]> rtime.felk.cvut.cz Git - mf6xx.git/blob - doc/diploma_thesis/text/dip_text.tex
Diploma thesis text.
[mf6xx.git] / doc / diploma_thesis / text / dip_text.tex
1 % ==Typografie==
2 % vlna
3 % \item[] a \item s tečkou na konci
4 % odsazování zdrojaku ve verbatim: __X_|__  nebo jen __
5 % Popisy obrázků bez tečky (i s více větami)
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 \chapter{Úvod}
9 \section{Motivace, cíl}
10 Zadání této práce vzešlo z akademického prostředí a reaguje na nedostatek studijních materiálů v českém jazyce pro začátečníky, popisující vývoj ovladačů (v tomto případě PCI zařízení) pro operační systém GNU/Linux.
11
12 Text popisuje základní aspekty práce s PCI zařízeními v jádře Linux a uvádí dva konkrétní způsoby implementace ovladače zařízení PCI -- tzv. UIO a Comedi ovladač. Text obsahuje pouze nezbytné množství teorie, která je podložena četnými příklady pro snadnější pochopení. Pro čtenáře neznalého psaní programů těsně svázaných s hardwarem, jsou názorně vysvětleny základní principy a úskalí tohoto druhu programování.
13 %V případě dalšího zájmu o problematiku může čtenář sáhnout po knize \cite{devicedriver}.
14
15 Jako ukázková zařízení na sběrnici PCI byly zvoleny karty Humusoft MF624 a MF614. Podrobně je popsána jejich funkce, včetně způsobu obsluhy ovladačem. Tyto karty byly zvoleny z důvodu snadno pochopitelného způsobu obsluhy.
16   
17 Výsledkem práce by měly být, kromě popisu vývoje PCI ovladačů, i ovladače typu UIO a Comedi podporující základní funkce (A/D, D/A převodníky a digitální vstupy a výstupy) karet Humusoft MF614 a MF624, které by mohly posloužit jako jednoduché ukázkové ovla\-dače.
18
19 Pro maximální možné zhodnocení návodů je cílem práce implementovat některé funkce karty Humusoft MF624 do emulačního programu Qemu tak, aby bylo možné popsané postupy implementace ovladačů vyzkoušet i bez fyzického přístupu ke kartě. (FIXME)
20
21 \section{Dostupné materiály}
22 V českém jazyce dosud vyšla pouze jedna tištěná kniha, která se zabývá problematikou programování v prostředí jádra Linux. Jedná se o knihu Jádro systému Linux \cite{jadrosystemu} od Lukáše Jelínka. Je dělena do 3 základních částí:
23 \begin{itemize}
24 \item \textit{Vnější rozhraní jádra}
25 \item \textit{Vývoj ovladačů}
26 \item \textit{Pohled dovnitř jádra}
27 \end{itemize}
28
29 Jednotlivá témata jsou popsána pouze stručně (kniha je koncipována spíše jako příručka než jako učebnice) a pro studenta, neznalého vývoje jaderných ovladačů zařízení nemá příliš velký přínos.
30
31 Za nejpřínosnější knihu, zabývající se problematikou jaderného programování, považuji anglicky psanou knihu Linux Device Drivers \cite{devicedriver} od autorů Jonathan Corbet, Alessandro Rubini a Greg Kroah-Hartman. Tato kniha podrobně vysvětluje jak obecné principy a funkce používané u jaderných ovladačů, tak i způsob implementace ovladačů zařízení konkrétních typů.
32
33 Knihu je možné stáhnout zdarma ve formátu PDF\footnote{\url{http://lwn.net/Kernel/LDD3/}}.
34
35 \begin{figure}[h!]
36         \begin{center}
37         \begin{minipage}[b]{0.4\linewidth}
38                 \includegraphics[width=50mm]{img/jadro-systemu-linux.jpg}
39         \end{minipage}
40         \begin{minipage}[b]{0.4\linewidth}
41                 \includegraphics[width=50mm]{img/lddrivers.jpg}
42         \end{minipage}
43         \caption{\textit{Vlevo}: Kniha Lukáše Jelínka (v českém jazyce). 
44                 \textit{Vpravo}: kniha od autorů Jonathan Corbet, Alessandro Rubini a Greg Kroah-Hartman (v anglickém jazyce)}
45         \label{knihy}
46         \end{center}
47 \end{figure}
48
49
50
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 \chapter{Hardware}
53 \section{Základní principy komunikace s hardwarem}
54 Jak je možné ovládat hardwarové periferie pomocí programu (software) je nejsnazší ukázat na příkladu jednočipového počítače.
55
56 \ibox{Mikrokontrolér, neboli jednočipový počítač, má velikost pouze jednoho čipu. Obsahuje přitom procesor, paměť, vstupně-výstupní zařízení a jiné. Je obvyklé, aby mikrokontrolér obsahoval tzv. GPIO piny. 
57 \begin{description}
58 \item[GPIO piny (General Purpose Input/Output)] -- u těchto pinů je možné nastavit, zda má být jejich hodnota čtena (slouží jako vstupní piny -- skrze ně vstupuje informace) nebo zda chceme jejich hodnotu nastavovat (tj. výstupní piny).%
59 %\item[A/D převodník] -- Převádí analogový (spojitý) signál na diskrétní (nespojitý). Příklad: Na vstup A/D převodníku přivedeme napětí 2,4 V. Z registru odpovídajícímu tomuto převodníku si v digitální podobě mikroprocesor vyčte hodnotu odpovídající 2,4.
60 %\item[D/A převodník] -- Opačně od A/D převodníku převádí digitální signál na analogový. Příklad: Do registru odpovídajícímu D/A převodníku zapíše mikroprocesor hodnotu odpovídající např. 3,5 V. Na výstupu bude možné změřit napětí 3,5 V (s určitou malou odchylkou).
61 \end{description}%
62 }
63
64 Prvním způsobem, jak změnit stav GPIO pinu (ať už nastavení, zda se má jednat o~vstupní/výstupní pin nebo jakou hodnotu má mít v případě, že je výstupní) je provedení operace zápisu na určitou adresu v paměťovém adresním prostoru (ta je pevně daná a liší mezi jednotlivými architekturami mikrokontrolérů), tato adresa odpovídá \textbf{registru}\footnote{Registr může být pro zjednodušení považován za malou paměťovou buňku. Změna její hodnoty přímo ovlivňuje stav hardware. V dokumentaci ke konkrétnímu mikrokontroléru/\-mikroprocesoru/\-programovatelnému integrovanému obvodu je uvedeno, jakou funkci mají jednotlivé bity registru.} GPIO pinu. Vnitřní uspořádání mikrokontroléru, dle adresy na kterou bylo zapisováno, rozpozná, že provedená operace zápisu nebyla určena pro změnu hodnoty vnitřní paměti, ale je určena pro změnu hodnoty registru a z toho plynoucí změny stavu určité části hardwaru. Zapsaná hodnota se tedy projeví změnou stavu GPIO pinu. Tato možnost je nejjednodušší a je možná v případě, že jsou hardwarové periferie mapovány do určité části tzv. \textbf{paměťového prostoru}.\footnote{Také označováno jako MMIO -- \textit{Memory-mapped input/output}}
65
66 \begin{figure}[h!]
67         \begin{center}
68         \includegraphics[width=130mm]{img/gpio.pdf}
69         \caption{Registr odpovídající GPIO pinům. Změnou hodnoty tohoto registru je možné měnit chování nebo stav GPIO pinů}
70         \label{gpio_pins}
71         \end{center}
72 \end{figure}
73
74
75 Jiným způsobem změny stavu registru je použití jiné instrukce než která se používá pro paměťové operace -- tj. místo zápisu na adresu v paměťovém prostoru vyhrazenou pro GPIO registr, se provede zápis do tzv. \textbf{vstupně-výstupního prostoru}\footnote{Také označován zkratkou PIO -- \textit{Programmed input/output} nebo jako I/O adresní prostor} na adresu (v tomto případě označovanou jako \textbf{port}) odpovídající registru GPIO pinů. Adresy paměťového a~vstupně-výstupního prostoru spolu nijak nesouvisí. V případě zápisu a čtení do/z portu I/O adresního prostoru je potřeba z dokumentace \textbf{přesně vědět} jak široká (kolikabitová) slova je možné zapisovat/číst. 
76
77 \ibox{V případě architektury IA-32 (označované také jako x86) máme k dispozici paměťový a vstupně-výstupní adresní prostor. Vstupně výstupní adresní prostor je pouze 16bitový, zatímco paměťový je (\textit{pro zjednodušení nebereme ohled na PAE -- Physical Address Extension}) 32bitový. Toto rozdělení přetrvává z historických důvodů -- i~přesto je již možné některá zařízení mapovat do paměťového prostoru. (Znázorněno na obrázku \ref{mmio}.)}
78
79 Hlavní rozdíly mezi chováním paměťové buňky a registru zařízení jsou:
80 \begin{itemize}
81 \item Změnou hodnoty registru je možné měnit stav zařízení/periferie odpovídající danému registru.
82 \item V případě zápisu do registru a jeho okamžitém čtení, nemusí být přečtená hodnota shodná se zapisovanou -- v tom případě byla hodnota registru změněna hardwarem.
83 \item V případě čtení z registru může být spuštěn tzv. \textbf{side effect}, kdy hardware na toto čtení reaguje změnou stavu, podobně jako by byl proveden zápis do registru (Příklad: Ihned po vyčtení hodnoty registru A/D převodníku se spustí nový převod a původní hodnota se přepíše novou). Side effects mohou nastat i při zápisu do registru. 
84 \item Při zápisu a čtení do/z registru si je nutné přesně rozlišovat, kolika-bitové operace zápisu/čtení smějí být použity (8-, 16-, 32bitové).
85 \end{itemize}
86
87 \begin{figure}[h!]
88         \begin{center}
89         \includegraphics[width=100mm]{img/mmio.pdf}
90         \caption{Paměťový a vstupně-výstupní prostor u architektury IA-32}
91         \label{mmio}
92         \end{center}
93 \end{figure}
94
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 %\clearpage
97 %\newpage
98 \section{PCI sběrnice}\label{pcich}
99 %Přesný popis PCI sběrnice je mimo rozsah a zaměření této práce. Pokusím se však zmínit a názorně vysvětlit principy využívané touto sběrnicí, které je nutné alespoň částečně znát při implementaci ovladačů PCI zařízení.
100
101 PCI (\textit{Peripheral Component Interconnect}) je standard paralelní sběrnice využívaný v~počí\-ta\-čích různých architektur. Šířka paralelně přenášených dat je 32 nebo v modernější, méně často používané verzi, 64 bitů. Sběrnice je orientována na přenos zpráv oproti přímé komunikaci mezi zařízeními.\footnote{T.j. místo toho, aby PCI most přistupoval přímo k paměti jednotlivých zařízení, vyšle se na sběrnici zpráva s požadavkem. V případě, že je zařízení schopno požadavek obsloužit, umístí na datovou sběrnici požadovaná data.}
102
103 Komunikace mezi zařízeními připojenými na sběrnici a procesorem zajišťuje tzv. \textit{PCI most} (PCI bridge). Propojení více nezávislých sběrnic v jednom počítači jsou zajištěny také PCI mosty.
104
105 \subsection{Historie}
106 V roce 1990 začala práce na specifikaci PCI v laboratořích firmy Intel. První specifikace definující jak komunikační protokol, tak vzhled konektoru a slotu, byla zveřejněna 30. dubna 1993 (jedná se o PCI 2.0). PCI sběrnice se poté začala objevovat v počítačích architektury IBM PC a PowerPC.
107
108 V pozdějších letech se původní standard dočkal vylepšení -- zvýšení šířky paralelní sběrnice z 32 bitů na 64 bitů a zrychlení z 33 MHz na 66 Mhz a výše. Tyto pokročilejší verze se však příliš neujaly.
109 \subsection{Konektory}
110 Pro spojení mezi kartou a sběrnicí je potřeba pouze konektor na straně sběrnice -- tzv. slot. V závislosti na napájecím napětí (3,3 V nebo 5 V) jsou na kartách klíčovací zářezy -- tyto zářezy znemožňují zasunutí \textit{napěťově} nekompatibilní karty do slotu. Jsou však karty, které mají tyto zářezy oba, díky čemuž může být karta použita v libovolném slotu (obr. \ref{pci}).
111
112 \begin{figure}[h!]
113         \begin{center}
114         \begin{minipage}[b]{0.4\linewidth}
115                 \includegraphics[width=57mm]{img/pci_schema2.png}
116         \end{minipage}
117         \begin{minipage}[b]{0.4\linewidth}
118                 \includegraphics[width=50mm]{img/pci2.jpg}
119         \end{minipage}
120         \caption{\textit{Vlevo}: Schéma znázorňující rozdíly mezi konektory pro karty s napájením 3,3 V a 5 V. \textit{Vpravo}: Reálná fotografie PCI konektorů}
121         \label{pci}
122         \end{center}
123 \end{figure}
124
125
126 \subsection{Dynamická konfigurace a konfigurační adresní prostor}\label{pci_conf}
127 Mezi hlavní výhody PCI sběrnice (oproti její předchůdkyni -- sběrnici ISA) patří dynamická konfigurace připojených zařízení: Ve většině případů probíhá komunikace mezi hostitelským systémem a připojenou (a nakonfigurovanou) PCI kartou zápisem/čtením do určité paměťové (nebo vstupně-výstupní) oblasti. U starší sběrnice ISA si každá karta pevně určila, kam se její část paměti namapuje -- v takovém případě mohl nastat problém, že více než jedna karta mapovala svoji paměť na stejnou adresu (nebo se jednotlivá mapování překrývala). PCI sběrnice tomuto problému předchází takovým způsobem, že každá z karet nese informaci o~tom, kolik jak velkých paměťových nebo I/O regionů potřebuje namapovat -- o samotné mapování se poté postará PCI most.
128
129 Informaci o tom, kolik (a jaké) paměti karta bude potřebovat má před nakonfigurováním uloženu v tzv. \textbf{Base Address Registrech} -- BAR0--BAR5\footnote{Informace o velikosti požadované oblasti je v registru uložena takovým způsobem, že je pouze jeho část určena k zápisu a zbytek je pouze pro čtení. PCI most se pokusí do registru zapsat hodnotu 0xFFFFFFFF, poté je hodnota zpět vyčtena -- z bitů náležejících do zapisovatelné části registru, je přečtena $1_2$, zbývající část obsahuje hodnoty $0_2$.}. Poté co se PCI mostu podaří tuto hodnotu přečíst a požadovanou paměť alokovat, zapíše zpět do daného registru adresu, na které se alokovaná paměť nachází. Tu si poté pro potřeby komunikace vyčte ovladač zařízení, který je součástí operačního systému.
