_disabled &&
7196             !has_failed(conf) &&
7197             (!p->replacement || p->replacement == rdev) &&
7198             number < conf->raid_disks) {
7199                 err = -EBUSY;
7200                 goto abort;
7201         }
7202         *rdevp = NULL;
7203         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7204                 synchronize_rcu();
7205                 if (atomic_read(&rdev->nr_pending)) {
7206                         /* lost the race, try later */
7207                         err = -EBUSY;
7208                         *rdevp = rdev;
7209                 }
7210         }
7211         if (p->replacement) {
7212                 /* We must have just cleared 'rdev' */
7213                 p->rdev = p->replacement;
7214                 clear_bit(Replacement, &p->replacement->flags);
7215                 smp_mb(); /* Make sure other CPUs may see both as identical
7216                            * but will never see neither - if they are careful
7217                            */
7218                 p->replacement = NULL;
7219                 clear_bit(WantReplacement, &rdev->flags);
7220         } else
7221                 /* We might have just removed the Replacement as faulty-
7222                  * clear the bit just in case
7223                  */
7224                 clear_bit(WantReplacement, &rdev->flags);
7225 abort:
7226
7227         print_raid5_conf(conf);
7228         return err;
7229 }
7230
7231 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7232 {
7233         struct r5conf *conf = mddev->private;
7234         int err = -EEXIST;
7235         int disk;
7236         struct disk_info *p;
7237         int first = 0;
7238         int last = conf->raid_disks - 1;
7239
7240         if (test_bit(Journal, &rdev->flags)) {
7241                 char b[BDEVNAME_SIZE];
7242                 if (conf->log)
7243                         return -EBUSY;
7244
7245                 rdev->raid_disk = 0;
7246                 /*
7247                  * The array is in readonly mode if journal is missing, so no
7248                  * write requests running. We should be safe
7249                  */
7250                 r5l_init_log(conf, rdev);
7251                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7252                        mdname(mddev), bdevname(rdev->bdev, b));
7253                 return 0;
7254         }
7255         if (mddev->recovery_disabled == conf->recovery_disabled)
7256                 return -EBUSY;
7257
7258         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7259                 /* no point adding a device */
7260                 return -EINVAL;
7261
7262         if (rdev->raid_disk >= 0)
7263                 first = last = rdev->raid_disk;
7264
7265         /*
7266          * find the disk ... but prefer rdev->saved_raid_disk
7267          * if possible.
7268          */
7269         if (rdev->saved_raid_disk >= 0 &&
7270             rdev->saved_raid_disk >= first &&
7271             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7272                 first = rdev->saved_raid_disk;
7273
7274         for (disk = first; disk <= last; disk++) {
7275                 p = conf->disks + disk;
7276                 if (p->rdev == NULL) {
7277                         clear_bit(In_sync, &rdev->flags);
7278                         rdev->raid_disk = disk;
7279                         err = 0;
7280                         if (rdev->saved_raid_disk != disk)
7281                                 conf->fullsync = 1;
7282                         rcu_assign_pointer(p->rdev, rdev);
7283                         goto out;
7284                 }
7285         }
7286         for (disk = first; disk <= last; disk++) {
7287                 p = conf->disks + disk;
7288                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7289                     p->replacement == NULL) {
7290                         clear_bit(In_sync, &rdev->flags);
7291                         set_bit(Replacement, &rdev->flags);
7292                         rdev->raid_disk = disk;
7293                         err = 0;
7294                         conf->fullsync = 1;
7295                         rcu_assign_pointer(p->replacement, rdev);
7296                         break;
7297                 }
7298         }
7299 out:
7300         print_raid5_conf(conf);
7301         return err;
7302 }
7303
7304 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7305 {
7306         /* no resync is happening, and there is enough space
7307          * on all devices, so we can resize.
7308          * We need to make sure resync covers any new space.
7309          * If the array is shrinking we should possibly wait until
7310          * any io in the removed space completes, but it hardly seems
7311          * worth it.
