]> rtime.felk.cvut.cz Git - lisovros/linux_canprio.git/blob - kernel/perf_event.c
sched: Fix string comparison in /proc/sched_features
[lisovros/linux_canprio.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return local_clock();
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->disable(event);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 /*
470  * Cross CPU call to remove a performance event
471  *
472  * We disable the event on the hardware level first. After that we
473  * remove it from the context list.
474  */
475 static void __perf_event_remove_from_context(void *info)
476 {
477         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478         struct perf_event *event = info;
479         struct perf_event_context *ctx = event->ctx;
480
481         /*
482          * If this is a task context, we need to check whether it is
483          * the current task context of this cpu. If not it has been
484          * scheduled out before the smp call arrived.
485          */
486         if (ctx->task && cpuctx->task_ctx != ctx)
487                 return;
488
489         raw_spin_lock(&ctx->lock);
490         /*
491          * Protect the list operation against NMI by disabling the
492          * events on a global level.
493          */
494         perf_disable();
495
496         event_sched_out(event, cpuctx, ctx);
497
498         list_del_event(event, ctx);
499
500         if (!ctx->task) {
501                 /*
502                  * Allow more per task events with respect to the
503                  * reservation:
504                  */
505                 cpuctx->max_pertask =
506                         min(perf_max_events - ctx->nr_events,
507                             perf_max_events - perf_reserved_percpu);
508         }
509
510         perf_enable();
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576         struct perf_event_context *ctx = event->ctx;
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631  retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->enable(event)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         if (!is_software_event(event))
679                 cpuctx->active_oncpu++;
680         ctx->nr_active++;
681
682         if (event->attr.exclusive)
683                 cpuctx->exclusive = 1;
684
685         return 0;
686 }
687
688 static int
689 group_sched_in(struct perf_event *group_event,
690                struct perf_cpu_context *cpuctx,
691                struct perf_event_context *ctx)
692 {
693         struct perf_event *event, *partial_group = NULL;
694         const struct pmu *pmu = group_event->pmu;
695         bool txn = false;
696
697         if (group_event->state == PERF_EVENT_STATE_OFF)
698                 return 0;
699
700         /* Check if group transaction availabe */
701         if (pmu->start_txn)
702                 txn = true;
703
704         if (txn)
705                 pmu->start_txn(pmu);
706
707         if (event_sched_in(group_event, cpuctx, ctx)) {
708                 if (txn)
709                         pmu->cancel_txn(pmu);
710                 return -EAGAIN;
711         }
712
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 if (event_sched_in(event, cpuctx, ctx)) {
718                         partial_group = event;
719                         goto group_error;
720                 }
721         }
722
723         if (!txn || !pmu->commit_txn(pmu))
724                 return 0;
725
726 group_error:
727         /*
728          * Groups can be scheduled in as one unit only, so undo any
729          * partial group before returning:
730          */
731         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732                 if (event == partial_group)
733                         break;
734                 event_sched_out(event, cpuctx, ctx);
735         }
736         event_sched_out(group_event, cpuctx, ctx);
737
738         if (txn)
739                 pmu->cancel_txn(pmu);
740
741         return -EAGAIN;
742 }
743
744 /*
745  * Work out whether we can put this event group on the CPU now.
746  */
747 static int group_can_go_on(struct perf_event *event,
748                            struct perf_cpu_context *cpuctx,
749                            int can_add_hw)
750 {
751         /*
752          * Groups consisting entirely of software events can always go on.
753          */
754         if (event->group_flags & PERF_GROUP_SOFTWARE)
755                 return 1;
756         /*
757          * If an exclusive group is already on, no other hardware
758          * events can go on.
759          */
760         if (cpuctx->exclusive)
761                 return 0;
762         /*
763          * If this group is exclusive and there are already
764          * events on the CPU, it can't go on.
765          */
766         if (event->attr.exclusive && cpuctx->active_oncpu)
767                 return 0;
768         /*
769          * Otherwise, try to add it if all previous groups were able
770          * to go on.
771          */
772         return can_add_hw;
773 }
774
775 static void add_event_to_ctx(struct perf_event *event,
776                                struct perf_event_context *ctx)
777 {
778         list_add_event(event, ctx);
779         perf_group_attach(event);
780         event->tstamp_enabled = ctx->time;
781         event->tstamp_running = ctx->time;
782         event->tstamp_stopped = ctx->time;
783 }
784
785 /*
786  * Cross CPU call to install and enable a performance event
787  *
788  * Must be called with ctx->mutex held
789  */
790 static void __perf_install_in_context(void *info)
791 {
792         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793         struct perf_event *event = info;
794         struct perf_event_context *ctx = event->ctx;
795         struct perf_event *leader = event->group_leader;
796         int err;
797
798         /*
799          * If this is a task context, we need to check whether it is
800          * the current task context of this cpu. If not it has been
801          * scheduled out before the smp call arrived.
802          * Or possibly this is the right context but it isn't
803          * on this cpu because it had no events.
804          */
805         if (ctx->task && cpuctx->task_ctx != ctx) {
806                 if (cpuctx->task_ctx || ctx->task != current)
807                         return;
808                 cpuctx->task_ctx = ctx;
809         }
810
811         raw_spin_lock(&ctx->lock);
812         ctx->is_active = 1;
813         update_context_time(ctx);
814
815         /*
816          * Protect the list operation against NMI by disabling the
817          * events on a global level. NOP for non NMI based events.
818          */
819         perf_disable();
820
821         add_event_to_ctx(event, ctx);
822
823         if (event->cpu != -1 && event->cpu != smp_processor_id())
824                 goto unlock;
825
826         /*
827          * Don't put the event on if it is disabled or if
828          * it is in a group and the group isn't on.
829          */
830         if (event->state != PERF_EVENT_STATE_INACTIVE ||
831             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832                 goto unlock;
833
834         /*
835          * An exclusive event can't go on if there are already active
836          * hardware events, and no hardware event can go on if there
837          * is already an exclusive event on.
838          */
839         if (!group_can_go_on(event, cpuctx, 1))
840                 err = -EEXIST;
841         else
842                 err = event_sched_in(event, cpuctx, ctx);
843
844         if (err) {
845                 /*
846                  * This event couldn't go on.  If it is in a group
847                  * then we have to pull the whole group off.
848                  * If the event group is pinned then put it in error state.
849                  */
850                 if (leader != event)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->attr.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_EVENT_STATE_ERROR;
855                 }
856         }
857
858         if (!err && !ctx->task && cpuctx->max_pertask)
859                 cpuctx->max_pertask--;
860
861  unlock:
862         perf_enable();
863
864         raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868  * Attach a performance event to a context
869  *
870  * First we add the event to the list with the hardware enable bit
871  * in event->hw_config cleared.
872  *
873  * If the event is attached to a task which is on a CPU we use a smp
874  * call to enable it in the task context. The task might have been
875  * scheduled away, but we check this in the smp call again.
876  *
877  * Must be called with ctx->mutex held.
878  */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881                         struct perf_event *event,
882                         int cpu)
883 {
884         struct task_struct *task = ctx->task;
885
886         if (!task) {
887                 /*
888                  * Per cpu events are installed via an smp call and
889                  * the install is always successful.
890                  */
891                 smp_call_function_single(cpu, __perf_install_in_context,
892                                          event, 1);
893                 return;
894         }
895
896 retry:
897         task_oncpu_function_call(task, __perf_install_in_context,
898                                  event);
899
900         raw_spin_lock_irq(&ctx->lock);
901         /*
902          * we need to retry the smp call.
903          */
904         if (ctx->is_active && list_empty(&event->group_entry)) {
905                 raw_spin_unlock_irq(&ctx->lock);
906                 goto retry;
907         }
908
909         /*
910          * The lock prevents that this context is scheduled in so we
911          * can add the event safely, if it the call above did not
912          * succeed.
913          */
914         if (list_empty(&event->group_entry))
915                 add_event_to_ctx(event, ctx);
916         raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920  * Put a event into inactive state and update time fields.
921  * Enabling the leader of a group effectively enables all
922  * the group members that aren't explicitly disabled, so we
923  * have to update their ->tstamp_enabled also.
924  * Note: this works for group members as well as group leaders
925  * since the non-leader members' sibling_lists will be empty.
926  */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928                                         struct perf_event_context *ctx)
929 {
930         struct perf_event *sub;
931
932         event->state = PERF_EVENT_STATE_INACTIVE;
933         event->tstamp_enabled = ctx->time - event->total_time_enabled;
934         list_for_each_entry(sub, &event->sibling_list, group_entry)
935                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936                         sub->tstamp_enabled =
937                                 ctx->time - sub->total_time_enabled;
938 }
939
940 /*
941  * Cross CPU call to enable a performance event
942  */
943 static void __perf_event_enable(void *info)
944 {
945         struct perf_event *event = info;
946         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947         struct perf_event_context *ctx = event->ctx;
948         struct perf_event *leader = event->group_leader;
949         int err;
950
951         /*
952          * If this is a per-task event, need to check whether this
953          * event's task is the current task on this cpu.
954          */
955         if (ctx->task && cpuctx->task_ctx != ctx) {
956                 if (cpuctx->task_ctx || ctx->task != current)
957                         return;
958                 cpuctx->task_ctx = ctx;
959         }
960
961         raw_spin_lock(&ctx->lock);
962         ctx->is_active = 1;
963         update_context_time(ctx);
964
965         if (event->state >= PERF_EVENT_STATE_INACTIVE)
966                 goto unlock;
967         __perf_event_mark_enabled(event, ctx);
968
969         if (event->cpu != -1 && event->cpu != smp_processor_id())
970                 goto unlock;
971
972         /*
973          * If the event is in a group and isn't the group leader,
974          * then don't put it on unless the group is on.
975          */
976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977                 goto unlock;
978
979         if (!group_can_go_on(event, cpuctx, 1)) {
980                 err = -EEXIST;
981         } else {
982                 perf_disable();
983                 if (event == leader)
984                         err = group_sched_in(event, cpuctx, ctx);
985                 else
986                         err = event_sched_in(event, cpuctx, ctx);
987                 perf_enable();
988         }
989
990         if (err) {
991                 /*
992                  * If this event can't go on and it's part of a
993                  * group, then the whole group has to come off.
994                  */
995                 if (leader != event)
996                         group_sched_out(leader, cpuctx, ctx);
997                 if (leader->attr.pinned) {
998                         update_group_times(leader);
999                         leader->state = PERF_EVENT_STATE_ERROR;
1000                 }
1001         }
1002
1003  unlock:
1004         raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008  * Enable a event.
1009  *
1010  * If event->ctx is a cloned context, callers must make sure that
1011  * every task struct that event->ctx->task could possibly point to
1012  * remains valid.  This condition is satisfied when called through
1013  * perf_event_for_each_child or perf_event_for_each as described
1014  * for perf_event_disable.
1015  */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018         struct perf_event_context *ctx = event->ctx;
1019         struct task_struct *task = ctx->task;
1020
1021         if (!task) {
1022                 /*
1023                  * Enable the event on the cpu that it's on
1024                  */
1025                 smp_call_function_single(event->cpu, __perf_event_enable,
1026                                          event, 1);
1027                 return;
1028         }
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032                 goto out;
1033
1034         /*
1035          * If the event is in error state, clear that first.
1036          * That way, if we see the event in error state below, we
1037          * know that it has gone back into error state, as distinct
1038          * from the task having been scheduled away before the
1039          * cross-call arrived.
1040          */
1041         if (event->state == PERF_EVENT_STATE_ERROR)
1042                 event->state = PERF_EVENT_STATE_OFF;
1043
1044  retry:
1045         raw_spin_unlock_irq(&ctx->lock);
1046         task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048         raw_spin_lock_irq(&ctx->lock);
1049
1050         /*
1051          * If the context is active and the event is still off,
1052          * we need to retry the cross-call.
1053          */
1054         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055                 goto retry;
1056
1057         /*
1058          * Since we have the lock this context can't be scheduled
1059          * in, so we can change the state safely.
