]> rtime.felk.cvut.cz Git - mcf548x/linux.git/blob - drivers/net/e1000e/ethtool.c
Initial 2.6.37
[mcf548x/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(m)           E1000_STATS, \
49                                 sizeof(((struct e1000_adapter *)0)->m), \
50                                 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
52                                 sizeof(((struct net_device *)0)->m), \
53                                 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorc) },
59         { "tx_bytes", E1000_STAT(stats.gotc) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117                               struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         ecmd->speed = -1;
159         ecmd->duplex = -1;
160
161         if (netif_running(netdev)) {
162                 if (netif_carrier_ok(netdev)) {
163                         ecmd->speed = adapter->link_speed;
164                         ecmd->duplex = adapter->link_duplex - 1;
165                 }
166         } else {
167                 u32 status = er32(STATUS);
168                 if (status & E1000_STATUS_LU) {
169                         if (status & E1000_STATUS_SPEED_1000)
170                                 ecmd->speed = 1000;
171                         else if (status & E1000_STATUS_SPEED_100)
172                                 ecmd->speed = 100;
173                         else
174                                 ecmd->speed = 10;
175
176                         if (status & E1000_STATUS_FD)
177                                 ecmd->duplex = DUPLEX_FULL;
178                         else
179                                 ecmd->duplex = DUPLEX_HALF;
180                 }
181         }
182
183         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
184                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185
186         /* MDI-X => 2; MDI =>1; Invalid =>0 */
187         if ((hw->phy.media_type == e1000_media_type_copper) &&
188             netif_carrier_ok(netdev))
189                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
190                                                       ETH_TP_MDI;
191         else
192                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
193
194         return 0;
195 }
196
197 static u32 e1000_get_link(struct net_device *netdev)
198 {
199         struct e1000_adapter *adapter = netdev_priv(netdev);
200         struct e1000_hw *hw = &adapter->hw;
201
202         /*
203          * Avoid touching hardware registers when possible, otherwise
204          * link negotiation can get messed up when user-level scripts
205          * are rapidly polling the driver to see if link is up.
206          */
207         return netif_running(netdev) ? netif_carrier_ok(netdev) :
208             !!(er32(STATUS) & E1000_STATUS_LU);
209 }
210
211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
212 {
213         struct e1000_mac_info *mac = &adapter->hw.mac;
214
215         mac->autoneg = 0;
216
217         /* Fiber NICs only allow 1000 gbps Full duplex */
218         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
219                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
220                 e_err("Unsupported Speed/Duplex configuration\n");
221                 return -EINVAL;
222         }
223
224         switch (spddplx) {
225         case SPEED_10 + DUPLEX_HALF:
226                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
227                 break;
228         case SPEED_10 + DUPLEX_FULL:
229                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
230                 break;
231         case SPEED_100 + DUPLEX_HALF:
232                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
233                 break;
234         case SPEED_100 + DUPLEX_FULL:
235                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
236                 break;
237         case SPEED_1000 + DUPLEX_FULL:
238                 mac->autoneg = 1;
239                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
240                 break;
241         case SPEED_1000 + DUPLEX_HALF: /* not supported */
242         default:
243                 e_err("Unsupported Speed/Duplex configuration\n");
244                 return -EINVAL;
245         }
246         return 0;
247 }
248
249 static int e1000_set_settings(struct net_device *netdev,
250                               struct ethtool_cmd *ecmd)
251 {
252         struct e1000_adapter *adapter = netdev_priv(netdev);
253         struct e1000_hw *hw = &adapter->hw;
254
255         /*
256          * When SoL/IDER sessions are active, autoneg/speed/duplex
257          * cannot be changed
258          */
259         if (e1000_check_reset_block(hw)) {
260                 e_err("Cannot change link characteristics when SoL/IDER is "
261                       "active.\n");
262                 return -EINVAL;
263         }
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
266                 msleep(1);
267
268         if (ecmd->autoneg == AUTONEG_ENABLE) {
269                 hw->mac.autoneg = 1;
270                 if (hw->phy.media_type == e1000_media_type_fiber)
271                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
272                                                      ADVERTISED_FIBRE |
273                                                      ADVERTISED_Autoneg;
274                 else
275                         hw->phy.autoneg_advertised = ecmd->advertising |
276                                                      ADVERTISED_TP |
277                                                      ADVERTISED_Autoneg;
278                 ecmd->advertising = hw->phy.autoneg_advertised;
279                 if (adapter->fc_autoneg)
280                         hw->fc.requested_mode = e1000_fc_default;
281         } else {
282                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
283                         clear_bit(__E1000_RESETTING, &adapter->state);
284                         return -EINVAL;
285                 }
286         }
287
288         /* reset the link */
289
290         if (netif_running(adapter->netdev)) {
291                 e1000e_down(adapter);
292                 e1000e_up(adapter);
293         } else {
294                 e1000e_reset(adapter);
295         }
296
297         clear_bit(__E1000_RESETTING, &adapter->state);
298         return 0;
299 }
300
301 static void e1000_get_pauseparam(struct net_device *netdev,
302                                  struct ethtool_pauseparam *pause)
303 {
304         struct e1000_adapter *adapter = netdev_priv(netdev);
305         struct e1000_hw *hw = &adapter->hw;
306
307         pause->autoneg =
308                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
309
310         if (hw->fc.current_mode == e1000_fc_rx_pause) {
311                 pause->rx_pause = 1;
312         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
313                 pause->tx_pause = 1;
314         } else if (hw->fc.current_mode == e1000_fc_full) {
315                 pause->rx_pause = 1;
316                 pause->tx_pause = 1;
317         }
318 }
319
320 static int e1000_set_pauseparam(struct net_device *netdev,
321                                 struct ethtool_pauseparam *pause)
322 {
323         struct e1000_adapter *adapter = netdev_priv(netdev);
324         struct e1000_hw *hw = &adapter->hw;
325         int retval = 0;
326
327         adapter->fc_autoneg = pause->autoneg;
328
329         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
330                 msleep(1);
331
332         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
333                 hw->fc.requested_mode = e1000_fc_default;
334                 if (netif_running(adapter->netdev)) {
335                         e1000e_down(adapter);
336                         e1000e_up(adapter);
337                 } else {
338                         e1000e_reset(adapter);
339                 }
340         } else {
341                 if (pause->rx_pause && pause->tx_pause)
342                         hw->fc.requested_mode = e1000_fc_full;
343                 else if (pause->rx_pause && !pause->tx_pause)
344                         hw->fc.requested_mode = e1000_fc_rx_pause;
345                 else if (!pause->rx_pause && pause->tx_pause)
346                         hw->fc.requested_mode = e1000_fc_tx_pause;
347                 else if (!pause->rx_pause && !pause->tx_pause)
348                         hw->fc.requested_mode = e1000_fc_none;
349
350                 hw->fc.current_mode = hw->fc.requested_mode;
351
352                 if (hw->phy.media_type == e1000_media_type_fiber) {
353                         retval = hw->mac.ops.setup_link(hw);
