]> rtime.felk.cvut.cz Git - zynq/linux.git/blob - arch/arm/kvm/arm.c
Apply preempt_rt patch-4.9-rt1.patch.xz
[zynq/linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73         BUG_ON(preemptible());
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79  * Must be called from non-preemptible context
80  */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83         BUG_ON(preemptible());
84         return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89  */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92         return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret, cpu;
118
119         if (type)
120                 return -EINVAL;
121
122         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123         if (!kvm->arch.last_vcpu_ran)
124                 return -ENOMEM;
125
126         for_each_possible_cpu(cpu)
127                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129         ret = kvm_alloc_stage2_pgd(kvm);
130         if (ret)
131                 goto out_fail_alloc;
132
133         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134         if (ret)
135                 goto out_free_stage2_pgd;
136
137         kvm_vgic_early_init(kvm);
138         kvm_timer_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         free_percpu(kvm->arch.last_vcpu_ran);
181         kvm->arch.last_vcpu_ran = NULL;
182
183         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184                 if (kvm->vcpus[i]) {
185                         kvm_arch_vcpu_free(kvm->vcpus[i]);
186                         kvm->vcpus[i] = NULL;
187                 }
188         }
189
190         kvm_vgic_destroy(kvm);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210                 r = 1;
211                 break;
212         case KVM_CAP_COALESCED_MMIO:
213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214                 break;
215         case KVM_CAP_ARM_SET_DEVICE_ADDR:
216                 r = 1;
217                 break;
218         case KVM_CAP_NR_VCPUS:
219                 r = num_online_cpus();
220                 break;
221         case KVM_CAP_MAX_VCPUS:
222                 r = KVM_MAX_VCPUS;
223                 break;
224         default:
225                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226                 break;
227         }
228         return r;
229 }
230
231 long kvm_arch_dev_ioctl(struct file *filp,
232                         unsigned int ioctl, unsigned long arg)
233 {
234         return -EINVAL;
235 }
236
237
238 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
239 {
240         int err;
241         struct kvm_vcpu *vcpu;
242
243         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
244                 err = -EBUSY;
245                 goto out;
246         }
247
248         if (id >= kvm->arch.max_vcpus) {
249                 err = -EINVAL;
250                 goto out;
251         }
252
253         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
254         if (!vcpu) {
255                 err = -ENOMEM;
256                 goto out;
257         }
258
259         err = kvm_vcpu_init(vcpu, kvm, id);
260         if (err)
261                 goto free_vcpu;
262
263         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264         if (err)
265                 goto vcpu_uninit;
266
267         return vcpu;
268 vcpu_uninit:
269         kvm_vcpu_uninit(vcpu);
270 free_vcpu:
271         kmem_cache_free(kvm_vcpu_cache, vcpu);
272 out:
273         return ERR_PTR(err);
274 }
275
276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
277 {
278         kvm_vgic_vcpu_early_init(vcpu);
279 }
280
281 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
282 {
283         kvm_mmu_free_memory_caches(vcpu);
284         kvm_timer_vcpu_terminate(vcpu);
285         kvm_vgic_vcpu_destroy(vcpu);
286         kvm_pmu_vcpu_destroy(vcpu);
287         kvm_vcpu_uninit(vcpu);
288         kmem_cache_free(kvm_vcpu_cache, vcpu);
289 }
290
291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293         kvm_arch_vcpu_free(vcpu);
294 }
295
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298         return kvm_timer_should_fire(vcpu);
299 }
300
301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
302 {
303         kvm_timer_schedule(vcpu);
304 }
305
306 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
307 {
308         kvm_timer_unschedule(vcpu);
309 }
310
311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
312 {
313         /* Force users to call KVM_ARM_VCPU_INIT */
314         vcpu->arch.target = -1;
315         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316
317         /* Set up the timer */
318         kvm_timer_vcpu_init(vcpu);
319
320         kvm_arm_reset_debug_ptr(vcpu);
321
322         return 0;
323 }
324
325 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
326 {
327         int *last_ran;
328
329         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
330
331         /*
332          * We might get preempted before the vCPU actually runs, but
333          * over-invalidation doesn't affect correctness.