1060          */
1061         if (event->state == PERF_EVENT_STATE_OFF)
1062                 __perf_event_mark_enabled(event, ctx);
1063
1064  out:
1065         raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070         /*
1071          * not supported on inherited events
1072          */
1073         if (event->attr.inherit)
1074                 return -EINVAL;
1075
1076         atomic_add(refresh, &event->event_limit);
1077         perf_event_enable(event);
1078
1079         return 0;
1080 }
1081
1082 enum event_type_t {
1083         EVENT_FLEXIBLE = 0x1,
1084         EVENT_PINNED = 0x2,
1085         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089                           struct perf_cpu_context *cpuctx,
1090                           enum event_type_t event_type)
1091 {
1092         struct perf_event *event;
1093
1094         raw_spin_lock(&ctx->lock);
1095         ctx->is_active = 0;
1096         if (likely(!ctx->nr_events))
1097                 goto out;
1098         update_context_time(ctx);
1099
1100         perf_disable();
1101         if (!ctx->nr_active)
1102                 goto out_enable;
1103
1104         if (event_type & EVENT_PINNED)
1105                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106                         group_sched_out(event, cpuctx, ctx);
1107
1108         if (event_type & EVENT_FLEXIBLE)
1109                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110                         group_sched_out(event, cpuctx, ctx);
1111
1112  out_enable:
1113         perf_enable();
1114  out:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Test whether two contexts are equivalent, i.e. whether they
1120  * have both been cloned from the same version of the same context
1121  * and they both have the same number of enabled events.
1122  * If the number of enabled events is the same, then the set
1123  * of enabled events should be the same, because these are both
1124  * inherited contexts, therefore we can't access individual events
1125  * in them directly with an fd; we can only enable/disable all
1126  * events via prctl, or enable/disable all events in a family
1127  * via ioctl, which will have the same effect on both contexts.
1128  */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130                          struct perf_event_context *ctx2)
1131 {
1132         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133                 && ctx1->parent_gen == ctx2->parent_gen
1134                 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138                                      struct perf_event *next_event)
1139 {
1140         u64 value;
1141
1142         if (!event->attr.inherit_stat)
1143                 return;
1144
1145         /*
1146          * Update the event value, we cannot use perf_event_read()
1147          * because we're in the middle of a context switch and have IRQs
1148          * disabled, which upsets smp_call_function_single(), however
1149          * we know the event must be on the current CPU, therefore we
1150          * don't need to use it.
1151          */
1152         switch (event->state) {
1153         case PERF_EVENT_STATE_ACTIVE:
1154                 event->pmu->read(event);
1155                 /* fall-through */
1156
1157         case PERF_EVENT_STATE_INACTIVE:
1158                 update_event_times(event);
1159                 break;
1160
1161         default:
1162                 break;
1163         }
1164
1165         /*
1166          * In order to keep per-task stats reliable we need to flip the event
1167          * values when we flip the contexts.
1168          */
1169         value = local64_read(&next_event->count);
1170         value = local64_xchg(&event->count, value);
1171         local64_set(&next_event->count, value);
1172
1173         swap(event->total_time_enabled, next_event->total_time_enabled);
1174         swap(event->total_time_running, next_event->total_time_running);
1175
1176         /*
1177          * Since we swizzled the values, update the user visible data too.
1178          */
1179         perf_event_update_userpage(event);
1180         perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184         list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187                                    struct perf_event_context *next_ctx)
1188 {
1189         struct perf_event *event, *next_event;
1190
1191         if (!ctx->nr_stat)
1192                 return;
1193
1194         update_context_time(ctx);
1195
1196         event = list_first_entry(&ctx->event_list,
1197                                    struct perf_event, event_entry);
1198
1199         next_event = list_first_entry(&next_ctx->event_list,
1200                                         struct perf_event, event_entry);
1201
1202         while (&event->event_entry != &ctx->event_list &&
1203                &next_event->event_entry != &next_ctx->event_list) {
1204
1205                 __perf_event_sync_stat(event, next_event);
1206
1207                 event = list_next_entry(event, event_entry);
1208                 next_event = list_next_entry(next_event, event_entry);
1209         }
1210 }
1211
1212 /*
1213  * Called from scheduler to remove the events of the current task,
1214  * with interrupts disabled.
1215  *
1216  * We stop each event and update the event value in event->count.
1217  *
1218  * This does not protect us against NMI, but disable()
1219  * sets the disabled bit in the control field of event _before_
1220  * accessing the event control register. If a NMI hits, then it will
1221  * not restart the event.
1222  */
1223 void perf_event_task_sched_out(struct task_struct *task,
1224                                  struct task_struct *next)
1225 {
1226         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227         struct perf_event_context *ctx = task->perf_event_ctxp;
1228         struct perf_event_context *next_ctx;
1229         struct perf_event_context *parent;
1230         int do_switch = 1;
1231
1232         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233
1234         if (likely(!ctx || !cpuctx->task_ctx))
1235                 return;
1236
1237         rcu_read_lock();
1238         parent = rcu_dereference(ctx->parent_ctx);
1239         next_ctx = next->perf_event_ctxp;
1240         if (parent && next_ctx &&
1241             rcu_dereference(next_ctx->parent_ctx) == parent) {
1242                 /*
1243                  * Looks like the two contexts are clones, so we might be
1244                  * able to optimize the context switch.  We lock both
1245                  * contexts and check that they are clones under the
1246                  * lock (including re-checking that neither has been
1247                  * uncloned in the meantime).  It doesn't matter which
1248                  * order we take the locks because no other cpu could
1249                  * be trying to lock both of these tasks.
1250                  */
1251                 raw_spin_lock(&ctx->lock);
1252                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253                 if (context_equiv(ctx, next_ctx)) {
1254                         /*
1255                          * XXX do we need a memory barrier of sorts
1256                          * wrt to rcu_dereference() of perf_event_ctxp
1257                          */
1258                         task->perf_event_ctxp = next_ctx;
1259                         next->perf_event_ctxp = ctx;
1260                         ctx->task = next;
1261                         next_ctx->task = task;
1262                         do_switch = 0;
1263
1264                         perf_event_sync_stat(ctx, next_ctx);
1265                 }
1266                 raw_spin_unlock(&next_ctx->lock);
1267                 raw_spin_unlock(&ctx->lock);
1268         }
1269         rcu_read_unlock();
1270
1271         if (do_switch) {
1272                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273                 cpuctx->task_ctx = NULL;
1274         }
1275 }
1276
1277 static void task_ctx_sched_out(struct perf_event_context *ctx,
1278                                enum event_type_t event_type)
1279 {
1280         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1281
1282         if (!cpuctx->task_ctx)
1283                 return;
1284
1285         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1286                 return;
1287
1288         ctx_sched_out(ctx, cpuctx, event_type);
1289         cpuctx->task_ctx = NULL;
1290 }
1291
1292 /*
1293  * Called with IRQs disabled
1294  */
1295 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296 {
1297         task_ctx_sched_out(ctx, EVENT_ALL);
1298 }
1299
1300 /*
1301  * Called with IRQs disabled
1302  */
1303 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1304                               enum event_type_t event_type)
1305 {
1306         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 }
1308
1309 static void
1310 ctx_pinned_sched_in(struct perf_event_context *ctx,
1311                     struct perf_cpu_context *cpuctx)
1312 {
1313         struct perf_event *event;
1314
1315         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1316                 if (event->state <= PERF_EVENT_STATE_OFF)
1317                         continue;
1318                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319                         continue;
1320
1321                 if (group_can_go_on(event, cpuctx, 1))
1322                         group_sched_in(event, cpuctx, ctx);
1323
1324                 /*
1325                  * If this pinned group hasn't been scheduled,
1326                  * put it in error state.
1327                  */
1328                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1329                         update_group_times(event);
1330                         event->state = PERF_EVENT_STATE_ERROR;
1331                 }
1332         }
1333 }
1334
1335 static void
1336 ctx_flexible_sched_in(struct perf_event_context *ctx,
1337                       struct perf_cpu_context *cpuctx)
1338 {
1339         struct perf_event *event;
1340         int can_add_hw = 1;
1341
1342         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1343                 /* Ignore events in OFF or ERROR state */
1344                 if (event->state <= PERF_EVENT_STATE_OFF)
1345                         continue;
1346                 /*
1347                  * Listen to the 'cpu' scheduling filter constraint
1348                  * of events:
1349                  */
1350                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1351                         continue;
1352
1353                 if (group_can_go_on(event, cpuctx, can_add_hw))
1354                         if (group_sched_in(event, cpuctx, ctx))
1355                                 can_add_hw = 0;
1356         }
1357 }
1358
1359 static void
1360 ctx_sched_in(struct perf_event_context *ctx,
1361              struct perf_cpu_context *cpuctx,
1362              enum event_type_t event_type)
1363 {
1364         raw_spin_lock(&ctx->lock);
1365         ctx->is_active = 1;
1366         if (likely(!ctx->nr_events))
1367                 goto out;
1368
1369         ctx->timestamp = perf_clock();
1370
1371         perf_disable();
1372
1373         /*
1374          * First go through the list and put on any pinned groups
1375          * in order to give them the best chance of going on.
1376          */
1377         if (event_type & EVENT_PINNED)
1378                 ctx_pinned_sched_in(ctx, cpuctx);
1379
1380         /* Then walk through the lower prio flexible groups */
1381         if (event_type & EVENT_FLEXIBLE)
1382                 ctx_flexible_sched_in(ctx, cpuctx);
1383
1384         perf_enable();
1385  out:
1386         raw_spin_unlock(&ctx->lock);
1387 }
1388
1389 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1390                              enum event_type_t event_type)
1391 {
1392         struct perf_event_context *ctx = &cpuctx->ctx;
1393
1394         ctx_sched_in(ctx, cpuctx, event_type);
1395 }
1396
1397 static void task_ctx_sched_in(struct task_struct *task,
1398                               enum event_type_t event_type)
1399 {
1400         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401         struct perf_event_context *ctx = task->perf_event_ctxp;
1402
1403         if (likely(!ctx))
1404                 return;
1405         if (cpuctx->task_ctx == ctx)
1406                 return;
1407         ctx_sched_in(ctx, cpuctx, event_type);
1408         cpuctx->task_ctx = ctx;
1409 }
1410 /*
1411  * Called from scheduler to add the events of the current task
1412  * with interrupts disabled.
1413  *
1414  * We restore the event value and then enable it.
1415  *
1416  * This does not protect us against NMI, but enable()
1417  * sets the enabled bit in the control field of event _before_
1418  * accessing the event control register. If a NMI hits, then it will
1419  * keep the event running.
1420  */
1421 void perf_event_task_sched_in(struct task_struct *task)
1422 {
1423         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1424         struct perf_event_context *ctx = task->perf_event_ctxp;
1425
1426         if (likely(!ctx))
1427                 return;
1428
1429         if (cpuctx->task_ctx == ctx)
1430                 return;
1431
1432         perf_disable();
1433
1434         /*
1435          * We want to keep the following priority order:
1436          * cpu pinned (that don't need to move), task pinned,
1437          * cpu flexible, task flexible.
1438          */
1439         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1440
1441         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1442         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1443         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1444
1445         cpuctx->task_ctx = ctx;
1446
1447         perf_enable();
1448 }
1449
1450 #define MAX_INTERRUPTS (~0ULL)
1451
1452 static void perf_log_throttle(struct perf_event *event, int enable);
1453
1454 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1455 {
1456         u64 frequency = event->attr.sample_freq;
1457         u64 sec = NSEC_PER_SEC;
1458         u64 divisor, dividend;
1459
1460         int count_fls, nsec_fls, frequency_fls, sec_fls;
1461
1462         count_fls = fls64(count);
1463         nsec_fls = fls64(nsec);
1464         frequency_fls = fls64(frequency);
1465         sec_fls = 30;
1466
1467         /*
1468          * We got @count in @nsec, with a target of sample_freq HZ
1469          * the target period becomes:
1470          *
1471          *             @count * 10^9
1472          * period = -------------------
1473          *          @nsec * sample_freq
1474          *
1475          */
1476
1477         /*
1478          * Reduce accuracy by one bit such that @a and @b converge
1479          * to a similar magnitude.
