]> rtime.felk.cvut.cz Git - mcf548x/linux.git/blob - fs/btrfs/ctree.c
Initial 2.6.37
[mcf548x/linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42                         struct btrfs_root *root, struct btrfs_path *path,
43                         struct btrfs_key *cpu_key, u32 *data_size,
44                         u32 total_data, u32 total_size, int nr);
45
46
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49         struct btrfs_path *path;
50         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51         if (path)
52                 path->reada = 1;
53         return path;
54 }
55
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62         int i;
63         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64                 if (p->nodes[i] && p->locks[i])
65                         btrfs_set_lock_blocking(p->nodes[i]);
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held)
79 {
80         int i;
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83         /* lockdep really cares that we take all of these spinlocks
84          * in the right order.  If any of the locks in the path are not
85          * currently blocking, it is going to complain.  So, make really
86          * really sure by forcing the path to blocking before we clear
87          * the path blocking.
88          */
89         if (held)
90                 btrfs_set_lock_blocking(held);
91         btrfs_set_path_blocking(p);
92 #endif
93
94         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95                 if (p->nodes[i] && p->locks[i])
96                         btrfs_clear_lock_blocking(p->nodes[i]);
97         }
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100         if (held)
101                 btrfs_clear_lock_blocking(held);
102 #endif
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         btrfs_release_path(NULL, p);
109         kmem_cache_free(btrfs_path_cachep, p);
110 }
111
112 /*
113  * path release drops references on the extent buffers in the path
114  * and it drops any locks held by this path
115  *
116  * It is safe to call this on paths that no locks or extent buffers held.
117  */
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
119 {
120         int i;
121
122         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123                 p->slots[i] = 0;
124                 if (!p->nodes[i])
125                         continue;
126                 if (p->locks[i]) {
127                         btrfs_tree_unlock(p->nodes[i]);
128                         p->locks[i] = 0;
129                 }
130                 free_extent_buffer(p->nodes[i]);
131                 p->nodes[i] = NULL;
132         }
133 }
134
135 /*
136  * safely gets a reference on the root node of a tree.  A lock
137  * is not taken, so a concurrent writer may put a different node
138  * at the root of the tree.  See btrfs_lock_root_node for the
139  * looping required.
140  *
141  * The extent buffer returned by this has a reference taken, so
142  * it won't disappear.  It may stop being the root of the tree
143  * at any time because there are no locks held.
144  */
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
146 {
147         struct extent_buffer *eb;
148         spin_lock(&root->node_lock);
149         eb = root->node;
150         extent_buffer_get(eb);
151         spin_unlock(&root->node_lock);
152         return eb;
153 }
154
155 /* loop around taking references on and locking the root node of the
156  * tree until you end up with a lock on the root.  A locked buffer
157  * is returned, with a reference held.
158  */
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 eb = btrfs_root_node(root);
165                 btrfs_tree_lock(eb);
166
167                 spin_lock(&root->node_lock);
168                 if (eb == root->node) {
169                         spin_unlock(&root->node_lock);
170                         break;
171                 }
172                 spin_unlock(&root->node_lock);
173
174                 btrfs_tree_unlock(eb);
175                 free_extent_buffer(eb);
176         }
177         return eb;
178 }
179
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181  * put onto a simple dirty list.  transaction.c walks this to make sure they
182  * get properly updated on disk.
183  */
184 static void add_root_to_dirty_list(struct btrfs_root *root)
185 {
186         if (root->track_dirty && list_empty(&root->dirty_list)) {
187                 list_add(&root->dirty_list,
188                          &root->fs_info->dirty_cowonly_roots);
189         }
190 }
191
192 /*
193  * used by snapshot creation to make a copy of a root for a tree with
194  * a given objectid.  The buffer with the new root node is returned in
195  * cow_ret, and this func returns zero on success or a negative error code.
196  */
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198                       struct btrfs_root *root,
199                       struct extent_buffer *buf,
200                       struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202         struct extent_buffer *cow;
203         int ret = 0;
204         int level;
205         struct btrfs_disk_key disk_key;
206
207         WARN_ON(root->ref_cows && trans->transid !=
208                 root->fs_info->running_transaction->transid);
209         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
210
211         level = btrfs_header_level(buf);
212         if (level == 0)
213                 btrfs_item_key(buf, &disk_key, 0);
214         else
215                 btrfs_node_key(buf, &disk_key, 0);
216
217         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
218                                      new_root_objectid, &disk_key, level,
219                                      buf->start, 0);
220         if (IS_ERR(cow))
221                 return PTR_ERR(cow);
222
223         copy_extent_buffer(cow, buf, 0, 0, cow->len);
224         btrfs_set_header_bytenr(cow, cow->start);
225         btrfs_set_header_generation(cow, trans->transid);
226         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228                                      BTRFS_HEADER_FLAG_RELOC);
229         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231         else
232                 btrfs_set_header_owner(cow, new_root_objectid);
233
234         write_extent_buffer(cow, root->fs_info->fsid,
235                             (unsigned long)btrfs_header_fsid(cow),
236                             BTRFS_FSID_SIZE);
237
238         WARN_ON(btrfs_header_generation(buf) > trans->transid);
239         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240                 ret = btrfs_inc_ref(trans, root, cow, 1);
241         else
242                 ret = btrfs_inc_ref(trans, root, cow, 0);
243
244         if (ret)
245                 return ret;
246
247         btrfs_mark_buffer_dirty(cow);
248         *cow_ret = cow;
249         return 0;
250 }
251
252 /*
253  * check if the tree block can be shared by multiple trees
254  */
255 int btrfs_block_can_be_shared(struct btrfs_root *root,
256                               struct extent_buffer *buf)
257 {
258         /*
259          * Tree blocks not in refernece counted trees and tree roots
260          * are never shared. If a block was allocated after the last
261          * snapshot and the block was not allocated by tree relocation,
262          * we know the block is not shared.
263          */
264         if (root->ref_cows &&
265             buf != root->node && buf != root->commit_root &&
266             (btrfs_header_generation(buf) <=
267              btrfs_root_last_snapshot(&root->root_item) ||
268              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
269                 return 1;
270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
271         if (root->ref_cows &&
272             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
273                 return 1;
274 #endif
275         return 0;
276 }
277
278 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
279                                        struct btrfs_root *root,
280                                        struct extent_buffer *buf,
281                                        struct extent_buffer *cow,
282                                        int *last_ref)
283 {
284         u64 refs;
285         u64 owner;
286         u64 flags;
287         u64 new_flags = 0;
288         int ret;
289
290         /*
291          * Backrefs update rules:
292          *
293          * Always use full backrefs for extent pointers in tree block
294          * allocated by tree relocation.
295          *
296          * If a shared tree block is no longer referenced by its owner
297          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
298          * use full backrefs for extent pointers in tree block.
299          *
300          * If a tree block is been relocating
301          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
302          * use full backrefs for extent pointers in tree block.
303          * The reason for this is some operations (such as drop tree)
304          * are only allowed for blocks use full backrefs.
305          */
306
307         if (btrfs_block_can_be_shared(root, buf)) {
308                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
309                                                buf->len, &refs, &flags);
310                 BUG_ON(ret);
311                 BUG_ON(refs == 0);
312         } else {
313                 refs = 1;
314                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
315                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
316                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
317                 else
318                         flags = 0;
319         }
320
321         owner = btrfs_header_owner(buf);
322         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
323                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
324
325         if (refs > 1) {
326                 if ((owner == root->root_key.objectid ||
327                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
328                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
329                         ret = btrfs_inc_ref(trans, root, buf, 1);
330                         BUG_ON(ret);
331
332                         if (root->root_key.objectid ==
333                             BTRFS_TREE_RELOC_OBJECTID) {
334                                 ret = btrfs_dec_ref(trans, root, buf, 0);
335                                 BUG_ON(ret);
336                                 ret = btrfs_inc_ref(trans, root, cow, 1);
337                                 BUG_ON(ret);
338                         }
339                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
340                 } else {
341
342                         if (root->root_key.objectid ==
343                             BTRFS_TREE_RELOC_OBJECTID)
344                                 ret = btrfs_inc_ref(trans, root, cow, 1);
345                         else
346                                 ret = btrfs_inc_ref(trans, root, cow, 0);
347                         BUG_ON(ret);
348                 }
349                 if (new_flags != 0) {
350                         ret = btrfs_set_disk_extent_flags(trans, root,
351                                                           buf->start,
352                                                           buf->len,
353                                                           new_flags, 0);
354                         BUG_ON(ret);
355                 }
356         } else {
357                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
358                         if (root->root_key.objectid ==
359                             BTRFS_TREE_RELOC_OBJECTID)
360                                 ret = btrfs_inc_ref(trans, root, cow, 1);
361                         else
362                                 ret = btrfs_inc_ref(trans, root, cow, 0);
363                         BUG_ON(ret);
364                         ret = btrfs_dec_ref(trans, root, buf, 1);
365                         BUG_ON(ret);
366                 }
367                 clean_tree_block(trans, root, buf);
368                 *last_ref = 1;
369         }
370         return 0;
371 }
372
373 /*
374  * does the dirty work in cow of a single block.  The parent block (if
375  * supplied) is updated to point to the new cow copy.  The new buffer is marked
376  * dirty and returned locked.  If you modify the block it needs to be marked
377  * dirty again.
378  *
379  * search_start -- an allocation hint for the new block
380  *
381  * empty_size -- a hint that you plan on doing more cow.  This is the size in
382  * bytes the allocator should try to find free next to the block it returns.
383  * This is just a hint and may be ignored by the allocator.
384  */
385 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
386                              struct btrfs_root *root,
387                              struct extent_buffer *buf,
388                              struct extent_buffer *parent, int parent_slot,
389                              struct extent_buffer **cow_ret,
390                              u64 search_start, u64 empty_size)
391 {
392         struct btrfs_disk_key disk_key;
393         struct extent_buffer *cow;
394         int level;
395         int last_ref = 0;
396         int unlock_orig = 0;
397         u64 parent_start;
398
399         if (*cow_ret == buf)
400                 unlock_orig = 1;
401
402         btrfs_assert_tree_locked(buf);
403
404         WARN_ON(root->ref_cows && trans->transid !=
405                 root->fs_info->running_transaction->transid);
406         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
407
408         level = btrfs_header_level(buf);
409
410         if (level == 0)
411                 btrfs_item_key(buf, &disk_key, 0);
412         else
413                 btrfs_node_key(buf, &disk_key, 0);
414
415         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
416                 if (parent)
417                         parent_start = parent->start;
418                 else
419                         parent_start = 0;
420         } else
421                 parent_start = 0;
422
423         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
424                                      root->root_key.objectid, &disk_key,
425                                      level, search_start, empty_size);
426         if (IS_ERR(cow))
427                 return PTR_ERR(cow);
428
429         /* cow is set to blocking by btrfs_init_new_buffer */
430
431         copy_extent_buffer(cow, buf, 0, 0, cow->len);
432         btrfs_set_header_bytenr(cow, cow->start);
433         btrfs_set_header_generation(cow, trans->transid);
434         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
435         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
436                                      BTRFS_HEADER_FLAG_RELOC);
437         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
438                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
439         else
440                 btrfs_set_header_owner(cow, root->root_key.objectid);
441
442         write_extent_buffer(cow, root->fs_info->fsid,
443                             (unsigned long)btrfs_header_fsid(cow),
444                             BTRFS_FSID_SIZE);
445
446         update_ref_for_cow(trans, root, buf, cow, &last_ref);
447
448         if (root->ref_cows)
449                 btrfs_reloc_cow_block(trans, root, buf, cow);
450
451         if (buf == root->node) {
452                 WARN_ON(parent && parent != buf);
453                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
454                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
455                         parent_start = buf->start;
456                 else
457                         parent_start = 0;
458
459                 spin_lock(&root->node_lock);
460                 root->node = cow;
461                 extent_buffer_get(cow);
462                 spin_unlock(&root->node_lock);
463
464                 btrfs_free_tree_block(trans, root, buf, parent_start,
465                                       last_ref);
466                 free_extent_buffer(buf);
467                 add_root_to_dirty_list(root);
468         } else {
469                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
470                         parent_start = parent->start;
471                 else
472                         parent_start = 0;
473
474                 WARN_ON(trans->transid != btrfs_header_generation(parent));
475                 btrfs_set_node_blockptr(parent, parent_slot,
476                                         cow->start);
477                 btrfs_set_node_ptr_generation(parent, parent_slot,
478                                               trans->transid);
479                 btrfs_mark_buffer_dirty(parent);
480                 btrfs_free_tree_block(trans, root, buf, parent_start,
481                                       last_ref);
482         }
483         if (unlock_orig)
484                 btrfs_tree_unlock(buf);
485         free_extent_buffer(buf);
486         btrfs_mark_buffer_dirty(cow);
487         *cow_ret = cow;
488         return 0;
489 }
490
491 static inline int should_cow_block(struct btrfs_trans_handle *trans,
492                                    struct btrfs_root *root,
493                                    struct extent_buffer *buf)
494 {
495         if (btrfs_header_generation(buf) == trans->transid &&
496             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
497             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
498               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
499                 return 0;
500         return 1;
501 }
502
503 /*
504  * cows a single block, see __btrfs_cow_block for the real work.
505  * This version of it has extra checks so that a block isn't cow'd more than
506  * once per transaction, as long as it hasn't been written yet
507  */
508 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
509                     struct btrfs_root *root, struct extent_buffer *buf,
510                     struct extent_buffer *parent, int parent_slot,
511                     struct extent_buffer **cow_ret)
512 {
513         u64 search_start;
514         int ret;
515
516         if (trans->transaction != root->fs_info->running_transaction) {
517                 printk(KERN_CRIT "trans %llu running %llu\n",
518                        (unsigned long long)trans->transid,
519                        (unsigned long long)
520                        root->fs_info->running_transaction->transid);
521                 WARN_ON(1);
522         }
523         if (trans->transid != root->fs_info->generation) {
524                 printk(KERN_CRIT "trans %llu running %llu\n",
525                        (unsigned long long)trans->transid,
526                        (unsigned long long)root->fs_info->generation);
527                 WARN_ON(1);
528         }
529
530         if (!should_cow_block(trans, root, buf)) {
531                 *cow_ret = buf;
532                 return 0;
533         }
534
535         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
536
537         if (parent)
538                 btrfs_set_lock_blocking(parent);
539         btrfs_set_lock_blocking(buf);
540
541         ret = __btrfs_cow_block(trans, root, buf, parent,
542                                  parent_slot, cow_ret, search_start, 0);
543         return ret;
544 }
545
546 /*
547  * helper function for defrag to decide if two blocks pointed to by a
548  * node are actually close by
549  */
550 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
551 {
552         if (blocknr < other && other - (blocknr + blocksize) < 32768)
553                 return 1;
554         if (blocknr > other && blocknr - (other + blocksize) < 32768)
555                 return 1;
556         return 0;
557 }
558
559 /*
560  * compare two keys in a memcmp fashion
561  */
562 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
563 {
564         struct btrfs_key k1;
565
566         btrfs_disk_key_to_cpu(&k1, disk);
567
568         return btrfs_comp_cpu_keys(&k1, k2);
569 }
570
571 /*
572  * same as comp_keys only with two btrfs_key's
573  */
574 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
575 {
576         if (k1->objectid > k2->objectid)
577                 return 1;
578         if (k1->objectid < k2->objectid)
579                 return -1;
580         if (k1->type > k2->type)
581                 return 1;
582         if (k1->type < k2->type)
583                 return -1;
584         if (k1->offset > k2->offset)
585                 return 1;
586         if (k1->offset < k2->offset)
587                 return -1;
588         return 0;
589 }
590
591 /*
592  * this is used by the defrag code to go through all the
593  * leaves pointed to by a node and reallocate them so that
594  * disk order is close to key order
595  */
596 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
597                        struct btrfs_root *root, struct extent_buffer *parent,
598                        int start_slot, int cache_only, u64 *last_ret,
599                        struct btrfs_key *progress)
600 {
601         struct extent_buffer *cur;
602         u64 blocknr;
603         u64 gen;
604         u64 search_start = *last_ret;
605         u64 last_block = 0;
606         u64 other;
607         u32 parent_nritems;
608         int end_slot;
609         int i;
610         int err = 0;
611         int parent_level;
612         int uptodate;
613         u32 blocksize;
614         int progress_passed = 0;
615         struct btrfs_disk_key disk_key;
616
617         parent_level = btrfs_header_level(parent);
618         if (cache_only && parent_level != 1)
619                 return 0;
620
621         if (trans->transaction != root->fs_info->running_transaction)
622                 WARN_ON(1);
623         if (trans->transid != root->fs_info->generation)
624                 WARN_ON(1);
625
626         parent_nritems = btrfs_header_nritems(parent);
627         blocksize = btrfs_level_size(root, parent_level - 1);
628         end_slot = parent_nritems;
629
630         if (parent_nritems == 1)
631                 return 0;
632
633         btrfs_set_lock_blocking(parent);
634
635         for (i = start_slot; i < end_slot; i++) {
636                 int close = 1;
637
638                 if (!parent->map_token) {
639                         map_extent_buffer(parent,
640                                         btrfs_node_key_ptr_offset(i),
641                                         sizeof(struct btrfs_key_ptr),
642                                         &parent->map_token, &parent->kaddr,
643                                         &parent->map_start, &parent->map_len,
644                                         KM_USER1);
645                 }
646                 btrfs_node_key(parent, &disk_key, i);
647                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
648                         continue;
649
650                 progress_passed = 1;
651                 blocknr = btrfs_node_blockptr(parent, i);
652                 gen = btrfs_node_ptr_generation(parent, i);
653                 if (last_block == 0)
654                         last_block = blocknr;
655
656                 if (i > 0) {
657                         other = btrfs_node_blockptr(parent, i - 1);
658                         close = close_blocks(blocknr, other, blocksize);
659                 }
660                 if (!close && i < end_slot - 2) {
661                         other = btrfs_node_blockptr(parent, i + 1);
662                         close = close_blocks(blocknr, other, blocksize);
663                 }
664                 if (close) {
665                         last_block = blocknr;
666                         continue;
667                 }
668                 if (parent->map_token) {
669                         unmap_extent_buffer(parent, parent->map_token,
670                                             KM_USER1);
671                         parent->map_token = NULL;
672                 }
673
674                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
675                 if (cur)
676                         uptodate = btrfs_buffer_uptodate(cur, gen);
677                 else
678                         uptodate = 0;
679                 if (!cur || !uptodate) {
680                         if (cache_only) {
681                                 free_extent_buffer(cur);
682                                 continue;
683                         }
684                         if (!cur) {
685                                 cur = read_tree_block(root, blocknr,
686                                                          blocksize, gen);
687                         } else if (!uptodate) {
688                                 btrfs_read_buffer(cur, gen);
689                         }
690                 }
691                 if (search_start == 0)
692                         search_start = last_block;
693
694                 btrfs_tree_lock(cur);
695                 btrfs_set_lock_blocking(cur);
696                 err = __btrfs_cow_block(trans, root, cur, parent, i,
697                                         &cur, search_start,
698                                         min(16 * blocksize,
699                                             (end_slot - i) * blocksize));
700                 if (err) {
701                         btrfs_tree_unlock(cur);
702                         free_extent_buffer(cur);
703                         break;
704                 }
705                 search_start = cur->start;
706                 last_block = cur->start;
707                 *last_ret = search_start;
708                 btrfs_tree_unlock(cur);
709                 free_extent_buffer(cur);
710         }
711         if (parent->map_token) {
712                 unmap_extent_buffer(parent, parent->map_token,
713                                     KM_USER1);
714                 parent->map_token = NULL;
715         }
716         return err;
717 }
718
719 /*
720  * The leaf data grows from end-to-front in the node.
