]> rtime.felk.cvut.cz Git - sojka/nv-tegra/linux-3.10.git/blob - fs/ext3/balloc.c
Linux-2.6.12-rc2
[sojka/nv-tegra/linux-3.10.git] / fs / ext3 / balloc.c
1 /*
2  *  linux/fs/ext3/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13
14 #include <linux/config.h>
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd.h>
18 #include <linux/ext3_fs.h>
19 #include <linux/ext3_jbd.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22
23 /*
24  * balloc.c contains the blocks allocation and deallocation routines
25  */
26
27 /*
28  * The free blocks are managed by bitmaps.  A file system contains several
29  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
30  * block for inodes, N blocks for the inode table and data blocks.
31  *
32  * The file system contains group descriptors which are located after the
33  * super block.  Each descriptor contains the number of the bitmap block and
34  * the free blocks count in the block.  The descriptors are loaded in memory
35  * when a file system is mounted (see ext3_read_super).
36  */
37
38
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
40
41 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
42                                              unsigned int block_group,
43                                              struct buffer_head ** bh)
44 {
45         unsigned long group_desc;
46         unsigned long offset;
47         struct ext3_group_desc * desc;
48         struct ext3_sb_info *sbi = EXT3_SB(sb);
49
50         if (block_group >= sbi->s_groups_count) {
51                 ext3_error (sb, "ext3_get_group_desc",
52                             "block_group >= groups_count - "
53                             "block_group = %d, groups_count = %lu",
54                             block_group, sbi->s_groups_count);
55
56                 return NULL;
57         }
58         smp_rmb();
59
60         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
61         offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
62         if (!sbi->s_group_desc[group_desc]) {
63                 ext3_error (sb, "ext3_get_group_desc",
64                             "Group descriptor not loaded - "
65                             "block_group = %d, group_desc = %lu, desc = %lu",
66                              block_group, group_desc, offset);
67                 return NULL;
68         }
69
70         desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
71         if (bh)
72                 *bh = sbi->s_group_desc[group_desc];
73         return desc + offset;
74 }
75
76 /*
77  * Read the bitmap for a given block_group, reading into the specified 
78  * slot in the superblock's bitmap cache.
79  *
80  * Return buffer_head on success or NULL in case of failure.
81  */
82 static struct buffer_head *
83 read_block_bitmap(struct super_block *sb, unsigned int block_group)
84 {
85         struct ext3_group_desc * desc;
86         struct buffer_head * bh = NULL;
87
88         desc = ext3_get_group_desc (sb, block_group, NULL);
89         if (!desc)
90                 goto error_out;
91         bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap));
92         if (!bh)
93                 ext3_error (sb, "read_block_bitmap",
94                             "Cannot read block bitmap - "
95                             "block_group = %d, block_bitmap = %u",
96                             block_group, le32_to_cpu(desc->bg_block_bitmap));
97 error_out:
98         return bh;
99 }
100 /*
101  * The reservation window structure operations
102  * --------------------------------------------
103  * Operations include:
104  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
105  *
106  * We use sorted double linked list for the per-filesystem reservation
107  * window list. (like in vm_region).
108  *
109  * Initially, we keep those small operations in the abstract functions,
110  * so later if we need a better searching tree than double linked-list,
111  * we could easily switch to that without changing too much
112  * code.
113  */
114 #if 0
115 static void __rsv_window_dump(struct rb_root *root, int verbose,
116                               const char *fn)
117 {
118         struct rb_node *n;
119         struct ext3_reserve_window_node *rsv, *prev;
120         int bad;
121
122 restart:
123         n = rb_first(root);
124         bad = 0;
125         prev = NULL;
126
127         printk("Block Allocation Reservation Windows Map (%s):\n", fn);
128         while (n) {
129                 rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node);
130                 if (verbose)
131                         printk("reservation window 0x%p "
132                                "start:  %d, end:  %d\n",
133                                rsv, rsv->rsv_start, rsv->rsv_end);
134                 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
135                         printk("Bad reservation %p (start >= end)\n",
136                                rsv);
137                         bad = 1;
138                 }
139                 if (prev && prev->rsv_end >= rsv->rsv_start) {
140                         printk("Bad reservation %p (prev->end >= start)\n",
141                                rsv);
142                         bad = 1;
143                 }
144                 if (bad) {
145                         if (!verbose) {
146                                 printk("Restarting reservation walk in verbose mode\n");
147                                 verbose = 1;
148                                 goto restart;
149                         }
150                 }
151                 n = rb_next(n);
152                 prev = rsv;
153         }
154         printk("Window map complete.\n");
155         if (bad)
156                 BUG();
157 }
158 #define rsv_window_dump(root, verbose) \
159         __rsv_window_dump((root), (verbose), __FUNCTION__)
160 #else
161 #define rsv_window_dump(root, verbose) do {} while (0)
162 #endif
163
164 static int
165 goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal,
166                         unsigned int group, struct super_block * sb)
167 {
168         unsigned long group_first_block, group_last_block;
169
170         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
171                                 group * EXT3_BLOCKS_PER_GROUP(sb);
172         group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
173
174         if ((rsv->_rsv_start > group_last_block) ||
175             (rsv->_rsv_end < group_first_block))
176                 return 0;
177         if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start)
178                 || (goal + group_first_block > rsv->_rsv_end)))
179                 return 0;
180         return 1;
181 }
182
183 /*
184  * Find the reserved window which includes the goal, or the previous one
185  * if the goal is not in any window.
186  * Returns NULL if there are no windows or if all windows start after the goal.
187  */
188 static struct ext3_reserve_window_node *
189 search_reserve_window(struct rb_root *root, unsigned long goal)
190 {
191         struct rb_node *n = root->rb_node;
192         struct ext3_reserve_window_node *rsv;
193
194         if (!n)
195                 return NULL;
196
197         do {
198                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
199
200                 if (goal < rsv->rsv_start)
201                         n = n->rb_left;
202                 else if (goal > rsv->rsv_end)
203                         n = n->rb_right;
204                 else
205                         return rsv;
206         } while (n);
207         /*
208          * We've fallen off the end of the tree: the goal wasn't inside
209          * any particular node.  OK, the previous node must be to one
210          * side of the interval containing the goal.  If it's the RHS,
211          * we need to back up one.