1480          */
1481 #define REDUCE_FLS(a, b)                \
1482 do {                                    \
1483         if (a##_fls > b##_fls) {        \
1484                 a >>= 1;                \
1485                 a##_fls--;              \
1486         } else {                        \
1487                 b >>= 1;                \
1488                 b##_fls--;              \
1489         }                               \
1490 } while (0)
1491
1492         /*
1493          * Reduce accuracy until either term fits in a u64, then proceed with
1494          * the other, so that finally we can do a u64/u64 division.
1495          */
1496         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1497                 REDUCE_FLS(nsec, frequency);
1498                 REDUCE_FLS(sec, count);
1499         }
1500
1501         if (count_fls + sec_fls > 64) {
1502                 divisor = nsec * frequency;
1503
1504                 while (count_fls + sec_fls > 64) {
1505                         REDUCE_FLS(count, sec);
1506                         divisor >>= 1;
1507                 }
1508
1509                 dividend = count * sec;
1510         } else {
1511                 dividend = count * sec;
1512
1513                 while (nsec_fls + frequency_fls > 64) {
1514                         REDUCE_FLS(nsec, frequency);
1515                         dividend >>= 1;
1516                 }
1517
1518                 divisor = nsec * frequency;
1519         }
1520
1521         if (!divisor)
1522                 return dividend;
1523
1524         return div64_u64(dividend, divisor);
1525 }
1526
1527 static void perf_event_stop(struct perf_event *event)
1528 {
1529         if (!event->pmu->stop)
1530                 return event->pmu->disable(event);
1531
1532         return event->pmu->stop(event);
1533 }
1534
1535 static int perf_event_start(struct perf_event *event)
1536 {
1537         if (!event->pmu->start)
1538                 return event->pmu->enable(event);
1539
1540         return event->pmu->start(event);
1541 }
1542
1543 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544 {
1545         struct hw_perf_event *hwc = &event->hw;
1546         s64 period, sample_period;
1547         s64 delta;
1548
1549         period = perf_calculate_period(event, nsec, count);
1550
1551         delta = (s64)(period - hwc->sample_period);
1552         delta = (delta + 7) / 8; /* low pass filter */
1553
1554         sample_period = hwc->sample_period + delta;
1555
1556         if (!sample_period)
1557                 sample_period = 1;
1558
1559         hwc->sample_period = sample_period;
1560
1561         if (local64_read(&hwc->period_left) > 8*sample_period) {
1562                 perf_disable();
1563                 perf_event_stop(event);
1564                 local64_set(&hwc->period_left, 0);
1565                 perf_event_start(event);
1566                 perf_enable();
1567         }
1568 }
1569
1570 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571 {
1572         struct perf_event *event;
1573         struct hw_perf_event *hwc;
1574         u64 interrupts, now;
1575         s64 delta;
1576
1577         raw_spin_lock(&ctx->lock);
1578         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1580                         continue;
1581
1582                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1583                         continue;
1584
1585                 hwc = &event->hw;
1586
1587                 interrupts = hwc->interrupts;
1588                 hwc->interrupts = 0;
1589
1590                 /*
1591                  * unthrottle events on the tick
1592                  */
1593                 if (interrupts == MAX_INTERRUPTS) {
1594                         perf_log_throttle(event, 1);
1595                         perf_disable();
1596                         event->pmu->unthrottle(event);
1597                         perf_enable();
1598                 }
1599
1600                 if (!event->attr.freq || !event->attr.sample_freq)
1601                         continue;
1602
1603                 perf_disable();
1604                 event->pmu->read(event);
1605                 now = local64_read(&event->count);
1606                 delta = now - hwc->freq_count_stamp;
1607                 hwc->freq_count_stamp = now;
1608
1609                 if (delta > 0)
1610                         perf_adjust_period(event, TICK_NSEC, delta);
1611                 perf_enable();
1612         }
1613         raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617  * Round-robin a context's events:
1618  */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621         raw_spin_lock(&ctx->lock);
1622
1623         /* Rotate the first entry last of non-pinned groups */
1624         list_rotate_left(&ctx->flexible_groups);
1625
1626         raw_spin_unlock(&ctx->lock);
1627 }
1628
1629 void perf_event_task_tick(struct task_struct *curr)
1630 {
1631         struct perf_cpu_context *cpuctx;
1632         struct perf_event_context *ctx;
1633         int rotate = 0;
1634
1635         if (!atomic_read(&nr_events))
1636                 return;
1637
1638         cpuctx = &__get_cpu_var(perf_cpu_context);
1639         if (cpuctx->ctx.nr_events &&
1640             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641                 rotate = 1;
1642
1643         ctx = curr->perf_event_ctxp;
1644         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645                 rotate = 1;
1646
1647         perf_ctx_adjust_freq(&cpuctx->ctx);
1648         if (ctx)
1649                 perf_ctx_adjust_freq(ctx);
1650
1651         if (!rotate)
1652                 return;
1653
1654         perf_disable();
1655         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656         if (ctx)
1657                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1658
1659         rotate_ctx(&cpuctx->ctx);
1660         if (ctx)
1661                 rotate_ctx(ctx);
1662
1663         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666         perf_enable();
1667 }
1668
1669 static int event_enable_on_exec(struct perf_event *event,
1670                                 struct perf_event_context *ctx)
1671 {
1672         if (!event->attr.enable_on_exec)
1673                 return 0;
1674
1675         event->attr.enable_on_exec = 0;
1676         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677                 return 0;
1678
1679         __perf_event_mark_enabled(event, ctx);
1680
1681         return 1;
1682 }
1683
1684 /*
1685  * Enable all of a task's events that have been marked enable-on-exec.
1686  * This expects task == current.
1687  */
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1689 {
1690         struct perf_event_context *ctx;
1691         struct perf_event *event;
1692         unsigned long flags;
1693         int enabled = 0;
1694         int ret;
1695
1696         local_irq_save(flags);
1697         ctx = task->perf_event_ctxp;
1698         if (!ctx || !ctx->nr_events)
1699                 goto out;
1700
1701         __perf_event_task_sched_out(ctx);
1702
1703         raw_spin_lock(&ctx->lock);
1704
1705         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706                 ret = event_enable_on_exec(event, ctx);
1707                 if (ret)
1708                         enabled = 1;
1709         }
1710
1711         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712                 ret = event_enable_on_exec(event, ctx);
1713                 if (ret)
1714                         enabled = 1;
1715         }
1716
1717         /*
1718          * Unclone this context if we enabled any event.
1719          */
1720         if (enabled)
1721                 unclone_ctx(ctx);
1722
1723         raw_spin_unlock(&ctx->lock);
1724
1725         perf_event_task_sched_in(task);
1726  out:
1727         local_irq_restore(flags);
1728 }
1729
1730 /*
1731  * Cross CPU call to read the hardware event
1732  */
1733 static void __perf_event_read(void *info)
1734 {
1735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736         struct perf_event *event = info;
1737         struct perf_event_context *ctx = event->ctx;
1738
1739         /*
1740          * If this is a task context, we need to check whether it is
1741          * the current task context of this cpu.  If not it has been
1742          * scheduled out before the smp call arrived.  In that case
1743          * event->count would have been updated to a recent sample
1744          * when the event was scheduled out.
1745          */
1746         if (ctx->task && cpuctx->task_ctx != ctx)
1747                 return;
1748
1749         raw_spin_lock(&ctx->lock);
1750         update_context_time(ctx);
1751         update_event_times(event);
1752         raw_spin_unlock(&ctx->lock);
1753
1754         event->pmu->read(event);
1755 }
1756
1757 static inline u64 perf_event_count(struct perf_event *event)
1758 {
1759         return local64_read(&event->count) + atomic64_read(&event->child_count);
1760 }
1761
1762 static u64 perf_event_read(struct perf_event *event)
1763 {
1764         /*
1765          * If event is enabled and currently active on a CPU, update the
1766          * value in the event structure:
1767          */
1768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769                 smp_call_function_single(event->oncpu,
1770                                          __perf_event_read, event, 1);
1771         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772                 struct perf_event_context *ctx = event->ctx;
1773                 unsigned long flags;
1774
1775                 raw_spin_lock_irqsave(&ctx->lock, flags);
1776                 /*
1777                  * may read while context is not active
1778                  * (e.g., thread is blocked), in that case
1779                  * we cannot update context time
1780                  */
1781                 if (ctx->is_active)
1782                         update_context_time(ctx);
1783                 update_event_times(event);
1784                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1785         }
1786
1787         return perf_event_count(event);
1788 }
1789
1790 /*
1791  * Initialize the perf_event context in a task_struct:
1792  */
1793 static void
1794 __perf_event_init_context(struct perf_event_context *ctx,
1795                             struct task_struct *task)
1796 {
1797         raw_spin_lock_init(&ctx->lock);
1798         mutex_init(&ctx->mutex);
1799         INIT_LIST_HEAD(&ctx->pinned_groups);
1800         INIT_LIST_HEAD(&ctx->flexible_groups);
1801         INIT_LIST_HEAD(&ctx->event_list);
1802         atomic_set(&ctx->refcount, 1);
1803         ctx->task = task;
1804 }
1805
1806 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1807 {
1808         struct perf_event_context *ctx;
1809         struct perf_cpu_context *cpuctx;
1810         struct task_struct *task;
1811         unsigned long flags;
1812         int err;
1813
1814         if (pid == -1 && cpu != -1) {
1815                 /* Must be root to operate on a CPU event: */
1816                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1817                         return ERR_PTR(-EACCES);
1818
1819                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1820                         return ERR_PTR(-EINVAL);
1821
1822                 /*
1823                  * We could be clever and allow to attach a event to an
1824                  * offline CPU and activate it when the CPU comes up, but
1825                  * that's for later.
1826                  */
1827                 if (!cpu_online(cpu))
1828                         return ERR_PTR(-ENODEV);
1829
1830                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1831                 ctx = &cpuctx->ctx;
1832                 get_ctx(ctx);
1833
1834                 return ctx;
1835         }
1836
1837         rcu_read_lock();
1838         if (!pid)
1839                 task = current;
1840         else
1841                 task = find_task_by_vpid(pid);
1842         if (task)
1843                 get_task_struct(task);
1844         rcu_read_unlock();
1845
1846         if (!task)
1847                 return ERR_PTR(-ESRCH);
1848
1849         /*
1850          * Can't attach events to a dying task.
1851          */
1852         err = -ESRCH;
1853         if (task->flags & PF_EXITING)
1854                 goto errout;
1855
1856         /* Reuse ptrace permission checks for now. */
1857         err = -EACCES;
1858         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1859                 goto errout;
1860
1861  retry:
1862         ctx = perf_lock_task_context(task, &flags);
1863         if (ctx) {
1864                 unclone_ctx(ctx);
1865                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1866         }
1867
1868         if (!ctx) {
1869                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1870                 err = -ENOMEM;
1871                 if (!ctx)
1872                         goto errout;
1873                 __perf_event_init_context(ctx, task);
1874                 get_ctx(ctx);
1875                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1876                         /*
1877                          * We raced with some other task; use
1878                          * the context they set.
1879                          */
1880                         kfree(ctx);
1881                         goto retry;
1882                 }
1883                 get_task_struct(task);
1884         }
1885
1886         put_task_struct(task);
1887         return ctx;
1888
1889  errout:
1890         put_task_struct(task);
1891         return ERR_PTR(err);
1892 }
1893
1894 static void perf_event_free_filter(struct perf_event *event);
1895
1896 static void free_event_rcu(struct rcu_head *head)
1897 {
1898         struct perf_event *event;
1899
1900         event = container_of(head, struct perf_event, rcu_head);
1901         if (event->ns)
1902                 put_pid_ns(event->ns);
1903         perf_event_free_filter(event);
1904         kfree(event);
1905 }
1906
1907 static void perf_pending_sync(struct perf_event *event);
1908 static void perf_buffer_put(struct perf_buffer *buffer);
1909
1910 static void free_event(struct perf_event *event)
1911 {
1912         perf_pending_sync(event);
1913
1914         if (!event->parent) {
1915                 atomic_dec(&nr_events);
1916                 if (event->attr.mmap || event->attr.mmap_data)
1917                         atomic_dec(&nr_mmap_events);
1918                 if (event->attr.comm)
1919                         atomic_dec(&nr_comm_events);
1920                 if (event->attr.task)
1921                         atomic_dec(&nr_task_events);
1922         }
1923
1924         if (event->buffer) {
1925                 perf_buffer_put(event->buffer);
1926                 event->buffer = NULL;
1927         }
1928
1929         if (event->destroy)
1930                 event->destroy(event);
1931
1932         put_ctx(event->ctx);
1933         call_rcu(&event->rcu_head, free_event_rcu);
1934 }
1935
1936 int perf_event_release_kernel(struct perf_event *event)
1937 {
1938         struct perf_event_context *ctx = event->ctx;
1939
1940         /*
1941          * Remove from the PMU, can't get re-enabled since we got
1942          * here because the last ref went.