721  * this returns the address of the start of the last item,
722  * which is the stop of the leaf data stack
723  */
724 static inline unsigned int leaf_data_end(struct btrfs_root *root,
725                                          struct extent_buffer *leaf)
726 {
727         u32 nr = btrfs_header_nritems(leaf);
728         if (nr == 0)
729                 return BTRFS_LEAF_DATA_SIZE(root);
730         return btrfs_item_offset_nr(leaf, nr - 1);
731 }
732
733 /*
734  * extra debugging checks to make sure all the items in a key are
735  * well formed and in the proper order
736  */
737 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
738                       int level)
739 {
740         struct extent_buffer *parent = NULL;
741         struct extent_buffer *node = path->nodes[level];
742         struct btrfs_disk_key parent_key;
743         struct btrfs_disk_key node_key;
744         int parent_slot;
745         int slot;
746         struct btrfs_key cpukey;
747         u32 nritems = btrfs_header_nritems(node);
748
749         if (path->nodes[level + 1])
750                 parent = path->nodes[level + 1];
751
752         slot = path->slots[level];
753         BUG_ON(nritems == 0);
754         if (parent) {
755                 parent_slot = path->slots[level + 1];
756                 btrfs_node_key(parent, &parent_key, parent_slot);
757                 btrfs_node_key(node, &node_key, 0);
758                 BUG_ON(memcmp(&parent_key, &node_key,
759                               sizeof(struct btrfs_disk_key)));
760                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
761                        btrfs_header_bytenr(node));
762         }
763         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
764         if (slot != 0) {
765                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
766                 btrfs_node_key(node, &node_key, slot);
767                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
768         }
769         if (slot < nritems - 1) {
770                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
771                 btrfs_node_key(node, &node_key, slot);
772                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
773         }
774         return 0;
775 }
776
777 /*
778  * extra checking to make sure all the items in a leaf are
779  * well formed and in the proper order
780  */
781 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
782                       int level)
783 {
784         struct extent_buffer *leaf = path->nodes[level];
785         struct extent_buffer *parent = NULL;
786         int parent_slot;
787         struct btrfs_key cpukey;
788         struct btrfs_disk_key parent_key;
789         struct btrfs_disk_key leaf_key;
790         int slot = path->slots[0];
791
792         u32 nritems = btrfs_header_nritems(leaf);
793
794         if (path->nodes[level + 1])
795                 parent = path->nodes[level + 1];
796
797         if (nritems == 0)
798                 return 0;
799
800         if (parent) {
801                 parent_slot = path->slots[level + 1];
802                 btrfs_node_key(parent, &parent_key, parent_slot);
803                 btrfs_item_key(leaf, &leaf_key, 0);
804
805                 BUG_ON(memcmp(&parent_key, &leaf_key,
806                        sizeof(struct btrfs_disk_key)));
807                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
808                        btrfs_header_bytenr(leaf));
809         }
810         if (slot != 0 && slot < nritems - 1) {
811                 btrfs_item_key(leaf, &leaf_key, slot);
812                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
813                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
814                         btrfs_print_leaf(root, leaf);
815                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
816                         BUG_ON(1);
817                 }
818                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
819                        btrfs_item_end_nr(leaf, slot)) {
820                         btrfs_print_leaf(root, leaf);
821                         printk(KERN_CRIT "slot %d offset bad\n", slot);
822                         BUG_ON(1);
823                 }
824         }
825         if (slot < nritems - 1) {
826                 btrfs_item_key(leaf, &leaf_key, slot);
827                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
828                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
829                 if (btrfs_item_offset_nr(leaf, slot) !=
830                         btrfs_item_end_nr(leaf, slot + 1)) {
831                         btrfs_print_leaf(root, leaf);
832                         printk(KERN_CRIT "slot %d offset bad\n", slot);
833                         BUG_ON(1);
834                 }
835         }
836         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
837                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
838         return 0;
839 }
840
841 static noinline int check_block(struct btrfs_root *root,
842                                 struct btrfs_path *path, int level)
843 {
844         return 0;
845         if (level == 0)
846                 return check_leaf(root, path, level);
847         return check_node(root, path, level);
848 }
849
850 /*
851  * search for key in the extent_buffer.  The items start at offset p,
852  * and they are item_size apart.  There are 'max' items in p.
853  *
854  * the slot in the array is returned via slot, and it points to
855  * the place where you would insert key if it is not found in
856  * the array.
857  *
858  * slot may point to max if the key is bigger than all of the keys
859  */
860 static noinline int generic_bin_search(struct extent_buffer *eb,
861                                        unsigned long p,
862                                        int item_size, struct btrfs_key *key,
863                                        int max, int *slot)
864 {
865         int low = 0;
866         int high = max;
867         int mid;
868         int ret;
869         struct btrfs_disk_key *tmp = NULL;
870         struct btrfs_disk_key unaligned;
871         unsigned long offset;
872         char *map_token = NULL;
873         char *kaddr = NULL;
874         unsigned long map_start = 0;
875         unsigned long map_len = 0;
876         int err;
877
878         while (low < high) {
879                 mid = (low + high) / 2;
880                 offset = p + mid * item_size;
881
882                 if (!map_token || offset < map_start ||
883                     (offset + sizeof(struct btrfs_disk_key)) >
884                     map_start + map_len) {
885                         if (map_token) {
886                                 unmap_extent_buffer(eb, map_token, KM_USER0);
887                                 map_token = NULL;
888                         }
889
890                         err = map_private_extent_buffer(eb, offset,
891                                                 sizeof(struct btrfs_disk_key),
892                                                 &map_token, &kaddr,
893                                                 &map_start, &map_len, KM_USER0);
894
895                         if (!err) {
896                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
897                                                         map_start);
898                         } else {
899                                 read_extent_buffer(eb, &unaligned,
900                                                    offset, sizeof(unaligned));
901                                 tmp = &unaligned;
902                         }
903
904                 } else {
905                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
906                                                         map_start);
907                 }
908                 ret = comp_keys(tmp, key);
909
910                 if (ret < 0)
911                         low = mid + 1;
912                 else if (ret > 0)
913                         high = mid;
914                 else {
915                         *slot = mid;
916                         if (map_token)
917                                 unmap_extent_buffer(eb, map_token, KM_USER0);
918                         return 0;
919                 }
920         }
921         *slot = low;
922         if (map_token)
923                 unmap_extent_buffer(eb, map_token, KM_USER0);
924         return 1;
925 }
926
927 /*
928  * simple bin_search frontend that does the right thing for
929  * leaves vs nodes
930  */
931 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
932                       int level, int *slot)
933 {
934         if (level == 0) {
935                 return generic_bin_search(eb,
936                                           offsetof(struct btrfs_leaf, items),
937                                           sizeof(struct btrfs_item),
938                                           key, btrfs_header_nritems(eb),
939                                           slot);
940         } else {
941                 return generic_bin_search(eb,
942                                           offsetof(struct btrfs_node, ptrs),
943                                           sizeof(struct btrfs_key_ptr),
944                                           key, btrfs_header_nritems(eb),
945                                           slot);
946         }
947         return -1;
948 }
949
950 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
951                      int level, int *slot)
952 {
953         return bin_search(eb, key, level, slot);
954 }
955
956 static void root_add_used(struct btrfs_root *root, u32 size)
957 {
958         spin_lock(&root->accounting_lock);
959         btrfs_set_root_used(&root->root_item,
960                             btrfs_root_used(&root->root_item) + size);
961         spin_unlock(&root->accounting_lock);
962 }
963
964 static void root_sub_used(struct btrfs_root *root, u32 size)
965 {
966         spin_lock(&root->accounting_lock);
967         btrfs_set_root_used(&root->root_item,
968                             btrfs_root_used(&root->root_item) - size);
969         spin_unlock(&root->accounting_lock);
970 }
971
972 /* given a node and slot number, this reads the blocks it points to.  The
973  * extent buffer is returned with a reference taken (but unlocked).
974  * NULL is returned on error.
975  */
976 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
977                                    struct extent_buffer *parent, int slot)
978 {
979         int level = btrfs_header_level(parent);
980         if (slot < 0)
981                 return NULL;
982         if (slot >= btrfs_header_nritems(parent))
983                 return NULL;
984
985         BUG_ON(level == 0);
986
987         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
988                        btrfs_level_size(root, level - 1),
989                        btrfs_node_ptr_generation(parent, slot));
990 }
991
992 /*
993  * node level balancing, used to make sure nodes are in proper order for
994  * item deletion.  We balance from the top down, so we have to make sure
995  * that a deletion won't leave an node completely empty later on.
996  */
997 static noinline int balance_level(struct btrfs_trans_handle *trans,
998                          struct btrfs_root *root,
999                          struct btrfs_path *path, int level)
1000 {
1001         struct extent_buffer *right = NULL;
1002         struct extent_buffer *mid;
1003         struct extent_buffer *left = NULL;
1004         struct extent_buffer *parent = NULL;
1005         int ret = 0;
1006         int wret;
1007         int pslot;
1008         int orig_slot = path->slots[level];
1009         u64 orig_ptr;
1010
1011         if (level == 0)
1012                 return 0;
1013
1014         mid = path->nodes[level];
1015
1016         WARN_ON(!path->locks[level]);
1017         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1018
1019         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1020
1021         if (level < BTRFS_MAX_LEVEL - 1)
1022                 parent = path->nodes[level + 1];
1023         pslot = path->slots[level + 1];
1024
1025         /*
1026          * deal with the case where there is only one pointer in the root
1027          * by promoting the node below to a root
1028          */
1029         if (!parent) {
1030                 struct extent_buffer *child;
1031
1032                 if (btrfs_header_nritems(mid) != 1)
1033                         return 0;
1034
1035                 /* promote the child to a root */
1036                 child = read_node_slot(root, mid, 0);
1037                 BUG_ON(!child);
1038                 btrfs_tree_lock(child);
1039                 btrfs_set_lock_blocking(child);
1040                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1041                 if (ret) {
1042                         btrfs_tree_unlock(child);
1043                         free_extent_buffer(child);
1044                         goto enospc;
1045                 }
1046
1047                 spin_lock(&root->node_lock);
1048                 root->node = child;
1049                 spin_unlock(&root->node_lock);
1050
1051                 add_root_to_dirty_list(root);
1052                 btrfs_tree_unlock(child);
1053
1054                 path->locks[level] = 0;
1055                 path->nodes[level] = NULL;
1056                 clean_tree_block(trans, root, mid);
1057                 btrfs_tree_unlock(mid);
1058                 /* once for the path */
1059                 free_extent_buffer(mid);
1060
1061                 root_sub_used(root, mid->len);
1062                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1063                 /* once for the root ptr */
1064                 free_extent_buffer(mid);
1065                 return 0;
1066         }
1067         if (btrfs_header_nritems(mid) >
1068             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1069                 return 0;
1070
1071         btrfs_header_nritems(mid);
1072
1073         left = read_node_slot(root, parent, pslot - 1);
1074         if (left) {
1075                 btrfs_tree_lock(left);
1076                 btrfs_set_lock_blocking(left);
1077                 wret = btrfs_cow_block(trans, root, left,
1078                                        parent, pslot - 1, &left);
1079                 if (wret) {
1080                         ret = wret;
1081                         goto enospc;
1082                 }
1083         }
1084         right = read_node_slot(root, parent, pslot + 1);
1085         if (right) {
1086                 btrfs_tree_lock(right);
1087                 btrfs_set_lock_blocking(right);
1088                 wret = btrfs_cow_block(trans, root, right,
1089                                        parent, pslot + 1, &right);
1090                 if (wret) {
1091                         ret = wret;
1092                         goto enospc;
1093                 }
1094         }
1095
1096         /* first, try to make some room in the middle buffer */
1097         if (left) {
1098                 orig_slot += btrfs_header_nritems(left);
1099                 wret = push_node_left(trans, root, left, mid, 1);
1100                 if (wret < 0)
1101                         ret = wret;
1102                 btrfs_header_nritems(mid);
1103         }
1104
1105         /*
1106          * then try to empty the right most buffer into the middle
1107          */
1108         if (right) {
1109                 wret = push_node_left(trans, root, mid, right, 1);
1110                 if (wret < 0 && wret != -ENOSPC)
1111                         ret = wret;
1112                 if (btrfs_header_nritems(right) == 0) {
1113                         clean_tree_block(trans, root, right);
1114                         btrfs_tree_unlock(right);
1115                         wret = del_ptr(trans, root, path, level + 1, pslot +
1116                                        1);
1117                         if (wret)
1118                                 ret = wret;
1119                         root_sub_used(root, right->len);
1120                         btrfs_free_tree_block(trans, root, right, 0, 1);
1121                         free_extent_buffer(right);
1122                         right = NULL;
1123                 } else {
1124                         struct btrfs_disk_key right_key;
1125                         btrfs_node_key(right, &right_key, 0);
1126                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1127                         btrfs_mark_buffer_dirty(parent);
1128                 }
1129         }
1130         if (btrfs_header_nritems(mid) == 1) {
1131                 /*
1132                  * we're not allowed to leave a node with one item in the
1133                  * tree during a delete.  A deletion from lower in the tree
1134                  * could try to delete the only pointer in this node.
1135                  * So, pull some keys from the left.
1136                  * There has to be a left pointer at this point because
1137                  * otherwise we would have pulled some pointers from the
1138                  * right
1139                  */
1140                 BUG_ON(!left);
1141                 wret = balance_node_right(trans, root, mid, left);
1142                 if (wret < 0) {
1143                         ret = wret;
1144                         goto enospc;
1145                 }
1146                 if (wret == 1) {
1147                         wret = push_node_left(trans, root, left, mid, 1);
1148                         if (wret < 0)
1149                                 ret = wret;
1150                 }
1151                 BUG_ON(wret == 1);
1152         }
1153         if (btrfs_header_nritems(mid) == 0) {
1154                 clean_tree_block(trans, root, mid);
1155                 btrfs_tree_unlock(mid);
1156                 wret = del_ptr(trans, root, path, level + 1, pslot);
1157                 if (wret)
1158                         ret = wret;
1159                 root_sub_used(root, mid->len);
1160                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1161                 free_extent_buffer(mid);
1162                 mid = NULL;
1163         } else {
1164                 /* update the parent key to reflect our changes */
1165                 struct btrfs_disk_key mid_key;
1166                 btrfs_node_key(mid, &mid_key, 0);
1167                 btrfs_set_node_key(parent, &mid_key, pslot);
1168                 btrfs_mark_buffer_dirty(parent);
1169         }
1170
1171         /* update the path */
1172         if (left) {
1173                 if (btrfs_header_nritems(left) > orig_slot) {
1174                         extent_buffer_get(left);
1175                         /* left was locked after cow */
1176                         path->nodes[level] = left;
1177                         path->slots[level + 1] -= 1;
1178                         path->slots[level] = orig_slot;
1179                         if (mid) {
1180                                 btrfs_tree_unlock(mid);
1181                                 free_extent_buffer(mid);
1182                         }
1183                 } else {
1184                         orig_slot -= btrfs_header_nritems(left);
1185                         path->slots[level] = orig_slot;
1186                 }
1187         }
1188         /* double check we haven't messed things up */
1189         check_block(root, path, level);
1190         if (orig_ptr !=
1191             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1192                 BUG();
1193 enospc:
1194         if (right) {
1195                 btrfs_tree_unlock(right);
1196                 free_extent_buffer(right);
1197         }
1198         if (left) {
1199                 if (path->nodes[level] != left)
1200                         btrfs_tree_unlock(left);
1201                 free_extent_buffer(left);
1202         }
1203         return ret;
1204 }
1205
1206 /* Node balancing for insertion.  Here we only split or push nodes around
1207  * when they are completely full.  This is also done top down, so we
1208  * have to be pessimistic.