212          */
213         if (rsv->rsv_start > goal) {
214                 n = rb_prev(&rsv->rsv_node);
215                 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
216         }
217         return rsv;
218 }
219
220 void ext3_rsv_window_add(struct super_block *sb,
221                     struct ext3_reserve_window_node *rsv)
222 {
223         struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
224         struct rb_node *node = &rsv->rsv_node;
225         unsigned int start = rsv->rsv_start;
226
227         struct rb_node ** p = &root->rb_node;
228         struct rb_node * parent = NULL;
229         struct ext3_reserve_window_node *this;
230
231         while (*p)
232         {
233                 parent = *p;
234                 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
235
236                 if (start < this->rsv_start)
237                         p = &(*p)->rb_left;
238                 else if (start > this->rsv_end)
239                         p = &(*p)->rb_right;
240                 else
241                         BUG();
242         }
243
244         rb_link_node(node, parent, p);
245         rb_insert_color(node, root);
246 }
247
248 static void rsv_window_remove(struct super_block *sb,
249                               struct ext3_reserve_window_node *rsv)
250 {
251         rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
252         rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
253         rsv->rsv_alloc_hit = 0;
254         rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
255 }
256
257 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
258 {
259         /* a valid reservation end block could not be 0 */
260         return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED);
261 }
262 void ext3_init_block_alloc_info(struct inode *inode)
263 {
264         struct ext3_inode_info *ei = EXT3_I(inode);
265         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
266         struct super_block *sb = inode->i_sb;
267
268         block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
269         if (block_i) {
270                 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
271
272                 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
273                 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
274
275                 /*
276                  * if filesystem is mounted with NORESERVATION, the goal
277                  * reservation window size is set to zero to indicate
278                  * block reservation is off
279                  */
280                 if (!test_opt(sb, RESERVATION))
281                         rsv->rsv_goal_size = 0;
282                 else
283                         rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
284                 rsv->rsv_alloc_hit = 0;
285                 block_i->last_alloc_logical_block = 0;
286                 block_i->last_alloc_physical_block = 0;
287         }
288         ei->i_block_alloc_info = block_i;
289 }
290
291 void ext3_discard_reservation(struct inode *inode)
292 {
293         struct ext3_inode_info *ei = EXT3_I(inode);
294         struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
295         struct ext3_reserve_window_node *rsv;
296         spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
297
298         if (!block_i)
299                 return;
300
301         rsv = &block_i->rsv_window_node;
302         if (!rsv_is_empty(&rsv->rsv_window)) {
303                 spin_lock(rsv_lock);
304                 if (!rsv_is_empty(&rsv->rsv_window))
305                         rsv_window_remove(inode->i_sb, rsv);
306                 spin_unlock(rsv_lock);
307         }
308 }
309
310 /* Free given blocks, update quota and i_blocks field */
311 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
312                          unsigned long block, unsigned long count,
313                          int *pdquot_freed_blocks)
314 {
315         struct buffer_head *bitmap_bh = NULL;
316         struct buffer_head *gd_bh;
317         unsigned long block_group;
318         unsigned long bit;
319         unsigned long i;
320         unsigned long overflow;
321         struct ext3_group_desc * desc;
322         struct ext3_super_block * es;
323         struct ext3_sb_info *sbi;
324         int err = 0, ret;
325         unsigned group_freed;
326
327         *pdquot_freed_blocks = 0;
328         sbi = EXT3_SB(sb);
329         es = sbi->s_es;
330         if (block < le32_to_cpu(es->s_first_data_block) ||
331             block + count < block ||
332             block + count > le32_to_cpu(es->s_blocks_count)) {
333                 ext3_error (sb, "ext3_free_blocks",
334                             "Freeing blocks not in datazone - "
335                             "block = %lu, count = %lu", block, count);
336                 goto error_return;
337         }
338
339         ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
340
341 do_more:
342         overflow = 0;
343         block_group = (block - le32_to_cpu(es->s_first_data_block)) /
344                       EXT3_BLOCKS_PER_GROUP(sb);
345         bit = (block - le32_to_cpu(es->s_first_data_block)) %
346                       EXT3_BLOCKS_PER_GROUP(sb);
347         /*
348          * Check to see if we are freeing blocks across a group
349          * boundary.
350          */
351         if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
352                 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
353                 count -= overflow;
354         }
355         brelse(bitmap_bh);
356         bitmap_bh = read_block_bitmap(sb, block_group);
357         if (!bitmap_bh)
358                 goto error_return;
359         desc = ext3_get_group_desc (sb, block_group, &gd_bh);
360         if (!desc)
361                 goto error_return;
362
363         if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
364             in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
365             in_range (block, le32_to_cpu(desc->bg_inode_table),
366                       sbi->s_itb_per_group) ||
367             in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
368                       sbi->s_itb_per_group))
369                 ext3_error (sb, "ext3_free_blocks",
370                             "Freeing blocks in system zones - "
371                             "Block = %lu, count = %lu",
372                             block, count);
373
374         /*
375          * We are about to start releasing blocks in the bitmap,
376          * so we need undo access.
377          */
378         /* @@@ check errors */
379         BUFFER_TRACE(bitmap_bh, "getting undo access");
380         err = ext3_journal_get_undo_access(handle, bitmap_bh);
381         if (err)
382                 goto error_return;
383
384         /*
385          * We are about to modify some metadata.  Call the journal APIs
386          * to unshare ->b_data if a currently-committing transaction is
387          * using it
388          */
389         BUFFER_TRACE(gd_bh, "get_write_access");
390         err = ext3_journal_get_write_access(handle, gd_bh);
391         if (err)
392                 goto error_return;
393
394         jbd_lock_bh_state(bitmap_bh);
395
396         for (i = 0, group_freed = 0; i < count; i++) {
397                 /*
398                  * An HJ special.  This is expensive...
399                  */
400 #ifdef CONFIG_JBD_DEBUG
401                 jbd_unlock_bh_state(bitmap_bh);
402                 {
403                         struct buffer_head *debug_bh;
404                         debug_bh = sb_find_get_block(sb, block + i);
405                         if (debug_bh) {
406                                 BUFFER_TRACE(debug_bh, "Deleted!");
407                                 if (!bh2jh(bitmap_bh)->b_committed_data)
408                                         BUFFER_TRACE(debug_bh,
409                                                 "No commited data in bitmap");
410                                 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
411                                 __brelse(debug_bh);
412                         }
413                 }
414                 jbd_lock_bh_state(bitmap_bh);
415 #endif
416                 if (need_resched()) {
417                         jbd_unlock_bh_state(bitmap_bh);
418                         cond_resched();
419                         jbd_lock_bh_state(bitmap_bh);
420                 }
421                 /* @@@ This prevents newly-allocated data from being
422                  * freed and then reallocated within the same
423                  * transaction. 
424                  * 
425                  * Ideally we would want to allow that to happen, but to
426                  * do so requires making journal_forget() capable of
427                  * revoking the queued write of a data block, which
428                  * implies blocking on the journal lock.  *forget()
429                  * cannot block due to truncate races.