354                         /* implicit goto out */
355                 } else {
356                         retval = e1000e_force_mac_fc(hw);
357                         if (retval)
358                                 goto out;
359                         e1000e_set_fc_watermarks(hw);
360                 }
361         }
362
363 out:
364         clear_bit(__E1000_RESETTING, &adapter->state);
365         return retval;
366 }
367
368 static u32 e1000_get_rx_csum(struct net_device *netdev)
369 {
370         struct e1000_adapter *adapter = netdev_priv(netdev);
371         return adapter->flags & FLAG_RX_CSUM_ENABLED;
372 }
373
374 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
375 {
376         struct e1000_adapter *adapter = netdev_priv(netdev);
377
378         if (data)
379                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
380         else
381                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
382
383         if (netif_running(netdev))
384                 e1000e_reinit_locked(adapter);
385         else
386                 e1000e_reset(adapter);
387         return 0;
388 }
389
390 static u32 e1000_get_tx_csum(struct net_device *netdev)
391 {
392         return (netdev->features & NETIF_F_HW_CSUM) != 0;
393 }
394
395 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
396 {
397         if (data)
398                 netdev->features |= NETIF_F_HW_CSUM;
399         else
400                 netdev->features &= ~NETIF_F_HW_CSUM;
401
402         return 0;
403 }
404
405 static int e1000_set_tso(struct net_device *netdev, u32 data)
406 {
407         struct e1000_adapter *adapter = netdev_priv(netdev);
408
409         if (data) {
410                 netdev->features |= NETIF_F_TSO;
411                 netdev->features |= NETIF_F_TSO6;
412         } else {
413                 netdev->features &= ~NETIF_F_TSO;
414                 netdev->features &= ~NETIF_F_TSO6;
415         }
416
417         adapter->flags |= FLAG_TSO_FORCE;
418         return 0;
419 }
420
421 static u32 e1000_get_msglevel(struct net_device *netdev)
422 {
423         struct e1000_adapter *adapter = netdev_priv(netdev);
424         return adapter->msg_enable;
425 }
426
427 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
428 {
429         struct e1000_adapter *adapter = netdev_priv(netdev);
430         adapter->msg_enable = data;
431 }
432
433 static int e1000_get_regs_len(struct net_device *netdev)
434 {
435 #define E1000_REGS_LEN 32 /* overestimate */
436         return E1000_REGS_LEN * sizeof(u32);
437 }
438
439 static void e1000_get_regs(struct net_device *netdev,
440                            struct ethtool_regs *regs, void *p)
441 {
442         struct e1000_adapter *adapter = netdev_priv(netdev);
443         struct e1000_hw *hw = &adapter->hw;
444         u32 *regs_buff = p;
445         u16 phy_data;
446         u8 revision_id;
447
448         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
451
452         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
453
454         regs_buff[0]  = er32(CTRL);
455         regs_buff[1]  = er32(STATUS);
456
457         regs_buff[2]  = er32(RCTL);
458         regs_buff[3]  = er32(RDLEN);
459         regs_buff[4]  = er32(RDH);
460         regs_buff[5]  = er32(RDT);
461         regs_buff[6]  = er32(RDTR);
462
463         regs_buff[7]  = er32(TCTL);
464         regs_buff[8]  = er32(TDLEN);
465         regs_buff[9]  = er32(TDH);
466         regs_buff[10] = er32(TDT);
467         regs_buff[11] = er32(TIDV);
468
469         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
470
471         /* ethtool doesn't use anything past this point, so all this
472          * code is likely legacy junk for apps that may or may not
473          * exist */
474         if (hw->phy.type == e1000_phy_m88) {
475                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476                 regs_buff[13] = (u32)phy_data; /* cable length */
477                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482                 regs_buff[18] = regs_buff[13]; /* cable polarity */
483                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484                 regs_buff[20] = regs_buff[17]; /* polarity correction */
485                 /* phy receive errors */
486                 regs_buff[22] = adapter->phy_stats.receive_errors;
487                 regs_buff[23] = regs_buff[13]; /* mdix mode */
488         }
489         regs_buff[21] = 0; /* was idle_errors */
490         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
491         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
492         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
493 }
494
495 static int e1000_get_eeprom_len(struct net_device *netdev)
496 {
497         struct e1000_adapter *adapter = netdev_priv(netdev);
498         return adapter->hw.nvm.word_size * 2;
499 }
500
501 static int e1000_get_eeprom(struct net_device *netdev,
502                             struct ethtool_eeprom *eeprom, u8 *bytes)
503 {
504         struct e1000_adapter *adapter = netdev_priv(netdev);
505         struct e1000_hw *hw = &adapter->hw;
506         u16 *eeprom_buff;
507         int first_word;
508         int last_word;
509         int ret_val = 0;
510         u16 i;
511
512         if (eeprom->len == 0)
513                 return -EINVAL;
514
515         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
516
517         first_word = eeprom->offset >> 1;
518         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
519
520         eeprom_buff = kmalloc(sizeof(u16) *
521                         (last_word - first_word + 1), GFP_KERNEL);
522         if (!eeprom_buff)
523                 return -ENOMEM;
524
525         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526                 ret_val = e1000_read_nvm(hw, first_word,
527                                          last_word - first_word + 1,
528                                          eeprom_buff);
529         } else {
530                 for (i = 0; i < last_word - first_word + 1; i++) {
531                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
532                                                       &eeprom_buff[i]);
533                         if (ret_val)
534                                 break;
535                 }
536         }
537
538         if (ret_val) {
539                 /* a read error occurred, throw away the result */
540                 memset(eeprom_buff, 0xff, sizeof(u16) *
541                        (last_word - first_word + 1));
542         } else {
543                 /* Device's eeprom is always little-endian, word addressable */
544                 for (i = 0; i < last_word - first_word + 1; i++)
545                         le16_to_cpus(&eeprom_buff[i]);
546         }
547
548         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
549         kfree(eeprom_buff);
550
551         return ret_val;
552 }
553
554 static int e1000_set_eeprom(struct net_device *netdev,
555                             struct ethtool_eeprom *eeprom, u8 *bytes)
556 {
557         struct e1000_adapter *adapter = netdev_priv(netdev);
558         struct e1000_hw *hw = &adapter->hw;
559         u16 *eeprom_buff;
560         void *ptr;
561         int max_len;
562         int first_word;
563         int last_word;
564         int ret_val = 0;
565         u16 i;
566
567         if (eeprom->len == 0)
568                 return -EOPNOTSUPP;
569
570         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
571                 return -EFAULT;
572
573         if (adapter->flags & FLAG_READ_ONLY_NVM)
574                 return -EINVAL;
575
576         max_len = hw->nvm.word_size * 2;
577
578         first_word = eeprom->offset >> 1;
579         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
580         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
581         if (!eeprom_buff)
582                 return -ENOMEM;
583
584         ptr = (void *)eeprom_buff;
585
586         if (eeprom->offset & 1) {
587                 /* need read/modify/write of first changed EEPROM word */
588                 /* only the second byte of the word is being modified */
589                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590                 ptr++;
591         }
592         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
593                 /* need read/modify/write of last changed EEPROM word */
594                 /* only the first byte of the word is being modified */
595                 ret_val = e1000_read_nvm(hw, last_word, 1,
596                                   &eeprom_buff[last_word - first_word]);
597
598         if (ret_val)
599                 goto out;
600
601         /* Device's eeprom is always little-endian, word addressable */