7312          */
7313         sector_t newsize;
7314         struct r5conf *conf = mddev->private;
7315
7316         if (conf->log)
7317                 return -EINVAL;
7318         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7319         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7320         if (mddev->external_size &&
7321             mddev->array_sectors > newsize)
7322                 return -EINVAL;
7323         if (mddev->bitmap) {
7324                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7325                 if (ret)
7326                         return ret;
7327         }
7328         md_set_array_sectors(mddev, newsize);
7329         set_capacity(mddev->gendisk, mddev->array_sectors);
7330         revalidate_disk(mddev->gendisk);
7331         if (sectors > mddev->dev_sectors &&
7332             mddev->recovery_cp > mddev->dev_sectors) {
7333                 mddev->recovery_cp = mddev->dev_sectors;
7334                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7335         }
7336         mddev->dev_sectors = sectors;
7337         mddev->resync_max_sectors = sectors;
7338         return 0;
7339 }
7340
7341 static int check_stripe_cache(struct mddev *mddev)
7342 {
7343         /* Can only proceed if there are plenty of stripe_heads.
7344          * We need a minimum of one full stripe,, and for sensible progress
7345          * it is best to have about 4 times that.
7346          * If we require 4 times, then the default 256 4K stripe_heads will
7347          * allow for chunk sizes up to 256K, which is probably OK.
7348          * If the chunk size is greater, user-space should request more
7349          * stripe_heads first.
7350          */
7351         struct r5conf *conf = mddev->private;
7352         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7353             > conf->min_nr_stripes ||
7354             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7355             > conf->min_nr_stripes) {
7356                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7357                        mdname(mddev),
7358                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7359                         / STRIPE_SIZE)*4);
7360                 return 0;
7361         }
7362         return 1;
7363 }
7364
7365 static int check_reshape(struct mddev *mddev)
7366 {
7367         struct r5conf *conf = mddev->private;
7368
7369         if (conf->log)
7370                 return -EINVAL;
7371         if (mddev->delta_disks == 0 &&
7372             mddev->new_layout == mddev->layout &&
7373             mddev->new_chunk_sectors == mddev->chunk_sectors)
7374                 return 0; /* nothing to do */
7375         if (has_failed(conf))
7376                 return -EINVAL;
7377         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7378                 /* We might be able to shrink, but the devices must
7379                  * be made bigger first.
7380                  * For raid6, 4 is the minimum size.
7381                  * Otherwise 2 is the minimum
7382                  */
7383                 int min = 2;
7384                 if (mddev->level == 6)
7385                         min = 4;
7386                 if (mddev->raid_disks + mddev->delta_disks < min)
7387                         return -EINVAL;
7388         }
7389
7390         if (!check_stripe_cache(mddev))
7391                 return -ENOSPC;
7392
7393         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7394             mddev->delta_disks > 0)
7395                 if (resize_chunks(conf,
7396                                   conf->previous_raid_disks
7397                                   + max(0, mddev->delta_disks),
7398                                   max(mddev->new_chunk_sectors,
7399                                       mddev->chunk_sectors)
7400                             ) < 0)
7401                         return -ENOMEM;
7402         return resize_stripes(conf, (conf->previous_raid_disks
7403                                      + mddev->delta_disks));
7404 }
7405
7406 static int raid5_start_reshape(struct mddev *mddev)
7407 {
7408         struct r5conf *conf = mddev->private;
7409         struct md_rdev *rdev;
7410         int spares = 0;
7411         unsigned long flags;
7412
7413         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7414                 return -EBUSY;
7415
7416         if (!check_stripe_cache(mddev))
7417                 return -ENOSPC;
7418
7419         if (has_failed(conf))
7420                 return -EINVAL;
7421
7422         rdev_for_each(rdev, mddev) {
7423                 if (!test_bit(In_sync, &rdev->flags)
7424                     && !test_bit(Faulty, &rdev->flags))
7425                         spares++;
7426         }
7427
7428         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7429                 /* Not enough devices even to make a degraded array
7430                  * of that size
7431                  */
7432                 return -EINVAL;
7433
7434         /* Refuse to reduce size of the array.  Any reductions in
7435          * array size must be through explicit setting of array_size
7436          * attribute.
