]> rtime.felk.cvut.cz Git - mcf548x/linux.git/blob - drivers/mtd/onenand/onenand_base.c
Initial 2.6.37
[mcf548x/linux.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39  * Multiblock erase if number of blocks to erase is 2 or more.
40  * Maximum number of blocks for simultaneous erase is 64.
41  */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
50                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51                                 "DIE_BDRY: SLC boundary of the die"
52                                 "LOCK: Locking information for SLC boundary"
53                                 "    : 0->Set boundary in unlocked status"
54                                 "    : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
61                         "Syntax : otp=LOCK_TYPE"
62                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63                         "          : 0 -> Default (No Blocks Locked)"
64                         "          : 1 -> OTP Block lock"
65                         "          : 2 -> 1st Block lock"
66                         "          : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /**
69  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70  *  For now, we expose only 64 out of 80 ecc bytes
71  */
72 static struct nand_ecclayout onenand_oob_128 = {
73         .eccbytes       = 64,
74         .eccpos         = {
75                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81                 102, 103, 104, 105
82                 },
83         .oobfree        = {
84                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86         }
87 };
88
89 /**
90  * onenand_oob_64 - oob info for large (2KB) page
91  */
92 static struct nand_ecclayout onenand_oob_64 = {
93         .eccbytes       = 20,
94         .eccpos         = {
95                 8, 9, 10, 11, 12,
96                 24, 25, 26, 27, 28,
97                 40, 41, 42, 43, 44,
98                 56, 57, 58, 59, 60,
99                 },
100         .oobfree        = {
101                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
103         }
104 };
105
106 /**
107  * onenand_oob_32 - oob info for middle (1KB) page
108  */
109 static struct nand_ecclayout onenand_oob_32 = {
110         .eccbytes       = 10,
111         .eccpos         = {
112                 8, 9, 10, 11, 12,
113                 24, 25, 26, 27, 28,
114                 },
115         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
116 };
117
118 static const unsigned char ffchars[] = {
119         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
135 };
136
137 /**
138  * onenand_readw - [OneNAND Interface] Read OneNAND register
139  * @param addr          address to read
140  *
141  * Read OneNAND register
142  */
143 static unsigned short onenand_readw(void __iomem *addr)
144 {
145         return readw(addr);
146 }
147
148 /**
149  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150  * @param value         value to write
151  * @param addr          address to write
152  *
153  * Write OneNAND register with value
154  */
155 static void onenand_writew(unsigned short value, void __iomem *addr)
156 {
157         writew(value, addr);
158 }
159
160 /**
161  * onenand_block_address - [DEFAULT] Get block address
162  * @param this          onenand chip data structure
163  * @param block         the block
164  * @return              translated block address if DDP, otherwise same
165  *
166  * Setup Start Address 1 Register (F100h)
167  */
168 static int onenand_block_address(struct onenand_chip *this, int block)
169 {
170         /* Device Flash Core select, NAND Flash Block Address */
171         if (block & this->density_mask)
172                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
173
174         return block;
175 }
176
177 /**
178  * onenand_bufferram_address - [DEFAULT] Get bufferram address
179  * @param this          onenand chip data structure
180  * @param block         the block
181  * @return              set DBS value if DDP, otherwise 0
182  *
183  * Setup Start Address 2 Register (F101h) for DDP
184  */
185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
186 {
187         /* Device BufferRAM Select */
188         if (block & this->density_mask)
189                 return ONENAND_DDP_CHIP1;
190
191         return ONENAND_DDP_CHIP0;
192 }
193
194 /**
195  * onenand_page_address - [DEFAULT] Get page address
196  * @param page          the page address
197  * @param sector        the sector address
198  * @return              combined page and sector address
199  *
200  * Setup Start Address 8 Register (F107h)
201  */
202 static int onenand_page_address(int page, int sector)
203 {
204         /* Flash Page Address, Flash Sector Address */
205         int fpa, fsa;
206
207         fpa = page & ONENAND_FPA_MASK;
208         fsa = sector & ONENAND_FSA_MASK;
209
210         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
211 }
212
213 /**
214  * onenand_buffer_address - [DEFAULT] Get buffer address
215  * @param dataram1      DataRAM index
216  * @param sectors       the sector address
217  * @param count         the number of sectors
218  * @return              the start buffer value
219  *
220  * Setup Start Buffer Register (F200h)
221  */
222 static int onenand_buffer_address(int dataram1, int sectors, int count)
223 {
224         int bsa, bsc;
225
226         /* BufferRAM Sector Address */
227         bsa = sectors & ONENAND_BSA_MASK;
228
229         if (dataram1)
230                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
231         else
232                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
233
234         /* BufferRAM Sector Count */
235         bsc = count & ONENAND_BSC_MASK;
236
237         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
238 }
239
240 /**
241  * flexonenand_block- For given address return block number
242  * @param this         - OneNAND device structure
243  * @param addr          - Address for which block number is needed
244  */
245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
246 {
247         unsigned boundary, blk, die = 0;
248
249         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250                 die = 1;
251                 addr -= this->diesize[0];
252         }
253
254         boundary = this->boundary[die];
255
256         blk = addr >> (this->erase_shift - 1);
257         if (blk > boundary)
258                 blk = (blk + boundary + 1) >> 1;
259
260         blk += die ? this->density_mask : 0;
261         return blk;
262 }
263
264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
265 {
266         if (!FLEXONENAND(this))
267                 return addr >> this->erase_shift;
268         return flexonenand_block(this, addr);
269 }
270
271 /**
272  * flexonenand_addr - Return address of the block
273  * @this:               OneNAND device structure
274  * @block:              Block number on Flex-OneNAND
275  *
276  * Return address of the block
277  */
278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
279 {
280         loff_t ofs = 0;
281         int die = 0, boundary;
282
283         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284                 block -= this->density_mask;
285                 die = 1;
286                 ofs = this->diesize[0];
287         }
288
289         boundary = this->boundary[die];
290         ofs += (loff_t)block << (this->erase_shift - 1);
291         if (block > (boundary + 1))
292                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293         return ofs;
294 }
295
296 loff_t onenand_addr(struct onenand_chip *this, int block)
297 {
298         if (!FLEXONENAND(this))
299                 return (loff_t)block << this->erase_shift;
300         return flexonenand_addr(this, block);
301 }
302 EXPORT_SYMBOL(onenand_addr);
303
304 /**
305  * onenand_get_density - [DEFAULT] Get OneNAND density
306  * @param dev_id        OneNAND device ID
307  *
308  * Get OneNAND density from device ID
309  */
310 static inline int onenand_get_density(int dev_id)
311 {
312         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313         return (density & ONENAND_DEVICE_DENSITY_MASK);
314 }
315
316 /**
317  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318  * @param mtd           MTD device structure
319  * @param addr          address whose erase region needs to be identified
320  */
321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
322 {
323         int i;
324
325         for (i = 0; i < mtd->numeraseregions; i++)
326                 if (addr < mtd->eraseregions[i].offset)
327                         break;
328         return i - 1;
329 }
330 EXPORT_SYMBOL(flexonenand_region);
331
332 /**
333  * onenand_command - [DEFAULT] Send command to OneNAND device
334  * @param mtd           MTD device structure
335  * @param cmd           the command to be sent
336  * @param addr          offset to read from or write to
337  * @param len           number of bytes to read or write
338  *
339  * Send command to OneNAND device. This function is used for middle/large page
340  * devices (1KB/2KB Bytes per page)
341  */
342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
343 {
344         struct onenand_chip *this = mtd->priv;
345         int value, block, page;
346
347         /* Address translation */
348         switch (cmd) {
349         case ONENAND_CMD_UNLOCK:
350         case ONENAND_CMD_LOCK:
351         case ONENAND_CMD_LOCK_TIGHT:
352         case ONENAND_CMD_UNLOCK_ALL:
353                 block = -1;
354                 page = -1;
355                 break;
356
357         case FLEXONENAND_CMD_PI_ACCESS:
358                 /* addr contains die index */
359                 block = addr * this->density_mask;
360                 page = -1;
361                 break;
362
363         case ONENAND_CMD_ERASE:
364         case ONENAND_CMD_MULTIBLOCK_ERASE:
365         case ONENAND_CMD_ERASE_VERIFY:
366         case ONENAND_CMD_BUFFERRAM:
367         case ONENAND_CMD_OTP_ACCESS:
368                 block = onenand_block(this, addr);
369                 page = -1;
370                 break;
371
372         case FLEXONENAND_CMD_READ_PI:
373                 cmd = ONENAND_CMD_READ;
374                 block = addr * this->density_mask;
375                 page = 0;
376                 break;
377
378         default:
379                 block = onenand_block(this, addr);
380                 if (FLEXONENAND(this))
381                         page = (int) (addr - onenand_addr(this, block))>>\
382                                 this->page_shift;
383                 else
384                         page = (int) (addr >> this->page_shift);
385                 if (ONENAND_IS_2PLANE(this)) {
386                         /* Make the even block number */
387                         block &= ~1;
388                         /* Is it the odd plane? */
389                         if (addr & this->writesize)
390                                 block++;
391                         page >>= 1;
392                 }
393                 page &= this->page_mask;
394                 break;
395         }
396
397         /* NOTE: The setting order of the registers is very important! */
398         if (cmd == ONENAND_CMD_BUFFERRAM) {
399                 /* Select DataRAM for DDP */
400                 value = onenand_bufferram_address(this, block);
401                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
402
403                 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this) ||
404                     ONENAND_IS_4KB_PAGE(this))
405                         /* It is always BufferRAM0 */
406                         ONENAND_SET_BUFFERRAM0(this);
407                 else
408                         /* Switch to the next data buffer */
409                         ONENAND_SET_NEXT_BUFFERRAM(this);
410
411                 return 0;
412         }
413
414         if (block != -1) {
415                 /* Write 'DFS, FBA' of Flash */
416                 value = onenand_block_address(this, block);
417                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
418
419                 /* Select DataRAM for DDP */
420                 value = onenand_bufferram_address(this, block);
421                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
422         }
423
424         if (page != -1) {
425                 /* Now we use page size operation */
426                 int sectors = 0, count = 0;
427                 int dataram;
428
429                 switch (cmd) {
430                 case FLEXONENAND_CMD_RECOVER_LSB:
431                 case ONENAND_CMD_READ:
432                 case ONENAND_CMD_READOOB:
433                         if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
434                                 /* It is always BufferRAM0 */
435                                 dataram = ONENAND_SET_BUFFERRAM0(this);
436                         else
437                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
438                         break;
439
440                 default:
441                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
442                                 cmd = ONENAND_CMD_2X_PROG;
443                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
444                         break;
445                 }
446
447                 /* Write 'FPA, FSA' of Flash */
448                 value = onenand_page_address(page, sectors);
449                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
450
451                 /* Write 'BSA, BSC' of DataRAM */
452                 value = onenand_buffer_address(dataram, sectors, count);
453                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
454         }
455
456         /* Interrupt clear */
457         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
458
459         /* Write command */
460         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
461
462         return 0;
463 }
464
465 /**
466  * onenand_read_ecc - return ecc status
467  * @param this          onenand chip structure
468  */
469 static inline int onenand_read_ecc(struct onenand_chip *this)
470 {
471         int ecc, i, result = 0;
472
473         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
474                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
475
476         for (i = 0; i < 4; i++) {
477                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
478                 if (likely(!ecc))
479                         continue;
480                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
481                         return ONENAND_ECC_2BIT_ALL;
482                 else
483                         result = ONENAND_ECC_1BIT_ALL;
484         }
485
486         return result;
487 }
488
489 /**
490  * onenand_wait - [DEFAULT] wait until the command is done
491  * @param mtd           MTD device structure
492  * @param state         state to select the max. timeout value
493  *
494  * Wait for command done. This applies to all OneNAND command
495  * Read can take up to 30us, erase up to 2ms and program up to 350us
496  * according to general OneNAND specs
497  */
498 static int onenand_wait(struct mtd_info *mtd, int state)
499 {
500         struct onenand_chip * this = mtd->priv;
501         unsigned long timeout;
502         unsigned int flags = ONENAND_INT_MASTER;
503         unsigned int interrupt = 0;
504         unsigned int ctrl;
505
506         /* The 20 msec is enough */
507         timeout = jiffies + msecs_to_jiffies(20);
508         while (time_before(jiffies, timeout)) {
509                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
510
511                 if (interrupt & flags)
512                         break;
513
514                 if (state != FL_READING && state != FL_PREPARING_ERASE)
515                         cond_resched();
516         }
517         /* To get correct interrupt status in timeout case */
518         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
519
520         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
521
522         /*
523          * In the Spec. it checks the controller status first
524          * However if you get the correct information in case of
525          * power off recovery (POR) test, it should read ECC status first
526          */
527         if (interrupt & ONENAND_INT_READ) {
528                 int ecc = onenand_read_ecc(this);
529                 if (ecc) {
530                         if (ecc & ONENAND_ECC_2BIT_ALL) {
531                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
532                                         __func__, ecc);
533                                 mtd->ecc_stats.failed++;
534                                 return -EBADMSG;
535                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
536                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
537                                         __func__, ecc);
538                                 mtd->ecc_stats.corrected++;
539                         }
540                 }
541         } else if (state == FL_READING) {
542                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
543                         __func__, ctrl, interrupt);
544                 return -EIO;
545         }
546
547         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
548                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
549                        __func__, ctrl, interrupt);
550                 return -EIO;
551         }
552
553         if (!(interrupt & ONENAND_INT_MASTER)) {
554                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
555                        __func__, ctrl, interrupt);
556                 return -EIO;
557         }
558
559         /* If there's controller error, it's a real error */
560         if (ctrl & ONENAND_CTRL_ERROR) {
561                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
562                         __func__, ctrl);
563                 if (ctrl & ONENAND_CTRL_LOCK)
564                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
565                 return -EIO;
566         }
567
568         return 0;
569 }
570
571 /*
572  * onenand_interrupt - [DEFAULT] onenand interrupt handler
573  * @param irq           onenand interrupt number
574  * @param dev_id        interrupt data
575  *
576  * complete the work
577  */
578 static irqreturn_t onenand_interrupt(int irq, void *data)
579 {
580         struct onenand_chip *this = data;
581
582         /* To handle shared interrupt */
583         if (!this->complete.done)
584                 complete(&this->complete);
585
586         return IRQ_HANDLED;
587 }
588
589 /*
590  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
591  * @param mtd           MTD device structure
592  * @param state         state to select the max. timeout value
593  *
594  * Wait for command done.