602         for (i = 0; i < last_word - first_word + 1; i++)
603                 le16_to_cpus(&eeprom_buff[i]);
604
605         memcpy(ptr, bytes, eeprom->len);
606
607         for (i = 0; i < last_word - first_word + 1; i++)
608                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
609
610         ret_val = e1000_write_nvm(hw, first_word,
611                                   last_word - first_word + 1, eeprom_buff);
612
613         if (ret_val)
614                 goto out;
615
616         /*
617          * Update the checksum over the first part of the EEPROM if needed
618          * and flush shadow RAM for applicable controllers
619          */
620         if ((first_word <= NVM_CHECKSUM_REG) ||
621             (hw->mac.type == e1000_82583) ||
622             (hw->mac.type == e1000_82574) ||
623             (hw->mac.type == e1000_82573))
624                 ret_val = e1000e_update_nvm_checksum(hw);
625
626 out:
627         kfree(eeprom_buff);
628         return ret_val;
629 }
630
631 static void e1000_get_drvinfo(struct net_device *netdev,
632                               struct ethtool_drvinfo *drvinfo)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         char firmware_version[32];
636
637         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
638         strncpy(drvinfo->version, e1000e_driver_version, 32);
639
640         /*
641          * EEPROM image version # is reported as firmware version # for
642          * PCI-E controllers
643          */
644         sprintf(firmware_version, "%d.%d-%d",
645                 (adapter->eeprom_vers & 0xF000) >> 12,
646                 (adapter->eeprom_vers & 0x0FF0) >> 4,
647                 (adapter->eeprom_vers & 0x000F));
648
649         strncpy(drvinfo->fw_version, firmware_version, 32);
650         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
651         drvinfo->regdump_len = e1000_get_regs_len(netdev);
652         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
653 }
654
655 static void e1000_get_ringparam(struct net_device *netdev,
656                                 struct ethtool_ringparam *ring)
657 {
658         struct e1000_adapter *adapter = netdev_priv(netdev);
659         struct e1000_ring *tx_ring = adapter->tx_ring;
660         struct e1000_ring *rx_ring = adapter->rx_ring;
661
662         ring->rx_max_pending = E1000_MAX_RXD;
663         ring->tx_max_pending = E1000_MAX_TXD;
664         ring->rx_mini_max_pending = 0;
665         ring->rx_jumbo_max_pending = 0;
666         ring->rx_pending = rx_ring->count;
667         ring->tx_pending = tx_ring->count;
668         ring->rx_mini_pending = 0;
669         ring->rx_jumbo_pending = 0;
670 }
671
672 static int e1000_set_ringparam(struct net_device *netdev,
673                                struct ethtool_ringparam *ring)
674 {
675         struct e1000_adapter *adapter = netdev_priv(netdev);
676         struct e1000_ring *tx_ring, *tx_old;
677         struct e1000_ring *rx_ring, *rx_old;
678         int err;
679
680         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681                 return -EINVAL;
682
683         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
684                 msleep(1);
685
686         if (netif_running(adapter->netdev))
687                 e1000e_down(adapter);
688
689         tx_old = adapter->tx_ring;
690         rx_old = adapter->rx_ring;
691
692         err = -ENOMEM;
693         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
694         if (!tx_ring)
695                 goto err_alloc_tx;
696         /*
697          * use a memcpy to save any previously configured
698          * items like napi structs from having to be
699          * reinitialized
700          */
701         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
702
703         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
704         if (!rx_ring)
705                 goto err_alloc_rx;
706         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
707
708         adapter->tx_ring = tx_ring;
709         adapter->rx_ring = rx_ring;
710
711         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
712         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
713         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
714
715         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
716         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
717         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
718
719         if (netif_running(adapter->netdev)) {
720                 /* Try to get new resources before deleting old */
721                 err = e1000e_setup_rx_resources(adapter);
722                 if (err)
723                         goto err_setup_rx;
724                 err = e1000e_setup_tx_resources(adapter);
725                 if (err)
726                         goto err_setup_tx;
727
728                 /*
729                  * restore the old in order to free it,
730                  * then add in the new
731                  */
732                 adapter->rx_ring = rx_old;
733                 adapter->tx_ring = tx_old;
734                 e1000e_free_rx_resources(adapter);
735                 e1000e_free_tx_resources(adapter);
736                 kfree(tx_old);
737                 kfree(rx_old);
738                 adapter->rx_ring = rx_ring;
739                 adapter->tx_ring = tx_ring;
740                 err = e1000e_up(adapter);
741                 if (err)
742                         goto err_setup;
743         }
744
745         clear_bit(__E1000_RESETTING, &adapter->state);
746         return 0;
747 err_setup_tx:
748         e1000e_free_rx_resources(adapter);
749 err_setup_rx:
750         adapter->rx_ring = rx_old;
751         adapter->tx_ring = tx_old;
752         kfree(rx_ring);
753 err_alloc_rx:
754         kfree(tx_ring);
755 err_alloc_tx:
756         e1000e_up(adapter);
757 err_setup:
758         clear_bit(__E1000_RESETTING, &adapter->state);
759         return err;
760 }
761
762 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
763                              int reg, int offset, u32 mask, u32 write)
764 {
765         u32 pat, val;
766         static const u32 test[] =
767                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
768         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
769                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
770                                       (test[pat] & write));
771                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
772                 if (val != (test[pat] & write & mask)) {
773                         e_err("pattern test reg %04X failed: got 0x%08X "
774                               "expected 0x%08X\n", reg + offset, val,
775                               (test[pat] & write & mask));
776                         *data = reg;
777                         return 1;
778                 }
779         }
780         return 0;
781 }
782
783 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
784                               int reg, u32 mask, u32 write)
785 {
786         u32 val;
787         __ew32(&adapter->hw, reg, write & mask);
788         val = __er32(&adapter->hw, reg);
789         if ((write & mask) != (val & mask)) {
790                 e_err("set/check reg %04X test failed: got 0x%08X "
791                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
792                 *data = reg;
793                 return 1;
794         }
795         return 0;
796 }
797 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
798         do {                                                                   \
799                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
800                         return 1;                                              \
801         } while (0)
802 #define REG_PATTERN_TEST(reg, mask, write)                                     \
803         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
804
805 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
806         do {                                                                   \
807                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
808                         return 1;                                              \
809         } while (0)
810
811 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
812 {
813         struct e1000_hw *hw = &adapter->hw;
814         struct e1000_mac_info *mac = &adapter->hw.mac;
815         u32 value;
816         u32 before;
817         u32 after;
818         u32 i;
819         u32 toggle;
820         u32 mask;
821
822         /*
823          * The status register is Read Only, so a write should fail.
824          * Some bits that get toggled are ignored.