1209  */
1210 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1211                                           struct btrfs_root *root,
1212                                           struct btrfs_path *path, int level)
1213 {
1214         struct extent_buffer *right = NULL;
1215         struct extent_buffer *mid;
1216         struct extent_buffer *left = NULL;
1217         struct extent_buffer *parent = NULL;
1218         int ret = 0;
1219         int wret;
1220         int pslot;
1221         int orig_slot = path->slots[level];
1222
1223         if (level == 0)
1224                 return 1;
1225
1226         mid = path->nodes[level];
1227         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1228
1229         if (level < BTRFS_MAX_LEVEL - 1)
1230                 parent = path->nodes[level + 1];
1231         pslot = path->slots[level + 1];
1232
1233         if (!parent)
1234                 return 1;
1235
1236         left = read_node_slot(root, parent, pslot - 1);
1237
1238         /* first, try to make some room in the middle buffer */
1239         if (left) {
1240                 u32 left_nr;
1241
1242                 btrfs_tree_lock(left);
1243                 btrfs_set_lock_blocking(left);
1244
1245                 left_nr = btrfs_header_nritems(left);
1246                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1247                         wret = 1;
1248                 } else {
1249                         ret = btrfs_cow_block(trans, root, left, parent,
1250                                               pslot - 1, &left);
1251                         if (ret)
1252                                 wret = 1;
1253                         else {
1254                                 wret = push_node_left(trans, root,
1255                                                       left, mid, 0);
1256                         }
1257                 }
1258                 if (wret < 0)
1259                         ret = wret;
1260                 if (wret == 0) {
1261                         struct btrfs_disk_key disk_key;
1262                         orig_slot += left_nr;
1263                         btrfs_node_key(mid, &disk_key, 0);
1264                         btrfs_set_node_key(parent, &disk_key, pslot);
1265                         btrfs_mark_buffer_dirty(parent);
1266                         if (btrfs_header_nritems(left) > orig_slot) {
1267                                 path->nodes[level] = left;
1268                                 path->slots[level + 1] -= 1;
1269                                 path->slots[level] = orig_slot;
1270                                 btrfs_tree_unlock(mid);
1271                                 free_extent_buffer(mid);
1272                         } else {
1273                                 orig_slot -=
1274                                         btrfs_header_nritems(left);
1275                                 path->slots[level] = orig_slot;
1276                                 btrfs_tree_unlock(left);
1277                                 free_extent_buffer(left);
1278                         }
1279                         return 0;
1280                 }
1281                 btrfs_tree_unlock(left);
1282                 free_extent_buffer(left);
1283         }
1284         right = read_node_slot(root, parent, pslot + 1);
1285
1286         /*
1287          * then try to empty the right most buffer into the middle
1288          */
1289         if (right) {
1290                 u32 right_nr;
1291
1292                 btrfs_tree_lock(right);
1293                 btrfs_set_lock_blocking(right);
1294
1295                 right_nr = btrfs_header_nritems(right);
1296                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1297                         wret = 1;
1298                 } else {
1299                         ret = btrfs_cow_block(trans, root, right,
1300                                               parent, pslot + 1,
1301                                               &right);
1302                         if (ret)
1303                                 wret = 1;
1304                         else {
1305                                 wret = balance_node_right(trans, root,
1306                                                           right, mid);
1307                         }
1308                 }
1309                 if (wret < 0)
1310                         ret = wret;
1311                 if (wret == 0) {
1312                         struct btrfs_disk_key disk_key;
1313
1314                         btrfs_node_key(right, &disk_key, 0);
1315                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1316                         btrfs_mark_buffer_dirty(parent);
1317
1318                         if (btrfs_header_nritems(mid) <= orig_slot) {
1319                                 path->nodes[level] = right;
1320                                 path->slots[level + 1] += 1;
1321                                 path->slots[level] = orig_slot -
1322                                         btrfs_header_nritems(mid);
1323                                 btrfs_tree_unlock(mid);
1324                                 free_extent_buffer(mid);
1325                         } else {
1326                                 btrfs_tree_unlock(right);
1327                                 free_extent_buffer(right);
1328                         }
1329                         return 0;
1330                 }
1331                 btrfs_tree_unlock(right);
1332                 free_extent_buffer(right);
1333         }
1334         return 1;
1335 }
1336
1337 /*
1338  * readahead one full node of leaves, finding things that are close
1339  * to the block in 'slot', and triggering ra on them.
1340  */
1341 static void reada_for_search(struct btrfs_root *root,
1342                              struct btrfs_path *path,
1343                              int level, int slot, u64 objectid)
1344 {
1345         struct extent_buffer *node;
1346         struct btrfs_disk_key disk_key;
1347         u32 nritems;
1348         u64 search;
1349         u64 target;
1350         u64 nread = 0;
1351         int direction = path->reada;
1352         struct extent_buffer *eb;
1353         u32 nr;
1354         u32 blocksize;
1355         u32 nscan = 0;
1356
1357         if (level != 1)
1358                 return;
1359
1360         if (!path->nodes[level])
1361                 return;
1362
1363         node = path->nodes[level];
1364
1365         search = btrfs_node_blockptr(node, slot);
1366         blocksize = btrfs_level_size(root, level - 1);
1367         eb = btrfs_find_tree_block(root, search, blocksize);
1368         if (eb) {
1369                 free_extent_buffer(eb);
1370                 return;
1371         }
1372
1373         target = search;
1374
1375         nritems = btrfs_header_nritems(node);
1376         nr = slot;
1377         while (1) {
1378                 if (direction < 0) {
1379                         if (nr == 0)
1380                                 break;
1381                         nr--;
1382                 } else if (direction > 0) {
1383                         nr++;
1384                         if (nr >= nritems)
1385                                 break;
1386                 }
1387                 if (path->reada < 0 && objectid) {
1388                         btrfs_node_key(node, &disk_key, nr);
1389                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1390                                 break;
1391                 }
1392                 search = btrfs_node_blockptr(node, nr);
1393                 if ((search <= target && target - search <= 65536) ||
1394                     (search > target && search - target <= 65536)) {
1395                         readahead_tree_block(root, search, blocksize,
1396                                      btrfs_node_ptr_generation(node, nr));
1397                         nread += blocksize;
1398                 }
1399                 nscan++;
1400                 if ((nread > 65536 || nscan > 32))
1401                         break;
1402         }
1403 }
1404
1405 /*
1406  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1407  * cache
1408  */
1409 static noinline int reada_for_balance(struct btrfs_root *root,
1410                                       struct btrfs_path *path, int level)
1411 {
1412         int slot;
1413         int nritems;
1414         struct extent_buffer *parent;
1415         struct extent_buffer *eb;
1416         u64 gen;
1417         u64 block1 = 0;
1418         u64 block2 = 0;
1419         int ret = 0;
1420         int blocksize;
1421
1422         parent = path->nodes[level + 1];
1423         if (!parent)
1424                 return 0;
1425
1426         nritems = btrfs_header_nritems(parent);
1427         slot = path->slots[level + 1];
1428         blocksize = btrfs_level_size(root, level);
1429
1430         if (slot > 0) {
1431                 block1 = btrfs_node_blockptr(parent, slot - 1);
1432                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1433                 eb = btrfs_find_tree_block(root, block1, blocksize);
1434                 if (eb && btrfs_buffer_uptodate(eb, gen))
1435                         block1 = 0;
1436                 free_extent_buffer(eb);
1437         }
1438         if (slot + 1 < nritems) {
1439                 block2 = btrfs_node_blockptr(parent, slot + 1);
1440                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1441                 eb = btrfs_find_tree_block(root, block2, blocksize);
1442                 if (eb && btrfs_buffer_uptodate(eb, gen))
1443                         block2 = 0;
1444                 free_extent_buffer(eb);
1445         }
1446         if (block1 || block2) {
1447                 ret = -EAGAIN;
1448
1449                 /* release the whole path */
1450                 btrfs_release_path(root, path);
1451
1452                 /* read the blocks */
1453                 if (block1)
1454                         readahead_tree_block(root, block1, blocksize, 0);
1455                 if (block2)
1456                         readahead_tree_block(root, block2, blocksize, 0);
1457
1458                 if (block1) {
1459                         eb = read_tree_block(root, block1, blocksize, 0);
1460                         free_extent_buffer(eb);
1461                 }
1462                 if (block2) {
1463                         eb = read_tree_block(root, block2, blocksize, 0);
1464                         free_extent_buffer(eb);
1465                 }
1466         }
1467         return ret;
1468 }
1469
1470
1471 /*
1472  * when we walk down the tree, it is usually safe to unlock the higher layers
1473  * in the tree.  The exceptions are when our path goes through slot 0, because
1474  * operations on the tree might require changing key pointers higher up in the
1475  * tree.
1476  *
1477  * callers might also have set path->keep_locks, which tells this code to keep
1478  * the lock if the path points to the last slot in the block.  This is part of
1479  * walking through the tree, and selecting the next slot in the higher block.
1480  *
1481  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1482  * if lowest_unlock is 1, level 0 won't be unlocked
1483  */
1484 static noinline void unlock_up(struct btrfs_path *path, int level,
1485                                int lowest_unlock)
1486 {
1487         int i;
1488         int skip_level = level;
1489         int no_skips = 0;
1490         struct extent_buffer *t;
1491
1492         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1493                 if (!path->nodes[i])
1494                         break;
1495                 if (!path->locks[i])
1496                         break;
1497                 if (!no_skips && path->slots[i] == 0) {
1498                         skip_level = i + 1;
1499                         continue;
1500                 }
1501                 if (!no_skips && path->keep_locks) {
1502                         u32 nritems;
1503                         t = path->nodes[i];
1504                         nritems = btrfs_header_nritems(t);
1505                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1506                                 skip_level = i + 1;
1507                                 continue;
1508                         }
1509                 }
1510                 if (skip_level < i && i >= lowest_unlock)
1511                         no_skips = 1;
1512
1513                 t = path->nodes[i];
1514                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1515                         btrfs_tree_unlock(t);
1516                         path->locks[i] = 0;
1517                 }
1518         }
1519 }
1520
1521 /*
1522  * This releases any locks held in the path starting at level and
1523  * going all the way up to the root.
1524  *
1525  * btrfs_search_slot will keep the lock held on higher nodes in a few
1526  * corner cases, such as COW of the block at slot zero in the node.  This
1527  * ignores those rules, and it should only be called when there are no
1528  * more updates to be done higher up in the tree.
1529  */
1530 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1531 {
1532         int i;
1533
1534         if (path->keep_locks)
1535                 return;
1536
1537         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1538                 if (!path->nodes[i])
1539                         continue;
1540                 if (!path->locks[i])
1541                         continue;
1542                 btrfs_tree_unlock(path->nodes[i]);
1543                 path->locks[i] = 0;
1544         }
1545 }
1546
1547 /*
1548  * helper function for btrfs_search_slot.  The goal is to find a block
1549  * in cache without setting the path to blocking.  If we find the block
1550  * we return zero and the path is unchanged.
1551  *
1552  * If we can't find the block, we set the path blocking and do some
1553  * reada.  -EAGAIN is returned and the search must be repeated.
1554  */
1555 static int
1556 read_block_for_search(struct btrfs_trans_handle *trans,
1557                        struct btrfs_root *root, struct btrfs_path *p,
1558                        struct extent_buffer **eb_ret, int level, int slot,
1559                        struct btrfs_key *key)
1560 {
1561         u64 blocknr;
1562         u64 gen;
1563         u32 blocksize;
1564         struct extent_buffer *b = *eb_ret;
1565         struct extent_buffer *tmp;
1566         int ret;
1567
1568         blocknr = btrfs_node_blockptr(b, slot);
1569         gen = btrfs_node_ptr_generation(b, slot);
1570         blocksize = btrfs_level_size(root, level - 1);
1571
1572         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1573         if (tmp) {
1574                 if (btrfs_buffer_uptodate(tmp, 0)) {
1575                         if (btrfs_buffer_uptodate(tmp, gen)) {
1576                                 /*
1577                                  * we found an up to date block without
1578                                  * sleeping, return
1579                                  * right away
1580                                  */
1581                                 *eb_ret = tmp;
1582                                 return 0;
1583                         }
1584                         /* the pages were up to date, but we failed
1585                          * the generation number check.  Do a full
1586                          * read for the generation number that is correct.
1587                          * We must do this without dropping locks so
1588                          * we can trust our generation number
1589                          */
1590                         free_extent_buffer(tmp);
1591                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1592                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1593                                 *eb_ret = tmp;
1594                                 return 0;
1595                         }
1596                         free_extent_buffer(tmp);
1597                         btrfs_release_path(NULL, p);
1598                         return -EIO;
1599                 }
1600         }
1601
1602         /*
1603          * reduce lock contention at high levels
1604          * of the btree by dropping locks before
1605          * we read.  Don't release the lock on the current
1606          * level because we need to walk this node to figure
1607          * out which blocks to read.
1608          */
1609         btrfs_unlock_up_safe(p, level + 1);
1610         btrfs_set_path_blocking(p);
1611
1612         free_extent_buffer(tmp);
1613         if (p->reada)
1614                 reada_for_search(root, p, level, slot, key->objectid);
1615
1616         btrfs_release_path(NULL, p);
1617
1618         ret = -EAGAIN;
1619         tmp = read_tree_block(root, blocknr, blocksize, 0);
1620         if (tmp) {
1621                 /*
1622                  * If the read above didn't mark this buffer up to date,
1623                  * it will never end up being up to date.  Set ret to EIO now
1624                  * and give up so that our caller doesn't loop forever
1625                  * on our EAGAINs.
1626                  */
1627                 if (!btrfs_buffer_uptodate(tmp, 0))
1628                         ret = -EIO;
1629                 free_extent_buffer(tmp);
1630         }
1631         return ret;
1632 }
1633
1634 /*
1635  * helper function for btrfs_search_slot.  This does all of the checks
1636  * for node-level blocks and does any balancing required based on
1637  * the ins_len.
1638  *
1639  * If no extra work was required, zero is returned.  If we had to
1640  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1641  * start over
1642  */
1643 static int
1644 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1645                        struct btrfs_root *root, struct btrfs_path *p,
1646                        struct extent_buffer *b, int level, int ins_len)
1647 {
1648         int ret;
1649         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1650             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1651                 int sret;
1652
1653                 sret = reada_for_balance(root, p, level);
1654                 if (sret)
1655                         goto again;
1656
1657                 btrfs_set_path_blocking(p);
1658                 sret = split_node(trans, root, p, level);
1659                 btrfs_clear_path_blocking(p, NULL);
1660
1661                 BUG_ON(sret > 0);
1662                 if (sret) {
1663                         ret = sret;
1664                         goto done;
1665                 }
1666                 b = p->nodes[level];
1667         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1668                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1669                 int sret;
1670
1671                 sret = reada_for_balance(root, p, level);
1672                 if (sret)
1673                         goto again;
1674
1675                 btrfs_set_path_blocking(p);
1676                 sret = balance_level(trans, root, p, level);
1677                 btrfs_clear_path_blocking(p, NULL);
1678
1679                 if (sret) {
1680                         ret = sret;
1681                         goto done;
1682                 }
1683                 b = p->nodes[level];
1684                 if (!b) {
1685                         btrfs_release_path(NULL, p);
1686                         goto again;
1687                 }
1688                 BUG_ON(btrfs_header_nritems(b) == 1);
1689         }
1690         return 0;
1691
1692 again:
1693         ret = -EAGAIN;
1694 done:
1695         return ret;
1696 }
1697
1698 /*
1699  * look for key in the tree.  path is filled in with nodes along the way
1700  * if key is found, we return zero and you can find the item in the leaf
1701  * level of the path (level 0)
1702  *
1703  * If the key isn't found, the path points to the slot where it should
1704  * be inserted, and 1 is returned.  If there are other errors during the
1705  * search a negative error number is returned.