1943          */
1944         perf_event_disable(event);
1945
1946         WARN_ON_ONCE(ctx->parent_ctx);
1947         /*
1948          * There are two ways this annotation is useful:
1949          *
1950          *  1) there is a lock recursion from perf_event_exit_task
1951          *     see the comment there.
1952          *
1953          *  2) there is a lock-inversion with mmap_sem through
1954          *     perf_event_read_group(), which takes faults while
1955          *     holding ctx->mutex, however this is called after
1956          *     the last filedesc died, so there is no possibility
1957          *     to trigger the AB-BA case.
1958          */
1959         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1960         raw_spin_lock_irq(&ctx->lock);
1961         perf_group_detach(event);
1962         list_del_event(event, ctx);
1963         raw_spin_unlock_irq(&ctx->lock);
1964         mutex_unlock(&ctx->mutex);
1965
1966         mutex_lock(&event->owner->perf_event_mutex);
1967         list_del_init(&event->owner_entry);
1968         mutex_unlock(&event->owner->perf_event_mutex);
1969         put_task_struct(event->owner);
1970
1971         free_event(event);
1972
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1976
1977 /*
1978  * Called when the last reference to the file is gone.
1979  */
1980 static int perf_release(struct inode *inode, struct file *file)
1981 {
1982         struct perf_event *event = file->private_data;
1983
1984         file->private_data = NULL;
1985
1986         return perf_event_release_kernel(event);
1987 }
1988
1989 static int perf_event_read_size(struct perf_event *event)
1990 {
1991         int entry = sizeof(u64); /* value */
1992         int size = 0;
1993         int nr = 1;
1994
1995         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1996                 size += sizeof(u64);
1997
1998         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1999                 size += sizeof(u64);
2000
2001         if (event->attr.read_format & PERF_FORMAT_ID)
2002                 entry += sizeof(u64);
2003
2004         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2005                 nr += event->group_leader->nr_siblings;
2006                 size += sizeof(u64);
2007         }
2008
2009         size += entry * nr;
2010
2011         return size;
2012 }
2013
2014 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2015 {
2016         struct perf_event *child;
2017         u64 total = 0;
2018
2019         *enabled = 0;
2020         *running = 0;
2021
2022         mutex_lock(&event->child_mutex);
2023         total += perf_event_read(event);
2024         *enabled += event->total_time_enabled +
2025                         atomic64_read(&event->child_total_time_enabled);
2026         *running += event->total_time_running +
2027                         atomic64_read(&event->child_total_time_running);
2028
2029         list_for_each_entry(child, &event->child_list, child_list) {
2030                 total += perf_event_read(child);
2031                 *enabled += child->total_time_enabled;
2032                 *running += child->total_time_running;
2033         }
2034         mutex_unlock(&event->child_mutex);
2035
2036         return total;
2037 }
2038 EXPORT_SYMBOL_GPL(perf_event_read_value);
2039
2040 static int perf_event_read_group(struct perf_event *event,
2041                                    u64 read_format, char __user *buf)
2042 {
2043         struct perf_event *leader = event->group_leader, *sub;
2044         int n = 0, size = 0, ret = -EFAULT;
2045         struct perf_event_context *ctx = leader->ctx;
2046         u64 values[5];
2047         u64 count, enabled, running;
2048
2049         mutex_lock(&ctx->mutex);
2050         count = perf_event_read_value(leader, &enabled, &running);
2051
2052         values[n++] = 1 + leader->nr_siblings;
2053         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2054                 values[n++] = enabled;
2055         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2056                 values[n++] = running;
2057         values[n++] = count;
2058         if (read_format & PERF_FORMAT_ID)
2059                 values[n++] = primary_event_id(leader);
2060
2061         size = n * sizeof(u64);
2062
2063         if (copy_to_user(buf, values, size))
2064                 goto unlock;
2065
2066         ret = size;
2067
2068         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2069                 n = 0;
2070
2071                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2072                 if (read_format & PERF_FORMAT_ID)
2073                         values[n++] = primary_event_id(sub);
2074
2075                 size = n * sizeof(u64);
2076
2077                 if (copy_to_user(buf + ret, values, size)) {
2078                         ret = -EFAULT;
2079                         goto unlock;
2080                 }
2081
2082                 ret += size;
2083         }
2084 unlock:
2085         mutex_unlock(&ctx->mutex);
2086
2087         return ret;
2088 }
2089
2090 static int perf_event_read_one(struct perf_event *event,
2091                                  u64 read_format, char __user *buf)
2092 {
2093         u64 enabled, running;
2094         u64 values[4];
2095         int n = 0;
2096
2097         values[n++] = perf_event_read_value(event, &enabled, &running);
2098         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2099                 values[n++] = enabled;
2100         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2101                 values[n++] = running;
2102         if (read_format & PERF_FORMAT_ID)
2103                 values[n++] = primary_event_id(event);
2104
2105         if (copy_to_user(buf, values, n * sizeof(u64)))
2106                 return -EFAULT;
2107
2108         return n * sizeof(u64);
2109 }
2110
2111 /*
2112  * Read the performance event - simple non blocking version for now
2113  */
2114 static ssize_t
2115 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2116 {
2117         u64 read_format = event->attr.read_format;
2118         int ret;
2119
2120         /*
2121          * Return end-of-file for a read on a event that is in
2122          * error state (i.e. because it was pinned but it couldn't be
2123          * scheduled on to the CPU at some point).
2124          */
2125         if (event->state == PERF_EVENT_STATE_ERROR)
2126                 return 0;
2127
2128         if (count < perf_event_read_size(event))
2129                 return -ENOSPC;
2130
2131         WARN_ON_ONCE(event->ctx->parent_ctx);
2132         if (read_format & PERF_FORMAT_GROUP)
2133                 ret = perf_event_read_group(event, read_format, buf);
2134         else
2135                 ret = perf_event_read_one(event, read_format, buf);
2136
2137         return ret;
2138 }
2139
2140 static ssize_t
2141 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2142 {
2143         struct perf_event *event = file->private_data;
2144
2145         return perf_read_hw(event, buf, count);
2146 }
2147
2148 static unsigned int perf_poll(struct file *file, poll_table *wait)
2149 {
2150         struct perf_event *event = file->private_data;
2151         struct perf_buffer *buffer;
2152         unsigned int events = POLL_HUP;
2153
2154         rcu_read_lock();
2155         buffer = rcu_dereference(event->buffer);
2156         if (buffer)
2157                 events = atomic_xchg(&buffer->poll, 0);
2158         rcu_read_unlock();
2159
2160         poll_wait(file, &event->waitq, wait);
2161
2162         return events;
2163 }
2164
2165 static void perf_event_reset(struct perf_event *event)
2166 {
2167         (void)perf_event_read(event);
2168         local64_set(&event->count, 0);
2169         perf_event_update_userpage(event);
2170 }
2171
2172 /*
2173  * Holding the top-level event's child_mutex means that any
2174  * descendant process that has inherited this event will block
2175  * in sync_child_event if it goes to exit, thus satisfying the
2176  * task existence requirements of perf_event_enable/disable.
2177  */
2178 static void perf_event_for_each_child(struct perf_event *event,
2179                                         void (*func)(struct perf_event *))
2180 {
2181         struct perf_event *child;
2182
2183         WARN_ON_ONCE(event->ctx->parent_ctx);
2184         mutex_lock(&event->child_mutex);
2185         func(event);
2186         list_for_each_entry(child, &event->child_list, child_list)
2187                 func(child);
2188         mutex_unlock(&event->child_mutex);
2189 }
2190
2191 static void perf_event_for_each(struct perf_event *event,
2192                                   void (*func)(struct perf_event *))
2193 {
2194         struct perf_event_context *ctx = event->ctx;
2195         struct perf_event *sibling;
2196
2197         WARN_ON_ONCE(ctx->parent_ctx);
2198         mutex_lock(&ctx->mutex);
2199         event = event->group_leader;
2200
2201         perf_event_for_each_child(event, func);
2202         func(event);
2203         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2204                 perf_event_for_each_child(event, func);
2205         mutex_unlock(&ctx->mutex);
2206 }
2207
2208 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2209 {
2210         struct perf_event_context *ctx = event->ctx;
2211         int ret = 0;
2212         u64 value;
2213
2214         if (!event->attr.sample_period)
2215                 return -EINVAL;
2216
2217         if (copy_from_user(&value, arg, sizeof(value)))
2218                 return -EFAULT;
2219
2220         if (!value)
2221                 return -EINVAL;
2222
2223         raw_spin_lock_irq(&ctx->lock);
2224         if (event->attr.freq) {
2225                 if (value > sysctl_perf_event_sample_rate) {
2226                         ret = -EINVAL;
2227                         goto unlock;
2228                 }
2229
2230                 event->attr.sample_freq = value;
2231         } else {
2232                 event->attr.sample_period = value;
2233                 event->hw.sample_period = value;
2234         }
2235 unlock:
2236         raw_spin_unlock_irq(&ctx->lock);
2237
2238         return ret;
2239 }
2240
2241 static const struct file_operations perf_fops;
2242
2243 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2244 {
2245         struct file *file;
2246
2247         file = fget_light(fd, fput_needed);
2248         if (!file)
2249                 return ERR_PTR(-EBADF);
2250
2251         if (file->f_op != &perf_fops) {
2252                 fput_light(file, *fput_needed);
2253                 *fput_needed = 0;
2254                 return ERR_PTR(-EBADF);
2255         }
2256
2257         return file->private_data;
2258 }
2259
2260 static int perf_event_set_output(struct perf_event *event,
2261                                  struct perf_event *output_event);
2262 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2263
2264 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2265 {
2266         struct perf_event *event = file->private_data;
2267         void (*func)(struct perf_event *);
2268         u32 flags = arg;
2269
2270         switch (cmd) {
2271         case PERF_EVENT_IOC_ENABLE:
2272                 func = perf_event_enable;
2273                 break;
2274         case PERF_EVENT_IOC_DISABLE:
2275                 func = perf_event_disable;
2276                 break;
2277         case PERF_EVENT_IOC_RESET:
2278                 func = perf_event_reset;
2279                 break;
2280
2281         case PERF_EVENT_IOC_REFRESH:
2282                 return perf_event_refresh(event, arg);
2283
2284         case PERF_EVENT_IOC_PERIOD:
2285                 return perf_event_period(event, (u64 __user *)arg);
2286
2287         case PERF_EVENT_IOC_SET_OUTPUT:
2288         {
2289                 struct perf_event *output_event = NULL;
2290                 int fput_needed = 0;
2291                 int ret;
2292
2293                 if (arg != -1) {
2294                         output_event = perf_fget_light(arg, &fput_needed);
2295                         if (IS_ERR(output_event))
2296                                 return PTR_ERR(output_event);
2297                 }
2298
2299                 ret = perf_event_set_output(event, output_event);
2300                 if (output_event)
2301                         fput_light(output_event->filp, fput_needed);
2302
2303                 return ret;
2304         }
2305
2306         case PERF_EVENT_IOC_SET_FILTER:
2307                 return perf_event_set_filter(event, (void __user *)arg);
2308
2309         default:
2310                 return -ENOTTY;
2311         }
2312
2313         if (flags & PERF_IOC_FLAG_GROUP)
2314                 perf_event_for_each(event, func);
2315         else
2316                 perf_event_for_each_child(event, func);
2317
2318         return 0;
2319 }
2320
2321 int perf_event_task_enable(void)
2322 {
2323         struct perf_event *event;
2324
2325         mutex_lock(&current->perf_event_mutex);
2326         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2327                 perf_event_for_each_child(event, perf_event_enable);
2328         mutex_unlock(&current->perf_event_mutex);
2329
2330         return 0;
2331 }
2332
2333 int perf_event_task_disable(void)
2334 {
2335         struct perf_event *event;
2336
2337         mutex_lock(&current->perf_event_mutex);
2338         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2339                 perf_event_for_each_child(event, perf_event_disable);
2340         mutex_unlock(&current->perf_event_mutex);
2341
2342         return 0;
2343 }
2344
2345 #ifndef PERF_EVENT_INDEX_OFFSET
2346 # define PERF_EVENT_INDEX_OFFSET 0
2347 #endif
2348
2349 static int perf_event_index(struct perf_event *event)
2350 {
2351         if (event->state != PERF_EVENT_STATE_ACTIVE)
2352                 return 0;
2353
2354         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2355 }
2356
2357 /*
2358  * Callers need to ensure there can be no nesting of this function, otherwise
2359  * the seqlock logic goes bad. We can not serialize this because the arch
2360  * code calls this from NMI context.