130
131
132 Kromě výše zmíněných 6 BAR registrů, obsahují PCI zařízení i následující registry:
133 \begin{description}
134 \item[Vendor ID]~\\Obsahuje unikátní 16bitové číslo identifikující výrobce zařízení. Za poplatek je udělo\-váno PCI-SIG (\textit{PCI Special Interest Group}) organizací.\footnote{V Debianu, po nainstalování balíčku \texttt{hwdata}, se seznam těchto identifikátorů nachází v souboru \texttt{/usr/share/hwdata/pci.ids}}
135 \item[Device ID]~\\Obsahuje 16bitové číslo identifikující model zařízení. Hodnotu tohoto identifikátoru si volí sám výrobce zařízení.
136 \item[Class code]~\\Označuje (ve 24 bitech) druh zařízení -- zda se jedná např. o grafickou kartu, zvukovou kartu nebo kartu zpracovávající signál.
137 \item[Subsystem Vendor ID] -- Podobá se \texttt{Vendor ID}. V případě, že karta využívá PCI řadič třetí strany, jako \texttt{Vendor ID} se zobrazí ID výrobce tohoto řadiče. Aby bylo možné zařízení odlišit od jiného, které využívá stejný řadič, skutečné ID zařízení bude uloženo v tomto registru.
138 \item[Subsystem ID]~\\Opět se jedná o údaj podobný \texttt{Device ID} sloužící k rozlišení karet postavených na univerzálním řadiči.
139 \end{description}
140
141 Registry \texttt{Vendor ID}, \texttt{Device ID} (příp. ještě \texttt{Subsystem Vendor ID} a \texttt{Subsystem ID}) slouží operačnímu systému k jednoznačné identifikaci zařízení, při volbě správného ovladače.
142
143
144 \begin{figure}[h!]
145         \begin{center}
146         \includegraphics[width=80mm]{img/pci-config-space2.pdf}
147         \caption{Obsah 256 bajtů konfiguračního prostoru PCI karty (zvýrazněny jsou nejdůležitější registry)}
148         \label{sa1}
149         \end{center}
150 \end{figure}
151
152 Výše popsané registry (spolu s ostatními, které zde nebyly popsány) se nacházejí v~256bito\-vém tzv. \textbf{konfiguračním adresním prostoru} karty\footnote{Po paměťovém a vstupně-výstupním adresním prostoru je zde třetí -- konfigurační -- adresní prostor.}. Přístup do konfiguračního adresního prostoru je na architektuře IA-32 možný pomocí zapsání adresy (\textit{kam má být v~konfiguračním prostoru zapisováno}) a dat (\textit{která mají být do konfiguračního prostoru zapsána}) do dvou speciálních I/O portů, které jsou pro tuto operaci vyhrazeny.
153
154
155 \subsection{Přerušení}
156 Sběrnice PCI obsahuje čtyři linky přerušení a všechny z nich jsou dostupné každému zařízení. Přerušení mohou být sdílená, tudíž o jedno přerušení se může dělit více zařízení. Pro snazší sdílení přerušení jsou úrovňově spouštěná (oproti hranovému spouštění nedochází k promeškání přerušení).
157
158 V pozdějších revizích PCI specifikací je přidána podpora pro přerušení signalizované zprávou. V tomto případě zařízení oznamuje svůj požadavek na obsloužení zápisem do paměti PCI mostu -- ten poté tento požadavak směruje dále k procesoru.
159
160 \subsection{Budoucnost}
161 V posledních letech je na poli osobních počítačů PCI sběrnice nahrazována její nástupkyní -- sběrnicí PCIe (PCI Express). Ta je na rozdíl od PCI sériová a dosahuje rychlostí až 16 GB/s. I~přesto je sběrnice PCI stále využívána mnohými zařízeními -- převážně v průmyslu.
162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163 \newpage
164 \section{Humusoft MF624}
165 \begin{figure}[h!]
166         \begin{center}
167         \includegraphics[width=150mm]{img/mf624.jpg}
168         \caption{Měřící karta Humusoft MF624}
169         \label{mf624}
170         \end{center}
171 \end{figure}
172
173 Měřící karta Humusoft MF624 (obr. \ref{mf624}), připojitelná k počítači pomocí PCI sběrnice, má pro účely výkladu psaní ovladačů několik nesporných výhod:
174 \begin{itemize}
175 \item Komunikace (na úrovni ovladače) s kartou probíhá snadno pochopitelným, přímo\-čarým způsobem, kdy je pouze zapisováno (nebo čteno) do registrů karty (bude vysvětleno dále).
176 \item Je možné si ověřit správnou funkci napsaného ovladače -- např. připojením LED diody k digitálnímu výstupu nebo měřením napětí na výstupu D/A převodníku.
177 \end{itemize}
178
179 Karta MF624 najde své uplatnění hlavně v laboratorním prostředí -- v případech, když je potřeba vytvořit styk mezi počítačem a senzorem/jiným zařízením, které poskytuje analogový, resp. digitální signál (v tom případě jsou použity A/D převodníky, resp. digitální vstupy). Kartu je možné použít pro řízení akčního členu/zařízení -- k dispozici jsou D/A převodníky a digitální výstupy.
180
181 Karta disponuje následujícícmi funkcemi (v popisu implementace ovladačů se omezím pouze na A/D, D/A převodníky a digitální vstupy/výstupy):
182 \begin{itemize}
183 \item 8 digitálních vstupů (TTL kompatibilní logické úrovně)
184 \item 8 digitálních výstupů (TTL kompatibilní logické úrovně)
185 \item 8 14bitových A/D převodníků (rozsah $\pm$10 V)
186 \item 8 14bitových D/A převodníků (rozsah $\pm$10 V)
187 \item 4 časovače/čítače
188 \item 4 vstupy inkrementálních snímačů
189 \end{itemize}
190
191 \subsection{Komunikace s kartou}\label{hum_komunikace}
192 Komunikace s kartou není nijak složitá -- zjednodušeně by se dala popsat následovně:
193 \begin{itemize}
194 \item V případě čtení hodnoty digitálních vstupů, přečte se hodnota registru určeného právě digitálním vstupům -- v případě zápisu na digitální výstupy, se zapíše do registru určeného digitálním výstupům.
195 \item V případě čtení hodnoty A/D převodníku, se nejprve zapíše do konfiguračního registru A/D převodníku hodnota odpovídající požadované konfiguraci. Poté se již z registru náležícího A/D převodníku vyčte požadovaná hodnota.
196 \end{itemize}
197
198 Které registry karta obsahuje, jakou mají funkci a kde jsou umístěny je možné zjistit z manuálu ke kartě -- ten je možné stáhnout z oficiálních internetových stránek výrobce: \url{http://www2.humusoft.cz/www/datacq/manuals/mf624um.pdf}.
199
200 Na straně 11 je k vidění první důležitá tabulka (zde tab. \ref{tab_bar}):
201
202 \begin{table}[h!]
203         \begin{center}
204         \begin{tabular}{|p{2cm}|p{4cm}|c|c|}
205         \hline \textbf{Region} & \textbf{Function} & \textbf{Size (bytes)} & \textbf{Width (bytes)} \\ 
206         \hline BADR0 (memory mapped) & PCI chipset, interrupts, status bits, special functions & 32 & 32 \\ 
207         \hline BADR1 (memory mapped) & A/D, D/A, digital I/O & 128 & 16/32 \\ 
208         \hline BADR2 (memory mapped) & Counter/timer chip & 128 & 32 \\ 
209         \hline 
210         \end{tabular} 
211         \caption{Paměťové regiony, které využívá karta MF624}
212         \label{tab_bar}
213         \end{center}
214 \end{table}
215
216 Z ní je patrné, že karta využívá 3 regiony\footnote{V manuálu je uvedeno, že se jedná o regiony odpovídající BAR0, BAR1 a BAR2 registrům -- na počítačích s procesorem rodiny IA-32 a s operačním systémem GNU/Linux však karta využívá BAR0, BAR2 a BAR4. Důvod rozdílu mezi skutečností a manuálem není jasný. Na tuto skutečnost se musí při implementaci ovladače brát zřetel.} mapované do paměťového adresního prostoru -- o velikostech 32, 128 a 128 bajtů. Pro čtení/zápis z/do nich je potřeba používat 32-, 16-, 32bitové operace\footnote{V manuálu je uvedeno, že za určitých podmínek je možné k BAR1 přistupovat i pomocí 32bitových operací. V této práci bych se tomuto složitějšímu přístupu rád vyhnul. Částečná implementace karty MF624 do emulátoru Qemu (Popsaná v příloze \ref{qemu}) umožňuje \textbf{pouze} 16bitový přístup do BAR1 paměťového regionu.}
217
218 \subsection{Digitální vstupy a výstupy}
219 Z tabulky \ref{tab_bar} lze vyčíst informaci, že registry ovládající digitální vstupy a výstupy leží v regionu BAR1 (sloupec 2). Dále je potřeba se podívat na přehled registrů náležejících tomuto paměťovému regionu (v oficiálním manuálu na straně 12) -- tomu odpovídá tabulka (s menšími úpravami) \ref{tab_bar1}.
220
221 \begin{table}[h!]
222         \begin{center}
223         \begin{tabular}{|p{17mm}|c|c|}
224         \hline \textbf{Address (BADR1 offset)} & \textbf{Read} & \textbf{Write} \\ 
225         \hline 0x00 & \textbf{ADDATA} -- A/D data & ADCTRL -- A/D control \\ 
226         \hline 0x02 & \textbf{ADDATA} -- A/D data mirror &  \\ 
227         \hline 0x04 & \textbf{ADDATA} -- A/D data mirror &  \\ 
228         \hline 0x06 & \textbf{ADDATA} -- A/D data mirror &  \\ 
229         \hline 0x08 & \textbf{ADDATA} -- A/D data mirror &  \\ 
230         \hline 0x0A & \textbf{ADDATA} -- A/D data mirror &  \\ 
231         \hline 0x0C & \textbf{ADDATA} -- A/D data mirror &  \\ 
232         \hline 0x0E & \textbf{ADDATA} -- A/D data mirror &  \\ 
233         \hline 0x10 & \textbf{DIN} -- Digital input & \textbf{DOUT} -- Digital output \\ 
234         \hline 0x20 & \textbf{ADSTART} -- A/D SW trigger & \textbf{DA0} -- D/A 0 data \\ 
235         \hline 0x22 &  & \textbf{DA1} -- D/A 1 data \\ 
236         \hline 0x24 &  & \textbf{DA2} -- D/A 2 data \\ 
237         \hline 0x26 &  & \textbf{DA3} -- D/A 3 data \\ 
238         \hline 0x28 &  & \textbf{DA4} -- D/A 4 data \\ 
239         \hline 0x2A &  & \textbf{DA5} -- D/A 5 data \\ 
240         \hline 0x2C &  & \textbf{DA6} -- D/A 6 data \\ 
241         \hline 0x2E &  & \textbf{DA7} -- D/A 7 data \\ 
242         \hline 
243         \end{tabular} 
244         \caption{Registry karty MF624 obsažené v regionu BAR1}
245         \label{tab_bar1}
246         \end{center}
247 \end{table}
248
249 Na devátém řádku jsou zmíněny \texttt{DIN} (Digital input) a \texttt{DOUT} (Digital output) registry. Z~této tabulky je patrná pozice těchto registrů v paměťovém prostoru (t.j. offset v bytech vůči adrese BAR1).
250
251 Jak jsou data v registrech reprezentována, je možné si přečíst (v oficiálním manuálu) na straně 16, kde jsou tyto dva registry podrobně popsány (zde tabulka \ref{tab_din} a \ref{tab_dout}). 
252 První sloupec určuje, kterých bitů se daný řádek týká. V druhém sloupci je informace o funkci. Třetí sloupec udává výchozí hodnotu. Z toho, co je v tabulkách uvedeno, plyne, že pro čtení 8bitového digitálního vstupu stačí přečíst spodních 8 bitů DIN registru, horních 8 bitů je potřeba ignorovat. Stejně tak pro nastavení 8bitového digitálního výstupu se zapíše požadovaná hodnota do spodních 8 bitů registru DOUT, horních 8 bitů je potřeba ignorovat.
253
254 \begin{table}[h!]
255         \begin{center}
256         \begin{tabular}{|c|c|c|}
257         \hline \textbf{Bit} & \textbf{Description} & \textbf{Default} \\ 
258         \hline 7:0 & \textbf{Digital input 7:0.} Reads digital input port. & 1 \\ 
259         \hline 15:8 & Reserved & N/A \\ 
260         \hline 
261         \end{tabular} 
262         \caption{DIN -- Digital Input Register Format}
263         \label{tab_din}
264         \end{center}
265 \end{table}
266
267 \begin{table}[h!]
268         \begin{center}
269         \begin{tabular}{|c|c|c|}
270         \hline \textbf{Bit} & \textbf{Description} & \textbf{Default} \\ 
271         \hline 7:0 & \textbf{Digital output 7:0.} Writes to digital output port. & 0 \\ 
272         \hline 15:8 & Reserved & N/A \\ 
273         \hline 
274         \end{tabular} 
275         \caption{DOUT -- Digital Output Register Format}
276         \label{tab_dout}
277         \end{center}
278 \end{table}
279
280
281 \subsection{A/D převodníky}
282 Karta MF624 obsahuje osm 14bitových A/D převodníků s pevně stanoveným rozsahem $\pm$10 V. Jejich vyčtení může probíhat následujícím způsobem:
283
284 \begin{itemize}
285 \item Nejprve se v registru ADCTRL zvolí, které A/D převodníky mají být čteny. 
286 Každý z~A/D převodníků je reprezentován jedním bitem. Zápisem 1 do daného bitu se nastaví, že bude daný A/D převodník aktivní -- 0 ho deaktivuje. Je možné zvolit více než jeden A/D převodník.
287 \item Čtením registru ADSTART se spustí převod na zvolených A/D převod\-nících. Přečtená hodnota se dále nepoužívá.
288 \item V případě, že se provedl převod na všech zvolených A/D převodnících, je EOLC bit (17. bit) GPIOC registru nastaven na 0 (jinak je v 1).
289 \item Výslednou hodnotu je možné přečíst z registru ADDATA, který je typu FIFO. To znamená, že opětovným čtením jednoho registru jsou vyčítány jednotlivé naměřené hodnoty z měřených A/D převodníků v pořadí od 0 do 7.
290
291 Jinou možností je místo čtení registru ADDATA číst některý z jeho \textit{zrcadlených registrů} (celkem je jich 7, v manuálu jsou označeny jako \textit{BADR1 + 0x02} až \textit{BADR1 + 0x0E}). Tyto registry se chovají \textbf{zcela stejně} jako registr ADDATA, pouze leží na jiných adresách. Příklad: pokud byly aktivovány první čtyři A/D převodníky, po převodu je možné výslednou hodnotu vyčíst opakovaným čtením registru ADDATA nebo čtením registru ADDATA, ADDATA1, ADDATA2, ADDATA3 přesně v tomto pořadí. Čtení z registrů v jiném pořadí bude stále vracet hodnoty převodníků 0--4.
292 \end{itemize}
293
294 Hodnota vyčtená z A/D převodníků je ve formátu dvojkového doplňku -- příklad konkrét\-ních hodnot je v tabulce \ref{tab_adval}.