825          */
826         switch (mac->type) {
827         /* there are several bits on newer hardware that are r/w */
828         case e1000_82571:
829         case e1000_82572:
830         case e1000_80003es2lan:
831                 toggle = 0x7FFFF3FF;
832                 break;
833         default:
834                 toggle = 0x7FFFF033;
835                 break;
836         }
837
838         before = er32(STATUS);
839         value = (er32(STATUS) & toggle);
840         ew32(STATUS, toggle);
841         after = er32(STATUS) & toggle;
842         if (value != after) {
843                 e_err("failed STATUS register test got: 0x%08X expected: "
844                       "0x%08X\n", after, value);
845                 *data = 1;
846                 return 1;
847         }
848         /* restore previous status */
849         ew32(STATUS, before);
850
851         if (!(adapter->flags & FLAG_IS_ICH)) {
852                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
853                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
854                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
855                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
856         }
857
858         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
859         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
860         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
861         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
862         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
863         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
864         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
865         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
866         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
867         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
868
869         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
870
871         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
872         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
873         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
874
875         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
876         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
877         if (!(adapter->flags & FLAG_IS_ICH))
878                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
879         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
880         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
881         mask = 0x8003FFFF;
882         switch (mac->type) {
883         case e1000_ich10lan:
884         case e1000_pchlan:
885         case e1000_pch2lan:
886                 mask |= (1 << 18);
887                 break;
888         default:
889                 break;
890         }
891         for (i = 0; i < mac->rar_entry_count; i++)
892                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
893                                        mask, 0xFFFFFFFF);
894
895         for (i = 0; i < mac->mta_reg_count; i++)
896                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
897
898         *data = 0;
899         return 0;
900 }
901
902 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
903 {
904         u16 temp;
905         u16 checksum = 0;
906         u16 i;
907
908         *data = 0;
909         /* Read and add up the contents of the EEPROM */
910         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
911                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
912                         *data = 1;
913                         return *data;
914                 }
915                 checksum += temp;
916         }
917
918         /* If Checksum is not Correct return error else test passed */
919         if ((checksum != (u16) NVM_SUM) && !(*data))
920                 *data = 2;
921
922         return *data;
923 }
924
925 static irqreturn_t e1000_test_intr(int irq, void *data)
926 {
927         struct net_device *netdev = (struct net_device *) data;
928         struct e1000_adapter *adapter = netdev_priv(netdev);
929         struct e1000_hw *hw = &adapter->hw;
930
931         adapter->test_icr |= er32(ICR);
932
933         return IRQ_HANDLED;
934 }
935
936 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
937 {
938         struct net_device *netdev = adapter->netdev;
939         struct e1000_hw *hw = &adapter->hw;
940         u32 mask;
941         u32 shared_int = 1;
942         u32 irq = adapter->pdev->irq;
943         int i;
944         int ret_val = 0;
945         int int_mode = E1000E_INT_MODE_LEGACY;
946
947         *data = 0;
948
949         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
950         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
951                 int_mode = adapter->int_mode;
952                 e1000e_reset_interrupt_capability(adapter);
953                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
954                 e1000e_set_interrupt_capability(adapter);
955         }
956         /* Hook up test interrupt handler just for this test */
957         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
958                          netdev)) {
959                 shared_int = 0;
960         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
961                  netdev->name, netdev)) {
962                 *data = 1;
963                 ret_val = -1;
964                 goto out;
965         }
966         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
967
968         /* Disable all the interrupts */
969         ew32(IMC, 0xFFFFFFFF);
970         msleep(10);
971
972         /* Test each interrupt */
973         for (i = 0; i < 10; i++) {
974                 /* Interrupt to test */
975                 mask = 1 << i;
976
977                 if (adapter->flags & FLAG_IS_ICH) {
978                         switch (mask) {
979                         case E1000_ICR_RXSEQ:
980                                 continue;
981                         case 0x00000100:
982                                 if (adapter->hw.mac.type == e1000_ich8lan ||
983                                     adapter->hw.mac.type == e1000_ich9lan)
984                                         continue;
985                                 break;
986                         default:
987                                 break;
988                         }
989                 }
990
991                 if (!shared_int) {
992                         /*
993                          * Disable the interrupt to be reported in
994                          * the cause register and then force the same
995                          * interrupt and see if one gets posted.  If
996                          * an interrupt was posted to the bus, the
997                          * test failed.
998                          */
999                         adapter->test_icr = 0;
1000                         ew32(IMC, mask);
1001                         ew32(ICS, mask);
1002                         msleep(10);
1003
1004                         if (adapter->test_icr & mask) {
1005                                 *data = 3;
1006                                 break;
1007                         }
1008                 }
1009
1010                 /*
1011                  * Enable the interrupt to be reported in
1012                  * the cause register and then force the same
1013                  * interrupt and see if one gets posted.  If
1014                  * an interrupt was not posted to the bus, the
1015                  * test failed.
1016                  */
1017                 adapter->test_icr = 0;
1018                 ew32(IMS, mask);
1019                 ew32(ICS, mask);
1020                 msleep(10);
1021
1022                 if (!(adapter->test_icr & mask)) {
1023                         *data = 4;
1024                         break;
1025                 }
1026
1027                 if (!shared_int) {
1028                         /*
1029                          * Disable the other interrupts to be reported in
1030                          * the cause register and then force the other
1031                          * interrupts and see if any get posted.  If
1032                          * an interrupt was posted to the bus, the
1033                          * test failed.
1034                          */
1035                         adapter->test_icr = 0;
1036                         ew32(IMC, ~mask & 0x00007FFF);
1037                         ew32(ICS, ~mask & 0x00007FFF);
1038                         msleep(10);
1039
1040                         if (adapter->test_icr) {
1041                                 *data = 5;
1042                                 break;
1043                         }
1044                 }
1045         }
1046
1047         /* Disable all the interrupts */
1048         ew32(IMC, 0xFFFFFFFF);
1049         msleep(10);
1050
1051         /* Unhook test interrupt handler */
1052         free_irq(irq, netdev);
1053
1054 out:
1055         if (int_mode == E1000E_INT_MODE_MSIX) {
1056                 e1000e_reset_interrupt_capability(adapter);
1057                 adapter->int_mode = int_mode;
1058                 e1000e_set_interrupt_capability(adapter);
1059         }
1060
1061         return ret_val;
1062 }
1063
1064 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1065 {
1066         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1067         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1068         struct pci_dev *pdev = adapter->pdev;
1069         int i;
1070
1071         if (tx_ring->desc && tx_ring->buffer_info) {
1072                 for (i = 0; i < tx_ring->count; i++) {
1073                         if (tx_ring->buffer_info[i].dma)
1074                                 dma_unmap_single(&pdev->dev,
1075                                         tx_ring->buffer_info[i].dma,
1076                                         tx_ring->buffer_info[i].length,
1077                                         DMA_TO_DEVICE);
1078                         if (tx_ring->buffer_info[i].skb)
1079                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1080                 }
1081         }
1082
1083         if (rx_ring->desc && rx_ring->buffer_info) {
1084                 for (i = 0; i < rx_ring->count; i++) {
1085                         if (rx_ring->buffer_info[i].dma)
1086                                 dma_unmap_single(&pdev->dev,
1087                                         rx_ring->buffer_info[i].dma,
1088                                         2048, DMA_FROM_DEVICE);
1089                         if (rx_ring->buffer_info[i].skb)
1090                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1091                 }
1092         }
1093
1094         if (tx_ring->desc) {
1095                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1096                                   tx_ring->dma);
1097                 tx_ring->desc = NULL;
1098         }
1099         if (rx_ring->desc) {
1100                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1101                                   rx_ring->dma);
1102                 rx_ring->desc = NULL;
1103         }
1104
1105         kfree(tx_ring->buffer_info);
1106         tx_ring->buffer_info = NULL;
