]> rtime.felk.cvut.cz Git - lisovros/linux_canprio.git/blob - drivers/char/ipmi/ipmi_si_intf.c
ipmi: proper spinlock initialization
[lisovros/linux_canprio.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static int unload_when_empty = 1;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329
330 static void deliver_recv_msg(struct smi_info *smi_info,
331                              struct ipmi_smi_msg *msg)
332 {
333         /* Deliver the message to the upper layer with the lock
334            released. */
335
336         if (smi_info->run_to_completion) {
337                 ipmi_smi_msg_received(smi_info->intf, msg);
338         } else {
339                 spin_unlock(&(smi_info->si_lock));
340                 ipmi_smi_msg_received(smi_info->intf, msg);
341                 spin_lock(&(smi_info->si_lock));
342         }
343 }
344
345 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
346 {
347         struct ipmi_smi_msg *msg = smi_info->curr_msg;
348
349         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350                 cCode = IPMI_ERR_UNSPECIFIED;
351         /* else use it as is */
352
353         /* Make it a reponse */
354         msg->rsp[0] = msg->data[0] | 4;
355         msg->rsp[1] = msg->data[1];
356         msg->rsp[2] = cCode;
357         msg->rsp_size = 3;
358
359         smi_info->curr_msg = NULL;
360         deliver_recv_msg(smi_info, msg);
361 }
362
363 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364 {
365         int              rv;
366         struct list_head *entry = NULL;
367 #ifdef DEBUG_TIMING
368         struct timeval t;
369 #endif
370
371         /*
372          * No need to save flags, we aleady have interrupts off and we
373          * already hold the SMI lock.
374          */
375         if (!smi_info->run_to_completion)
376                 spin_lock(&(smi_info->msg_lock));
377
378         /* Pick the high priority queue first. */
379         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
380                 entry = smi_info->hp_xmit_msgs.next;
381         } else if (!list_empty(&(smi_info->xmit_msgs))) {
382                 entry = smi_info->xmit_msgs.next;
383         }
384
385         if (!entry) {
386                 smi_info->curr_msg = NULL;
387                 rv = SI_SM_IDLE;
388         } else {
389                 int err;
390
391                 list_del(entry);
392                 smi_info->curr_msg = list_entry(entry,
393                                                 struct ipmi_smi_msg,
394                                                 link);
395 #ifdef DEBUG_TIMING
396                 do_gettimeofday(&t);
397                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
398 #endif
399                 err = atomic_notifier_call_chain(&xaction_notifier_list,
400                                 0, smi_info);
401                 if (err & NOTIFY_STOP_MASK) {
402                         rv = SI_SM_CALL_WITHOUT_DELAY;
403                         goto out;
404                 }
405                 err = smi_info->handlers->start_transaction(
406                         smi_info->si_sm,
407                         smi_info->curr_msg->data,
408                         smi_info->curr_msg->data_size);
409                 if (err)
410                         return_hosed_msg(smi_info, err);
411
412                 rv = SI_SM_CALL_WITHOUT_DELAY;
413         }
414  out:
415         if (!smi_info->run_to_completion)
416                 spin_unlock(&(smi_info->msg_lock));
417
418         return rv;
419 }
420
421 static void start_enable_irq(struct smi_info *smi_info)
422 {
423         unsigned char msg[2];
424
425         /*
426          * If we are enabling interrupts, we have to tell the
427          * BMC to use them.
428          */
429         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431
432         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434 }
435
436 static void start_disable_irq(struct smi_info *smi_info)
437 {
438         unsigned char msg[2];
439
440         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442
443         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445 }
446
447 static void start_clear_flags(struct smi_info *smi_info)
448 {
449         unsigned char msg[3];
450
451         /* Make sure the watchdog pre-timeout flag is not set at startup. */
452         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454         msg[2] = WDT_PRE_TIMEOUT_INT;
455
456         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457         smi_info->si_state = SI_CLEARING_FLAGS;
458 }
459
460 /*
461  * When we have a situtaion where we run out of memory and cannot
462  * allocate messages, we just leave them in the BMC and run the system
463  * polled until we can allocate some memory.  Once we have some
464  * memory, we will re-enable the interrupt.
465  */
466 static inline void disable_si_irq(struct smi_info *smi_info)
467 {
468         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
469                 start_disable_irq(smi_info);
470                 smi_info->interrupt_disabled = 1;
471                 if (!atomic_read(&smi_info->stop_operation))
472                         mod_timer(&smi_info->si_timer,
473                                   jiffies + SI_TIMEOUT_JIFFIES);
474         }
475 }
476
477 static inline void enable_si_irq(struct smi_info *smi_info)
478 {
479         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
480                 start_enable_irq(smi_info);
481                 smi_info->interrupt_disabled = 0;
482         }
483 }
484
485 static void handle_flags(struct smi_info *smi_info)
486 {
487  retry:
488         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489                 /* Watchdog pre-timeout */
490                 smi_inc_stat(smi_info, watchdog_pretimeouts);
491
492                 start_clear_flags(smi_info);
493                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494                 spin_unlock(&(smi_info->si_lock));
495                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496                 spin_lock(&(smi_info->si_lock));
497         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498                 /* Messages available. */
499                 smi_info->curr_msg = ipmi_alloc_smi_msg();
500                 if (!smi_info->curr_msg) {
501                         disable_si_irq(smi_info);
502                         smi_info->si_state = SI_NORMAL;
503                         return;
504                 }
505                 enable_si_irq(smi_info);
506
507                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509                 smi_info->curr_msg->data_size = 2;
510
511                 smi_info->handlers->start_transaction(
512                         smi_info->si_sm,
513                         smi_info->curr_msg->data,
514                         smi_info->curr_msg->data_size);
515                 smi_info->si_state = SI_GETTING_MESSAGES;
516         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517                 /* Events available. */
518                 smi_info->curr_msg = ipmi_alloc_smi_msg();
519                 if (!smi_info->curr_msg) {
520                         disable_si_irq(smi_info);
521                         smi_info->si_state = SI_NORMAL;
522                         return;
523                 }
524                 enable_si_irq(smi_info);
525
526                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528                 smi_info->curr_msg->data_size = 2;
529
530                 smi_info->handlers->start_transaction(
531                         smi_info->si_sm,
532                         smi_info->curr_msg->data,
533                         smi_info->curr_msg->data_size);
534                 smi_info->si_state = SI_GETTING_EVENTS;
535         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
536                    smi_info->oem_data_avail_handler) {
537                 if (smi_info->oem_data_avail_handler(smi_info))
538                         goto retry;
539         } else
540                 smi_info->si_state = SI_NORMAL;
541 }
542
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545         struct ipmi_smi_msg *msg;
546 #ifdef DEBUG_TIMING
547         struct timeval t;
548
549         do_gettimeofday(&t);
550         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
551 #endif
552         switch (smi_info->si_state) {
553         case SI_NORMAL:
554                 if (!smi_info->curr_msg)
555                         break;
556
557                 smi_info->curr_msg->rsp_size
558                         = smi_info->handlers->get_result(
559                                 smi_info->si_sm,
560                                 smi_info->curr_msg->rsp,
561                                 IPMI_MAX_MSG_LENGTH);
562
563                 /*
564                  * Do this here becase deliver_recv_msg() releases the
565                  * lock, and a new message can be put in during the
566                  * time the lock is released.
567                  */
568                 msg = smi_info->curr_msg;
569                 smi_info->curr_msg = NULL;
570                 deliver_recv_msg(smi_info, msg);
571                 break;
572
573         case SI_GETTING_FLAGS:
574         {
575                 unsigned char msg[4];
576                 unsigned int  len;
577
578                 /* We got the flags from the SMI, now handle them. */
579                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580                 if (msg[2] != 0) {
581                         /* Error fetching flags, just give up for now. */
582                         smi_info->si_state = SI_NORMAL;
583                 } else if (len < 4) {
584                         /*
585                          * Hmm, no flags.  That's technically illegal, but
586                          * don't use uninitialized data.
587                          */
588                         smi_info->si_state = SI_NORMAL;
589                 } else {
590                         smi_info->msg_flags = msg[3];
591                         handle_flags(smi_info);
592                 }
593                 break;
594         }
595
596         case SI_CLEARING_FLAGS:
597         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598         {
599                 unsigned char msg[3];
600
601                 /* We cleared the flags. */
602                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603                 if (msg[2] != 0) {
604                         /* Error clearing flags */
605                         dev_warn(smi_info->dev,
606                                  "Error clearing flags: %2.2x\n", msg[2]);
607                 }
608                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609                         start_enable_irq(smi_info);
610                 else
611                         smi_info->si_state = SI_NORMAL;
612                 break;
613         }
614
615         case SI_GETTING_EVENTS:
616         {
617                 smi_info->curr_msg->rsp_size
618                         = smi_info->handlers->get_result(
619                                 smi_info->si_sm,
620                                 smi_info->curr_msg->rsp,
621                                 IPMI_MAX_MSG_LENGTH);
622
623                 /*
624                  * Do this here becase deliver_recv_msg() releases the
625                  * lock, and a new message can be put in during the
626                  * time the lock is released.
627                  */
628                 msg = smi_info->curr_msg;
629                 smi_info->curr_msg = NULL;
630                 if (msg->rsp[2] != 0) {
631                         /* Error getting event, probably done. */
632                         msg->done(msg);
633
634                         /* Take off the event flag. */
635                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636                         handle_flags(smi_info);
637                 } else {
638                         smi_inc_stat(smi_info, events);
639
640                         /*
641                          * Do this before we deliver the message
642                          * because delivering the message releases the
643                          * lock and something else can mess with the
644                          * state.
645                          */
646                         handle_flags(smi_info);
647
648                         deliver_recv_msg(smi_info, msg);
649                 }
650                 break;
651         }
652
653         case SI_GETTING_MESSAGES:
654         {
655                 smi_info->curr_msg->rsp_size
656                         = smi_info->handlers->get_result(
657                                 smi_info->si_sm,
658                                 smi_info->curr_msg->rsp,
659                                 IPMI_MAX_MSG_LENGTH);
660
661                 /*
662                  * Do this here becase deliver_recv_msg() releases the
663                  * lock, and a new message can be put in during the
664                  * time the lock is released.
665                  */
666                 msg = smi_info->curr_msg;
667                 smi_info->curr_msg = NULL;
668                 if (msg->rsp[2] != 0) {
669                         /* Error getting event, probably done. */
670                         msg->done(msg);
671
672                         /* Take off the msg flag. */
673                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674                         handle_flags(smi_info);
675                 } else {
676                         smi_inc_stat(smi_info, incoming_messages);
677
678                         /*
679                          * Do this before we deliver the message
680                          * because delivering the message releases the
681                          * lock and something else can mess with the
682                          * state.