295
296
297 \begin{table}[h!]
298         \begin{center}
299         \begin{tabular}{|c|c|}
300         \hline \textbf{Digitální hodnota} & \textbf{Analogová hodnota} \\ 
301         \hline 0x3FFF & -0.0012 V \\ 
302         \hline 0x2000 & -10.0000 V \\ 
303         \hline 0x1FFF &  9.9988 V \\ 
304         \hline 0x0000 &  0.0000 V \\ 
305         \hline 
306         \end{tabular} 
307         \caption{Kódování vstupních hodnot A/D převodníku}
308         \label{tab_adval}
309         \end{center}
310 \end{table}
311
312 \subsection{D/A převodníky}
313 Karta MF624 obsahuje také osm 14bitových D/A převodníků s rozsahem $\pm$10 V.
314
315 Nastavení výstupních hodnot D/A převodníků může probíhat následujícím způsobem:
316
317 \begin{itemize}
318 \item Hodnota v aditivním kódu (tabulka \ref{tab_daval}) se zapíše do jednoho z osmi registrů DA0--DA7 odpovídajícího D/A převodníku, který má být nastaven.
319 \item Bit DACEN (26. bit) registru GPIOC je potřeba nastavit na 1, jinak jsou výstupy D/A převodníků připojeny na \textit{zem}.
320 \item Bit LDAC (23. bit) registru GPIOC je potřeba nastavit na 0, aby byl spuštěn samotný převod D/A převodníků (jinak zůstane zapsaná hodnota pouze v registru, výstupní hodnota D/A převodníku zůstane nezměněna).
321 \end{itemize}
322
323
324 \begin{table}[h!]
325         \begin{center}
326         \begin{tabular}{|c|c|}
327         \hline \textbf{Digitální hodnota} & \textbf{Analogová hodnota} \\ 
328         \hline 0x3FFF &  9.9988 V \\ 
329         \hline 0x2000 &  0.0000 V \\ 
330         \hline 0x1FFF & -0.0012 V \\ 
331         \hline 0x0000 & -10.0000 V \\ 
332         \hline 
333         \end{tabular} 
334         \caption{Kódování vstupních hodnot D/A převodníku}
335         \label{tab_daval}
336         \end{center}
337 \end{table}
338
339 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
340 \newpage
341 \section{Humusoft MF614}
342 \begin{figure}[h!]
343         \begin{center}
344         \includegraphics[width=150mm]{img/mf614.jpg}
345         \caption{Měřící karta Humusoft MF614}
346         \label{mf614}
347         \end{center}
348 \end{figure}
349
350 Karta Humusoft MF614 má podobné funkce a využití jako karta MF624. Ve skutečnosti se jedná o její předchůdkyni. 
351
352 Karta disponuje následujícími funkcemi:
353
354 \begin{itemize}
355 \item 8 digitálních vstupů (TTL kompatibilní logické úrovně)
356 \item 8 digitálních výstupů (TTL kompatibilní logické úrovně)
357 \item 8 12bitových A/D převodníků (volitelné rozsahy $\pm$10 V, $\pm$5 V, 0--5 V, 0--10 V)
358 \item 4 12bitových D/A převodníků (rozsah $\pm$10 V)
359 \item 4 časovače/čítače
360 \item 4 vstupy inkrementálních snímačů
361 \end{itemize}
362
363 \subsection{Komunikace s kartou}
364 Způsob komunikace s kartou MF614 se mírně liší od MF624.
365
366 Po nahlédnutí do manuálu (dostupný ze stránek výrobce: \url{http://www2.humusoft.cz/www/datacq/manuals/mf614um.pdf}) je z tabulky 9 (zde tab. \ref{tab_mf614_bars}) patrné, že karta využívá více regionů než MF624, přičemž některé jsou mapovány do paměti, jiné do vstupně-výstup\-ního adresního prostoru. Po prohlédnutí tabulky popisující rozložení registrů (zde tab. \ref{tab_mf614_regs}) je zřejmé, že pro přístup k digitálním vstupům/výstupům a analogovým vstupům/výstupům jsou použity vstupně-výstupní regiony BAR0, BAR2. 
367
368 \begin{table}[h!]
369         \begin{center}
370         \begin{tabular}{|c|c|c|}
371         \hline \textbf{Region}          & \textbf{Function}                                             & \textbf{Size (bytes)} \\ 
372         \hline BADR0 (I/O mapped)       & Board programming registers                           & 32 \\ 
373         \hline BADR1 (I/O mapped)       & Reserved                                                                      & 4 \\ 
374         \hline BADR2 (I/O mapped)       & OX9162 local configuration registers          & 32 \\ 
375         \hline BADR3 (memory mapped) & OX9162 local configuration registers     & 4096 \\ 
376         \hline BADR4 (memory mapped) & Board programming registers                              & 4096 \\ 
377         \hline 
378         \end{tabular} 
379         \caption{Paměťové a vstupně-výstupní regiony, které využívá karta MF614}
380         \label{tab_mf614_bars}
381         \end{center}
382 \end{table}
383
384
385 \begin{table}[h!]
386         \begin{center}
387         \begin{tabular}{|c|c|c|}
388         \hline \textbf{Address} & \textbf{Read} & \textbf{Write} \\ 
389         \hline BADR0 + 0x0 & \textbf{ADLO} -- A/D data low                      & \textbf{ADCTRL} -- A/D control \\ 
390         \hline BADR0 + 0x1 & \textbf{ADHI} -- A/D data high                     &  \\ 
391         \hline BADR0 + 0x2 & \textbf{9513A} -- Data read                                & \textbf{9513A} -- Data write \\ 
392         \hline BADR0 + 0x3 & \textbf{9513A} -- Command read                     & \textbf{9513A} -- Command write \\ 
393         \hline BADR0 + 0x4 &  &  \\ 
394         \hline BADR0 + 0x5 &  &  \\ 
395         \hline BADR0 + 0x6 & \textbf{DIN} -- Digital input                      & \textbf{DOUT} -- Digital output \\ 
396         \hline BADR0 + 0x7 &  &  \\ 
397         \hline BADR0 + 0x8 & \textbf{DALE} -- D/A latch enable          & \textbf{DA0LO} -- D/A 0 data low byte \\ 
398         \hline BADR0 + 0x9 &                                                                            & \textbf{DA0HI} -- D/A 0 data high byte \\ 
399         \hline BADR0 + 0xA &                                                                            & \textbf{DA1LO} -- D/A 1 data low byte \\ 
400         \hline BADR0 + 0xB &                                                                            & \textbf{DA1HI} -- D/A 1 data high byte \\ 
401         \hline BADR0 + 0xC &                                                                            & \textbf{DA2LO} -- D/A 2 data low byte \\ 
402         \hline BADR0 + 0xD &                                                                            & \textbf{DA2HI} -- D/A 2 data high byte \\ 
403         \hline BADR0 + 0xE &                                                                            & \textbf{DA3LO} -- D/A 3 data low byte \\ 
404         \hline BADR0 + 0xF &                                                                            & \textbf{DA3HI} -- D/A 3 data high byte \\ 
405         \hline \ldots & \ldots & \ldots \\      
406         \hline BADR2 + 0x10 & \textbf{STATUS} -- Status register & \\   
407         \hline 
408         \end{tabular} 
409         \caption{Registry karty MF614 náležící digitálním vstupům/výstupům a analogovým vstupům/výstupům}
410         \label{tab_mf614_regs}
411         \end{center}
412 \end{table}
413
414 Jednotlivé registry v těchto regionech jsou 8bitové, proto je potřeba při čtení/zápisu používat pouze 8bitové funkce. 16bitové hodnoty jsou rozděleny do dvou 8bitových registrů -- v takovém případě, obsahuje-li registr ve svém názvu písmena \textbf{LO}, jedná se o spodní bajt, zatímco \textbf{HI} značí horní bajt. Výsledná 16bitová hodnota se získá složením dvou 8bitových:
415 \begin{verbatim}
416   u8 regAHI, regALO;
417   u16 regA;
418    
419   regA = regALO | (regAHI << 8);
420 \end{verbatim}
421
422 \subsection{Digitální vstupy a výstupy}
423 Pro nastavení hodnoty digitálních výstupů se zapíše požadovaná hodnota do registru DOUT, kde jeden bit odpovídá jednomu digitálnímu výstupu. Pro čtení digitálních vstupů je potřeba přečíst registr DIN.
424
425 \subsection{A/D převodníky}
426 Čtení A/D převodníků je u karty MF614 oproti MF624 trochu složitější, hlavně díky tomu, že je u převodníků potřeba nastavit, v jakém rozsahu bude provedeno měření. Je možné vybírat mezi rozsahy -10--10 V, -5--5 V, 0--10 V, 0--5 V. 
427
428 K nastavení vlastností A/D převodníků slouží registr ADCTRL (přeložená tab. \ref{tab_mf614_adctrl}). Bity 2:0 slouží k volbě jednoho z osmi A/D převodníků, které budou při příštím měření použity. Dekadická hodnota určující pořadí A/D převodníku je uložena ve třech bitech jako binární číslo (t.j. $0_{10} = 000_{2}$, $1_{10} = 001_{2}$, $2_{10} = 010_{2}$, $3_{10} = 011_{2}$, $4_{10} = 100_{2}$, \ldots). 
429
430 Bity 3 a 4 slouží k nastavení použitého rozsahu (způsob nastavení viz tabulka \ref{tab_mf614_rng}).
431
432 Bity 5, 6 a 7 nemají žádnou funkci a musí bát nastaveny na 0, 1, 0.
433
434 \begin{table}[h!]
435         \begin{center}
436         \begin{tabular}{|c|c|c|}
437         \hline \textbf{Bit} & \textbf{Jméno} & \textbf{Popis} \\ 
438         \hline  7                       &                               & Musí být nastaveno na 0 \\ 
439         \hline  6                       &                               & Musí být nastaveno na 1 \\ 
440         \hline  5                       &                               & Musí být nastaveno na 0 \\ 
441         \hline  4                       & RNG                   & Nastavení měřeného rozsahu A/D převodníku (tab. \ref{tab_mf614_rng}) \\ 
442         \hline  3                       & BIP                   & Nastavení, zda bude měřený rozsah \textit{bipolární} (tab. \ref{tab_mf614_rng}) \\ 
443         \hline  2, 1, 0         & A2, A1, A0    & Výběr A/D převodníku pro příští měření \\ 
444         \hline 
445         \end{tabular} 
446         \caption{Funkce jednotlivých bitů registru ADCTRL}
447         \label{tab_mf614_adctrl}
448         \end{center}
449 \end{table}
450
451 \begin{table}[h!]
452         \begin{center}
453         \begin{tabular}{|c|c|c|}
454         \hline \textbf{RNG} & \textbf{BIP} & \textbf{Vstupní rozsah [V]} \\ 
455         \hline  0                       &       0                       & 0--5 V \\ 
456         \hline  1                       &       0                       & 0--10 V \\ 
457         \hline  0                       &       1                       & -5--5 V \\ 
458         \hline  1                       &       1                       & -10--10 V \\ 
459         \hline 
460         \end{tabular} 
461         \caption{Volba rozsahu A/D převodníku}
462         \label{tab_mf614_rng}
463         \end{center}
464 \end{table}
465
466 Vyčtení hodnoty A/D převodníku může probíhat následujícím způsobem:
467
468 \begin{itemize}
469 \item Nejprve se v registru ADCRTL zvolí, který A/D převodník bude čten a který měřící rozsah bude použit.
470 \item Zápis do registru ADCTRL automaticky spouští převod.
471 \item Je-li CC bit (2. bit) registru STAT nastaven na 0, převod již byl ukončen.
472 \item Data je poté možné přečíst z registru ADLO a ADHI -- jedná se o 8bitové registry, které je potřeba pro získání 12 bitové výsledné hodnoty \textit{složit} dohromady. Je-li nastaven unipolární rozsah měření (t.j. 0--5 V nebo 0--10 V) je měřená hodnota kódována jako binární číslo. V případě bipolárního rozsahu je hodnota kódována pomocí dvojkového doplňku.
473 \end{itemize}
474
475 \subsection{D/A převodníky}
476 Karta MF614 obsahuje 4 D/A převodníky. Ty mají pevně nastavený výstupní rozsah -10--10 V a nevyžadují žádnou konfiguraci.
477
478 Nastavení výstupu D/A převodníků může probíhat následujícím způsobem:
479 \begin{itemize}
480 \item Do registru DA$x$LO a DA$x$HI (kde $x$ může nabývat hodnot 0, 1, 2, 3 a určuje, ke kterému D/A převodníku registr patří) se zapíše hodnota k převodu. 12bitová hodnota je do 8bitových registrů rozdělena takovým způsobem, že 8 LSB je zapsáno do DA$x$LO a zbývající čtyři jsou zapsány do DA$x$HI na 4 nejnižší bity, nepoužité 4 MSB registru DA$x$HI jsou vyplněny nulami.
481
482 Hodnota je zapsána v aditivním kódu (tab. \ref{tab_mf614_dac}).
483
484 \item Čtením registru DALE se spustí převod všech D/A převodníků.
485 \end{itemize}
486
487 \begin{table}[h!]
488         \begin{center}
489         \begin{tabular}{|c|c|}
490         \hline \textbf{Digitální hodnota} & \textbf{Analogová hodnota} \\ 
491         \hline 0xFFF & 9.9951 V \\ 
492         \hline 0x800 & 0.0000 V \\ 
493         \hline 0x7FF & -0.0049 V \\ 
494         \hline 0x000 & -10.0000 V \\ 
495         \hline 
496         \end{tabular} 
497         \caption{Kódování vstupních hodnot D/A převodníku}
498         \label{tab_mf614_dac}
499         \end{center}
500 \end{table}
501
502 \ibox{
503 \textbf{MSB} (Most Significant Bit) je označení pro bit s nejvyšší hodnotou v binárním vyjádření čísla. V obvyklém dvojkovém zápisu jde o bit nejvíce vlevo.
504 \\~\\
505 \textbf{LSB} (Least Significant Bit) je bit s nejnižší hodnotou. Jde o bit nejvíce vpravo.
506
507 \begin{center}
508 \texttt{1 0 1 0 1 0 1 0}\\
509 \texttt{MSB\hspace{2.6cm}LSB}
510 \end{center}}
511
512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
513 \chapter{Implementace ovladačů}
514 \section{Operační systém GNU/Linux}
515 Jako cílový operační systém, na kterém bude vysvětlena implementace základních ovla\-da\-čů, byl zvolen GNU/Linux\footnote{Operační systém sestávající z GNU nástrojů a jádra Linux je označován jako GNU/Linux.}. Hlavním důvodem je dostupnost zdrojových kódů, velké množství kvalitní dokumentace, rozšířenost a vysoká kvalita. Distribucí použitou při vývoji je Debian GNU/Linux (verze jádra Linux 2.6.35) -- popsané postupy by však měly fungovat i pro jiné distribuce.