7437          */
7438         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7439             < mddev->array_sectors) {
7440                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7441                        "before number of disks\n", mdname(mddev));
7442                 return -EINVAL;
7443         }
7444
7445         atomic_set(&conf->reshape_stripes, 0);
7446         spin_lock_irq(&conf->device_lock);
7447         write_seqcount_begin(&conf->gen_lock);
7448         conf->previous_raid_disks = conf->raid_disks;
7449         conf->raid_disks += mddev->delta_disks;
7450         conf->prev_chunk_sectors = conf->chunk_sectors;
7451         conf->chunk_sectors = mddev->new_chunk_sectors;
7452         conf->prev_algo = conf->algorithm;
7453         conf->algorithm = mddev->new_layout;
7454         conf->generation++;
7455         /* Code that selects data_offset needs to see the generation update
7456          * if reshape_progress has been set - so a memory barrier needed.
7457          */
7458         smp_mb();
7459         if (mddev->reshape_backwards)
7460                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7461         else
7462                 conf->reshape_progress = 0;
7463         conf->reshape_safe = conf->reshape_progress;
7464         write_seqcount_end(&conf->gen_lock);
7465         spin_unlock_irq(&conf->device_lock);
7466
7467         /* Now make sure any requests that proceeded on the assumption
7468          * the reshape wasn't running - like Discard or Read - have
7469          * completed.
7470          */
7471         mddev_suspend(mddev);
7472         mddev_resume(mddev);
7473
7474         /* Add some new drives, as many as will fit.
7475          * We know there are enough to make the newly sized array work.
7476          * Don't add devices if we are reducing the number of
7477          * devices in the array.  This is because it is not possible
7478          * to correctly record the "partially reconstructed" state of
7479          * such devices during the reshape and confusion could result.
7480          */
7481         if (mddev->delta_disks >= 0) {
7482                 rdev_for_each(rdev, mddev)
7483                         if (rdev->raid_disk < 0 &&
7484                             !test_bit(Faulty, &rdev->flags)) {
7485                                 if (raid5_add_disk(mddev, rdev) == 0) {
7486                                         if (rdev->raid_disk
7487                                             >= conf->previous_raid_disks)
7488                                                 set_bit(In_sync, &rdev->flags);
7489                                         else
7490                                                 rdev->recovery_offset = 0;
7491
7492                                         if (sysfs_link_rdev(mddev, rdev))
7493                                                 /* Failure here is OK */;
7494                                 }
7495                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7496                                    && !test_bit(Faulty, &rdev->flags)) {
7497                                 /* This is a spare that was manually added */
7498                                 set_bit(In_sync, &rdev->flags);
7499                         }
7500
7501                 /* When a reshape changes the number of devices,
7502                  * ->degraded is measured against the larger of the
7503                  * pre and post number of devices.
7504                  */
7505                 spin_lock_irqsave(&conf->device_lock, flags);
7506                 mddev->degraded = calc_degraded(conf);
7507                 spin_unlock_irqrestore(&conf->device_lock, flags);
7508         }
7509         mddev->raid_disks = conf->raid_disks;
7510         mddev->reshape_position = conf->reshape_progress;
7511         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7512
7513         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7514         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7515         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7516         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7517         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7518         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7519                                                 "reshape");
7520         if (!mddev->sync_thread) {
7521                 mddev->recovery = 0;
7522                 spin_lock_irq(&conf->device_lock);
7523                 write_seqcount_begin(&conf->gen_lock);
7524                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7525                 mddev->new_chunk_sectors =
7526                         conf->chunk_sectors = conf->prev_chunk_sectors;
7527                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7528                 rdev_for_each(rdev, mddev)
7529                         rdev->new_data_offset = rdev->data_offset;
7530                 smp_wmb();
7531                 conf->generation --;
7532                 conf->reshape_progress = MaxSector;
7533                 mddev->reshape_position = MaxSector;
7534                 write_seqcount_end(&conf->gen_lock);
7535                 spin_unlock_irq(&conf->device_lock);
7536                 return -EAGAIN;
7537         }
7538         conf->reshape_checkpoint = jiffies;
7539         md_wakeup_thread(mddev->sync_thread);
7540         md_new_event(mddev);
7541         return 0;
7542 }
7543
7544 /* This is called from the reshape thread and should make any
7545  * changes needed in 'conf'
7546  */
7547 static void end_reshape(struct r5conf *conf)
7548 {
7549
7550         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7551                 struct md_rdev *rdev;
7552
7553                 spin_lock_irq(&conf->device_lock);
7554                 conf->previous_raid_disks = conf->raid_disks;
7555                 rdev_for_each(rdev, conf->mddev)
7556                         rdev->data_offset = rdev->new_data_offset;
7557                 smp_wmb();
7558                 conf->reshape_progress = MaxSector;
7559                 conf->mddev->reshape_position = MaxSector;
7560                 spin_unlock_irq(&conf->device_lock);
7561                 wake_up(&conf->wait_for_overlap);
7562
7563                 /* read-ahead size must cover two whole stripes, which is
7564                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7565                  */
7566                 if (conf->mddev->queue) {
7567                         int data_disks = conf->raid_disks - conf->max_degraded;
7568                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7569                                                    / PAGE_SIZE);
7570                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7571                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7572                 }
7573         }
7574 }
7575
7576 /* This is called from the raid5d thread with mddev_lock held.