683                          */
684                         handle_flags(smi_info);
685
686                         deliver_recv_msg(smi_info, msg);
687                 }
688                 break;
689         }
690
691         case SI_ENABLE_INTERRUPTS1:
692         {
693                 unsigned char msg[4];
694
695                 /* We got the flags from the SMI, now handle them. */
696                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697                 if (msg[2] != 0) {
698                         dev_warn(smi_info->dev, "Could not enable interrupts"
699                                  ", failed get, using polled mode.\n");
700                         smi_info->si_state = SI_NORMAL;
701                 } else {
702                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
704                         msg[2] = (msg[3] |
705                                   IPMI_BMC_RCV_MSG_INTR |
706                                   IPMI_BMC_EVT_MSG_INTR);
707                         smi_info->handlers->start_transaction(
708                                 smi_info->si_sm, msg, 3);
709                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710                 }
711                 break;
712         }
713
714         case SI_ENABLE_INTERRUPTS2:
715         {
716                 unsigned char msg[4];
717
718                 /* We got the flags from the SMI, now handle them. */
719                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720                 if (msg[2] != 0)
721                         dev_warn(smi_info->dev, "Could not enable interrupts"
722                                  ", failed set, using polled mode.\n");
723                 else
724                         smi_info->interrupt_disabled = 0;
725                 smi_info->si_state = SI_NORMAL;
726                 break;
727         }
728
729         case SI_DISABLE_INTERRUPTS1:
730         {
731                 unsigned char msg[4];
732
733                 /* We got the flags from the SMI, now handle them. */
734                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735                 if (msg[2] != 0) {
736                         dev_warn(smi_info->dev, "Could not disable interrupts"
737                                  ", failed get.\n");
738                         smi_info->si_state = SI_NORMAL;
739                 } else {
740                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742                         msg[2] = (msg[3] &
743                                   ~(IPMI_BMC_RCV_MSG_INTR |
744                                     IPMI_BMC_EVT_MSG_INTR));
745                         smi_info->handlers->start_transaction(
746                                 smi_info->si_sm, msg, 3);
747                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748                 }
749                 break;
750         }
751
752         case SI_DISABLE_INTERRUPTS2:
753         {
754                 unsigned char msg[4];
755
756                 /* We got the flags from the SMI, now handle them. */
757                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758                 if (msg[2] != 0) {
759                         dev_warn(smi_info->dev, "Could not disable interrupts"
760                                  ", failed set.\n");
761                 }
762                 smi_info->si_state = SI_NORMAL;
763                 break;
764         }
765         }
766 }
767
768 /*
769  * Called on timeouts and events.  Timeouts should pass the elapsed
770  * time, interrupts should pass in zero.  Must be called with
771  * si_lock held and interrupts disabled.
772  */
773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774                                            int time)
775 {
776         enum si_sm_result si_sm_result;
777
778  restart:
779         /*
780          * There used to be a loop here that waited a little while
781          * (around 25us) before giving up.  That turned out to be
782          * pointless, the minimum delays I was seeing were in the 300us
783          * range, which is far too long to wait in an interrupt.  So
784          * we just run until the state machine tells us something
785          * happened or it needs a delay.
786          */
787         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788         time = 0;
789         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
790                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791
792         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
793                 smi_inc_stat(smi_info, complete_transactions);
794
795                 handle_transaction_done(smi_info);
796                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797         } else if (si_sm_result == SI_SM_HOSED) {
798                 smi_inc_stat(smi_info, hosed_count);
799
800                 /*
801                  * Do the before return_hosed_msg, because that
802                  * releases the lock.
803                  */
804                 smi_info->si_state = SI_NORMAL;
805                 if (smi_info->curr_msg != NULL) {
806                         /*
807                          * If we were handling a user message, format
808                          * a response to send to the upper layer to
809                          * tell it about the error.
810                          */
811                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
812                 }
813                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814         }
815
816         /*
817          * We prefer handling attn over new messages.  But don't do
818          * this if there is not yet an upper layer to handle anything.
819          */
820         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
821                 unsigned char msg[2];
822
823                 smi_inc_stat(smi_info, attentions);
824
825                 /*
826                  * Got a attn, send down a get message flags to see
827                  * what's causing it.  It would be better to handle
828                  * this in the upper layer, but due to the way
829                  * interrupts work with the SMI, that's not really
830                  * possible.
831                  */
832                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834
835                 smi_info->handlers->start_transaction(
836                         smi_info->si_sm, msg, 2);
837                 smi_info->si_state = SI_GETTING_FLAGS;
838                 goto restart;
839         }
840
841         /* If we are currently idle, try to start the next message. */
842         if (si_sm_result == SI_SM_IDLE) {
843                 smi_inc_stat(smi_info, idles);
844
845                 si_sm_result = start_next_msg(smi_info);
846                 if (si_sm_result != SI_SM_IDLE)
847                         goto restart;
848         }
849
850         if ((si_sm_result == SI_SM_IDLE)
851             && (atomic_read(&smi_info->req_events))) {
852                 /*
853                  * We are idle and the upper layer requested that I fetch
854                  * events, so do so.
855                  */
856                 atomic_set(&smi_info->req_events, 0);
857
858                 smi_info->curr_msg = ipmi_alloc_smi_msg();
859                 if (!smi_info->curr_msg)
860                         goto out;
861
862                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864                 smi_info->curr_msg->data_size = 2;
865
866                 smi_info->handlers->start_transaction(
867                         smi_info->si_sm,
868                         smi_info->curr_msg->data,
869                         smi_info->curr_msg->data_size);
870                 smi_info->si_state = SI_GETTING_EVENTS;
871                 goto restart;
872         }
873  out:
874         return si_sm_result;
875 }
876
877 static void sender(void                *send_info,
878                    struct ipmi_smi_msg *msg,
879                    int                 priority)
880 {
881         struct smi_info   *smi_info = send_info;
882         enum si_sm_result result;
883         unsigned long     flags;
884 #ifdef DEBUG_TIMING
885         struct timeval    t;
886 #endif
887
888         if (atomic_read(&smi_info->stop_operation)) {
889                 msg->rsp[0] = msg->data[0] | 4;
890                 msg->rsp[1] = msg->data[1];
891                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892                 msg->rsp_size = 3;
893                 deliver_recv_msg(smi_info, msg);
894                 return;
895         }
896
897 #ifdef DEBUG_TIMING
898         do_gettimeofday(&t);
899         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
901
902         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903
904         if (smi_info->thread)
905                 wake_up_process(smi_info->thread);
906
907         if (smi_info->run_to_completion) {
908                 /*
909                  * If we are running to completion, then throw it in
910                  * the list and run transactions until everything is
911                  * clear.  Priority doesn't matter here.
912                  */
913
914                 /*
915                  * Run to completion means we are single-threaded, no
916                  * need for locks.
917                  */
918                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919
920                 result = smi_event_handler(smi_info, 0);
921                 while (result != SI_SM_IDLE) {
922                         udelay(SI_SHORT_TIMEOUT_USEC);
923                         result = smi_event_handler(smi_info,
924                                                    SI_SHORT_TIMEOUT_USEC);
925                 }
926                 return;
927         }
928
929         spin_lock_irqsave(&smi_info->msg_lock, flags);
930         if (priority > 0)
931                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932         else
933                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935
936         spin_lock_irqsave(&smi_info->si_lock, flags);
937         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
938                 start_next_msg(smi_info);
939         spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 }
941
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
943 {
944         struct smi_info   *smi_info = send_info;
945         enum si_sm_result result;
946
947         smi_info->run_to_completion = i_run_to_completion;
948         if (i_run_to_completion) {
949                 result = smi_event_handler(smi_info, 0);
950                 while (result != SI_SM_IDLE) {
951                         udelay(SI_SHORT_TIMEOUT_USEC);
952                         result = smi_event_handler(smi_info,
953                                                    SI_SHORT_TIMEOUT_USEC);
954                 }
955         }
956 }
957
958 /*
959  * Use -1 in the nsec value of the busy waiting timespec to tell that
960  * we are spinning in kipmid looking for something and not delaying
961  * between checks
962  */
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
964 {
965         ts->tv_nsec = -1;
966 }
967 static inline int ipmi_si_is_busy(struct timespec *ts)
968 {
969         return ts->tv_nsec != -1;
970 }
971
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973                                  const struct smi_info *smi_info,
974                                  struct timespec *busy_until)
975 {
976         unsigned int max_busy_us = 0;
977
978         if (smi_info->intf_num < num_max_busy_us)
979                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981                 ipmi_si_set_not_busy(busy_until);
982         else if (!ipmi_si_is_busy(busy_until)) {
983                 getnstimeofday(busy_until);
984                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985         } else {
986                 struct timespec now;
987                 getnstimeofday(&now);
988                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989                         ipmi_si_set_not_busy(busy_until);
990                         return 0;
991                 }
992         }
993         return 1;
994 }
995
996
997 /*
998  * A busy-waiting loop for speeding up IPMI operation.
999  *
1000  * Lousy hardware makes this hard.  This is only enabled for systems
1001  * that are not BT and do not have interrupts.  It starts spinning
1002  * when an operation is complete or until max_busy tells it to stop
1003  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1004  * Documentation/IPMI.txt for details.
1005  */
1006 static int ipmi_thread(void *data)
1007 {
1008         struct smi_info *smi_info = data;
1009         unsigned long flags;
1010         enum si_sm_result smi_result;
1011         struct timespec busy_until;
1012
1013         ipmi_si_set_not_busy(&busy_until);
1014         set_user_nice(current, 19);
1015         while (!kthread_should_stop()) {
1016                 int busy_wait;
1017
1018                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019                 smi_result = smi_event_handler(smi_info, 0);
1020                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022                                                   &busy_until);
1023                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024                         ; /* do nothing */
1025                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026                         schedule();
1027                 else if (smi_result == SI_SM_IDLE)
1028                         schedule_timeout_interruptible(100);
1029                 else
1030                         schedule_timeout_interruptible(1);
1031         }
1032         return 0;
1033 }
1034
1035
1036 static void poll(void *send_info)
1037 {
1038         struct smi_info *smi_info = send_info;
1039         unsigned long flags;
1040
1041         /*
1042          * Make sure there is some delay in the poll loop so we can
1043          * drive time forward and timeout things.
1044          */
1045         udelay(10);
1046         spin_lock_irqsave(&smi_info->si_lock, flags);
1047         smi_event_handler(smi_info, 10);
1048         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 }
1050
1051 static void request_events(void *send_info)
1052 {
1053         struct smi_info *smi_info = send_info;
1054
1055         if (atomic_read(&smi_info->stop_operation) ||
1056                                 !smi_info->has_event_buffer)
1057                 return;
1058
1059         atomic_set(&smi_info->req_events, 1);
1060 }
1061
1062 static int initialized;
1063
1064 static void smi_timeout(unsigned long data)
1065 {
1066         struct smi_info   *smi_info = (struct smi_info *) data;
1067         enum si_sm_result smi_result;
1068         unsigned long     flags;
1069         unsigned long     jiffies_now;
1070         long              time_diff;
1071         long              timeout;
1072 #ifdef DEBUG_TIMING
1073         struct timeval    t;
1074 #endif
1075
1076         spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078         do_gettimeofday(&t);
1079         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081         jiffies_now = jiffies;
1082         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083                      * SI_USEC_PER_JIFFY);
1084         smi_result = smi_event_handler(smi_info, time_diff);
1085
1086         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087
1088         smi_info->last_timeout_jiffies = jiffies_now;
1089
1090         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091                 /* Running with interrupts, only do long timeouts. */
1092                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093                 smi_inc_stat(smi_info, long_timeouts);
1094                 goto do_mod_timer;
1095         }
1096
1097         /*
1098          * If the state machine asks for a short delay, then shorten
1099          * the timer timeout.
1100          */
1101         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102                 smi_inc_stat(smi_info, short_timeouts);
1103                 timeout = jiffies + 1;
1104         } else {
1105                 smi_inc_stat(smi_info, long_timeouts);
1106                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107         }
1108
1109  do_mod_timer:
1110         if (smi_result != SI_SM_IDLE)
1111                 mod_timer(&(smi_info->si_timer), timeout);
1112 }
1113
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         unsigned long   flags;
1118 #ifdef DEBUG_TIMING
1119         struct timeval  t;
1120 #endif
1121
1122         spin_lock_irqsave(&(smi_info->si_lock), flags);
1123
1124         smi_inc_stat(smi_info, interrupts);
1125
1126 #ifdef DEBUG_TIMING
1127         do_gettimeofday(&t);
1128         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130         smi_event_handler(smi_info, 0);
1131         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132         return IRQ_HANDLED;
1133 }
1134
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1136 {
1137         struct smi_info *smi_info = data;
1138         /* We need to clear the IRQ flag for the BT interface. */
1139         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142         return si_irq_handler(irq, data);
1143 }
1144
1145 static int smi_start_processing(void       *send_info,
1146                                 ipmi_smi_t intf)
1147 {
1148         struct smi_info *new_smi = send_info;
1149         int             enable = 0;
1150
1151         new_smi->intf = intf;
1152
1153         /* Try to claim any interrupts. */
1154         if (new_smi->irq_setup)
1155                 new_smi->irq_setup(new_smi);
1156
1157         /* Set up the timer that drives the interface. */
1158         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159         new_smi->last_timeout_jiffies = jiffies;
1160         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161
1162         /*
1163          * Check if the user forcefully enabled the daemon.