516
517 \subsection{Práce s PCI zařízeními z uživatelského prostoru}
518 Pro výpis všech zařízení v systému připojených pomocí sběrnice PCI slouží program \texttt{lspci}.
519 Po jeho spuštění bez udání parametrů bude vypsán základní seznam PCI zařízení. 
520
521 Mezi důležité parametry, použitelné při spuštění programu, patří:
522 \begin{description}
523 \item[\texttt{-t}] Zobrazí diagram znázorňující jednotlivé PCI sběrnice a mosty.
524 \item[\texttt{-v}, \texttt{-vv}, \texttt{-vvv}]
525  Umožňuje vypisování podrobných informací o zařízeních. (Postupně od \textit{střední podrobnosti} k \textit{vysoké podrobnosti}).
526 \item[\texttt{-nn}] Zobrazí Vendor ID a Device ID v číselné a zároveň i textové podobě
527 \item[\texttt{-d [<vendor>]:[<device>]}] Zobrazí informace pouze o zařízeních odpovídajících Vendor ID, případně i Device ID
528 \end{description}
529
530 Příklad, jak takový výpis může vypadat:
531 \begin{verbatim}
532 $ lspci -nn -d 186c:0624 -vvv
533 01:0b.0 Signal processing controller [1180]: Humusoft, s.r.o. MF624 
534              Multifunction I/O Card [186c:0624]
535         Subsystem: Humusoft, s.r.o. MF624 Multifunction I/O Card [186c:0624]
536         Control: I/O+ Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- 
537              Stepping- SERR- FastB2B- DisINTx-
538         Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- 
539              <TAbort- <MAbort- >SERR- <PERR- INTx-
540         Interrupt: pin A routed to IRQ 22
541         Region 0: Memory at d2dffc00 (32-bit, non-prefetchable) [size=128]
542         Region 1: I/O ports at b800 [size=128]
543         Region 2: Memory at d2dff800 (32-bit, non-prefetchable) [size=128]
544         Region 4: Memory at d2dff400 (32-bit, non-prefetchable) [size=128]
545         Kernel driver in use: mf624
546 \end{verbatim}
547
548
549 Jinou možností, jak zjistit informace o PCI zařízení, je nahlédnutí do souborového systému \textit{sysfs}, kde jsou pro jednotlivá zařízení (nejen na PCI sběrnici) soubory\footnote{Tyto soubory ve skutečnosti nejsou uloženy nikde na disku, ale jsou dynamicky vytvářeny operačním systémem.}, které obsahují informace o zařízeních.
550
551 \ibox{Fyzická adresa PCI zařízení je tvořena adresou \textit{sběrnice}, adresou \textit{zařízení} a adresou \textit{logického zařízení}. PCI specifikace umožňuje, aby jeden systém obsahoval až 256 sběrnic. Každá sběrnice může obsahovat až 32 zařízení. Jedno fyzické zařízení může obsahovat až 8 logických.}
552
553 Informace o PCI zařízeních se nacházejí ve složce \texttt{/sys/bus/pci/devices/} -- jednotlivá zařízení jsou reprezentována podsložkou, jejíž název je tvořen fyzickou adresou PCI zařízení. Mezi nejdůležitější soubory, které tato podsložka obsahuje patří:
554
555 \begin{description}
556 \item[\texttt{vendor}] -- Obsahuje Vendor ID zařízení.
557 \item[\texttt{device}] -- Obsahuje Device ID zařízení.
558 \item[\texttt{class}] -- Obsahuje 24bitový identifikátor třídy zařízení.
559 \item[\texttt{subsystem\_vendor}] -- Obsahuje Subsystem Vendor ID.
560 \item[\texttt{subsystem\_device}] -- Obsahuje Subsystem ID.
561 \item[\texttt{resource}] -- Soubor obsahuje popis jednotlivých regionů (reprezentovaných BAR registry) využívaných zařízením.
562 \end{description}
563
564 Struktura souboru \texttt{resource} může vypadat následovně:
565 \begin{verbatim}
566   0x00000000d2dffc00 0x00000000d2dffc7f 0x0000000000020200
567   0x000000000000b800 0x000000000000b87f 0x0000000000020101
568   0x00000000d2dff800 0x00000000d2dff87f 0x0000000000020200
569   0x0000000000000000 0x0000000000000000 0x0000000000000000
570   0x00000000d2dff400 0x00000000d2dff47f 0x0000000000020200
571   0x0000000000000000 0x0000000000000000 0x0000000000000000
572 \end{verbatim}
573
574 První sloupec označuje adresu začátku regionu, druhý jeho konec. Třetí sloupec obsahuje příznaky daného regionu. Díky nim je možné zjistit, zda se např. jedná o paměťový nebo I/O region. Tyto příznaky jsou popsány v souboru \texttt{include/linux/ioport.h} (ve zdrojových souborech jádra Linux). 
575
576
577
578
579 \subsection{Základní jaderný modul}\label{kern_mod}
580 Jádro operačního systému GNU/Linux je monolitické -- to znamená, že po zkompilování a slinkování je tvořeno jedním kusem kódu. Tento druh jádra je léty prověřen a mezi výhody patří jeho snadná implementace. Aby běžící jádro nemuselo obsahovat veškeré dostupné ovladače zařízení (nebo abychom v případě potřeby přidat do jádra ovladač pro nový hardware nemuseli celé jádro znovu kompilovat), existuje mechanismus načítání jaderných modulů za běhu, tzv. LKM -- Loadable Kernel Module. V praxi to vypadá tak, že jsou v~běžícím jádře zakompilovány pouze nejnutnější ovladače, všechny ostatní si může systém nebo uživatel za běhu do jádra načíst -- v případě, že již nejsou potřeba, je možné je z jádra uvolnit.
581
582 Jak se takový jaderný modul může vypadat, je nejlepší si ukázat na příkladu:
583 \begin{verbatim}
584   1 |  #include <linux/init.h>
585   2 |  #include <linux/module.h>
586   3 | 
587   4 |  static int hello_init(void)
588   5 |  {
589   6 |      printk("Hello, world!\n");
590   7 |      return 0;
591   8 |  }
592   9 | 
593  10 |  static void hello_exit(void)
594  11 |  {
595  12 |      printk("Goodbye, cruel world!\n");
596  13 |  }
597  14 | 
598  15 |  module_init(hello_init);
599  16 |  module_exit(hello_exit);
600  17 |  
601  18 |  MODULE_LICENSE("Dual BSD/GPL");
602 \end{verbatim}
603
604 Z příkladu je patrné, že je modul napsán v programovacím jazyce C. To platí pro většinu všech jaderných modulů (stejně jako zdrojových kódů jádra samotného). Ve skutečnosti se jedná o mírně modifikovaný standard C90.
605 \begin{description}
606 \item[Řádky 1 a 2] obsahují vložení hlavičkových souborů -- obsahují prototypy volaných funkcí a jsou nutné pro tvorbu jaderného modulu.
607 \item[Na řádcích 4--8] je funkce, která bude spuštěna ihned po zavedení našeho modulu do jádra. Ta obsahuje pouze volání funkce \texttt{printk()}.
608
609 Pro jednoduchost je možné s funkcí \texttt{printk()} pracovat jako s, jistě známou, funkcí \texttt{printf()} dostupnou v uživatelském prostoru -- na rozdíl od standardního výstupu se však text vypsaný funkcí \texttt{printk()} zapíše do \textit{logu} jádra. Jedním ze způsobů, jak ho zobrazit je pomocí programu \texttt{dmesg}.\\O to, že se tato funkce vykoná ihned po zavedení modulu do jádra, se postará příkaz na $\rightarrow$
610 \item[řádku 15] -- ten obsahuje makro \texttt{module\_init()}, kterému řekneme právě to, která funkce se má po načtení spustit.
611 \item[Řádek 16] obsahuje naopak makro, které udává, která funkce se má zavolat v případě, že se bude modul uvolňovat z jádra. V našem případě je to funkce na $\rightarrow$
612 \item[řádcích 10--13.] Tato funkce nemá na starost nic jiného než výpis krátkého textu do logu jádra.
613 \end{description}
614
615 \subsubsection{Kompilace modulu}
616 Dále je potřeba jaderný modul přeložit\footnote{Před samotným překladem jádra je potřeba mít k dispozici zdrojové kódy jádra. Ty je možné stáhnout z \texttt{kernel.org} nebo v distribuci Debian nainstalovat pomocí příkazu \texttt{apt-get install linux-source}}. K tomu poslouží následující \texttt{Makefile}:
617 \begin{verbatim}
618   1 |  KERNEL_VER=`uname -r`
619   2 |  obj-m += hello.o
620   3 |
621   4 |  all:
622   5 |      make -C /lib/modules/$(KERNEL_VER)/build M=$(PWD) modules
623   6 |  clean:
624   7 |      make -C /lib/modules/$(KERNEL_VER)/build M=$(PWD) clean
625 \end{verbatim}
626 Linux využívá při kompilaci systému \texttt{KBUILD}. Ten je tvořen množstvím Makefile souborů a~jeho smyslem je umožnit uživateli snadnou konfiguraci před kompilací -- určující, které části se do jádra zakompilují a které nikoliv. Výše uvedený (základní) Makefile soubor je tvořen následovně:
627
628 \begin{description}
629 \item[Na prvním řádku] se do proměnné \texttt{KERNEL\_VER} přiřadí verze aktuálně běžícího jádra (po zavolání příkazu \texttt{uname -r}, který tuto informaci vrací).
630 \item[Druhý řádek] říká, že modul bude vytvářen ze zdrojového souboru \texttt{hello.c} (t.j. modul popisovaný v kapitole \ref{kern_mod}).
631 \item[Na pátém řádku] (uvozeném tabelátorem) se volá (pomocí přepínače \texttt{-C}) Makefile ze sys\-tému \texttt{KBUILD}, který se nachází v adresáři spolu se zdrojovými kódy jádra. Parametr \texttt{M} určuje, které moduly mají být vytvořeny -- v tomto případě jsou to ty, které jsou uvedeny v Makefile, nacházejícím se v aktuálním adresáři (tj. \texttt{PWD}).
632 \end{description}
633
634 V případě, že v adresáři, ve kterém se nachází zdrojový soubor modulu \texttt{hello.c} a výše popsaný soubor \texttt{Makefile}, spustí příkaz \texttt{make}, měl by proběhnout samotný překlad:
635 \begin{verbatim}
636   $ make
637   make -C /lib/modules/`uname -r`/build M=/tmp/kernel_module_example modules
638   make[1]: Entering directory `/usr/src/linux-headers-2.6.35-28-generic'
639     CC [M]  /tmp/kernel_module_example/hello.o
640     Building modules, stage 2.
641     MODPOST 1 modules
642     CC      /tmp/hello.mod.o
643     LD [M]  /tmp/hello.ko
644   make[1]: Leaving directory `/usr/src/linux-headers-2.6.35-28-generic'
645 \end{verbatim}
646 V aktuálním adresáři by se měl nacházet kromě různých souborů, které vzniky při překladu, i potřebný \texttt{hello.ko} -- t.j. zkompilovaný jaderný modul připravený na zavedení do jádra.
647
648 \begin{verbatim}
649   $ ls
650   hello.c  hello.ko  hello.mod.c  hello.mod.o  hello.o  
651   Makefile  modules.order  Module.symvers
652 \end{verbatim}
653
654 \subsubsection{Zavedení modulu}
655 Po úspěšném zkompilování jaderného modulu již pouze zbývá ho zavést do jádra. To se provede programem \texttt{insmod} -- ten musí být spouštěn se superuživatelským oprávněním:
656 \begin{verbatim}
657   $ sudo insmod ./hello.ko 
658 \end{verbatim}
659
660 V případě, že vše proběhlo správně, měl by být v logu jádra text vypisovaný modulem po jeho zavedení. To je možné ověřit:
661 \begin{verbatim}
662   $ dmesg | tail -1
663   [ 9245.757491] Hello, world!
664 \end{verbatim}
665 A skutečně je posledním řádkem v logu text vypsaný úspěšně zavedeným modulem.
666
667 Pro plné otestování funkčnosti ukázkového modulu, je potřeba ho ještě z jádra uvolnit. K tomu slouží program \texttt{rmmod} (opět je potřeba spouštět se superuživatelskými privilegii).
668 \begin{verbatim}
669   $ sudo rmmod hello 
670
671   $ dmesg | tail -1
672   [ 9612.256929] Goodbye, cruel world!
673 \end{verbatim}
674 V logu je opět nachází text vypisovaný modulem při uvolňování z jádra.
675
676
677 \ibox{V případě, že má být do jádra zaveden modul, jehož funkčnost a stabilita není jistá, je vhodné si uložit veškerou práci a před zavedením/uvolněním modulu do/z jádra spustit program \texttt{sync}, který uloží obsah diskových bufferů na disky.}
678
679 \subsubsection{Na co si dávat pozor}
680 Při psaní základního modulu pro jádro Linux nejsou patrné větší rozdíly oproti psaní programů pro uživatelský prostor. I~přesto, že tyto rozdíly nejsou vidět, stále tady jsou. Mezi ty nejdůležitější, kterých si má být programátor vědom, patří:
681
682 \begin{description}
683 \item[Žádná ochrana paměti]~\\Libovolný jaderný modul má přístup k veškeré paměti počítače. V případě, že se chybně pokusí zapsat do paměti, do které by zapisovat neměl, není zde žádný mechanismus, který by mu v tom zabránil nebo ho na to alespoň upozornil.
684 \item[Uvolňování paměti]~\\Stejně jako pro programy psané v uživatelském prostoru platí, že nepotřebná dynamicky alokovaná paměť by měla být dealokována. V případě neuvolňování paměti programem v uživatelském prostoru je zde stále operační systém, který po skončení programu veškerou paměť uvolní. Nic takového však v jádře operačního systému nefunguje -- po uvolnění modulu z jádra není nic, co by se postaralo o alokovanou.
685 \item[Přímý přístup k hardwaru]~\\Základní jaderný modul psaný například nezkušeným studentem má zcela stejné možno\-sti přístupu k hardware jako subsystémy jádra, které se starají o správnou funkci jednotlivých ovladačů. V lepším případě může špatný ovladač způsobit pád systému, v~horším např. zničení dat na disku nebo dokonce zničení hardware\footnote{Například velmi těžko opravitelné poškození firmware síťových karet Intel e1000e: \\ \url{http://www.abclinuxu.cz/clanky/jaderne-noviny/jaderne-noviny-22.-10.-2008\#pricina-chyby-poskozujici-e1000e}}.
686 \item[Globální proměnné]~\\Každý ovladač může být spuštěn ve více instancích, proto by v kódu neměly být globální proměnné. Proměnné, které je potřeba zpřístupnit z více míst ovladače se vloží do jedné struktury, která je poté přístupná skrze ukazatel na \textit{privátní data} ovladače. Struktura reprezentující daný ovladače většinou obsahuje ukazatel s názvem \texttt{private} nebo \texttt{priv}, který slouží k~tomuto účelu.