2361  */
2362 void perf_event_update_userpage(struct perf_event *event)
2363 {
2364         struct perf_event_mmap_page *userpg;
2365         struct perf_buffer *buffer;
2366
2367         rcu_read_lock();
2368         buffer = rcu_dereference(event->buffer);
2369         if (!buffer)
2370                 goto unlock;
2371
2372         userpg = buffer->user_page;
2373
2374         /*
2375          * Disable preemption so as to not let the corresponding user-space
2376          * spin too long if we get preempted.
2377          */
2378         preempt_disable();
2379         ++userpg->lock;
2380         barrier();
2381         userpg->index = perf_event_index(event);
2382         userpg->offset = perf_event_count(event);
2383         if (event->state == PERF_EVENT_STATE_ACTIVE)
2384                 userpg->offset -= local64_read(&event->hw.prev_count);
2385
2386         userpg->time_enabled = event->total_time_enabled +
2387                         atomic64_read(&event->child_total_time_enabled);
2388
2389         userpg->time_running = event->total_time_running +
2390                         atomic64_read(&event->child_total_time_running);
2391
2392         barrier();
2393         ++userpg->lock;
2394         preempt_enable();
2395 unlock:
2396         rcu_read_unlock();
2397 }
2398
2399 static unsigned long perf_data_size(struct perf_buffer *buffer);
2400
2401 static void
2402 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2403 {
2404         long max_size = perf_data_size(buffer);
2405
2406         if (watermark)
2407                 buffer->watermark = min(max_size, watermark);
2408
2409         if (!buffer->watermark)
2410                 buffer->watermark = max_size / 2;
2411
2412         if (flags & PERF_BUFFER_WRITABLE)
2413                 buffer->writable = 1;
2414
2415         atomic_set(&buffer->refcount, 1);
2416 }
2417
2418 #ifndef CONFIG_PERF_USE_VMALLOC
2419
2420 /*
2421  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2422  */
2423
2424 static struct page *
2425 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2426 {
2427         if (pgoff > buffer->nr_pages)
2428                 return NULL;
2429
2430         if (pgoff == 0)
2431                 return virt_to_page(buffer->user_page);
2432
2433         return virt_to_page(buffer->data_pages[pgoff - 1]);
2434 }
2435
2436 static void *perf_mmap_alloc_page(int cpu)
2437 {
2438         struct page *page;
2439         int node;
2440
2441         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2442         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2443         if (!page)
2444                 return NULL;
2445
2446         return page_address(page);
2447 }
2448
2449 static struct perf_buffer *
2450 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2451 {
2452         struct perf_buffer *buffer;
2453         unsigned long size;
2454         int i;
2455
2456         size = sizeof(struct perf_buffer);
2457         size += nr_pages * sizeof(void *);
2458
2459         buffer = kzalloc(size, GFP_KERNEL);
2460         if (!buffer)
2461                 goto fail;
2462
2463         buffer->user_page = perf_mmap_alloc_page(cpu);
2464         if (!buffer->user_page)
2465                 goto fail_user_page;
2466
2467         for (i = 0; i < nr_pages; i++) {
2468                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2469                 if (!buffer->data_pages[i])
2470                         goto fail_data_pages;
2471         }
2472
2473         buffer->nr_pages = nr_pages;
2474
2475         perf_buffer_init(buffer, watermark, flags);
2476
2477         return buffer;
2478
2479 fail_data_pages:
2480         for (i--; i >= 0; i--)
2481                 free_page((unsigned long)buffer->data_pages[i]);
2482
2483         free_page((unsigned long)buffer->user_page);
2484
2485 fail_user_page:
2486         kfree(buffer);
2487
2488 fail:
2489         return NULL;
2490 }
2491
2492 static void perf_mmap_free_page(unsigned long addr)
2493 {
2494         struct page *page = virt_to_page((void *)addr);
2495
2496         page->mapping = NULL;
2497         __free_page(page);
2498 }
2499
2500 static void perf_buffer_free(struct perf_buffer *buffer)
2501 {
2502         int i;
2503
2504         perf_mmap_free_page((unsigned long)buffer->user_page);
2505         for (i = 0; i < buffer->nr_pages; i++)
2506                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2507         kfree(buffer);
2508 }
2509
2510 static inline int page_order(struct perf_buffer *buffer)
2511 {
2512         return 0;
2513 }
2514
2515 #else
2516
2517 /*
2518  * Back perf_mmap() with vmalloc memory.
2519  *
2520  * Required for architectures that have d-cache aliasing issues.
2521  */
2522
2523 static inline int page_order(struct perf_buffer *buffer)
2524 {
2525         return buffer->page_order;
2526 }
2527
2528 static struct page *
2529 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2530 {
2531         if (pgoff > (1UL << page_order(buffer)))
2532                 return NULL;
2533
2534         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2535 }
2536
2537 static void perf_mmap_unmark_page(void *addr)
2538 {
2539         struct page *page = vmalloc_to_page(addr);
2540
2541         page->mapping = NULL;
2542 }
2543
2544 static void perf_buffer_free_work(struct work_struct *work)
2545 {
2546         struct perf_buffer *buffer;
2547         void *base;
2548         int i, nr;
2549
2550         buffer = container_of(work, struct perf_buffer, work);
2551         nr = 1 << page_order(buffer);
2552
2553         base = buffer->user_page;
2554         for (i = 0; i < nr + 1; i++)
2555                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2556
2557         vfree(base);
2558         kfree(buffer);
2559 }
2560
2561 static void perf_buffer_free(struct perf_buffer *buffer)
2562 {
2563         schedule_work(&buffer->work);
2564 }
2565
2566 static struct perf_buffer *
2567 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2568 {
2569         struct perf_buffer *buffer;
2570         unsigned long size;
2571         void *all_buf;
2572
2573         size = sizeof(struct perf_buffer);
2574         size += sizeof(void *);
2575
2576         buffer = kzalloc(size, GFP_KERNEL);
2577         if (!buffer)
2578                 goto fail;
2579
2580         INIT_WORK(&buffer->work, perf_buffer_free_work);
2581
2582         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2583         if (!all_buf)
2584                 goto fail_all_buf;
2585
2586         buffer->user_page = all_buf;
2587         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2588         buffer->page_order = ilog2(nr_pages);
2589         buffer->nr_pages = 1;
2590
2591         perf_buffer_init(buffer, watermark, flags);
2592
2593         return buffer;
2594
2595 fail_all_buf:
2596         kfree(buffer);
2597
2598 fail:
2599         return NULL;
2600 }
2601
2602 #endif
2603
2604 static unsigned long perf_data_size(struct perf_buffer *buffer)
2605 {
2606         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2607 }
2608
2609 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2610 {
2611         struct perf_event *event = vma->vm_file->private_data;
2612         struct perf_buffer *buffer;
2613         int ret = VM_FAULT_SIGBUS;
2614
2615         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2616                 if (vmf->pgoff == 0)
2617                         ret = 0;
2618                 return ret;
2619         }
2620
2621         rcu_read_lock();
2622         buffer = rcu_dereference(event->buffer);
2623         if (!buffer)
2624                 goto unlock;
2625
2626         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2627                 goto unlock;
2628
2629         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2630         if (!vmf->page)
2631                 goto unlock;
2632
2633         get_page(vmf->page);
2634         vmf->page->mapping = vma->vm_file->f_mapping;
2635         vmf->page->index   = vmf->pgoff;
2636
2637         ret = 0;
2638 unlock:
2639         rcu_read_unlock();
2640
2641         return ret;
2642 }
2643
2644 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2645 {
2646         struct perf_buffer *buffer;
2647
2648         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2649         perf_buffer_free(buffer);
2650 }
2651
2652 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2653 {
2654         struct perf_buffer *buffer;
2655
2656         rcu_read_lock();
2657         buffer = rcu_dereference(event->buffer);
2658         if (buffer) {
2659                 if (!atomic_inc_not_zero(&buffer->refcount))
2660                         buffer = NULL;
2661         }
2662         rcu_read_unlock();
2663
2664         return buffer;
2665 }
2666
2667 static void perf_buffer_put(struct perf_buffer *buffer)
2668 {
2669         if (!atomic_dec_and_test(&buffer->refcount))
2670                 return;
2671
2672         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2673 }
2674
2675 static void perf_mmap_open(struct vm_area_struct *vma)
2676 {
2677         struct perf_event *event = vma->vm_file->private_data;
2678
2679         atomic_inc(&event->mmap_count);
2680 }
2681
2682 static void perf_mmap_close(struct vm_area_struct *vma)
2683 {
2684         struct perf_event *event = vma->vm_file->private_data;
2685
2686         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2687                 unsigned long size = perf_data_size(event->buffer);
2688                 struct user_struct *user = event->mmap_user;
2689                 struct perf_buffer *buffer = event->buffer;
2690
2691                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2692                 vma->vm_mm->locked_vm -= event->mmap_locked;
2693                 rcu_assign_pointer(event->buffer, NULL);
2694                 mutex_unlock(&event->mmap_mutex);
2695
2696                 perf_buffer_put(buffer);
2697                 free_uid(user);
2698         }
2699 }
2700
2701 static const struct vm_operations_struct perf_mmap_vmops = {
2702         .open           = perf_mmap_open,
2703         .close          = perf_mmap_close,
2704         .fault          = perf_mmap_fault,
2705         .page_mkwrite   = perf_mmap_fault,
2706 };
2707
2708 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2709 {
2710         struct perf_event *event = file->private_data;
2711         unsigned long user_locked, user_lock_limit;
2712         struct user_struct *user = current_user();
2713         unsigned long locked, lock_limit;
2714         struct perf_buffer *buffer;
2715         unsigned long vma_size;
2716         unsigned long nr_pages;
2717         long user_extra, extra;
2718         int ret = 0, flags = 0;
2719
2720         /*
2721          * Don't allow mmap() of inherited per-task counters. This would
2722          * create a performance issue due to all children writing to the
2723          * same buffer.
2724          */
2725         if (event->cpu == -1 && event->attr.inherit)
2726                 return -EINVAL;
2727
2728         if (!(vma->vm_flags & VM_SHARED))
2729                 return -EINVAL;
2730
2731         vma_size = vma->vm_end - vma->vm_start;
2732         nr_pages = (vma_size / PAGE_SIZE) - 1;
2733
2734         /*
2735          * If we have buffer pages ensure they're a power-of-two number, so we
2736          * can do bitmasks instead of modulo.