1164          */
1165         if (new_smi->intf_num < num_force_kipmid)
1166                 enable = force_kipmid[new_smi->intf_num];
1167         /*
1168          * The BT interface is efficient enough to not need a thread,
1169          * and there is no need for a thread if we have interrupts.
1170          */
1171         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172                 enable = 1;
1173
1174         if (enable) {
1175                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176                                               "kipmi%d", new_smi->intf_num);
1177                 if (IS_ERR(new_smi->thread)) {
1178                         dev_notice(new_smi->dev, "Could not start"
1179                                    " kernel thread due to error %ld, only using"
1180                                    " timers to drive the interface\n",
1181                                    PTR_ERR(new_smi->thread));
1182                         new_smi->thread = NULL;
1183                 }
1184         }
1185
1186         return 0;
1187 }
1188
1189 static void set_maintenance_mode(void *send_info, int enable)
1190 {
1191         struct smi_info   *smi_info = send_info;
1192
1193         if (!enable)
1194                 atomic_set(&smi_info->req_events, 0);
1195 }
1196
1197 static struct ipmi_smi_handlers handlers = {
1198         .owner                  = THIS_MODULE,
1199         .start_processing       = smi_start_processing,
1200         .sender                 = sender,
1201         .request_events         = request_events,
1202         .set_maintenance_mode   = set_maintenance_mode,
1203         .set_run_to_completion  = set_run_to_completion,
1204         .poll                   = poll,
1205 };
1206
1207 /*
1208  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1209  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1210  */
1211
1212 static LIST_HEAD(smi_infos);
1213 static DEFINE_MUTEX(smi_infos_lock);
1214 static int smi_num; /* Used to sequence the SMIs */
1215
1216 #define DEFAULT_REGSPACING      1
1217 #define DEFAULT_REGSIZE         1
1218
1219 static int           si_trydefaults = 1;
1220 static char          *si_type[SI_MAX_PARMS];
1221 #define MAX_SI_TYPE_STR 30
1222 static char          si_type_str[MAX_SI_TYPE_STR];
1223 static unsigned long addrs[SI_MAX_PARMS];
1224 static unsigned int num_addrs;
1225 static unsigned int  ports[SI_MAX_PARMS];
1226 static unsigned int num_ports;
1227 static int           irqs[SI_MAX_PARMS];
1228 static unsigned int num_irqs;
1229 static int           regspacings[SI_MAX_PARMS];
1230 static unsigned int num_regspacings;
1231 static int           regsizes[SI_MAX_PARMS];
1232 static unsigned int num_regsizes;
1233 static int           regshifts[SI_MAX_PARMS];
1234 static unsigned int num_regshifts;
1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1236 static unsigned int num_slave_addrs;
1237
1238 #define IPMI_IO_ADDR_SPACE  0
1239 #define IPMI_MEM_ADDR_SPACE 1
1240 static char *addr_space_to_str[] = { "i/o", "mem" };
1241
1242 static int hotmod_handler(const char *val, struct kernel_param *kp);
1243
1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1246                  " Documentation/IPMI.txt in the kernel sources for the"
1247                  " gory details.");
1248
1249 module_param_named(trydefaults, si_trydefaults, bool, 0);
1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1251                  " default scan of the KCS and SMIC interface at the standard"
1252                  " address");
1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1255                  " interface separated by commas.  The types are 'kcs',"
1256                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1257                  " the first interface to kcs and the second to bt");
1258 module_param_array(addrs, ulong, &num_addrs, 0);
1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1260                  " addresses separated by commas.  Only use if an interface"
1261                  " is in memory.  Otherwise, set it to zero or leave"
1262                  " it blank.");
1263 module_param_array(ports, uint, &num_ports, 0);
1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1265                  " addresses separated by commas.  Only use if an interface"
1266                  " is a port.  Otherwise, set it to zero or leave"
1267                  " it blank.");
1268 module_param_array(irqs, int, &num_irqs, 0);
1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1270                  " addresses separated by commas.  Only use if an interface"
1271                  " has an interrupt.  Otherwise, set it to zero or leave"
1272                  " it blank.");
1273 module_param_array(regspacings, int, &num_regspacings, 0);
1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1275                  " and each successive register used by the interface.  For"
1276                  " instance, if the start address is 0xca2 and the spacing"
1277                  " is 2, then the second address is at 0xca4.  Defaults"
1278                  " to 1.");
1279 module_param_array(regsizes, int, &num_regsizes, 0);
1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1281                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1282                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1283                  " the 8-bit IPMI register has to be read from a larger"
1284                  " register.");
1285 module_param_array(regshifts, int, &num_regshifts, 0);
1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1287                  " IPMI register, in bits.  For instance, if the data"
1288                  " is read from a 32-bit word and the IPMI data is in"
1289                  " bit 8-15, then the shift would be 8");
1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1292                  " the controller.  Normally this is 0x20, but can be"
1293                  " overridden by this parm.  This is an array indexed"
1294                  " by interface number.");
1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1297                  " disabled(0).  Normally the IPMI driver auto-detects"
1298                  " this, but the value may be overridden by this parm.");
1299 module_param(unload_when_empty, int, 0);
1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1301                  " specified or found, default is 1.  Setting to 0"
1302                  " is useful for hot add of devices using hotmod.");
1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1304 MODULE_PARM_DESC(kipmid_max_busy_us,
1305                  "Max time (in microseconds) to busy-wait for IPMI data before"
1306                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1307                  " if kipmid is using up a lot of CPU time.");
1308
1309
1310 static void std_irq_cleanup(struct smi_info *info)
1311 {
1312         if (info->si_type == SI_BT)
1313                 /* Disable the interrupt in the BT interface. */
1314                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1315         free_irq(info->irq, info);
1316 }
1317
1318 static int std_irq_setup(struct smi_info *info)
1319 {
1320         int rv;
1321
1322         if (!info->irq)
1323                 return 0;
1324
1325         if (info->si_type == SI_BT) {
1326                 rv = request_irq(info->irq,
1327                                  si_bt_irq_handler,
1328                                  IRQF_SHARED | IRQF_DISABLED,
1329                                  DEVICE_NAME,
1330                                  info);
1331                 if (!rv)
1332                         /* Enable the interrupt in the BT interface. */
1333                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1334                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1335         } else
1336                 rv = request_irq(info->irq,
1337                                  si_irq_handler,
1338                                  IRQF_SHARED | IRQF_DISABLED,
1339                                  DEVICE_NAME,
1340                                  info);
1341         if (rv) {
1342                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1343                          " running polled\n",
1344                          DEVICE_NAME, info->irq);
1345                 info->irq = 0;
1346         } else {
1347                 info->irq_cleanup = std_irq_cleanup;
1348                 dev_info(info->dev, "Using irq %d\n", info->irq);
1349         }
1350
1351         return rv;
1352 }
1353
1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1355 {
1356         unsigned int addr = io->addr_data;
1357
1358         return inb(addr + (offset * io->regspacing));
1359 }
1360
1361 static void port_outb(struct si_sm_io *io, unsigned int offset,
1362                       unsigned char b)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         outb(b, addr + (offset * io->regspacing));
1367 }
1368
1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1370 {
1371         unsigned int addr = io->addr_data;
1372
1373         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1374 }
1375
1376 static void port_outw(struct si_sm_io *io, unsigned int offset,
1377                       unsigned char b)
1378 {
1379         unsigned int addr = io->addr_data;
1380
1381         outw(b << io->regshift, addr + (offset * io->regspacing));
1382 }
1383
1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1385 {
1386         unsigned int addr = io->addr_data;
1387
1388         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1389 }
1390
1391 static void port_outl(struct si_sm_io *io, unsigned int offset,
1392                       unsigned char b)
1393 {
1394         unsigned int addr = io->addr_data;
1395
1396         outl(b << io->regshift, addr+(offset * io->regspacing));
1397 }
1398
1399 static void port_cleanup(struct smi_info *info)
1400 {
1401         unsigned int addr = info->io.addr_data;
1402         int          idx;
1403
1404         if (addr) {
1405                 for (idx = 0; idx < info->io_size; idx++)
1406                         release_region(addr + idx * info->io.regspacing,
1407                                        info->io.regsize);
1408         }
1409 }
1410
1411 static int port_setup(struct smi_info *info)
1412 {
1413         unsigned int addr = info->io.addr_data;
1414         int          idx;
1415
1416         if (!addr)
1417                 return -ENODEV;
1418
1419         info->io_cleanup = port_cleanup;
1420
1421         /*
1422          * Figure out the actual inb/inw/inl/etc routine to use based
1423          * upon the register size.
1424          */
1425         switch (info->io.regsize) {
1426         case 1:
1427                 info->io.inputb = port_inb;
1428                 info->io.outputb = port_outb;
1429                 break;
1430         case 2:
1431                 info->io.inputb = port_inw;
1432                 info->io.outputb = port_outw;
1433                 break;
1434         case 4:
1435                 info->io.inputb = port_inl;
1436                 info->io.outputb = port_outl;
1437                 break;
1438         default:
1439                 dev_warn(info->dev, "Invalid register size: %d\n",
1440                          info->io.regsize);
1441                 return -EINVAL;
1442         }
1443
1444         /*
1445          * Some BIOSes reserve disjoint I/O regions in their ACPI
1446          * tables.  This causes problems when trying to register the
1447          * entire I/O region.  Therefore we must register each I/O
1448          * port separately.
1449          */
1450         for (idx = 0; idx < info->io_size; idx++) {
1451                 if (request_region(addr + idx * info->io.regspacing,
1452                                    info->io.regsize, DEVICE_NAME) == NULL) {
1453                         /* Undo allocations */
1454                         while (idx--) {
1455                                 release_region(addr + idx * info->io.regspacing,
1456                                                info->io.regsize);
1457                         }
1458                         return -EIO;
1459                 }
1460         }
1461         return 0;
1462 }
1463
1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1465 {
1466         return readb((io->addr)+(offset * io->regspacing));
1467 }
1468
1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1470                      unsigned char b)
1471 {
1472         writeb(b, (io->addr)+(offset * io->regspacing));
1473 }
1474
1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1476 {
1477         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1478                 & 0xff;
1479 }
1480
1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1482                      unsigned char b)
1483 {
1484         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1485 }
1486
1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1488 {
1489         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1490                 & 0xff;
1491 }
1492
1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1494                      unsigned char b)
1495 {
1496         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1497 }
1498
1499 #ifdef readq
1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1501 {
1502         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                 & 0xff;
1504 }
1505
1506 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1507                      unsigned char b)
1508 {
1509         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511 #endif
1512
1513 static void mem_cleanup(struct smi_info *info)
1514 {
1515         unsigned long addr = info->io.addr_data;
1516         int           mapsize;
1517
1518         if (info->io.addr) {
1519                 iounmap(info->io.addr);
1520
1521                 mapsize = ((info->io_size * info->io.regspacing)
1522                            - (info->io.regspacing - info->io.regsize));
1523
1524                 release_mem_region(addr, mapsize);
1525         }
1526 }
1527
1528 static int mem_setup(struct smi_info *info)
1529 {
1530         unsigned long addr = info->io.addr_data;
1531         int           mapsize;
1532
1533         if (!addr)
1534                 return -ENODEV;
1535
1536         info->io_cleanup = mem_cleanup;
1537
1538         /*
1539          * Figure out the actual readb/readw/readl/etc routine to use based
1540          * upon the register size.
1541          */
1542         switch (info->io.regsize) {
1543         case 1:
1544                 info->io.inputb = intf_mem_inb;
1545                 info->io.outputb = intf_mem_outb;
1546                 break;
1547         case 2:
1548                 info->io.inputb = intf_mem_inw;
1549                 info->io.outputb = intf_mem_outw;
1550                 break;
1551         case 4:
1552                 info->io.inputb = intf_mem_inl;
1553                 info->io.outputb = intf_mem_outl;
1554                 break;
1555 #ifdef readq
1556         case 8:
1557                 info->io.inputb = mem_inq;
1558                 info->io.outputb = mem_outq;
1559                 break;
1560 #endif
1561         default:
1562                 dev_warn(info->dev, "Invalid register size: %d\n",
1563                          info->io.regsize);
1564                 return -EINVAL;
1565         }
1566
1567         /*
1568          * Calculate the total amount of memory to claim.  This is an
1569          * unusual looking calculation, but it avoids claiming any
1570          * more memory than it has to.  It will claim everything
1571          * between the first address to the end of the last full
1572          * register.