1706  *
1707  * if ins_len > 0, nodes and leaves will be split as we walk down the
1708  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1709  * possible)
1710  */
1711 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1712                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1713                       ins_len, int cow)
1714 {
1715         struct extent_buffer *b;
1716         int slot;
1717         int ret;
1718         int err;
1719         int level;
1720         int lowest_unlock = 1;
1721         u8 lowest_level = 0;
1722
1723         lowest_level = p->lowest_level;
1724         WARN_ON(lowest_level && ins_len > 0);
1725         WARN_ON(p->nodes[0] != NULL);
1726
1727         if (ins_len < 0)
1728                 lowest_unlock = 2;
1729
1730 again:
1731         if (p->search_commit_root) {
1732                 b = root->commit_root;
1733                 extent_buffer_get(b);
1734                 if (!p->skip_locking)
1735                         btrfs_tree_lock(b);
1736         } else {
1737                 if (p->skip_locking)
1738                         b = btrfs_root_node(root);
1739                 else
1740                         b = btrfs_lock_root_node(root);
1741         }
1742
1743         while (b) {
1744                 level = btrfs_header_level(b);
1745
1746                 /*
1747                  * setup the path here so we can release it under lock
1748                  * contention with the cow code
1749                  */
1750                 p->nodes[level] = b;
1751                 if (!p->skip_locking)
1752                         p->locks[level] = 1;
1753
1754                 if (cow) {
1755                         /*
1756                          * if we don't really need to cow this block
1757                          * then we don't want to set the path blocking,
1758                          * so we test it here
1759                          */
1760                         if (!should_cow_block(trans, root, b))
1761                                 goto cow_done;
1762
1763                         btrfs_set_path_blocking(p);
1764
1765                         err = btrfs_cow_block(trans, root, b,
1766                                               p->nodes[level + 1],
1767                                               p->slots[level + 1], &b);
1768                         if (err) {
1769                                 ret = err;
1770                                 goto done;
1771                         }
1772                 }
1773 cow_done:
1774                 BUG_ON(!cow && ins_len);
1775                 if (level != btrfs_header_level(b))
1776                         WARN_ON(1);
1777                 level = btrfs_header_level(b);
1778
1779                 p->nodes[level] = b;
1780                 if (!p->skip_locking)
1781                         p->locks[level] = 1;
1782
1783                 btrfs_clear_path_blocking(p, NULL);
1784
1785                 /*
1786                  * we have a lock on b and as long as we aren't changing
1787                  * the tree, there is no way to for the items in b to change.
1788                  * It is safe to drop the lock on our parent before we
1789                  * go through the expensive btree search on b.
1790                  *
1791                  * If cow is true, then we might be changing slot zero,
1792                  * which may require changing the parent.  So, we can't
1793                  * drop the lock until after we know which slot we're
1794                  * operating on.
1795                  */
1796                 if (!cow)
1797                         btrfs_unlock_up_safe(p, level + 1);
1798
1799                 ret = check_block(root, p, level);
1800                 if (ret) {
1801                         ret = -1;
1802                         goto done;
1803                 }
1804
1805                 ret = bin_search(b, key, level, &slot);
1806
1807                 if (level != 0) {
1808                         int dec = 0;
1809                         if (ret && slot > 0) {
1810                                 dec = 1;
1811                                 slot -= 1;
1812                         }
1813                         p->slots[level] = slot;
1814                         err = setup_nodes_for_search(trans, root, p, b, level,
1815                                                      ins_len);
1816                         if (err == -EAGAIN)
1817                                 goto again;
1818                         if (err) {
1819                                 ret = err;
1820                                 goto done;
1821                         }
1822                         b = p->nodes[level];
1823                         slot = p->slots[level];
1824
1825                         unlock_up(p, level, lowest_unlock);
1826
1827                         if (level == lowest_level) {
1828                                 if (dec)
1829                                         p->slots[level]++;
1830                                 goto done;
1831                         }
1832
1833                         err = read_block_for_search(trans, root, p,
1834                                                     &b, level, slot, key);
1835                         if (err == -EAGAIN)
1836                                 goto again;
1837                         if (err) {
1838                                 ret = err;
1839                                 goto done;
1840                         }
1841
1842                         if (!p->skip_locking) {
1843                                 btrfs_clear_path_blocking(p, NULL);
1844                                 err = btrfs_try_spin_lock(b);
1845
1846                                 if (!err) {
1847                                         btrfs_set_path_blocking(p);
1848                                         btrfs_tree_lock(b);
1849                                         btrfs_clear_path_blocking(p, b);
1850                                 }
1851                         }
1852                 } else {
1853                         p->slots[level] = slot;
1854                         if (ins_len > 0 &&
1855                             btrfs_leaf_free_space(root, b) < ins_len) {
1856                                 btrfs_set_path_blocking(p);
1857                                 err = split_leaf(trans, root, key,
1858                                                  p, ins_len, ret == 0);
1859                                 btrfs_clear_path_blocking(p, NULL);
1860
1861                                 BUG_ON(err > 0);
1862                                 if (err) {
1863                                         ret = err;
1864                                         goto done;
1865                                 }
1866                         }
1867                         if (!p->search_for_split)
1868                                 unlock_up(p, level, lowest_unlock);
1869                         goto done;
1870                 }
1871         }
1872         ret = 1;
1873 done:
1874         /*
1875          * we don't really know what they plan on doing with the path
1876          * from here on, so for now just mark it as blocking
1877          */
1878         if (!p->leave_spinning)
1879                 btrfs_set_path_blocking(p);
1880         if (ret < 0)
1881                 btrfs_release_path(root, p);
1882         return ret;
1883 }
1884
1885 /*
1886  * adjust the pointers going up the tree, starting at level
1887  * making sure the right key of each node is points to 'key'.
1888  * This is used after shifting pointers to the left, so it stops
1889  * fixing up pointers when a given leaf/node is not in slot 0 of the
1890  * higher levels
1891  *
1892  * If this fails to write a tree block, it returns -1, but continues
1893  * fixing up the blocks in ram so the tree is consistent.
1894  */
1895 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1896                           struct btrfs_root *root, struct btrfs_path *path,
1897                           struct btrfs_disk_key *key, int level)
1898 {
1899         int i;
1900         int ret = 0;
1901         struct extent_buffer *t;
1902
1903         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1904                 int tslot = path->slots[i];
1905                 if (!path->nodes[i])
1906                         break;
1907                 t = path->nodes[i];
1908                 btrfs_set_node_key(t, key, tslot);
1909                 btrfs_mark_buffer_dirty(path->nodes[i]);
1910                 if (tslot != 0)
1911                         break;
1912         }
1913         return ret;
1914 }
1915
1916 /*
1917  * update item key.
1918  *
1919  * This function isn't completely safe. It's the caller's responsibility
1920  * that the new key won't break the order
1921  */
1922 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1923                             struct btrfs_root *root, struct btrfs_path *path,
1924                             struct btrfs_key *new_key)
1925 {
1926         struct btrfs_disk_key disk_key;
1927         struct extent_buffer *eb;
1928         int slot;
1929
1930         eb = path->nodes[0];
1931         slot = path->slots[0];
1932         if (slot > 0) {
1933                 btrfs_item_key(eb, &disk_key, slot - 1);
1934                 if (comp_keys(&disk_key, new_key) >= 0)
1935                         return -1;
1936         }
1937         if (slot < btrfs_header_nritems(eb) - 1) {
1938                 btrfs_item_key(eb, &disk_key, slot + 1);
1939                 if (comp_keys(&disk_key, new_key) <= 0)
1940                         return -1;
1941         }
1942
1943         btrfs_cpu_key_to_disk(&disk_key, new_key);
1944         btrfs_set_item_key(eb, &disk_key, slot);
1945         btrfs_mark_buffer_dirty(eb);
1946         if (slot == 0)
1947                 fixup_low_keys(trans, root, path, &disk_key, 1);
1948         return 0;
1949 }
1950
1951 /*
1952  * try to push data from one node into the next node left in the
1953  * tree.
1954  *
1955  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1956  * error, and > 0 if there was no room in the left hand block.
1957  */
1958 static int push_node_left(struct btrfs_trans_handle *trans,
1959                           struct btrfs_root *root, struct extent_buffer *dst,
1960                           struct extent_buffer *src, int empty)
1961 {
1962         int push_items = 0;
1963         int src_nritems;
1964         int dst_nritems;
1965         int ret = 0;
1966
1967         src_nritems = btrfs_header_nritems(src);
1968         dst_nritems = btrfs_header_nritems(dst);
1969         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1970         WARN_ON(btrfs_header_generation(src) != trans->transid);
1971         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1972
1973         if (!empty && src_nritems <= 8)
1974                 return 1;
1975
1976         if (push_items <= 0)
1977                 return 1;
1978
1979         if (empty) {
1980                 push_items = min(src_nritems, push_items);
1981                 if (push_items < src_nritems) {
1982                         /* leave at least 8 pointers in the node if
1983                          * we aren't going to empty it
1984                          */
1985                         if (src_nritems - push_items < 8) {
1986                                 if (push_items <= 8)
1987                                         return 1;
1988                                 push_items -= 8;
1989                         }
1990                 }
1991         } else
1992                 push_items = min(src_nritems - 8, push_items);
1993
1994         copy_extent_buffer(dst, src,
1995                            btrfs_node_key_ptr_offset(dst_nritems),
1996                            btrfs_node_key_ptr_offset(0),
1997                            push_items * sizeof(struct btrfs_key_ptr));
1998
1999         if (push_items < src_nritems) {
2000                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2001                                       btrfs_node_key_ptr_offset(push_items),
2002                                       (src_nritems - push_items) *
2003                                       sizeof(struct btrfs_key_ptr));
2004         }
2005         btrfs_set_header_nritems(src, src_nritems - push_items);
2006         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2007         btrfs_mark_buffer_dirty(src);
2008         btrfs_mark_buffer_dirty(dst);
2009
2010         return ret;
2011 }
2012
2013 /*
2014  * try to push data from one node into the next node right in the
2015  * tree.
2016  *
2017  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2018  * error, and > 0 if there was no room in the right hand block.
2019  *
2020  * this will  only push up to 1/2 the contents of the left node over
2021  */
2022 static int balance_node_right(struct btrfs_trans_handle *trans,
2023                               struct btrfs_root *root,
2024                               struct extent_buffer *dst,
2025                               struct extent_buffer *src)
2026 {
2027         int push_items = 0;
2028         int max_push;
2029         int src_nritems;
2030         int dst_nritems;
2031         int ret = 0;
2032
2033         WARN_ON(btrfs_header_generation(src) != trans->transid);
2034         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2035
2036         src_nritems = btrfs_header_nritems(src);
2037         dst_nritems = btrfs_header_nritems(dst);
2038         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2039         if (push_items <= 0)
2040                 return 1;
2041
2042         if (src_nritems < 4)
2043                 return 1;
2044
2045         max_push = src_nritems / 2 + 1;
2046         /* don't try to empty the node */
2047         if (max_push >= src_nritems)
2048                 return 1;
2049
2050         if (max_push < push_items)
2051                 push_items = max_push;
2052
2053         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2054                                       btrfs_node_key_ptr_offset(0),
2055                                       (dst_nritems) *
2056                                       sizeof(struct btrfs_key_ptr));
2057
2058         copy_extent_buffer(dst, src,
2059                            btrfs_node_key_ptr_offset(0),
2060                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2061                            push_items * sizeof(struct btrfs_key_ptr));
2062
2063         btrfs_set_header_nritems(src, src_nritems - push_items);
2064         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2065
2066         btrfs_mark_buffer_dirty(src);
2067         btrfs_mark_buffer_dirty(dst);
2068
2069         return ret;
2070 }
2071
2072 /*
2073  * helper function to insert a new root level in the tree.
2074  * A new node is allocated, and a single item is inserted to
2075  * point to the existing root
2076  *
2077  * returns zero on success or < 0 on failure.
2078  */
2079 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2080                            struct btrfs_root *root,
2081                            struct btrfs_path *path, int level)
2082 {
2083         u64 lower_gen;
2084         struct extent_buffer *lower;
2085         struct extent_buffer *c;
2086         struct extent_buffer *old;
2087         struct btrfs_disk_key lower_key;
2088
2089         BUG_ON(path->nodes[level]);
2090         BUG_ON(path->nodes[level-1] != root->node);
2091
2092         lower = path->nodes[level-1];
2093         if (level == 1)
2094                 btrfs_item_key(lower, &lower_key, 0);
2095         else
2096                 btrfs_node_key(lower, &lower_key, 0);
2097
2098         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2099                                    root->root_key.objectid, &lower_key,
2100                                    level, root->node->start, 0);
2101         if (IS_ERR(c))
2102                 return PTR_ERR(c);
2103
2104         root_add_used(root, root->nodesize);
2105
2106         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2107         btrfs_set_header_nritems(c, 1);
2108         btrfs_set_header_level(c, level);
2109         btrfs_set_header_bytenr(c, c->start);
2110         btrfs_set_header_generation(c, trans->transid);
2111         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2112         btrfs_set_header_owner(c, root->root_key.objectid);
2113
2114         write_extent_buffer(c, root->fs_info->fsid,
2115                             (unsigned long)btrfs_header_fsid(c),
2116                             BTRFS_FSID_SIZE);
2117
2118         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2119                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2120                             BTRFS_UUID_SIZE);
2121
2122         btrfs_set_node_key(c, &lower_key, 0);
2123         btrfs_set_node_blockptr(c, 0, lower->start);
2124         lower_gen = btrfs_header_generation(lower);
2125         WARN_ON(lower_gen != trans->transid);
2126
2127         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2128
2129         btrfs_mark_buffer_dirty(c);
2130
2131         spin_lock(&root->node_lock);
2132         old = root->node;
2133         root->node = c;
2134         spin_unlock(&root->node_lock);
2135
2136         /* the super has an extra ref to root->node */
2137         free_extent_buffer(old);
2138
2139         add_root_to_dirty_list(root);
2140         extent_buffer_get(c);
2141         path->nodes[level] = c;
2142         path->locks[level] = 1;
2143         path->slots[level] = 0;
2144         return 0;
2145 }
2146
2147 /*
2148  * worker function to insert a single pointer in a node.
2149  * the node should have enough room for the pointer already
2150  *
2151  * slot and level indicate where you want the key to go, and
2152  * blocknr is the block the key points to.
2153  *
2154  * returns zero on success and < 0 on any error
2155  */
2156 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2157                       *root, struct btrfs_path *path, struct btrfs_disk_key
2158                       *key, u64 bytenr, int slot, int level)
2159 {
2160         struct extent_buffer *lower;
2161         int nritems;
2162
2163         BUG_ON(!path->nodes[level]);
2164         btrfs_assert_tree_locked(path->nodes[level]);
2165         lower = path->nodes[level];
2166         nritems = btrfs_header_nritems(lower);
2167         BUG_ON(slot > nritems);
2168         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2169                 BUG();
2170         if (slot != nritems) {
2171                 memmove_extent_buffer(lower,
2172                               btrfs_node_key_ptr_offset(slot + 1),
2173                               btrfs_node_key_ptr_offset(slot),
2174                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2175         }
2176         btrfs_set_node_key(lower, key, slot);
2177         btrfs_set_node_blockptr(lower, slot, bytenr);
2178         WARN_ON(trans->transid == 0);
2179         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2180         btrfs_set_header_nritems(lower, nritems + 1);
2181         btrfs_mark_buffer_dirty(lower);
2182         return 0;
2183 }
2184
2185 /*
2186  * split the node at the specified level in path in two.
2187  * The path is corrected to point to the appropriate node after the split
2188  *
2189  * Before splitting this tries to make some room in the node by pushing
2190  * left and right, if either one works, it returns right away.