595  */
596 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
597 {
598         struct onenand_chip *this = mtd->priv;
599
600         wait_for_completion(&this->complete);
601
602         return onenand_wait(mtd, state);
603 }
604
605 /*
606  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
607  * @param mtd           MTD device structure
608  * @param state         state to select the max. timeout value
609  *
610  * Try interrupt based wait (It is used one-time)
611  */
612 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
613 {
614         struct onenand_chip *this = mtd->priv;
615         unsigned long remain, timeout;
616
617         /* We use interrupt wait first */
618         this->wait = onenand_interrupt_wait;
619
620         timeout = msecs_to_jiffies(100);
621         remain = wait_for_completion_timeout(&this->complete, timeout);
622         if (!remain) {
623                 printk(KERN_INFO "OneNAND: There's no interrupt. "
624                                 "We use the normal wait\n");
625
626                 /* Release the irq */
627                 free_irq(this->irq, this);
628
629                 this->wait = onenand_wait;
630         }
631
632         return onenand_wait(mtd, state);
633 }
634
635 /*
636  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
637  * @param mtd           MTD device structure
638  *
639  * There's two method to wait onenand work
640  * 1. polling - read interrupt status register
641  * 2. interrupt - use the kernel interrupt method
642  */
643 static void onenand_setup_wait(struct mtd_info *mtd)
644 {
645         struct onenand_chip *this = mtd->priv;
646         int syscfg;
647
648         init_completion(&this->complete);
649
650         if (this->irq <= 0) {
651                 this->wait = onenand_wait;
652                 return;
653         }
654
655         if (request_irq(this->irq, &onenand_interrupt,
656                                 IRQF_SHARED, "onenand", this)) {
657                 /* If we can't get irq, use the normal wait */
658                 this->wait = onenand_wait;
659                 return;
660         }
661
662         /* Enable interrupt */
663         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
664         syscfg |= ONENAND_SYS_CFG1_IOBE;
665         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
666
667         this->wait = onenand_try_interrupt_wait;
668 }
669
670 /**
671  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
672  * @param mtd           MTD data structure
673  * @param area          BufferRAM area
674  * @return              offset given area
675  *
676  * Return BufferRAM offset given area
677  */
678 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
679 {
680         struct onenand_chip *this = mtd->priv;
681
682         if (ONENAND_CURRENT_BUFFERRAM(this)) {
683                 /* Note: the 'this->writesize' is a real page size */
684                 if (area == ONENAND_DATARAM)
685                         return this->writesize;
686                 if (area == ONENAND_SPARERAM)
687                         return mtd->oobsize;
688         }
689
690         return 0;
691 }
692
693 /**
694  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
695  * @param mtd           MTD data structure
696  * @param area          BufferRAM area
697  * @param buffer        the databuffer to put/get data
698  * @param offset        offset to read from or write to
699  * @param count         number of bytes to read/write
700  *
701  * Read the BufferRAM area
702  */
703 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
704                 unsigned char *buffer, int offset, size_t count)
705 {
706         struct onenand_chip *this = mtd->priv;
707         void __iomem *bufferram;
708
709         bufferram = this->base + area;
710
711         bufferram += onenand_bufferram_offset(mtd, area);
712
713         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
714                 unsigned short word;
715
716                 /* Align with word(16-bit) size */
717                 count--;
718
719                 /* Read word and save byte */
720                 word = this->read_word(bufferram + offset + count);
721                 buffer[count] = (word & 0xff);
722         }
723
724         memcpy(buffer, bufferram + offset, count);
725
726         return 0;
727 }
728
729 /**
730  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
731  * @param mtd           MTD data structure
732  * @param area          BufferRAM area
733  * @param buffer        the databuffer to put/get data
734  * @param offset        offset to read from or write to
735  * @param count         number of bytes to read/write
736  *
737  * Read the BufferRAM area with Sync. Burst Mode
738  */
739 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
740                 unsigned char *buffer, int offset, size_t count)
741 {
742         struct onenand_chip *this = mtd->priv;
743         void __iomem *bufferram;
744
745         bufferram = this->base + area;
746
747         bufferram += onenand_bufferram_offset(mtd, area);
748
749         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
750
751         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
752                 unsigned short word;
753
754                 /* Align with word(16-bit) size */
755                 count--;
756
757                 /* Read word and save byte */
758                 word = this->read_word(bufferram + offset + count);
759                 buffer[count] = (word & 0xff);
760         }
761
762         memcpy(buffer, bufferram + offset, count);
763
764         this->mmcontrol(mtd, 0);
765
766         return 0;
767 }
768
769 /**
770  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
771  * @param mtd           MTD data structure
772  * @param area          BufferRAM area
773  * @param buffer        the databuffer to put/get data
774  * @param offset        offset to read from or write to
775  * @param count         number of bytes to read/write
776  *
777  * Write the BufferRAM area
778  */
779 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
780                 const unsigned char *buffer, int offset, size_t count)
781 {
782         struct onenand_chip *this = mtd->priv;
783         void __iomem *bufferram;
784
785         bufferram = this->base + area;
786
787         bufferram += onenand_bufferram_offset(mtd, area);
788
789         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
790                 unsigned short word;
791                 int byte_offset;
792
793                 /* Align with word(16-bit) size */
794                 count--;
795
796                 /* Calculate byte access offset */
797                 byte_offset = offset + count;
798
799                 /* Read word and save byte */
800                 word = this->read_word(bufferram + byte_offset);
801                 word = (word & ~0xff) | buffer[count];
802                 this->write_word(word, bufferram + byte_offset);
803         }
804
805         memcpy(bufferram + offset, buffer, count);
806
807         return 0;
808 }
809
810 /**
811  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
812  * @param mtd           MTD data structure
813  * @param addr          address to check
814  * @return              blockpage address
815  *
816  * Get blockpage address at 2x program mode
817  */
818 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
819 {
820         struct onenand_chip *this = mtd->priv;
821         int blockpage, block, page;
822
823         /* Calculate the even block number */
824         block = (int) (addr >> this->erase_shift) & ~1;
825         /* Is it the odd plane? */
826         if (addr & this->writesize)
827                 block++;
828         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
829         blockpage = (block << 7) | page;
830
831         return blockpage;
832 }
833
834 /**
835  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
836  * @param mtd           MTD data structure
837  * @param addr          address to check
838  * @return              1 if there are valid data, otherwise 0
839  *
840  * Check bufferram if there is data we required
841  */
842 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
843 {
844         struct onenand_chip *this = mtd->priv;
845         int blockpage, found = 0;
846         unsigned int i;
847
848         if (ONENAND_IS_2PLANE(this))
849                 blockpage = onenand_get_2x_blockpage(mtd, addr);
850         else
851                 blockpage = (int) (addr >> this->page_shift);
852
853         /* Is there valid data? */
854         i = ONENAND_CURRENT_BUFFERRAM(this);
855         if (this->bufferram[i].blockpage == blockpage)
856                 found = 1;
857         else {
858                 /* Check another BufferRAM */
859                 i = ONENAND_NEXT_BUFFERRAM(this);
860                 if (this->bufferram[i].blockpage == blockpage) {
861                         ONENAND_SET_NEXT_BUFFERRAM(this);
862                         found = 1;
863                 }
864         }
865
866         if (found && ONENAND_IS_DDP(this)) {
867                 /* Select DataRAM for DDP */
868                 int block = onenand_block(this, addr);
869                 int value = onenand_bufferram_address(this, block);
870                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
871         }
872
873         return found;
874 }
875
876 /**
877  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
878  * @param mtd           MTD data structure
879  * @param addr          address to update
880  * @param valid         valid flag
881  *
882  * Update BufferRAM information
883  */
884 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
885                 int valid)
886 {
887         struct onenand_chip *this = mtd->priv;
888         int blockpage;
889         unsigned int i;
890
891         if (ONENAND_IS_2PLANE(this))
892                 blockpage = onenand_get_2x_blockpage(mtd, addr);
893         else
894                 blockpage = (int) (addr >> this->page_shift);
895
896         /* Invalidate another BufferRAM */
897         i = ONENAND_NEXT_BUFFERRAM(this);
898         if (this->bufferram[i].blockpage == blockpage)
899                 this->bufferram[i].blockpage = -1;
900
901         /* Update BufferRAM */
902         i = ONENAND_CURRENT_BUFFERRAM(this);
903         if (valid)
904                 this->bufferram[i].blockpage = blockpage;
905         else
906                 this->bufferram[i].blockpage = -1;
907 }
908
909 /**
910  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
911  * @param mtd           MTD data structure
912  * @param addr          start address to invalidate
913  * @param len           length to invalidate
914  *
915  * Invalidate BufferRAM information
916  */
917 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
918                 unsigned int len)
919 {
920         struct onenand_chip *this = mtd->priv;
921         int i;
922         loff_t end_addr = addr + len;
923
924         /* Invalidate BufferRAM */
925         for (i = 0; i < MAX_BUFFERRAM; i++) {
926                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
927                 if (buf_addr >= addr && buf_addr < end_addr)
928                         this->bufferram[i].blockpage = -1;
929         }
930 }
931
932 /**
933  * onenand_get_device - [GENERIC] Get chip for selected access
934  * @param mtd           MTD device structure
935  * @param new_state     the state which is requested
936  *
937  * Get the device and lock it for exclusive access
938  */
939 static int onenand_get_device(struct mtd_info *mtd, int new_state)
940 {
941         struct onenand_chip *this = mtd->priv;
942         DECLARE_WAITQUEUE(wait, current);
943
944         /*
945          * Grab the lock and see if the device is available
946          */
947         while (1) {
948                 spin_lock(&this->chip_lock);
949                 if (this->state == FL_READY) {
950                         this->state = new_state;
951                         spin_unlock(&this->chip_lock);
952                         break;
953                 }
954                 if (new_state == FL_PM_SUSPENDED) {
955                         spin_unlock(&this->chip_lock);
956                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
957                 }
958                 set_current_state(TASK_UNINTERRUPTIBLE);
959                 add_wait_queue(&this->wq, &wait);
960                 spin_unlock(&this->chip_lock);
961                 schedule();
962                 remove_wait_queue(&this->wq, &wait);
963         }
964
965         return 0;
966 }
967
968 /**
969  * onenand_release_device - [GENERIC] release chip
970  * @param mtd           MTD device structure
971  *
972  * Deselect, release chip lock and wake up anyone waiting on the device
973  */
974 static void onenand_release_device(struct mtd_info *mtd)
975 {
976         struct onenand_chip *this = mtd->priv;
977
978         /* Release the chip */
979         spin_lock(&this->chip_lock);
980         this->state = FL_READY;
981         wake_up(&this->wq);
982         spin_unlock(&this->chip_lock);
983 }
984
985 /**
986  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
987  * @param mtd           MTD device structure
988  * @param buf           destination address
989  * @param column        oob offset to read from
990  * @param thislen       oob length to read
991  */
992 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
993                                 int thislen)
994 {
995         struct onenand_chip *this = mtd->priv;
996         struct nand_oobfree *free;
997         int readcol = column;
998         int readend = column + thislen;
999         int lastgap = 0;
1000         unsigned int i;
1001         uint8_t *oob_buf = this->oob_buf;
1002
1003         free = this->ecclayout->oobfree;
1004         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1005                 if (readcol >= lastgap)
1006                         readcol += free->offset - lastgap;
1007                 if (readend >= lastgap)
1008                         readend += free->offset - lastgap;
1009                 lastgap = free->offset + free->length;
1010         }
1011         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1012         free = this->ecclayout->oobfree;
1013         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1014                 int free_end = free->offset + free->length;
1015                 if (free->offset < readend && free_end > readcol) {
1016                         int st = max_t(int,free->offset,readcol);
1017                         int ed = min_t(int,free_end,readend);
1018                         int n = ed - st;
1019                         memcpy(buf, oob_buf + st, n);
1020                         buf += n;
1021                 } else if (column == 0)
1022                         break;
1023         }
1024         return 0;
1025 }
1026
1027 /**
1028  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1029  * @param mtd           MTD device structure
1030  * @param addr          address to recover
1031  * @param status        return value from onenand_wait / onenand_bbt_wait
1032  *
1033  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1034  * lower page address and MSB page has higher page address in paired pages.
1035  * If power off occurs during MSB page program, the paired LSB page data can
1036  * become corrupt. LSB page recovery read is a way to read LSB page though page
1037  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1038  * read after power up, issue LSB page recovery read.
1039  */
1040 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1041 {
1042         struct onenand_chip *this = mtd->priv;
1043         int i;
1044
1045         /* Recovery is only for Flex-OneNAND */
1046         if (!FLEXONENAND(this))
1047                 return status;
1048
1049         /* check if we failed due to uncorrectable error */
1050         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1051                 return status;
1052
1053         /* check if address lies in MLC region */
1054         i = flexonenand_region(mtd, addr);
1055         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1056                 return status;
1057
1058         /* We are attempting to reread, so decrement stats.failed
1059          * which was incremented by onenand_wait due to read failure
1060          */
1061         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1062                 __func__);
1063         mtd->ecc_stats.failed--;
1064
1065         /* Issue the LSB page recovery command */
1066         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1067         return this->wait(mtd, FL_READING);
1068 }
1069
1070 /**
1071  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1072  * @param mtd           MTD device structure
1073  * @param from          offset to read from
1074  * @param ops:          oob operation description structure
1075  *
1076  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1077  * So, read-while-load is not present.