1107         kfree(rx_ring->buffer_info);
1108         rx_ring->buffer_info = NULL;
1109 }
1110
1111 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1112 {
1113         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1114         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1115         struct pci_dev *pdev = adapter->pdev;
1116         struct e1000_hw *hw = &adapter->hw;
1117         u32 rctl;
1118         int i;
1119         int ret_val;
1120
1121         /* Setup Tx descriptor ring and Tx buffers */
1122
1123         if (!tx_ring->count)
1124                 tx_ring->count = E1000_DEFAULT_TXD;
1125
1126         tx_ring->buffer_info = kcalloc(tx_ring->count,
1127                                        sizeof(struct e1000_buffer),
1128                                        GFP_KERNEL);
1129         if (!(tx_ring->buffer_info)) {
1130                 ret_val = 1;
1131                 goto err_nomem;
1132         }
1133
1134         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1135         tx_ring->size = ALIGN(tx_ring->size, 4096);
1136         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1137                                            &tx_ring->dma, GFP_KERNEL);
1138         if (!tx_ring->desc) {
1139                 ret_val = 2;
1140                 goto err_nomem;
1141         }
1142         tx_ring->next_to_use = 0;
1143         tx_ring->next_to_clean = 0;
1144
1145         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1146         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1147         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1148         ew32(TDH, 0);
1149         ew32(TDT, 0);
1150         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1151              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1152              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1153
1154         for (i = 0; i < tx_ring->count; i++) {
1155                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1156                 struct sk_buff *skb;
1157                 unsigned int skb_size = 1024;
1158
1159                 skb = alloc_skb(skb_size, GFP_KERNEL);
1160                 if (!skb) {
1161                         ret_val = 3;
1162                         goto err_nomem;
1163                 }
1164                 skb_put(skb, skb_size);
1165                 tx_ring->buffer_info[i].skb = skb;
1166                 tx_ring->buffer_info[i].length = skb->len;
1167                 tx_ring->buffer_info[i].dma =
1168                         dma_map_single(&pdev->dev, skb->data, skb->len,
1169                                        DMA_TO_DEVICE);
1170                 if (dma_mapping_error(&pdev->dev,
1171                                       tx_ring->buffer_info[i].dma)) {
1172                         ret_val = 4;
1173                         goto err_nomem;
1174                 }
1175                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1176                 tx_desc->lower.data = cpu_to_le32(skb->len);
1177                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1178                                                    E1000_TXD_CMD_IFCS |
1179                                                    E1000_TXD_CMD_RS);
1180                 tx_desc->upper.data = 0;
1181         }
1182
1183         /* Setup Rx descriptor ring and Rx buffers */
1184
1185         if (!rx_ring->count)
1186                 rx_ring->count = E1000_DEFAULT_RXD;
1187
1188         rx_ring->buffer_info = kcalloc(rx_ring->count,
1189                                        sizeof(struct e1000_buffer),
1190                                        GFP_KERNEL);
1191         if (!(rx_ring->buffer_info)) {
1192                 ret_val = 5;
1193                 goto err_nomem;
1194         }
1195
1196         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1197         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1198                                            &rx_ring->dma, GFP_KERNEL);
1199         if (!rx_ring->desc) {
1200                 ret_val = 6;
1201                 goto err_nomem;
1202         }
1203         rx_ring->next_to_use = 0;
1204         rx_ring->next_to_clean = 0;
1205
1206         rctl = er32(RCTL);
1207         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1208         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1209         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1210         ew32(RDLEN, rx_ring->size);
1211         ew32(RDH, 0);
1212         ew32(RDT, 0);
1213         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1214                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1215                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1216                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1217                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1218         ew32(RCTL, rctl);
1219
1220         for (i = 0; i < rx_ring->count; i++) {
1221                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1222                 struct sk_buff *skb;
1223
1224                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1225                 if (!skb) {
1226                         ret_val = 7;
1227                         goto err_nomem;
1228                 }
1229                 skb_reserve(skb, NET_IP_ALIGN);
1230                 rx_ring->buffer_info[i].skb = skb;
1231                 rx_ring->buffer_info[i].dma =
1232                         dma_map_single(&pdev->dev, skb->data, 2048,
1233                                        DMA_FROM_DEVICE);
1234                 if (dma_mapping_error(&pdev->dev,
1235                                       rx_ring->buffer_info[i].dma)) {
1236                         ret_val = 8;
1237                         goto err_nomem;
1238                 }
1239                 rx_desc->buffer_addr =
1240                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1241                 memset(skb->data, 0x00, skb->len);
1242         }
1243
1244         return 0;
1245
1246 err_nomem:
1247         e1000_free_desc_rings(adapter);
1248         return ret_val;
1249 }
1250
1251 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1252 {
1253         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1254         e1e_wphy(&adapter->hw, 29, 0x001F);
1255         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1256         e1e_wphy(&adapter->hw, 29, 0x001A);
1257         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1258 }
1259
1260 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1261 {
1262         struct e1000_hw *hw = &adapter->hw;
1263         u32 ctrl_reg = 0;
1264         u32 stat_reg = 0;
1265         u16 phy_reg = 0;
1266
1267         hw->mac.autoneg = 0;
1268
1269         if (hw->phy.type == e1000_phy_ife) {
1270                 /* force 100, set loopback */
1271                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1272
1273                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1274                 ctrl_reg = er32(CTRL);
1275                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1279                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1280
1281                 ew32(CTRL, ctrl_reg);
1282                 udelay(500);
1283
1284                 return 0;
1285         }
1286
1287         /* Specific PHY configuration for loopback */
1288         switch (hw->phy.type) {
1289         case e1000_phy_m88:
1290                 /* Auto-MDI/MDIX Off */
1291                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1292                 /* reset to update Auto-MDI/MDIX */
1293                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1294                 /* autoneg off */
1295                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1296                 break;
1297         case e1000_phy_gg82563:
1298                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1299                 break;
1300         case e1000_phy_bm:
1301                 /* Set Default MAC Interface speed to 1GB */
1302                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1303                 phy_reg &= ~0x0007;
1304                 phy_reg |= 0x006;
1305                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1306                 /* Assert SW reset for above settings to take effect */
1307                 e1000e_commit_phy(hw);
1308                 mdelay(1);
1309                 /* Force Full Duplex */
1310                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1311                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1312                 /* Set Link Up (in force link) */
1313                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1314                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1315                 /* Force Link */
1316                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1317                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1318                 /* Set Early Link Enable */
1319                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1320                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1321                 break;
1322         case e1000_phy_82577:
1323         case e1000_phy_82578:
1324                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1325                 e1000_configure_k1_ich8lan(hw, false);
1326                 break;
1327         case e1000_phy_82579:
1328                 /* Disable PHY energy detect power down */
1329                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1330                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1331                 /* Disable full chip energy detect */
1332                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1333                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1334                 /* Enable loopback on the PHY */
1335 #define I82577_PHY_LBK_CTRL          19
1336                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1337                 break;
1338         default:
1339                 break;
1340         }
1341
1342         /* force 1000, set loopback */
1343         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1344         mdelay(250);
1345
1346         /* Now set up the MAC to the same speed/duplex as the PHY. */
1347         ctrl_reg = er32(CTRL);
1348         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1349         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1350                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1351                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1352                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1353
1354         if (adapter->flags & FLAG_IS_ICH)
1355                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1356
1357         if (hw->phy.media_type == e1000_media_type_copper &&
1358             hw->phy.type == e1000_phy_m88) {
1359                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1360         } else {
1361                 /*
1362                  * Set the ILOS bit on the fiber Nic if half duplex link is
1363                  * detected.