7577  * It makes config changes to the device.
7578  */
7579 static void raid5_finish_reshape(struct mddev *mddev)
7580 {
7581         struct r5conf *conf = mddev->private;
7582
7583         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7584
7585                 if (mddev->delta_disks > 0) {
7586                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7587                         if (mddev->queue) {
7588                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7589                                 revalidate_disk(mddev->gendisk);
7590                         }
7591                 } else {
7592                         int d;
7593                         spin_lock_irq(&conf->device_lock);
7594                         mddev->degraded = calc_degraded(conf);
7595                         spin_unlock_irq(&conf->device_lock);
7596                         for (d = conf->raid_disks ;
7597                              d < conf->raid_disks - mddev->delta_disks;
7598                              d++) {
7599                                 struct md_rdev *rdev = conf->disks[d].rdev;
7600                                 if (rdev)
7601                                         clear_bit(In_sync, &rdev->flags);
7602                                 rdev = conf->disks[d].replacement;
7603                                 if (rdev)
7604                                         clear_bit(In_sync, &rdev->flags);
7605                         }
7606                 }
7607                 mddev->layout = conf->algorithm;
7608                 mddev->chunk_sectors = conf->chunk_sectors;
7609                 mddev->reshape_position = MaxSector;
7610                 mddev->delta_disks = 0;
7611                 mddev->reshape_backwards = 0;
7612         }
7613 }
7614
7615 static void raid5_quiesce(struct mddev *mddev, int state)
7616 {
7617         struct r5conf *conf = mddev->private;
7618
7619         switch(state) {
7620         case 2: /* resume for a suspend */
7621                 wake_up(&conf->wait_for_overlap);
7622                 break;
7623
7624         case 1: /* stop all writes */
7625                 lock_all_device_hash_locks_irq(conf);
7626                 /* '2' tells resync/reshape to pause so that all
7627                  * active stripes can drain
7628                  */
7629                 conf->quiesce = 2;
7630                 wait_event_cmd(conf->wait_for_quiescent,
7631                                     atomic_read(&conf->active_stripes) == 0 &&
7632                                     atomic_read(&conf->active_aligned_reads) == 0,
7633                                     unlock_all_device_hash_locks_irq(conf),
7634                                     lock_all_device_hash_locks_irq(conf));
7635                 conf->quiesce = 1;
7636                 unlock_all_device_hash_locks_irq(conf);
7637                 /* allow reshape to continue */
7638                 wake_up(&conf->wait_for_overlap);
7639                 break;
7640
7641         case 0: /* re-enable writes */
7642                 lock_all_device_hash_locks_irq(conf);
7643                 conf->quiesce = 0;
7644                 wake_up(&conf->wait_for_quiescent);
7645                 wake_up(&conf->wait_for_overlap);
7646                 unlock_all_device_hash_locks_irq(conf);
7647                 break;
7648         }
7649         r5l_quiesce(conf->log, state);
7650 }
7651
7652 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7653 {
7654         struct r0conf *raid0_conf = mddev->private;
7655         sector_t sectors;
7656
7657         /* for raid0 takeover only one zone is supported */
7658         if (raid0_conf->nr_strip_zones > 1) {
7659                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7660                        mdname(mddev));
7661                 return ERR_PTR(-EINVAL);
7662         }
7663
7664         sectors = raid0_conf->strip_zone[0].zone_end;
7665         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7666         mddev->dev_sectors = sectors;
7667         mddev->new_level = level;
7668         mddev->new_layout = ALGORITHM_PARITY_N;
7669         mddev->new_chunk_sectors = mddev->chunk_sectors;
7670         mddev->raid_disks += 1;
7671         mddev->delta_disks = 1;
7672         /* make sure it will be not marked as dirty */
7673         mddev->recovery_cp = MaxSector;
7674
7675         return setup_conf(mddev);
7676 }
7677
7678 static void *raid5_takeover_raid1(struct mddev *mddev)
7679 {
7680         int chunksect;
7681
7682         if (mddev->raid_disks != 2 ||
7683             mddev->degraded > 1)
7684                 return ERR_PTR(-EINVAL);
7685