1078  */
1079 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1080                                 struct mtd_oob_ops *ops)
1081 {
1082         struct onenand_chip *this = mtd->priv;
1083         struct mtd_ecc_stats stats;
1084         size_t len = ops->len;
1085         size_t ooblen = ops->ooblen;
1086         u_char *buf = ops->datbuf;
1087         u_char *oobbuf = ops->oobbuf;
1088         int read = 0, column, thislen;
1089         int oobread = 0, oobcolumn, thisooblen, oobsize;
1090         int ret = 0;
1091         int writesize = this->writesize;
1092
1093         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1094               __func__, (unsigned int) from, (int) len);
1095
1096         if (ops->mode == MTD_OOB_AUTO)
1097                 oobsize = this->ecclayout->oobavail;
1098         else
1099                 oobsize = mtd->oobsize;
1100
1101         oobcolumn = from & (mtd->oobsize - 1);
1102
1103         /* Do not allow reads past end of device */
1104         if (from + len > mtd->size) {
1105                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1106                         __func__);
1107                 ops->retlen = 0;
1108                 ops->oobretlen = 0;
1109                 return -EINVAL;
1110         }
1111
1112         stats = mtd->ecc_stats;
1113
1114         while (read < len) {
1115                 cond_resched();
1116
1117                 thislen = min_t(int, writesize, len - read);
1118
1119                 column = from & (writesize - 1);
1120                 if (column + thislen > writesize)
1121                         thislen = writesize - column;
1122
1123                 if (!onenand_check_bufferram(mtd, from)) {
1124                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1125
1126                         ret = this->wait(mtd, FL_READING);
1127                         if (unlikely(ret))
1128                                 ret = onenand_recover_lsb(mtd, from, ret);
1129                         onenand_update_bufferram(mtd, from, !ret);
1130                         if (ret == -EBADMSG)
1131                                 ret = 0;
1132                 }
1133
1134                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1135                 if (oobbuf) {
1136                         thisooblen = oobsize - oobcolumn;
1137                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1138
1139                         if (ops->mode == MTD_OOB_AUTO)
1140                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1141                         else
1142                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1143                         oobread += thisooblen;
1144                         oobbuf += thisooblen;
1145                         oobcolumn = 0;
1146                 }
1147
1148                 read += thislen;
1149                 if (read == len)
1150                         break;
1151
1152                 from += thislen;
1153                 buf += thislen;
1154         }
1155
1156         /*
1157          * Return success, if no ECC failures, else -EBADMSG
1158          * fs driver will take care of that, because
1159          * retlen == desired len and result == -EBADMSG
1160          */
1161         ops->retlen = read;
1162         ops->oobretlen = oobread;
1163
1164         if (ret)
1165                 return ret;
1166
1167         if (mtd->ecc_stats.failed - stats.failed)
1168                 return -EBADMSG;
1169
1170         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1171 }
1172
1173 /**
1174  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1175  * @param mtd           MTD device structure
1176  * @param from          offset to read from
1177  * @param ops:          oob operation description structure
1178  *
1179  * OneNAND read main and/or out-of-band data
1180  */
1181 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1182                                 struct mtd_oob_ops *ops)
1183 {
1184         struct onenand_chip *this = mtd->priv;
1185         struct mtd_ecc_stats stats;
1186         size_t len = ops->len;
1187         size_t ooblen = ops->ooblen;
1188         u_char *buf = ops->datbuf;
1189         u_char *oobbuf = ops->oobbuf;
1190         int read = 0, column, thislen;
1191         int oobread = 0, oobcolumn, thisooblen, oobsize;
1192         int ret = 0, boundary = 0;
1193         int writesize = this->writesize;
1194
1195         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1196                         __func__, (unsigned int) from, (int) len);
1197
1198         if (ops->mode == MTD_OOB_AUTO)
1199                 oobsize = this->ecclayout->oobavail;
1200         else
1201                 oobsize = mtd->oobsize;
1202
1203         oobcolumn = from & (mtd->oobsize - 1);
1204
1205         /* Do not allow reads past end of device */
1206         if ((from + len) > mtd->size) {
1207                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1208                         __func__);
1209                 ops->retlen = 0;
1210                 ops->oobretlen = 0;
1211                 return -EINVAL;
1212         }
1213
1214         stats = mtd->ecc_stats;
1215
1216         /* Read-while-load method */
1217
1218         /* Do first load to bufferRAM */
1219         if (read < len) {
1220                 if (!onenand_check_bufferram(mtd, from)) {
1221                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1222                         ret = this->wait(mtd, FL_READING);
1223                         onenand_update_bufferram(mtd, from, !ret);
1224                         if (ret == -EBADMSG)
1225                                 ret = 0;
1226                 }
1227         }
1228
1229         thislen = min_t(int, writesize, len - read);
1230         column = from & (writesize - 1);
1231         if (column + thislen > writesize)
1232                 thislen = writesize - column;
1233
1234         while (!ret) {
1235                 /* If there is more to load then start next load */
1236                 from += thislen;
1237                 if (read + thislen < len) {
1238                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1239                         /*
1240                          * Chip boundary handling in DDP
1241                          * Now we issued chip 1 read and pointed chip 1
1242                          * bufferram so we have to point chip 0 bufferram.
1243                          */
1244                         if (ONENAND_IS_DDP(this) &&
1245                             unlikely(from == (this->chipsize >> 1))) {
1246                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1247                                 boundary = 1;
1248                         } else
1249                                 boundary = 0;
1250                         ONENAND_SET_PREV_BUFFERRAM(this);
1251                 }
1252                 /* While load is going, read from last bufferRAM */
1253                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1254
1255                 /* Read oob area if needed */
1256                 if (oobbuf) {
1257                         thisooblen = oobsize - oobcolumn;
1258                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1259
1260                         if (ops->mode == MTD_OOB_AUTO)
1261                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1262                         else
1263                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1264                         oobread += thisooblen;
1265                         oobbuf += thisooblen;
1266                         oobcolumn = 0;
1267                 }
1268
1269                 /* See if we are done */
1270                 read += thislen;
1271                 if (read == len)
1272                         break;
1273                 /* Set up for next read from bufferRAM */
1274                 if (unlikely(boundary))
1275                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1276                 ONENAND_SET_NEXT_BUFFERRAM(this);
1277                 buf += thislen;
1278                 thislen = min_t(int, writesize, len - read);
1279                 column = 0;
1280                 cond_resched();
1281                 /* Now wait for load */
1282                 ret = this->wait(mtd, FL_READING);
1283                 onenand_update_bufferram(mtd, from, !ret);
1284                 if (ret == -EBADMSG)
1285                         ret = 0;
1286         }
1287
1288         /*
1289          * Return success, if no ECC failures, else -EBADMSG
1290          * fs driver will take care of that, because
1291          * retlen == desired len and result == -EBADMSG
1292          */
1293         ops->retlen = read;
1294         ops->oobretlen = oobread;
1295
1296         if (ret)
1297                 return ret;
1298
1299         if (mtd->ecc_stats.failed - stats.failed)
1300                 return -EBADMSG;
1301
1302         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1303 }
1304
1305 /**
1306  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1307  * @param mtd           MTD device structure
1308  * @param from          offset to read from
1309  * @param ops:          oob operation description structure
1310  *
1311  * OneNAND read out-of-band data from the spare area
1312  */
1313 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1314                         struct mtd_oob_ops *ops)
1315 {
1316         struct onenand_chip *this = mtd->priv;
1317         struct mtd_ecc_stats stats;
1318         int read = 0, thislen, column, oobsize;
1319         size_t len = ops->ooblen;
1320         mtd_oob_mode_t mode = ops->mode;
1321         u_char *buf = ops->oobbuf;
1322         int ret = 0, readcmd;
1323
1324         from += ops->ooboffs;
1325
1326         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1327                 __func__, (unsigned int) from, (int) len);
1328
1329         /* Initialize return length value */
1330         ops->oobretlen = 0;
1331
1332         if (mode == MTD_OOB_AUTO)
1333                 oobsize = this->ecclayout->oobavail;
1334         else
1335                 oobsize = mtd->oobsize;
1336
1337         column = from & (mtd->oobsize - 1);
1338
1339         if (unlikely(column >= oobsize)) {
1340                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1341                         __func__);
1342                 return -EINVAL;
1343         }
1344
1345         /* Do not allow reads past end of device */
1346         if (unlikely(from >= mtd->size ||
1347                      column + len > ((mtd->size >> this->page_shift) -
1348                                      (from >> this->page_shift)) * oobsize)) {
1349                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1350                         __func__);
1351                 return -EINVAL;
1352         }
1353
1354         stats = mtd->ecc_stats;
1355
1356         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1357
1358         while (read < len) {
1359                 cond_resched();
1360
1361                 thislen = oobsize - column;
1362                 thislen = min_t(int, thislen, len);
1363
1364                 this->command(mtd, readcmd, from, mtd->oobsize);
1365
1366                 onenand_update_bufferram(mtd, from, 0);
1367
1368                 ret = this->wait(mtd, FL_READING);
1369                 if (unlikely(ret))
1370                         ret = onenand_recover_lsb(mtd, from, ret);
1371
1372                 if (ret && ret != -EBADMSG) {
1373                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1374                                 __func__, ret);
1375                         break;
1376                 }
1377
1378                 if (mode == MTD_OOB_AUTO)
1379                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1380                 else
1381                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1382
1383                 read += thislen;
1384
1385                 if (read == len)
1386                         break;
1387
1388                 buf += thislen;
1389
1390                 /* Read more? */
1391                 if (read < len) {
1392                         /* Page size */
1393                         from += mtd->writesize;
1394                         column = 0;
1395                 }
1396         }
1397
1398         ops->oobretlen = read;
1399
1400         if (ret)
1401                 return ret;
1402
1403         if (mtd->ecc_stats.failed - stats.failed)
1404                 return -EBADMSG;
1405
1406         return 0;
1407 }
1408
1409 /**
1410  * onenand_read - [MTD Interface] Read data from flash
1411  * @param mtd           MTD device structure
1412  * @param from          offset to read from
1413  * @param len           number of bytes to read
1414  * @param retlen        pointer to variable to store the number of read bytes
1415  * @param buf           the databuffer to put data
1416  *
1417  * Read with ecc
1418 */
1419 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1420         size_t *retlen, u_char *buf)
1421 {
1422         struct onenand_chip *this = mtd->priv;
1423         struct mtd_oob_ops ops = {
1424                 .len    = len,
1425                 .ooblen = 0,
1426                 .datbuf = buf,
1427                 .oobbuf = NULL,
1428         };
1429         int ret;
1430
1431         onenand_get_device(mtd, FL_READING);
1432         ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1433                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1434                 onenand_read_ops_nolock(mtd, from, &ops);
1435         onenand_release_device(mtd);
1436
1437         *retlen = ops.retlen;
1438         return ret;
1439 }
1440
1441 /**
1442  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1443  * @param mtd:          MTD device structure
1444  * @param from:         offset to read from
1445  * @param ops:          oob operation description structure
1446
1447  * Read main and/or out-of-band
1448  */
1449 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1450                             struct mtd_oob_ops *ops)
1451 {
1452         struct onenand_chip *this = mtd->priv;
1453         int ret;
1454
1455         switch (ops->mode) {
1456         case MTD_OOB_PLACE:
1457         case MTD_OOB_AUTO:
1458                 break;
1459         case MTD_OOB_RAW:
1460                 /* Not implemented yet */
1461         default:
1462                 return -EINVAL;
1463         }
1464
1465         onenand_get_device(mtd, FL_READING);
1466         if (ops->datbuf)
1467                 ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1468                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1469                         onenand_read_ops_nolock(mtd, from, ops);
1470         else
1471                 ret = onenand_read_oob_nolock(mtd, from, ops);
1472         onenand_release_device(mtd);
1473
1474         return ret;
1475 }
1476
1477 /**
1478  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1479  * @param mtd           MTD device structure
1480  * @param state         state to select the max. timeout value
1481  *
1482  * Wait for command done.