1364                  */
1365                 stat_reg = er32(STATUS);
1366                 if ((stat_reg & E1000_STATUS_FD) == 0)
1367                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1368         }
1369
1370         ew32(CTRL, ctrl_reg);
1371
1372         /*
1373          * Disable the receiver on the PHY so when a cable is plugged in, the
1374          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1375          */
1376         if (hw->phy.type == e1000_phy_m88)
1377                 e1000_phy_disable_receiver(adapter);
1378
1379         udelay(500);
1380
1381         return 0;
1382 }
1383
1384 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1385 {
1386         struct e1000_hw *hw = &adapter->hw;
1387         u32 ctrl = er32(CTRL);
1388         int link = 0;
1389
1390         /* special requirements for 82571/82572 fiber adapters */
1391
1392         /*
1393          * jump through hoops to make sure link is up because serdes
1394          * link is hardwired up
1395          */
1396         ctrl |= E1000_CTRL_SLU;
1397         ew32(CTRL, ctrl);
1398
1399         /* disable autoneg */
1400         ctrl = er32(TXCW);
1401         ctrl &= ~(1 << 31);
1402         ew32(TXCW, ctrl);
1403
1404         link = (er32(STATUS) & E1000_STATUS_LU);
1405
1406         if (!link) {
1407                 /* set invert loss of signal */
1408                 ctrl = er32(CTRL);
1409                 ctrl |= E1000_CTRL_ILOS;
1410                 ew32(CTRL, ctrl);
1411         }
1412
1413         /*
1414          * special write to serdes control register to enable SerDes analog
1415          * loopback
1416          */
1417 #define E1000_SERDES_LB_ON 0x410
1418         ew32(SCTL, E1000_SERDES_LB_ON);
1419         msleep(10);
1420
1421         return 0;
1422 }
1423
1424 /* only call this for fiber/serdes connections to es2lan */
1425 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1426 {
1427         struct e1000_hw *hw = &adapter->hw;
1428         u32 ctrlext = er32(CTRL_EXT);
1429         u32 ctrl = er32(CTRL);
1430
1431         /*
1432          * save CTRL_EXT to restore later, reuse an empty variable (unused
1433          * on mac_type 80003es2lan)
1434          */
1435         adapter->tx_fifo_head = ctrlext;
1436
1437         /* clear the serdes mode bits, putting the device into mac loopback */
1438         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1439         ew32(CTRL_EXT, ctrlext);
1440
1441         /* force speed to 1000/FD, link up */
1442         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1443         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1444                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1445         ew32(CTRL, ctrl);
1446
1447         /* set mac loopback */
1448         ctrl = er32(RCTL);
1449         ctrl |= E1000_RCTL_LBM_MAC;
1450         ew32(RCTL, ctrl);
1451
1452         /* set testing mode parameters (no need to reset later) */
1453 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1454 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1455         ew32(KMRNCTRLSTA,
1456              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1457
1458         return 0;
1459 }
1460
1461 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1462 {
1463         struct e1000_hw *hw = &adapter->hw;
1464         u32 rctl;
1465
1466         if (hw->phy.media_type == e1000_media_type_fiber ||
1467             hw->phy.media_type == e1000_media_type_internal_serdes) {
1468                 switch (hw->mac.type) {
1469                 case e1000_80003es2lan:
1470                         return e1000_set_es2lan_mac_loopback(adapter);
1471                         break;
1472                 case e1000_82571:
1473                 case e1000_82572:
1474                         return e1000_set_82571_fiber_loopback(adapter);
1475                         break;
1476                 default:
1477                         rctl = er32(RCTL);
1478                         rctl |= E1000_RCTL_LBM_TCVR;
1479                         ew32(RCTL, rctl);
1480                         return 0;
1481                 }
1482         } else if (hw->phy.media_type == e1000_media_type_copper) {
1483                 return e1000_integrated_phy_loopback(adapter);
1484         }
1485
1486         return 7;
1487 }
1488
1489 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1490 {
1491         struct e1000_hw *hw = &adapter->hw;
1492         u32 rctl;
1493         u16 phy_reg;
1494
1495         rctl = er32(RCTL);
1496         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1497         ew32(RCTL, rctl);
1498
1499         switch (hw->mac.type) {
1500         case e1000_80003es2lan:
1501                 if (hw->phy.media_type == e1000_media_type_fiber ||
1502                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1503                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1504                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1505                         adapter->tx_fifo_head = 0;
1506                 }
1507                 /* fall through */
1508         case e1000_82571:
1509         case e1000_82572:
1510                 if (hw->phy.media_type == e1000_media_type_fiber ||
1511                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1512 #define E1000_SERDES_LB_OFF 0x400
1513                         ew32(SCTL, E1000_SERDES_LB_OFF);
1514                         msleep(10);
1515                         break;
1516                 }
1517                 /* Fall Through */
1518         default:
1519                 hw->mac.autoneg = 1;
1520                 if (hw->phy.type == e1000_phy_gg82563)
1521                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1522                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1523                 if (phy_reg & MII_CR_LOOPBACK) {
1524                         phy_reg &= ~MII_CR_LOOPBACK;
1525                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1526                         e1000e_commit_phy(hw);
1527                 }
1528                 break;
1529         }
1530 }
1531
1532 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1533                                       unsigned int frame_size)
1534 {
1535         memset(skb->data, 0xFF, frame_size);
1536         frame_size &= ~1;
1537         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1538         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1539         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1540 }
1541
1542 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1543                                     unsigned int frame_size)
1544 {
1545         frame_size &= ~1;
1546         if (*(skb->data + 3) == 0xFF)
1547                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1548                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1549                         return 0;
1550         return 13;
1551 }
1552
1553 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1554 {
1555         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1556         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1557         struct pci_dev *pdev = adapter->pdev;
1558         struct e1000_hw *hw = &adapter->hw;
1559         int i, j, k, l;
1560         int lc;
1561         int good_cnt;
1562         int ret_val = 0;
1563         unsigned long time;
1564
1565         ew32(RDT, rx_ring->count - 1);
1566
1567         /*
1568          * Calculate the loop count based on the largest descriptor ring
1569          * The idea is to wrap the largest ring a number of times using 64
1570          * send/receive pairs during each loop
1571          */
1572
1573         if (rx_ring->count <= tx_ring->count)
1574                 lc = ((tx_ring->count / 64) * 2) + 1;
1575         else
1576                 lc = ((rx_ring->count / 64) * 2) + 1;
1577
1578         k = 0;
1579         l = 0;
1580         for (j = 0; j <= lc; j++) { /* loop count loop */
1581                 for (i = 0; i < 64; i++) { /* send the packets */
1582                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1583                                                   1024);
1584                         dma_sync_single_for_device(&pdev->dev,
1585                                         tx_ring->buffer_info[k].dma,
1586                                         tx_ring->buffer_info[k].length,
1587                                         DMA_TO_DEVICE);
1588                         k++;
1589                         if (k == tx_ring->count)
1590                                 k = 0;
1591                 }
1592                 ew32(TDT, k);
1593                 msleep(200);
1594                 time = jiffies; /* set the start time for the receive */
1595                 good_cnt = 0;
1596                 do { /* receive the sent packets */
1597                         dma_sync_single_for_cpu(&pdev->dev,
1598                                         rx_ring->buffer_info[l].dma, 2048,
1599                                         DMA_FROM_DEVICE);
1600
1601                         ret_val = e1000_check_lbtest_frame(