2191  *
2192  * returns 0 on success and < 0 on failure
2193  */
2194 static noinline int split_node(struct btrfs_trans_handle *trans,
2195                                struct btrfs_root *root,
2196                                struct btrfs_path *path, int level)
2197 {
2198         struct extent_buffer *c;
2199         struct extent_buffer *split;
2200         struct btrfs_disk_key disk_key;
2201         int mid;
2202         int ret;
2203         int wret;
2204         u32 c_nritems;
2205
2206         c = path->nodes[level];
2207         WARN_ON(btrfs_header_generation(c) != trans->transid);
2208         if (c == root->node) {
2209                 /* trying to split the root, lets make a new one */
2210                 ret = insert_new_root(trans, root, path, level + 1);
2211                 if (ret)
2212                         return ret;
2213         } else {
2214                 ret = push_nodes_for_insert(trans, root, path, level);
2215                 c = path->nodes[level];
2216                 if (!ret && btrfs_header_nritems(c) <
2217                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2218                         return 0;
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222
2223         c_nritems = btrfs_header_nritems(c);
2224         mid = (c_nritems + 1) / 2;
2225         btrfs_node_key(c, &disk_key, mid);
2226
2227         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2228                                         root->root_key.objectid,
2229                                         &disk_key, level, c->start, 0);
2230         if (IS_ERR(split))
2231                 return PTR_ERR(split);
2232
2233         root_add_used(root, root->nodesize);
2234
2235         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2236         btrfs_set_header_level(split, btrfs_header_level(c));
2237         btrfs_set_header_bytenr(split, split->start);
2238         btrfs_set_header_generation(split, trans->transid);
2239         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2240         btrfs_set_header_owner(split, root->root_key.objectid);
2241         write_extent_buffer(split, root->fs_info->fsid,
2242                             (unsigned long)btrfs_header_fsid(split),
2243                             BTRFS_FSID_SIZE);
2244         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2245                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2246                             BTRFS_UUID_SIZE);
2247
2248
2249         copy_extent_buffer(split, c,
2250                            btrfs_node_key_ptr_offset(0),
2251                            btrfs_node_key_ptr_offset(mid),
2252                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2253         btrfs_set_header_nritems(split, c_nritems - mid);
2254         btrfs_set_header_nritems(c, mid);
2255         ret = 0;
2256
2257         btrfs_mark_buffer_dirty(c);
2258         btrfs_mark_buffer_dirty(split);
2259
2260         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2261                           path->slots[level + 1] + 1,
2262                           level + 1);
2263         if (wret)
2264                 ret = wret;
2265
2266         if (path->slots[level] >= mid) {
2267                 path->slots[level] -= mid;
2268                 btrfs_tree_unlock(c);
2269                 free_extent_buffer(c);
2270                 path->nodes[level] = split;
2271                 path->slots[level + 1] += 1;
2272         } else {
2273                 btrfs_tree_unlock(split);
2274                 free_extent_buffer(split);
2275         }
2276         return ret;
2277 }
2278
2279 /*
2280  * how many bytes are required to store the items in a leaf.  start
2281  * and nr indicate which items in the leaf to check.  This totals up the
2282  * space used both by the item structs and the item data
2283  */
2284 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2285 {
2286         int data_len;
2287         int nritems = btrfs_header_nritems(l);
2288         int end = min(nritems, start + nr) - 1;
2289
2290         if (!nr)
2291                 return 0;
2292         data_len = btrfs_item_end_nr(l, start);
2293         data_len = data_len - btrfs_item_offset_nr(l, end);
2294         data_len += sizeof(struct btrfs_item) * nr;
2295         WARN_ON(data_len < 0);
2296         return data_len;
2297 }
2298
2299 /*
2300  * The space between the end of the leaf items and
2301  * the start of the leaf data.  IOW, how much room
2302  * the leaf has left for both items and data
2303  */
2304 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2305                                    struct extent_buffer *leaf)
2306 {
2307         int nritems = btrfs_header_nritems(leaf);
2308         int ret;
2309         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2310         if (ret < 0) {
2311                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2312                        "used %d nritems %d\n",
2313                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2314                        leaf_space_used(leaf, 0, nritems), nritems);
2315         }
2316         return ret;
2317 }
2318
2319 /*
2320  * min slot controls the lowest index we're willing to push to the
2321  * right.  We'll push up to and including min_slot, but no lower
2322  */
2323 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2324                                       struct btrfs_root *root,
2325                                       struct btrfs_path *path,
2326                                       int data_size, int empty,
2327                                       struct extent_buffer *right,
2328                                       int free_space, u32 left_nritems,
2329                                       u32 min_slot)
2330 {
2331         struct extent_buffer *left = path->nodes[0];
2332         struct extent_buffer *upper = path->nodes[1];
2333         struct btrfs_disk_key disk_key;
2334         int slot;
2335         u32 i;
2336         int push_space = 0;
2337         int push_items = 0;
2338         struct btrfs_item *item;
2339         u32 nr;
2340         u32 right_nritems;
2341         u32 data_end;
2342         u32 this_item_size;
2343
2344         if (empty)
2345                 nr = 0;
2346         else
2347                 nr = max_t(u32, 1, min_slot);
2348
2349         if (path->slots[0] >= left_nritems)
2350                 push_space += data_size;
2351
2352         slot = path->slots[1];
2353         i = left_nritems - 1;
2354         while (i >= nr) {
2355                 item = btrfs_item_nr(left, i);
2356
2357                 if (!empty && push_items > 0) {
2358                         if (path->slots[0] > i)
2359                                 break;
2360                         if (path->slots[0] == i) {
2361                                 int space = btrfs_leaf_free_space(root, left);
2362                                 if (space + push_space * 2 > free_space)
2363                                         break;
2364                         }
2365                 }
2366
2367                 if (path->slots[0] == i)
2368                         push_space += data_size;
2369
2370                 if (!left->map_token) {
2371                         map_extent_buffer(left, (unsigned long)item,
2372                                         sizeof(struct btrfs_item),
2373                                         &left->map_token, &left->kaddr,
2374                                         &left->map_start, &left->map_len,
2375                                         KM_USER1);
2376                 }
2377
2378                 this_item_size = btrfs_item_size(left, item);
2379                 if (this_item_size + sizeof(*item) + push_space > free_space)
2380                         break;
2381
2382                 push_items++;
2383                 push_space += this_item_size + sizeof(*item);
2384                 if (i == 0)
2385                         break;
2386                 i--;
2387         }
2388         if (left->map_token) {
2389                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2390                 left->map_token = NULL;
2391         }
2392
2393         if (push_items == 0)
2394                 goto out_unlock;
2395
2396         if (!empty && push_items == left_nritems)
2397                 WARN_ON(1);
2398
2399         /* push left to right */
2400         right_nritems = btrfs_header_nritems(right);
2401
2402         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2403         push_space -= leaf_data_end(root, left);
2404
2405         /* make room in the right data area */
2406         data_end = leaf_data_end(root, right);
2407         memmove_extent_buffer(right,
2408                               btrfs_leaf_data(right) + data_end - push_space,
2409                               btrfs_leaf_data(right) + data_end,
2410                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2411
2412         /* copy from the left data area */
2413         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2414                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2415                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2416                      push_space);
2417
2418         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2419                               btrfs_item_nr_offset(0),
2420                               right_nritems * sizeof(struct btrfs_item));
2421
2422         /* copy the items from left to right */
2423         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2424                    btrfs_item_nr_offset(left_nritems - push_items),
2425                    push_items * sizeof(struct btrfs_item));
2426
2427         /* update the item pointers */
2428         right_nritems += push_items;
2429         btrfs_set_header_nritems(right, right_nritems);
2430         push_space = BTRFS_LEAF_DATA_SIZE(root);
2431         for (i = 0; i < right_nritems; i++) {
2432                 item = btrfs_item_nr(right, i);
2433                 if (!right->map_token) {
2434                         map_extent_buffer(right, (unsigned long)item,
2435                                         sizeof(struct btrfs_item),
2436                                         &right->map_token, &right->kaddr,
2437                                         &right->map_start, &right->map_len,
2438                                         KM_USER1);
2439                 }
2440                 push_space -= btrfs_item_size(right, item);
2441                 btrfs_set_item_offset(right, item, push_space);
2442         }
2443
2444         if (right->map_token) {
2445                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2446                 right->map_token = NULL;
2447         }
2448         left_nritems -= push_items;
2449         btrfs_set_header_nritems(left, left_nritems);
2450
2451         if (left_nritems)
2452                 btrfs_mark_buffer_dirty(left);
2453         else
2454                 clean_tree_block(trans, root, left);
2455
2456         btrfs_mark_buffer_dirty(right);
2457
2458         btrfs_item_key(right, &disk_key, 0);
2459         btrfs_set_node_key(upper, &disk_key, slot + 1);
2460         btrfs_mark_buffer_dirty(upper);
2461
2462         /* then fixup the leaf pointer in the path */
2463         if (path->slots[0] >= left_nritems) {
2464                 path->slots[0] -= left_nritems;
2465                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2466                         clean_tree_block(trans, root, path->nodes[0]);
2467                 btrfs_tree_unlock(path->nodes[0]);
2468                 free_extent_buffer(path->nodes[0]);
2469                 path->nodes[0] = right;
2470                 path->slots[1] += 1;
2471         } else {
2472                 btrfs_tree_unlock(right);
2473                 free_extent_buffer(right);
2474         }
2475         return 0;
2476
2477 out_unlock:
2478         btrfs_tree_unlock(right);
2479         free_extent_buffer(right);
2480         return 1;
2481 }
2482
2483 /*
2484  * push some data in the path leaf to the right, trying to free up at
2485  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2486  *
2487  * returns 1 if the push failed because the other node didn't have enough
2488  * room, 0 if everything worked out and < 0 if there were major errors.
2489  *
2490  * this will push starting from min_slot to the end of the leaf.  It won't
2491  * push any slot lower than min_slot
2492  */
2493 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2494                            *root, struct btrfs_path *path,
2495                            int min_data_size, int data_size,
2496                            int empty, u32 min_slot)
2497 {
2498         struct extent_buffer *left = path->nodes[0];
2499         struct extent_buffer *right;
2500         struct extent_buffer *upper;
2501         int slot;
2502         int free_space;
2503         u32 left_nritems;
2504         int ret;
2505
2506         if (!path->nodes[1])
2507                 return 1;
2508
2509         slot = path->slots[1];
2510         upper = path->nodes[1];
2511         if (slot >= btrfs_header_nritems(upper) - 1)
2512                 return 1;
2513
2514         btrfs_assert_tree_locked(path->nodes[1]);
2515
2516         right = read_node_slot(root, upper, slot + 1);
2517         btrfs_tree_lock(right);
2518         btrfs_set_lock_blocking(right);
2519
2520         free_space = btrfs_leaf_free_space(root, right);
2521         if (free_space < data_size)
2522                 goto out_unlock;
2523
2524         /* cow and double check */
2525         ret = btrfs_cow_block(trans, root, right, upper,
2526                               slot + 1, &right);
2527         if (ret)
2528                 goto out_unlock;
2529
2530         free_space = btrfs_leaf_free_space(root, right);
2531         if (free_space < data_size)
2532                 goto out_unlock;
2533
2534         left_nritems = btrfs_header_nritems(left);
2535         if (left_nritems == 0)
2536                 goto out_unlock;
2537
2538         return __push_leaf_right(trans, root, path, min_data_size, empty,
2539                                 right, free_space, left_nritems, min_slot);
2540 out_unlock:
2541         btrfs_tree_unlock(right);
2542         free_extent_buffer(right);
2543         return 1;
2544 }
2545
2546 /*
2547  * push some data in the path leaf to the left, trying to free up at
2548  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2549  *
2550  * max_slot can put a limit on how far into the leaf we'll push items.  The
2551  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2552  * items
2553  */
2554 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2555                                      struct btrfs_root *root,
2556                                      struct btrfs_path *path, int data_size,
2557                                      int empty, struct extent_buffer *left,
2558                                      int free_space, u32 right_nritems,
2559                                      u32 max_slot)
2560 {
2561         struct btrfs_disk_key disk_key;
2562         struct extent_buffer *right = path->nodes[0];
2563         int i;
2564         int push_space = 0;
2565         int push_items = 0;
2566         struct btrfs_item *item;
2567         u32 old_left_nritems;
2568         u32 nr;
2569         int ret = 0;
2570         int wret;
2571         u32 this_item_size;
2572         u32 old_left_item_size;
2573
2574         if (empty)
2575                 nr = min(right_nritems, max_slot);
2576         else
2577                 nr = min(right_nritems - 1, max_slot);
2578
2579         for (i = 0; i < nr; i++) {
2580                 item = btrfs_item_nr(right, i);
2581                 if (!right->map_token) {
2582                         map_extent_buffer(right, (unsigned long)item,
2583                                         sizeof(struct btrfs_item),
2584                                         &right->map_token, &right->kaddr,
2585                                         &right->map_start, &right->map_len,
2586                                         KM_USER1);
2587                 }
2588
2589                 if (!empty && push_items > 0) {
2590                         if (path->slots[0] < i)
2591                                 break;
2592                         if (path->slots[0] == i) {
2593                                 int space = btrfs_leaf_free_space(root, right);
2594                                 if (space + push_space * 2 > free_space)
2595                                         break;
2596                         }
2597                 }
2598
2599                 if (path->slots[0] == i)
2600                         push_space += data_size;
2601
2602                 this_item_size = btrfs_item_size(right, item);
2603                 if (this_item_size + sizeof(*item) + push_space > free_space)
2604                         break;
2605
2606                 push_items++;
2607                 push_space += this_item_size + sizeof(*item);
2608         }
2609
2610         if (right->map_token) {
2611                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2612                 right->map_token = NULL;
2613         }
2614
2615         if (push_items == 0) {
2616                 ret = 1;
2617                 goto out;
2618         }
2619         if (!empty && push_items == btrfs_header_nritems(right))
2620                 WARN_ON(1);
2621
2622         /* push data from right to left */
2623         copy_extent_buffer(left, right,
2624                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2625                            btrfs_item_nr_offset(0),
2626                            push_items * sizeof(struct btrfs_item));
2627
2628         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2629                      btrfs_item_offset_nr(right, push_items - 1);
2630
2631         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2632                      leaf_data_end(root, left) - push_space,
2633                      btrfs_leaf_data(right) +
2634                      btrfs_item_offset_nr(right, push_items - 1),
2635                      push_space);
2636         old_left_nritems = btrfs_header_nritems(left);
2637         BUG_ON(old_left_nritems <= 0);
2638
2639         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2640         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2641                 u32 ioff;
2642
2643                 item = btrfs_item_nr(left, i);
2644                 if (!left->map_token) {
2645                         map_extent_buffer(left, (unsigned long)item,
2646                                         sizeof(struct btrfs_item),
2647                                         &left->map_token, &left->kaddr,
2648                                         &left->map_start, &left->map_len,
2649                                         KM_USER1);
2650                 }
2651
2652                 ioff = btrfs_item_offset(left, item);
2653                 btrfs_set_item_offset(left, item,
2654                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2655         }
2656         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2657         if (left->map_token) {
2658                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2659                 left->map_token = NULL;
2660         }
2661
2662         /* fixup right node */
2663         if (push_items > right_nritems) {
2664                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2665                        right_nritems);
2666                 WARN_ON(1);
2667         }
2668
2669         if (push_items < right_nritems) {
2670                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2671                                                   leaf_data_end(root, right);
2672                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2673                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2674                                       btrfs_leaf_data(right) +
2675                                       leaf_data_end(root, right), push_space);
2676
2677                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2678                               btrfs_item_nr_offset(push_items),
2679                              (btrfs_header_nritems(right) - push_items) *
2680                              sizeof(struct btrfs_item));
2681         }
2682         right_nritems -= push_items;
2683         btrfs_set_header_nritems(right, right_nritems);
2684         push_space = BTRFS_LEAF_DATA_SIZE(root);
2685         for (i = 0; i < right_nritems; i++) {
2686                 item = btrfs_item_nr(right, i);
2687
2688                 if (!right->map_token) {
2689                         map_extent_buffer(right, (unsigned long)item,
2690                                         sizeof(struct btrfs_item),
2691                                         &right->map_token, &right->kaddr,
2692                                         &right->map_start, &right->map_len,
2693                                         KM_USER1);
2694                 }
2695
2696                 push_space = push_space - btrfs_item_size(right, item);
2697                 btrfs_set_item_offset(right, item, push_space);
2698         }
2699         if (right->map_token) {
2700                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2701                 right->map_token = NULL;
2702         }
2703
2704         btrfs_mark_buffer_dirty(left);
2705         if (right_nritems)
2706                 btrfs_mark_buffer_dirty(right);
2707         else
2708                 clean_tree_block(trans, root, right);
2709
2710         btrfs_item_key(right, &disk_key, 0);
2711         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2712         if (wret)
2713                 ret = wret;
2714
2715         /* then fixup the leaf pointer in the path */
2716         if (path->slots[0] < push_items) {
2717                 path->slots[0] += old_left_nritems;
2718                 btrfs_tree_unlock(path->nodes[0]);
2719                 free_extent_buffer(path->nodes[0]);
2720                 path->nodes[0] = left;
2721                 path->slots[1] -= 1;
2722         } else {
2723                 btrfs_tree_unlock(left);
2724                 free_extent_buffer(left);
2725                 path->slots[0] -= push_items;
2726         }
2727         BUG_ON(path->slots[0] < 0);
2728         return ret;
2729 out:
2730         btrfs_tree_unlock(left);
2731         free_extent_buffer(left);
2732         return ret;
2733 }
2734
2735 /*
2736  * push some data in the path leaf to the left, trying to free up at
2737  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2738  *
2739  * max_slot can put a limit on how far into the leaf we'll push items.  The
2740  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2741  * items
2742  */
2743 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2744                           *root, struct btrfs_path *path, int min_data_size,
2745                           int data_size, int empty, u32 max_slot)
2746 {
2747         struct extent_buffer *right = path->nodes[0];
2748         struct extent_buffer *left;
2749         int slot;
2750         int free_space;
2751         u32 right_nritems;
2752         int ret = 0;
2753
2754         slot = path->slots[1];
2755         if (slot == 0)
2756                 return 1;
2757         if (!path->nodes[1])
2758                 return 1;
2759
2760         right_nritems = btrfs_header_nritems(right);
2761         if (right_nritems == 0)
2762                 return 1;
2763
2764         btrfs_assert_tree_locked(path->nodes[1]);
2765
2766         left = read_node_slot(root, path->nodes[1], slot - 1);
2767         btrfs_tree_lock(left);
2768         btrfs_set_lock_blocking(left);
2769
2770         free_space = btrfs_leaf_free_space(root, left);
2771         if (free_space < data_size) {
2772                 ret = 1;
2773                 goto out;
2774         }
2775
2776         /* cow and double check */
2777         ret = btrfs_cow_block(trans, root, left,
2778                               path->nodes[1], slot - 1, &left);
2779         if (ret) {
2780                 /* we hit -ENOSPC, but it isn't fatal here */
2781                 ret = 1;
2782                 goto out;
2783         }
2784
2785         free_space = btrfs_leaf_free_space(root, left);
2786         if (free_space < data_size) {
2787                 ret = 1;
2788                 goto out;
2789         }
2790
2791         return __push_leaf_left(trans, root, path, min_data_size,
2792                                empty, left, free_space, right_nritems,
2793                                max_slot);
2794 out:
2795         btrfs_tree_unlock(left);
2796         free_extent_buffer(left);
2797         return ret;
2798 }
2799
2800 /*
2801  * split the path's leaf in two, making sure there is at least data_size
2802  * available for the resulting leaf level of the path.
2803  *
2804  * returns 0 if all went well and < 0 on failure.