430                  *
431                  * Eventually we can fix this by making journal_forget()
432                  * return a status indicating whether or not it was able
433                  * to revoke the buffer.  On successful revoke, it is
434                  * safe not to set the allocation bit in the committed
435                  * bitmap, because we know that there is no outstanding
436                  * activity on the buffer any more and so it is safe to
437                  * reallocate it.  
438                  */
439                 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
440                 J_ASSERT_BH(bitmap_bh,
441                                 bh2jh(bitmap_bh)->b_committed_data != NULL);
442                 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
443                                 bh2jh(bitmap_bh)->b_committed_data);
444
445                 /*
446                  * We clear the bit in the bitmap after setting the committed
447                  * data bit, because this is the reverse order to that which
448                  * the allocator uses.
449                  */
450                 BUFFER_TRACE(bitmap_bh, "clear bit");
451                 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
452                                                 bit + i, bitmap_bh->b_data)) {
453                         jbd_unlock_bh_state(bitmap_bh);
454                         ext3_error(sb, __FUNCTION__,
455                                 "bit already cleared for block %lu", block + i);
456                         jbd_lock_bh_state(bitmap_bh);
457                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
458                 } else {
459                         group_freed++;
460                 }
461         }
462         jbd_unlock_bh_state(bitmap_bh);
463
464         spin_lock(sb_bgl_lock(sbi, block_group));
465         desc->bg_free_blocks_count =
466                 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
467                         group_freed);
468         spin_unlock(sb_bgl_lock(sbi, block_group));
469         percpu_counter_mod(&sbi->s_freeblocks_counter, count);
470
471         /* We dirtied the bitmap block */
472         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
473         err = ext3_journal_dirty_metadata(handle, bitmap_bh);
474
475         /* And the group descriptor block */
476         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
477         ret = ext3_journal_dirty_metadata(handle, gd_bh);
478         if (!err) err = ret;
479         *pdquot_freed_blocks += group_freed;
480
481         if (overflow && !err) {
482                 block += count;
483                 count = overflow;
484                 goto do_more;
485         }
486         sb->s_dirt = 1;
487 error_return:
488         brelse(bitmap_bh);
489         ext3_std_error(sb, err);
490         return;
491 }
492
493 /* Free given blocks, update quota and i_blocks field */
494 void ext3_free_blocks(handle_t *handle, struct inode *inode,
495                         unsigned long block, unsigned long count)
496 {
497         struct super_block * sb;
498         int dquot_freed_blocks;
499
500         sb = inode->i_sb;
501         if (!sb) {
502                 printk ("ext3_free_blocks: nonexistent device");
503                 return;
504         }
505         ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
506         if (dquot_freed_blocks)
507                 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
508         return;
509 }
510
511 /*
512  * For ext3 allocations, we must not reuse any blocks which are
513  * allocated in the bitmap buffer's "last committed data" copy.  This
514  * prevents deletes from freeing up the page for reuse until we have
515  * committed the delete transaction.
516  *
517  * If we didn't do this, then deleting something and reallocating it as
518  * data would allow the old block to be overwritten before the
519  * transaction committed (because we force data to disk before commit).
520  * This would lead to corruption if we crashed between overwriting the
521  * data and committing the delete. 
522  *
523  * @@@ We may want to make this allocation behaviour conditional on
524  * data-writes at some point, and disable it for metadata allocations or
525  * sync-data inodes.
526  */
527 static int ext3_test_allocatable(int nr, struct buffer_head *bh)
528 {
529         int ret;
530         struct journal_head *jh = bh2jh(bh);
531
532         if (ext3_test_bit(nr, bh->b_data))
533                 return 0;
534
535         jbd_lock_bh_state(bh);
536         if (!jh->b_committed_data)
537                 ret = 1;
538         else
539                 ret = !ext3_test_bit(nr, jh->b_committed_data);
540         jbd_unlock_bh_state(bh);
541         return ret;
542 }
543
544 static int
545 bitmap_search_next_usable_block(int start, struct buffer_head *bh,
546                                         int maxblocks)
547 {
548         int next;
549         struct journal_head *jh = bh2jh(bh);
550
551         /*
552          * The bitmap search --- search forward alternately through the actual
553          * bitmap and the last-committed copy until we find a bit free in
554          * both
555          */
556         while (start < maxblocks) {
557                 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
558                 if (next >= maxblocks)
559                         return -1;
560                 if (ext3_test_allocatable(next, bh))
561                         return next;
562                 jbd_lock_bh_state(bh);
563                 if (jh->b_committed_data)
564                         start = ext3_find_next_zero_bit(jh->b_committed_data,
565                                                         maxblocks, next);
566                 jbd_unlock_bh_state(bh);
567         }
568         return -1;
569 }
570
571 /*
572  * Find an allocatable block in a bitmap.  We honour both the bitmap and
573  * its last-committed copy (if that exists), and perform the "most
574  * appropriate allocation" algorithm of looking for a free block near
575  * the initial goal; then for a free byte somewhere in the bitmap; then
576  * for any free bit in the bitmap.
577  */
578 static int
579 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
580 {
581         int here, next;
582         char *p, *r;
583
584         if (start > 0) {
585                 /*
586                  * The goal was occupied; search forward for a free 
587                  * block within the next XX blocks.
588                  *
589                  * end_goal is more or less random, but it has to be
590                  * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
591                  * next 64-bit boundary is simple..
592                  */
593                 int end_goal = (start + 63) & ~63;
594                 if (end_goal > maxblocks)
595                         end_goal = maxblocks;
596                 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
597                 if (here < end_goal && ext3_test_allocatable(here, bh))
598                         return here;
599                 ext3_debug("Bit not found near goal\n");
600         }
601
602         here = start;
603         if (here < 0)
604                 here = 0;
605
606         p = ((char *)bh->b_data) + (here >> 3);
607         r = memscan(p, 0, (maxblocks - here + 7) >> 3);
608         next = (r - ((char *)bh->b_data)) << 3;
609
610         if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
611                 return next;
612
613         /*
614          * The bitmap search --- search forward alternately through the actual
615          * bitmap and the last-committed copy until we find a bit free in
616          * both
617          */
618         here = bitmap_search_next_usable_block(here, bh, maxblocks);
619         return here;
620 }
621
622 /*
623  * We think we can allocate this block in this bitmap.  Try to set the bit.
624  * If that succeeds then check that nobody has allocated and then freed the
625  * block since we saw that is was not marked in b_committed_data.  If it _was_
626  * allocated and freed then clear the bit in the bitmap again and return
627  * zero (failure).