7686         /* Should check if there are write-behind devices? */
7687
7688         chunksect = 64*2; /* 64K by default */
7689
7690         /* The array must be an exact multiple of chunksize */
7691         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7692                 chunksect >>= 1;
7693
7694         if ((chunksect<<9) < STRIPE_SIZE)
7695                 /* array size does not allow a suitable chunk size */
7696                 return ERR_PTR(-EINVAL);
7697
7698         mddev->new_level = 5;
7699         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7700         mddev->new_chunk_sectors = chunksect;
7701
7702         return setup_conf(mddev);
7703 }
7704
7705 static void *raid5_takeover_raid6(struct mddev *mddev)
7706 {
7707         int new_layout;
7708
7709         switch (mddev->layout) {
7710         case ALGORITHM_LEFT_ASYMMETRIC_6:
7711                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7712                 break;
7713         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7714                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7715                 break;
7716         case ALGORITHM_LEFT_SYMMETRIC_6:
7717                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7718                 break;
7719         case ALGORITHM_RIGHT_SYMMETRIC_6:
7720                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7721                 break;
7722         case ALGORITHM_PARITY_0_6:
7723                 new_layout = ALGORITHM_PARITY_0;
7724                 break;
7725         case ALGORITHM_PARITY_N:
7726                 new_layout = ALGORITHM_PARITY_N;
7727                 break;
7728         default:
7729                 return ERR_PTR(-EINVAL);
7730         }
7731         mddev->new_level = 5;
7732         mddev->new_layout = new_layout;
7733         mddev->delta_disks = -1;
7734         mddev->raid_disks -= 1;
7735         return setup_conf(mddev);
7736 }
7737
7738 static int raid5_check_reshape(struct mddev *mddev)
7739 {
7740         /* For a 2-drive array, the layout and chunk size can be changed
7741          * immediately as not restriping is needed.
7742          * For larger arrays we record the new value - after validation
7743          * to be used by a reshape pass.
7744          */
7745         struct r5conf *conf = mddev->private;
7746         int new_chunk = mddev->new_chunk_sectors;
7747
7748         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7749                 return -EINVAL;
7750         if (new_chunk > 0) {
7751                 if (!is_power_of_2(new_chunk))
7752                         return -EINVAL;
7753                 if (new_chunk < (PAGE_SIZE>>9))
7754                         return -EINVAL;
7755                 if (mddev->array_sectors & (new_chunk-1))
7756                         /* not factor of array size */
7757                         return -EINVAL;
7758         }
7759
7760         /* They look valid */
7761
7762         if (mddev->raid_disks == 2) {
7763                 /* can make the change immediately */
7764                 if (mddev->new_layout >= 0) {
7765                         conf->algorithm = mddev->new_layout;
7766                         mddev->layout = mddev->new_layout;
7767                 }
7768                 if (new_chunk > 0) {
7769                         conf->chunk_sectors = new_chunk ;
7770                         mddev->chunk_sectors = new_chunk;
7771                 }
7772                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7773                 md_wakeup_thread(mddev->thread);
7774         }
7775         return check_reshape(mddev);
7776 }
7777
7778 static int raid6_check_reshape(struct mddev *mddev)
7779 {
7780         int new_chunk = mddev->new_chunk_sectors;
7781
7782         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7783                 return -EINVAL;
7784         if (new_chunk > 0) {
7785                 if (!is_power_of_2(new_chunk))
7786                         return -EINVAL;
7787                 if (new_chunk < (PAGE_SIZE >> 9))
7788                         return -EINVAL;
7789                 if (mddev->array_sectors & (new_chunk-1))
7790                         /* not factor of array size */
7791                         return -EINVAL;
7792         }
7793
7794         /* They look valid */
7795         return check_reshape(mddev);
7796 }
7797
7798 static void *raid5_takeover(struct mddev *mddev)
7799 {
7800         /* raid5 can take over:
7801          *  raid0 - if there is only one strip zone - make it a raid4 layout
7802          *  raid1 - if there are two drives.  We need to know the chunk size
7803          *  raid4 - trivial - just use a raid4 layout.