2805  */
2806 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2807                                struct btrfs_root *root,
2808                                struct btrfs_path *path,
2809                                struct extent_buffer *l,
2810                                struct extent_buffer *right,
2811                                int slot, int mid, int nritems)
2812 {
2813         int data_copy_size;
2814         int rt_data_off;
2815         int i;
2816         int ret = 0;
2817         int wret;
2818         struct btrfs_disk_key disk_key;
2819
2820         nritems = nritems - mid;
2821         btrfs_set_header_nritems(right, nritems);
2822         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2823
2824         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2825                            btrfs_item_nr_offset(mid),
2826                            nritems * sizeof(struct btrfs_item));
2827
2828         copy_extent_buffer(right, l,
2829                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2830                      data_copy_size, btrfs_leaf_data(l) +
2831                      leaf_data_end(root, l), data_copy_size);
2832
2833         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2834                       btrfs_item_end_nr(l, mid);
2835
2836         for (i = 0; i < nritems; i++) {
2837                 struct btrfs_item *item = btrfs_item_nr(right, i);
2838                 u32 ioff;
2839
2840                 if (!right->map_token) {
2841                         map_extent_buffer(right, (unsigned long)item,
2842                                         sizeof(struct btrfs_item),
2843                                         &right->map_token, &right->kaddr,
2844                                         &right->map_start, &right->map_len,
2845                                         KM_USER1);
2846                 }
2847
2848                 ioff = btrfs_item_offset(right, item);
2849                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2850         }
2851
2852         if (right->map_token) {
2853                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2854                 right->map_token = NULL;
2855         }
2856
2857         btrfs_set_header_nritems(l, mid);
2858         ret = 0;
2859         btrfs_item_key(right, &disk_key, 0);
2860         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2861                           path->slots[1] + 1, 1);
2862         if (wret)
2863                 ret = wret;
2864
2865         btrfs_mark_buffer_dirty(right);
2866         btrfs_mark_buffer_dirty(l);
2867         BUG_ON(path->slots[0] != slot);
2868
2869         if (mid <= slot) {
2870                 btrfs_tree_unlock(path->nodes[0]);
2871                 free_extent_buffer(path->nodes[0]);
2872                 path->nodes[0] = right;
2873                 path->slots[0] -= mid;
2874                 path->slots[1] += 1;
2875         } else {
2876                 btrfs_tree_unlock(right);
2877                 free_extent_buffer(right);
2878         }
2879
2880         BUG_ON(path->slots[0] < 0);
2881
2882         return ret;
2883 }
2884
2885 /*
2886  * double splits happen when we need to insert a big item in the middle
2887  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2888  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2889  *          A                 B                 C
2890  *
2891  * We avoid this by trying to push the items on either side of our target
2892  * into the adjacent leaves.  If all goes well we can avoid the double split
2893  * completely.
2894  */
2895 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2896                                           struct btrfs_root *root,
2897                                           struct btrfs_path *path,
2898                                           int data_size)
2899 {
2900         int ret;
2901         int progress = 0;
2902         int slot;
2903         u32 nritems;
2904
2905         slot = path->slots[0];
2906
2907         /*
2908          * try to push all the items after our slot into the
2909          * right leaf
2910          */
2911         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2912         if (ret < 0)
2913                 return ret;
2914
2915         if (ret == 0)
2916                 progress++;
2917
2918         nritems = btrfs_header_nritems(path->nodes[0]);
2919         /*
2920          * our goal is to get our slot at the start or end of a leaf.  If
2921          * we've done so we're done
2922          */
2923         if (path->slots[0] == 0 || path->slots[0] == nritems)
2924                 return 0;
2925
2926         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2927                 return 0;
2928
2929         /* try to push all the items before our slot into the next leaf */
2930         slot = path->slots[0];
2931         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2932         if (ret < 0)
2933                 return ret;
2934
2935         if (ret == 0)
2936                 progress++;
2937
2938         if (progress)
2939                 return 0;
2940         return 1;
2941 }
2942
2943 /*
2944  * split the path's leaf in two, making sure there is at least data_size
2945  * available for the resulting leaf level of the path.
2946  *
2947  * returns 0 if all went well and < 0 on failure.
2948  */
2949 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2950                                struct btrfs_root *root,
2951                                struct btrfs_key *ins_key,
2952                                struct btrfs_path *path, int data_size,
2953                                int extend)
2954 {
2955         struct btrfs_disk_key disk_key;
2956         struct extent_buffer *l;
2957         u32 nritems;
2958         int mid;
2959         int slot;
2960         struct extent_buffer *right;
2961         int ret = 0;
2962         int wret;
2963         int split;
2964         int num_doubles = 0;
2965         int tried_avoid_double = 0;
2966
2967         l = path->nodes[0];
2968         slot = path->slots[0];
2969         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2970             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2971                 return -EOVERFLOW;
2972
2973         /* first try to make some room by pushing left and right */
2974         if (data_size) {
2975                 wret = push_leaf_right(trans, root, path, data_size,
2976                                        data_size, 0, 0);
2977                 if (wret < 0)
2978                         return wret;
2979                 if (wret) {
2980                         wret = push_leaf_left(trans, root, path, data_size,
2981                                               data_size, 0, (u32)-1);
2982                         if (wret < 0)
2983                                 return wret;
2984                 }
2985                 l = path->nodes[0];
2986
2987                 /* did the pushes work? */
2988                 if (btrfs_leaf_free_space(root, l) >= data_size)
2989                         return 0;
2990         }
2991
2992         if (!path->nodes[1]) {
2993                 ret = insert_new_root(trans, root, path, 1);
2994                 if (ret)
2995                         return ret;
2996         }
2997 again:
2998         split = 1;
2999         l = path->nodes[0];
3000         slot = path->slots[0];
3001         nritems = btrfs_header_nritems(l);
3002         mid = (nritems + 1) / 2;
3003
3004         if (mid <= slot) {
3005                 if (nritems == 1 ||
3006                     leaf_space_used(l, mid, nritems - mid) + data_size >
3007                         BTRFS_LEAF_DATA_SIZE(root)) {
3008                         if (slot >= nritems) {
3009                                 split = 0;
3010                         } else {
3011                                 mid = slot;
3012                                 if (mid != nritems &&
3013                                     leaf_space_used(l, mid, nritems - mid) +
3014                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3015                                         if (data_size && !tried_avoid_double)
3016                                                 goto push_for_double;
3017                                         split = 2;
3018                                 }
3019                         }
3020                 }
3021         } else {
3022                 if (leaf_space_used(l, 0, mid) + data_size >
3023                         BTRFS_LEAF_DATA_SIZE(root)) {
3024                         if (!extend && data_size && slot == 0) {
3025                                 split = 0;
3026                         } else if ((extend || !data_size) && slot == 0) {
3027                                 mid = 1;
3028                         } else {
3029                                 mid = slot;
3030                                 if (mid != nritems &&
3031                                     leaf_space_used(l, mid, nritems - mid) +
3032                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3033                                         if (data_size && !tried_avoid_double)
3034                                                 goto push_for_double;
3035                                         split = 2 ;
3036                                 }
3037                         }
3038                 }
3039         }
3040
3041         if (split == 0)
3042                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3043         else
3044                 btrfs_item_key(l, &disk_key, mid);
3045
3046         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3047                                         root->root_key.objectid,
3048                                         &disk_key, 0, l->start, 0);
3049         if (IS_ERR(right))
3050                 return PTR_ERR(right);
3051
3052         root_add_used(root, root->leafsize);
3053
3054         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3055         btrfs_set_header_bytenr(right, right->start);
3056         btrfs_set_header_generation(right, trans->transid);
3057         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3058         btrfs_set_header_owner(right, root->root_key.objectid);
3059         btrfs_set_header_level(right, 0);
3060         write_extent_buffer(right, root->fs_info->fsid,
3061                             (unsigned long)btrfs_header_fsid(right),
3062                             BTRFS_FSID_SIZE);
3063
3064         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3065                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3066                             BTRFS_UUID_SIZE);
3067
3068         if (split == 0) {
3069                 if (mid <= slot) {
3070                         btrfs_set_header_nritems(right, 0);
3071                         wret = insert_ptr(trans, root, path,
3072                                           &disk_key, right->start,
3073                                           path->slots[1] + 1, 1);
3074                         if (wret)
3075                                 ret = wret;
3076
3077                         btrfs_tree_unlock(path->nodes[0]);
3078                         free_extent_buffer(path->nodes[0]);
3079                         path->nodes[0] = right;
3080                         path->slots[0] = 0;
3081                         path->slots[1] += 1;
3082                 } else {
3083                         btrfs_set_header_nritems(right, 0);
3084                         wret = insert_ptr(trans, root, path,
3085                                           &disk_key,
3086                                           right->start,
3087                                           path->slots[1], 1);
3088                         if (wret)
3089                                 ret = wret;
3090                         btrfs_tree_unlock(path->nodes[0]);
3091                         free_extent_buffer(path->nodes[0]);
3092                         path->nodes[0] = right;
3093                         path->slots[0] = 0;
3094                         if (path->slots[1] == 0) {
3095                                 wret = fixup_low_keys(trans, root,
3096                                                 path, &disk_key, 1);
3097                                 if (wret)
3098                                         ret = wret;
3099                         }
3100                 }
3101                 btrfs_mark_buffer_dirty(right);
3102                 return ret;
3103         }
3104
3105         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3106         BUG_ON(ret);
3107
3108         if (split == 2) {
3109                 BUG_ON(num_doubles != 0);
3110                 num_doubles++;
3111                 goto again;
3112         }
3113
3114         return ret;
3115
3116 push_for_double:
3117         push_for_double_split(trans, root, path, data_size);
3118         tried_avoid_double = 1;
3119         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3120                 return 0;
3121         goto again;
3122 }
3123
3124 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3125                                          struct btrfs_root *root,
3126                                          struct btrfs_path *path, int ins_len)
3127 {
3128         struct btrfs_key key;
3129         struct extent_buffer *leaf;
3130         struct btrfs_file_extent_item *fi;
3131         u64 extent_len = 0;
3132         u32 item_size;
3133         int ret;
3134
3135         leaf = path->nodes[0];
3136         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3137
3138         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3139                key.type != BTRFS_EXTENT_CSUM_KEY);
3140
3141         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3142                 return 0;
3143
3144         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3145         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3146                 fi = btrfs_item_ptr(leaf, path->slots[0],
3147                                     struct btrfs_file_extent_item);
3148                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3149         }
3150         btrfs_release_path(root, path);
3151
3152         path->keep_locks = 1;
3153         path->search_for_split = 1;
3154         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3155         path->search_for_split = 0;
3156         if (ret < 0)
3157                 goto err;
3158
3159         ret = -EAGAIN;
3160         leaf = path->nodes[0];
3161         /* if our item isn't there or got smaller, return now */
3162         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3163                 goto err;
3164
3165         /* the leaf has  changed, it now has room.  return now */
3166         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3167                 goto err;
3168
3169         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3170                 fi = btrfs_item_ptr(leaf, path->slots[0],
3171                                     struct btrfs_file_extent_item);
3172                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3173                         goto err;
3174         }
3175
3176         btrfs_set_path_blocking(path);
3177         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3178         if (ret)
3179                 goto err;
3180
3181         path->keep_locks = 0;
3182         btrfs_unlock_up_safe(path, 1);
3183         return 0;
3184 err:
3185         path->keep_locks = 0;
3186         return ret;
3187 }
3188
3189 static noinline int split_item(struct btrfs_trans_handle *trans,
3190                                struct btrfs_root *root,
3191                                struct btrfs_path *path,
3192                                struct btrfs_key *new_key,
3193                                unsigned long split_offset)
3194 {
3195         struct extent_buffer *leaf;
3196         struct btrfs_item *item;
3197         struct btrfs_item *new_item;
3198         int slot;
3199         char *buf;
3200         u32 nritems;
3201         u32 item_size;
3202         u32 orig_offset;
3203         struct btrfs_disk_key disk_key;
3204
3205         leaf = path->nodes[0];
3206         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3207
3208         btrfs_set_path_blocking(path);
3209
3210         item = btrfs_item_nr(leaf, path->slots[0]);
3211         orig_offset = btrfs_item_offset(leaf, item);
3212         item_size = btrfs_item_size(leaf, item);
3213
3214         buf = kmalloc(item_size, GFP_NOFS);
3215         if (!buf)
3216                 return -ENOMEM;
3217
3218         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3219                             path->slots[0]), item_size);
3220
3221         slot = path->slots[0] + 1;
3222         nritems = btrfs_header_nritems(leaf);
3223         if (slot != nritems) {
3224                 /* shift the items */
3225                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3226                                 btrfs_item_nr_offset(slot),
3227                                 (nritems - slot) * sizeof(struct btrfs_item));
3228         }
3229
3230         btrfs_cpu_key_to_disk(&disk_key, new_key);
3231         btrfs_set_item_key(leaf, &disk_key, slot);
3232
3233         new_item = btrfs_item_nr(leaf, slot);
3234
3235         btrfs_set_item_offset(leaf, new_item, orig_offset);
3236         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3237
3238         btrfs_set_item_offset(leaf, item,
3239                               orig_offset + item_size - split_offset);
3240         btrfs_set_item_size(leaf, item, split_offset);
3241
3242         btrfs_set_header_nritems(leaf, nritems + 1);
3243
3244         /* write the data for the start of the original item */
3245         write_extent_buffer(leaf, buf,
3246                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3247                             split_offset);
3248
3249         /* write the data for the new item */
3250         write_extent_buffer(leaf, buf + split_offset,
3251                             btrfs_item_ptr_offset(leaf, slot),
3252                             item_size - split_offset);
3253         btrfs_mark_buffer_dirty(leaf);
3254
3255         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3256         kfree(buf);
3257         return 0;
3258 }
3259
3260 /*
3261  * This function splits a single item into two items,
3262  * giving 'new_key' to the new item and splitting the
3263  * old one at split_offset (from the start of the item).
3264  *
3265  * The path may be released by this operation.  After
3266  * the split, the path is pointing to the old item.  The
3267  * new item is going to be in the same node as the old one.
3268  *
3269  * Note, the item being split must be smaller enough to live alone on
3270  * a tree block with room for one extra struct btrfs_item
3271  *
3272  * This allows us to split the item in place, keeping a lock on the
3273  * leaf the entire time.
3274  */
3275 int btrfs_split_item(struct btrfs_trans_handle *trans,
3276                      struct btrfs_root *root,
3277                      struct btrfs_path *path,
3278                      struct btrfs_key *new_key,
3279                      unsigned long split_offset)
3280 {
3281         int ret;
3282         ret = setup_leaf_for_split(trans, root, path,
3283                                    sizeof(struct btrfs_item));
3284         if (ret)
3285                 return ret;
3286
3287         ret = split_item(trans, root, path, new_key, split_offset);
3288         return ret;
3289 }
3290
3291 /*
3292  * This function duplicate a item, giving 'new_key' to the new item.
3293  * It guarantees both items live in the same tree leaf and the new item
3294  * is contiguous with the original item.
3295  *
3296  * This allows us to split file extent in place, keeping a lock on the
3297  * leaf the entire time.
3298  */
3299 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3300                          struct btrfs_root *root,
3301                          struct btrfs_path *path,
3302                          struct btrfs_key *new_key)
3303 {
3304         struct extent_buffer *leaf;
3305         int ret;
3306         u32 item_size;
3307
3308         leaf = path->nodes[0];
3309         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3310         ret = setup_leaf_for_split(trans, root, path,
3311                                    item_size + sizeof(struct btrfs_item));
3312         if (ret)
3313                 return ret;
3314
3315         path->slots[0]++;
3316         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3317                                      item_size, item_size +
3318                                      sizeof(struct btrfs_item), 1);
3319         BUG_ON(ret);
3320
3321         leaf = path->nodes[0];
3322         memcpy_extent_buffer(leaf,
3323                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3324                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3325                              item_size);
3326         return 0;
3327 }
3328
3329 /*
3330  * make the item pointed to by the path smaller.  new_size indicates
3331  * how small to make it, and from_end tells us if we just chop bytes
3332  * off the end of the item or if we shift the item to chop bytes off
3333  * the front.
3334  */
3335 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3336                         struct btrfs_root *root,
3337                         struct btrfs_path *path,
3338                         u32 new_size, int from_end)
3339 {
3340         int ret = 0;
3341         int slot;
3342         struct extent_buffer *leaf;
3343         struct btrfs_item *item;
3344         u32 nritems;
3345         unsigned int data_end;
3346         unsigned int old_data_start;
3347         unsigned int old_size;
3348         unsigned int size_diff;
3349         int i;
3350
3351         leaf = path->nodes[0];
3352         slot = path->slots[0];
3353
3354         old_size = btrfs_item_size_nr(leaf, slot);
3355         if (old_size == new_size)
3356                 return 0;
3357
3358         nritems = btrfs_header_nritems(leaf);
3359         data_end = leaf_data_end(root, leaf);
3360
3361         old_data_start = btrfs_item_offset_nr(leaf, slot);
3362
3363         size_diff = old_size - new_size;
3364
3365         BUG_ON(slot < 0);
3366         BUG_ON(slot >= nritems);
3367
3368         /*
3369          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3370          */
3371         /* first correct the data pointers */
3372         for (i = slot; i < nritems; i++) {
3373                 u32 ioff;
3374                 item = btrfs_item_nr(leaf, i);
3375
3376                 if (!leaf->map_token) {
3377                         map_extent_buffer(leaf, (unsigned long)item,
3378                                         sizeof(struct btrfs_item),
3379                                         &leaf->map_token, &leaf->kaddr,
3380                                         &leaf->map_start, &leaf->map_len,
3381                                         KM_USER1);
3382                 }
3383
3384                 ioff = btrfs_item_offset(leaf, item);
3385                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3386         }
3387
3388         if (leaf->map_token) {
3389                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3390                 leaf->map_token = NULL;
3391         }
3392
3393         /* shift the data */
3394         if (from_end) {
3395                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3396                               data_end + size_diff, btrfs_leaf_data(leaf) +
3397                               data_end, old_data_start + new_size - data_end);
3398         } else {
3399                 struct btrfs_disk_key disk_key;
3400                 u64 offset;
3401
3402                 btrfs_item_key(leaf, &disk_key, slot);
3403
3404                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3405                         unsigned long ptr;
3406                         struct btrfs_file_extent_item *fi;
3407
3408                         fi = btrfs_item_ptr(leaf, slot,
3409                                             struct btrfs_file_extent_item);
3410                         fi = (struct btrfs_file_extent_item *)(
3411                              (unsigned long)fi - size_diff);
3412
3413                         if (btrfs_file_extent_type(leaf, fi) ==
3414                             BTRFS_FILE_EXTENT_INLINE) {
3415                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3416                                 memmove_extent_buffer(leaf, ptr,
3417                                       (unsigned long)fi,
3418                                       offsetof(struct btrfs_file_extent_item,
3419                                                  disk_bytenr));
3420                         }
3421                 }
3422
3423                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3424                               data_end + size_diff, btrfs_leaf_data(leaf) +
3425                               data_end, old_data_start - data_end);
3426
3427                 offset = btrfs_disk_key_offset(&disk_key);
3428                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3429                 btrfs_set_item_key(leaf, &disk_key, slot);
3430                 if (slot == 0)
3431                         fixup_low_keys(trans, root, path, &disk_key, 1);
3432         }
3433
3434         item = btrfs_item_nr(leaf, slot);
3435         btrfs_set_item_size(leaf, item, new_size);
3436         btrfs_mark_buffer_dirty(leaf);
3437
3438         ret = 0;
3439         if (btrfs_leaf_free_space(root, leaf) < 0) {
3440                 btrfs_print_leaf(root, leaf);
3441                 BUG();
3442         }
3443         return ret;
3444 }
3445
3446 /*
3447  * make the item pointed to by the path bigger, data_size is the new size.