334          */
335         if (*last_ran != vcpu->vcpu_id) {
336                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
337                 *last_ran = vcpu->vcpu_id;
338         }
339
340         vcpu->cpu = cpu;
341         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
342
343         kvm_arm_set_running_vcpu(vcpu);
344 }
345
346 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
347 {
348         /*
349          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
350          * if the vcpu is no longer assigned to a cpu.  This is used for the
351          * optimized make_all_cpus_request path.
352          */
353         vcpu->cpu = -1;
354
355         kvm_arm_set_running_vcpu(NULL);
356         kvm_timer_vcpu_put(vcpu);
357 }
358
359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
360                                     struct kvm_mp_state *mp_state)
361 {
362         if (vcpu->arch.power_off)
363                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
364         else
365                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
366
367         return 0;
368 }
369
370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371                                     struct kvm_mp_state *mp_state)
372 {
373         switch (mp_state->mp_state) {
374         case KVM_MP_STATE_RUNNABLE:
375                 vcpu->arch.power_off = false;
376                 break;
377         case KVM_MP_STATE_STOPPED:
378                 vcpu->arch.power_off = true;
379                 break;
380         default:
381                 return -EINVAL;
382         }
383
384         return 0;
385 }
386
387 /**
388  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
389  * @v:          The VCPU pointer
390  *
391  * If the guest CPU is not waiting for interrupts or an interrupt line is
392  * asserted, the CPU is by definition runnable.
393  */
394 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
395 {
396         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397                 && !v->arch.power_off && !v->arch.pause);
398 }
399
400 /* Just ensure a guest exit from a particular CPU */
401 static void exit_vm_noop(void *info)
402 {
403 }
404
405 void force_vm_exit(const cpumask_t *mask)
406 {
407         preempt_disable();
408         smp_call_function_many(mask, exit_vm_noop, NULL, true);
409         preempt_enable();
410 }
411
412 /**
413  * need_new_vmid_gen - check that the VMID is still valid
414  * @kvm: The VM's VMID to check
415  *
416  * return true if there is a new generation of VMIDs being used
417  *
418  * The hardware supports only 256 values with the value zero reserved for the
419  * host, so we check if an assigned value belongs to a previous generation,
420  * which which requires us to assign a new value. If we're the first to use a
421  * VMID for the new generation, we must flush necessary caches and TLBs on all
422  * CPUs.
423  */
424 static bool need_new_vmid_gen(struct kvm *kvm)
425 {
426         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
427 }
428
429 /**
430  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
431  * @kvm The guest that we are about to run
432  *
433  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
434  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
435  * caches and TLBs.
436  */
437 static void update_vttbr(struct kvm *kvm)
438 {
439         phys_addr_t pgd_phys;
440         u64 vmid;
441
442         if (!need_new_vmid_gen(kvm))
443                 return;
444
445         spin_lock(&kvm_vmid_lock);
446
447         /*
448          * We need to re-check the vmid_gen here to ensure that if another vcpu
449          * already allocated a valid vmid for this vm, then this vcpu should
450          * use the same vmid.
451          */
452         if (!need_new_vmid_gen(kvm)) {
453                 spin_unlock(&kvm_vmid_lock);
454                 return;
455         }
456
457         /* First user of a new VMID generation? */
458         if (unlikely(kvm_next_vmid == 0)) {
459                 atomic64_inc(&kvm_vmid_gen);
460                 kvm_next_vmid = 1;
461
462                 /*
463                  * On SMP we know no other CPUs can use this CPU's or each
464                  * other's VMID after force_vm_exit returns since the
465                  * kvm_vmid_lock blocks them from reentry to the guest.
466                  */
467                 force_vm_exit(cpu_all_mask);
468                 /*
469                  * Now broadcast TLB + ICACHE invalidation over the inner
470                  * shareable domain to make sure all data structures are
471                  * clean.
472                  */
473                 kvm_call_hyp(__kvm_flush_vm_context);
474         }
475
476         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
477         kvm->arch.vmid = kvm_next_vmid;
478         kvm_next_vmid++;
479         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
480
481         /* update vttbr to be used with the new vmid */
482         pgd_phys = virt_to_phys(kvm->arch.pgd);
483         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485         kvm->arch.vttbr = pgd_phys | vmid;
486
487         spin_unlock(&kvm_vmid_lock);
488 }
489
490 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
491 {
492         struct kvm *kvm = vcpu->kvm;
493         int ret = 0;
494
495         if (likely(vcpu->arch.has_run_once))
496                 return 0;
497
498         vcpu->arch.has_run_once = true;
499
500         /*
501          * Map the VGIC hardware resources before running a vcpu the first
502          * time on this VM.