687
688 V případě ukončení funkce ovladače musí být tato paměť uvolněna.
689 \end{description}
690
691 \subsubsection{Příkaz GOTO}
692 Obecně je doporučováno příkaz \texttt{goto} nepoužívat. Najdou se ale případy, kdy jeho použití usnadní práci a i přesto neznepřehlední kód. V jádře Linux se tento příkaz používá při postupném uvolňování zdrojů zařízení.
693
694 Příklad pro lepší názornost:
695 \begin{verbatim}
696   1 |  int mf614_attach(...)
697   2 |  {
698   3 |      if(pci_enable_device(devpriv->pci_dev))
699   4 |          goto out_exit;
700   5 |  
701   6 |      if(pci_request_regions(devpriv->pci_dev, "mf614"))
702   7 |          goto out_disable;
703   8 |  
704   9 |      if (!pci_iomap(devpriv->pci_dev, 0, 0))
705  10 |          goto out_release;
706  11 |   
707  12 |  out_release:
708  13 |      pci_release_regions(devpriv->pci_dev);
709  14 |  out_disable:
710  15 |      pci_disable_device(devpriv->pci_dev);
711  16 |  out_exit:
712  17 |      return -ENODEV;
713  18 |  }
714 \end{verbatim}
715
716 Na řádcích 3, 6 a 9 jsou volány funkce, které mají za následek alokaci zdrojů zařízení. Po skončení funkce ovladače je potřeba zavolat jiné funkce, které tyto zdroje uvolní.
717
718 V případě, že by volání na řádku 6 skončilo neúspěchem, musela by být zavolána funkce \texttt{pci\_disable\_device()}, která deaktivuje zařízení (aktivované příkazem na řádku 3). V případě, že by poslední volání proběhlo neúspěšně, musela by být zavolána jak funkce \texttt{pci\_disable\_device()}, tak funkce \texttt{pci\_release\_regions()} -- to způsobuje duplikaci kódu, která vede k nepřehlednosti a může způsobovat chyby (v případě, že se omylem změní volání funkce pouze na jednom místě).
719
720 Za pomoci volání \texttt{goto} je výše popsaný problém elegantně vyřešen.
721
722 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
723 \section{Základní funkce v prostředí jádra Linux}
724 V jádře Linux je kromě funkcí specifických pro práci se zařízením určitého typu, také sada obecných funkcí používaných napříč všemi ovladači. Mezi ně patří například funkce pro vypisování ladících zpráv, funkce pro alokaci a uvolňování paměti.
725
726 \subsection{Funkce \texttt{printk()} pro vypisování ladících zpráv}
727 \ibox{\texttt{int printk(const char *s, ...)};}
728 V kapitole \ref{kern_mod} již byla zmíněna funkce \texttt{printk()} v základní verzi, přirovnaná k funkci \texttt{printf()} z uživatelského prostoru. Kromě \textit{obyčejného} vypisování textu do logu jádra podporuje tato funkce navíc \textit{nastavení úrovně důležitosti} zprávy a speciální \textit{formátovací řetězce}.
729
730 Nastavení úrovně důležitosti zprávy se provede vložením \textit{nastavovacího} makra \textbf{před} samotný řetězec obklopený uvozovkami. Možné druhy zpráv jsou (od nejkritičtější po nejméně důležitou):
731 \begin{description}
732 \item[\texttt{KERN\_EMERG}]~\\Zpráva nejvyšší úrovně. Většinou předchází neodvratnému pádu jádra.
733 \item[\texttt{KERN\_ERR}]~\\Informace o vzniklé chybě (např. při informování o špatné funkci hardware).
734 \item[\texttt{KERN\_WARNING}]~\\Upozornění o nezávažné chybě.
735 \item[\texttt{KERN\_INFO}]~\\Informační zpráva (např. od ovladače zařízení o úspěšném spuštění).
736 \item[\texttt{KERN\_DEBUG}]~\\Obyčejná ladící zpráva.
737 \end{description}
738
739 \vspace{5mm}
740
741 Formátovací řetězce fungují podobně jako u funkce \texttt{printf()}. Kromě známých, \texttt{\%s}, \texttt{\%u}, \texttt{\%d} a \texttt{\%x} je zde navíc \texttt{\%p}, který slouží k výpisu hodnoty ukazatele.
742
743 Možné způsoby použití jsou:
744 \begin{description}
745 \item[\texttt{\%pF}] Pro ukazatel na funkci vypíše název dané funkce.
746 \item[\texttt{\%pf}] Pro ukazatel na funkci vypíše název dané funkce včetně offsetu.
747 \item[\texttt{\%pR}] Pro ukazatel na strukturu vypíše adresy paměti příslušející dané struktuře, včetně příznaků.
748 \item[\texttt{\%pr}] Pro ukazatel na strukturu vypíše adresy paměti příslušející dané struktuře, bez příznaků.
749 \end{description}
750
751 Příklad nastavení typu zprávy a použití formátovacího řetězce:
752 \begin{verbatim}
753   printk(KERN_DEBUG "Hodnota ukazatele ptr je %p\n", ptr);
754 \end{verbatim}
755
756
757 \subsection{Funkce \texttt{kzalloc()} pro alokaci paměti}
758 Problematika alokace paměti v prostředí jádra Linux je velice rozsáhlá. Pomocí speciálních funkcí je možné alokovat celé paměťové stránky nebo FIXME velkou oblast ve virtuálním paměťovém prostoru.
759
760 \ibox{\texttt{void *kzalloc(size\_t size, gfp\_t flags);}}
761 Základní funkce pro alokaci malé paměťové oblasti (např. pro strukturu obsahující privátní data ovladače) je \texttt{kzalloc()}. Prvním parametrem je velikost alokované paměti (maximálně však 128 KB (FIXME)), druhým je příznak určující o jaký druh alokace se jedná. Nejuniverzálnější možností je \texttt{GFP\_KERNEL}.
762
763 Nově alokovaná paměť je vždy vynulována.
764
765 Příklad alokace a uvolnění paměti (včetně ošetření chybových stavů):
766 \begin{verbatim}
767   1 |  struct uio_info *info;
768   2 |  info = kzalloc(sizeof(struct uio_info), GFP_KERNEL);
769   3 |  if (!info) {
770   4 |      return -ENOMEM;
771   5 |  }
772   6 |  /* práce s pamětí */
773   7 |           
774   8 |  kfree(info);
775 \end{verbatim}
776
777
778 \subsection{Funkce \texttt{kfree()} pro uvolňování alokované paměti}
779 \ibox{\texttt{void kfree(void *obj);}}
780
781 Když již alokovaná paměť není potřeba, je nutné ji voláním \texttt{kfree()} uvolnit. 
782
783
784 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
785 \section{Ovladače PCI zařízení}\label{pci_driv}
786 \ibox{Jako nejlepší reference jednotlivých funkcí slouží zdrojové kódy jádra. Jednou z~možností jejich prohlížení je pomocí online nástroje \textit{The Linux Cross Reference} -- \\
787 \url{http://lxr.linux.no/linux/}.}
788
789 Ovladače PCI zařízení jsou ve většině případů kompilovány jako jaderné moduly, dynamicky načítané za běhu jádra. Takový modul je možné buď načíst ručně, pomocí příkazu \texttt{insmod} (se zadanou absolutní cestou) nebo, nachází-li se v adresáři \texttt{/lib/modules/\$(uname -r)/} a je součástí seznamu \texttt{modules.dep}\footnote{Tento seznam je aktualizován pomocí příkazu \texttt{depmod}.} (v témže adresáři), je možné ho načíst pomocí příkazu \texttt{modprobe} (kde se jako parametr předá pouze název modulu bez koncovky \texttt{.ko}). Druhá varianta se týká všech ovladačů standardně zkompilovaných s jádrem.
790
791 V případě, že se v systému objeví nové PCI zařízení, je jádrem informován subsystém v~uživatelském prostoru, který má na starosti správu \textit{hotplug} zařízení (např. \textit{udev}), o tomto zařízení. Hotplug subsystém (v uživatelském prostoru) poté na základě informací od jádra, jako je Vendor ID a Device ID , rozhodne, který ovladač má být pro dané zařízení načten. Seznam, dle kterého se rozhodne, který ovladač bude načten je v souboru \texttt{/lib/modules/\$(uname -r)/modules.pcimap}.
792
793 Každý ovladač by měl tedy obsahovat informaci o tom, pro které zařízení je určen. To je uvedeno ve struktuře \texttt{struct pci\_device\_id}.
794
795 \subsection{Struktura \texttt{struct pci\_device\_id}}\label{pci_dev_id}
796 Struktura \texttt{struct pci\_device\_id} slouží k identifikaci, pro která zařízení je ovladač určen. Mezi hlavní položky struktury patří \texttt{vendor}, \texttt{device}, \texttt{subvendor}, \texttt{subdevice} (typu \texttt{\_\_u32}) -- jejichž hodnota odpovídá stejnojmenným registrům v konfiguračním prostoru PCI zařízení. Jelikož může být ovladač napsán pro více zařízení, je tato struktura inicializována jako prvek pole, které je zakončeno prvkem prázdným. Různé způsoby inicializace mohou vypadat následovně:
797
798 \begin{verbatim}
799   1 |  #define PCI_VENDOR_ID_HUMUSOFT          0x186c
800   2 |  #define PCI_DEVICE_ID_MF624             0x0624
801   3 |  #define PCI_DEVICE_ID_MF614             0x0614
802   4 |  #define PCI_SUBVENDOR_ID_HUMUSOFT       0x186c
803   5 |  #define PCI_SUBDEVICE_MF624             0x0624
804   6 |  
805   7 |  static struct pci_device_id mf624_pci_id[] = {
806   8 |      {
807   9 |          .vendor = PCI_VENDOR_ID_HUMUSOFT,
808  10 |          .device = PCI_DEVICE_ID_MF624,
809  11 |          .subvendor = PCI_SUBVENDOR_ID_HUMUSOFT,
810  12 |          .subdevice = PCI_SUBDEVICE_MF624,
811  13 |      },
812  14 |
813  15 |      { PCI_VENDOR_ID_HUMUSOFT, PCI_DEVICE_ID_MF614, 
814  16 |          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
815  17 |
816  18 |      { 0, } /* seznam je vždy zakončen prázdným prvkem */
817  19 |  };
818 \end{verbatim}
819
820 V případě, že je u zařízení rozhodující Vendor ID, ale na Subvendor ID nezáleží, je možné použít makro \texttt{PCI\_ANY\_ID} (to platí 
821 i pro Subdevice ID).
822
823 \ibox{\texttt{MODULE\_DEVICE\_TABLE(type, struct pci\_device\_id* name);}}
824
825 Tato struktura se -- pro nástroje v uživatelském prostoru vytvářející seznamy ovladačů -- exportuje pomocí makra \texttt{MODULE\_DEVICE\_TABLE(pci, mf624\_pci\_id)}, kde první parametr určuje typ zařízení a druhý je ukazatel na seznam typu \texttt{struct pci\_device\_id}.
826
827 \subsection{Struktura \texttt{struct pci\_driver}}\label{pci_reg}
828 Pro to, aby mohl se mohl ovladač PCI zařízení stát součástí jaderného PCI subsystému, je potřeba ho do zaregistrovat. To se provede voláním funkce \texttt{pci\_register\_driver()}, které se jako parametr předá ukazatel na strukturu \texttt{struct pci\_driver}. 
829
830 Tato struktura obsahuje základní informace o ovladači -- základní proměnné a ukazatele na funkce. Mezi hlavní položky patří:
831 \begin{description}
832 \item[\texttt{const char name*}]~\\Název ovladače. Tento název by měl být unikátní mezi všemi ovladači PCI zařízení. Většinou je totožný s názvem modulu.
833 \item[\texttt{const struct pci\_device\_id *id\_table}]~\\Pole struktur popisujících, pro která zařízení je ovladač vytvořen (viz kap. \ref{pci_dev_id}).
834 \item[\texttt{int (*probe) (struct pci\_dev *dev, const struct pci\_device\_id *id)}]~\\Ukazatel na funkci, která je volána PCI subsystémem, v případě, že je přítomno zařízení, pro které je tento ovladač vytvořen.
835 \item[\texttt{void (*remove) (struct pci\_dev *dev)}]~\\Ukazatel na funkci, která je volána poté, co je tento ovladač odstraňován ze seznamu ovladačů aktuálně používaných PCI subsystémem.
836 \end{description}
837
838 Příklad, jak může být struktura \texttt{pci\_driver} inicializována a následně zaregistrována:
839 \begin{verbatim}
840   1 |  static struct pci_driver mf624_pci_driver = {
841   2 |      .name = "mf624",
842   3 |      .id_table = mf624_pci_id,
843   4 |      .probe = mf624_pci_probe, 
844   5 |      .remove = mf624_pci_remove,
845   6 |  };
846   7 |  pci_register_driver(&mf624_pci_driver);
847 \end{verbatim}
848
849
850 \subsection{Funkce \texttt{probe()}}\label{pci_init}
851 \ibox{\texttt{int probe(struct pci\_dev *dev, const struct pci\_device\_id *id);}}
852
853 Funkce \texttt{probe()} náležící danému ovladači zařízení je volána poté, co jaderný subsystém PCI zařízení zjistí, že se v systému nachází zařízení, pro které je tento ovladač určen. Tato funkce má na starosti inicializaci zařízení.
854
855 Prvním parametrem funkce předává PCI subsystém ukazatel na strukturu \texttt{struct pci\_dev}, která repre\-zentuje fyzické zařízení. V druhém parametru je předán ukazatel na strukturu, na základě které byl zvolen daný ovladač (viz kap. \ref{pci_dev_id}).
856
857 \ibox{\texttt{pci\_enable\_device(struct pci\_dev *dev);}}
858
859 V rámci inicializace ovladače je nejprve potřeba zavolat funkci \texttt{pci\_enable\_device()} -- ta se postará o inicializaci karty na úrovni hardware -- např.: přiřazení linky přerušení, zresetování registrů karty a její probuzení. Poté je již možné začít přistupovat ke zdrojům zařízení.
860
861 \subsection{Přístup ke zdrojům karty}
862 Jak bylo popsáno v kapitole \ref{pci_conf}, PCI zařízení může využívat až 6 paměťových nebo vstupně-výstupních regionů (označovaných jako \textit{zdroje} karty). Jejich alokace do paměťového nebo I/O prostoru počítače je zajištěna dynamicky PCI mostem. Pro přístup do regionů si musí ovladač zařízení zjistit jejich adresu a vyžádat si u operačního systému \textit{výlučný přístup}. 
863
864 \ibox{\texttt{int pci\_request\_regions(struct pci\_dev *pdev, const char *res\_name);}}
865
866 Nejprve je potřeba operační systém požádat o výlučný přístup ke zdrojům zařízení. To se provede voláním funkce \texttt{pci\_request\_regions()}. Je-li návratová hodnota zavolané funkce negativní, není ovladači umožněn přístup (jiný ovladač přistupuje ke stejné kartě nebo po jeho odstranění nedošlo k uvolnění zdrojů karty). V takovém případě by ovladač měl korektním způsobem ukončit svoji funkci a nesnažit se k zařízení přistupovat.