1483  */
1484 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1485 {
1486         struct onenand_chip *this = mtd->priv;
1487         unsigned long timeout;
1488         unsigned int interrupt;
1489         unsigned int ctrl;
1490
1491         /* The 20 msec is enough */
1492         timeout = jiffies + msecs_to_jiffies(20);
1493         while (time_before(jiffies, timeout)) {
1494                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1495                 if (interrupt & ONENAND_INT_MASTER)
1496                         break;
1497         }
1498         /* To get correct interrupt status in timeout case */
1499         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1500         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1501
1502         if (interrupt & ONENAND_INT_READ) {
1503                 int ecc = onenand_read_ecc(this);
1504                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1505                         printk(KERN_WARNING "%s: ecc error = 0x%04x, "
1506                                 "controller error 0x%04x\n",
1507                                 __func__, ecc, ctrl);
1508                         return ONENAND_BBT_READ_ECC_ERROR;
1509                 }
1510         } else {
1511                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1512                         __func__, ctrl, interrupt);
1513                 return ONENAND_BBT_READ_FATAL_ERROR;
1514         }
1515
1516         /* Initial bad block case: 0x2400 or 0x0400 */
1517         if (ctrl & ONENAND_CTRL_ERROR) {
1518                 printk(KERN_DEBUG "%s: controller error = 0x%04x\n",
1519                         __func__, ctrl);
1520                 return ONENAND_BBT_READ_ERROR;
1521         }
1522
1523         return 0;
1524 }
1525
1526 /**
1527  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1528  * @param mtd           MTD device structure
1529  * @param from          offset to read from
1530  * @param ops           oob operation description structure
1531  *
1532  * OneNAND read out-of-band data from the spare area for bbt scan
1533  */
1534 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1535                             struct mtd_oob_ops *ops)
1536 {
1537         struct onenand_chip *this = mtd->priv;
1538         int read = 0, thislen, column;
1539         int ret = 0, readcmd;
1540         size_t len = ops->ooblen;
1541         u_char *buf = ops->oobbuf;
1542
1543         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1544                 __func__, (unsigned int) from, len);
1545
1546         /* Initialize return value */
1547         ops->oobretlen = 0;
1548
1549         /* Do not allow reads past end of device */
1550         if (unlikely((from + len) > mtd->size)) {
1551                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1552                         __func__);
1553                 return ONENAND_BBT_READ_FATAL_ERROR;
1554         }
1555
1556         /* Grab the lock and see if the device is available */
1557         onenand_get_device(mtd, FL_READING);
1558
1559         column = from & (mtd->oobsize - 1);
1560
1561         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1562
1563         while (read < len) {
1564                 cond_resched();
1565
1566                 thislen = mtd->oobsize - column;
1567                 thislen = min_t(int, thislen, len);
1568
1569                 this->command(mtd, readcmd, from, mtd->oobsize);
1570
1571                 onenand_update_bufferram(mtd, from, 0);
1572
1573                 ret = this->bbt_wait(mtd, FL_READING);
1574                 if (unlikely(ret))
1575                         ret = onenand_recover_lsb(mtd, from, ret);
1576
1577                 if (ret)
1578                         break;
1579
1580                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1581                 read += thislen;
1582                 if (read == len)
1583                         break;
1584
1585                 buf += thislen;
1586
1587                 /* Read more? */
1588                 if (read < len) {
1589                         /* Update Page size */
1590                         from += this->writesize;
1591                         column = 0;
1592                 }
1593         }
1594
1595         /* Deselect and wake up anyone waiting on the device */
1596         onenand_release_device(mtd);
1597
1598         ops->oobretlen = read;
1599         return ret;
1600 }
1601
1602 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1603 /**
1604  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1605  * @param mtd           MTD device structure
1606  * @param buf           the databuffer to verify
1607  * @param to            offset to read from
1608  */
1609 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1610 {
1611         struct onenand_chip *this = mtd->priv;
1612         u_char *oob_buf = this->oob_buf;
1613         int status, i, readcmd;
1614
1615         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1616
1617         this->command(mtd, readcmd, to, mtd->oobsize);
1618         onenand_update_bufferram(mtd, to, 0);
1619         status = this->wait(mtd, FL_READING);
1620         if (status)
1621                 return status;
1622
1623         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1624         for (i = 0; i < mtd->oobsize; i++)
1625                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1626                         return -EBADMSG;
1627
1628         return 0;
1629 }
1630
1631 /**
1632  * onenand_verify - [GENERIC] verify the chip contents after a write
1633  * @param mtd          MTD device structure
1634  * @param buf          the databuffer to verify
1635  * @param addr         offset to read from
1636  * @param len          number of bytes to read and compare
1637  */
1638 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1639 {
1640         struct onenand_chip *this = mtd->priv;
1641         int ret = 0;
1642         int thislen, column;
1643
1644         while (len != 0) {
1645                 thislen = min_t(int, this->writesize, len);
1646                 column = addr & (this->writesize - 1);
1647                 if (column + thislen > this->writesize)
1648                         thislen = this->writesize - column;
1649
1650                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1651
1652                 onenand_update_bufferram(mtd, addr, 0);
1653
1654                 ret = this->wait(mtd, FL_READING);
1655                 if (ret)
1656                         return ret;
1657
1658                 onenand_update_bufferram(mtd, addr, 1);
1659
1660                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1661
1662                 if (memcmp(buf, this->verify_buf, thislen))
1663                         return -EBADMSG;
1664
1665                 len -= thislen;
1666                 buf += thislen;
1667                 addr += thislen;
1668         }
1669
1670         return 0;
1671 }
1672 #else
1673 #define onenand_verify(...)             (0)
1674 #define onenand_verify_oob(...)         (0)
1675 #endif
1676
1677 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1678
1679 static void onenand_panic_wait(struct mtd_info *mtd)
1680 {
1681         struct onenand_chip *this = mtd->priv;
1682         unsigned int interrupt;
1683         int i;
1684         
1685         for (i = 0; i < 2000; i++) {
1686                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1687                 if (interrupt & ONENAND_INT_MASTER)
1688                         break;
1689                 udelay(10);
1690         }
1691 }
1692
1693 /**
1694  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1695  * @param mtd           MTD device structure
1696  * @param to            offset to write to
1697  * @param len           number of bytes to write
1698  * @param retlen        pointer to variable to store the number of written bytes
1699  * @param buf           the data to write
1700  *
1701  * Write with ECC
1702  */
1703 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1704                          size_t *retlen, const u_char *buf)
1705 {
1706         struct onenand_chip *this = mtd->priv;
1707         int column, subpage;
1708         int written = 0;
1709         int ret = 0;
1710
1711         if (this->state == FL_PM_SUSPENDED)
1712                 return -EBUSY;
1713
1714         /* Wait for any existing operation to clear */
1715         onenand_panic_wait(mtd);
1716
1717         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1718                 __func__, (unsigned int) to, (int) len);
1719
1720         /* Initialize retlen, in case of early exit */
1721         *retlen = 0;
1722
1723         /* Do not allow writes past end of device */
1724         if (unlikely((to + len) > mtd->size)) {
1725                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1726                         __func__);
1727                 return -EINVAL;
1728         }
1729
1730         /* Reject writes, which are not page aligned */
1731         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1732                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1733                         __func__);
1734                 return -EINVAL;
1735         }
1736
1737         column = to & (mtd->writesize - 1);
1738
1739         /* Loop until all data write */
1740         while (written < len) {
1741                 int thislen = min_t(int, mtd->writesize - column, len - written);
1742                 u_char *wbuf = (u_char *) buf;
1743
1744                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1745
1746                 /* Partial page write */
1747                 subpage = thislen < mtd->writesize;
1748                 if (subpage) {
1749                         memset(this->page_buf, 0xff, mtd->writesize);
1750                         memcpy(this->page_buf + column, buf, thislen);
1751                         wbuf = this->page_buf;
1752                 }
1753
1754                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1755                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1756
1757                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1758
1759                 onenand_panic_wait(mtd);
1760
1761                 /* In partial page write we don't update bufferram */
1762                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1763                 if (ONENAND_IS_2PLANE(this)) {
1764                         ONENAND_SET_BUFFERRAM1(this);
1765                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1766                 }
1767
1768                 if (ret) {
1769                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1770                         break;
1771                 }
1772
1773                 written += thislen;
1774
1775                 if (written == len)
1776                         break;
1777
1778                 column = 0;
1779                 to += thislen;
1780                 buf += thislen;
1781         }
1782
1783         *retlen = written;
1784         return ret;
1785 }
1786
1787 /**
1788  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1789  * @param mtd           MTD device structure
1790  * @param oob_buf       oob buffer
1791  * @param buf           source address
1792  * @param column        oob offset to write to
1793  * @param thislen       oob length to write
1794  */
1795 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1796                                   const u_char *buf, int column, int thislen)
1797 {
1798         struct onenand_chip *this = mtd->priv;
1799         struct nand_oobfree *free;
1800         int writecol = column;
1801         int writeend = column + thislen;
1802         int lastgap = 0;
1803         unsigned int i;
1804
1805         free = this->ecclayout->oobfree;
1806         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1807                 if (writecol >= lastgap)
1808                         writecol += free->offset - lastgap;
1809                 if (writeend >= lastgap)
1810                         writeend += free->offset - lastgap;
1811                 lastgap = free->offset + free->length;
1812         }
1813         free = this->ecclayout->oobfree;
1814         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1815                 int free_end = free->offset + free->length;
1816                 if (free->offset < writeend && free_end > writecol) {
1817                         int st = max_t(int,free->offset,writecol);
1818                         int ed = min_t(int,free_end,writeend);
1819                         int n = ed - st;
1820                         memcpy(oob_buf + st, buf, n);
1821                         buf += n;
1822                 } else if (column == 0)
1823                         break;
1824         }
1825         return 0;
1826 }
1827
1828 /**
1829  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1830  * @param mtd           MTD device structure
1831  * @param to            offset to write to
1832  * @param ops           oob operation description structure
1833  *
1834  * Write main and/or oob with ECC
1835  */
1836 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1837                                 struct mtd_oob_ops *ops)
1838 {
1839         struct onenand_chip *this = mtd->priv;
1840         int written = 0, column, thislen = 0, subpage = 0;
1841         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1842         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1843         size_t len = ops->len;
1844         size_t ooblen = ops->ooblen;
1845         const u_char *buf = ops->datbuf;
1846         const u_char *oob = ops->oobbuf;
1847         u_char *oobbuf;
1848         int ret = 0;
1849
1850         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1851                 __func__, (unsigned int) to, (int) len);
1852
1853         /* Initialize retlen, in case of early exit */
1854         ops->retlen = 0;
1855         ops->oobretlen = 0;
1856
1857         /* Do not allow writes past end of device */
1858         if (unlikely((to + len) > mtd->size)) {
1859                 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1860                         __func__);
1861                 return -EINVAL;
1862         }
1863
1864         /* Reject writes, which are not page aligned */
1865         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1866                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1867                         __func__);
1868                 return -EINVAL;
1869         }
1870
1871         /* Check zero length */
1872         if (!len)
1873                 return 0;
1874
1875         if (ops->mode == MTD_OOB_AUTO)
1876                 oobsize = this->ecclayout->oobavail;
1877         else
1878                 oobsize = mtd->oobsize;
1879
1880         oobcolumn = to & (mtd->oobsize - 1);
1881
1882         column = to & (mtd->writesize - 1);
1883
1884         /* Loop until all data write */
1885         while (1) {
1886                 if (written < len) {
1887                         u_char *wbuf = (u_char *) buf;
1888
1889                         thislen = min_t(int, mtd->writesize - column, len - written);
1890                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1891
1892                         cond_resched();
1893
1894                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1895
1896                         /* Partial page write */
1897                         subpage = thislen < mtd->writesize;
1898                         if (subpage) {
1899                                 memset(this->page_buf, 0xff, mtd->writesize);
1900                                 memcpy(this->page_buf + column, buf, thislen);
1901                                 wbuf = this->page_buf;
1902                         }
1903
1904                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1905
1906                         if (oob) {
1907                                 oobbuf = this->oob_buf;
1908
1909                                 /* We send data to spare ram with oobsize
1910                                  * to prevent byte access */
1911                                 memset(oobbuf, 0xff, mtd->oobsize);
1912                                 if (ops->mode == MTD_OOB_AUTO)
1913                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1914                                 else
1915                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1916
1917                                 oobwritten += thisooblen;
1918                                 oob += thisooblen;
1919                                 oobcolumn = 0;
1920                         } else
1921                                 oobbuf = (u_char *) ffchars;
1922
1923                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1924                 } else
1925                         ONENAND_SET_NEXT_BUFFERRAM(this);
1926
1927                 /*
1928                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1929                  * write-while-program feature.
1930                  */
1931                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1932                         ONENAND_SET_PREV_BUFFERRAM(this);
1933
1934                         ret = this->wait(mtd, FL_WRITING);
1935
1936                         /* In partial page write we don't update bufferram */
1937                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1938                         if (ret) {
1939                                 written -= prevlen;
1940                                 printk(KERN_ERR "%s: write failed %d\n",
1941                                         __func__, ret);
1942                                 break;
1943                         }
1944
1945                         if (written == len) {
1946                                 /* Only check verify write turn on */
1947                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1948                                 if (ret)
1949                                         printk(KERN_ERR "%s: verify failed %d\n",
1950                                                 __func__, ret);
1951                                 break;
1952                         }
1953
1954                         ONENAND_SET_NEXT_BUFFERRAM(this);
1955                 }
1956
1957                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1958
1959                 /*
1960                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1961                  */
1962                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1963                         ret = this->wait(mtd, FL_WRITING);
1964
1965                         /* In partial page write we don't update bufferram */
1966                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1967                         if (ret) {
1968                                 printk(KERN_ERR "%s: write failed %d\n",
1969                                         __func__, ret);
1970                                 break;
1971                         }
1972
1973                         /* Only check verify write turn on */
1974                         ret = onenand_verify(mtd, buf, to, thislen);
1975                         if (ret) {
1976                                 printk(KERN_ERR "%s: verify failed %d\n",
1977                                         __func__, ret);
1978                                 break;
1979                         }
1980
1981                         written += thislen;
1982
1983                         if (written == len)
1984                                 break;
1985
1986                 } else
1987                         written += thislen;
1988
1989                 column = 0;
1990                 prev_subpage = subpage;
1991                 prev = to;
1992                 prevlen = thislen;
1993                 to += thislen;
1994                 buf += thislen;
1995                 first = 0;
1996         }
1997
1998         /* In error case, clear all bufferrams */
1999         if (written != len)
2000                 onenand_invalidate_bufferram(mtd, 0, -1);
2001
2002         ops->retlen = written;
2003         ops->oobretlen = oobwritten;
2004
2005         return ret;
2006 }
2007
2008
2009 /**
2010  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2011  * @param mtd           MTD device structure
2012  * @param to            offset to write to
2013  * @param len           number of bytes to write
2014  * @param retlen        pointer to variable to store the number of written bytes
2015  * @param buf           the data to write
2016  * @param mode          operation mode
2017  *
2018  * OneNAND write out-of-band
2019  */
2020 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2021                                     struct mtd_oob_ops *ops)
2022 {
2023         struct onenand_chip *this = mtd->priv;
2024         int column, ret = 0, oobsize;
2025         int written = 0, oobcmd;
2026         u_char *oobbuf;
2027         size_t len = ops->ooblen;
2028         const u_char *buf = ops->oobbuf;
2029         mtd_oob_mode_t mode = ops->mode;
2030
2031         to += ops->ooboffs;
2032
2033         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2034                 __func__, (unsigned int) to, (int) len);
2035
2036         /* Initialize retlen, in case of early exit */
2037         ops->oobretlen = 0;
2038
2039         if (mode == MTD_OOB_AUTO)
2040                 oobsize = this->ecclayout->oobavail;
2041         else
2042                 oobsize = mtd->oobsize;
2043
2044         column = to & (mtd->oobsize - 1);
2045
2046         if (unlikely(column >= oobsize)) {
2047                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2048                         __func__);
2049                 return -EINVAL;
2050         }
2051
2052         /* For compatibility with NAND: Do not allow write past end of page */
2053         if (unlikely(column + len > oobsize)) {
2054                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2055                         __func__);
2056                 return -EINVAL;
2057         }
2058
2059         /* Do not allow reads past end of device */
2060         if (unlikely(to >= mtd->size ||
2061                      column + len > ((mtd->size >> this->page_shift) -
2062                                      (to >> this->page_shift)) * oobsize)) {
2063                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2064                        __func__);
2065                 return -EINVAL;
2066         }
2067
2068         oobbuf = this->oob_buf;
2069
2070         oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2071
2072         /* Loop until all data write */
2073         while (written < len) {
2074                 int thislen = min_t(int, oobsize, len - written);
2075
2076                 cond_resched();
2077
2078                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2079
2080                 /* We send data to spare ram with oobsize
2081                  * to prevent byte access */
2082                 memset(oobbuf, 0xff, mtd->oobsize);
2083                 if (mode == MTD_OOB_AUTO)
2084                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2085                 else
2086                         memcpy(oobbuf + column, buf, thislen);
2087                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2088
2089                 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) {
2090                         /* Set main area of DataRAM to 0xff*/
2091                         memset(this->page_buf, 0xff, mtd->writesize);
2092                         this->write_bufferram(mtd, ONENAND_DATARAM,
2093                                          this->page_buf, 0, mtd->writesize);
2094                 }
2095
2096                 this->command(mtd, oobcmd, to, mtd->oobsize);
2097
2098                 onenand_update_bufferram(mtd, to, 0);
2099                 if (ONENAND_IS_2PLANE(this)) {
2100                         ONENAND_SET_BUFFERRAM1(this);
2101                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2102                 }
2103
2104                 ret = this->wait(mtd, FL_WRITING);
2105                 if (ret) {
2106                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2107                         break;
2108                 }
2109
2110                 ret = onenand_verify_oob(mtd, oobbuf, to);
2111                 if (ret) {
2112                         printk(KERN_ERR "%s: verify failed %d\n",
2113                                 __func__, ret);
2114                         break;
2115                 }
2116
2117                 written += thislen;
2118                 if (written == len)
2119                         break;
2120
2121                 to += mtd->writesize;
2122                 buf += thislen;
2123                 column = 0;
2124         }
2125
2126         ops->oobretlen = written;
2127
2128         return ret;
2129 }
2130
2131 /**
2132  * onenand_write - [MTD Interface] write buffer to FLASH
2133  * @param mtd           MTD device structure
2134  * @param to            offset to write to
2135  * @param len           number of bytes to write
2136  * @param retlen        pointer to variable to store the number of written bytes
2137  * @param buf           the data to write
2138  *
2139  * Write with ECC
2140  */
2141 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2142         size_t *retlen, const u_char *buf)
2143 {
2144         struct mtd_oob_ops ops = {
2145                 .len    = len,
2146                 .ooblen = 0,
2147                 .datbuf = (u_char *) buf,
2148                 .oobbuf = NULL,
2149         };
2150         int ret;
2151
2152         onenand_get_device(mtd, FL_WRITING);
2153         ret = onenand_write_ops_nolock(mtd, to, &ops);
2154         onenand_release_device(mtd);
2155
2156         *retlen = ops.retlen;
2157         return ret;
2158 }
2159
2160 /**
2161  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2162  * @param mtd:          MTD device structure
2163  * @param to:           offset to write
2164  * @param ops:          oob operation description structure
2165  */
2166 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2167                              struct mtd_oob_ops *ops)
2168 {
2169         int ret;
2170
2171         switch (ops->mode) {
2172         case MTD_OOB_PLACE:
2173         case MTD_OOB_AUTO:
2174                 break;
2175         case MTD_OOB_RAW:
2176                 /* Not implemented yet */
2177         default:
2178                 return -EINVAL;
2179         }
2180
2181         onenand_get_device(mtd, FL_WRITING);
2182         if (ops->datbuf)
2183                 ret = onenand_write_ops_nolock(mtd, to, ops);
2184         else
2185                 ret = onenand_write_oob_nolock(mtd, to, ops);
2186         onenand_release_device(mtd);
2187
2188         return ret;
2189 }
2190
2191 /**
2192  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2193  * @param mtd           MTD device structure
2194  * @param ofs           offset from device start
2195  * @param allowbbt      1, if its allowed to access the bbt area
2196  *
2197  * Check, if the block is bad. Either by reading the bad block table or
2198  * calling of the scan function.