503          */
504         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505                 ret = kvm_vgic_map_resources(kvm);
506                 if (ret)
507                         return ret;
508         }
509
510         /*
511          * Enable the arch timers only if we have an in-kernel VGIC
512          * and it has been properly initialized, since we cannot handle
513          * interrupts from the virtual timer with a userspace gic.
514          */
515         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516                 ret = kvm_timer_enable(vcpu);
517
518         return ret;
519 }
520
521 bool kvm_arch_intc_initialized(struct kvm *kvm)
522 {
523         return vgic_initialized(kvm);
524 }
525
526 void kvm_arm_halt_guest(struct kvm *kvm)
527 {
528         int i;
529         struct kvm_vcpu *vcpu;
530
531         kvm_for_each_vcpu(i, vcpu, kvm)
532                 vcpu->arch.pause = true;
533         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
534 }
535
536 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
537 {
538         vcpu->arch.pause = true;
539         kvm_vcpu_kick(vcpu);
540 }
541
542 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
543 {
544         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
545
546         vcpu->arch.pause = false;
547         swake_up(wq);
548 }
549
550 void kvm_arm_resume_guest(struct kvm *kvm)
551 {
552         int i;
553         struct kvm_vcpu *vcpu;
554
555         kvm_for_each_vcpu(i, vcpu, kvm)
556                 kvm_arm_resume_vcpu(vcpu);
557 }
558
559 static void vcpu_sleep(struct kvm_vcpu *vcpu)
560 {
561         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
562
563         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564                                        (!vcpu->arch.pause)));
565 }
566
567 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
568 {
569         return vcpu->arch.target >= 0;
570 }
571
572 /**
573  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
574  * @vcpu:       The VCPU pointer
575  * @run:        The kvm_run structure pointer used for userspace state exchange
576  *
577  * This function is called through the VCPU_RUN ioctl called from user space. It
578  * will execute VM code in a loop until the time slice for the process is used
579  * or some emulation is needed from user space in which case the function will
580  * return with return value 0 and with the kvm_run structure filled in with the
581  * required data for the requested emulation.
582  */
583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
584 {
585         int ret;
586         sigset_t sigsaved;
587
588         if (unlikely(!kvm_vcpu_initialized(vcpu)))
589                 return -ENOEXEC;
590
591         ret = kvm_vcpu_first_run_init(vcpu);
592         if (ret)
593                 return ret;
594
595         if (run->exit_reason == KVM_EXIT_MMIO) {
596                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
597                 if (ret)
598                         return ret;
599         }
600
601         if (vcpu->sigset_active)
602                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
603
604         ret = 1;
605         run->exit_reason = KVM_EXIT_UNKNOWN;
606         while (ret > 0) {
607                 /*
608                  * Check conditions before entering the guest
609                  */
610                 cond_resched();
611
612                 update_vttbr(vcpu->kvm);
613
614                 if (vcpu->arch.power_off || vcpu->arch.pause)
615                         vcpu_sleep(vcpu);
616
617                 /*
618                  * Preparing the interrupts to be injected also
619                  * involves poking the GIC, which must be done in a
620                  * non-preemptible context.
621                  */
622                 migrate_disable();
623                 kvm_pmu_flush_hwstate(vcpu);
624                 kvm_timer_flush_hwstate(vcpu);
625                 kvm_vgic_flush_hwstate(vcpu);
626
627                 local_irq_disable();
628
629                 /*
630                  * Re-check atomic conditions
631                  */
632                 if (signal_pending(current)) {
633                         ret = -EINTR;
634                         run->exit_reason = KVM_EXIT_INTR;
635                 }
636
637                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638                         vcpu->arch.power_off || vcpu->arch.pause) {
639                         local_irq_enable();
640                         kvm_pmu_sync_hwstate(vcpu);
641                         kvm_timer_sync_hwstate(vcpu);
642                         kvm_vgic_sync_hwstate(vcpu);
643                         migrate_enable();
644                         continue;
645                 }
646
647                 kvm_arm_setup_debug(vcpu);
648
649                 /**************************************************************
650                  * Enter the guest
651                  */
652                 trace_kvm_entry(*vcpu_pc(vcpu));
653                 guest_enter_irqoff();
654                 vcpu->mode = IN_GUEST_MODE;
655
656                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
657
658                 vcpu->mode = OUTSIDE_GUEST_MODE;
659                 vcpu->stat.exits++;
660                 /*
661                  * Back from guest
662                  *************************************************************/
663
664                 kvm_arm_clear_debug(vcpu);
665
666                 /*
667                  * We may have taken a host interrupt in HYP mode (ie
668                  * while executing the guest). This interrupt is still
669                  * pending, as we haven't serviced it yet!