1573          */
1574         mapsize = ((info->io_size * info->io.regspacing)
1575                    - (info->io.regspacing - info->io.regsize));
1576
1577         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1578                 return -EIO;
1579
1580         info->io.addr = ioremap(addr, mapsize);
1581         if (info->io.addr == NULL) {
1582                 release_mem_region(addr, mapsize);
1583                 return -EIO;
1584         }
1585         return 0;
1586 }
1587
1588 /*
1589  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1590  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1591  * Options are:
1592  *   rsp=<regspacing>
1593  *   rsi=<regsize>
1594  *   rsh=<regshift>
1595  *   irq=<irq>
1596  *   ipmb=<ipmb addr>
1597  */
1598 enum hotmod_op { HM_ADD, HM_REMOVE };
1599 struct hotmod_vals {
1600         char *name;
1601         int  val;
1602 };
1603 static struct hotmod_vals hotmod_ops[] = {
1604         { "add",        HM_ADD },
1605         { "remove",     HM_REMOVE },
1606         { NULL }
1607 };
1608 static struct hotmod_vals hotmod_si[] = {
1609         { "kcs",        SI_KCS },
1610         { "smic",       SI_SMIC },
1611         { "bt",         SI_BT },
1612         { NULL }
1613 };
1614 static struct hotmod_vals hotmod_as[] = {
1615         { "mem",        IPMI_MEM_ADDR_SPACE },
1616         { "i/o",        IPMI_IO_ADDR_SPACE },
1617         { NULL }
1618 };
1619
1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1621 {
1622         char *s;
1623         int  i;
1624
1625         s = strchr(*curr, ',');
1626         if (!s) {
1627                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1628                 return -EINVAL;
1629         }
1630         *s = '\0';
1631         s++;
1632         for (i = 0; hotmod_ops[i].name; i++) {
1633                 if (strcmp(*curr, v[i].name) == 0) {
1634                         *val = v[i].val;
1635                         *curr = s;
1636                         return 0;
1637                 }
1638         }
1639
1640         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1641         return -EINVAL;
1642 }
1643
1644 static int check_hotmod_int_op(const char *curr, const char *option,
1645                                const char *name, int *val)
1646 {
1647         char *n;
1648
1649         if (strcmp(curr, name) == 0) {
1650                 if (!option) {
1651                         printk(KERN_WARNING PFX
1652                                "No option given for '%s'\n",
1653                                curr);
1654                         return -EINVAL;
1655                 }
1656                 *val = simple_strtoul(option, &n, 0);
1657                 if ((*n != '\0') || (*option == '\0')) {
1658                         printk(KERN_WARNING PFX
1659                                "Bad option given for '%s'\n",
1660                                curr);
1661                         return -EINVAL;
1662                 }
1663                 return 1;
1664         }
1665         return 0;
1666 }
1667
1668 static struct smi_info *smi_info_alloc(void)
1669 {
1670         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1671
1672         if (info) {
1673                 spin_lock_init(&info->si_lock);
1674                 spin_lock_init(&info->msg_lock);
1675         }
1676         return info;
1677 }
1678
1679 static int hotmod_handler(const char *val, struct kernel_param *kp)
1680 {
1681         char *str = kstrdup(val, GFP_KERNEL);
1682         int  rv;
1683         char *next, *curr, *s, *n, *o;
1684         enum hotmod_op op;
1685         enum si_type si_type;
1686         int  addr_space;
1687         unsigned long addr;
1688         int regspacing;
1689         int regsize;
1690         int regshift;
1691         int irq;
1692         int ipmb;
1693         int ival;
1694         int len;
1695         struct smi_info *info;
1696
1697         if (!str)
1698                 return -ENOMEM;
1699
1700         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1701         len = strlen(str);
1702         ival = len - 1;
1703         while ((ival >= 0) && isspace(str[ival])) {
1704                 str[ival] = '\0';
1705                 ival--;
1706         }
1707
1708         for (curr = str; curr; curr = next) {
1709                 regspacing = 1;
1710                 regsize = 1;
1711                 regshift = 0;
1712                 irq = 0;
1713                 ipmb = 0; /* Choose the default if not specified */
1714
1715                 next = strchr(curr, ':');
1716                 if (next) {
1717                         *next = '\0';
1718                         next++;
1719                 }
1720
1721                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1722                 if (rv)
1723                         break;
1724                 op = ival;
1725
1726                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1727                 if (rv)
1728                         break;
1729                 si_type = ival;
1730
1731                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1732                 if (rv)
1733                         break;
1734
1735                 s = strchr(curr, ',');
1736                 if (s) {
1737                         *s = '\0';
1738                         s++;
1739                 }
1740                 addr = simple_strtoul(curr, &n, 0);
1741                 if ((*n != '\0') || (*curr == '\0')) {
1742                         printk(KERN_WARNING PFX "Invalid hotmod address"
1743                                " '%s'\n", curr);
1744                         break;
1745                 }
1746
1747                 while (s) {
1748                         curr = s;
1749                         s = strchr(curr, ',');
1750                         if (s) {
1751                                 *s = '\0';
1752                                 s++;
1753                         }
1754                         o = strchr(curr, '=');
1755                         if (o) {
1756                                 *o = '\0';
1757                                 o++;
1758                         }
1759                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1760                         if (rv < 0)
1761                                 goto out;
1762                         else if (rv)
1763                                 continue;
1764                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1765                         if (rv < 0)
1766                                 goto out;
1767                         else if (rv)
1768                                 continue;
1769                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1770                         if (rv < 0)
1771                                 goto out;
1772                         else if (rv)
1773                                 continue;
1774                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1775                         if (rv < 0)
1776                                 goto out;
1777                         else if (rv)
1778                                 continue;
1779                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1780                         if (rv < 0)
1781                                 goto out;
1782                         else if (rv)
1783                                 continue;
1784
1785                         rv = -EINVAL;
1786                         printk(KERN_WARNING PFX
1787                                "Invalid hotmod option '%s'\n",
1788                                curr);
1789                         goto out;
1790                 }
1791
1792                 if (op == HM_ADD) {
1793                         info = smi_info_alloc();
1794                         if (!info) {
1795                                 rv = -ENOMEM;
1796                                 goto out;
1797                         }
1798
1799                         info->addr_source = SI_HOTMOD;
1800                         info->si_type = si_type;
1801                         info->io.addr_data = addr;
1802                         info->io.addr_type = addr_space;
1803                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1804                                 info->io_setup = mem_setup;
1805                         else
1806                                 info->io_setup = port_setup;
1807
1808                         info->io.addr = NULL;
1809                         info->io.regspacing = regspacing;
1810                         if (!info->io.regspacing)
1811                                 info->io.regspacing = DEFAULT_REGSPACING;
1812                         info->io.regsize = regsize;
1813                         if (!info->io.regsize)
1814                                 info->io.regsize = DEFAULT_REGSPACING;
1815                         info->io.regshift = regshift;
1816                         info->irq = irq;
1817                         if (info->irq)
1818                                 info->irq_setup = std_irq_setup;
1819                         info->slave_addr = ipmb;
1820
1821                         if (!add_smi(info)) {
1822                                 if (try_smi_init(info))
1823                                         cleanup_one_si(info);
1824                         } else {
1825                                 kfree(info);
1826                         }
1827                 } else {
1828                         /* remove */
1829                         struct smi_info *e, *tmp_e;
1830
1831                         mutex_lock(&smi_infos_lock);
1832                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1833                                 if (e->io.addr_type != addr_space)
1834                                         continue;
1835                                 if (e->si_type != si_type)
1836                                         continue;
1837                                 if (e->io.addr_data == addr)
1838                                         cleanup_one_si(e);
1839                         }
1840                         mutex_unlock(&smi_infos_lock);
1841                 }
1842         }
1843         rv = len;
1844  out:
1845         kfree(str);
1846         return rv;
1847 }
1848
1849 static __devinit void hardcode_find_bmc(void)
1850 {
1851         int             i;
1852         struct smi_info *info;
1853
1854         for (i = 0; i < SI_MAX_PARMS; i++) {
1855                 if (!ports[i] && !addrs[i])
1856                         continue;
1857
1858                 info = smi_info_alloc();
1859                 if (!info)
1860                         return;
1861
1862                 info->addr_source = SI_HARDCODED;
1863                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1864
1865                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1866                         info->si_type = SI_KCS;
1867                 } else if (strcmp(si_type[i], "smic") == 0) {
1868                         info->si_type = SI_SMIC;
1869                 } else if (strcmp(si_type[i], "bt") == 0) {
1870                         info->si_type = SI_BT;
1871                 } else {
1872                         printk(KERN_WARNING PFX "Interface type specified "
1873                                "for interface %d, was invalid: %s\n",
1874                                i, si_type[i]);
1875                         kfree(info);
1876                         continue;
1877                 }
1878
1879                 if (ports[i]) {
1880                         /* An I/O port */
1881                         info->io_setup = port_setup;
1882                         info->io.addr_data = ports[i];
1883                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1884                 } else if (addrs[i]) {
1885                         /* A memory port */
1886                         info->io_setup = mem_setup;
1887                         info->io.addr_data = addrs[i];
1888                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1889                 } else {
1890                         printk(KERN_WARNING PFX "Interface type specified "
1891                                "for interface %d, but port and address were "
1892                                "not set or set to zero.\n", i);
1893                         kfree(info);
1894                         continue;
1895                 }
1896
1897                 info->io.addr = NULL;
1898                 info->io.regspacing = regspacings[i];
1899                 if (!info->io.regspacing)
1900                         info->io.regspacing = DEFAULT_REGSPACING;
1901                 info->io.regsize = regsizes[i];
1902                 if (!info->io.regsize)
1903                         info->io.regsize = DEFAULT_REGSPACING;
1904                 info->io.regshift = regshifts[i];
1905                 info->irq = irqs[i];
1906                 if (info->irq)
1907                         info->irq_setup = std_irq_setup;
1908                 info->slave_addr = slave_addrs[i];
1909
1910                 if (!add_smi(info)) {
1911                         if (try_smi_init(info))
1912                                 cleanup_one_si(info);
1913                 } else {
1914                         kfree(info);
1915                 }
1916         }
1917 }
1918
1919 #ifdef CONFIG_ACPI
1920
1921 #include <linux/acpi.h>
1922
1923 /*
1924  * Once we get an ACPI failure, we don't try any more, because we go
1925  * through the tables sequentially.  Once we don't find a table, there
1926  * are no more.