2199  */
2200 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2201 {
2202         struct onenand_chip *this = mtd->priv;
2203         struct bbm_info *bbm = this->bbm;
2204
2205         /* Return info from the table */
2206         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2207 }
2208
2209
2210 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2211                                            struct erase_info *instr)
2212 {
2213         struct onenand_chip *this = mtd->priv;
2214         loff_t addr = instr->addr;
2215         int len = instr->len;
2216         unsigned int block_size = (1 << this->erase_shift);
2217         int ret = 0;
2218
2219         while (len) {
2220                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2221                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2222                 if (ret) {
2223                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2224                                __func__, onenand_block(this, addr));
2225                         instr->state = MTD_ERASE_FAILED;
2226                         instr->fail_addr = addr;
2227                         return -1;
2228                 }
2229                 len -= block_size;
2230                 addr += block_size;
2231         }
2232         return 0;
2233 }
2234
2235 /**
2236  * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2237  * @param mtd           MTD device structure
2238  * @param instr         erase instruction
2239  * @param region        erase region
2240  *
2241  * Erase one or more blocks up to 64 block at a time
2242  */
2243 static int onenand_multiblock_erase(struct mtd_info *mtd,
2244                                     struct erase_info *instr,
2245                                     unsigned int block_size)
2246 {
2247         struct onenand_chip *this = mtd->priv;
2248         loff_t addr = instr->addr;
2249         int len = instr->len;
2250         int eb_count = 0;
2251         int ret = 0;
2252         int bdry_block = 0;
2253
2254         instr->state = MTD_ERASING;
2255
2256         if (ONENAND_IS_DDP(this)) {
2257                 loff_t bdry_addr = this->chipsize >> 1;
2258                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2259                         bdry_block = bdry_addr >> this->erase_shift;
2260         }
2261
2262         /* Pre-check bbs */
2263         while (len) {
2264                 /* Check if we have a bad block, we do not erase bad blocks */
2265                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2266                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2267                                "at addr 0x%012llx\n",
2268                                __func__, (unsigned long long) addr);
2269                         instr->state = MTD_ERASE_FAILED;
2270                         return -EIO;
2271                 }
2272                 len -= block_size;
2273                 addr += block_size;
2274         }
2275
2276         len = instr->len;
2277         addr = instr->addr;
2278
2279         /* loop over 64 eb batches */
2280         while (len) {
2281                 struct erase_info verify_instr = *instr;
2282                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2283
2284                 verify_instr.addr = addr;
2285                 verify_instr.len = 0;
2286
2287                 /* do not cross chip boundary */
2288                 if (bdry_block) {
2289                         int this_block = (addr >> this->erase_shift);
2290
2291                         if (this_block < bdry_block) {
2292                                 max_eb_count = min(max_eb_count,
2293                                                    (bdry_block - this_block));
2294                         }
2295                 }
2296
2297                 eb_count = 0;
2298
2299                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2300                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2301                                       addr, block_size);
2302                         onenand_invalidate_bufferram(mtd, addr, block_size);
2303
2304                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2305                         if (ret) {
2306                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2307                                        "block %d\n", __func__,
2308                                        onenand_block(this, addr));
2309                                 instr->state = MTD_ERASE_FAILED;
2310                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2311                                 return -EIO;
2312                         }
2313
2314                         len -= block_size;
2315                         addr += block_size;
2316                         eb_count++;
2317                 }
2318
2319                 /* last block of 64-eb series */
2320                 cond_resched();
2321                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2322                 onenand_invalidate_bufferram(mtd, addr, block_size);
2323
2324                 ret = this->wait(mtd, FL_ERASING);
2325                 /* Check if it is write protected */
2326                 if (ret) {
2327                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2328                                __func__, onenand_block(this, addr));
2329                         instr->state = MTD_ERASE_FAILED;
2330                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2331                         return -EIO;
2332                 }
2333
2334                 len -= block_size;
2335                 addr += block_size;
2336                 eb_count++;
2337
2338                 /* verify */
2339                 verify_instr.len = eb_count * block_size;
2340                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2341                         instr->state = verify_instr.state;
2342                         instr->fail_addr = verify_instr.fail_addr;
2343                         return -EIO;
2344                 }
2345
2346         }
2347         return 0;
2348 }
2349
2350
2351 /**
2352  * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2353  * @param mtd           MTD device structure
2354  * @param instr         erase instruction
2355  * @param region        erase region
2356  * @param block_size    erase block size
2357  *
2358  * Erase one or more blocks one block at a time
2359  */
2360 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2361                                         struct erase_info *instr,
2362                                         struct mtd_erase_region_info *region,
2363                                         unsigned int block_size)
2364 {
2365         struct onenand_chip *this = mtd->priv;
2366         loff_t addr = instr->addr;
2367         int len = instr->len;
2368         loff_t region_end = 0;
2369         int ret = 0;
2370
2371         if (region) {
2372                 /* region is set for Flex-OneNAND */
2373                 region_end = region->offset + region->erasesize * region->numblocks;
2374         }
2375
2376         instr->state = MTD_ERASING;
2377
2378         /* Loop through the blocks */
2379         while (len) {
2380                 cond_resched();
2381
2382                 /* Check if we have a bad block, we do not erase bad blocks */
2383                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2384                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2385                                         "at addr 0x%012llx\n",
2386                                         __func__, (unsigned long long) addr);
2387                         instr->state = MTD_ERASE_FAILED;
2388                         return -EIO;
2389                 }
2390
2391                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2392
2393                 onenand_invalidate_bufferram(mtd, addr, block_size);
2394
2395                 ret = this->wait(mtd, FL_ERASING);
2396                 /* Check, if it is write protected */
2397                 if (ret) {
2398                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2399                                 __func__, onenand_block(this, addr));
2400                         instr->state = MTD_ERASE_FAILED;
2401                         instr->fail_addr = addr;
2402                         return -EIO;
2403                 }
2404
2405                 len -= block_size;
2406                 addr += block_size;
2407
2408                 if (addr == region_end) {
2409                         if (!len)
2410                                 break;
2411                         region++;
2412
2413                         block_size = region->erasesize;
2414                         region_end = region->offset + region->erasesize * region->numblocks;
2415
2416                         if (len & (block_size - 1)) {
2417                                 /* FIXME: This should be handled at MTD partitioning level. */
2418                                 printk(KERN_ERR "%s: Unaligned address\n",
2419                                         __func__);
2420                                 return -EIO;
2421                         }
2422                 }
2423         }
2424         return 0;
2425 }
2426
2427 /**
2428  * onenand_erase - [MTD Interface] erase block(s)
2429  * @param mtd           MTD device structure
2430  * @param instr         erase instruction
2431  *
2432  * Erase one or more blocks
2433  */
2434 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2435 {
2436         struct onenand_chip *this = mtd->priv;
2437         unsigned int block_size;
2438         loff_t addr = instr->addr;
2439         loff_t len = instr->len;
2440         int ret = 0;
2441         struct mtd_erase_region_info *region = NULL;
2442         loff_t region_offset = 0;
2443
2444         DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2445               (unsigned long long) instr->addr, (unsigned long long) instr->len);
2446
2447         /* Do not allow erase past end of device */
2448         if (unlikely((len + addr) > mtd->size)) {
2449                 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2450                 return -EINVAL;
2451         }
2452
2453         if (FLEXONENAND(this)) {
2454                 /* Find the eraseregion of this address */
2455                 int i = flexonenand_region(mtd, addr);
2456
2457                 region = &mtd->eraseregions[i];
2458                 block_size = region->erasesize;
2459
2460                 /* Start address within region must align on block boundary.
2461                  * Erase region's start offset is always block start address.
2462                  */
2463                 region_offset = region->offset;
2464         } else
2465                 block_size = 1 << this->erase_shift;
2466
2467         /* Start address must align on block boundary */
2468         if (unlikely((addr - region_offset) & (block_size - 1))) {
2469                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2470                 return -EINVAL;
2471         }
2472
2473         /* Length must align on block boundary */
2474         if (unlikely(len & (block_size - 1))) {
2475                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2476                 return -EINVAL;
2477         }
2478
2479         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2480
2481         /* Grab the lock and see if the device is available */
2482         onenand_get_device(mtd, FL_ERASING);
2483
2484         if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2485                 /* region is set for Flex-OneNAND (no mb erase) */
2486                 ret = onenand_block_by_block_erase(mtd, instr,
2487                                                    region, block_size);
2488         } else {
2489                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2490         }
2491
2492         /* Deselect and wake up anyone waiting on the device */
2493         onenand_release_device(mtd);
2494
2495         /* Do call back function */
2496         if (!ret) {
2497                 instr->state = MTD_ERASE_DONE;
2498                 mtd_erase_callback(instr);
2499         }
2500
2501         return ret;
2502 }
2503
2504 /**
2505  * onenand_sync - [MTD Interface] sync
2506  * @param mtd           MTD device structure
2507  *
2508  * Sync is actually a wait for chip ready function
2509  */
2510 static void onenand_sync(struct mtd_info *mtd)
2511 {
2512         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2513
2514         /* Grab the lock and see if the device is available */
2515         onenand_get_device(mtd, FL_SYNCING);
2516
2517         /* Release it and go back */
2518         onenand_release_device(mtd);
2519 }
2520
2521 /**
2522  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2523  * @param mtd           MTD device structure
2524  * @param ofs           offset relative to mtd start
2525  *
2526  * Check whether the block is bad
2527  */
2528 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2529 {
2530         int ret;
2531
2532         /* Check for invalid offset */
2533         if (ofs > mtd->size)
2534                 return -EINVAL;
2535
2536         onenand_get_device(mtd, FL_READING);
2537         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2538         onenand_release_device(mtd);
2539         return ret;
2540 }
2541
2542 /**
2543  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2544  * @param mtd           MTD device structure
2545  * @param ofs           offset from device start
2546  *
2547  * This is the default implementation, which can be overridden by
2548  * a hardware specific driver.
2549  */
2550 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2551 {
2552         struct onenand_chip *this = mtd->priv;
2553         struct bbm_info *bbm = this->bbm;
2554         u_char buf[2] = {0, 0};
2555         struct mtd_oob_ops ops = {
2556                 .mode = MTD_OOB_PLACE,
2557                 .ooblen = 2,
2558                 .oobbuf = buf,
2559                 .ooboffs = 0,
2560         };
2561         int block;
2562
2563         /* Get block number */
2564         block = onenand_block(this, ofs);
2565         if (bbm->bbt)
2566                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2567
2568         /* We write two bytes, so we don't have to mess with 16-bit access */
2569         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2570         /* FIXME : What to do when marking SLC block in partition
2571          *         with MLC erasesize? For now, it is not advisable to
2572          *         create partitions containing both SLC and MLC regions.