670                  *
671                  * We're now back in SVC mode, with interrupts
672                  * disabled.  Enabling the interrupts now will have
673                  * the effect of taking the interrupt again, in SVC
674                  * mode this time.
675                  */
676                 local_irq_enable();
677
678                 /*
679                  * We do local_irq_enable() before calling guest_exit() so
680                  * that if a timer interrupt hits while running the guest we
681                  * account that tick as being spent in the guest.  We enable
682                  * preemption after calling guest_exit() so that if we get
683                  * preempted we make sure ticks after that is not counted as
684                  * guest time.
685                  */
686                 guest_exit();
687                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
688
689                 /*
690                  * We must sync the PMU and timer state before the vgic state so
691                  * that the vgic can properly sample the updated state of the
692                  * interrupt line.
693                  */
694                 kvm_pmu_sync_hwstate(vcpu);
695                 kvm_timer_sync_hwstate(vcpu);
696
697                 kvm_vgic_sync_hwstate(vcpu);
698
699                 migrate_enable();
700
701                 ret = handle_exit(vcpu, run, ret);
702         }
703
704         if (vcpu->sigset_active)
705                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
706         return ret;
707 }
708
709 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
710 {
711         int bit_index;
712         bool set;
713         unsigned long *ptr;
714
715         if (number == KVM_ARM_IRQ_CPU_IRQ)
716                 bit_index = __ffs(HCR_VI);
717         else /* KVM_ARM_IRQ_CPU_FIQ */
718                 bit_index = __ffs(HCR_VF);
719
720         ptr = (unsigned long *)&vcpu->arch.irq_lines;
721         if (level)
722                 set = test_and_set_bit(bit_index, ptr);
723         else
724                 set = test_and_clear_bit(bit_index, ptr);
725
726         /*
727          * If we didn't change anything, no need to wake up or kick other CPUs
728          */
729         if (set == level)
730                 return 0;
731
732         /*
733          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
734          * trigger a world-switch round on the running physical CPU to set the
735          * virtual IRQ/FIQ fields in the HCR appropriately.
736          */
737         kvm_vcpu_kick(vcpu);
738
739         return 0;
740 }
741
742 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
743                           bool line_status)
744 {
745         u32 irq = irq_level->irq;
746         unsigned int irq_type, vcpu_idx, irq_num;
747         int nrcpus = atomic_read(&kvm->online_vcpus);
748         struct kvm_vcpu *vcpu = NULL;
749         bool level = irq_level->level;
750
751         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
752         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
753         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
754
755         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
756
757         switch (irq_type) {
758         case KVM_ARM_IRQ_TYPE_CPU:
759                 if (irqchip_in_kernel(kvm))
760                         return -ENXIO;
761
762                 if (vcpu_idx >= nrcpus)
763                         return -EINVAL;
764
765                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
766                 if (!vcpu)
767                         return -EINVAL;
768
769                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
770                         return -EINVAL;
771
772                 return vcpu_interrupt_line(vcpu, irq_num, level);
773         case KVM_ARM_IRQ_TYPE_PPI:
774                 if (!irqchip_in_kernel(kvm))
775                         return -ENXIO;
776
777                 if (vcpu_idx >= nrcpus)
778                         return -EINVAL;
779
780                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
781                 if (!vcpu)
782                         return -EINVAL;
783
784                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
785                         return -EINVAL;
786
787                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
788         case KVM_ARM_IRQ_TYPE_SPI:
789                 if (!irqchip_in_kernel(kvm))
790                         return -ENXIO;
791
792                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
793                         return -EINVAL;
794
795                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
796         }
797
798         return -EINVAL;
799 }
800
801 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
802                                const struct kvm_vcpu_init *init)
803 {
804         unsigned int i;
805         int phys_target = kvm_target_cpu();
806
807         if (init->target != phys_target)
808                 return -EINVAL;
809
810         /*
811          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
812          * use the same target.