2737          */
2738         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2739                 return -EINVAL;
2740
2741         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2742                 return -EINVAL;
2743
2744         if (vma->vm_pgoff != 0)
2745                 return -EINVAL;
2746
2747         WARN_ON_ONCE(event->ctx->parent_ctx);
2748         mutex_lock(&event->mmap_mutex);
2749         if (event->buffer) {
2750                 if (event->buffer->nr_pages == nr_pages)
2751                         atomic_inc(&event->buffer->refcount);
2752                 else
2753                         ret = -EINVAL;
2754                 goto unlock;
2755         }
2756
2757         user_extra = nr_pages + 1;
2758         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2759
2760         /*
2761          * Increase the limit linearly with more CPUs:
2762          */
2763         user_lock_limit *= num_online_cpus();
2764
2765         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2766
2767         extra = 0;
2768         if (user_locked > user_lock_limit)
2769                 extra = user_locked - user_lock_limit;
2770
2771         lock_limit = rlimit(RLIMIT_MEMLOCK);
2772         lock_limit >>= PAGE_SHIFT;
2773         locked = vma->vm_mm->locked_vm + extra;
2774
2775         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2776                 !capable(CAP_IPC_LOCK)) {
2777                 ret = -EPERM;
2778                 goto unlock;
2779         }
2780
2781         WARN_ON(event->buffer);
2782
2783         if (vma->vm_flags & VM_WRITE)
2784                 flags |= PERF_BUFFER_WRITABLE;
2785
2786         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2787                                    event->cpu, flags);
2788         if (!buffer) {
2789                 ret = -ENOMEM;
2790                 goto unlock;
2791         }
2792         rcu_assign_pointer(event->buffer, buffer);
2793
2794         atomic_long_add(user_extra, &user->locked_vm);
2795         event->mmap_locked = extra;
2796         event->mmap_user = get_current_user();
2797         vma->vm_mm->locked_vm += event->mmap_locked;
2798
2799 unlock:
2800         if (!ret)
2801                 atomic_inc(&event->mmap_count);
2802         mutex_unlock(&event->mmap_mutex);
2803
2804         vma->vm_flags |= VM_RESERVED;
2805         vma->vm_ops = &perf_mmap_vmops;
2806
2807         return ret;
2808 }
2809
2810 static int perf_fasync(int fd, struct file *filp, int on)
2811 {
2812         struct inode *inode = filp->f_path.dentry->d_inode;
2813         struct perf_event *event = filp->private_data;
2814         int retval;
2815
2816         mutex_lock(&inode->i_mutex);
2817         retval = fasync_helper(fd, filp, on, &event->fasync);
2818         mutex_unlock(&inode->i_mutex);
2819
2820         if (retval < 0)
2821                 return retval;
2822
2823         return 0;
2824 }
2825
2826 static const struct file_operations perf_fops = {
2827         .llseek                 = no_llseek,
2828         .release                = perf_release,
2829         .read                   = perf_read,
2830         .poll                   = perf_poll,
2831         .unlocked_ioctl         = perf_ioctl,
2832         .compat_ioctl           = perf_ioctl,
2833         .mmap                   = perf_mmap,
2834         .fasync                 = perf_fasync,
2835 };
2836
2837 /*
2838  * Perf event wakeup
2839  *
2840  * If there's data, ensure we set the poll() state and publish everything
2841  * to user-space before waking everybody up.
2842  */
2843
2844 void perf_event_wakeup(struct perf_event *event)
2845 {
2846         wake_up_all(&event->waitq);
2847
2848         if (event->pending_kill) {
2849                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2850                 event->pending_kill = 0;
2851         }
2852 }
2853
2854 /*
2855  * Pending wakeups
2856  *
2857  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2858  *
2859  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2860  * single linked list and use cmpxchg() to add entries lockless.
2861  */
2862
2863 static void perf_pending_event(struct perf_pending_entry *entry)
2864 {
2865         struct perf_event *event = container_of(entry,
2866                         struct perf_event, pending);
2867
2868         if (event->pending_disable) {
2869                 event->pending_disable = 0;
2870                 __perf_event_disable(event);
2871         }
2872
2873         if (event->pending_wakeup) {
2874                 event->pending_wakeup = 0;
2875                 perf_event_wakeup(event);
2876         }
2877 }
2878
2879 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2880
2881 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2882         PENDING_TAIL,
2883 };
2884
2885 static void perf_pending_queue(struct perf_pending_entry *entry,
2886                                void (*func)(struct perf_pending_entry *))
2887 {
2888         struct perf_pending_entry **head;
2889
2890         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2891                 return;
2892
2893         entry->func = func;
2894
2895         head = &get_cpu_var(perf_pending_head);
2896
2897         do {
2898                 entry->next = *head;
2899         } while (cmpxchg(head, entry->next, entry) != entry->next);
2900
2901         set_perf_event_pending();
2902
2903         put_cpu_var(perf_pending_head);
2904 }
2905
2906 static int __perf_pending_run(void)
2907 {
2908         struct perf_pending_entry *list;
2909         int nr = 0;
2910
2911         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2912         while (list != PENDING_TAIL) {
2913                 void (*func)(struct perf_pending_entry *);
2914                 struct perf_pending_entry *entry = list;
2915
2916                 list = list->next;
2917
2918                 func = entry->func;
2919                 entry->next = NULL;
2920                 /*
2921                  * Ensure we observe the unqueue before we issue the wakeup,
2922                  * so that we won't be waiting forever.
2923                  * -- see perf_not_pending().
2924                  */
2925                 smp_wmb();
2926
2927                 func(entry);
2928                 nr++;
2929         }
2930
2931         return nr;
2932 }
2933
2934 static inline int perf_not_pending(struct perf_event *event)
2935 {
2936         /*
2937          * If we flush on whatever cpu we run, there is a chance we don't
2938          * need to wait.
2939          */
2940         get_cpu();
2941         __perf_pending_run();
2942         put_cpu();
2943
2944         /*
2945          * Ensure we see the proper queue state before going to sleep
2946          * so that we do not miss the wakeup. -- see perf_pending_handle()
2947          */
2948         smp_rmb();
2949         return event->pending.next == NULL;
2950 }
2951
2952 static void perf_pending_sync(struct perf_event *event)
2953 {
2954         wait_event(event->waitq, perf_not_pending(event));
2955 }
2956
2957 void perf_event_do_pending(void)
2958 {
2959         __perf_pending_run();
2960 }
2961
2962 /*
2963  * Callchain support -- arch specific
2964  */
2965
2966 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2967 {
2968         return NULL;
2969 }
2970
2971
2972 /*
2973  * We assume there is only KVM supporting the callbacks.
2974  * Later on, we might change it to a list if there is
2975  * another virtualization implementation supporting the callbacks.
2976  */
2977 struct perf_guest_info_callbacks *perf_guest_cbs;
2978
2979 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2980 {
2981         perf_guest_cbs = cbs;
2982         return 0;
2983 }
2984 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2985
2986 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2987 {
2988         perf_guest_cbs = NULL;
2989         return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2992
2993 /*
2994  * Output
2995  */
2996 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2997                               unsigned long offset, unsigned long head)
2998 {
2999         unsigned long mask;
3000
3001         if (!buffer->writable)
3002                 return true;
3003
3004         mask = perf_data_size(buffer) - 1;
3005
3006         offset = (offset - tail) & mask;
3007         head   = (head   - tail) & mask;
3008
3009         if ((int)(head - offset) < 0)
3010                 return false;
3011
3012         return true;
3013 }
3014
3015 static void perf_output_wakeup(struct perf_output_handle *handle)
3016 {
3017         atomic_set(&handle->buffer->poll, POLL_IN);
3018
3019         if (handle->nmi) {
3020                 handle->event->pending_wakeup = 1;
3021                 perf_pending_queue(&handle->event->pending,
3022                                    perf_pending_event);
3023         } else
3024                 perf_event_wakeup(handle->event);
3025 }
3026
3027 /*
3028  * We need to ensure a later event_id doesn't publish a head when a former
3029  * event isn't done writing. However since we need to deal with NMIs we
3030  * cannot fully serialize things.
3031  *
3032  * We only publish the head (and generate a wakeup) when the outer-most
3033  * event completes.
3034  */
3035 static void perf_output_get_handle(struct perf_output_handle *handle)
3036 {
3037         struct perf_buffer *buffer = handle->buffer;
3038
3039         preempt_disable();
3040         local_inc(&buffer->nest);
3041         handle->wakeup = local_read(&buffer->wakeup);
3042 }
3043
3044 static void perf_output_put_handle(struct perf_output_handle *handle)
3045 {
3046         struct perf_buffer *buffer = handle->buffer;
3047         unsigned long head;
3048
3049 again:
3050         head = local_read(&buffer->head);
3051
3052         /*
3053          * IRQ/NMI can happen here, which means we can miss a head update.
3054          */
3055
3056         if (!local_dec_and_test(&buffer->nest))
3057                 goto out;
3058
3059         /*
3060          * Publish the known good head. Rely on the full barrier implied
3061          * by atomic_dec_and_test() order the buffer->head read and this
3062          * write.
3063          */
3064         buffer->user_page->data_head = head;
3065
3066         /*
3067          * Now check if we missed an update, rely on the (compiler)
3068          * barrier in atomic_dec_and_test() to re-read buffer->head.
3069          */
3070         if (unlikely(head != local_read(&buffer->head))) {
3071                 local_inc(&buffer->nest);
3072                 goto again;
3073         }
3074
3075         if (handle->wakeup != local_read(&buffer->wakeup))
3076                 perf_output_wakeup(handle);
3077
3078  out:
3079         preempt_enable();
3080 }
3081
3082 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3083                       const void *buf, unsigned int len)
3084 {
3085         do {
3086                 unsigned long size = min_t(unsigned long, handle->size, len);
3087
3088                 memcpy(handle->addr, buf, size);
3089
3090                 len -= size;
3091                 handle->addr += size;
3092                 buf += size;
3093                 handle->size -= size;
3094                 if (!handle->size) {
3095                         struct perf_buffer *buffer = handle->buffer;
3096
3097                         handle->page++;
3098                         handle->page &= buffer->nr_pages - 1;
3099                         handle->addr = buffer->data_pages[handle->page];
3100                         handle->size = PAGE_SIZE << page_order(buffer);
3101                 }
3102         } while (len);
3103 }
3104
3105 int perf_output_begin(struct perf_output_handle *handle,
3106                       struct perf_event *event, unsigned int size,
3107                       int nmi, int sample)
3108 {
3109         struct perf_buffer *buffer;
3110         unsigned long tail, offset, head;
3111         int have_lost;
3112         struct {
3113                 struct perf_event_header header;
3114                 u64                      id;
3115                 u64                      lost;
3116         } lost_event;
3117
3118         rcu_read_lock();
3119         /*
3120          * For inherited events we send all the output towards the parent.
3121          */
3122         if (event->parent)
3123                 event = event->parent;
3124
3125         buffer = rcu_dereference(event->buffer);
3126         if (!buffer)
3127                 goto out;
3128
3129         handle->buffer  = buffer;
3130         handle->event   = event;
3131         handle->nmi     = nmi;
3132         handle->sample  = sample;
3133
3134         if (!buffer->nr_pages)
3135                 goto out;
3136
3137         have_lost = local_read(&buffer->lost);
3138         if (have_lost)
3139                 size += sizeof(lost_event);
3140
3141         perf_output_get_handle(handle);
3142
3143         do {
3144                 /*
3145                  * Userspace could choose to issue a mb() before updating the
3146                  * tail pointer. So that all reads will be completed before the
3147                  * write is issued.