628  */
629 static inline int
630 claim_block(spinlock_t *lock, int block, struct buffer_head *bh)
631 {
632         struct journal_head *jh = bh2jh(bh);
633         int ret;
634
635         if (ext3_set_bit_atomic(lock, block, bh->b_data))
636                 return 0;
637         jbd_lock_bh_state(bh);
638         if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
639                 ext3_clear_bit_atomic(lock, block, bh->b_data);
640                 ret = 0;
641         } else {
642                 ret = 1;
643         }
644         jbd_unlock_bh_state(bh);
645         return ret;
646 }
647
648 /*
649  * If we failed to allocate the desired block then we may end up crossing to a
650  * new bitmap.  In that case we must release write access to the old one via
651  * ext3_journal_release_buffer(), else we'll run out of credits.
652  */
653 static int
654 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
655         struct buffer_head *bitmap_bh, int goal, struct ext3_reserve_window *my_rsv)
656 {
657         int group_first_block, start, end;
658
659         /* we do allocation within the reservation window if we have a window */
660         if (my_rsv) {
661                 group_first_block =
662                         le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
663                         group * EXT3_BLOCKS_PER_GROUP(sb);
664                 if (my_rsv->_rsv_start >= group_first_block)
665                         start = my_rsv->_rsv_start - group_first_block;
666                 else
667                         /* reservation window cross group boundary */
668                         start = 0;
669                 end = my_rsv->_rsv_end - group_first_block + 1;
670                 if (end > EXT3_BLOCKS_PER_GROUP(sb))
671                         /* reservation window crosses group boundary */
672                         end = EXT3_BLOCKS_PER_GROUP(sb);
673                 if ((start <= goal) && (goal < end))
674                         start = goal;
675                 else
676                         goal = -1;
677         } else {
678                 if (goal > 0)
679                         start = goal;
680                 else
681                         start = 0;
682                 end = EXT3_BLOCKS_PER_GROUP(sb);
683         }
684
685         BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
686
687 repeat:
688         if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) {
689                 goal = find_next_usable_block(start, bitmap_bh, end);
690                 if (goal < 0)
691                         goto fail_access;
692                 if (!my_rsv) {
693                         int i;
694
695                         for (i = 0; i < 7 && goal > start &&
696                                         ext3_test_allocatable(goal - 1,
697                                                                 bitmap_bh);
698                                         i++, goal--)
699                                 ;
700                 }
701         }
702         start = goal;
703
704         if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) {
705                 /*
706                  * The block was allocated by another thread, or it was
707                  * allocated and then freed by another thread
708                  */
709                 start++;
710                 goal++;
711                 if (start >= end)
712                         goto fail_access;
713                 goto repeat;
714         }
715         return goal;
716 fail_access:
717         return -1;
718 }
719
720 /**
721  *      find_next_reservable_window():
722  *              find a reservable space within the given range.
723  *              It does not allocate the reservation window for now:
724  *              alloc_new_reservation() will do the work later.
725  *
726  *      @search_head: the head of the searching list;
727  *              This is not necessarily the list head of the whole filesystem
728  *
729  *              We have both head and start_block to assist the search
730  *              for the reservable space. The list starts from head,
731  *              but we will shift to the place where start_block is,
732  *              then start from there, when looking for a reservable space.
733  *
734  *      @size: the target new reservation window size
735  *
736  *      @group_first_block: the first block we consider to start
737  *                      the real search from
738  *
739  *      @last_block:
740  *              the maximum block number that our goal reservable space
741  *              could start from. This is normally the last block in this
742  *              group. The search will end when we found the start of next
743  *              possible reservable space is out of this boundary.
744  *              This could handle the cross boundary reservation window
745  *              request.
746  *
747  *      basically we search from the given range, rather than the whole
748  *      reservation double linked list, (start_block, last_block)
749  *      to find a free region that is of my size and has not
750  *      been reserved.
751  *
752  *      on succeed, it returns the reservation window to be appended to.
753  *      failed, return NULL.
754  */
755 static struct ext3_reserve_window_node *find_next_reservable_window(
756                                 struct ext3_reserve_window_node *search_head,
757                                 unsigned long size, int *start_block,
758                                 int last_block)
759 {
760         struct rb_node *next;
761         struct ext3_reserve_window_node *rsv, *prev;
762         int cur;
763
764         /* TODO: make the start of the reservation window byte-aligned */
765         /* cur = *start_block & ~7;*/
766         cur = *start_block;
767         rsv = search_head;
768         if (!rsv)
769                 return NULL;
770
771         while (1) {
772                 if (cur <= rsv->rsv_end)
773                         cur = rsv->rsv_end + 1;
774
775                 /* TODO?
776                  * in the case we could not find a reservable space
777                  * that is what is expected, during the re-search, we could
778                  * remember what's the largest reservable space we could have
779                  * and return that one.
780                  *
781                  * For now it will fail if we could not find the reservable
782                  * space with expected-size (or more)...
783                  */
784                 if (cur > last_block)
785                         return NULL;            /* fail */
786
787                 prev = rsv;
788                 next = rb_next(&rsv->rsv_node);
789                 rsv = list_entry(next, struct ext3_reserve_window_node, rsv_node);
790
791                 /*
792                  * Reached the last reservation, we can just append to the
793                  * previous one.
794                  */
795                 if (!next)
796                         break;
797
798                 if (cur + size <= rsv->rsv_start) {
799                         /*
800                          * Found a reserveable space big enough.  We could
801                          * have a reservation across the group boundary here
802                          */
803                         break;
804                 }
805         }
806         /*
807          * we come here either :
808          * when we reach the end of the whole list,
809          * and there is empty reservable space after last entry in the list.
810          * append it to the end of the list.
811          *
812          * or we found one reservable space in the middle of the list,
813          * return the reservation window that we could append to.
814          * succeed.
815          */
816         *start_block = cur;
817         return prev;
818 }
819
820 /**
821  *      alloc_new_reservation()--allocate a new reservation window
822  *
823  *              To make a new reservation, we search part of the filesystem
824  *              reservation list (the list that inside the group). We try to
825  *              allocate a new reservation window near the allocation goal,
826  *              or the beginning of the group, if there is no goal.
827  *
828  *              We first find a reservable space after the goal, then from
829  *              there, we check the bitmap for the first free block after
830  *              it. If there is no free block until the end of group, then the
831  *              whole group is full, we failed. Otherwise, check if the free
832  *              block is inside the expected reservable space, if so, we
833  *              succeed.
834  *              If the first free block is outside the reservable space, then
835  *              start from the first free block, we search for next available
836  *              space, and go on.
837  *
838  *      on succeed, a new reservation will be found and inserted into the list
839  *      It contains at least one free block, and it does not overlap with other
840  *      reservation windows.
841  *
842  *      failed: we failed to find a reservation window in this group
843  *
844  *      @rsv: the reservation
845  *
846  *      @goal: The goal (group-relative).  It is where the search for a
847  *              free reservable space should start from.