813          */
814         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
815                 return -EINVAL;
816
817         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
818         for (i = 0; i < sizeof(init->features) * 8; i++) {
819                 bool set = (init->features[i / 32] & (1 << (i % 32)));
820
821                 if (set && i >= KVM_VCPU_MAX_FEATURES)
822                         return -ENOENT;
823
824                 /*
825                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
826                  * use the same feature set.
827                  */
828                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
829                     test_bit(i, vcpu->arch.features) != set)
830                         return -EINVAL;
831
832                 if (set)
833                         set_bit(i, vcpu->arch.features);
834         }
835
836         vcpu->arch.target = phys_target;
837
838         /* Now we know what it is, we can reset it. */
839         return kvm_reset_vcpu(vcpu);
840 }
841
842
843 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
844                                          struct kvm_vcpu_init *init)
845 {
846         int ret;
847
848         ret = kvm_vcpu_set_target(vcpu, init);
849         if (ret)
850                 return ret;
851
852         /*
853          * Ensure a rebooted VM will fault in RAM pages and detect if the
854          * guest MMU is turned off and flush the caches as needed.
855          */
856         if (vcpu->arch.has_run_once)
857                 stage2_unmap_vm(vcpu->kvm);
858
859         vcpu_reset_hcr(vcpu);
860
861         /*
862          * Handle the "start in power-off" case.
863          */
864         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
865                 vcpu->arch.power_off = true;
866         else
867                 vcpu->arch.power_off = false;
868
869         return 0;
870 }
871
872 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
873                                  struct kvm_device_attr *attr)
874 {
875         int ret = -ENXIO;
876
877         switch (attr->group) {
878         default:
879                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
880                 break;
881         }
882
883         return ret;
884 }
885
886 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
887                                  struct kvm_device_attr *attr)
888 {
889         int ret = -ENXIO;
890
891         switch (attr->group) {
892         default:
893                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
894                 break;
895         }
896
897         return ret;
898 }
899
900 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
901                                  struct kvm_device_attr *attr)
902 {
903         int ret = -ENXIO;
904
905         switch (attr->group) {
906         default:
907                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
908                 break;
909         }
910
911         return ret;
912 }
913
914 long kvm_arch_vcpu_ioctl(struct file *filp,
915                          unsigned int ioctl, unsigned long arg)
916 {
917         struct kvm_vcpu *vcpu = filp->private_data;
918         void __user *argp = (void __user *)arg;
919         struct kvm_device_attr attr;
920
921         switch (ioctl) {
922         case KVM_ARM_VCPU_INIT: {
923                 struct kvm_vcpu_init init;
924
925                 if (copy_from_user(&init, argp, sizeof(init)))
926                         return -EFAULT;
927
928                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
929         }
930         case KVM_SET_ONE_REG:
931         case KVM_GET_ONE_REG: {
932                 struct kvm_one_reg reg;
933
934                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
935                         return -ENOEXEC;
936
937                 if (copy_from_user(&reg, argp, sizeof(reg)))
938                         return -EFAULT;
939                 if (ioctl == KVM_SET_ONE_REG)
940                         return kvm_arm_set_reg(vcpu, &reg);
941                 else
942                         return kvm_arm_get_reg(vcpu, &reg);
943         }
944         case KVM_GET_REG_LIST: {
945                 struct kvm_reg_list __user *user_list = argp;
946                 struct kvm_reg_list reg_list;
947                 unsigned n;
948
949                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
950                         return -ENOEXEC;
951
952                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
953                         return -EFAULT;
954                 n = reg_list.n;
955                 reg_list.n = kvm_arm_num_regs(vcpu);
956                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
957                         return -EFAULT;
958                 if (n < reg_list.n)
959                         return -E2BIG;
960                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
961         }
962         case KVM_SET_DEVICE_ATTR: {
963                 if (copy_from_user(&attr, argp, sizeof(attr)))
964                         return -EFAULT;
965                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
966         }
967         case KVM_GET_DEVICE_ATTR: {
968                 if (copy_from_user(&attr, argp, sizeof(attr)))
969                         return -EFAULT;
970                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
971         }
972         case KVM_HAS_DEVICE_ATTR: {
973                 if (copy_from_user(&attr, argp, sizeof(attr)))
974                         return -EFAULT;
975                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
976         }
977         default:
978                 return -EINVAL;
979         }
980 }
981
982 /**
983  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
984  * @kvm: kvm instance
985  * @log: slot id and address to which we copy the log
986  *
987  * Steps 1-4 below provide general overview of dirty page logging. See
988  * kvm_get_dirty_log_protect() function description for additional details.