3148                  */
3149                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3150                 smp_rmb();
3151                 offset = head = local_read(&buffer->head);
3152                 head += size;
3153                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3154                         goto fail;
3155         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3156
3157         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3158                 local_add(buffer->watermark, &buffer->wakeup);
3159
3160         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3161         handle->page &= buffer->nr_pages - 1;
3162         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3163         handle->addr = buffer->data_pages[handle->page];
3164         handle->addr += handle->size;
3165         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3166
3167         if (have_lost) {
3168                 lost_event.header.type = PERF_RECORD_LOST;
3169                 lost_event.header.misc = 0;
3170                 lost_event.header.size = sizeof(lost_event);
3171                 lost_event.id          = event->id;
3172                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3173
3174                 perf_output_put(handle, lost_event);
3175         }
3176
3177         return 0;
3178
3179 fail:
3180         local_inc(&buffer->lost);
3181         perf_output_put_handle(handle);
3182 out:
3183         rcu_read_unlock();
3184
3185         return -ENOSPC;
3186 }
3187
3188 void perf_output_end(struct perf_output_handle *handle)
3189 {
3190         struct perf_event *event = handle->event;
3191         struct perf_buffer *buffer = handle->buffer;
3192
3193         int wakeup_events = event->attr.wakeup_events;
3194
3195         if (handle->sample && wakeup_events) {
3196                 int events = local_inc_return(&buffer->events);
3197                 if (events >= wakeup_events) {
3198                         local_sub(wakeup_events, &buffer->events);
3199                         local_inc(&buffer->wakeup);
3200                 }
3201         }
3202
3203         perf_output_put_handle(handle);
3204         rcu_read_unlock();
3205 }
3206
3207 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3208 {
3209         /*
3210          * only top level events have the pid namespace they were created in
3211          */
3212         if (event->parent)
3213                 event = event->parent;
3214
3215         return task_tgid_nr_ns(p, event->ns);
3216 }
3217
3218 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3219 {
3220         /*
3221          * only top level events have the pid namespace they were created in
3222          */
3223         if (event->parent)
3224                 event = event->parent;
3225
3226         return task_pid_nr_ns(p, event->ns);
3227 }
3228
3229 static void perf_output_read_one(struct perf_output_handle *handle,
3230                                  struct perf_event *event)
3231 {
3232         u64 read_format = event->attr.read_format;
3233         u64 values[4];
3234         int n = 0;
3235
3236         values[n++] = perf_event_count(event);
3237         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3238                 values[n++] = event->total_time_enabled +
3239                         atomic64_read(&event->child_total_time_enabled);
3240         }
3241         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3242                 values[n++] = event->total_time_running +
3243                         atomic64_read(&event->child_total_time_running);
3244         }
3245         if (read_format & PERF_FORMAT_ID)
3246                 values[n++] = primary_event_id(event);
3247
3248         perf_output_copy(handle, values, n * sizeof(u64));
3249 }
3250
3251 /*
3252  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3253  */
3254 static void perf_output_read_group(struct perf_output_handle *handle,
3255                             struct perf_event *event)
3256 {
3257         struct perf_event *leader = event->group_leader, *sub;
3258         u64 read_format = event->attr.read_format;
3259         u64 values[5];
3260         int n = 0;
3261
3262         values[n++] = 1 + leader->nr_siblings;
3263
3264         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3265                 values[n++] = leader->total_time_enabled;
3266
3267         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3268                 values[n++] = leader->total_time_running;
3269
3270         if (leader != event)
3271                 leader->pmu->read(leader);
3272
3273         values[n++] = perf_event_count(leader);
3274         if (read_format & PERF_FORMAT_ID)
3275                 values[n++] = primary_event_id(leader);
3276
3277         perf_output_copy(handle, values, n * sizeof(u64));
3278
3279         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3280                 n = 0;
3281
3282                 if (sub != event)
3283                         sub->pmu->read(sub);
3284
3285                 values[n++] = perf_event_count(sub);
3286                 if (read_format & PERF_FORMAT_ID)
3287                         values[n++] = primary_event_id(sub);
3288
3289                 perf_output_copy(handle, values, n * sizeof(u64));
3290         }
3291 }
3292
3293 static void perf_output_read(struct perf_output_handle *handle,
3294                              struct perf_event *event)
3295 {
3296         if (event->attr.read_format & PERF_FORMAT_GROUP)
3297                 perf_output_read_group(handle, event);
3298         else
3299                 perf_output_read_one(handle, event);
3300 }
3301
3302 void perf_output_sample(struct perf_output_handle *handle,
3303                         struct perf_event_header *header,
3304                         struct perf_sample_data *data,
3305                         struct perf_event *event)
3306 {
3307         u64 sample_type = data->type;
3308
3309         perf_output_put(handle, *header);
3310
3311         if (sample_type & PERF_SAMPLE_IP)
3312                 perf_output_put(handle, data->ip);
3313
3314         if (sample_type & PERF_SAMPLE_TID)
3315                 perf_output_put(handle, data->tid_entry);
3316
3317         if (sample_type & PERF_SAMPLE_TIME)
3318                 perf_output_put(handle, data->time);
3319
3320         if (sample_type & PERF_SAMPLE_ADDR)
3321                 perf_output_put(handle, data->addr);
3322
3323         if (sample_type & PERF_SAMPLE_ID)
3324                 perf_output_put(handle, data->id);
3325
3326         if (sample_type & PERF_SAMPLE_STREAM_ID)
3327                 perf_output_put(handle, data->stream_id);
3328
3329         if (sample_type & PERF_SAMPLE_CPU)
3330                 perf_output_put(handle, data->cpu_entry);
3331
3332         if (sample_type & PERF_SAMPLE_PERIOD)
3333                 perf_output_put(handle, data->period);
3334
3335         if (sample_type & PERF_SAMPLE_READ)
3336                 perf_output_read(handle, event);
3337
3338         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3339                 if (data->callchain) {
3340                         int size = 1;
3341
3342                         if (data->callchain)
3343                                 size += data->callchain->nr;
3344
3345                         size *= sizeof(u64);
3346
3347                         perf_output_copy(handle, data->callchain, size);
3348                 } else {
3349                         u64 nr = 0;
3350                         perf_output_put(handle, nr);
3351                 }
3352         }
3353
3354         if (sample_type & PERF_SAMPLE_RAW) {
3355                 if (data->raw) {
3356                         perf_output_put(handle, data->raw->size);
3357                         perf_output_copy(handle, data->raw->data,
3358                                          data->raw->size);
3359                 } else {
3360                         struct {
3361                                 u32     size;
3362                                 u32     data;
3363                         } raw = {
3364                                 .size = sizeof(u32),
3365                                 .data = 0,
3366                         };
3367                         perf_output_put(handle, raw);
3368                 }
3369         }
3370 }
3371
3372 void perf_prepare_sample(struct perf_event_header *header,
3373                          struct perf_sample_data *data,
3374                          struct perf_event *event,
3375                          struct pt_regs *regs)
3376 {
3377         u64 sample_type = event->attr.sample_type;
3378
3379         data->type = sample_type;
3380
3381         header->type = PERF_RECORD_SAMPLE;
3382         header->size = sizeof(*header);
3383
3384         header->misc = 0;
3385         header->misc |= perf_misc_flags(regs);
3386
3387         if (sample_type & PERF_SAMPLE_IP) {
3388                 data->ip = perf_instruction_pointer(regs);
3389
3390                 header->size += sizeof(data->ip);
3391         }
3392
3393         if (sample_type & PERF_SAMPLE_TID) {
3394                 /* namespace issues */
3395                 data->tid_entry.pid = perf_event_pid(event, current);
3396                 data->tid_entry.tid = perf_event_tid(event, current);
3397
3398                 header->size += sizeof(data->tid_entry);
3399         }
3400
3401         if (sample_type & PERF_SAMPLE_TIME) {
3402                 data->time = perf_clock();
3403
3404                 header->size += sizeof(data->time);
3405         }
3406
3407         if (sample_type & PERF_SAMPLE_ADDR)
3408                 header->size += sizeof(data->addr);
3409
3410         if (sample_type & PERF_SAMPLE_ID) {
3411                 data->id = primary_event_id(event);
3412
3413                 header->size += sizeof(data->id);
3414         }
3415
3416         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3417                 data->stream_id = event->id;
3418
3419                 header->size += sizeof(data->stream_id);
3420         }
3421
3422         if (sample_type & PERF_SAMPLE_CPU) {
3423                 data->cpu_entry.cpu             = raw_smp_processor_id();
3424                 data->cpu_entry.reserved        = 0;
3425
3426                 header->size += sizeof(data->cpu_entry);
3427         }
3428
3429         if (sample_type & PERF_SAMPLE_PERIOD)
3430                 header->size += sizeof(data->period);
3431
3432         if (sample_type & PERF_SAMPLE_READ)
3433                 header->size += perf_event_read_size(event);
3434
3435         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3436                 int size = 1;
3437
3438                 data->callchain = perf_callchain(regs);
3439
3440                 if (data->callchain)
3441                         size += data->callchain->nr;
3442
3443                 header->size += size * sizeof(u64);
3444         }
3445
3446         if (sample_type & PERF_SAMPLE_RAW) {
3447                 int size = sizeof(u32);
3448
3449                 if (data->raw)
3450                         size += data->raw->size;
3451                 else
3452                         size += sizeof(u32);
3453
3454                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3455                 header->size += size;
3456         }
3457 }
3458
3459 static void perf_event_output(struct perf_event *event, int nmi,
3460                                 struct perf_sample_data *data,
3461                                 struct pt_regs *regs)
3462 {
3463         struct perf_output_handle handle;
3464         struct perf_event_header header;
3465
3466         perf_prepare_sample(&header, data, event, regs);
3467
3468         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3469                 return;
3470
3471         perf_output_sample(&handle, &header, data, event);
3472
3473         perf_output_end(&handle);
3474 }
3475
3476 /*
3477  * read event_id
3478  */
3479
3480 struct perf_read_event {
3481         struct perf_event_header        header;
3482
3483         u32                             pid;
3484         u32                             tid;
3485 };
3486
3487 static void
3488 perf_event_read_event(struct perf_event *event,
3489                         struct task_struct *task)
3490 {
3491         struct perf_output_handle handle;
3492         struct perf_read_event read_event = {
3493                 .header = {
3494                         .type = PERF_RECORD_READ,
3495                         .misc = 0,
3496                         .size = sizeof(read_event) + perf_event_read_size(event),
3497                 },
3498                 .pid = perf_event_pid(event, task),
3499                 .tid = perf_event_tid(event, task),
3500         };
3501         int ret;
3502
3503         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3504         if (ret)
3505                 return;
3506
3507         perf_output_put(&handle, read_event);
3508         perf_output_read(&handle, event);
3509
3510         perf_output_end(&handle);
3511 }
3512
3513 /*
3514  * task tracking -- fork/exit
3515  *
3516  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3517  */
3518
3519 struct perf_task_event {
3520         struct task_struct              *task;
3521         struct perf_event_context       *task_ctx;
3522
3523         struct {
3524                 struct perf_event_header        header;
3525
3526                 u32                             pid;
3527                 u32                             ppid;
3528                 u32                             tid;
3529                 u32                             ptid;
3530                 u64                             time;
3531         } event_id;
3532 };
3533
3534 static void perf_event_task_output(struct perf_event *event,
3535                                      struct perf_task_event *task_event)
3536 {
3537         struct perf_output_handle handle;
3538         struct task_struct *task = task_event->task;
3539         int size, ret;
3540
3541         size  = task_event->event_id.header.size;
3542         ret = perf_output_begin(&handle, event, size, 0, 0);
3543
3544         if (ret)
3545                 return;
3546
3547         task_event->event_id.pid = perf_event_pid(event, task);
3548         task_event->event_id.ppid = perf_event_pid(event, current);
3549
3550         task_event->event_id.tid = perf_event_tid(event, task);
3551         task_event->event_id.ptid = perf_event_tid(event, current);
3552
3553         perf_output_put(&handle, task_event->event_id);
3554
3555         perf_output_end(&handle);
3556 }
3557
3558 static int perf_event_task_match(struct perf_event *event)
3559 {
3560         if (event->state < PERF_EVENT_STATE_INACTIVE)
3561                 return 0;
3562
3563         if (event->cpu != -1 && event->cpu != smp_processor_id())
3564                 return 0;
3565
3566         if (event->attr.comm || event->attr.mmap ||
3567             event->attr.mmap_data || event->attr.task)
3568                 return 1;
3569
3570         return 0;
3571 }
3572
3573 static void perf_event_task_ctx(struct perf_event_context *ctx,
3574                                   struct perf_task_event *task_event)
3575 {
3576         struct perf_event *event;
3577