848  *              if we have a goal(goal >0 ), then start from there,
849  *              no goal(goal = -1), we start from the first block
850  *              of the group.
851  *
852  *      @sb: the super block
853  *      @group: the group we are trying to allocate in
854  *      @bitmap_bh: the block group block bitmap
855  */
856 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
857                 int goal, struct super_block *sb,
858                 unsigned int group, struct buffer_head *bitmap_bh)
859 {
860         struct ext3_reserve_window_node *search_head;
861         int group_first_block, group_end_block, start_block;
862         int first_free_block;
863         int reservable_space_start;
864         struct ext3_reserve_window_node *prev_rsv;
865         struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
866         unsigned long size;
867
868         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
869                                 group * EXT3_BLOCKS_PER_GROUP(sb);
870         group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1;
871
872         if (goal < 0)
873                 start_block = group_first_block;
874         else
875                 start_block = goal + group_first_block;
876
877         size = my_rsv->rsv_goal_size;
878         if (!rsv_is_empty(&my_rsv->rsv_window)) {
879                 /*
880                  * if the old reservation is cross group boundary
881                  * and if the goal is inside the old reservation window,
882                  * we will come here when we just failed to allocate from
883                  * the first part of the window. We still have another part
884                  * that belongs to the next group. In this case, there is no
885                  * point to discard our window and try to allocate a new one
886                  * in this group(which will fail). we should
887                  * keep the reservation window, just simply move on.
888                  *
889                  * Maybe we could shift the start block of the reservation
890                  * window to the first block of next group.
891                  */
892
893                 if ((my_rsv->rsv_start <= group_end_block) &&
894                                 (my_rsv->rsv_end > group_end_block) &&
895                                 (start_block >= my_rsv->rsv_start))
896                         return -1;
897
898                 if ((my_rsv->rsv_alloc_hit >
899                      (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
900                         /*
901                          * if we previously allocation hit ration is greater than half
902                          * we double the size of reservation window next time
903                          * otherwise keep the same
904                          */
905                         size = size * 2;
906                         if (size > EXT3_MAX_RESERVE_BLOCKS)
907                                 size = EXT3_MAX_RESERVE_BLOCKS;
908                         my_rsv->rsv_goal_size= size;
909                 }
910         }
911         /*
912          * shift the search start to the window near the goal block
913          */
914         search_head = search_reserve_window(fs_rsv_root, start_block);
915
916         /*
917          * find_next_reservable_window() simply finds a reservable window
918          * inside the given range(start_block, group_end_block).
919          *
920          * To make sure the reservation window has a free bit inside it, we
921          * need to check the bitmap after we found a reservable window.
922          */
923 retry:
924         prev_rsv = find_next_reservable_window(search_head, size,
925                                                 &start_block, group_end_block);
926         if (prev_rsv == NULL)
927                 goto failed;
928         reservable_space_start = start_block;
929         /*
930          * On success, find_next_reservable_window() returns the
931          * reservation window where there is a reservable space after it.
932          * Before we reserve this reservable space, we need
933          * to make sure there is at least a free block inside this region.
934          *
935          * searching the first free bit on the block bitmap and copy of
936          * last committed bitmap alternatively, until we found a allocatable
937          * block. Search start from the start block of the reservable space
938          * we just found.
939          */
940         first_free_block = bitmap_search_next_usable_block(
941                         reservable_space_start - group_first_block,
942                         bitmap_bh, group_end_block - group_first_block + 1);
943
944         if (first_free_block < 0) {
945                 /*
946                  * no free block left on the bitmap, no point
947                  * to reserve the space. return failed.
948                  */
949                 goto failed;
950         }
951         start_block = first_free_block + group_first_block;
952         /*
953          * check if the first free block is within the
954          * free space we just found
955          */
956         if ((start_block >= reservable_space_start) &&
957           (start_block < reservable_space_start + size))
958                 goto found_rsv_window;
959         /*
960          * if the first free bit we found is out of the reservable space
961          * this means there is no free block on the reservable space
962          * we should continue search for next reservable space,
963          * start from where the free block is,
964          * we also shift the list head to where we stopped last time
965          */
966         search_head = prev_rsv;
967         goto retry;
968
969 found_rsv_window:
970         /*
971          * great! the reservable space contains some free blocks.
972          * if the search returns that we should add the new
973          * window just next to where the old window, we don't
974          * need to remove the old window first then add it to the
975          * same place, just update the new start and new end.
976          */
977         if (my_rsv != prev_rsv)  {
978                 if (!rsv_is_empty(&my_rsv->rsv_window))
979                         rsv_window_remove(sb, my_rsv);
980         }
981         my_rsv->rsv_start = reservable_space_start;
982         my_rsv->rsv_end = my_rsv->rsv_start + size - 1;
983         my_rsv->rsv_alloc_hit = 0;
984         if (my_rsv != prev_rsv)  {
985                 ext3_rsv_window_add(sb, my_rsv);
986         }
987         return 0;               /* succeed */
988 failed:
989         /*
990          * failed to find a new reservation window in the current
991          * group, remove the current(stale) reservation window
992          * if there is any
993          */
994         if (!rsv_is_empty(&my_rsv->rsv_window))
995                 rsv_window_remove(sb, my_rsv);
996         return -1;              /* failed */
997 }
998
999 /*
1000  * This is the main function used to allocate a new block and its reservation
1001  * window.
1002  *
1003  * Each time when a new block allocation is need, first try to allocate from
1004  * its own reservation.  If it does not have a reservation window, instead of
1005  * looking for a free bit on bitmap first, then look up the reservation list to
1006  * see if it is inside somebody else's reservation window, we try to allocate a
1007  * reservation window for it starting from the goal first. Then do the block
1008  * allocation within the reservation window.
1009  *
1010  * This will avoid keeping on searching the reservation list again and
1011  * again when someboday is looking for a free block (without
1012  * reservation), and there are lots of free blocks, but they are all
1013  * being reserved.
1014  *
1015  * We use a sorted double linked list for the per-filesystem reservation list.
1016  * The insert, remove and find a free space(non-reserved) operations for the
1017  * sorted double linked list should be fast.
1018  *
1019  */
1020 static int
1021 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1022                         unsigned int group, struct buffer_head *bitmap_bh,
1023                         int goal, struct ext3_reserve_window_node * my_rsv,
1024                         int *errp)
1025 {
1026         spinlock_t *rsv_lock;
1027         unsigned long group_first_block;
1028         int ret = 0;
1029         int fatal;
1030
1031         *errp = 0;
1032
1033         /*
1034          * Make sure we use undo access for the bitmap, because it is critical
1035          * that we do the frozen_data COW on bitmap buffers in all cases even
1036          * if the buffer is in BJ_Forget state in the committing transaction.