2573          */
2574         return onenand_write_oob_nolock(mtd, ofs, &ops);
2575 }
2576
2577 /**
2578  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2579  * @param mtd           MTD device structure
2580  * @param ofs           offset relative to mtd start
2581  *
2582  * Mark the block as bad
2583  */
2584 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2585 {
2586         struct onenand_chip *this = mtd->priv;
2587         int ret;
2588
2589         ret = onenand_block_isbad(mtd, ofs);
2590         if (ret) {
2591                 /* If it was bad already, return success and do nothing */
2592                 if (ret > 0)
2593                         return 0;
2594                 return ret;
2595         }
2596
2597         onenand_get_device(mtd, FL_WRITING);
2598         ret = this->block_markbad(mtd, ofs);
2599         onenand_release_device(mtd);
2600         return ret;
2601 }
2602
2603 /**
2604  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2605  * @param mtd           MTD device structure
2606  * @param ofs           offset relative to mtd start
2607  * @param len           number of bytes to lock or unlock
2608  * @param cmd           lock or unlock command
2609  *
2610  * Lock or unlock one or more blocks
2611  */
2612 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2613 {
2614         struct onenand_chip *this = mtd->priv;
2615         int start, end, block, value, status;
2616         int wp_status_mask;
2617
2618         start = onenand_block(this, ofs);
2619         end = onenand_block(this, ofs + len) - 1;
2620
2621         if (cmd == ONENAND_CMD_LOCK)
2622                 wp_status_mask = ONENAND_WP_LS;
2623         else
2624                 wp_status_mask = ONENAND_WP_US;
2625
2626         /* Continuous lock scheme */
2627         if (this->options & ONENAND_HAS_CONT_LOCK) {
2628                 /* Set start block address */
2629                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2630                 /* Set end block address */
2631                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2632                 /* Write lock command */
2633                 this->command(mtd, cmd, 0, 0);
2634
2635                 /* There's no return value */
2636                 this->wait(mtd, FL_LOCKING);
2637
2638                 /* Sanity check */
2639                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2640                     & ONENAND_CTRL_ONGO)
2641                         continue;
2642
2643                 /* Check lock status */
2644                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2645                 if (!(status & wp_status_mask))
2646                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2647                                 __func__, status);
2648
2649                 return 0;
2650         }
2651
2652         /* Block lock scheme */
2653         for (block = start; block < end + 1; block++) {
2654                 /* Set block address */
2655                 value = onenand_block_address(this, block);
2656                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2657                 /* Select DataRAM for DDP */
2658                 value = onenand_bufferram_address(this, block);
2659                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2660                 /* Set start block address */
2661                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2662                 /* Write lock command */
2663                 this->command(mtd, cmd, 0, 0);
2664
2665                 /* There's no return value */
2666                 this->wait(mtd, FL_LOCKING);
2667
2668                 /* Sanity check */
2669                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2670                     & ONENAND_CTRL_ONGO)
2671                         continue;
2672
2673                 /* Check lock status */
2674                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2675                 if (!(status & wp_status_mask))
2676                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2677                                 __func__, block, status);
2678         }
2679
2680         return 0;
2681 }
2682
2683 /**
2684  * onenand_lock - [MTD Interface] Lock block(s)
2685  * @param mtd           MTD device structure
2686  * @param ofs           offset relative to mtd start
2687  * @param len           number of bytes to unlock
2688  *
2689  * Lock one or more blocks
2690  */
2691 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2692 {
2693         int ret;
2694
2695         onenand_get_device(mtd, FL_LOCKING);
2696         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2697         onenand_release_device(mtd);
2698         return ret;
2699 }
2700
2701 /**
2702  * onenand_unlock - [MTD Interface] Unlock block(s)
2703  * @param mtd           MTD device structure
2704  * @param ofs           offset relative to mtd start
2705  * @param len           number of bytes to unlock
2706  *
2707  * Unlock one or more blocks
2708  */
2709 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2710 {
2711         int ret;
2712
2713         onenand_get_device(mtd, FL_LOCKING);
2714         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2715         onenand_release_device(mtd);
2716         return ret;
2717 }
2718
2719 /**
2720  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2721  * @param this          onenand chip data structure
2722  *
2723  * Check lock status
2724  */
2725 static int onenand_check_lock_status(struct onenand_chip *this)
2726 {
2727         unsigned int value, block, status;
2728         unsigned int end;
2729
2730         end = this->chipsize >> this->erase_shift;
2731         for (block = 0; block < end; block++) {
2732                 /* Set block address */
2733                 value = onenand_block_address(this, block);
2734                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2735                 /* Select DataRAM for DDP */
2736                 value = onenand_bufferram_address(this, block);
2737                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2738                 /* Set start block address */
2739                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2740
2741                 /* Check lock status */
2742                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2743                 if (!(status & ONENAND_WP_US)) {
2744                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2745                                 __func__, block, status);
2746                         return 0;
2747                 }
2748         }
2749
2750         return 1;
2751 }
2752
2753 /**
2754  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2755  * @param mtd           MTD device structure
2756  *
2757  * Unlock all blocks
2758  */
2759 static void onenand_unlock_all(struct mtd_info *mtd)
2760 {
2761         struct onenand_chip *this = mtd->priv;
2762         loff_t ofs = 0;
2763         loff_t len = mtd->size;
2764
2765         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2766                 /* Set start block address */
2767                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2768                 /* Write unlock command */
2769                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2770
2771                 /* There's no return value */
2772                 this->wait(mtd, FL_LOCKING);
2773
2774                 /* Sanity check */
2775                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2776                     & ONENAND_CTRL_ONGO)
2777                         continue;
2778
2779                 /* Don't check lock status */
2780                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2781                         return;
2782
2783                 /* Check lock status */
2784                 if (onenand_check_lock_status(this))
2785                         return;
2786
2787                 /* Workaround for all block unlock in DDP */
2788                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2789                         /* All blocks on another chip */
2790                         ofs = this->chipsize >> 1;
2791                         len = this->chipsize >> 1;
2792                 }
2793         }
2794
2795         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2796 }
2797
2798 #ifdef CONFIG_MTD_ONENAND_OTP
2799
2800 /**
2801  * onenand_otp_command - Send OTP specific command to OneNAND device
2802  * @param mtd    MTD device structure
2803  * @param cmd    the command to be sent
2804  * @param addr   offset to read from or write to
2805  * @param len    number of bytes to read or write
2806  */
2807 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2808                                 size_t len)
2809 {
2810         struct onenand_chip *this = mtd->priv;
2811         int value, block, page;
2812
2813         /* Address translation */
2814         switch (cmd) {
2815         case ONENAND_CMD_OTP_ACCESS:
2816                 block = (int) (addr >> this->erase_shift);
2817                 page = -1;
2818                 break;
2819
2820         default:
2821                 block = (int) (addr >> this->erase_shift);
2822                 page = (int) (addr >> this->page_shift);
2823
2824                 if (ONENAND_IS_2PLANE(this)) {
2825                         /* Make the even block number */
2826                         block &= ~1;
2827                         /* Is it the odd plane? */
2828                         if (addr & this->writesize)
2829                                 block++;
2830                         page >>= 1;
2831                 }
2832                 page &= this->page_mask;
2833                 break;
2834         }
2835
2836         if (block != -1) {
2837                 /* Write 'DFS, FBA' of Flash */
2838                 value = onenand_block_address(this, block);
2839                 this->write_word(value, this->base +
2840                                 ONENAND_REG_START_ADDRESS1);
2841         }
2842
2843         if (page != -1) {
2844                 /* Now we use page size operation */
2845                 int sectors = 4, count = 4;
2846                 int dataram;
2847
2848                 switch (cmd) {
2849                 default:
2850                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2851                                 cmd = ONENAND_CMD_2X_PROG;
2852                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2853                         break;
2854                 }
2855
2856                 /* Write 'FPA, FSA' of Flash */
2857                 value = onenand_page_address(page, sectors);
2858                 this->write_word(value, this->base +
2859                                 ONENAND_REG_START_ADDRESS8);
2860
2861                 /* Write 'BSA, BSC' of DataRAM */
2862                 value = onenand_buffer_address(dataram, sectors, count);
2863                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2864         }
2865
2866         /* Interrupt clear */
2867         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2868
2869         /* Write command */
2870         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2871
2872         return 0;
2873 }
2874
2875 /**
2876  * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2877  * @param mtd           MTD device structure
2878  * @param to            offset to write to
2879  * @param len           number of bytes to write
2880  * @param retlen        pointer to variable to store the number of written bytes
2881  * @param buf           the data to write
2882  *
2883  * OneNAND write out-of-band only for OTP
2884  */
2885 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2886                                     struct mtd_oob_ops *ops)
2887 {
2888         struct onenand_chip *this = mtd->priv;
2889         int column, ret = 0, oobsize;
2890         int written = 0;
2891         u_char *oobbuf;
2892         size_t len = ops->ooblen;
2893         const u_char *buf = ops->oobbuf;
2894         int block, value, status;
2895
2896         to += ops->ooboffs;
2897
2898         /* Initialize retlen, in case of early exit */
2899         ops->oobretlen = 0;
2900
2901         oobsize = mtd->oobsize;
2902
2903         column = to & (mtd->oobsize - 1);
2904
2905         oobbuf = this->oob_buf;
2906
2907         /* Loop until all data write */
2908         while (written < len) {
2909                 int thislen = min_t(int, oobsize, len - written);
2910
2911                 cond_resched();
2912
2913                 block = (int) (to >> this->erase_shift);
2914                 /*
2915                  * Write 'DFS, FBA' of Flash
2916                  * Add: F100h DQ=DFS, FBA
2917                  */
2918
2919                 value = onenand_block_address(this, block);
2920                 this->write_word(value, this->base +
2921                                 ONENAND_REG_START_ADDRESS1);
2922
2923                 /*
2924                  * Select DataRAM for DDP
2925                  * Add: F101h DQ=DBS
2926                  */
2927
2928                 value = onenand_bufferram_address(this, block);
2929                 this->write_word(value, this->base +
2930                                 ONENAND_REG_START_ADDRESS2);
2931                 ONENAND_SET_NEXT_BUFFERRAM(this);
2932
2933                 /*
2934                  * Enter OTP access mode
2935                  */
2936                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2937                 this->wait(mtd, FL_OTPING);
2938
2939                 /* We send data to spare ram with oobsize
2940                  * to prevent byte access */
2941                 memcpy(oobbuf + column, buf, thislen);
2942
2943                 /*
2944                  * Write Data into DataRAM
2945                  * Add: 8th Word
2946                  * in sector0/spare/page0
2947                  * DQ=XXFCh
2948                  */
2949                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2950                                         oobbuf, 0, mtd->oobsize);
2951
2952                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2953                 onenand_update_bufferram(mtd, to, 0);
2954                 if (ONENAND_IS_2PLANE(this)) {
2955                         ONENAND_SET_BUFFERRAM1(this);
2956                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2957                 }
2958
2959                 ret = this->wait(mtd, FL_WRITING);
2960                 if (ret) {
2961                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2962                         break;
2963                 }
2964
2965                 /* Exit OTP access mode */
2966                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2967                 this->wait(mtd, FL_RESETING);
2968
2969                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2970                 status &= 0x60;
2971
2972                 if (status == 0x60) {
2973                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2974                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2975                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2976                 } else if (status == 0x20) {
2977                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2978                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2979                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2980                 } else if (status == 0x40) {
2981                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2982                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2983                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2984                 } else {
2985                         printk(KERN_DEBUG "Reboot to check\n");
2986                 }
2987
2988                 written += thislen;
2989                 if (written == len)
2990                         break;
2991
2992                 to += mtd->writesize;
2993                 buf += thislen;
2994                 column = 0;
2995         }
2996
2997         ops->oobretlen = written;
2998
2999         return ret;
3000 }
3001
3002 /* Internal OTP operation */
3003 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3004                 size_t *retlen, u_char *buf);
3005
3006 /**
3007  * do_otp_read - [DEFAULT] Read OTP block area
3008  * @param mtd           MTD device structure
3009  * @param from          The offset to read
3010  * @param len           number of bytes to read
3011  * @param retlen        pointer to variable to store the number of readbytes
3012  * @param buf           the databuffer to put/get data
3013  *
3014  * Read OTP block area.
3015  */
3016 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3017                 size_t *retlen, u_char *buf)
3018 {
3019         struct onenand_chip *this = mtd->priv;
3020         struct mtd_oob_ops ops = {
3021                 .len    = len,
3022                 .ooblen = 0,
3023                 .datbuf = buf,
3024                 .oobbuf = NULL,
3025         };
3026         int ret;
3027
3028         /* Enter OTP access mode */
3029         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3030         this->wait(mtd, FL_OTPING);
3031
3032         ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
3033                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3034                 onenand_read_ops_nolock(mtd, from, &ops);
3035
3036         /* Exit OTP access mode */
3037         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3038         this->wait(mtd, FL_RESETING);
3039
3040         return ret;
3041 }
3042
3043 /**
3044  * do_otp_write - [DEFAULT] Write OTP block area
3045  * @param mtd           MTD device structure
3046  * @param to            The offset to write
3047  * @param len           number of bytes to write
3048  * @param retlen        pointer to variable to store the number of write bytes
3049  * @param buf           the databuffer to put/get data
3050  *
3051  * Write OTP block area.
3052  */
3053 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3054                 size_t *retlen, u_char *buf)
3055 {
3056         struct onenand_chip *this = mtd->priv;
3057         unsigned char *pbuf = buf;
3058         int ret;
3059         struct mtd_oob_ops ops;
3060
3061         /* Force buffer page aligned */
3062         if (len < mtd->writesize) {
3063                 memcpy(this->page_buf, buf, len);
3064                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3065                 pbuf = this->page_buf;
3066                 len = mtd->writesize;
3067         }
3068
3069         /* Enter OTP access mode */
3070         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3071         this->wait(mtd, FL_OTPING);
3072
3073         ops.len = len;
3074         ops.ooblen = 0;
3075         ops.datbuf = pbuf;
3076         ops.oobbuf = NULL;
3077         ret = onenand_write_ops_nolock(mtd, to, &ops);
3078         *retlen = ops.retlen;
3079
3080         /* Exit OTP access mode */
3081         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3082         this->wait(mtd, FL_RESETING);
3083
3084         return ret;
3085 }
3086
3087 /**
3088  * do_otp_lock - [DEFAULT] Lock OTP block area
3089  * @param mtd           MTD device structure
3090  * @param from          The offset to lock
3091  * @param len           number of bytes to lock
3092  * @param retlen        pointer to variable to store the number of lock bytes
3093  * @param buf           the databuffer to put/get data
3094  *
3095  * Lock OTP block area.
3096  */
3097 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3098                 size_t *retlen, u_char *buf)
3099 {
3100         struct onenand_chip *this = mtd->priv;
3101         struct mtd_oob_ops ops;
3102         int ret;
3103
3104         if (FLEXONENAND(this)) {
3105
3106                 /* Enter OTP access mode */
3107                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3108                 this->wait(mtd, FL_OTPING);
3109                 /*
3110                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3111                  * main area of page 49.
3112                  */
3113                 ops.len = mtd->writesize;
3114                 ops.ooblen = 0;
3115                 ops.datbuf = buf;
3116                 ops.oobbuf = NULL;
3117                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3118                 *retlen = ops.retlen;
3119
3120                 /* Exit OTP access mode */
3121                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3122                 this->wait(mtd, FL_RESETING);
3123         } else {
3124                 ops.mode = MTD_OOB_PLACE;
3125                 ops.ooblen = len;
3126                 ops.oobbuf = buf;
3127                 ops.ooboffs = 0;
3128                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3129                 *retlen = ops.oobretlen;
3130         }
3131
3132         return ret;
3133 }
3134
3135 /**
3136  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3137  * @param mtd           MTD device structure
3138  * @param from          The offset to read/write
3139  * @param len           number of bytes to read/write
3140  * @param retlen        pointer to variable to store the number of read bytes
3141  * @param buf           the databuffer to put/get data
3142  * @param action        do given action
3143  * @param mode          specify user and factory
3144  *
3145  * Handle OTP operation.