867
868 \ibox{\texttt{unsigned long pci\_resource\_start(struct pci\_dev *dev, int bar);}}
869
870 V případě, že volání \texttt{pci\_request\_regions()} proběhlo úspěšně, je již možné získat přístup přímo k jednotlivým regionům karty. Fyzickou adresu jednotlivých regionů lze zjistit voláním funkce \texttt{pci\_resource\_start()}, kde se jako druhý parametr uvede číslo BAR registru určují\-cího region (tj. 0--5). 
871 %Volání této funkce má pouze informativní charakter
872
873 \ibox{\texttt{unsigned long pci\_resource\_len(struct pci\_dev *dev, int bar);}}
874
875 V případě, že je potřeba zjistit velikost daného paměťového nebo I/O regionu, slouží k~tomu funkce \texttt{pci\_resource\_len()}.
876
877 \ibox{\texttt{void \_\_iomem *pci\_ioremap\_bar(struct pci\_dev *pdev, int bar);}}
878
879 S ukazatelem, který vrátí funkce \texttt{pci\_request\_regions()} však není možné přímo pracovat -- je to totiž \textbf{fyzická adresa} daného regionu, ke které neumí procesor přímo přistupovat. Aby tato fyzická adresa byla přemapována na adresu \textbf{virtuální}, je potřeba zavolat funkci \texttt{pci\_ioremap\_bar()}.
880
881 K ukazateli, který vrátí volání \texttt{pci\_ioremap\_bar()} je již možné pomocí speciálních funkcí (popsány v kap. \ref{iofce}) přistupovat.
882
883 \subsection{Funkce \texttt{remove()}}
884
885 \ibox{\texttt{void remove(struct pci\_dev *dev);}}
886
887 Funkce je volána, když PCI subsystém ze svého seznamu odstraňuje strukturu \texttt{struct pci\_dev} reprezentující dané zařízení, nebo v případě, že dochází k uvolnění modulu.
888
889 Tato funkce by se měla postarat o úklid všech naalokovaných prostředků. Měla by obsahovat volání:
890 \begin{description}
891 \item[\texttt{iounmap()}]~\\Uvolnění virtuální paměti namapované voláním \texttt{pci\_ioremap\_bar()}.
892 \item[\texttt{pci\_release\_regions()}]~\\Uvolnění zdrojů karty, které byly zarezervovány voláním \texttt{pci\_request\_regions()}.
893 \item[\texttt{pci\_disable\_device()}]~\\Opak k volání \texttt{pci\_enable\_device()}.
894 \end{description}
895
896 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
897 \section{Přístup k paměti zařízení}\label{iofce}
898 Poté co se ovladači podařilo získat přístup ke zdrojům zařízení, je nutné využít speciálních volání pro zápis/čtení do/z těchto zdrojů.
899
900 \subsection{Vstupně-výstupní adresní prostor}
901 Stejně jako program v jazyku symbolických instrukcí využívá pro přístup k vstupně-výstupnímu adresnímu prostoru (tj. I/O portům) zvláštní instrukce, je nutné využít speciální funkce v programech psaných ve \textit{vyšších} programovacích jazycích. V případě čtení jsou v~jádře k dispozici tři volání:
902
903 \ibox{\texttt{unsigned inb(unsigned port);}}
904
905 \ibox{\texttt{unsigned inw(unsigned port);}}
906
907 \ibox{\texttt{unsigned inl(unsigned port);}}
908
909 Třetí písmeno značí o \textit{kolika-bitové} čtení se jedná: b = 8 b, w = 16 b, l = 32 b.
910
911 Pro zápis je možné využít volání:
912 \ibox{\texttt{void outb(unsigned char byte, unsigned port);}}
913
914 \ibox{\texttt{void outw(unsigned char byte, unsigned port);}}
915
916 \ibox{\texttt{void outl(unsigned char byte, unsigned port);}}
917
918
919 Třetí písmeno, stejně jako u funkcí pro čtení, značí o kolika-bitový přístup se jedná.
920
921 Funkce se stejným \textit{prototypem} jsou k dispozici i v uživatelském prostoru (potřebný hlavičkový soubor je \texttt{<sys/io.h>}).
922
923 \subsection{Paměťový adresní prostor}
924 I přesto, že se k přístupu k paměti zařízení mapované do paměťového adresního prostoru používá virtuální adresa, stejně jako k přístupu do operační paměti, není možné k paměti zařízení přistupovat přímo \textit{přes ukazatel}. Důvodem je to, že buď překladač (při kompilaci) nebo procesor (za běhu) zoptimalizují\footnote{Tyto optimalizace, v~případě přístupu k operační paměti, urychlují vykonávání programu, aniž by negativně ovlivnily jeho funkci. V případě zápisu/čtení do/z registrů, u kterých mohou tyto operace vyvolávat tzv. \textit{side effects}, již může dojít k nesprávné funkci programu.
925
926 Příklad optimalizace: V programu se do jedné paměťové buňky ihned po sobě zapíší dvě různé hodnoty, poté se výsledná hodnota přečte -- optimalizace možná u klasického programu je taková, že se ve skutečnosti provede pouze druhý zápis, protože ten první nemá žádný efekt (hodnota je ihned přepsána druhým zápisem). V~případě přístupu do registru zařízení může zápis například spouštět převod A/D převodníků -- po optimalizaci se však provede pouze jednou, nikoliv dvakrát.} sekvenci zápisů/čtení do/z paměti zařízení takovým způsobem, že se výsledek bude lišit od toho, jak to bylo v programu zamýšleno.
927
928 Těmto optimalizacím lze nejsnáze zabránit použitím volání pro čtení:
929
930 \ibox{\texttt{unsigned int ioread8(void *addr);}}
931
932 \ibox{\texttt{unsigned int ioread16(void *addr);}}
933
934 \ibox{\texttt{unsigned int ioread32(void *addr);}}
935
936 a pro zápis:
937
938 \ibox{\texttt{void iowrite8(u8 value, void *addr);}}
939
940 \ibox{\texttt{void iowrite16(u16 value, void *addr);}}
941
942 \ibox{\texttt{void iowrite32(u32 value, void *addr);}}
943
944 Číslo na konci funkce označuje o kolika-bitový přístup se jedná.
945
946 V případě, že se na paměť ve vstupně-výstupním adresním prostoru zavolá funkce 
947 \ibox{\texttt{void *ioport\_map(unsigned long port, unsigned int count);}} 
948 nebo v případě PCI zařízení funkce
949 \ibox{\texttt{void *pci\_iomap(struct pci\_dev *dev, int bar, unsigned long maxlen);}}
950
951 se paměť chová jakoby byla v paměťovém adresním prostoru a je nutné pro přístup k ní používat volání popsaná v této kapitole.
952
953
954 Pro přístup k paměti zařízení z uživatelského prostoru bohužel žádná sada funkcí není. Je potřeba nadefinovat funkce vlastní, které přistupují k paměti skrze ukazatel, který je ale označen jako \texttt{volatile}. To opět zabrání překladači v optimalizaci kódu manipulujícího s~ukazatelem.
955
956 Příklad jak takové funkce mohou vypadat:
957
958 \begin{verbatim}
959   1 |  static inline void mf624_write32(uint32_t val, uint32_t *ptr)
960   2 |  {
961   3 |      *(volatile uint32_t*) ptr = val;
962   4 |  }
963   5 |  static inline int32_t mf624_read32(uint32_t *ptr)
964   6 |  {
965   7 |      return (volatile uint32_t) *ptr;
966   8 |  }
967 \end{verbatim}
968
969 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
970 \newpage
971 \section{UIO ovladač}
972 V~případě, že je vytvářen ovladač pro linuxové jádro, mělo by být rozhodnuto, kterého subsystému se stane součástí -- např. zda jde o jednoduché znakové zařízení, síťovou kartu nebo zvukovou kartu. Tato volba určí, kterou sadu pomocných funkcí bude moci ovladač používat a jakým způsobem bude zpřístupněno zařízení do uživatelského prostoru.
973
974 V~případě, že zařízení nelze snadno zařadit do žádné kategorie (jedná-li se například o~neobvyklou průmyslovou PCI kartu), je možné vytvořit tzv. UIO (\textit{Userspace I/O}) ovladač. Tento ovladač se skládá ze dvou částí: jednoduchého jaderného modulu a aplikace v uživatel\-ském prostoru (viz diagram ma obrázku \ref{uio_diagram}).
975
976 \begin{figure}[h!]
977         \begin{center}
978         \includegraphics[width=150mm]{img/uio.pdf}
979         \caption{Diagram znázorňující funkci UIO ovladače}
980         \label{uio_diagram}
981         \end{center}
982 \end{figure}
983
984
985 Mezi jeho hlavní výhody patří to, že v jádře je obsažena pouze malá obecná část, která zpřístupňuje zdroje zařízení do uživatelského prostoru (její implementace je poměrně snadná). Druhou částí je aplikace v uživatelském prostoru, která přistupuje k jednotlivým zdrojům karty a tvoří hlavní logiku ovladače. Většina vývoje tedy probíhá v uživatelském prostoru, čímž klesá riziko narušení stability jádra.
986
987 \subsection{Jaderný modul}
988 Jaderný modul UIO ovladače PCI zařízení by měl obsahovat:
989 \begin{itemize}
990 \item Funkci volanou PCI subsystémem při registraci ovladače
991 \item Volání funkcí pro namapování regionů zařízení
992 \item Inicializaci struktury \texttt{struct uio\_info} a registraci do UIO subsystému
993 \item Funkce pro \textit{úklid} a uvolnění regionů karty
994 \end{itemize}
995
996 Většina z těchto úkonů již byla popsána v kapitole \ref{pci_driv} a jsou zcela standardní pro jakýkoliv ovladač PCI zařízení. Co nebylo dosud popsáno je pouze úkon \textit{registrace do UIO subsystému}.
997
998 \ibox{\texttt{int uio\_register\_device(struct device *parent, struct uio\_info *info);}}
999
1000 Registrace UIO ovladače se provede zavoláním funkce \texttt{uio\_register\_device()}, které se jako první parametr předá ukazatel na \textit{rodiče} struktury \texttt{struct pci\_dev} -- tj. ukazatel na její položku \texttt{dev}. Důvod je ten, že ovladač typu UIO může být vytvořen i pro jiná zařízení než ta na sběrnici PCI.
1001 Druhý parametr předá ukazatel na strukturu \texttt{struct uio\_info}.
1002
1003 \subsubsection{Struktura \texttt{struct uio\_info}}
1004
1005 Jedná se o strukturu vyplněnou informacemi o zařízení, která je předána při registraci UIO subsystému.
1006 Mezi její hlavní položky patří:
1007 \begin{description}
1008 \item[\texttt{const char *name}]~\\Název ovladače. Většinou se shoduje s názvem modulu.
1009 \item[\texttt{const char *version}]~\\Verze ovladače v textové podobě.
1010 \item[\texttt{struct uio\_mem mem[MAX\_UIO\_MAPS]}]~\\Pole struktur obsahujících informace o regionech PCI zařízení mapovaných do paměťo\-vého prostoru (bude podrobně vysvětleno dále).
1011 \item[\texttt{struct uio\_port port[MAX\_UIO\_PORT\_REGIONS]}]~\\Pole struktur obsahujících informace o regionech PCI zařízení mapovaných do vstupně-výstupního prostoru (bude podrobně vysvětleno dále).
1012 \end{description}
1013
1014 \subsubsection{Struktura \texttt{struct uio\_mem} a \texttt{struct uio\_port}}\label{uio_mem_port}
1015 Tyto struktury obsahují informace o regionech zařízení. Které (a kolik) z těchto dvou struktur budou inicializovány záleží na tom, zda karta mapuje regiony do paměťového nebo vstupně-výstupního prostoru.
1016
1017 Struktura \texttt{struct uio\_mem} obsahuje položky:
1018 \begin{description}
1019 \item[\texttt{const char *name}]~\\Textový popis daného regionu (viditelný z uživatelského prostoru).
1020 \item[\texttt{unsigned long addr}]~\\Fyzická adresa regionu získaná voláním \texttt{pci\_resource\_start()}.
1021 \item[\texttt{unsigned long size}]~\\Délka regionu. Nejsnáze získaná voláním \texttt{pci\_resource\_len()}.
1022 \item[\texttt{int memtype}]~\\Typ paměti. Pro fyzickou paměť na zařízení se použije \texttt{UIO\_MEM\_PHYS}.
1023 \item[\texttt{void \_\_iomem *internal\_addr}]~\\Virtuální adresa získaná voláním \texttt{pci\_ioremap\_bar()}.
1024 \end{description}
1025
1026 Struktura \texttt{struct uio\_port} obsahuje položky:
1027 \begin{description}
1028 \item[\texttt{const char *name}]~\\Textový popis daného regionu (viditelný z uživatelského prostoru).
1029 \item[\texttt{unsigned long start}]~\\Fyzická adresa regionu získaná voláním \texttt{pci\_resource\_start()}.
1030 \item[\texttt{unsigned long size}]~\\Délka regionu. Nejsnáze získaná voláním \texttt{pci\_resource\_len()}.
1031 \item[\texttt{int porttype}]~\\Typ portu. Pro porty na architektuře IA-32 se použije \texttt{UIO\_PORT\_X86}.
1032 \end{description}
1033
1034 ~\\
1035
1036 Příklad, jak taková jednoduchá inicializace struktury \texttt{struct uio\_info} včetně registrace může vypadat (bez ošetření chybových stavů):
1037 \begin{verbatim}
1038   1 |  /* struct pci_dev *dev */
1039   2 |  struct uio_info *info;
1040   3 |  info = kzalloc(sizeof(struct uio_info), GFP_KERNEL);
1041   4 |  
1042   5 |  info->name = "mf624";
1043   6 |  info->version = "0.0.1";
1044   7 |  
1045   8 |  info->mem[0].name = "PCI chipset, ...";
1046   9 |  info->mem[0].addr = pci_resource_start(dev, 0);
1047  10 |  info->mem[0].size = pci_resource_len(dev, 0);
1048  11 |  info->mem[0].memtype = UIO_MEM_PHYS;
1049  12 |  info->mem[0].internal_addr = pci_ioremap_bar(dev, 0);
1050  13 |  
1051  14 |  info->port[0].name = "Board programming registers";
1052  15 |  info->port[0].porttype = UIO_PORT_X86;
1053  16 |  info->port[0].start = pci_resource_start(dev, 1);
1054  17 |  info->port[0].size = pci_resource_len(dev, 1);
1055  18 |  
1056  19 |  uio_register_device(&dev->dev, info);
1057  20 |  pci_set_drvdata(dev, info);
1058 \end{verbatim}
1059
1060 \ibox{\texttt{void pci\_set\_drvdata(struct pci\_dev *pdev, void *data)}}
1061
1062 Na posledním řádku je, dosud nepopsané, volání \texttt{pci\_set\_drvdata()}. To (v tomto případě) zajistí, že struktura \texttt{struct uio\_info} se stane součástí struktury reprezentující zařízení (\texttt{struct pci\_dev}) -- což umožní pozdější přístup ke struktuře \texttt{struct uio\_info} z funkcí jako je například \texttt{remove()}, která jako parametr získá ukazatel na strukturu \texttt{struct pci\_dev}.