1927  */
1928 static int acpi_failure;
1929
1930 /* For GPE-type interrupts. */
1931 static u32 ipmi_acpi_gpe(void *context)
1932 {
1933         struct smi_info *smi_info = context;
1934         unsigned long   flags;
1935 #ifdef DEBUG_TIMING
1936         struct timeval t;
1937 #endif
1938
1939         spin_lock_irqsave(&(smi_info->si_lock), flags);
1940
1941         smi_inc_stat(smi_info, interrupts);
1942
1943 #ifdef DEBUG_TIMING
1944         do_gettimeofday(&t);
1945         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1946 #endif
1947         smi_event_handler(smi_info, 0);
1948         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1949
1950         return ACPI_INTERRUPT_HANDLED;
1951 }
1952
1953 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1954 {
1955         if (!info->irq)
1956                 return;
1957
1958         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1959 }
1960
1961 static int acpi_gpe_irq_setup(struct smi_info *info)
1962 {
1963         acpi_status status;
1964
1965         if (!info->irq)
1966                 return 0;
1967
1968         /* FIXME - is level triggered right? */
1969         status = acpi_install_gpe_handler(NULL,
1970                                           info->irq,
1971                                           ACPI_GPE_LEVEL_TRIGGERED,
1972                                           &ipmi_acpi_gpe,
1973                                           info);
1974         if (status != AE_OK) {
1975                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1976                          " running polled\n", DEVICE_NAME, info->irq);
1977                 info->irq = 0;
1978                 return -EINVAL;
1979         } else {
1980                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1981                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1982                 return 0;
1983         }
1984 }
1985
1986 /*
1987  * Defined at
1988  * http://h21007.www2.hp.com/portal/download/files
1989  * /unprot/hpspmi.pdf
1990  */
1991 struct SPMITable {
1992         s8      Signature[4];
1993         u32     Length;
1994         u8      Revision;
1995         u8      Checksum;
1996         s8      OEMID[6];
1997         s8      OEMTableID[8];
1998         s8      OEMRevision[4];
1999         s8      CreatorID[4];
2000         s8      CreatorRevision[4];
2001         u8      InterfaceType;
2002         u8      IPMIlegacy;
2003         s16     SpecificationRevision;
2004
2005         /*
2006          * Bit 0 - SCI interrupt supported
2007          * Bit 1 - I/O APIC/SAPIC
2008          */
2009         u8      InterruptType;
2010
2011         /*
2012          * If bit 0 of InterruptType is set, then this is the SCI
2013          * interrupt in the GPEx_STS register.
2014          */
2015         u8      GPE;
2016
2017         s16     Reserved;
2018
2019         /*
2020          * If bit 1 of InterruptType is set, then this is the I/O
2021          * APIC/SAPIC interrupt.
2022          */
2023         u32     GlobalSystemInterrupt;
2024
2025         /* The actual register address. */
2026         struct acpi_generic_address addr;
2027
2028         u8      UID[4];
2029
2030         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2031 };
2032
2033 static __devinit int try_init_spmi(struct SPMITable *spmi)
2034 {
2035         struct smi_info  *info;
2036
2037         if (spmi->IPMIlegacy != 1) {
2038                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2039                 return -ENODEV;
2040         }
2041
2042         info = smi_info_alloc();
2043         if (!info) {
2044                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2045                 return -ENOMEM;
2046         }
2047
2048         info->addr_source = SI_SPMI;
2049         printk(KERN_INFO PFX "probing via SPMI\n");
2050
2051         /* Figure out the interface type. */
2052         switch (spmi->InterfaceType) {
2053         case 1: /* KCS */
2054                 info->si_type = SI_KCS;
2055                 break;
2056         case 2: /* SMIC */
2057                 info->si_type = SI_SMIC;
2058                 break;
2059         case 3: /* BT */
2060                 info->si_type = SI_BT;
2061                 break;
2062         default:
2063                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2064                        spmi->InterfaceType);
2065                 kfree(info);
2066                 return -EIO;
2067         }
2068
2069         if (spmi->InterruptType & 1) {
2070                 /* We've got a GPE interrupt. */
2071                 info->irq = spmi->GPE;
2072                 info->irq_setup = acpi_gpe_irq_setup;
2073         } else if (spmi->InterruptType & 2) {
2074                 /* We've got an APIC/SAPIC interrupt. */
2075                 info->irq = spmi->GlobalSystemInterrupt;
2076                 info->irq_setup = std_irq_setup;
2077         } else {
2078                 /* Use the default interrupt setting. */
2079                 info->irq = 0;
2080                 info->irq_setup = NULL;
2081         }
2082
2083         if (spmi->addr.bit_width) {
2084                 /* A (hopefully) properly formed register bit width. */
2085                 info->io.regspacing = spmi->addr.bit_width / 8;
2086         } else {
2087                 info->io.regspacing = DEFAULT_REGSPACING;
2088         }
2089         info->io.regsize = info->io.regspacing;
2090         info->io.regshift = spmi->addr.bit_offset;
2091
2092         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2093                 info->io_setup = mem_setup;
2094                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2095         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2096                 info->io_setup = port_setup;
2097                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2098         } else {
2099                 kfree(info);
2100                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2101                 return -EIO;
2102         }
2103         info->io.addr_data = spmi->addr.address;
2104
2105         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2106                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2107                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2108                  info->irq);
2109
2110         if (add_smi(info))
2111                 kfree(info);
2112
2113         return 0;
2114 }
2115
2116 static __devinit void spmi_find_bmc(void)
2117 {
2118         acpi_status      status;
2119         struct SPMITable *spmi;
2120         int              i;
2121
2122         if (acpi_disabled)
2123                 return;
2124
2125         if (acpi_failure)
2126                 return;
2127
2128         for (i = 0; ; i++) {
2129                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2130                                         (struct acpi_table_header **)&spmi);
2131                 if (status != AE_OK)
2132                         return;
2133
2134                 try_init_spmi(spmi);
2135         }
2136 }
2137
2138 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2139                                     const struct pnp_device_id *dev_id)
2140 {
2141         struct acpi_device *acpi_dev;
2142         struct smi_info *info;
2143         struct resource *res, *res_second;
2144         acpi_handle handle;
2145         acpi_status status;
2146         unsigned long long tmp;
2147
2148         acpi_dev = pnp_acpi_device(dev);
2149         if (!acpi_dev)
2150                 return -ENODEV;
2151
2152         info = smi_info_alloc();
2153         if (!info)
2154                 return -ENOMEM;
2155
2156         info->addr_source = SI_ACPI;
2157         printk(KERN_INFO PFX "probing via ACPI\n");
2158
2159         handle = acpi_dev->handle;
2160
2161         /* _IFT tells us the interface type: KCS, BT, etc */
2162         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2163         if (ACPI_FAILURE(status))
2164                 goto err_free;
2165
2166         switch (tmp) {
2167         case 1:
2168                 info->si_type = SI_KCS;
2169                 break;
2170         case 2:
2171                 info->si_type = SI_SMIC;
2172                 break;
2173         case 3:
2174                 info->si_type = SI_BT;
2175                 break;
2176         default:
2177                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2178                 goto err_free;
2179         }
2180
2181         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2182         if (res) {
2183                 info->io_setup = port_setup;
2184                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2185         } else {
2186                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2187                 if (res) {
2188                         info->io_setup = mem_setup;
2189                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2190                 }
2191         }
2192         if (!res) {
2193                 dev_err(&dev->dev, "no I/O or memory address\n");
2194                 goto err_free;
2195         }
2196         info->io.addr_data = res->start;
2197
2198         info->io.regspacing = DEFAULT_REGSPACING;
2199         res_second = pnp_get_resource(dev,
2200                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2201                                         IORESOURCE_IO : IORESOURCE_MEM,
2202                                1);
2203         if (res_second) {
2204                 if (res_second->start > info->io.addr_data)
2205                         info->io.regspacing = res_second->start - info->io.addr_data;
2206         }
2207         info->io.regsize = DEFAULT_REGSPACING;
2208         info->io.regshift = 0;
2209
2210         /* If _GPE exists, use it; otherwise use standard interrupts */
2211         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2212         if (ACPI_SUCCESS(status)) {
2213                 info->irq = tmp;
2214                 info->irq_setup = acpi_gpe_irq_setup;
2215         } else if (pnp_irq_valid(dev, 0)) {
2216                 info->irq = pnp_irq(dev, 0);
2217                 info->irq_setup = std_irq_setup;
2218         }
2219
2220         info->dev = &dev->dev;
2221         pnp_set_drvdata(dev, info);
2222
2223         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2224                  res, info->io.regsize, info->io.regspacing,
2225                  info->irq);
2226
2227         if (add_smi(info))
2228                 goto err_free;
2229
2230         return 0;
2231
2232 err_free:
2233         kfree(info);
2234         return -EINVAL;
2235 }
2236
2237 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2238 {
2239         struct smi_info *info = pnp_get_drvdata(dev);
2240
2241         cleanup_one_si(info);
2242 }
2243
2244 static const struct pnp_device_id pnp_dev_table[] = {
2245         {"IPI0001", 0},
2246         {"", 0},
2247 };
2248
2249 static struct pnp_driver ipmi_pnp_driver = {
2250         .name           = DEVICE_NAME,
2251         .probe          = ipmi_pnp_probe,
2252         .remove         = __devexit_p(ipmi_pnp_remove),
2253         .id_table       = pnp_dev_table,
2254 };
2255 #endif
2256
2257 #ifdef CONFIG_DMI
2258 struct dmi_ipmi_data {
2259         u8              type;
2260         u8              addr_space;
2261         unsigned long   base_addr;
2262         u8              irq;
2263         u8              offset;
2264         u8              slave_addr;
2265 };
2266
2267 static int __devinit decode_dmi(const struct dmi_header *dm,
2268                                 struct dmi_ipmi_data *dmi)
2269 {
2270         const u8        *data = (const u8 *)dm;
2271         unsigned long   base_addr;
2272         u8              reg_spacing;
2273         u8              len = dm->length;
2274
2275         dmi->type = data[4];
2276
2277         memcpy(&base_addr, data+8, sizeof(unsigned long));
2278         if (len >= 0x11) {
2279                 if (base_addr & 1) {
2280                         /* I/O */
2281                         base_addr &= 0xFFFE;
2282                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2283                 } else
2284                         /* Memory */
2285                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2286
2287                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2288                    is odd. */
2289                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2290
2291                 dmi->irq = data[0x11];
2292
2293                 /* The top two bits of byte 0x10 hold the register spacing. */
2294                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2295                 switch (reg_spacing) {
2296                 case 0x00: /* Byte boundaries */
2297                     dmi->offset = 1;
2298                     break;
2299                 case 0x01: /* 32-bit boundaries */
2300                     dmi->offset = 4;
2301                     break;
2302                 case 0x02: /* 16-byte boundaries */
2303                     dmi->offset = 16;
2304                     break;
2305                 default:
2306                     /* Some other interface, just ignore it. */
2307                     return -EIO;
2308                 }
2309         } else {
2310                 /* Old DMI spec. */
2311                 /*
2312                  * Note that technically, the lower bit of the base
2313                  * address should be 1 if the address is I/O and 0 if
2314                  * the address is in memory.  So many systems get that
2315                  * wrong (and all that I have seen are I/O) so we just
2316                  * ignore that bit and assume I/O.  Systems that use
2317                  * memory should use the newer spec, anyway.