1037          */
1038         BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1039         fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1040         if (fatal) {
1041                 *errp = fatal;
1042                 return -1;
1043         }
1044
1045         /*
1046          * we don't deal with reservation when
1047          * filesystem is mounted without reservation
1048          * or the file is not a regular file
1049          * or last attempt to allocate a block with reservation turned on failed
1050          */
1051         if (my_rsv == NULL ) {
1052                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, NULL);
1053                 goto out;
1054         }
1055         rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1056         /*
1057          * goal is a group relative block number (if there is a goal)
1058          * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb)
1059          * first block is a filesystem wide block number
1060          * first block is the block number of the first block in this group
1061          */
1062         group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) +
1063                         group * EXT3_BLOCKS_PER_GROUP(sb);
1064
1065         /*
1066          * Basically we will allocate a new block from inode's reservation
1067          * window.
1068          *
1069          * We need to allocate a new reservation window, if:
1070          * a) inode does not have a reservation window; or
1071          * b) last attempt to allocate a block from existing reservation
1072          *    failed; or
1073          * c) we come here with a goal and with a reservation window
1074          *
1075          * We do not need to allocate a new reservation window if we come here
1076          * at the beginning with a goal and the goal is inside the window, or
1077          * we don't have a goal but already have a reservation window.
1078          * then we could go to allocate from the reservation window directly.
1079          */
1080         while (1) {
1081                 struct ext3_reserve_window rsv_copy;
1082
1083                 rsv_copy._rsv_start = my_rsv->rsv_start;
1084                 rsv_copy._rsv_end = my_rsv->rsv_end;
1085
1086                 if (rsv_is_empty(&rsv_copy) || (ret < 0) ||
1087                         !goal_in_my_reservation(&rsv_copy, goal, group, sb)) {
1088                         spin_lock(rsv_lock);
1089                         ret = alloc_new_reservation(my_rsv, goal, sb,
1090                                                         group, bitmap_bh);
1091                         rsv_copy._rsv_start = my_rsv->rsv_start;
1092                         rsv_copy._rsv_end = my_rsv->rsv_end;
1093                         spin_unlock(rsv_lock);
1094                         if (ret < 0)
1095                                 break;                  /* failed */
1096
1097                         if (!goal_in_my_reservation(&rsv_copy, goal, group, sb))
1098                                 goal = -1;
1099                 }
1100                 if ((rsv_copy._rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb))
1101                     || (rsv_copy._rsv_end < group_first_block))
1102                         BUG();
1103                 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal,
1104                                            &rsv_copy);
1105                 if (ret >= 0) {
1106                         my_rsv->rsv_alloc_hit++;
1107                         break;                          /* succeed */
1108                 }
1109         }
1110 out:
1111         if (ret >= 0) {
1112                 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1113                                         "bitmap block");
1114                 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1115                 if (fatal) {
1116                         *errp = fatal;
1117                         return -1;
1118                 }
1119                 return ret;
1120         }
1121
1122         BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1123         ext3_journal_release_buffer(handle, bitmap_bh);
1124         return ret;
1125 }
1126
1127 static int ext3_has_free_blocks(struct ext3_sb_info *sbi)
1128 {
1129         int free_blocks, root_blocks;
1130
1131         free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1132         root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1133         if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1134                 sbi->s_resuid != current->fsuid &&
1135                 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1136                 return 0;
1137         }
1138         return 1;
1139 }
1140
1141 /*
1142  * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1143  * it is profitable to retry the operation, this function will wait
1144  * for the current or commiting transaction to complete, and then
1145  * return TRUE.
1146  */
1147 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1148 {
1149         if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3)
1150                 return 0;
1151
1152         jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1153
1154         return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1155 }
1156
1157 /*
1158  * ext3_new_block uses a goal block to assist allocation.  If the goal is
1159  * free, or there is a free block within 32 blocks of the goal, that block
1160  * is allocated.  Otherwise a forward search is made for a free block; within 
1161  * each block group the search first looks for an entire free byte in the block
1162  * bitmap, and then for any free bit if that fails.
1163  * This function also updates quota and i_blocks field.
1164  */
1165 int ext3_new_block(handle_t *handle, struct inode *inode,
1166                         unsigned long goal, int *errp)
1167 {
1168         struct buffer_head *bitmap_bh = NULL;
1169         struct buffer_head *gdp_bh;
1170         int group_no;
1171         int goal_group;
1172         int ret_block;
1173         int bgi;                        /* blockgroup iteration index */
1174         int target_block;
1175         int fatal = 0, err;
1176         int performed_allocation = 0;
1177         int free_blocks;
1178         struct super_block *sb;
1179         struct ext3_group_desc *gdp;
1180         struct ext3_super_block *es;
1181         struct ext3_sb_info *sbi;
1182         struct ext3_reserve_window_node *my_rsv = NULL;
1183         struct ext3_block_alloc_info *block_i;
1184         unsigned short windowsz = 0;
1185 #ifdef EXT3FS_DEBUG
1186         static int goal_hits, goal_attempts;
1187 #endif
1188         unsigned long ngroups;
1189
1190         *errp = -ENOSPC;
1191         sb = inode->i_sb;
1192         if (!sb) {
1193                 printk("ext3_new_block: nonexistent device");
1194                 return 0;
1195         }
1196
1197         /*
1198          * Check quota for allocation of this block.
1199          */
1200         if (DQUOT_ALLOC_BLOCK(inode, 1)) {
1201                 *errp = -EDQUOT;
1202                 return 0;
1203         }
1204
1205         sbi = EXT3_SB(sb);
1206         es = EXT3_SB(sb)->s_es;
1207         ext3_debug("goal=%lu.\n", goal);
1208         /*
1209          * Allocate a block from reservation only when
1210          * filesystem is mounted with reservation(default,-o reservation), and
1211          * it's a regular file, and
1212          * the desired window size is greater than 0 (One could use ioctl
1213          * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1214          * reservation on that particular file)
1215          */
1216         block_i = EXT3_I(inode)->i_block_alloc_info;
1217         if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1218                 my_rsv = &block_i->rsv_window_node;
1219
1220         if (!ext3_has_free_blocks(sbi)) {
1221                 *errp = -ENOSPC;
1222                 goto out;
1223         }
1224
1225         /*
1226          * First, test whether the goal block is free.