1602                                         rx_ring->buffer_info[l].skb, 1024);
1603                         if (!ret_val)
1604                                 good_cnt++;
1605                         l++;
1606                         if (l == rx_ring->count)
1607                                 l = 0;
1608                         /*
1609                          * time + 20 msecs (200 msecs on 2.4) is more than
1610                          * enough time to complete the receives, if it's
1611                          * exceeded, break and error off
1612                          */
1613                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1614                 if (good_cnt != 64) {
1615                         ret_val = 13; /* ret_val is the same as mis-compare */
1616                         break;
1617                 }
1618                 if (jiffies >= (time + 20)) {
1619                         ret_val = 14; /* error code for time out error */
1620                         break;
1621                 }
1622         } /* end loop count loop */
1623         return ret_val;
1624 }
1625
1626 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1627 {
1628         /*
1629          * PHY loopback cannot be performed if SoL/IDER
1630          * sessions are active
1631          */
1632         if (e1000_check_reset_block(&adapter->hw)) {
1633                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1634                 *data = 0;
1635                 goto out;
1636         }
1637
1638         *data = e1000_setup_desc_rings(adapter);
1639         if (*data)
1640                 goto out;
1641
1642         *data = e1000_setup_loopback_test(adapter);
1643         if (*data)
1644                 goto err_loopback;
1645
1646         *data = e1000_run_loopback_test(adapter);
1647         e1000_loopback_cleanup(adapter);
1648
1649 err_loopback:
1650         e1000_free_desc_rings(adapter);
1651 out:
1652         return *data;
1653 }
1654
1655 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1656 {
1657         struct e1000_hw *hw = &adapter->hw;
1658
1659         *data = 0;
1660         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1661                 int i = 0;
1662                 hw->mac.serdes_has_link = false;
1663
1664                 /*
1665                  * On some blade server designs, link establishment
1666                  * could take as long as 2-3 minutes
1667                  */
1668                 do {
1669                         hw->mac.ops.check_for_link(hw);
1670                         if (hw->mac.serdes_has_link)
1671                                 return *data;
1672                         msleep(20);
1673                 } while (i++ < 3750);
1674
1675                 *data = 1;
1676         } else {
1677                 hw->mac.ops.check_for_link(hw);
1678                 if (hw->mac.autoneg)
1679                         msleep(4000);
1680
1681                 if (!(er32(STATUS) &
1682                       E1000_STATUS_LU))
1683                         *data = 1;
1684         }
1685         return *data;
1686 }
1687
1688 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1689 {
1690         switch (sset) {
1691         case ETH_SS_TEST:
1692                 return E1000_TEST_LEN;
1693         case ETH_SS_STATS:
1694                 return E1000_STATS_LEN;
1695         default:
1696                 return -EOPNOTSUPP;
1697         }
1698 }
1699
1700 static void e1000_diag_test(struct net_device *netdev,
1701                             struct ethtool_test *eth_test, u64 *data)
1702 {
1703         struct e1000_adapter *adapter = netdev_priv(netdev);
1704         u16 autoneg_advertised;
1705         u8 forced_speed_duplex;
1706         u8 autoneg;
1707         bool if_running = netif_running(netdev);
1708
1709         set_bit(__E1000_TESTING, &adapter->state);
1710         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1711                 /* Offline tests */
1712
1713                 /* save speed, duplex, autoneg settings */
1714                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1715                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1716                 autoneg = adapter->hw.mac.autoneg;
1717
1718                 e_info("offline testing starting\n");
1719
1720                 if (if_running)
1721                         /* indicate we're in test mode */
1722                         dev_close(netdev);
1723                 else
1724                         e1000e_reset(adapter);
1725
1726                 if (e1000_reg_test(adapter, &data[0]))
1727                         eth_test->flags |= ETH_TEST_FL_FAILED;
1728
1729                 e1000e_reset(adapter);
1730                 if (e1000_eeprom_test(adapter, &data[1]))
1731                         eth_test->flags |= ETH_TEST_FL_FAILED;
1732
1733                 e1000e_reset(adapter);
1734                 if (e1000_intr_test(adapter, &data[2]))
1735                         eth_test->flags |= ETH_TEST_FL_FAILED;
1736
1737                 e1000e_reset(adapter);
1738                 /* make sure the phy is powered up */
1739                 e1000e_power_up_phy(adapter);
1740                 if (e1000_loopback_test(adapter, &data[3]))
1741                         eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743                 /* force this routine to wait until autoneg complete/timeout */
1744                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745                 e1000e_reset(adapter);
1746                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1747
1748                 if (e1000_link_test(adapter, &data[4]))
1749                         eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751                 /* restore speed, duplex, autoneg settings */
1752                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1753                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1754                 adapter->hw.mac.autoneg = autoneg;
1755                 e1000e_reset(adapter);
1756
1757                 clear_bit(__E1000_TESTING, &adapter->state);
1758                 if (if_running)
1759                         dev_open(netdev);
1760         } else {
1761                 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1762                         clear_bit(__E1000_TESTING, &adapter->state);
1763                         dev_open(netdev);
1764                         set_bit(__E1000_TESTING, &adapter->state);
1765                 }
1766
1767                 e_info("online testing starting\n");
1768                 /* Online tests */
1769                 if (e1000_link_test(adapter, &data[4]))
1770                         eth_test->flags |= ETH_TEST_FL_FAILED;
1771
1772                 /* Online tests aren't run; pass by default */
1773                 data[0] = 0;
1774                 data[1] = 0;
1775                 data[2] = 0;
1776                 data[3] = 0;
1777
1778                 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1779                         dev_close(netdev);
1780
1781                 clear_bit(__E1000_TESTING, &adapter->state);
1782         }
1783         msleep_interruptible(4 * 1000);
1784 }
1785
1786 static void e1000_get_wol(struct net_device *netdev,
1787                           struct ethtool_wolinfo *wol)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790
1791         wol->supported = 0;
1792         wol->wolopts = 0;
1793
1794         if (!(adapter->flags & FLAG_HAS_WOL) ||
1795             !device_can_wakeup(&adapter->pdev->dev))
1796                 return;
1797
1798         wol->supported = WAKE_UCAST | WAKE_MCAST |
1799                          WAKE_BCAST | WAKE_MAGIC |
1800                          WAKE_PHY | WAKE_ARP;
1801
1802         /* apply any specific unsupported masks here */
1803         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1804                 wol->supported &= ~WAKE_UCAST;
1805
1806                 if (adapter->wol & E1000_WUFC_EX)
1807                         e_err("Interface does not support directed (unicast) "
1808                               "frame wake-up packets\n");
1809         }
1810
1811         if (adapter->wol & E1000_WUFC_EX)
1812                 wol->wolopts |= WAKE_UCAST;
1813         if (adapter->wol & E1000_WUFC_MC)
1814                 wol->wolopts |= WAKE_MCAST;
1815         if (adapter->wol & E1000_WUFC_BC)
1816                 wol->wolopts |= WAKE_BCAST;
1817         if (adapter->wol & E1000_WUFC_MAG)
1818                 wol->wolopts |= WAKE_MAGIC;
1819         if (adapter->wol & E1000_WUFC_LNKC)
1820                 wol->wolopts |= WAKE_PHY;
1821         if (adapter->wol & E1000_WUFC_ARP)
1822                 wol->wolopts |= WAKE_ARP;
1823 }
1824
1825 static int e1000_set_wol(struct net_device *netdev,
1826                          struct ethtool_wolinfo *wol)
1827 {
1828         struct e1000_adapter *adapter = netdev_priv(netdev);
1829
1830         if (!(adapter->flags & FLAG_HAS_WOL) ||
1831             !device_can_wakeup(&adapter->pdev->dev) ||
1832             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1833                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1834                 return -EOPNOTSUPP;