989  *
990  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
991  * always flush the TLB (step 4) even if previous step failed  and the dirty
992  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
993  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
994  * writes will be marked dirty for next log read.
995  *
996  *   1. Take a snapshot of the bit and clear it if needed.
997  *   2. Write protect the corresponding page.
998  *   3. Copy the snapshot to the userspace.
999  *   4. Flush TLB's if needed.
1000  */
1001 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1002 {
1003         bool is_dirty = false;
1004         int r;
1005
1006         mutex_lock(&kvm->slots_lock);
1007
1008         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1009
1010         if (is_dirty)
1011                 kvm_flush_remote_tlbs(kvm);
1012
1013         mutex_unlock(&kvm->slots_lock);
1014         return r;
1015 }
1016
1017 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1018                                         struct kvm_arm_device_addr *dev_addr)
1019 {
1020         unsigned long dev_id, type;
1021
1022         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1023                 KVM_ARM_DEVICE_ID_SHIFT;
1024         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1025                 KVM_ARM_DEVICE_TYPE_SHIFT;
1026
1027         switch (dev_id) {
1028         case KVM_ARM_DEVICE_VGIC_V2:
1029                 if (!vgic_present)
1030                         return -ENXIO;
1031                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1032         default:
1033                 return -ENODEV;
1034         }
1035 }
1036
1037 long kvm_arch_vm_ioctl(struct file *filp,
1038                        unsigned int ioctl, unsigned long arg)
1039 {
1040         struct kvm *kvm = filp->private_data;
1041         void __user *argp = (void __user *)arg;
1042
1043         switch (ioctl) {
1044         case KVM_CREATE_IRQCHIP: {
1045                 int ret;
1046                 if (!vgic_present)
1047                         return -ENXIO;
1048                 mutex_lock(&kvm->lock);
1049                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1050                 mutex_unlock(&kvm->lock);
1051                 return ret;
1052         }
1053         case KVM_ARM_SET_DEVICE_ADDR: {
1054                 struct kvm_arm_device_addr dev_addr;
1055
1056                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1057                         return -EFAULT;
1058                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1059         }
1060         case KVM_ARM_PREFERRED_TARGET: {
1061                 int err;
1062                 struct kvm_vcpu_init init;
1063
1064                 err = kvm_vcpu_preferred_target(&init);
1065                 if (err)
1066                         return err;
1067
1068                 if (copy_to_user(argp, &init, sizeof(init)))
1069                         return -EFAULT;
1070
1071                 return 0;
1072         }
1073         default:
1074                 return -EINVAL;
1075         }
1076 }
1077
1078 static void cpu_init_hyp_mode(void *dummy)
1079 {
1080         phys_addr_t pgd_ptr;
1081         unsigned long hyp_stack_ptr;
1082         unsigned long stack_page;
1083         unsigned long vector_ptr;
1084
1085         /* Switch from the HYP stub to our own HYP init vector */
1086         __hyp_set_vectors(kvm_get_idmap_vector());
1087
1088         pgd_ptr = kvm_mmu_get_httbr();
1089         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1090         hyp_stack_ptr = stack_page + PAGE_SIZE;
1091         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1092
1093         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1094         __cpu_init_stage2();
1095
1096         kvm_arm_init_debug();
1097 }
1098
1099 static void cpu_hyp_reinit(void)
1100 {
1101         if (is_kernel_in_hyp_mode()) {
1102                 /*
1103                  * __cpu_init_stage2() is safe to call even if the PM
1104                  * event was cancelled before the CPU was reset.