1227          */
1228         if (goal < le32_to_cpu(es->s_first_data_block) ||
1229             goal >= le32_to_cpu(es->s_blocks_count))
1230                 goal = le32_to_cpu(es->s_first_data_block);
1231         group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1232                         EXT3_BLOCKS_PER_GROUP(sb);
1233         gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1234         if (!gdp)
1235                 goto io_error;
1236
1237         goal_group = group_no;
1238 retry:
1239         free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1240         /*
1241          * if there is not enough free blocks to make a new resevation
1242          * turn off reservation for this allocation
1243          */
1244         if (my_rsv && (free_blocks < windowsz)
1245                 && (rsv_is_empty(&my_rsv->rsv_window)))
1246                 my_rsv = NULL;
1247
1248         if (free_blocks > 0) {
1249                 ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) %
1250                                 EXT3_BLOCKS_PER_GROUP(sb));
1251                 bitmap_bh = read_block_bitmap(sb, group_no);
1252                 if (!bitmap_bh)
1253                         goto io_error;
1254                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1255                                         bitmap_bh, ret_block, my_rsv, &fatal);
1256                 if (fatal)
1257                         goto out;
1258                 if (ret_block >= 0)
1259                         goto allocated;
1260         }
1261
1262         ngroups = EXT3_SB(sb)->s_groups_count;
1263         smp_rmb();
1264
1265         /*
1266          * Now search the rest of the groups.  We assume that 
1267          * i and gdp correctly point to the last group visited.
1268          */
1269         for (bgi = 0; bgi < ngroups; bgi++) {
1270                 group_no++;
1271                 if (group_no >= ngroups)
1272                         group_no = 0;
1273                 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1274                 if (!gdp) {
1275                         *errp = -EIO;
1276                         goto out;
1277                 }
1278                 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1279                 /*
1280                  * skip this group if the number of
1281                  * free blocks is less than half of the reservation
1282                  * window size.
1283                  */
1284                 if (free_blocks <= (windowsz/2))
1285                         continue;
1286
1287                 brelse(bitmap_bh);
1288                 bitmap_bh = read_block_bitmap(sb, group_no);
1289                 if (!bitmap_bh)
1290                         goto io_error;
1291                 ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no,
1292                                         bitmap_bh, -1, my_rsv, &fatal);
1293                 if (fatal)
1294                         goto out;
1295                 if (ret_block >= 0) 
1296                         goto allocated;
1297         }
1298         /*
1299          * We may end up a bogus ealier ENOSPC error due to
1300          * filesystem is "full" of reservations, but
1301          * there maybe indeed free blocks avaliable on disk
1302          * In this case, we just forget about the reservations
1303          * just do block allocation as without reservations.
1304          */
1305         if (my_rsv) {
1306                 my_rsv = NULL;
1307                 group_no = goal_group;
1308                 goto retry;
1309         }
1310         /* No space left on the device */
1311         *errp = -ENOSPC;
1312         goto out;
1313
1314 allocated:
1315
1316         ext3_debug("using block group %d(%d)\n",
1317                         group_no, gdp->bg_free_blocks_count);
1318
1319         BUFFER_TRACE(gdp_bh, "get_write_access");
1320         fatal = ext3_journal_get_write_access(handle, gdp_bh);
1321         if (fatal)
1322                 goto out;
1323
1324         target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb)
1325                                 + le32_to_cpu(es->s_first_data_block);
1326
1327         if (target_block == le32_to_cpu(gdp->bg_block_bitmap) ||
1328             target_block == le32_to_cpu(gdp->bg_inode_bitmap) ||
1329             in_range(target_block, le32_to_cpu(gdp->bg_inode_table),
1330                       EXT3_SB(sb)->s_itb_per_group))
1331                 ext3_error(sb, "ext3_new_block",
1332                             "Allocating block in system zone - "
1333                             "block = %u", target_block);
1334
1335         performed_allocation = 1;
1336
1337 #ifdef CONFIG_JBD_DEBUG
1338         {
1339                 struct buffer_head *debug_bh;
1340
1341                 /* Record bitmap buffer state in the newly allocated block */
1342                 debug_bh = sb_find_get_block(sb, target_block);
1343                 if (debug_bh) {
1344                         BUFFER_TRACE(debug_bh, "state when allocated");
1345                         BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1346                         brelse(debug_bh);
1347                 }
1348         }
1349         jbd_lock_bh_state(bitmap_bh);
1350         spin_lock(sb_bgl_lock(sbi, group_no));
1351         if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1352                 if (ext3_test_bit(ret_block,
1353                                 bh2jh(bitmap_bh)->b_committed_data)) {
1354                         printk("%s: block was unexpectedly set in "
1355                                 "b_committed_data\n", __FUNCTION__);
1356                 }
1357         }
1358         ext3_debug("found bit %d\n", ret_block);
1359         spin_unlock(sb_bgl_lock(sbi, group_no));
1360         jbd_unlock_bh_state(bitmap_bh);
1361 #endif
1362
1363         /* ret_block was blockgroup-relative.  Now it becomes fs-relative */
1364         ret_block = target_block;
1365
1366         if (ret_block >= le32_to_cpu(es->s_blocks_count)) {
1367                 ext3_error(sb, "ext3_new_block",
1368                             "block(%d) >= blocks count(%d) - "
1369                             "block_group = %d, es == %p ", ret_block,
1370                         le32_to_cpu(es->s_blocks_count), group_no, es);
1371                 goto out;
1372         }
1373
1374         /*
1375          * It is up to the caller to add the new buffer to a journal
1376          * list of some description.  We don't know in advance whether
1377          * the caller wants to use it as metadata or data.