1063
1064 \ibox{\texttt{static inline void *pci\_get\_drvdata(struct pci\_dev *pdev)}}
1065
1066 Funkce \texttt{pci\_get\_drvdata()} slouží k \textit{získání} dat uložených do struktury \texttt{struct pci\_dev} pomocí volání \texttt{pci\_set\_drvdata()}.
1067
1068 Příklad použití:
1069 \begin{verbatim}
1070   1 |  static void mf624_pci_remove(struct pci_dev *dev)
1071   2 |  {
1072   3 |      struct uio_info *info = pci_get_drvdata(dev);
1073   4 |      /* ... */
1074   5 |  }
1075 \end{verbatim}
1076
1077
1078 \subsection{Program v uživatelském prostoru}
1079 Poté, co je jaderná část UIO ovladače úspěšně zkompilována a zavedena do systému, ve kterém se nachází požadované zařízení, je rozhraní mezi tímto modulem a uživatelským prostorem tvořeno:
1080 \begin{itemize}
1081 \item souborem \texttt{/dev/uio0\footnote{Pro názornost je v textu uvedeno konkrétní zařízení \texttt{uio0}. V~případě, že systém obsahuje více aktivních UIO ovladačů, jsou postupně číslovány od 0 výše.}}.
1082 \item složkou \texttt{/sys/class/uio/uio0}, která obsahuje informace o regionech, které jsou zpří\-stup\-něny skrze UIO modul v jádře.
1083 \end{itemize}
1084
1085 \subsubsection{Obsah složky \texttt{/sys/class/uio/uio0}}
1086 Tato složka obsahuje soubory převážně pouze pro čtení. Obsahuje podsložku \texttt{maps}, ve které se nachází pro každý region PCI zařízení mapovaný do paměti (zpřístupněný jaderným ovladačem) složka obsahující soubory popisující tyto regiony (Soubor \texttt{addr} obsahuje fyzickou adresu regionu; \texttt{name} slovní pojmenování; \texttt{size} velikost regionu).
1087
1088 V případě, že jsou zpřístupněny regiony zařízení, které jsou mapovány do vstupně-výstupního adresního prostoru, nacházejí se jednotlivé podsložky a soubory popisující regiony ve složce \texttt{portio}.
1089
1090 \subsubsection{Soubor \texttt{/dev/uio0}}
1091 Tento soubor tvoří rozhraní mezi jaderným subsystémem UIO a uživatelským prostorem. Skrze něj je přistupováno k regionům karty. K souboru se přistupuje pomocí volání \texttt{mmap()}.
1092
1093 \ibox{\texttt{void *mmap(void *addr, size\_t length, int prot, int flags, int fd, off\_t offset);}}
1094
1095 Tato funkce slouží k \textit{namapování} souboru nebo zařízení do operační paměti. V případě, že je funkce zavolána na soubor, proběhne-li vše správně, návratová hodnota bude obsahovat ukazatel do paměti, kam je možné přistu\-povat k obsahu souboru pomocí ukazatelové aritmetiky -- stejně, jako by to byla paměť.
1096  
1097 \begin{description}
1098 \item[Parametr \texttt{addr}]~\\V případě, že není nulový, určí na jakou adresu by měla být paměť mapována.
1099 \item[Parametr \texttt{length}]~\\ Udává velikost mapované paměti v násobcích velikosti paměťové stránky. 
1100 \item[Parametr \texttt{prot}]~\\ Obsahuje příznaky definující, zda bude mapovaná paměť pro čtení/zápis, apod.
1101 \item[Parametr \texttt{flags}]~\\ Pomocí příznaku určuje, zda se mají změny zapisovat pouze do \textit{lokální kopie} (příznak \texttt{MAP\_PRIVATE}) nebo zda mají být zapisovány do původního souboru/zařízení (příznak \texttt{MAP\_SHARED}).
1102 \item[Parametr \texttt{fd}]~\\ Obsahuje \textit{filedescriptor} na zařízení, které má být namapováno (v tomto případě file\-desc\-riptor vrácený voláním \texttt{open("/dev/uio0", ... );}).
1103 \item[Parametr \texttt{offset}]~\\ Určuje, zda se daný soubor/zařízení začne mapovat od posunuté adresy. V případě UIO ovladače je možné jako offset používat násobky velikosti paměťové stránky -- tento offset určí, který z regionů zpřístupněných jadernou částí ovladače má být namapován.
1104 \end{description}
1105
1106 Příklad, jak takové volání může vypadat (bez ošetření chybových stavů):
1107 \begin{verbatim}
1108   1 |  #define BAR2_offset       (1 * sysconf(_SC_PAGESIZE))
1109   2 |  
1110   3 |  void* mf624_BAR2 = NULL;
1111   4 |  int device_fd = open("/dev/uio0", O_RDWR);
1112   5 |  
1113   6 |  mf624_BAR2 = mmap(0, 1 * sysconf(_SC_PAGESIZE), 
1114   7 |                    PROT_READ | PROT_WRITE, MAP_SHARED, 
1115   8 |                    device_fd, BAR2_offset);
1116 \end{verbatim}
1117
1118 S adresou vrácenou voláním \texttt{mmap()} však není možné vždy ihned pracovat. Může se stát, že mapovaný region PCI zařízení (reprezentovaný zařízením \texttt{/dev/uio0}, na které je \texttt{mmap()} volán) je menší než je velikost celé stránky, \texttt{mmap()} však vrací ukazatel zarovnaný na velikost stránky. Je tedy potřeba se v rámci této stránky posunout na tu část, která odpovídá požadovanému regionu.
1119
1120 Jak velký je potřeba udělat \textit{posun} pomůže zjistit soubor \texttt{/sys/class/uio/uio0/maps/map1/addr}\footnote{Pro názornost je uvedena konkrétní cesta -- jedná se tedy o \textit{druhý} paměťový region zařízení \textit{uio0}.} -- ten obsahuje fyzickou adresu požadovaného regionu. Z té je možné následujícím trikem získat ukazatel, se kterým je již možné pracovat (nejnižší bity totiž budou zachovány z fyzické adresy):
1121 \begin{verbatim}
1122   mf624_BAR2 += (BAR2_phys_addr & (sysconf(_SC_PAGESIZE) - 1));
1123     |                \-- Fyzická adresa
1124      \-- Ukazatel vrácený voláním mmap()                 
1125 \end{verbatim}
1126
1127 \subsubsection{Přístup k paměti zařízení}
1128 Jelikož se jedná o paměť zařízení, je potřeba i v uživatelském prostoru k této paměti přistupovat pomocí speciálních funkcí. Ty jsou popsány v kapitole \ref{iofce}.
1129
1130 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1131 \newpage
1132 \section{Comedi ovladač}
1133 Kromě popsaných výhod UIO ovladače jsou zde i nevýhody. Jednou z nich je pomalejší odezva než v případě plnohodnotného jaderného ovladače. Další nevýhodou je neexistence knihovny v uživatelském prostoru, která by poskytovala jednotné API pro přístup k zařízení (v případě UIO ovladače je potřeba vytvořit pro každé zařízení specifický program).
1134
1135 Pro ovladače měřících karet (které disponují základními funkcemi) existuje v Linuxu subsystém -- tzv. Comedi (Control and Measurement Device Interface).
1136
1137 Comedi se skládá ze tří částí:
1138
1139 \begin{description}
1140 \item[Comedi] -- jsou jednotlivé nízkoúrovňové ovladače zařízení, včetně hlavního ovladače \texttt{comedi}, který poskytuje základní funkce.
1141 \item[Comedilib] -- je knihovnou v uživatelském prostoru, která poskytuje jednotné rozhraní pro ovládání jednotlivých zařízení. 
1142 \item[Kcomedilib] -- je jaderný modul, který poskytuje stejné rozhraní jako Comedilib v uživatelském prostoru. Používá v případě potřeby ovládat zařízení v reálném čase.
1143 \end{description}
1144
1145
1146 \subsection{Registrace ovladače}
1147 Pro správnou funkci je potřeba, aby byl ovladač ihned po načtení modulu (t.j. v \textit{init} funkci) zaregistrován, jak do PCI subsystému, tak do subsystému Comedi. Registrace mezi PCI zařízení je popsána v kapitole \ref{pci_reg}. Registrace mezi Comedi ovladače se provede voláním \texttt{comedi\_driver\_register(struct comedi\_driver *driver)}, kde jako parametr se předá ukazatel na strukturu \texttt{struct comedi\_driver}.
1148
1149 \subsection{Struktura \texttt{struct comedi\_driver}}
1150 Nejdůležitější položky, které tato struktura obsahuje jsou ukazatele na funkce volané při aktivaci Comedi ovladače.
1151
1152 Položky struktury jsou:
1153 \begin{description}
1154 \item[\texttt{const char *driver\_name;}]~\\Obsahuje textový název ovladače.
1155 \item[\texttt{struct module *module;}]~\\Ukazatel na modul, kterému tato struktura náleží. Inicializuje se makrem \texttt{THIS\_MODULE}.
1156 \item[\texttt{int (*attach) (struct comedi\_device *, struct comedi\_devconfig *);}]~\\Ukazatel na funkci, která má být zavolána při aktivaci ovladače.
1157 \item[\texttt{int (*detach) (struct comedi\_device *);}]~\\Ukazatel na funkci, která má být zavolána při deaktivaci ovladače.
1158 \end{description}
1159
1160 Narozdíl od předchozích příkladů je v tomto případě tou hlavní \textit{inicializační} funkcí nikoliv funkce \texttt{probe()} volaná PCI subsystémem v případě, že se v systému nachází hardware, který umí ovladač obsloužit, ale funkce \texttt{attach()}, která je volána Comedi subsystémem v závislosti na tom, zda má být ovladač použit nebo ne.
1161
1162 \subsection{Funkce \texttt{attach}}
1163 Funkce \texttt{attach} je volána v případě aktivace Comedi ovladače. Dříve než dojde na popis inicializačních kroků je nutné vysvětlit názvosloví, které je u Comedi ovladačů používáno.
1164
1165 \begin{description}
1166 \item[Board] označuje konkrétní zařízení -- měřící kartu. Některé ovladače podporují celou sadu zařízení (např. od stejného výrobce).
1167 \item[Subdevice (\textit{podzažízení})] je jedna z mnoha funkcí zařízení. V případě ovladače karty Humusoft MF614 budou implementovány 4 podzařízení: digitální vstupy, digitální výstupy, analogové vstupy, analogové výstupy.
1168 \end{description}
1169
1170 Kromě obvyklých operací, jako je \textit{aktivace zařízení}, žádos o \textit{výhradní přístup} ke zdrojům zařízení a \textit{mapování} paměťových nebo I/O regionů, popsaných v kapitole \ref{pci_driv}, je nutné alokovat a inicializovat struktury \texttt{struct comedi\_subdevice}.
1171
1172 \subsection{Struktura \texttt{struct comedi\_subdevice}}
1173 Každé podporované funcki zařízení/karty by měla odpovídat jedna struktura \texttt{struct comedi\_subdevice}. Hlavní položky, které struktura obsahuje:
1174
1175 \begin{description}
1176 \item[\texttt{int type}]~\\ Označuje druh \textit{podzařízení}. Na výběr jsou např. možnosti: 
1177 \texttt{COMEDI\_SUBD\_AI} (analogový vstup), \texttt{COMEDI\_SUBD\_AO} (analogový výstup), \texttt{COMEDI\_SUBD\_DI} (digitální vstup), \texttt{COMEDI\_SUBD\_DO} (digitální výstup).
1178
1179 \item[\texttt{int subdev\_flags}]~\\ Označuje základní vlastnost podzařízení. Nejpoužívanější hodnoty: \texttt{SDF\_READABLE} (z~pod\-zařízení může být čteno), \texttt{SDF\_WRITABLE} (do podzařízení může být zapisováno).
1180
1181 \item[\texttt{int n\_chan}]~\\ Počet kanálů podzařízení (např. pro 8 digitálních vstupů bude tato hodnota 8).
1182
1183 \item[\texttt{unsigned int maxdata}]~\\ Maximální hodnota, která může být do podzařízení zapsána/čtena.
1184 \item[\texttt{const struct comedi\_lrange *range\_table}]~\\Označuje rozsah, ve kterém dané podzařízení měří (např. u A/D převodníku 0--10 V). K dispozici jsou definované struktury (staří pouze předat jejich ukazatel):\\
1185 \texttt{range\_digital},\\ \texttt{range\_bipolar10},\\ \texttt{range\_bipolar5},\\ \texttt{range\_unipolar10},\\ \texttt{range\_unipolar5}.\\ Jejich názvy jsou samovysvětlující.
1186
1187 \item[\texttt{int (*insn\_read) ( ... );}]~\\Ukazatel na funkci, která má na starosti čtení z podzařízení (většinou se používá pro A/D převodníky).
1188 \item[\texttt{int (*insn\_write) ( ... );}]~\\Ukazatel na funkci, která má na starosti zápis do zařízení (většinou se používá pro A/D převodníky).
1189 \item[\texttt{int (*insn\_bits) ( ... );}]~\\Ukazatel na funkci použitou pro zápis a čtení digitálních výstupů a vstupů,
1190 \item[\texttt{int (*insn\_config) ( ... );}]~\\Ukazatel na funkci, která má na starosti konfiguraci podazařízení.
1191
1192 Poslední čtyři funkce mají parametry: \\ \texttt{(struct comedi\_device *, struct comedi\_subdevice *, struct comedi\_insn *, unsigned int *);}. První z nich je ukazatel na strukturu popisující Comedi ovladač. Druhý je ukazatelem na strukturu odpovídající podzařízení. Třetí obsahuje ukazatel na strukturu popisující \textit{instrukci}, která má být provedena. Poslední obsahuje ukazatel na proměnnou, ze které je vyčtena zapisovaná hodnota nebo je do ni čtená hodnota zapsána.
1193  
1194 \end{description}
1195
1196 \ibox{\texttt{int alloc\_subdevices(struct comedi\_device *dev, unsigned int num\_subdevices)}}
1197
1198 Alokace paměti pro struktury se provede voláním \texttt{alloc\_subdevices()}, které je poskytováno Comedi subsystémem. Prvním parametrem je předán ukazatel na strukturu \texttt{struct comedi\_device}, pro kterou má být alokace provedena. Alokovaná paměť je přístupná skrze proměnnou \texttt{subdevices} náležící struktuře \texttt{struct comedi\_device}. 
1199
1200 V případě dealokace zdrojů ovladače není potřeba tuto paměť dealokovat -- o uvolnění paměti se postará Comedi subsystém. 