3448  */
3449 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3450                       struct btrfs_root *root, struct btrfs_path *path,
3451                       u32 data_size)
3452 {
3453         int ret = 0;
3454         int slot;
3455         struct extent_buffer *leaf;
3456         struct btrfs_item *item;
3457         u32 nritems;
3458         unsigned int data_end;
3459         unsigned int old_data;
3460         unsigned int old_size;
3461         int i;
3462
3463         leaf = path->nodes[0];
3464
3465         nritems = btrfs_header_nritems(leaf);
3466         data_end = leaf_data_end(root, leaf);
3467
3468         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3469                 btrfs_print_leaf(root, leaf);
3470                 BUG();
3471         }
3472         slot = path->slots[0];
3473         old_data = btrfs_item_end_nr(leaf, slot);
3474
3475         BUG_ON(slot < 0);
3476         if (slot >= nritems) {
3477                 btrfs_print_leaf(root, leaf);
3478                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3479                        slot, nritems);
3480                 BUG_ON(1);
3481         }
3482
3483         /*
3484          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3485          */
3486         /* first correct the data pointers */
3487         for (i = slot; i < nritems; i++) {
3488                 u32 ioff;
3489                 item = btrfs_item_nr(leaf, i);
3490
3491                 if (!leaf->map_token) {
3492                         map_extent_buffer(leaf, (unsigned long)item,
3493                                         sizeof(struct btrfs_item),
3494                                         &leaf->map_token, &leaf->kaddr,
3495                                         &leaf->map_start, &leaf->map_len,
3496                                         KM_USER1);
3497                 }
3498                 ioff = btrfs_item_offset(leaf, item);
3499                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3500         }
3501
3502         if (leaf->map_token) {
3503                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3504                 leaf->map_token = NULL;
3505         }
3506
3507         /* shift the data */
3508         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3509                       data_end - data_size, btrfs_leaf_data(leaf) +
3510                       data_end, old_data - data_end);
3511
3512         data_end = old_data;
3513         old_size = btrfs_item_size_nr(leaf, slot);
3514         item = btrfs_item_nr(leaf, slot);
3515         btrfs_set_item_size(leaf, item, old_size + data_size);
3516         btrfs_mark_buffer_dirty(leaf);
3517
3518         ret = 0;
3519         if (btrfs_leaf_free_space(root, leaf) < 0) {
3520                 btrfs_print_leaf(root, leaf);
3521                 BUG();
3522         }
3523         return ret;
3524 }
3525
3526 /*
3527  * Given a key and some data, insert items into the tree.
3528  * This does all the path init required, making room in the tree if needed.
3529  * Returns the number of keys that were inserted.
3530  */
3531 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3532                             struct btrfs_root *root,
3533                             struct btrfs_path *path,
3534                             struct btrfs_key *cpu_key, u32 *data_size,
3535                             int nr)
3536 {
3537         struct extent_buffer *leaf;
3538         struct btrfs_item *item;
3539         int ret = 0;
3540         int slot;
3541         int i;
3542         u32 nritems;
3543         u32 total_data = 0;
3544         u32 total_size = 0;
3545         unsigned int data_end;
3546         struct btrfs_disk_key disk_key;
3547         struct btrfs_key found_key;
3548
3549         for (i = 0; i < nr; i++) {
3550                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3551                     BTRFS_LEAF_DATA_SIZE(root)) {
3552                         break;
3553                         nr = i;
3554                 }
3555                 total_data += data_size[i];
3556                 total_size += data_size[i] + sizeof(struct btrfs_item);
3557         }
3558         BUG_ON(nr == 0);
3559
3560         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3561         if (ret == 0)
3562                 return -EEXIST;
3563         if (ret < 0)
3564                 goto out;
3565
3566         leaf = path->nodes[0];
3567
3568         nritems = btrfs_header_nritems(leaf);
3569         data_end = leaf_data_end(root, leaf);
3570
3571         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3572                 for (i = nr; i >= 0; i--) {
3573                         total_data -= data_size[i];
3574                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3575                         if (total_size < btrfs_leaf_free_space(root, leaf))
3576                                 break;
3577                 }
3578                 nr = i;
3579         }
3580
3581         slot = path->slots[0];
3582         BUG_ON(slot < 0);
3583
3584         if (slot != nritems) {
3585                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3586
3587                 item = btrfs_item_nr(leaf, slot);
3588                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3589
3590                 /* figure out how many keys we can insert in here */
3591                 total_data = data_size[0];
3592                 for (i = 1; i < nr; i++) {
3593                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3594                                 break;
3595                         total_data += data_size[i];
3596                 }
3597                 nr = i;
3598
3599                 if (old_data < data_end) {
3600                         btrfs_print_leaf(root, leaf);
3601                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3602                                slot, old_data, data_end);
3603                         BUG_ON(1);
3604                 }
3605                 /*
3606                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3607                  */
3608                 /* first correct the data pointers */
3609                 WARN_ON(leaf->map_token);
3610                 for (i = slot; i < nritems; i++) {
3611                         u32 ioff;
3612
3613                         item = btrfs_item_nr(leaf, i);
3614                         if (!leaf->map_token) {
3615                                 map_extent_buffer(leaf, (unsigned long)item,
3616                                         sizeof(struct btrfs_item),
3617                                         &leaf->map_token, &leaf->kaddr,
3618                                         &leaf->map_start, &leaf->map_len,
3619                                         KM_USER1);
3620                         }
3621
3622                         ioff = btrfs_item_offset(leaf, item);
3623                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3624                 }
3625                 if (leaf->map_token) {
3626                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3627                         leaf->map_token = NULL;
3628                 }
3629
3630                 /* shift the items */
3631                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3632                               btrfs_item_nr_offset(slot),
3633                               (nritems - slot) * sizeof(struct btrfs_item));
3634
3635                 /* shift the data */
3636                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3637                               data_end - total_data, btrfs_leaf_data(leaf) +
3638                               data_end, old_data - data_end);
3639                 data_end = old_data;
3640         } else {
3641                 /*
3642                  * this sucks but it has to be done, if we are inserting at
3643                  * the end of the leaf only insert 1 of the items, since we
3644                  * have no way of knowing whats on the next leaf and we'd have
3645                  * to drop our current locks to figure it out
3646                  */
3647                 nr = 1;
3648         }
3649
3650         /* setup the item for the new data */
3651         for (i = 0; i < nr; i++) {
3652                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3653                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3654                 item = btrfs_item_nr(leaf, slot + i);
3655                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3656                 data_end -= data_size[i];
3657                 btrfs_set_item_size(leaf, item, data_size[i]);
3658         }
3659         btrfs_set_header_nritems(leaf, nritems + nr);
3660         btrfs_mark_buffer_dirty(leaf);
3661
3662         ret = 0;
3663         if (slot == 0) {
3664                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3665                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3666         }
3667
3668         if (btrfs_leaf_free_space(root, leaf) < 0) {
3669                 btrfs_print_leaf(root, leaf);
3670                 BUG();
3671         }
3672 out:
3673         if (!ret)
3674                 ret = nr;
3675         return ret;
3676 }
3677
3678 /*
3679  * this is a helper for btrfs_insert_empty_items, the main goal here is
3680  * to save stack depth by doing the bulk of the work in a function
3681  * that doesn't call btrfs_search_slot
3682  */
3683 static noinline_for_stack int
3684 setup_items_for_insert(struct btrfs_trans_handle *trans,
3685                       struct btrfs_root *root, struct btrfs_path *path,
3686                       struct btrfs_key *cpu_key, u32 *data_size,
3687                       u32 total_data, u32 total_size, int nr)
3688 {
3689         struct btrfs_item *item;
3690         int i;
3691         u32 nritems;
3692         unsigned int data_end;
3693         struct btrfs_disk_key disk_key;
3694         int ret;
3695         struct extent_buffer *leaf;
3696         int slot;
3697
3698         leaf = path->nodes[0];
3699         slot = path->slots[0];
3700
3701         nritems = btrfs_header_nritems(leaf);
3702         data_end = leaf_data_end(root, leaf);
3703
3704         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3705                 btrfs_print_leaf(root, leaf);
3706                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3707                        total_size, btrfs_leaf_free_space(root, leaf));
3708                 BUG();
3709         }
3710
3711         if (slot != nritems) {
3712                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3713
3714                 if (old_data < data_end) {
3715                         btrfs_print_leaf(root, leaf);
3716                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3717                                slot, old_data, data_end);
3718                         BUG_ON(1);
3719                 }
3720                 /*
3721                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3722                  */
3723                 /* first correct the data pointers */
3724                 WARN_ON(leaf->map_token);
3725                 for (i = slot; i < nritems; i++) {
3726                         u32 ioff;
3727
3728                         item = btrfs_item_nr(leaf, i);
3729                         if (!leaf->map_token) {
3730                                 map_extent_buffer(leaf, (unsigned long)item,
3731                                         sizeof(struct btrfs_item),
3732                                         &leaf->map_token, &leaf->kaddr,
3733                                         &leaf->map_start, &leaf->map_len,
3734                                         KM_USER1);
3735                         }
3736
3737                         ioff = btrfs_item_offset(leaf, item);
3738                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3739                 }
3740                 if (leaf->map_token) {
3741                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3742                         leaf->map_token = NULL;
3743                 }
3744
3745                 /* shift the items */
3746                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3747                               btrfs_item_nr_offset(slot),
3748                               (nritems - slot) * sizeof(struct btrfs_item));
3749
3750                 /* shift the data */
3751                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3752                               data_end - total_data, btrfs_leaf_data(leaf) +
3753                               data_end, old_data - data_end);
3754                 data_end = old_data;
3755         }
3756
3757         /* setup the item for the new data */
3758         for (i = 0; i < nr; i++) {
3759                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3760                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3761                 item = btrfs_item_nr(leaf, slot + i);
3762                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3763                 data_end -= data_size[i];
3764                 btrfs_set_item_size(leaf, item, data_size[i]);
3765         }
3766
3767         btrfs_set_header_nritems(leaf, nritems + nr);
3768
3769         ret = 0;
3770         if (slot == 0) {
3771                 struct btrfs_disk_key disk_key;
3772                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3773                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3774         }
3775         btrfs_unlock_up_safe(path, 1);
3776         btrfs_mark_buffer_dirty(leaf);
3777
3778         if (btrfs_leaf_free_space(root, leaf) < 0) {
3779                 btrfs_print_leaf(root, leaf);
3780                 BUG();
3781         }
3782         return ret;
3783 }
3784
3785 /*
3786  * Given a key and some data, insert items into the tree.
3787  * This does all the path init required, making room in the tree if needed.
3788  */
3789 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3790                             struct btrfs_root *root,
3791                             struct btrfs_path *path,
3792                             struct btrfs_key *cpu_key, u32 *data_size,
3793                             int nr)
3794 {
3795         int ret = 0;
3796         int slot;
3797         int i;
3798         u32 total_size = 0;
3799         u32 total_data = 0;
3800
3801         for (i = 0; i < nr; i++)
3802                 total_data += data_size[i];
3803
3804         total_size = total_data + (nr * sizeof(struct btrfs_item));
3805         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3806         if (ret == 0)
3807                 return -EEXIST;
3808         if (ret < 0)
3809                 goto out;
3810
3811         slot = path->slots[0];
3812         BUG_ON(slot < 0);
3813
3814         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3815                                total_data, total_size, nr);
3816
3817 out:
3818         return ret;
3819 }
3820
3821 /*
3822  * Given a key and some data, insert an item into the tree.
3823  * This does all the path init required, making room in the tree if needed.
3824  */
3825 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3826                       *root, struct btrfs_key *cpu_key, void *data, u32
3827                       data_size)
3828 {
3829         int ret = 0;
3830         struct btrfs_path *path;
3831         struct extent_buffer *leaf;
3832         unsigned long ptr;
3833
3834         path = btrfs_alloc_path();
3835         BUG_ON(!path);
3836         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3837         if (!ret) {
3838                 leaf = path->nodes[0];
3839                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3840                 write_extent_buffer(leaf, data, ptr, data_size);
3841                 btrfs_mark_buffer_dirty(leaf);
3842         }
3843         btrfs_free_path(path);
3844         return ret;
3845 }
3846
3847 /*
3848  * delete the pointer from a given node.
3849  *
3850  * the tree should have been previously balanced so the deletion does not
3851  * empty a node.
3852  */
3853 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3854                    struct btrfs_path *path, int level, int slot)
3855 {
3856         struct extent_buffer *parent = path->nodes[level];
3857         u32 nritems;
3858         int ret = 0;
3859         int wret;
3860
3861         nritems = btrfs_header_nritems(parent);
3862         if (slot != nritems - 1) {
3863                 memmove_extent_buffer(parent,
3864                               btrfs_node_key_ptr_offset(slot),
3865                               btrfs_node_key_ptr_offset(slot + 1),
3866                               sizeof(struct btrfs_key_ptr) *
3867                               (nritems - slot - 1));
3868         }
3869         nritems--;
3870         btrfs_set_header_nritems(parent, nritems);
3871         if (nritems == 0 && parent == root->node) {
3872                 BUG_ON(btrfs_header_level(root->node) != 1);
3873                 /* just turn the root into a leaf and break */
3874                 btrfs_set_header_level(root->node, 0);
3875         } else if (slot == 0) {
3876                 struct btrfs_disk_key disk_key;
3877
3878                 btrfs_node_key(parent, &disk_key, 0);
3879                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3880                 if (wret)
3881                         ret = wret;
3882         }
3883         btrfs_mark_buffer_dirty(parent);
3884         return ret;
3885 }
3886
3887 /*
3888  * a helper function to delete the leaf pointed to by path->slots[1] and
3889  * path->nodes[1].
3890  *
3891  * This deletes the pointer in path->nodes[1] and frees the leaf
3892  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3893  *
3894  * The path must have already been setup for deleting the leaf, including
3895  * all the proper balancing.  path->nodes[1] must be locked.
3896  */
3897 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3898                                    struct btrfs_root *root,
3899                                    struct btrfs_path *path,
3900                                    struct extent_buffer *leaf)
3901 {
3902         int ret;
3903
3904         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3905         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3906         if (ret)
3907                 return ret;
3908
3909         /*
3910          * btrfs_free_extent is expensive, we want to make sure we
3911          * aren't holding any locks when we call it
3912          */
3913         btrfs_unlock_up_safe(path, 0);
3914
3915         root_sub_used(root, leaf->len);
3916
3917         btrfs_free_tree_block(trans, root, leaf, 0, 1);
3918         return 0;
3919 }
3920 /*
3921  * delete the item at the leaf level in path.  If that empties
3922  * the leaf, remove it from the tree
3923  */
3924 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3925                     struct btrfs_path *path, int slot, int nr)
3926 {
3927         struct extent_buffer *leaf;
3928         struct btrfs_item *item;
3929         int last_off;
3930         int dsize = 0;
3931         int ret = 0;
3932         int wret;
3933         int i;
3934         u32 nritems;
3935
3936         leaf = path->nodes[0];
3937         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3938
3939         for (i = 0; i < nr; i++)
3940                 dsize += btrfs_item_size_nr(leaf, slot + i);
3941
3942         nritems = btrfs_header_nritems(leaf);
3943
3944         if (slot + nr != nritems) {
3945                 int data_end = leaf_data_end(root, leaf);
3946
3947                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3948                               data_end + dsize,
3949                               btrfs_leaf_data(leaf) + data_end,
3950                               last_off - data_end);
3951
3952                 for (i = slot + nr; i < nritems; i++) {
3953                         u32 ioff;
3954
3955                         item = btrfs_item_nr(leaf, i);
3956                         if (!leaf->map_token) {
3957                                 map_extent_buffer(leaf, (unsigned long)item,
3958                                         sizeof(struct btrfs_item),
3959                                         &leaf->map_token, &leaf->kaddr,
3960                                         &leaf->map_start, &leaf->map_len,
3961                                         KM_USER1);
3962                         }
3963                         ioff = btrfs_item_offset(leaf, item);
3964                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3965                 }
3966
3967                 if (leaf->map_token) {
3968                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3969                         leaf->map_token = NULL;
3970                 }
3971
3972                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3973                               btrfs_item_nr_offset(slot + nr),
3974                               sizeof(struct btrfs_item) *
3975                               (nritems - slot - nr));
3976         }
3977         btrfs_set_header_nritems(leaf, nritems - nr);
3978         nritems -= nr;
3979
3980         /* delete the leaf if we've emptied it */
3981         if (nritems == 0) {
3982                 if (leaf == root->node) {
3983                         btrfs_set_header_level(leaf, 0);
3984                 } else {
3985                         btrfs_set_path_blocking(path);
3986                         clean_tree_block(trans, root, leaf);
3987                         ret = btrfs_del_leaf(trans, root, path, leaf);
3988                         BUG_ON(ret);
3989                 }
3990         } else {
3991                 int used = leaf_space_used(leaf, 0, nritems);
3992                 if (slot == 0) {
3993                         struct btrfs_disk_key disk_key;
3994
3995                         btrfs_item_key(leaf, &disk_key, 0);
3996                         wret = fixup_low_keys(trans, root, path,
3997                                               &disk_key, 1);
3998                         if (wret)
3999                                 ret = wret;
4000                 }
4001
4002                 /* delete the leaf if it is mostly empty */
4003                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4004                         /* push_leaf_left fixes the path.