3146  */
3147 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3148                         size_t *retlen, u_char *buf,
3149                         otp_op_t action, int mode)
3150 {
3151         struct onenand_chip *this = mtd->priv;
3152         int otp_pages;
3153         int density;
3154         int ret = 0;
3155
3156         *retlen = 0;
3157
3158         density = onenand_get_density(this->device_id);
3159         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3160                 otp_pages = 20;
3161         else
3162                 otp_pages = 50;
3163
3164         if (mode == MTD_OTP_FACTORY) {
3165                 from += mtd->writesize * otp_pages;
3166                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3167         }
3168
3169         /* Check User/Factory boundary */
3170         if (mode == MTD_OTP_USER) {
3171                 if (mtd->writesize * otp_pages < from + len)
3172                         return 0;
3173         } else {
3174                 if (mtd->writesize * otp_pages <  len)
3175                         return 0;
3176         }
3177
3178         onenand_get_device(mtd, FL_OTPING);
3179         while (len > 0 && otp_pages > 0) {
3180                 if (!action) {  /* OTP Info functions */
3181                         struct otp_info *otpinfo;
3182
3183                         len -= sizeof(struct otp_info);
3184                         if (len <= 0) {
3185                                 ret = -ENOSPC;
3186                                 break;
3187                         }
3188
3189                         otpinfo = (struct otp_info *) buf;
3190                         otpinfo->start = from;
3191                         otpinfo->length = mtd->writesize;
3192                         otpinfo->locked = 0;
3193
3194                         from += mtd->writesize;
3195                         buf += sizeof(struct otp_info);
3196                         *retlen += sizeof(struct otp_info);
3197                 } else {
3198                         size_t tmp_retlen;
3199
3200                         ret = action(mtd, from, len, &tmp_retlen, buf);
3201
3202                         buf += tmp_retlen;
3203                         len -= tmp_retlen;
3204                         *retlen += tmp_retlen;
3205
3206                         if (ret)
3207                                 break;
3208                 }
3209                 otp_pages--;
3210         }
3211         onenand_release_device(mtd);
3212
3213         return ret;
3214 }
3215
3216 /**
3217  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3218  * @param mtd           MTD device structure
3219  * @param buf           the databuffer to put/get data
3220  * @param len           number of bytes to read
3221  *
3222  * Read factory OTP info.
3223  */
3224 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3225                         struct otp_info *buf, size_t len)
3226 {
3227         size_t retlen;
3228         int ret;
3229
3230         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3231
3232         return ret ? : retlen;
3233 }
3234
3235 /**
3236  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3237  * @param mtd           MTD device structure
3238  * @param from          The offset to read
3239  * @param len           number of bytes to read
3240  * @param retlen        pointer to variable to store the number of read bytes
3241  * @param buf           the databuffer to put/get data
3242  *
3243  * Read factory OTP area.
3244  */
3245 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3246                         size_t len, size_t *retlen, u_char *buf)
3247 {
3248         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3249 }
3250
3251 /**
3252  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3253  * @param mtd           MTD device structure
3254  * @param buf           the databuffer to put/get data
3255  * @param len           number of bytes to read
3256  *
3257  * Read user OTP info.
3258  */
3259 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3260                         struct otp_info *buf, size_t len)
3261 {
3262         size_t retlen;
3263         int ret;
3264
3265         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3266
3267         return ret ? : retlen;
3268 }
3269
3270 /**
3271  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3272  * @param mtd           MTD device structure
3273  * @param from          The offset to read
3274  * @param len           number of bytes to read
3275  * @param retlen        pointer to variable to store the number of read bytes
3276  * @param buf           the databuffer to put/get data
3277  *
3278  * Read user OTP area.
3279  */
3280 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3281                         size_t len, size_t *retlen, u_char *buf)
3282 {
3283         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3284 }
3285
3286 /**
3287  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3288  * @param mtd           MTD device structure
3289  * @param from          The offset to write
3290  * @param len           number of bytes to write
3291  * @param retlen        pointer to variable to store the number of write bytes
3292  * @param buf           the databuffer to put/get data
3293  *
3294  * Write user OTP area.
3295  */
3296 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3297                         size_t len, size_t *retlen, u_char *buf)
3298 {
3299         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3300 }
3301
3302 /**
3303  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3304  * @param mtd           MTD device structure
3305  * @param from          The offset to lock
3306  * @param len           number of bytes to unlock
3307  *
3308  * Write lock mark on spare area in page 0 in OTP block
3309  */
3310 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3311                         size_t len)
3312 {
3313         struct onenand_chip *this = mtd->priv;
3314         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3315         size_t retlen;
3316         int ret;
3317         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3318
3319         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3320                                                  : mtd->oobsize);
3321         /*
3322          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3323          * We write 16 bytes spare area instead of 2 bytes.
3324          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3325          * main area of page 49.
3326          */
3327
3328         from = 0;
3329         len = FLEXONENAND(this) ? mtd->writesize : 16;
3330
3331         /*
3332          * Note: OTP lock operation
3333          *       OTP block : 0xXXFC                     XX 1111 1100
3334          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3335          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3336          */
3337         if (FLEXONENAND(this))
3338                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3339
3340         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3341         if (otp == 1)
3342                 buf[otp_lock_offset] = 0xFC;
3343         else if (otp == 2)
3344                 buf[otp_lock_offset] = 0xF3;
3345         else if (otp == 3)
3346                 buf[otp_lock_offset] = 0xF0;
3347         else if (otp != 0)
3348                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3349
3350         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3351
3352         return ret ? : retlen;
3353 }
3354
3355 #endif  /* CONFIG_MTD_ONENAND_OTP */
3356
3357 /**
3358  * onenand_check_features - Check and set OneNAND features
3359  * @param mtd           MTD data structure
3360  *
3361  * Check and set OneNAND features
3362  * - lock scheme
3363  * - two plane
3364  */
3365 static void onenand_check_features(struct mtd_info *mtd)
3366 {
3367         struct onenand_chip *this = mtd->priv;
3368         unsigned int density, process, numbufs;
3369
3370         /* Lock scheme depends on density and process */
3371         density = onenand_get_density(this->device_id);
3372         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3373         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3374
3375         /* Lock scheme */
3376         switch (density) {
3377         case ONENAND_DEVICE_DENSITY_4Gb:
3378                 if (ONENAND_IS_DDP(this))
3379                         this->options |= ONENAND_HAS_2PLANE;
3380                 else if (numbufs == 1)
3381                         this->options |= ONENAND_HAS_4KB_PAGE;
3382
3383         case ONENAND_DEVICE_DENSITY_2Gb:
3384                 /* 2Gb DDP does not have 2 plane */
3385                 if (!ONENAND_IS_DDP(this))
3386                         this->options |= ONENAND_HAS_2PLANE;
3387                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3388
3389         case ONENAND_DEVICE_DENSITY_1Gb:
3390                 /* A-Die has all block unlock */
3391                 if (process)
3392                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3393                 break;
3394
3395         default:
3396                 /* Some OneNAND has continuous lock scheme */
3397                 if (!process)
3398                         this->options |= ONENAND_HAS_CONT_LOCK;
3399                 break;
3400         }
3401
3402         if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3403                 this->options &= ~ONENAND_HAS_2PLANE;
3404
3405         if (FLEXONENAND(this)) {
3406                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3407                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3408         }
3409
3410         if (this->options & ONENAND_HAS_CONT_LOCK)
3411                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3412         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3413                 printk(KERN_DEBUG "Chip support all block unlock\n");
3414         if (this->options & ONENAND_HAS_2PLANE)
3415                 printk(KERN_DEBUG "Chip has 2 plane\n");
3416         if (this->options & ONENAND_HAS_4KB_PAGE)
3417                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3418 }
3419
3420 /**
3421  * onenand_print_device_info - Print device & version ID
3422  * @param device        device ID
3423  * @param version       version ID
3424  *
3425  * Print device & version ID
3426  */
3427 static void onenand_print_device_info(int device, int version)
3428 {
3429         int vcc, demuxed, ddp, density, flexonenand;
3430
3431         vcc = device & ONENAND_DEVICE_VCC_MASK;
3432         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3433         ddp = device & ONENAND_DEVICE_IS_DDP;
3434         density = onenand_get_density(device);
3435         flexonenand = device & DEVICE_IS_FLEXONENAND;
3436         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3437                 demuxed ? "" : "Muxed ",
3438                 flexonenand ? "Flex-" : "",
3439                 ddp ? "(DDP)" : "",
3440                 (16 << density),
3441                 vcc ? "2.65/3.3" : "1.8",
3442                 device);
3443         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3444 }
3445
3446 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3447         {ONENAND_MFR_SAMSUNG, "Samsung"},
3448         {ONENAND_MFR_NUMONYX, "Numonyx"},
3449 };
3450
3451 /**
3452  * onenand_check_maf - Check manufacturer ID
3453  * @param manuf         manufacturer ID
3454  *
3455  * Check manufacturer ID
3456  */
3457 static int onenand_check_maf(int manuf)
3458 {
3459         int size = ARRAY_SIZE(onenand_manuf_ids);
3460         char *name;
3461         int i;
3462
3463         for (i = 0; i < size; i++)
3464                 if (manuf == onenand_manuf_ids[i].id)
3465                         break;
3466
3467         if (i < size)
3468                 name = onenand_manuf_ids[i].name;
3469         else
3470                 name = "Unknown";
3471
3472         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3473
3474         return (i == size);
3475 }
3476
3477 /**
3478 * flexonenand_get_boundary      - Reads the SLC boundary
3479 * @param onenand_info           - onenand info structure
3480 **/
3481 static int flexonenand_get_boundary(struct mtd_info *mtd)
3482 {
3483         struct onenand_chip *this = mtd->priv;
3484         unsigned die, bdry;
3485         int ret, syscfg, locked;
3486
3487         /* Disable ECC */
3488         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3489         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3490
3491         for (die = 0; die < this->dies; die++) {
3492                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3493                 this->wait(mtd, FL_SYNCING);
3494
3495                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3496                 ret = this->wait(mtd, FL_READING);
3497
3498                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3499                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3500                         locked = 0;
3501                 else
3502                         locked = 1;
3503                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3504
3505                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3506                 ret = this->wait(mtd, FL_RESETING);
3507
3508                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3509                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3510         }
3511
3512         /* Enable ECC */
3513         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3514         return 0;
3515 }
3516
3517 /**
3518  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3519  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3520  * @param mtd           - MTD device structure
3521  */
3522 static void flexonenand_get_size(struct mtd_info *mtd)
3523 {
3524         struct onenand_chip *this = mtd->priv;
3525         int die, i, eraseshift, density;
3526         int blksperdie, maxbdry;
3527         loff_t ofs;
3528
3529         density = onenand_get_density(this->device_id);
3530         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3531         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3532         maxbdry = blksperdie - 1;
3533         eraseshift = this->erase_shift - 1;
3534
3535         mtd->numeraseregions = this->dies << 1;
3536
3537         /* This fills up the device boundary */
3538         flexonenand_get_boundary(mtd);
3539         die = ofs = 0;
3540         i = -1;
3541         for (; die < this->dies; die++) {
3542                 if (!die || this->boundary[die-1] != maxbdry) {
3543                         i++;
3544                         mtd->eraseregions[i].offset = ofs;
3545                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3546                         mtd->eraseregions[i].numblocks =
3547                                                         this->boundary[die] + 1;
3548                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3549                         eraseshift++;
3550                 } else {
3551                         mtd->numeraseregions -= 1;
3552                         mtd->eraseregions[i].numblocks +=
3553                                                         this->boundary[die] + 1;
3554                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3555                 }
3556                 if (this->boundary[die] != maxbdry) {
3557                         i++;
3558                         mtd->eraseregions[i].offset = ofs;
3559                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3560                         mtd->eraseregions[i].numblocks = maxbdry ^
3561                                                          this->boundary[die];
3562                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3563                         eraseshift--;
3564                 } else
3565                         mtd->numeraseregions -= 1;
3566         }
3567
3568         /* Expose MLC erase size except when all blocks are SLC */
3569         mtd->erasesize = 1 << this->erase_shift;
3570         if (mtd->numeraseregions == 1)
3571                 mtd->erasesize >>= 1;
3572
3573         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3574         for (i = 0; i < mtd->numeraseregions; i++)
3575                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3576                         " numblocks: %04u]\n",
3577                         (unsigned int) mtd->eraseregions[i].offset,
3578                         mtd->eraseregions[i].erasesize,
3579                         mtd->eraseregions[i].numblocks);
3580
3581         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3582                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3583                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3584                                                  << (this->erase_shift - 1);
3585                 mtd->size += this->diesize[die];
3586         }
3587 }
3588
3589 /**
3590  * flexonenand_check_blocks_erased - Check if blocks are erased
3591  * @param mtd_info      - mtd info structure
3592  * @param start         - first erase block to check
3593  * @param end           - last erase block to check
3594  *
3595  * Converting an unerased block from MLC to SLC
3596  * causes byte values to change. Since both data and its ECC
3597  * have changed, reads on the block give uncorrectable error.
3598  * This might lead to the block being detected as bad.
3599  *
3600  * Avoid this by ensuring that the block to be converted is
3601  * erased.
3602  */
3603 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3604 {
3605         struct onenand_chip *this = mtd->priv;
3606         int i, ret;
3607         int block;
3608         struct mtd_oob_ops ops = {
3609                 .mode = MTD_OOB_PLACE,
3610                 .ooboffs = 0,
3611                 .ooblen = mtd->oobsize,
3612                 .datbuf = NULL,
3613                 .oobbuf = this->oob_buf,
3614         };
3615         loff_t addr;
3616
3617         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3618
3619         for (block = start; block <= end; block++) {
3620                 addr = flexonenand_addr(this, block);
3621                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3622                         continue;
3623
3624                 /*
3625                  * Since main area write results in ECC write to spare,
3626                  * it is sufficient to check only ECC bytes for change.