2318                  */
2319                 dmi->base_addr = base_addr & 0xfffe;
2320                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2321                 dmi->offset = 1;
2322         }
2323
2324         dmi->slave_addr = data[6];
2325
2326         return 0;
2327 }
2328
2329 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2330 {
2331         struct smi_info *info;
2332
2333         info = smi_info_alloc();
2334         if (!info) {
2335                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2336                 return;
2337         }
2338
2339         info->addr_source = SI_SMBIOS;
2340         printk(KERN_INFO PFX "probing via SMBIOS\n");
2341
2342         switch (ipmi_data->type) {
2343         case 0x01: /* KCS */
2344                 info->si_type = SI_KCS;
2345                 break;
2346         case 0x02: /* SMIC */
2347                 info->si_type = SI_SMIC;
2348                 break;
2349         case 0x03: /* BT */
2350                 info->si_type = SI_BT;
2351                 break;
2352         default:
2353                 kfree(info);
2354                 return;
2355         }
2356
2357         switch (ipmi_data->addr_space) {
2358         case IPMI_MEM_ADDR_SPACE:
2359                 info->io_setup = mem_setup;
2360                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2361                 break;
2362
2363         case IPMI_IO_ADDR_SPACE:
2364                 info->io_setup = port_setup;
2365                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2366                 break;
2367
2368         default:
2369                 kfree(info);
2370                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2371                        ipmi_data->addr_space);
2372                 return;
2373         }
2374         info->io.addr_data = ipmi_data->base_addr;
2375
2376         info->io.regspacing = ipmi_data->offset;
2377         if (!info->io.regspacing)
2378                 info->io.regspacing = DEFAULT_REGSPACING;
2379         info->io.regsize = DEFAULT_REGSPACING;
2380         info->io.regshift = 0;
2381
2382         info->slave_addr = ipmi_data->slave_addr;
2383
2384         info->irq = ipmi_data->irq;
2385         if (info->irq)
2386                 info->irq_setup = std_irq_setup;
2387
2388         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2389                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2390                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2391                  info->irq);
2392
2393         if (add_smi(info))
2394                 kfree(info);
2395 }
2396
2397 static void __devinit dmi_find_bmc(void)
2398 {
2399         const struct dmi_device *dev = NULL;
2400         struct dmi_ipmi_data data;
2401         int                  rv;
2402
2403         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2404                 memset(&data, 0, sizeof(data));
2405                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2406                                 &data);
2407                 if (!rv)
2408                         try_init_dmi(&data);
2409         }
2410 }
2411 #endif /* CONFIG_DMI */
2412
2413 #ifdef CONFIG_PCI
2414
2415 #define PCI_ERMC_CLASSCODE              0x0C0700
2416 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2417 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2418 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2419 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2420 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2421
2422 #define PCI_HP_VENDOR_ID    0x103C
2423 #define PCI_MMC_DEVICE_ID   0x121A
2424 #define PCI_MMC_ADDR_CW     0x10
2425
2426 static void ipmi_pci_cleanup(struct smi_info *info)
2427 {
2428         struct pci_dev *pdev = info->addr_source_data;
2429
2430         pci_disable_device(pdev);
2431 }
2432
2433 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2434                                     const struct pci_device_id *ent)
2435 {
2436         int rv;
2437         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2438         struct smi_info *info;
2439
2440         info = smi_info_alloc();
2441         if (!info)
2442                 return -ENOMEM;
2443
2444         info->addr_source = SI_PCI;
2445         dev_info(&pdev->dev, "probing via PCI");
2446
2447         switch (class_type) {
2448         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2449                 info->si_type = SI_SMIC;
2450                 break;
2451
2452         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2453                 info->si_type = SI_KCS;
2454                 break;
2455
2456         case PCI_ERMC_CLASSCODE_TYPE_BT:
2457                 info->si_type = SI_BT;
2458                 break;
2459
2460         default:
2461                 kfree(info);
2462                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2463                 return -ENOMEM;
2464         }
2465
2466         rv = pci_enable_device(pdev);
2467         if (rv) {
2468                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2469                 kfree(info);
2470                 return rv;
2471         }
2472
2473         info->addr_source_cleanup = ipmi_pci_cleanup;
2474         info->addr_source_data = pdev;
2475
2476         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2477                 info->io_setup = port_setup;
2478                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2479         } else {
2480                 info->io_setup = mem_setup;
2481                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2482         }
2483         info->io.addr_data = pci_resource_start(pdev, 0);
2484
2485         info->io.regspacing = DEFAULT_REGSPACING;
2486         info->io.regsize = DEFAULT_REGSPACING;
2487         info->io.regshift = 0;
2488
2489         info->irq = pdev->irq;
2490         if (info->irq)
2491                 info->irq_setup = std_irq_setup;
2492
2493         info->dev = &pdev->dev;
2494         pci_set_drvdata(pdev, info);
2495
2496         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2497                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2498                 info->irq);
2499
2500         if (add_smi(info))
2501                 kfree(info);
2502
2503         return 0;
2504 }
2505
2506 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2507 {
2508         struct smi_info *info = pci_get_drvdata(pdev);
2509         cleanup_one_si(info);
2510 }
2511
2512 #ifdef CONFIG_PM
2513 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2514 {
2515         return 0;
2516 }
2517
2518 static int ipmi_pci_resume(struct pci_dev *pdev)
2519 {
2520         return 0;
2521 }
2522 #endif
2523
2524 static struct pci_device_id ipmi_pci_devices[] = {
2525         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2526         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2527         { 0, }
2528 };
2529 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2530
2531 static struct pci_driver ipmi_pci_driver = {
2532         .name =         DEVICE_NAME,
2533         .id_table =     ipmi_pci_devices,
2534         .probe =        ipmi_pci_probe,
2535         .remove =       __devexit_p(ipmi_pci_remove),
2536 #ifdef CONFIG_PM
2537         .suspend =      ipmi_pci_suspend,
2538         .resume =       ipmi_pci_resume,
2539 #endif
2540 };
2541 #endif /* CONFIG_PCI */
2542
2543
2544 #ifdef CONFIG_PPC_OF
2545 static int __devinit ipmi_of_probe(struct platform_device *dev,
2546                          const struct of_device_id *match)
2547 {
2548         struct smi_info *info;
2549         struct resource resource;
2550         const int *regsize, *regspacing, *regshift;
2551         struct device_node *np = dev->dev.of_node;
2552         int ret;
2553         int proplen;
2554
2555         dev_info(&dev->dev, "probing via device tree\n");
2556
2557         ret = of_address_to_resource(np, 0, &resource);
2558         if (ret) {
2559                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2560                 return ret;
2561         }
2562
2563         regsize = of_get_property(np, "reg-size", &proplen);
2564         if (regsize && proplen != 4) {
2565                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2566                 return -EINVAL;
2567         }
2568
2569         regspacing = of_get_property(np, "reg-spacing", &proplen);
2570         if (regspacing && proplen != 4) {
2571                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2572                 return -EINVAL;
2573         }
2574
2575         regshift = of_get_property(np, "reg-shift", &proplen);
2576         if (regshift && proplen != 4) {
2577                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2578                 return -EINVAL;
2579         }
2580
2581         info = smi_info_alloc();
2582
2583         if (!info) {
2584                 dev_err(&dev->dev,
2585                         "could not allocate memory for OF probe\n");
2586                 return -ENOMEM;
2587         }
2588
2589         info->si_type           = (enum si_type) match->data;
2590         info->addr_source       = SI_DEVICETREE;
2591         info->irq_setup         = std_irq_setup;
2592
2593         if (resource.flags & IORESOURCE_IO) {
2594                 info->io_setup          = port_setup;
2595                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2596         } else {
2597                 info->io_setup          = mem_setup;
2598                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2599         }
2600
2601         info->io.addr_data      = resource.start;
2602
2603         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2604         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2605         info->io.regshift       = regshift ? *regshift : 0;
2606
2607         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2608         info->dev               = &dev->dev;
2609
2610         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2611                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2612                 info->irq);
2613
2614         dev_set_drvdata(&dev->dev, info);
2615
2616         if (add_smi(info)) {
2617                 kfree(info);
2618                 return -EBUSY;
2619         }
2620
2621         return 0;
2622 }
2623
2624 static int __devexit ipmi_of_remove(struct platform_device *dev)
2625 {
2626         cleanup_one_si(dev_get_drvdata(&dev->dev));
2627         return 0;
2628 }
2629
2630 static struct of_device_id ipmi_match[] =
2631 {
2632         { .type = "ipmi", .compatible = "ipmi-kcs",
2633           .data = (void *)(unsigned long) SI_KCS },
2634         { .type = "ipmi", .compatible = "ipmi-smic",
2635           .data = (void *)(unsigned long) SI_SMIC },
2636         { .type = "ipmi", .compatible = "ipmi-bt",
2637           .data = (void *)(unsigned long) SI_BT },
2638         {},
2639 };
2640
2641 static struct of_platform_driver ipmi_of_platform_driver = {
2642         .driver = {
2643                 .name = "ipmi",
2644                 .owner = THIS_MODULE,
2645                 .of_match_table = ipmi_match,
2646         },
2647         .probe          = ipmi_of_probe,
2648         .remove         = __devexit_p(ipmi_of_remove),
2649 };
2650 #endif /* CONFIG_PPC_OF */
2651
2652 static int wait_for_msg_done(struct smi_info *smi_info)
2653 {
2654         enum si_sm_result     smi_result;
2655
2656         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2657         for (;;) {
2658                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2659                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2660                         schedule_timeout_uninterruptible(1);
2661                         smi_result = smi_info->handlers->event(
2662                                 smi_info->si_sm, 100);
2663                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2664                         smi_result = smi_info->handlers->event(
2665                                 smi_info->si_sm, 0);
2666                 } else
2667                         break;
2668         }
2669         if (smi_result == SI_SM_HOSED)
2670                 /*
2671                  * We couldn't get the state machine to run, so whatever's at
2672                  * the port is probably not an IPMI SMI interface.
2673                  */
2674                 return -ENODEV;
2675
2676         return 0;
2677 }
2678
2679 static int try_get_dev_id(struct smi_info *smi_info)
2680 {
2681         unsigned char         msg[2];
2682         unsigned char         *resp;
2683         unsigned long         resp_len;
2684         int                   rv = 0;
2685
2686         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2687         if (!resp)
2688                 return -ENOMEM;
2689
2690         /*
2691          * Do a Get Device ID command, since it comes back with some
2692          * useful info.
2693          */
2694         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2695         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2696         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2697
2698         rv = wait_for_msg_done(smi_info);
2699         if (rv)
2700                 goto out;
2701
2702         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2703                                                   resp, IPMI_MAX_MSG_LENGTH);
2704
2705         /* Check and record info from the get device id, in case we need it. */
2706         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2707
2708  out:
2709         kfree(resp);
2710         return rv;
2711 }
2712
2713 static int try_enable_event_buffer(struct smi_info *smi_info)
2714 {
2715         unsigned char         msg[3];
2716         unsigned char         *resp;
2717         unsigned long         resp_len;
2718         int                   rv = 0;
2719
2720         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2721         if (!resp)
2722                 return -ENOMEM;
2723
2724         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2725         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2726         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2727
2728         rv = wait_for_msg_done(smi_info);
2729         if (rv) {
2730                 printk(KERN_WARNING PFX "Error getting response from get"
2731                        " global enables command, the event buffer is not"
2732                        " enabled.\n");
2733                 goto out;
2734         }
2735
2736         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2737                                                   resp, IPMI_MAX_MSG_LENGTH);
2738
2739         if (resp_len < 4 ||
2740                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2741                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2742                         resp[2] != 0) {
2743                 printk(KERN_WARNING PFX "Invalid return from get global"
2744                        " enables command, cannot enable the event buffer.\n");
2745                 rv = -EINVAL;
2746                 goto out;
2747         }
2748
2749         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2750                 /* buffer is already enabled, nothing to do. */
2751                 goto out;
2752
2753         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2754         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2755         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2756         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2757
2758         rv = wait_for_msg_done(smi_info);
2759         if (rv) {
2760                 printk(KERN_WARNING PFX "Error getting response from set"
2761                        " global, enables command, the event buffer is not"
2762                        " enabled.\n");
2763                 goto out;
2764         }
2765
2766         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2767                                                   resp, IPMI_MAX_MSG_LENGTH);
2768
2769         if (resp_len < 3 ||
2770                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2771                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2772                 printk(KERN_WARNING PFX "Invalid return from get global,"
2773                        "enables command, not enable the event buffer.\n");
2774                 rv = -EINVAL;
2775                 goto out;
2776         }
2777
2778         if (resp[2] != 0)
2779                 /*
2780                  * An error when setting the event buffer bit means
2781                  * that the event buffer is not supported.