1378          */
1379         ext3_debug("allocating block %d. Goal hits %d of %d.\n",
1380                         ret_block, goal_hits, goal_attempts);
1381
1382         spin_lock(sb_bgl_lock(sbi, group_no));
1383         gdp->bg_free_blocks_count =
1384                         cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - 1);
1385         spin_unlock(sb_bgl_lock(sbi, group_no));
1386         percpu_counter_mod(&sbi->s_freeblocks_counter, -1);
1387
1388         BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1389         err = ext3_journal_dirty_metadata(handle, gdp_bh);
1390         if (!fatal)
1391                 fatal = err;
1392
1393         sb->s_dirt = 1;
1394         if (fatal)
1395                 goto out;
1396
1397         *errp = 0;
1398         brelse(bitmap_bh);
1399         return ret_block;
1400
1401 io_error:
1402         *errp = -EIO;
1403 out:
1404         if (fatal) {
1405                 *errp = fatal;
1406                 ext3_std_error(sb, fatal);
1407         }
1408         /*
1409          * Undo the block allocation
1410          */
1411         if (!performed_allocation)
1412                 DQUOT_FREE_BLOCK(inode, 1);
1413         brelse(bitmap_bh);
1414         return 0;
1415 }
1416
1417 unsigned long ext3_count_free_blocks(struct super_block *sb)
1418 {
1419         unsigned long desc_count;
1420         struct ext3_group_desc *gdp;
1421         int i;
1422         unsigned long ngroups;
1423 #ifdef EXT3FS_DEBUG
1424         struct ext3_super_block *es;
1425         unsigned long bitmap_count, x;
1426         struct buffer_head *bitmap_bh = NULL;
1427
1428         lock_super(sb);
1429         es = EXT3_SB(sb)->s_es;
1430         desc_count = 0;
1431         bitmap_count = 0;
1432         gdp = NULL;
1433         for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) {
1434                 gdp = ext3_get_group_desc(sb, i, NULL);
1435                 if (!gdp)
1436                         continue;
1437                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1438                 brelse(bitmap_bh);
1439                 bitmap_bh = read_block_bitmap(sb, i);
1440                 if (bitmap_bh == NULL)
1441                         continue;
1442
1443                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1444                 printk("group %d: stored = %d, counted = %lu\n",
1445                         i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1446                 bitmap_count += x;
1447         }
1448         brelse(bitmap_bh);
1449         printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n",
1450                le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count);
1451         unlock_super(sb);
1452         return bitmap_count;
1453 #else
1454         desc_count = 0;
1455         ngroups = EXT3_SB(sb)->s_groups_count;
1456         smp_rmb();
1457         for (i = 0; i < ngroups; i++) {
1458                 gdp = ext3_get_group_desc(sb, i, NULL);
1459                 if (!gdp)
1460                         continue;
1461                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1462         }
1463
1464         return desc_count;
1465 #endif
1466 }
1467
1468 static inline int
1469 block_in_use(unsigned long block, struct super_block *sb, unsigned char *map)
1470 {
1471         return ext3_test_bit ((block -
1472                 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) %
1473                          EXT3_BLOCKS_PER_GROUP(sb), map);
1474 }
1475
1476 static inline int test_root(int a, int b)
1477 {
1478         int num = b;
1479
1480         while (a > num)
1481                 num *= b;
1482         return num == a;
1483 }
1484
1485 static int ext3_group_sparse(int group)
1486 {
1487         if (group <= 1)
1488                 return 1;
1489         if (!(group & 1))
1490                 return 0;
1491         return (test_root(group, 7) || test_root(group, 5) ||
1492                 test_root(group, 3));
1493 }
1494
1495 /**
1496  *      ext3_bg_has_super - number of blocks used by the superblock in group
1497  *      @sb: superblock for filesystem
1498  *      @group: group number to check
1499  *
1500  *      Return the number of blocks used by the superblock (primary or backup)
1501  *      in this group.  Currently this will be only 0 or 1.
1502  */
1503 int ext3_bg_has_super(struct super_block *sb, int group)
1504 {
1505         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1506             !ext3_group_sparse(group))
1507                 return 0;
1508         return 1;
1509 }
1510
1511 /**
1512  *      ext3_bg_num_gdb - number of blocks used by the group table in group
1513  *      @sb: superblock for filesystem
1514  *      @group: group number to check
1515  *
1516  *      Return the number of blocks used by the group descriptor table
1517  *      (primary or backup) in this group.  In the future there may be a
1518  *      different number of descriptor blocks in each group.
1519  */
1520 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1521 {
1522         if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1523             !ext3_group_sparse(group))
1524                 return 0;
1525         return EXT3_SB(sb)->s_gdb_count;
1526 }
1527
1528 #ifdef CONFIG_EXT3_CHECK
1529 /* Called at mount-time, super-block is locked */
1530 void ext3_check_blocks_bitmap (struct super_block * sb)
1531 {
1532         struct ext3_super_block *es;
1533         unsigned long desc_count, bitmap_count, x, j;
1534         unsigned long desc_blocks;
1535         struct buffer_head *bitmap_bh = NULL;
1536         struct ext3_group_desc *gdp;
1537         int i;
1538
1539         es = EXT3_SB(sb)->s_es;
1540         desc_count = 0;
1541         bitmap_count = 0;
1542         gdp = NULL;
1543         for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) {
1544                 gdp = ext3_get_group_desc (sb, i, NULL);
1545                 if (!gdp)
1546                         continue;
1547                 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1548                 brelse(bitmap_bh);
1549                 bitmap_bh = read_block_bitmap(sb, i);
1550                 if (bitmap_bh == NULL)
1551                         continue;
1552
1553                 if (ext3_bg_has_super(sb, i) &&
1554                                 !ext3_test_bit(0, bitmap_bh->b_data))
1555                         ext3_error(sb, __FUNCTION__,
1556                                    "Superblock in group %d is marked free", i);
1557
1558                 desc_blocks = ext3_bg_num_gdb(sb, i);
1559                 for (j = 0; j < desc_blocks; j++)
1560                         if (!ext3_test_bit(j + 1, bitmap_bh->b_data))
1561                                 ext3_error(sb, __FUNCTION__,
1562                                            "Descriptor block #%ld in group "
1563                                            "%d is marked free", j, i);
1564
1565                 if (!block_in_use (le32_to_cpu(gdp->bg_block_bitmap),
1566                                                 sb, bitmap_bh->b_data))
1567                         ext3_error (sb, "ext3_check_blocks_bitmap",
1568                                     "Block bitmap for group %d is marked free",
1569                                     i);
1570
1571                 if (!block_in_use (le32_to_cpu(gdp->bg_inode_bitmap),
1572                                                 sb, bitmap_bh->b_data))
1573                         ext3_error (sb, "ext3_check_blocks_bitmap",
1574                                     "Inode bitmap for group %d is marked free",
1575                                     i);
1576
1577                 for (j = 0; j < EXT3_SB(sb)->s_itb_per_group; j++)
1578                         if (!block_in_use (le32_to_cpu(gdp->bg_inode_table) + j,
1579                                                         sb, bitmap_bh->b_data))
1580                                 ext3_error (sb, "ext3_check_blocks_bitmap",
1581                                             "Block #%d of the inode table in "
1582                                             "group %d is marked free", j, i);
1583
1584                 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1585                 if (le16_to_cpu(gdp->bg_free_blocks_count) != x)
1586                         ext3_error (sb, "ext3_check_blocks_bitmap",
1587                                     "Wrong free blocks count for group %d, "
1588                                     "stored = %d, counted = %lu", i,
1589                                     le16_to_cpu(gdp->bg_free_blocks_count), x);
1590                 bitmap_count += x;
1591         }
1592         brelse(bitmap_bh);
1593         if (le32_to_cpu(es->s_free_blocks_count) != bitmap_count)
1594                 ext3_error (sb, "ext3_check_blocks_bitmap",
1595                         "Wrong free blocks count in super block, "
1596                         "stored = %lu, counted = %lu",
1597                         (unsigned long)le32_to_cpu(es->s_free_blocks_count),
1598                         bitmap_count);
1599 }
1600 #endif