3627                  */
3628                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3629                 if (ret)
3630                         return ret;
3631
3632                 for (i = 0; i < mtd->oobsize; i++)
3633                         if (this->oob_buf[i] != 0xff)
3634                                 break;
3635
3636                 if (i != mtd->oobsize) {
3637                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3638                                 __func__, block);
3639                         return 1;
3640                 }
3641         }
3642
3643         return 0;
3644 }
3645
3646 /**
3647  * flexonenand_set_boundary     - Writes the SLC boundary
3648  * @param mtd                   - mtd info structure
3649  */
3650 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3651                                     int boundary, int lock)
3652 {
3653         struct onenand_chip *this = mtd->priv;
3654         int ret, density, blksperdie, old, new, thisboundary;
3655         loff_t addr;
3656
3657         /* Change only once for SDP Flex-OneNAND */
3658         if (die && (!ONENAND_IS_DDP(this)))
3659                 return 0;
3660
3661         /* boundary value of -1 indicates no required change */
3662         if (boundary < 0 || boundary == this->boundary[die])
3663                 return 0;
3664
3665         density = onenand_get_density(this->device_id);
3666         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3667         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3668
3669         if (boundary >= blksperdie) {
3670                 printk(KERN_ERR "%s: Invalid boundary value. "
3671                                 "Boundary not changed.\n", __func__);
3672                 return -EINVAL;
3673         }
3674
3675         /* Check if converting blocks are erased */
3676         old = this->boundary[die] + (die * this->density_mask);
3677         new = boundary + (die * this->density_mask);
3678         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3679         if (ret) {
3680                 printk(KERN_ERR "%s: Please erase blocks "
3681                                 "before boundary change\n", __func__);
3682                 return ret;
3683         }
3684
3685         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3686         this->wait(mtd, FL_SYNCING);
3687
3688         /* Check is boundary is locked */
3689         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3690         ret = this->wait(mtd, FL_READING);
3691
3692         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3693         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3694                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3695                 ret = 1;
3696                 goto out;
3697         }
3698
3699         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3700                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3701
3702         addr = die ? this->diesize[0] : 0;
3703
3704         boundary &= FLEXONENAND_PI_MASK;
3705         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3706
3707         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3708         ret = this->wait(mtd, FL_ERASING);
3709         if (ret) {
3710                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3711                        __func__, die);
3712                 goto out;
3713         }
3714
3715         this->write_word(boundary, this->base + ONENAND_DATARAM);
3716         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3717         ret = this->wait(mtd, FL_WRITING);
3718         if (ret) {
3719                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3720                         __func__, die);
3721                 goto out;
3722         }
3723
3724         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3725         ret = this->wait(mtd, FL_WRITING);
3726 out:
3727         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3728         this->wait(mtd, FL_RESETING);
3729         if (!ret)
3730                 /* Recalculate device size on boundary change*/
3731                 flexonenand_get_size(mtd);
3732
3733         return ret;
3734 }
3735
3736 /**
3737  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3738  * @param mtd           MTD device structure
3739  *
3740  * OneNAND detection method:
3741  *   Compare the values from command with ones from register
3742  */
3743 static int onenand_chip_probe(struct mtd_info *mtd)
3744 {
3745         struct onenand_chip *this = mtd->priv;
3746         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3747         int syscfg;
3748
3749         /* Save system configuration 1 */
3750         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3751         /* Clear Sync. Burst Read mode to read BootRAM */
3752         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3753
3754         /* Send the command for reading device ID from BootRAM */
3755         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3756
3757         /* Read manufacturer and device IDs from BootRAM */
3758         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3759         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3760
3761         /* Reset OneNAND to read default register values */
3762         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3763         /* Wait reset */
3764         this->wait(mtd, FL_RESETING);
3765
3766         /* Restore system configuration 1 */
3767         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3768
3769         /* Check manufacturer ID */
3770         if (onenand_check_maf(bram_maf_id))
3771                 return -ENXIO;
3772
3773         /* Read manufacturer and device IDs from Register */
3774         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3775         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3776
3777         /* Check OneNAND device */
3778         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3779                 return -ENXIO;
3780
3781         return 0;
3782 }
3783
3784 /**
3785  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3786  * @param mtd           MTD device structure
3787  */
3788 static int onenand_probe(struct mtd_info *mtd)
3789 {
3790         struct onenand_chip *this = mtd->priv;
3791         int maf_id, dev_id, ver_id;
3792         int density;
3793         int ret;
3794
3795         ret = this->chip_probe(mtd);
3796         if (ret)
3797                 return ret;
3798
3799         /* Read manufacturer and device IDs from Register */
3800         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3801         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3802         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3803         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3804
3805         /* Flash device information */
3806         onenand_print_device_info(dev_id, ver_id);
3807         this->device_id = dev_id;
3808         this->version_id = ver_id;
3809
3810         /* Check OneNAND features */
3811         onenand_check_features(mtd);
3812
3813         density = onenand_get_density(dev_id);
3814         if (FLEXONENAND(this)) {
3815                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3816                 /* Maximum possible erase regions */
3817                 mtd->numeraseregions = this->dies << 1;
3818                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3819                                         * (this->dies << 1), GFP_KERNEL);
3820                 if (!mtd->eraseregions)
3821                         return -ENOMEM;
3822         }
3823
3824         /*
3825          * For Flex-OneNAND, chipsize represents maximum possible device size.
3826          * mtd->size represents the actual device size.
3827          */
3828         this->chipsize = (16 << density) << 20;
3829
3830         /* OneNAND page size & block size */
3831         /* The data buffer size is equal to page size */
3832         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3833         /* We use the full BufferRAM */
3834         if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3835                 mtd->writesize <<= 1;
3836
3837         mtd->oobsize = mtd->writesize >> 5;
3838         /* Pages per a block are always 64 in OneNAND */
3839         mtd->erasesize = mtd->writesize << 6;
3840         /*
3841          * Flex-OneNAND SLC area has 64 pages per block.
3842          * Flex-OneNAND MLC area has 128 pages per block.
3843          * Expose MLC erase size to find erase_shift and page_mask.
3844          */
3845         if (FLEXONENAND(this))
3846                 mtd->erasesize <<= 1;
3847
3848         this->erase_shift = ffs(mtd->erasesize) - 1;
3849         this->page_shift = ffs(mtd->writesize) - 1;
3850         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3851         /* Set density mask. it is used for DDP */
3852         if (ONENAND_IS_DDP(this))
3853                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3854         /* It's real page size */
3855         this->writesize = mtd->writesize;
3856
3857         /* REVISIT: Multichip handling */
3858
3859         if (FLEXONENAND(this))
3860                 flexonenand_get_size(mtd);
3861         else
3862                 mtd->size = this->chipsize;
3863
3864         /*
3865          * We emulate the 4KiB page and 256KiB erase block size
3866          * But oobsize is still 64 bytes.
3867          * It is only valid if you turn on 2X program support,
3868          * Otherwise it will be ignored by compiler.
3869          */
3870         if (ONENAND_IS_2PLANE(this)) {
3871                 mtd->writesize <<= 1;
3872                 mtd->erasesize <<= 1;
3873         }
3874
3875         return 0;
3876 }
3877
3878 /**
3879  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3880  * @param mtd           MTD device structure
3881  */
3882 static int onenand_suspend(struct mtd_info *mtd)
3883 {
3884         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3885 }
3886
3887 /**
3888  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3889  * @param mtd           MTD device structure
3890  */
3891 static void onenand_resume(struct mtd_info *mtd)
3892 {
3893         struct onenand_chip *this = mtd->priv;
3894
3895         if (this->state == FL_PM_SUSPENDED)
3896                 onenand_release_device(mtd);
3897         else
3898                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3899                                 "in suspended state\n", __func__);
3900 }
3901
3902 /**
3903  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3904  * @param mtd           MTD device structure
3905  * @param maxchips      Number of chips to scan for
3906  *
3907  * This fills out all the not initialized function pointers
3908  * with the defaults.
3909  * The flash ID is read and the mtd/chip structures are
3910  * filled with the appropriate values.
3911  */
3912 int onenand_scan(struct mtd_info *mtd, int maxchips)
3913 {
3914         int i, ret;
3915         struct onenand_chip *this = mtd->priv;
3916
3917         if (!this->read_word)
3918                 this->read_word = onenand_readw;
3919         if (!this->write_word)
3920                 this->write_word = onenand_writew;
3921
3922         if (!this->command)
3923                 this->command = onenand_command;
3924         if (!this->wait)
3925                 onenand_setup_wait(mtd);
3926         if (!this->bbt_wait)
3927                 this->bbt_wait = onenand_bbt_wait;
3928         if (!this->unlock_all)
3929                 this->unlock_all = onenand_unlock_all;
3930
3931         if (!this->chip_probe)
3932                 this->chip_probe = onenand_chip_probe;
3933
3934         if (!this->read_bufferram)
3935                 this->read_bufferram = onenand_read_bufferram;
3936         if (!this->write_bufferram)
3937                 this->write_bufferram = onenand_write_bufferram;
3938
3939         if (!this->block_markbad)
3940                 this->block_markbad = onenand_default_block_markbad;
3941         if (!this->scan_bbt)
3942                 this->scan_bbt = onenand_default_bbt;
3943
3944         if (onenand_probe(mtd))
3945                 return -ENXIO;
3946
3947         /* Set Sync. Burst Read after probing */
3948         if (this->mmcontrol) {
3949                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3950                 this->read_bufferram = onenand_sync_read_bufferram;
3951         }
3952
3953         /* Allocate buffers, if necessary */
3954         if (!this->page_buf) {
3955                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3956                 if (!this->page_buf) {
3957                         printk(KERN_ERR "%s: Can't allocate page_buf\n",
3958                                 __func__);
3959                         return -ENOMEM;
3960                 }
3961 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3962                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3963                 if (!this->verify_buf) {
3964                         kfree(this->page_buf);
3965                         return -ENOMEM;
3966                 }
3967 #endif
3968                 this->options |= ONENAND_PAGEBUF_ALLOC;
3969         }
3970         if (!this->oob_buf) {
3971                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3972                 if (!this->oob_buf) {
3973                         printk(KERN_ERR "%s: Can't allocate oob_buf\n",
3974                                 __func__);
3975                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3976                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3977                                 kfree(this->page_buf);
3978                         }
3979                         return -ENOMEM;
3980                 }
3981                 this->options |= ONENAND_OOBBUF_ALLOC;
3982         }
3983
3984         this->state = FL_READY;
3985         init_waitqueue_head(&this->wq);
3986         spin_lock_init(&this->chip_lock);
3987
3988         /*
3989          * Allow subpage writes up to oobsize.
3990          */
3991         switch (mtd->oobsize) {
3992         case 128:
3993                 this->ecclayout = &onenand_oob_128;
3994                 mtd->subpage_sft = 0;
3995                 break;
3996         case 64:
3997                 this->ecclayout = &onenand_oob_64;
3998                 mtd->subpage_sft = 2;
3999                 break;
4000
4001         case 32:
4002                 this->ecclayout = &onenand_oob_32;
4003                 mtd->subpage_sft = 1;
4004                 break;
4005
4006         default:
4007                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4008                         __func__, mtd->oobsize);
4009                 mtd->subpage_sft = 0;
4010                 /* To prevent kernel oops */
4011                 this->ecclayout = &onenand_oob_32;
4012                 break;
4013         }
4014
4015         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4016
4017         /*
4018          * The number of bytes available for a client to place data into
4019          * the out of band area
4020          */
4021         this->ecclayout->oobavail = 0;
4022         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4023             this->ecclayout->oobfree[i].length; i++)
4024                 this->ecclayout->oobavail +=
4025                         this->ecclayout->oobfree[i].length;
4026         mtd->oobavail = this->ecclayout->oobavail;
4027
4028         mtd->ecclayout = this->ecclayout;
4029
4030         /* Fill in remaining MTD driver data */
4031         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4032         mtd->flags = MTD_CAP_NANDFLASH;
4033         mtd->erase = onenand_erase;
4034         mtd->point = NULL;
4035         mtd->unpoint = NULL;
4036         mtd->read = onenand_read;
4037         mtd->write = onenand_write;
4038         mtd->read_oob = onenand_read_oob;
4039         mtd->write_oob = onenand_write_oob;
4040         mtd->panic_write = onenand_panic_write;
4041 #ifdef CONFIG_MTD_ONENAND_OTP
4042         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4043         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4044         mtd->get_user_prot_info = onenand_get_user_prot_info;
4045         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4046         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4047         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4048 #endif
4049         mtd->sync = onenand_sync;
4050         mtd->lock = onenand_lock;
4051         mtd->unlock = onenand_unlock;
4052         mtd->suspend = onenand_suspend;
4053         mtd->resume = onenand_resume;
4054         mtd->block_isbad = onenand_block_isbad;
4055         mtd->block_markbad = onenand_block_markbad;
4056         mtd->owner = THIS_MODULE;
4057
4058         /* Unlock whole block */
4059         this->unlock_all(mtd);
4060
4061         ret = this->scan_bbt(mtd);
4062         if ((!FLEXONENAND(this)) || ret)
4063                 return ret;
4064
4065         /* Change Flex-OneNAND boundaries if required */
4066         for (i = 0; i < MAX_DIES; i++)
4067                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4068                                                  flex_bdry[(2 * i) + 1]);
4069
4070         return 0;
4071 }
4072
4073 /**
4074  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4075  * @param mtd           MTD device structure
4076  */
4077 void onenand_release(struct mtd_info *mtd)
4078 {
4079         struct onenand_chip *this = mtd->priv;
4080
4081 #ifdef CONFIG_MTD_PARTITIONS
4082         /* Deregister partitions */
4083         del_mtd_partitions (mtd);
4084 #endif
4085         /* Deregister the device */
4086         del_mtd_device (mtd);
4087
4088         /* Free bad block table memory, if allocated */
4089         if (this->bbm) {
4090                 struct bbm_info *bbm = this->bbm;
4091                 kfree(bbm->bbt);
4092                 kfree(this->bbm);
4093         }
4094         /* Buffers allocated by onenand_scan */
4095         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4096                 kfree(this->page_buf);
4097 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4098                 kfree(this->verify_buf);
4099 #endif
4100         }
4101         if (this->options & ONENAND_OOBBUF_ALLOC)
4102                 kfree(this->oob_buf);
4103         kfree(mtd->eraseregions);
4104 }
4105
4106 EXPORT_SYMBOL_GPL(onenand_scan);
4107 EXPORT_SYMBOL_GPL(onenand_release);
4108
4109 MODULE_LICENSE("GPL");
4110 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4111 MODULE_DESCRIPTION("Generic OneNAND flash driver code");