4005                          * make sure the path still points to our leaf
4006                          * for possible call to del_ptr below
4007                          */
4008                         slot = path->slots[1];
4009                         extent_buffer_get(leaf);
4010
4011                         btrfs_set_path_blocking(path);
4012                         wret = push_leaf_left(trans, root, path, 1, 1,
4013                                               1, (u32)-1);
4014                         if (wret < 0 && wret != -ENOSPC)
4015                                 ret = wret;
4016
4017                         if (path->nodes[0] == leaf &&
4018                             btrfs_header_nritems(leaf)) {
4019                                 wret = push_leaf_right(trans, root, path, 1,
4020                                                        1, 1, 0);
4021                                 if (wret < 0 && wret != -ENOSPC)
4022                                         ret = wret;
4023                         }
4024
4025                         if (btrfs_header_nritems(leaf) == 0) {
4026                                 path->slots[1] = slot;
4027                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4028                                 BUG_ON(ret);
4029                                 free_extent_buffer(leaf);
4030                         } else {
4031                                 /* if we're still in the path, make sure
4032                                  * we're dirty.  Otherwise, one of the
4033                                  * push_leaf functions must have already
4034                                  * dirtied this buffer
4035                                  */
4036                                 if (path->nodes[0] == leaf)
4037                                         btrfs_mark_buffer_dirty(leaf);
4038                                 free_extent_buffer(leaf);
4039                         }
4040                 } else {
4041                         btrfs_mark_buffer_dirty(leaf);
4042                 }
4043         }
4044         return ret;
4045 }
4046
4047 /*
4048  * search the tree again to find a leaf with lesser keys
4049  * returns 0 if it found something or 1 if there are no lesser leaves.
4050  * returns < 0 on io errors.
4051  *
4052  * This may release the path, and so you may lose any locks held at the
4053  * time you call it.
4054  */
4055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4056 {
4057         struct btrfs_key key;
4058         struct btrfs_disk_key found_key;
4059         int ret;
4060
4061         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4062
4063         if (key.offset > 0)
4064                 key.offset--;
4065         else if (key.type > 0)
4066                 key.type--;
4067         else if (key.objectid > 0)
4068                 key.objectid--;
4069         else
4070                 return 1;
4071
4072         btrfs_release_path(root, path);
4073         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4074         if (ret < 0)
4075                 return ret;
4076         btrfs_item_key(path->nodes[0], &found_key, 0);
4077         ret = comp_keys(&found_key, &key);
4078         if (ret < 0)
4079                 return 0;
4080         return 1;
4081 }
4082
4083 /*
4084  * A helper function to walk down the tree starting at min_key, and looking
4085  * for nodes or leaves that are either in cache or have a minimum
4086  * transaction id.  This is used by the btree defrag code, and tree logging
4087  *
4088  * This does not cow, but it does stuff the starting key it finds back
4089  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4090  * key and get a writable path.
4091  *
4092  * This does lock as it descends, and path->keep_locks should be set
4093  * to 1 by the caller.
4094  *
4095  * This honors path->lowest_level to prevent descent past a given level
4096  * of the tree.
4097  *
4098  * min_trans indicates the oldest transaction that you are interested
4099  * in walking through.  Any nodes or leaves older than min_trans are
4100  * skipped over (without reading them).
4101  *
4102  * returns zero if something useful was found, < 0 on error and 1 if there
4103  * was nothing in the tree that matched the search criteria.
4104  */
4105 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4106                          struct btrfs_key *max_key,
4107                          struct btrfs_path *path, int cache_only,
4108                          u64 min_trans)
4109 {
4110         struct extent_buffer *cur;
4111         struct btrfs_key found_key;
4112         int slot;
4113         int sret;
4114         u32 nritems;
4115         int level;
4116         int ret = 1;
4117
4118         WARN_ON(!path->keep_locks);
4119 again:
4120         cur = btrfs_lock_root_node(root);
4121         level = btrfs_header_level(cur);
4122         WARN_ON(path->nodes[level]);
4123         path->nodes[level] = cur;
4124         path->locks[level] = 1;
4125
4126         if (btrfs_header_generation(cur) < min_trans) {
4127                 ret = 1;
4128                 goto out;
4129         }
4130         while (1) {
4131                 nritems = btrfs_header_nritems(cur);
4132                 level = btrfs_header_level(cur);
4133                 sret = bin_search(cur, min_key, level, &slot);
4134
4135                 /* at the lowest level, we're done, setup the path and exit */
4136                 if (level == path->lowest_level) {
4137                         if (slot >= nritems)
4138                                 goto find_next_key;
4139                         ret = 0;
4140                         path->slots[level] = slot;
4141                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4142                         goto out;
4143                 }
4144                 if (sret && slot > 0)
4145                         slot--;
4146                 /*
4147                  * check this node pointer against the cache_only and
4148                  * min_trans parameters.  If it isn't in cache or is too
4149                  * old, skip to the next one.
4150                  */
4151                 while (slot < nritems) {
4152                         u64 blockptr;
4153                         u64 gen;
4154                         struct extent_buffer *tmp;
4155                         struct btrfs_disk_key disk_key;
4156
4157                         blockptr = btrfs_node_blockptr(cur, slot);
4158                         gen = btrfs_node_ptr_generation(cur, slot);
4159                         if (gen < min_trans) {
4160                                 slot++;
4161                                 continue;
4162                         }
4163                         if (!cache_only)
4164                                 break;
4165
4166                         if (max_key) {
4167                                 btrfs_node_key(cur, &disk_key, slot);
4168                                 if (comp_keys(&disk_key, max_key) >= 0) {
4169                                         ret = 1;
4170                                         goto out;
4171                                 }
4172                         }
4173
4174                         tmp = btrfs_find_tree_block(root, blockptr,
4175                                             btrfs_level_size(root, level - 1));
4176
4177                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4178                                 free_extent_buffer(tmp);
4179                                 break;
4180                         }
4181                         if (tmp)
4182                                 free_extent_buffer(tmp);
4183                         slot++;
4184                 }
4185 find_next_key:
4186                 /*
4187                  * we didn't find a candidate key in this node, walk forward
4188                  * and find another one
4189                  */
4190                 if (slot >= nritems) {
4191                         path->slots[level] = slot;
4192                         btrfs_set_path_blocking(path);
4193                         sret = btrfs_find_next_key(root, path, min_key, level,
4194                                                   cache_only, min_trans);
4195                         if (sret == 0) {
4196                                 btrfs_release_path(root, path);
4197                                 goto again;
4198                         } else {
4199                                 goto out;
4200                         }
4201                 }
4202                 /* save our key for returning back */
4203                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4204                 path->slots[level] = slot;
4205                 if (level == path->lowest_level) {
4206                         ret = 0;
4207                         unlock_up(path, level, 1);
4208                         goto out;
4209                 }
4210                 btrfs_set_path_blocking(path);
4211                 cur = read_node_slot(root, cur, slot);
4212
4213                 btrfs_tree_lock(cur);
4214
4215                 path->locks[level - 1] = 1;
4216                 path->nodes[level - 1] = cur;
4217                 unlock_up(path, level, 1);
4218                 btrfs_clear_path_blocking(path, NULL);
4219         }
4220 out:
4221         if (ret == 0)
4222                 memcpy(min_key, &found_key, sizeof(found_key));
4223         btrfs_set_path_blocking(path);
4224         return ret;
4225 }
4226
4227 /*
4228  * this is similar to btrfs_next_leaf, but does not try to preserve
4229  * and fixup the path.  It looks for and returns the next key in the
4230  * tree based on the current path and the cache_only and min_trans
4231  * parameters.
4232  *
4233  * 0 is returned if another key is found, < 0 if there are any errors
4234  * and 1 is returned if there are no higher keys in the tree
4235  *
4236  * path->keep_locks should be set to 1 on the search made before
4237  * calling this function.
4238  */
4239 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4240                         struct btrfs_key *key, int level,
4241                         int cache_only, u64 min_trans)
4242 {
4243         int slot;
4244         struct extent_buffer *c;
4245
4246         WARN_ON(!path->keep_locks);
4247         while (level < BTRFS_MAX_LEVEL) {
4248                 if (!path->nodes[level])
4249                         return 1;
4250
4251                 slot = path->slots[level] + 1;
4252                 c = path->nodes[level];
4253 next:
4254                 if (slot >= btrfs_header_nritems(c)) {
4255                         int ret;
4256                         int orig_lowest;
4257                         struct btrfs_key cur_key;
4258                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4259                             !path->nodes[level + 1])
4260                                 return 1;
4261
4262                         if (path->locks[level + 1]) {
4263                                 level++;
4264                                 continue;
4265                         }
4266
4267                         slot = btrfs_header_nritems(c) - 1;
4268                         if (level == 0)
4269                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4270                         else
4271                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4272
4273                         orig_lowest = path->lowest_level;
4274                         btrfs_release_path(root, path);
4275                         path->lowest_level = level;
4276                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4277                                                 0, 0);
4278                         path->lowest_level = orig_lowest;
4279                         if (ret < 0)
4280                                 return ret;
4281
4282                         c = path->nodes[level];
4283                         slot = path->slots[level];
4284                         if (ret == 0)
4285                                 slot++;
4286                         goto next;
4287                 }
4288
4289                 if (level == 0)
4290                         btrfs_item_key_to_cpu(c, key, slot);
4291                 else {
4292                         u64 blockptr = btrfs_node_blockptr(c, slot);
4293                         u64 gen = btrfs_node_ptr_generation(c, slot);
4294
4295                         if (cache_only) {
4296                                 struct extent_buffer *cur;
4297                                 cur = btrfs_find_tree_block(root, blockptr,
4298                                             btrfs_level_size(root, level - 1));
4299                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4300                                         slot++;
4301                                         if (cur)
4302                                                 free_extent_buffer(cur);
4303                                         goto next;
4304                                 }
4305                                 free_extent_buffer(cur);
4306                         }
4307                         if (gen < min_trans) {
4308                                 slot++;
4309                                 goto next;
4310                         }
4311                         btrfs_node_key_to_cpu(c, key, slot);
4312                 }
4313                 return 0;
4314         }
4315         return 1;
4316 }
4317
4318 /*
4319  * search the tree again to find a leaf with greater keys
4320  * returns 0 if it found something or 1 if there are no greater leaves.
4321  * returns < 0 on io errors.
4322  */
4323 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4324 {
4325         int slot;
4326         int level;
4327         struct extent_buffer *c;
4328         struct extent_buffer *next;
4329         struct btrfs_key key;
4330         u32 nritems;
4331         int ret;
4332         int old_spinning = path->leave_spinning;
4333         int force_blocking = 0;
4334
4335         nritems = btrfs_header_nritems(path->nodes[0]);
4336         if (nritems == 0)
4337                 return 1;
4338
4339         /*
4340          * we take the blocks in an order that upsets lockdep.  Using
4341          * blocking mode is the only way around it.
4342          */
4343 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4344         force_blocking = 1;
4345 #endif
4346
4347         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4348 again:
4349         level = 1;
4350         next = NULL;
4351         btrfs_release_path(root, path);
4352
4353         path->keep_locks = 1;
4354
4355         if (!force_blocking)
4356                 path->leave_spinning = 1;
4357
4358         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4359         path->keep_locks = 0;
4360
4361         if (ret < 0)
4362                 return ret;
4363
4364         nritems = btrfs_header_nritems(path->nodes[0]);
4365         /*
4366          * by releasing the path above we dropped all our locks.  A balance
4367          * could have added more items next to the key that used to be
4368          * at the very end of the block.  So, check again here and
4369          * advance the path if there are now more items available.
4370          */
4371         if (nritems > 0 && path->slots[0] < nritems - 1) {
4372                 if (ret == 0)
4373                         path->slots[0]++;
4374                 ret = 0;
4375                 goto done;
4376         }
4377
4378         while (level < BTRFS_MAX_LEVEL) {
4379                 if (!path->nodes[level]) {
4380                         ret = 1;
4381                         goto done;
4382                 }
4383
4384                 slot = path->slots[level] + 1;
4385                 c = path->nodes[level];
4386                 if (slot >= btrfs_header_nritems(c)) {
4387                         level++;
4388                         if (level == BTRFS_MAX_LEVEL) {
4389                                 ret = 1;
4390                                 goto done;
4391                         }
4392                         continue;
4393                 }
4394
4395                 if (next) {
4396                         btrfs_tree_unlock(next);
4397                         free_extent_buffer(next);
4398                 }
4399
4400                 next = c;
4401                 ret = read_block_for_search(NULL, root, path, &next, level,
4402                                             slot, &key);
4403                 if (ret == -EAGAIN)
4404                         goto again;
4405
4406                 if (ret < 0) {
4407                         btrfs_release_path(root, path);
4408                         goto done;
4409                 }
4410
4411                 if (!path->skip_locking) {
4412                         ret = btrfs_try_spin_lock(next);
4413                         if (!ret) {
4414                                 btrfs_set_path_blocking(path);
4415                                 btrfs_tree_lock(next);
4416                                 if (!force_blocking)
4417                                         btrfs_clear_path_blocking(path, next);
4418                         }
4419                         if (force_blocking)
4420                                 btrfs_set_lock_blocking(next);
4421                 }
4422                 break;
4423         }
4424         path->slots[level] = slot;
4425         while (1) {
4426                 level--;
4427                 c = path->nodes[level];
4428                 if (path->locks[level])
4429                         btrfs_tree_unlock(c);
4430
4431                 free_extent_buffer(c);
4432                 path->nodes[level] = next;
4433                 path->slots[level] = 0;
4434                 if (!path->skip_locking)
4435                         path->locks[level] = 1;
4436
4437                 if (!level)
4438                         break;
4439
4440                 ret = read_block_for_search(NULL, root, path, &next, level,
4441                                             0, &key);
4442                 if (ret == -EAGAIN)
4443                         goto again;
4444
4445                 if (ret < 0) {
4446                         btrfs_release_path(root, path);
4447                         goto done;
4448                 }
4449
4450                 if (!path->skip_locking) {
4451                         btrfs_assert_tree_locked(path->nodes[level]);
4452                         ret = btrfs_try_spin_lock(next);
4453                         if (!ret) {
4454                                 btrfs_set_path_blocking(path);
4455                                 btrfs_tree_lock(next);
4456                                 if (!force_blocking)
4457                                         btrfs_clear_path_blocking(path, next);
4458                         }
4459                         if (force_blocking)
4460                                 btrfs_set_lock_blocking(next);
4461                 }
4462         }
4463         ret = 0;
4464 done:
4465         unlock_up(path, 0, 1);
4466         path->leave_spinning = old_spinning;
4467         if (!old_spinning)
4468                 btrfs_set_path_blocking(path);
4469
4470         return ret;
4471 }
4472
4473 /*
4474  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4475  * searching until it gets past min_objectid or finds an item of 'type'
4476  *
4477  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4478  */
4479 int btrfs_previous_item(struct btrfs_root *root,
4480                         struct btrfs_path *path, u64 min_objectid,
4481                         int type)
4482 {
4483         struct btrfs_key found_key;
4484         struct extent_buffer *leaf;
4485         u32 nritems;
4486         int ret;
4487
4488         while (1) {
4489                 if (path->slots[0] == 0) {
4490                         btrfs_set_path_blocking(path);
4491                         ret = btrfs_prev_leaf(root, path);
4492                         if (ret != 0)
4493                                 return ret;
4494                 } else {
4495                         path->slots[0]--;
4496                 }
4497                 leaf = path->nodes[0];
4498                 nritems = btrfs_header_nritems(leaf);
4499                 if (nritems == 0)
4500                         return 1;
4501                 if (path->slots[0] == nritems)
4502                         path->slots[0]--;
4503
4504                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4505                 if (found_key.objectid < min_objectid)
4506                         break;
4507                 if (found_key.type == type)
4508                         return 0;
4509                 if (found_key.objectid == min_objectid &&
4510                     found_key.type < type)
4511                         break;
4512         }
4513         return 1;
4514 }