2782                  */
2783                 rv = -ENOENT;
2784  out:
2785         kfree(resp);
2786         return rv;
2787 }
2788
2789 static int type_file_read_proc(char *page, char **start, off_t off,
2790                                int count, int *eof, void *data)
2791 {
2792         struct smi_info *smi = data;
2793
2794         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2795 }
2796
2797 static int stat_file_read_proc(char *page, char **start, off_t off,
2798                                int count, int *eof, void *data)
2799 {
2800         char            *out = (char *) page;
2801         struct smi_info *smi = data;
2802
2803         out += sprintf(out, "interrupts_enabled:    %d\n",
2804                        smi->irq && !smi->interrupt_disabled);
2805         out += sprintf(out, "short_timeouts:        %u\n",
2806                        smi_get_stat(smi, short_timeouts));
2807         out += sprintf(out, "long_timeouts:         %u\n",
2808                        smi_get_stat(smi, long_timeouts));
2809         out += sprintf(out, "idles:                 %u\n",
2810                        smi_get_stat(smi, idles));
2811         out += sprintf(out, "interrupts:            %u\n",
2812                        smi_get_stat(smi, interrupts));
2813         out += sprintf(out, "attentions:            %u\n",
2814                        smi_get_stat(smi, attentions));
2815         out += sprintf(out, "flag_fetches:          %u\n",
2816                        smi_get_stat(smi, flag_fetches));
2817         out += sprintf(out, "hosed_count:           %u\n",
2818                        smi_get_stat(smi, hosed_count));
2819         out += sprintf(out, "complete_transactions: %u\n",
2820                        smi_get_stat(smi, complete_transactions));
2821         out += sprintf(out, "events:                %u\n",
2822                        smi_get_stat(smi, events));
2823         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2824                        smi_get_stat(smi, watchdog_pretimeouts));
2825         out += sprintf(out, "incoming_messages:     %u\n",
2826                        smi_get_stat(smi, incoming_messages));
2827
2828         return out - page;
2829 }
2830
2831 static int param_read_proc(char *page, char **start, off_t off,
2832                            int count, int *eof, void *data)
2833 {
2834         struct smi_info *smi = data;
2835
2836         return sprintf(page,
2837                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2838                        si_to_str[smi->si_type],
2839                        addr_space_to_str[smi->io.addr_type],
2840                        smi->io.addr_data,
2841                        smi->io.regspacing,
2842                        smi->io.regsize,
2843                        smi->io.regshift,
2844                        smi->irq,
2845                        smi->slave_addr);
2846 }
2847
2848 /*
2849  * oem_data_avail_to_receive_msg_avail
2850  * @info - smi_info structure with msg_flags set
2851  *
2852  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2853  * Returns 1 indicating need to re-run handle_flags().
2854  */
2855 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2856 {
2857         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2858                                RECEIVE_MSG_AVAIL);
2859         return 1;
2860 }
2861
2862 /*
2863  * setup_dell_poweredge_oem_data_handler
2864  * @info - smi_info.device_id must be populated
2865  *
2866  * Systems that match, but have firmware version < 1.40 may assert
2867  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2868  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2869  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2870  * as RECEIVE_MSG_AVAIL instead.
2871  *
2872  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2873  * assert the OEM[012] bits, and if it did, the driver would have to
2874  * change to handle that properly, we don't actually check for the
2875  * firmware version.
2876  * Device ID = 0x20                BMC on PowerEdge 8G servers
2877  * Device Revision = 0x80
2878  * Firmware Revision1 = 0x01       BMC version 1.40
2879  * Firmware Revision2 = 0x40       BCD encoded
2880  * IPMI Version = 0x51             IPMI 1.5
2881  * Manufacturer ID = A2 02 00      Dell IANA
2882  *
2883  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2884  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2885  *
2886  */
2887 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2888 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2889 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2890 #define DELL_IANA_MFR_ID 0x0002a2
2891 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2892 {
2893         struct ipmi_device_id *id = &smi_info->device_id;
2894         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2895                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2896                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2897                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2898                         smi_info->oem_data_avail_handler =
2899                                 oem_data_avail_to_receive_msg_avail;
2900                 } else if (ipmi_version_major(id) < 1 ||
2901                            (ipmi_version_major(id) == 1 &&
2902                             ipmi_version_minor(id) < 5)) {
2903                         smi_info->oem_data_avail_handler =
2904                                 oem_data_avail_to_receive_msg_avail;
2905                 }
2906         }
2907 }
2908
2909 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2910 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2911 {
2912         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2913
2914         /* Make it a reponse */
2915         msg->rsp[0] = msg->data[0] | 4;
2916         msg->rsp[1] = msg->data[1];
2917         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2918         msg->rsp_size = 3;
2919         smi_info->curr_msg = NULL;
2920         deliver_recv_msg(smi_info, msg);
2921 }
2922
2923 /*
2924  * dell_poweredge_bt_xaction_handler
2925  * @info - smi_info.device_id must be populated
2926  *
2927  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2928  * not respond to a Get SDR command if the length of the data
2929  * requested is exactly 0x3A, which leads to command timeouts and no
2930  * data returned.  This intercepts such commands, and causes userspace
2931  * callers to try again with a different-sized buffer, which succeeds.
2932  */
2933
2934 #define STORAGE_NETFN 0x0A
2935 #define STORAGE_CMD_GET_SDR 0x23
2936 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2937                                              unsigned long unused,
2938                                              void *in)
2939 {
2940         struct smi_info *smi_info = in;
2941         unsigned char *data = smi_info->curr_msg->data;
2942         unsigned int size   = smi_info->curr_msg->data_size;
2943         if (size >= 8 &&
2944             (data[0]>>2) == STORAGE_NETFN &&
2945             data[1] == STORAGE_CMD_GET_SDR &&
2946             data[7] == 0x3A) {
2947                 return_hosed_msg_badsize(smi_info);
2948                 return NOTIFY_STOP;
2949         }
2950         return NOTIFY_DONE;
2951 }
2952
2953 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2954         .notifier_call  = dell_poweredge_bt_xaction_handler,
2955 };
2956
2957 /*
2958  * setup_dell_poweredge_bt_xaction_handler
2959  * @info - smi_info.device_id must be filled in already
2960  *
2961  * Fills in smi_info.device_id.start_transaction_pre_hook
2962  * when we know what function to use there.
2963  */
2964 static void
2965 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2966 {
2967         struct ipmi_device_id *id = &smi_info->device_id;
2968         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2969             smi_info->si_type == SI_BT)
2970                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2971 }
2972
2973 /*
2974  * setup_oem_data_handler
2975  * @info - smi_info.device_id must be filled in already
2976  *
2977  * Fills in smi_info.device_id.oem_data_available_handler
2978  * when we know what function to use there.
2979  */
2980
2981 static void setup_oem_data_handler(struct smi_info *smi_info)
2982 {
2983         setup_dell_poweredge_oem_data_handler(smi_info);
2984 }
2985
2986 static void setup_xaction_handlers(struct smi_info *smi_info)
2987 {
2988         setup_dell_poweredge_bt_xaction_handler(smi_info);
2989 }
2990
2991 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2992 {
2993         if (smi_info->intf) {
2994                 /*
2995                  * The timer and thread are only running if the
2996                  * interface has been started up and registered.
2997                  */
2998                 if (smi_info->thread != NULL)
2999                         kthread_stop(smi_info->thread);
3000                 del_timer_sync(&smi_info->si_timer);
3001         }
3002 }
3003
3004 static __devinitdata struct ipmi_default_vals
3005 {
3006         int type;
3007         int port;
3008 } ipmi_defaults[] =
3009 {
3010         { .type = SI_KCS, .port = 0xca2 },
3011         { .type = SI_SMIC, .port = 0xca9 },
3012         { .type = SI_BT, .port = 0xe4 },
3013         { .port = 0 }
3014 };
3015
3016 static __devinit void default_find_bmc(void)
3017 {
3018         struct smi_info *info;
3019         int             i;
3020
3021         for (i = 0; ; i++) {
3022                 if (!ipmi_defaults[i].port)
3023                         break;
3024 #ifdef CONFIG_PPC
3025                 if (check_legacy_ioport(ipmi_defaults[i].port))
3026                         continue;
3027 #endif
3028                 info = smi_info_alloc();
3029                 if (!info)
3030                         return;
3031
3032                 info->addr_source = SI_DEFAULT;
3033
3034                 info->si_type = ipmi_defaults[i].type;
3035                 info->io_setup = port_setup;
3036                 info->io.addr_data = ipmi_defaults[i].port;
3037                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3038
3039                 info->io.addr = NULL;
3040                 info->io.regspacing = DEFAULT_REGSPACING;
3041                 info->io.regsize = DEFAULT_REGSPACING;
3042                 info->io.regshift = 0;
3043
3044                 if (add_smi(info) == 0) {
3045                         if ((try_smi_init(info)) == 0) {
3046                                 /* Found one... */
3047                                 printk(KERN_INFO PFX "Found default %s"
3048                                 " state machine at %s address 0x%lx\n",
3049                                 si_to_str[info->si_type],
3050                                 addr_space_to_str[info->io.addr_type],
3051                                 info->io.addr_data);
3052                         } else
3053                                 cleanup_one_si(info);
3054                 } else {
3055                         kfree(info);
3056                 }
3057         }
3058 }
3059
3060 static int is_new_interface(struct smi_info *info)
3061 {
3062         struct smi_info *e;
3063
3064         list_for_each_entry(e, &smi_infos, link) {
3065                 if (e->io.addr_type != info->io.addr_type)
3066                         continue;
3067                 if (e->io.addr_data == info->io.addr_data)
3068                         return 0;
3069         }
3070
3071         return 1;
3072 }
3073
3074 static int add_smi(struct smi_info *new_smi)
3075 {
3076         int rv = 0;
3077
3078         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3079                         ipmi_addr_src_to_str[new_smi->addr_source],
3080                         si_to_str[new_smi->si_type]);
3081         mutex_lock(&smi_infos_lock);
3082         if (!is_new_interface(new_smi)) {
3083                 printk(KERN_CONT " duplicate interface\n");
3084                 rv = -EBUSY;
3085                 goto out_err;
3086         }
3087
3088         printk(KERN_CONT "\n");
3089
3090         /* So we know not to free it unless we have allocated one. */
3091         new_smi->intf = NULL;
3092         new_smi->si_sm = NULL;
3093         new_smi->handlers = NULL;
3094
3095         list_add_tail(&new_smi->link, &smi_infos);
3096
3097 out_err:
3098         mutex_unlock(&smi_infos_lock);
3099         return rv;
3100 }
3101
3102 static int try_smi_init(struct smi_info *new_smi)
3103 {
3104         int rv = 0;
3105         int i;
3106
3107         printk(KERN_INFO PFX "Trying %s-specified %s state"
3108                " machine at %s address 0x%lx, slave address 0x%x,"
3109                " irq %d\n",
3110                ipmi_addr_src_to_str[new_smi->addr_source],
3111                si_to_str[new_smi->si_type],
3112                addr_space_to_str[new_smi->io.addr_type],
3113                new_smi->io.addr_data,
3114                new_smi->slave_addr, new_smi->irq);
3115
3116         switch (new_smi->si_type) {
3117         case SI_KCS:
3118                 new_smi->handlers = &kcs_smi_handlers;
3119                 break;
3120
3121         case SI_SMIC:
3122                 new_smi->handlers = &smic_smi_handlers;
3123                 break;
3124
3125         case SI_BT:
3126                 new_smi->handlers = &bt_smi_handlers;
3127                 break;
3128
3129         default:
3130                 /* No support for anything else yet. */
3131                 rv = -EIO;
3132                 goto out_err;
3133         }
3134
3135         /* Allocate the state machine's data and initialize it. */
3136         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3137         if (!new_smi->si_sm) {
3138                 printk(KERN_ERR PFX
3139                        "Could not allocate state machine memory\n");
3140                 rv = -ENOMEM;
3141                 goto out_err;
3142         }
3143         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3144                                                         &new_smi->io);
3145
3146         /* Now that we know the I/O size, we can set up the I/O. */
3147         rv = new_smi->io_setup(new_smi);
3148         if (rv) {
3149                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3150                 goto out_err;
3151         }
3152
3153         /* Do low-level detection first. */
3154         if (new_smi->handlers->detect(new_smi->si_sm)) {
3155                 if (new_smi->addr_source)
3156                         printk(KERN_INFO PFX "Interface detection failed\n");
3157                 rv = -ENODEV;
3158                 goto out_err;
3159         }
3160
3161         /*
3162          * Attempt a get device id command.  If it fails, we probably
3163          * don't have a BMC here.