7804          *  raid6 - Providing it is a *_6 layout
7805          */
7806         if (mddev->level == 0)
7807                 return raid45_takeover_raid0(mddev, 5);
7808         if (mddev->level == 1)
7809                 return raid5_takeover_raid1(mddev);
7810         if (mddev->level == 4) {
7811                 mddev->new_layout = ALGORITHM_PARITY_N;
7812                 mddev->new_level = 5;
7813                 return setup_conf(mddev);
7814         }
7815         if (mddev->level == 6)
7816                 return raid5_takeover_raid6(mddev);
7817
7818         return ERR_PTR(-EINVAL);
7819 }
7820
7821 static void *raid4_takeover(struct mddev *mddev)
7822 {
7823         /* raid4 can take over:
7824          *  raid0 - if there is only one strip zone
7825          *  raid5 - if layout is right
7826          */
7827         if (mddev->level == 0)
7828                 return raid45_takeover_raid0(mddev, 4);
7829         if (mddev->level == 5 &&
7830             mddev->layout == ALGORITHM_PARITY_N) {
7831                 mddev->new_layout = 0;
7832                 mddev->new_level = 4;
7833                 return setup_conf(mddev);
7834         }
7835         return ERR_PTR(-EINVAL);
7836 }
7837
7838 static struct md_personality raid5_personality;
7839
7840 static void *raid6_takeover(struct mddev *mddev)
7841 {
7842         /* Currently can only take over a raid5.  We map the
7843          * personality to an equivalent raid6 personality
7844          * with the Q block at the end.
7845          */
7846         int new_layout;
7847
7848         if (mddev->pers != &raid5_personality)
7849                 return ERR_PTR(-EINVAL);
7850         if (mddev->degraded > 1)
7851                 return ERR_PTR(-EINVAL);
7852         if (mddev->raid_disks > 253)
7853                 return ERR_PTR(-EINVAL);
7854         if (mddev->raid_disks < 3)
7855                 return ERR_PTR(-EINVAL);
7856
7857         switch (mddev->layout) {
7858         case ALGORITHM_LEFT_ASYMMETRIC:
7859                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7860                 break;
7861         case ALGORITHM_RIGHT_ASYMMETRIC:
7862                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7863                 break;
7864         case ALGORITHM_LEFT_SYMMETRIC:
7865                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7866                 break;
7867         case ALGORITHM_RIGHT_SYMMETRIC:
7868                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7869                 break;
7870         case ALGORITHM_PARITY_0:
7871                 new_layout = ALGORITHM_PARITY_0_6;
7872                 break;
7873         case ALGORITHM_PARITY_N:
7874                 new_layout = ALGORITHM_PARITY_N;
7875                 break;
7876         default:
7877                 return ERR_PTR(-EINVAL);
7878         }
7879         mddev->new_level = 6;
7880         mddev->new_layout = new_layout;
7881         mddev->delta_disks = 1;
7882         mddev->raid_disks += 1;
7883         return setup_conf(mddev);
7884 }
7885
7886 static struct md_personality raid6_personality =
7887 {
7888         .name           = "raid6",
7889         .level          = 6,
7890         .owner          = THIS_MODULE,
7891         .make_request   = raid5_make_request,
7892         .run            = raid5_run,
7893         .free           = raid5_free,
7894         .status         = raid5_status,
7895         .error_handler  = raid5_error,
7896         .hot_add_disk   = raid5_add_disk,
7897         .hot_remove_disk= raid5_remove_disk,
7898         .spare_active   = raid5_spare_active,
7899         .sync_request   = raid5_sync_request,
7900         .resize         = raid5_resize,
7901         .size           = raid5_size,
7902         .check_reshape  = raid6_check_reshape,
7903         .start_reshape  = raid5_start_reshape,
7904         .finish_reshape = raid5_finish_reshape,