1201
1202 \subsection{Funkce pro čtení a zápis z/do podzařízení}
1203 Funkce pro čtení, zápis a konfiguraci A/D, D/A převodníků a~digitálních vstupů a~výstupů mají stejné parametry. Jsou to: \texttt{(struct comedi\_device *dev, 
1204 struct comedi\_sub- device *s, struct comedi\_insn *insn, unsigned int *data)};
1205
1206 V prvním parametru je předán ukazatel na strukturu reprezentující Comedi zařízení. Díky tomu je možné prostřednictvím její proměnné \texttt{private} získat ukazatel na strukturu obsahující privátní data ovladače.
1207
1208 Druhý parametr je ukazatel na strukturu reprezentující podzařízení. Tato struktura obsahuje, kromě položek inicializovaných ve funkci \textit{attach} i proměnnou \texttt{state}. Tato proměnná popisuje \textit{stav zařízení} a používá se především pro zjištění stavu digitálních výstupů (stav digitálních výstupů není možné za zařízení přečíst, pro změnu pouze jednoho bitu je tedy potřeba znát stav ostatních).
1209
1210 Třetí parametr obsahuje ukazatel na strukturu popisující danou \textit{instrukci}, která má být provedena. Důležité položky, které tato struktura obsahuje:
1211 \begin{description}
1212 \item[\texttt{unsigned int n}]~\\Udává počet instrukcí, které mají být provedeny
1213 \item[\texttt{unsigned int chanspec}]~\\Obsahuje informace o kanálu podzařízení, na kterém má být operace provedena. V~jedné proměnné typu \texttt{unsigned int} je obsaženo více údajů, proto je potřeba ke čtení používat speciální makro
1214 \texttt{CR\_CHAN()}, které vrací číslo zvoleného kanálu.
1215 \end{description}
1216
1217 FIXME parametr data[0] a data[1]
1218
1219 \subsection{Funkce \texttt{detach}}
1220 Tato funkce je volána jak v případě ukončení funkce ovladače, tak v případě, že funkce \textit{attach} neproběhla v pořádku. Proto je potřeba rozlišit, které zdroje ovladače již byly úspěšně naalokovány a mají být uvolněny.
1221
1222 Odregistrování ovladače z PCI a Comedi subsystému by mělo být voláno v \textit{úklidové funkci} modulu. O samotné odregistrování se starají funkce:
1223 \texttt{pci\_unregister\_driver()} a \texttt{comedi\_driver\_unregister()}, kterým se jako parametr předá ukazatel na strukturu použitou při registraci.
1224
1225
1226 \subsection{Přístup z uživatelského prostoru}
1227 Pro správnou funkci konkrétního Comedi ovladače je nejprve potřeba načíst modul Comedi (\texttt{modprobe comedi}). Poté je již možné načíst ovladač zařízení (v případě ručně kompilovaného ovladače, pomocí příkazu \texttt{insmod}, jinak opět pomocí \texttt{modprobe}).
1228
1229 V případě, že proběhlo načtení modulu a spuštění funkce \textit{attach} bez problémů, měl by se ve složce \texttt{/dev} objevit nový soubor odpovídající načtenému ovladači zařízení -- comedi0\footnote{Pro názornost je uveden konkrétní příklad, v případě načtení více ovladačů budou odpovídající soubory číslovány od 0 výše.} K tomuto souboru je poté možné pomocí knihovních funkcí Comedilib přistupovat.
1230
1231 Pro přístup k zařízení je potřeba zavolat na soubor \texttt{/dev/comedi0} funkci \texttt{comedi\_open()}. Ta vrací ukazatel datového typu \texttt{comedi\_t}, reprezentujícího dané zařízení. K němu je možné přistupovat pomocí funkcí: \texttt{comedi\_data\_read()}, \texttt{comedi\_data\_write()}, \texttt{comedi\_dio\_read()}, \texttt{comedi\_dio\_write()}.
1232
1233 První dvě slouží pro zápis/čtení A/D a D/A převodníků, zatímco poslední dvě slouží pro přístup k digitálním vstupům/výstupům.
1234 Prvním parametrem všech funkcí je ukazatel na \texttt{comedi\_t}. Druhým je číslo \textit{podzařízení}. Třetí parametr určuje kanál (t.j. např. který z osmi A/D převodníků má být čten). Posledním parametrem je ukazatel na proměnnou, kam mají být zapsána přečtena data nebo hodnota, která má být zapsána.
1235
1236 Ukázka jednoduchého userspace programu:
1237 \begin{verbatim}
1238  1 |  #include <stdio.h>
1239  2 |  #include <comedilib.h>
1240  3 |  #define MF614_DO_SUBDEV      1 /* Je potřeba vědět, jak je 
1241  4 |                                    implementováno v ovladači */
1242  5 |  
1243  6 |  int main(int argc, char* argv[])
1244  7 |  {
1245  8 |      comedi_t* comedi_dev;
1246  9 |  
1247 10 |      comedi_dev = comedi_open("/dev/comedi0");
1248 11 |      if (comedi_dev == NULL) {
1249 12 |          comedi_perror("comedi_open");
1250 13 |          return 1;
1251 14 |      }
1252 15 |
1253 16 |      /* Zápis 1 na 0. kanál digitálního výstupu */  
1254 17 |      comedi_dio_write(comedi_dev, MF614_DO_SUBDEV, 0, 1);
1255 18 |      sleep(1);
1256 19 |      comedi_dio_write(comedi_dev, MF614_DO_SUBDEV, 0, 0);
1257 20 |      sleep(1);
1258 21 |      comedi_dio_write(comedi_dev, MF614_DO_SUBDEV, 0, 1);
1259 22 |      
1260 23 |      return 0;
1261 24 |  }
1262 \end{verbatim}
1263
1264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1265 \chapter{Implementace karty Humusoft MF624 v Qemu}\label{qemu}
1266 Měřící karta Humusoft MF624 je hardware vhodný pro výklad principů implementace ovladačů PCI zařízení. Nevýhodou může být její cena. Pro účely výuky proto byly do emulačního software Qemu implementovány základní funkce této měřící karty -- konkrétně se jedná o A/D převodníky, D/A převodníky a digitální vstupy a výstupy. Takto modifikovaná verze qemu může pří implementaci základního ovladače plně nahradit původní kartu.
1267
1268 Kromě částečné implementace karty MF624 do Qemu je součástí tohoto \textit{virtuálního hardware} grafická aplikace, která má na starosti nastavování vstupních hodnot a zobrazování výstupních hodnot do/z karty (obr. \ref{qemu_diagram}).
1269
1270
1271 \begin{figure}[h!]
1272         \begin{center}
1273         \includegraphics[width=100mm]{img/qemu.pdf}
1274         \caption{Diagram znázorňující princip funkce implementované karty MF624 v Qemu}
1275         \label{qemu_diagram}
1276         \end{center}
1277 \end{figure}
1278
1279 \section{Qemu}
1280 Qemu je emulátor různých procesorových architektur. Od klasických virtualizačních nás\-tro\-jů se odlišuje tím, že podporuje velké kromě IA-32 architektury také např. ARM, SPARC, PowerPC, MIPS, m68k. Qemu umožňuje kromě \textit{plné emulace} (kdy je spuštěn celý operační systém) tzv. \textit{uživatelskou emulaci}, kdy je v uživatelském prostoru spuštěn program zkompilovaný pro jinou architekturu. Uživatelská emulace je možná pouze pro operační systém GNU/Linux.
1281
1282 \subsection{Kompilace, instalace}
1283 Po stažení a rozbalení zdrojových kódů některé ze stabilních verzí emulátoru Qemu je potřeba spustit příkaz (na počítači architektury AI-32):
1284 \begin{verbatim}
1285   $ ./configure --enable-system  --target-list=i386-softmmu
1286 \end{verbatim}
1287
1288 V případě, že spuštěný skript neohlásí žádné chybějící knihovny, je možné spustit  samotnou kompilaci:
1289 \begin{verbatim}
1290   $ make
1291 \end{verbatim}
1292
1293 \subsection{Kompilace virtuální karty Humusoft MF624}
1294 V případě, že je potřeba zkompilovat virtuální kartu MF624, je potřeba  před kompilací překopírovat zdrojový soubor implementující zařízení do složky \texttt{/hw} a do souboru \texttt{Makefile.objs} (nachází se v kořenovém adresáři se zdrojovými kódy) přidat řádek
1295 \begin{verbatim}
1296   hw-obj-$(CONFIG_PCI) += mf624.o
1297 \end{verbatim}
1298 Poté je již možné spustit příkaz
1299 \begin{verbatim}
1300   $ make
1301 \end{verbatim}
1302
1303
1304 \subsection{Použití}
1305 Zkompilovaný binární soubor se nachází v adresáři \texttt{i386-softmmu}. Nejnutnější parametr při spuštění je \texttt{-hda}, který uvádí cestu k souboru reprezentujícím \textit{obraz} spouštěného systému.
1306
1307 V případě správně zkompilované virtuální karty MF624, je možné ji spustit zadáním parametru \texttt{-device mf624}. Po spuštění je v příkazové řádce vypsáno číslo TCP/IP portu, na kterém virtuální karta MF624 naslouchá. Tento port slouží k připojení klientského programu, který má na starosti vykreslování výstupních a nastavování vstupních hodnot karty (možná implementace je popsána v kapitole \ref{qt_gui_ch}). V případě neexistence klientského software je možné se k virtuální kartě připojit pomocí programu \texttt{telnet}.
1308
1309 Příklad spuštění:
1310 \begin{verbatim}
1311   $ ./qemu -device mf624 -hda ../os_images/debian.qcow --boot c 
1312   MF624 Loaded.
1313   Waiting on port 55555 for MF624 client to connect
1314   Client connected
1315 \end{verbatim}
1316
1317 Příklad ovládání vstupů a zobrazování výstupů karty pomocí aplikace \texttt{telnet}:
1318 \begin{verbatim}
1319   $ telnet localhost 55555
1320   Trying ::1...
1321   Trying 127.0.0.1...
1322   Connected to localhost.
1323   Escape character is '^]'.
1324   DA1=9.998779
1325   DOUT=255.000000
1326   DOUT=0.000000
1327   DA1=5.000000
1328   ^]
1329   telnet> Connection closed.
1330 \end{verbatim}
1331
1332 \section{Qt grafiké rozhraní}\label{qt_gui_ch}
1333 Pro komunikaci s virtuální kartou MF624 bylo implementováno jednoduché grafické rozhraní, které má na starosti vykreslování hodnot výstupů karty (nastavovaných ovladačem běžícím v operačním systému virtualizovaném Qemu) a posílání nastavovaných vstupních hodnot zpět virtuální kartě.
1334
1335 Komunikace mezi virtuální kartou a grafickou aplikací probíhá pomocí TCP/IP protokolu. Přenášené informace jsou textového charakteru, ve formátu \texttt{REGISTR=HODNOTA}.
1336
1337 Na obrázku \ref{qt_gui} je vidět vzhled grafické aplikace.
1338
1339 \subsection{Kompilace, použití}
1340 Grafická aplikace je vytvořena za pomoci grafického knihovny Qt. V případě, že jsou v~systému nainstalovány vývojářské verze Qt knihoven, včetně vývojářských nástrojů, stačí pro kompilaci spustit
1341 \begin{verbatim}
1342   $ qmake
1343   $ make
1344 \end{verbatim}
1345
1346 Použití aplikace by mělo být intuitivní. Položky, u kterých není možné měnit jejich hodnotu, jsou záměrně pouze pro čtení (zobrazují výstupní hodnoty).
1347
1348
1349 \begin{figure}[h!]
1350         \begin{center}
1351         \includegraphics[width=100mm]{img/qt_gui.png}
1352         \caption{Vzhled grafické aplikace pro ovládání vstupů a výstupů virtuální karty MF624}
1353         \label{qt_gui}
1354         \end{center}
1355 \end{figure}
1356
1357 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1358 \chapter{Testování}
1359 \section{UIO ovladač, Comedi ovladač}
1360 Jednotlivé ovladače jsou tvořeny samostatnými jadernými moduly, které pouze využívají volání jednotlivých subsystémů -- neexportují žádné \textit{symboly} ani nemění globální proměnné. V tomto případě nebylo nutné provádět regresní testování.
1361
1362 Testování správnosti funkce ovladačů probíhala přímo na hardware, za pomoci \textit{univerzální svorkovnice TB620} (obrázek \ref{svorkovnice}).
1363
1364 \begin{figure}[h!]
1365         \begin{center}
1366         \includegraphics[width=120mm]{img/svorkovnice.jpg}
1367         \caption{Svorkovnice TB620}
1368         \label{svorkovnice}
1369         \end{center}
1370 \end{figure}
1371
1372 \vspace{1cm}
1373 Základní propojení na svorkovnici, které se osvědčilo, bylo:
1374 \begin{itemize}
1375 \item 2 $\times$ LED pro nejnižší a nejvyšší bit DOUT
1376 \item 2 $\times$ 1k$\Omega$ rezistory mezi 5 V a nejnižším a nejvyšším bitem DIN
1377 \item 2. bit DIN dynamicky spojován s GND nebo pomocí 1k$\Omega$ rezistoru s 5 V
1378 \item Měření multimetrem výstupní hodnoty z DAC (většinou DAC0 nebo DAC1)
1379 \item ADC0 spojen s GND, ADC1 spojen pomocí 1k$\Omega$ rezistoru s DAC0
1380 \end{itemize}
1381
1382 ~\\
1383
1384 Konzistence jádra byla testována opětovným načítáním a uvolňováním jednotlivých ovladačů.
1385
1386 \section{Qemu virtuální hardware, Qt grafické rozhraní}
1387 Správnost implementace virtuálního hardware byla testována spouštěním implementovaných ovladačů v systému virtualizovaného v Qemu. Zároveň byla ověřena funkčnost grafického rozhraní, reprezentujícího vstupy a výstupy do/z virtuální karty. 
1388
1389
1390 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1391 \chapter{Závěr}
1392 V této práci se mi podařilo vysvětlit základní aspekty psaní ovladačů PCI ovladačů pro operační systém GNU/Linux -- jak na obecné úrovni, tak u konkrétních ovladačů typu UIO a Comedi.
1393
1394 Součástí práce jsou základní (pokrývající pouze A/D, D/A převodníky a digitální vstupy/výstupy) ovladače pro karty Humusoft MF624 a Humusoft MF614. V budoucnu by tyto ovladače mohly být rozšířeny tak, aby pokrývaly všechny funkce těchto karet.
1395
1396 Pro potřeby výuky byly implementovány základní funkce karty Humusoft MF614 do emulátoru Qemu. Tato implementace by mohla být v budoucnu rozšířena, případně by mohla posloužit jako příklad pro implementaci jiných jednoduchých PCI zařízení sloužících pro výuku implementace PCI ovladačů. I když tak nebylo původně zamýšleno, mohla by částečná implementace karty MF614 do Qemu posloužit i při výuce psaní ovladačů pro jiné operační systémy, jako například systémy rodiny Microsoft Windows.
1397
1398
1399 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1400 %\appendix
1401 %\chapter{Hudaqlib}
1402
1403 %\chapter{Obsah přiloženého CD}