1105                  */
1106                 __cpu_init_stage2();
1107         } else {
1108                 if (__hyp_get_vectors() == hyp_default_vectors)
1109                         cpu_init_hyp_mode(NULL);
1110         }
1111 }
1112
1113 static void cpu_hyp_reset(void)
1114 {
1115         if (!is_kernel_in_hyp_mode())
1116                 __cpu_reset_hyp_mode(hyp_default_vectors,
1117                                      kvm_get_idmap_start());
1118 }
1119
1120 static void _kvm_arch_hardware_enable(void *discard)
1121 {
1122         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1123                 cpu_hyp_reinit();
1124                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1125         }
1126 }
1127
1128 int kvm_arch_hardware_enable(void)
1129 {
1130         _kvm_arch_hardware_enable(NULL);
1131         return 0;
1132 }
1133
1134 static void _kvm_arch_hardware_disable(void *discard)
1135 {
1136         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1137                 cpu_hyp_reset();
1138                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1139         }
1140 }
1141
1142 void kvm_arch_hardware_disable(void)
1143 {
1144         _kvm_arch_hardware_disable(NULL);
1145 }
1146
1147 #ifdef CONFIG_CPU_PM
1148 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1149                                     unsigned long cmd,
1150                                     void *v)
1151 {
1152         /*
1153          * kvm_arm_hardware_enabled is left with its old value over
1154          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1155          * re-enable hyp.
1156          */
1157         switch (cmd) {
1158         case CPU_PM_ENTER:
1159                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1160                         /*
1161                          * don't update kvm_arm_hardware_enabled here
1162                          * so that the hardware will be re-enabled
1163                          * when we resume. See below.
1164                          */
1165                         cpu_hyp_reset();
1166
1167                 return NOTIFY_OK;
1168         case CPU_PM_EXIT:
1169                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1170                         /* The hardware was enabled before suspend. */
1171                         cpu_hyp_reinit();
1172
1173                 return NOTIFY_OK;
1174
1175         default:
1176                 return NOTIFY_DONE;
1177         }
1178 }
1179
1180 static struct notifier_block hyp_init_cpu_pm_nb = {
1181         .notifier_call = hyp_init_cpu_pm_notifier,
1182 };
1183
1184 static void __init hyp_cpu_pm_init(void)
1185 {
1186         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1187 }
1188 static void __init hyp_cpu_pm_exit(void)
1189 {
1190         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1191 }
1192 #else
1193 static inline void hyp_cpu_pm_init(void)
1194 {
1195 }
1196 static inline void hyp_cpu_pm_exit(void)
1197 {
1198 }
1199 #endif
1200
1201 static void teardown_common_resources(void)
1202 {
1203         free_percpu(kvm_host_cpu_state);
1204 }
1205
1206 static int init_common_resources(void)
1207 {
1208         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1209         if (!kvm_host_cpu_state) {
1210                 kvm_err("Cannot allocate host CPU state\n");
1211                 return -ENOMEM;
1212         }
1213
1214         /* set size of VMID supported by CPU */
1215         kvm_vmid_bits = kvm_get_vmid_bits();
1216         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1217
1218         return 0;
1219 }
1220
1221 static int init_subsystems(void)
1222 {
1223         int err = 0;
1224
1225         /*
1226          * Enable hardware so that subsystem initialisation can access EL2.
1227          */
1228         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1229
1230         /*
1231          * Register CPU lower-power notifier
1232          */
1233         hyp_cpu_pm_init();
1234
1235         /*
1236          * Init HYP view of VGIC
1237          */
1238         err = kvm_vgic_hyp_init();
1239         switch (err) {
1240         case 0:
1241                 vgic_present = true;
1242                 break;
1243         case -ENODEV:
1244         case -ENXIO:
1245                 vgic_present = false;
1246                 err = 0;
1247                 break;
1248         default:
1249                 goto out;
1250         }
1251
1252         /*
1253          * Init HYP architected timer support
1254          */
1255         err = kvm_timer_hyp_init();
1256         if (err)
1257                 goto out;
1258
1259         kvm_perf_init();
1260         kvm_coproc_table_init();
1261
1262 out:
1263         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1264
1265         return err;
1266 }
1267
1268 static void teardown_hyp_mode(void)
1269 {
1270         int cpu;
1271
1272         if (is_kernel_in_hyp_mode())
1273                 return;
1274
1275         free_hyp_pgds();
1276         for_each_possible_cpu(cpu)
1277                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1278         hyp_cpu_pm_exit();
1279 }
1280
1281 static int init_vhe_mode(void)
1282 {
1283         kvm_info("VHE mode initialized successfully\n");
1284         return 0;
1285 }
1286
1287 /**
1288  * Inits Hyp-mode on all online CPUs
1289  */
1290 static int init_hyp_mode(void)
1291 {
1292         int cpu;
1293         int err = 0;
1294
1295         /*
1296          * Allocate Hyp PGD and setup Hyp identity mapping
1297          */
1298         err = kvm_mmu_init();
1299         if (err)
1300                 goto out_err;
1301
1302         /*
1303          * It is probably enough to obtain the default on one
1304          * CPU. It's unlikely to be different on the others.