7905         .quiesce        = raid5_quiesce,
7906         .takeover       = raid6_takeover,
7907         .congested      = raid5_congested,
7908 };
7909 static struct md_personality raid5_personality =
7910 {
7911         .name           = "raid5",
7912         .level          = 5,
7913         .owner          = THIS_MODULE,
7914         .make_request   = raid5_make_request,
7915         .run            = raid5_run,
7916         .free           = raid5_free,
7917         .status         = raid5_status,
7918         .error_handler  = raid5_error,
7919         .hot_add_disk   = raid5_add_disk,
7920         .hot_remove_disk= raid5_remove_disk,
7921         .spare_active   = raid5_spare_active,
7922         .sync_request   = raid5_sync_request,
7923         .resize         = raid5_resize,
7924         .size           = raid5_size,
7925         .check_reshape  = raid5_check_reshape,
7926         .start_reshape  = raid5_start_reshape,
7927         .finish_reshape = raid5_finish_reshape,
7928         .quiesce        = raid5_quiesce,
7929         .takeover       = raid5_takeover,
7930         .congested      = raid5_congested,
7931 };
7932
7933 static struct md_personality raid4_personality =
7934 {
7935         .name           = "raid4",
7936         .level          = 4,
7937         .owner          = THIS_MODULE,
7938         .make_request   = raid5_make_request,
7939         .run            = raid5_run,
7940         .free           = raid5_free,
7941         .status         = raid5_status,
7942         .error_handler  = raid5_error,
7943         .hot_add_disk   = raid5_add_disk,
7944         .hot_remove_disk= raid5_remove_disk,
7945         .spare_active   = raid5_spare_active,
7946         .sync_request   = raid5_sync_request,
7947         .resize         = raid5_resize,
7948         .size           = raid5_size,
7949         .check_reshape  = raid5_check_reshape,
7950         .start_reshape  = raid5_start_reshape,
7951         .finish_reshape = raid5_finish_reshape,
7952         .quiesce        = raid5_quiesce,
7953         .takeover       = raid4_takeover,
7954         .congested      = raid5_congested,
7955 };
7956
7957 static int __init raid5_init(void)
7958 {
7959         int ret;
7960
7961         raid5_wq = alloc_workqueue("raid5wq",
7962                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7963         if (!raid5_wq)
7964                 return -ENOMEM;
7965
7966         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
7967                                       "md/raid5:prepare",
7968                                       raid456_cpu_up_prepare,
7969                                       raid456_cpu_dead);
7970         if (ret) {
7971                 destroy_workqueue(raid5_wq);
7972                 return ret;
7973         }
7974         register_md_personality(&raid6_personality);
7975         register_md_personality(&raid5_personality);
7976         register_md_personality(&raid4_personality);
7977         return 0;
7978 }
7979
7980 static void raid5_exit(void)
7981 {
7982         unregister_md_personality(&raid6_personality);
7983         unregister_md_personality(&raid5_personality);
7984         unregister_md_personality(&raid4_personality);
7985         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
7986         destroy_workqueue(raid5_wq);
7987 }
7988
7989 module_init(raid5_init);
7990 module_exit(raid5_exit);
7991 MODULE_LICENSE("GPL");
7992 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7993 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7994 MODULE_ALIAS("md-raid5");
7995 MODULE_ALIAS("md-raid4");
7996 MODULE_ALIAS("md-level-5");
7997 MODULE_ALIAS("md-level-4");
7998 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7999 MODULE_ALIAS("md-raid6");
8000 MODULE_ALIAS("md-level-6");
8001
8002 /* This used to be two separate modules, they were: */
8003 MODULE_ALIAS("raid5");
8004 MODULE_ALIAS("raid6");