3164          */
3165         rv = try_get_dev_id(new_smi);
3166         if (rv) {
3167                 if (new_smi->addr_source)
3168                         printk(KERN_INFO PFX "There appears to be no BMC"
3169                                " at this location\n");
3170                 goto out_err;
3171         }
3172
3173         setup_oem_data_handler(new_smi);
3174         setup_xaction_handlers(new_smi);
3175
3176         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3177         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3178         new_smi->curr_msg = NULL;
3179         atomic_set(&new_smi->req_events, 0);
3180         new_smi->run_to_completion = 0;
3181         for (i = 0; i < SI_NUM_STATS; i++)
3182                 atomic_set(&new_smi->stats[i], 0);
3183
3184         new_smi->interrupt_disabled = 1;
3185         atomic_set(&new_smi->stop_operation, 0);
3186         new_smi->intf_num = smi_num;
3187         smi_num++;
3188
3189         rv = try_enable_event_buffer(new_smi);
3190         if (rv == 0)
3191                 new_smi->has_event_buffer = 1;
3192
3193         /*
3194          * Start clearing the flags before we enable interrupts or the
3195          * timer to avoid racing with the timer.
3196          */
3197         start_clear_flags(new_smi);
3198         /* IRQ is defined to be set when non-zero. */
3199         if (new_smi->irq)
3200                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3201
3202         if (!new_smi->dev) {
3203                 /*
3204                  * If we don't already have a device from something
3205                  * else (like PCI), then register a new one.
3206                  */
3207                 new_smi->pdev = platform_device_alloc("ipmi_si",
3208                                                       new_smi->intf_num);
3209                 if (!new_smi->pdev) {
3210                         printk(KERN_ERR PFX
3211                                "Unable to allocate platform device\n");
3212                         goto out_err;
3213                 }
3214                 new_smi->dev = &new_smi->pdev->dev;
3215                 new_smi->dev->driver = &ipmi_driver.driver;
3216
3217                 rv = platform_device_add(new_smi->pdev);
3218                 if (rv) {
3219                         printk(KERN_ERR PFX
3220                                "Unable to register system interface device:"
3221                                " %d\n",
3222                                rv);
3223                         goto out_err;
3224                 }
3225                 new_smi->dev_registered = 1;
3226         }
3227
3228         rv = ipmi_register_smi(&handlers,
3229                                new_smi,
3230                                &new_smi->device_id,
3231                                new_smi->dev,
3232                                "bmc",
3233                                new_smi->slave_addr);
3234         if (rv) {
3235                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3236                         rv);
3237                 goto out_err_stop_timer;
3238         }
3239
3240         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3241                                      type_file_read_proc,
3242                                      new_smi);
3243         if (rv) {
3244                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3245                 goto out_err_stop_timer;
3246         }
3247
3248         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3249                                      stat_file_read_proc,
3250                                      new_smi);
3251         if (rv) {
3252                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3253                 goto out_err_stop_timer;
3254         }
3255
3256         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3257                                      param_read_proc,
3258                                      new_smi);
3259         if (rv) {
3260                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3261                 goto out_err_stop_timer;
3262         }
3263
3264         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3265                  si_to_str[new_smi->si_type]);
3266
3267         return 0;
3268
3269  out_err_stop_timer:
3270         atomic_inc(&new_smi->stop_operation);
3271         wait_for_timer_and_thread(new_smi);
3272
3273  out_err:
3274         new_smi->interrupt_disabled = 1;
3275
3276         if (new_smi->intf) {
3277                 ipmi_unregister_smi(new_smi->intf);
3278                 new_smi->intf = NULL;
3279         }
3280
3281         if (new_smi->irq_cleanup) {
3282                 new_smi->irq_cleanup(new_smi);
3283                 new_smi->irq_cleanup = NULL;
3284         }
3285
3286         /*
3287          * Wait until we know that we are out of any interrupt
3288          * handlers might have been running before we freed the
3289          * interrupt.
3290          */
3291         synchronize_sched();
3292
3293         if (new_smi->si_sm) {
3294                 if (new_smi->handlers)
3295                         new_smi->handlers->cleanup(new_smi->si_sm);
3296                 kfree(new_smi->si_sm);
3297                 new_smi->si_sm = NULL;
3298         }
3299         if (new_smi->addr_source_cleanup) {
3300                 new_smi->addr_source_cleanup(new_smi);
3301                 new_smi->addr_source_cleanup = NULL;
3302         }
3303         if (new_smi->io_cleanup) {
3304                 new_smi->io_cleanup(new_smi);
3305                 new_smi->io_cleanup = NULL;
3306         }
3307
3308         if (new_smi->dev_registered) {
3309                 platform_device_unregister(new_smi->pdev);
3310                 new_smi->dev_registered = 0;
3311         }
3312
3313         return rv;
3314 }
3315
3316 static __devinit int init_ipmi_si(void)
3317 {
3318         int  i;
3319         char *str;
3320         int  rv;
3321         struct smi_info *e;
3322         enum ipmi_addr_src type = SI_INVALID;
3323
3324         if (initialized)
3325                 return 0;
3326         initialized = 1;
3327
3328         /* Register the device drivers. */
3329         rv = driver_register(&ipmi_driver.driver);
3330         if (rv) {
3331                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3332                 return rv;
3333         }
3334
3335
3336         /* Parse out the si_type string into its components. */
3337         str = si_type_str;
3338         if (*str != '\0') {
3339                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3340                         si_type[i] = str;
3341                         str = strchr(str, ',');
3342                         if (str) {
3343                                 *str = '\0';
3344                                 str++;
3345                         } else {
3346                                 break;
3347                         }
3348                 }
3349         }
3350
3351         printk(KERN_INFO "IPMI System Interface driver.\n");
3352
3353         hardcode_find_bmc();
3354
3355         /* If the user gave us a device, they presumably want us to use it */
3356         mutex_lock(&smi_infos_lock);
3357         if (!list_empty(&smi_infos)) {
3358                 mutex_unlock(&smi_infos_lock);
3359                 return 0;
3360         }
3361         mutex_unlock(&smi_infos_lock);
3362
3363 #ifdef CONFIG_PCI
3364         rv = pci_register_driver(&ipmi_pci_driver);
3365         if (rv)
3366                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3367         else
3368                 pci_registered = 1;
3369 #endif
3370
3371 #ifdef CONFIG_ACPI
3372         pnp_register_driver(&ipmi_pnp_driver);
3373         pnp_registered = 1;
3374 #endif
3375
3376 #ifdef CONFIG_DMI
3377         dmi_find_bmc();
3378 #endif
3379
3380 #ifdef CONFIG_ACPI
3381         spmi_find_bmc();
3382 #endif
3383
3384 #ifdef CONFIG_PPC_OF
3385         of_register_platform_driver(&ipmi_of_platform_driver);
3386         of_registered = 1;
3387 #endif
3388
3389         /* We prefer devices with interrupts, but in the case of a machine
3390            with multiple BMCs we assume that there will be several instances
3391            of a given type so if we succeed in registering a type then also
3392            try to register everything else of the same type */
3393
3394         mutex_lock(&smi_infos_lock);
3395         list_for_each_entry(e, &smi_infos, link) {
3396                 /* Try to register a device if it has an IRQ and we either
3397                    haven't successfully registered a device yet or this
3398                    device has the same type as one we successfully registered */
3399                 if (e->irq && (!type || e->addr_source == type)) {
3400                         if (!try_smi_init(e)) {
3401                                 type = e->addr_source;
3402                         }
3403                 }
3404         }
3405
3406         /* type will only have been set if we successfully registered an si */
3407         if (type) {
3408                 mutex_unlock(&smi_infos_lock);
3409                 return 0;
3410         }
3411
3412         /* Fall back to the preferred device */
3413
3414         list_for_each_entry(e, &smi_infos, link) {
3415                 if (!e->irq && (!type || e->addr_source == type)) {
3416                         if (!try_smi_init(e)) {
3417                                 type = e->addr_source;
3418                         }
3419                 }
3420         }
3421         mutex_unlock(&smi_infos_lock);
3422
3423         if (type)
3424                 return 0;
3425
3426         if (si_trydefaults) {
3427                 mutex_lock(&smi_infos_lock);
3428                 if (list_empty(&smi_infos)) {
3429                         /* No BMC was found, try defaults. */
3430                         mutex_unlock(&smi_infos_lock);
3431                         default_find_bmc();
3432                 } else
3433                         mutex_unlock(&smi_infos_lock);
3434         }
3435
3436         mutex_lock(&smi_infos_lock);
3437         if (unload_when_empty && list_empty(&smi_infos)) {
3438                 mutex_unlock(&smi_infos_lock);
3439 #ifdef CONFIG_PCI
3440                 if (pci_registered)
3441                         pci_unregister_driver(&ipmi_pci_driver);
3442 #endif
3443
3444 #ifdef CONFIG_PPC_OF
3445                 if (of_registered)
3446                         of_unregister_platform_driver(&ipmi_of_platform_driver);
3447 #endif
3448                 driver_unregister(&ipmi_driver.driver);
3449                 printk(KERN_WARNING PFX
3450                        "Unable to find any System Interface(s)\n");
3451                 return -ENODEV;
3452         } else {
3453                 mutex_unlock(&smi_infos_lock);
3454                 return 0;
3455         }
3456 }
3457 module_init(init_ipmi_si);
3458
3459 static void cleanup_one_si(struct smi_info *to_clean)
3460 {
3461         int           rv = 0;
3462         unsigned long flags;
3463
3464         if (!to_clean)
3465                 return;
3466
3467         list_del(&to_clean->link);
3468
3469         /* Tell the driver that we are shutting down. */
3470         atomic_inc(&to_clean->stop_operation);
3471
3472         /*
3473          * Make sure the timer and thread are stopped and will not run
3474          * again.
3475          */
3476         wait_for_timer_and_thread(to_clean);
3477
3478         /*
3479          * Timeouts are stopped, now make sure the interrupts are off
3480          * for the device.  A little tricky with locks to make sure
3481          * there are no races.
3482          */
3483         spin_lock_irqsave(&to_clean->si_lock, flags);
3484         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3485                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3486                 poll(to_clean);
3487                 schedule_timeout_uninterruptible(1);
3488                 spin_lock_irqsave(&to_clean->si_lock, flags);
3489         }
3490         disable_si_irq(to_clean);
3491         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3492         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3493                 poll(to_clean);
3494                 schedule_timeout_uninterruptible(1);
3495         }
3496
3497         /* Clean up interrupts and make sure that everything is done. */
3498         if (to_clean->irq_cleanup)
3499                 to_clean->irq_cleanup(to_clean);
3500         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3501                 poll(to_clean);
3502                 schedule_timeout_uninterruptible(1);
3503         }
3504
3505         if (to_clean->intf)
3506                 rv = ipmi_unregister_smi(to_clean->intf);
3507
3508         if (rv) {
3509                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3510                        rv);
3511         }
3512
3513         if (to_clean->handlers)
3514                 to_clean->handlers->cleanup(to_clean->si_sm);
3515
3516         kfree(to_clean->si_sm);
3517
3518         if (to_clean->addr_source_cleanup)
3519                 to_clean->addr_source_cleanup(to_clean);
3520         if (to_clean->io_cleanup)
3521                 to_clean->io_cleanup(to_clean);
3522
3523         if (to_clean->dev_registered)
3524                 platform_device_unregister(to_clean->pdev);
3525
3526         kfree(to_clean);
3527 }
3528
3529 static __exit void cleanup_ipmi_si(void)
3530 {
3531         struct smi_info *e, *tmp_e;
3532
3533         if (!initialized)
3534                 return;
3535
3536 #ifdef CONFIG_PCI
3537         if (pci_registered)
3538                 pci_unregister_driver(&ipmi_pci_driver);
3539 #endif
3540 #ifdef CONFIG_ACPI
3541         if (pnp_registered)
3542                 pnp_unregister_driver(&ipmi_pnp_driver);
3543 #endif
3544
3545 #ifdef CONFIG_PPC_OF
3546         if (of_registered)
3547                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3548 #endif
3549
3550         mutex_lock(&smi_infos_lock);
3551         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3552                 cleanup_one_si(e);
3553         mutex_unlock(&smi_infos_lock);
3554
3555         driver_unregister(&ipmi_driver.driver);
3556 }
3557 module_exit(cleanup_ipmi_si);
3558
3559 MODULE_LICENSE("GPL");
3560 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3561 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3562                    " system interfaces.");