1305          */
1306         hyp_default_vectors = __hyp_get_vectors();
1307
1308         /*
1309          * Allocate stack pages for Hypervisor-mode
1310          */
1311         for_each_possible_cpu(cpu) {
1312                 unsigned long stack_page;
1313
1314                 stack_page = __get_free_page(GFP_KERNEL);
1315                 if (!stack_page) {
1316                         err = -ENOMEM;
1317                         goto out_err;
1318                 }
1319
1320                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1321         }
1322
1323         /*
1324          * Map the Hyp-code called directly from the host
1325          */
1326         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1327                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1328         if (err) {
1329                 kvm_err("Cannot map world-switch code\n");
1330                 goto out_err;
1331         }
1332
1333         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1334                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1335         if (err) {
1336                 kvm_err("Cannot map rodata section\n");
1337                 goto out_err;
1338         }
1339
1340         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1341                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1342         if (err) {
1343                 kvm_err("Cannot map bss section\n");
1344                 goto out_err;
1345         }
1346
1347         /*
1348          * Map the Hyp stack pages
1349          */
1350         for_each_possible_cpu(cpu) {
1351                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1352                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1353                                           PAGE_HYP);
1354
1355                 if (err) {
1356                         kvm_err("Cannot map hyp stack\n");
1357                         goto out_err;
1358                 }
1359         }
1360
1361         for_each_possible_cpu(cpu) {
1362                 kvm_cpu_context_t *cpu_ctxt;
1363
1364                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1365                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1366
1367                 if (err) {
1368                         kvm_err("Cannot map host CPU state: %d\n", err);
1369                         goto out_err;
1370                 }
1371         }
1372
1373         kvm_info("Hyp mode initialized successfully\n");
1374
1375         return 0;
1376
1377 out_err:
1378         teardown_hyp_mode();
1379         kvm_err("error initializing Hyp mode: %d\n", err);
1380         return err;
1381 }
1382
1383 static void check_kvm_target_cpu(void *ret)
1384 {
1385         *(int *)ret = kvm_target_cpu();
1386 }
1387
1388 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1389 {
1390         struct kvm_vcpu *vcpu;
1391         int i;
1392
1393         mpidr &= MPIDR_HWID_BITMASK;
1394         kvm_for_each_vcpu(i, vcpu, kvm) {
1395                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1396                         return vcpu;
1397         }
1398         return NULL;
1399 }
1400
1401 /**
1402  * Initialize Hyp-mode and memory mappings on all CPUs.
1403  */
1404 int kvm_arch_init(void *opaque)
1405 {
1406         int err;
1407         int ret, cpu;
1408
1409         if (!is_hyp_mode_available()) {
1410                 kvm_err("HYP mode not available\n");
1411                 return -ENODEV;
1412         }
1413
1414         for_each_online_cpu(cpu) {
1415                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1416                 if (ret < 0) {
1417                         kvm_err("Error, CPU %d not supported!\n", cpu);
1418                         return -ENODEV;
1419                 }
1420         }
1421
1422         err = init_common_resources();
1423         if (err)
1424                 return err;
1425
1426         if (is_kernel_in_hyp_mode())
1427                 err = init_vhe_mode();
1428         else
1429                 err = init_hyp_mode();
1430         if (err)
1431                 goto out_err;
1432
1433         err = init_subsystems();
1434         if (err)
1435                 goto out_hyp;
1436
1437         return 0;
1438
1439 out_hyp:
1440         teardown_hyp_mode();
1441 out_err:
1442         teardown_common_resources();
1443         return err;
1444 }
1445
1446 /* NOP: Compiling as a module not supported */
1447 void kvm_arch_exit(void)
1448 {
1449         kvm_perf_teardown();
1450 }
1451
1452 static int arm_init(void)
1453 {
1454         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1455         return rc;
1456 }
1457
1458 module_init(arm_init);