1835
1836         /* these settings will always override what we currently have */
1837         adapter->wol = 0;
1838
1839         if (wol->wolopts & WAKE_UCAST)
1840                 adapter->wol |= E1000_WUFC_EX;
1841         if (wol->wolopts & WAKE_MCAST)
1842                 adapter->wol |= E1000_WUFC_MC;
1843         if (wol->wolopts & WAKE_BCAST)
1844                 adapter->wol |= E1000_WUFC_BC;
1845         if (wol->wolopts & WAKE_MAGIC)
1846                 adapter->wol |= E1000_WUFC_MAG;
1847         if (wol->wolopts & WAKE_PHY)
1848                 adapter->wol |= E1000_WUFC_LNKC;
1849         if (wol->wolopts & WAKE_ARP)
1850                 adapter->wol |= E1000_WUFC_ARP;
1851
1852         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1853
1854         return 0;
1855 }
1856
1857 /* toggle LED 4 times per second = 2 "blinks" per second */
1858 #define E1000_ID_INTERVAL       (HZ/4)
1859
1860 /* bit defines for adapter->led_status */
1861 #define E1000_LED_ON            0
1862
1863 static void e1000e_led_blink_task(struct work_struct *work)
1864 {
1865         struct e1000_adapter *adapter = container_of(work,
1866                                         struct e1000_adapter, led_blink_task);
1867
1868         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1869                 adapter->hw.mac.ops.led_off(&adapter->hw);
1870         else
1871                 adapter->hw.mac.ops.led_on(&adapter->hw);
1872 }
1873
1874 static void e1000_led_blink_callback(unsigned long data)
1875 {
1876         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1877
1878         schedule_work(&adapter->led_blink_task);
1879         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1880 }
1881
1882 static int e1000_phys_id(struct net_device *netdev, u32 data)
1883 {
1884         struct e1000_adapter *adapter = netdev_priv(netdev);
1885         struct e1000_hw *hw = &adapter->hw;
1886
1887         if (!data)
1888                 data = INT_MAX;
1889
1890         if ((hw->phy.type == e1000_phy_ife) ||
1891             (hw->mac.type == e1000_pchlan) ||
1892             (hw->mac.type == e1000_pch2lan) ||
1893             (hw->mac.type == e1000_82583) ||
1894             (hw->mac.type == e1000_82574)) {
1895                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1896                 if (!adapter->blink_timer.function) {
1897                         init_timer(&adapter->blink_timer);
1898                         adapter->blink_timer.function =
1899                                 e1000_led_blink_callback;
1900                         adapter->blink_timer.data = (unsigned long) adapter;
1901                 }
1902                 mod_timer(&adapter->blink_timer, jiffies);
1903                 msleep_interruptible(data * 1000);
1904                 del_timer_sync(&adapter->blink_timer);
1905                 if (hw->phy.type == e1000_phy_ife)
1906                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1907         } else {
1908                 e1000e_blink_led(hw);
1909                 msleep_interruptible(data * 1000);
1910         }
1911
1912         hw->mac.ops.led_off(hw);
1913         clear_bit(E1000_LED_ON, &adapter->led_status);
1914         hw->mac.ops.cleanup_led(hw);
1915
1916         return 0;
1917 }
1918
1919 static int e1000_get_coalesce(struct net_device *netdev,
1920                               struct ethtool_coalesce *ec)
1921 {
1922         struct e1000_adapter *adapter = netdev_priv(netdev);
1923
1924         if (adapter->itr_setting <= 4)
1925                 ec->rx_coalesce_usecs = adapter->itr_setting;
1926         else
1927                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1928
1929         return 0;
1930 }
1931
1932 static int e1000_set_coalesce(struct net_device *netdev,
1933                               struct ethtool_coalesce *ec)
1934 {
1935         struct e1000_adapter *adapter = netdev_priv(netdev);
1936         struct e1000_hw *hw = &adapter->hw;
1937
1938         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1939             ((ec->rx_coalesce_usecs > 4) &&
1940              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1941             (ec->rx_coalesce_usecs == 2))
1942                 return -EINVAL;
1943
1944         if (ec->rx_coalesce_usecs == 4) {
1945                 adapter->itr = adapter->itr_setting = 4;
1946         } else if (ec->rx_coalesce_usecs <= 3) {
1947                 adapter->itr = 20000;
1948                 adapter->itr_setting = ec->rx_coalesce_usecs;
1949         } else {
1950                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1951                 adapter->itr_setting = adapter->itr & ~3;
1952         }
1953
1954         if (adapter->itr_setting != 0)
1955                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1956         else
1957                 ew32(ITR, 0);
1958
1959         return 0;
1960 }
1961
1962 static int e1000_nway_reset(struct net_device *netdev)
1963 {
1964         struct e1000_adapter *adapter = netdev_priv(netdev);
1965         if (netif_running(netdev))
1966                 e1000e_reinit_locked(adapter);
1967         return 0;
1968 }
1969
1970 static void e1000_get_ethtool_stats(struct net_device *netdev,
1971                                     struct ethtool_stats *stats,
1972                                     u64 *data)
1973 {
1974         struct e1000_adapter *adapter = netdev_priv(netdev);
1975         int i;
1976         char *p = NULL;
1977
1978         e1000e_update_stats(adapter);
1979         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1980                 switch (e1000_gstrings_stats[i].type) {
1981                 case NETDEV_STATS:
1982                         p = (char *) netdev +
1983                                         e1000_gstrings_stats[i].stat_offset;
1984                         break;
1985                 case E1000_STATS:
1986                         p = (char *) adapter +
1987                                         e1000_gstrings_stats[i].stat_offset;
1988                         break;
1989                 }
1990
1991                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1992                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1993         }
1994 }
1995
1996 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1997                               u8 *data)
1998 {
1999         u8 *p = data;
2000         int i;
2001
2002         switch (stringset) {
2003         case ETH_SS_TEST:
2004                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2005                 break;
2006         case ETH_SS_STATS:
2007                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2008                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2009                                ETH_GSTRING_LEN);
2010                         p += ETH_GSTRING_LEN;
2011                 }
2012                 break;
2013         }
2014 }
2015
2016 static const struct ethtool_ops e1000_ethtool_ops = {
2017         .get_settings           = e1000_get_settings,
2018         .set_settings           = e1000_set_settings,
2019         .get_drvinfo            = e1000_get_drvinfo,
2020         .get_regs_len           = e1000_get_regs_len,
2021         .get_regs               = e1000_get_regs,
2022         .get_wol                = e1000_get_wol,
2023         .set_wol                = e1000_set_wol,
2024         .get_msglevel           = e1000_get_msglevel,
2025         .set_msglevel           = e1000_set_msglevel,
2026         .nway_reset             = e1000_nway_reset,
2027         .get_link               = e1000_get_link,
2028         .get_eeprom_len         = e1000_get_eeprom_len,
2029         .get_eeprom             = e1000_get_eeprom,
2030         .set_eeprom             = e1000_set_eeprom,
2031         .get_ringparam          = e1000_get_ringparam,
2032         .set_ringparam          = e1000_set_ringparam,
2033         .get_pauseparam         = e1000_get_pauseparam,
2034         .set_pauseparam         = e1000_set_pauseparam,
2035         .get_rx_csum            = e1000_get_rx_csum,
2036         .set_rx_csum            = e1000_set_rx_csum,
2037         .get_tx_csum            = e1000_get_tx_csum,
2038         .set_tx_csum            = e1000_set_tx_csum,
2039         .get_sg                 = ethtool_op_get_sg,
2040         .set_sg                 = ethtool_op_set_sg,
2041         .get_tso                = ethtool_op_get_tso,
2042         .set_tso                = e1000_set_tso,
2043         .self_test              = e1000_diag_test,
2044         .get_strings            = e1000_get_strings,
2045         .phys_id                = e1000_phys_id,
2046         .get_ethtool_stats      = e1000_get_ethtool_stats,
2047         .get_sset_count         = e1000e_get_sset_count,
2048         .get_coalesce           = e1000_get_coalesce,
2049         .set_coalesce           = e1000_set_coalesce,
2050         .get_flags              = ethtool_op_get_flags,
2051 };
2052
2053 void e1000e_set_ethtool_ops(struct net_device *netdev)
2054 {
2055         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2056 }