3578         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3579                 if (perf_event_task_match(event))
3580                         perf_event_task_output(event, task_event);
3581         }
3582 }
3583
3584 static void perf_event_task_event(struct perf_task_event *task_event)
3585 {
3586         struct perf_cpu_context *cpuctx;
3587         struct perf_event_context *ctx = task_event->task_ctx;
3588
3589         rcu_read_lock();
3590         cpuctx = &get_cpu_var(perf_cpu_context);
3591         perf_event_task_ctx(&cpuctx->ctx, task_event);
3592         if (!ctx)
3593                 ctx = rcu_dereference(current->perf_event_ctxp);
3594         if (ctx)
3595                 perf_event_task_ctx(ctx, task_event);
3596         put_cpu_var(perf_cpu_context);
3597         rcu_read_unlock();
3598 }
3599
3600 static void perf_event_task(struct task_struct *task,
3601                               struct perf_event_context *task_ctx,
3602                               int new)
3603 {
3604         struct perf_task_event task_event;
3605
3606         if (!atomic_read(&nr_comm_events) &&
3607             !atomic_read(&nr_mmap_events) &&
3608             !atomic_read(&nr_task_events))
3609                 return;
3610
3611         task_event = (struct perf_task_event){
3612                 .task     = task,
3613                 .task_ctx = task_ctx,
3614                 .event_id    = {
3615                         .header = {
3616                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3617                                 .misc = 0,
3618                                 .size = sizeof(task_event.event_id),
3619                         },
3620                         /* .pid  */
3621                         /* .ppid */
3622                         /* .tid  */
3623                         /* .ptid */
3624                         .time = perf_clock(),
3625                 },
3626         };
3627
3628         perf_event_task_event(&task_event);
3629 }
3630
3631 void perf_event_fork(struct task_struct *task)
3632 {
3633         perf_event_task(task, NULL, 1);
3634 }
3635
3636 /*
3637  * comm tracking
3638  */
3639
3640 struct perf_comm_event {
3641         struct task_struct      *task;
3642         char                    *comm;
3643         int                     comm_size;
3644
3645         struct {
3646                 struct perf_event_header        header;
3647
3648                 u32                             pid;
3649                 u32                             tid;
3650         } event_id;
3651 };
3652
3653 static void perf_event_comm_output(struct perf_event *event,
3654                                      struct perf_comm_event *comm_event)
3655 {
3656         struct perf_output_handle handle;
3657         int size = comm_event->event_id.header.size;
3658         int ret = perf_output_begin(&handle, event, size, 0, 0);
3659
3660         if (ret)
3661                 return;
3662
3663         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3664         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3665
3666         perf_output_put(&handle, comm_event->event_id);
3667         perf_output_copy(&handle, comm_event->comm,
3668                                    comm_event->comm_size);
3669         perf_output_end(&handle);
3670 }
3671
3672 static int perf_event_comm_match(struct perf_event *event)
3673 {
3674         if (event->state < PERF_EVENT_STATE_INACTIVE)
3675                 return 0;
3676
3677         if (event->cpu != -1 && event->cpu != smp_processor_id())
3678                 return 0;
3679
3680         if (event->attr.comm)
3681                 return 1;
3682
3683         return 0;
3684 }
3685
3686 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3687                                   struct perf_comm_event *comm_event)
3688 {
3689         struct perf_event *event;
3690
3691         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3692                 if (perf_event_comm_match(event))
3693                         perf_event_comm_output(event, comm_event);
3694         }
3695 }
3696
3697 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3698 {
3699         struct perf_cpu_context *cpuctx;
3700         struct perf_event_context *ctx;
3701         unsigned int size;
3702         char comm[TASK_COMM_LEN];
3703
3704         memset(comm, 0, sizeof(comm));
3705         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3706         size = ALIGN(strlen(comm)+1, sizeof(u64));
3707
3708         comm_event->comm = comm;
3709         comm_event->comm_size = size;
3710
3711         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3712
3713         rcu_read_lock();
3714         cpuctx = &get_cpu_var(perf_cpu_context);
3715         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3716         ctx = rcu_dereference(current->perf_event_ctxp);
3717         if (ctx)
3718                 perf_event_comm_ctx(ctx, comm_event);
3719         put_cpu_var(perf_cpu_context);
3720         rcu_read_unlock();
3721 }
3722
3723 void perf_event_comm(struct task_struct *task)
3724 {
3725         struct perf_comm_event comm_event;
3726
3727         if (task->perf_event_ctxp)
3728                 perf_event_enable_on_exec(task);
3729
3730         if (!atomic_read(&nr_comm_events))
3731                 return;
3732
3733         comm_event = (struct perf_comm_event){
3734                 .task   = task,
3735                 /* .comm      */
3736                 /* .comm_size */
3737                 .event_id  = {
3738                         .header = {
3739                                 .type = PERF_RECORD_COMM,
3740                                 .misc = 0,
3741                                 /* .size */
3742                         },
3743                         /* .pid */
3744                         /* .tid */
3745                 },
3746         };
3747
3748         perf_event_comm_event(&comm_event);
3749 }
3750
3751 /*
3752  * mmap tracking
3753  */
3754
3755 struct perf_mmap_event {
3756         struct vm_area_struct   *vma;
3757
3758         const char              *file_name;
3759         int                     file_size;
3760
3761         struct {
3762                 struct perf_event_header        header;
3763
3764                 u32                             pid;
3765                 u32                             tid;
3766                 u64                             start;
3767                 u64                             len;
3768                 u64                             pgoff;
3769         } event_id;
3770 };
3771
3772 static void perf_event_mmap_output(struct perf_event *event,
3773                                      struct perf_mmap_event *mmap_event)
3774 {
3775         struct perf_output_handle handle;
3776         int size = mmap_event->event_id.header.size;
3777         int ret = perf_output_begin(&handle, event, size, 0, 0);
3778
3779         if (ret)
3780                 return;
3781
3782         mmap_event->event_id.pid = perf_event_pid(event, current);
3783         mmap_event->event_id.tid = perf_event_tid(event, current);
3784
3785         perf_output_put(&handle, mmap_event->event_id);
3786         perf_output_copy(&handle, mmap_event->file_name,
3787                                    mmap_event->file_size);
3788         perf_output_end(&handle);
3789 }
3790
3791 static int perf_event_mmap_match(struct perf_event *event,
3792                                    struct perf_mmap_event *mmap_event,
3793                                    int executable)
3794 {
3795         if (event->state < PERF_EVENT_STATE_INACTIVE)
3796                 return 0;
3797
3798         if (event->cpu != -1 && event->cpu != smp_processor_id())
3799                 return 0;
3800
3801         if ((!executable && event->attr.mmap_data) ||
3802             (executable && event->attr.mmap))
3803                 return 1;
3804
3805         return 0;
3806 }
3807
3808 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3809                                   struct perf_mmap_event *mmap_event,
3810                                   int executable)
3811 {
3812         struct perf_event *event;
3813
3814         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3815                 if (perf_event_mmap_match(event, mmap_event, executable))
3816                         perf_event_mmap_output(event, mmap_event);
3817         }
3818 }
3819
3820 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3821 {
3822         struct perf_cpu_context *cpuctx;
3823         struct perf_event_context *ctx;
3824         struct vm_area_struct *vma = mmap_event->vma;
3825         struct file *file = vma->vm_file;
3826         unsigned int size;
3827         char tmp[16];
3828         char *buf = NULL;
3829         const char *name;
3830
3831         memset(tmp, 0, sizeof(tmp));
3832
3833         if (file) {
3834                 /*
3835                  * d_path works from the end of the buffer backwards, so we
3836                  * need to add enough zero bytes after the string to handle
3837                  * the 64bit alignment we do later.
3838                  */
3839                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3840                 if (!buf) {
3841                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3842                         goto got_name;
3843                 }
3844                 name = d_path(&file->f_path, buf, PATH_MAX);
3845                 if (IS_ERR(name)) {
3846                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3847                         goto got_name;
3848                 }
3849         } else {
3850                 if (arch_vma_name(mmap_event->vma)) {
3851                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3852                                        sizeof(tmp));
3853                         goto got_name;
3854                 }
3855
3856                 if (!vma->vm_mm) {
3857                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3858                         goto got_name;
3859                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3860                                 vma->vm_end >= vma->vm_mm->brk) {
3861                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3862                         goto got_name;
3863                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3864                                 vma->vm_end >= vma->vm_mm->start_stack) {
3865                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3866                         goto got_name;
3867                 }
3868
3869                 name = strncpy(tmp, "//anon", sizeof(tmp));
3870                 goto got_name;
3871         }
3872
3873 got_name:
3874         size = ALIGN(strlen(name)+1, sizeof(u64));
3875
3876         mmap_event->file_name = name;
3877         mmap_event->file_size = size;
3878
3879         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3880
3881         rcu_read_lock();
3882         cpuctx = &get_cpu_var(perf_cpu_context);
3883         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3884         ctx = rcu_dereference(current->perf_event_ctxp);
3885         if (ctx)
3886                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3887         put_cpu_var(perf_cpu_context);
3888         rcu_read_unlock();
3889
3890         kfree(buf);
3891 }
3892
3893 void perf_event_mmap(struct vm_area_struct *vma)
3894 {
3895         struct perf_mmap_event mmap_event;
3896
3897         if (!atomic_read(&nr_mmap_events))
3898                 return;
3899
3900         mmap_event = (struct perf_mmap_event){
3901                 .vma    = vma,
3902                 /* .file_name */
3903                 /* .file_size */
3904                 .event_id  = {
3905                         .header = {
3906                                 .type = PERF_RECORD_MMAP,
3907                                 .misc = PERF_RECORD_MISC_USER,
3908                                 /* .size */
3909                         },
3910                         /* .pid */
3911                         /* .tid */
3912                         .start  = vma->vm_start,
3913                         .len    = vma->vm_end - vma->vm_start,
3914                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3915                 },
3916         };
3917
3918         perf_event_mmap_event(&mmap_event);
3919 }
3920
3921 /*
3922  * IRQ throttle logging
3923  */
3924
3925 static void perf_log_throttle(struct perf_event *event, int enable)
3926 {
3927         struct perf_output_handle handle;
3928         int ret;
3929
3930         struct {
3931                 struct perf_event_header        header;
3932                 u64                             time;
3933                 u64                             id;
3934                 u64                             stream_id;
3935         } throttle_event = {
3936                 .header = {
3937                         .type = PERF_RECORD_THROTTLE,
3938                         .misc = 0,
3939                         .size = sizeof(throttle_event),
3940                 },
3941                 .time           = perf_clock(),
3942                 .id             = primary_event_id(event),
3943                 .stream_id      = event->id,
3944         };
3945
3946         if (enable)
3947                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3948
3949         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3950         if (ret)
3951                 return;
3952
3953         perf_output_put(&handle, throttle_event);
3954         perf_output_end(&handle);
3955 }
3956
3957 /*
3958  * Generic event overflow handling, sampling.
3959  */
3960
3961 static int __perf_event_overflow(struct perf_event *event, int nmi,
3962                                    int throttle, struct perf_sample_data *data,
3963                                    struct pt_regs *regs)
3964 {
3965         int events = atomic_read(&event->event_limit);
3966         struct hw_perf_event *hwc = &event->hw;
3967         int ret = 0;
3968
3969         throttle = (throttle && event->pmu->unthrottle != NULL);
3970
3971         if (!throttle) {
3972                 hwc->interrupts++;
3973         } else {
3974                 if (hwc->interrupts != MAX_INTERRUPTS) {
3975                         hwc->interrupts++;
3976                         if (HZ * hwc->interrupts >
3977                                         (u64)sysctl_perf_event_sample_rate) {
3978                                 hwc->interrupts = MAX_INTERRUPTS;
3979                                 perf_log_throttle(event, 0);
3980                                 ret = 1;
3981                         }
3982                 } else {
3983                         /*
3984                          * Keep re-disabling events even though on the previous
3985                          * pass we disabled it - just in case we raced with a
3986                          * sched-in and the event got enabled again:
3987                          */
3988                         ret = 1;
3989                 }
3990         }
3991
3992         if (event->attr.freq) {
3993                 u64 now = perf_clock();
3994                 s64 delta = now - hwc->freq_time_stamp;
3995
3996                 hwc->freq_time_stamp = now;
3997
3998                 if (delta > 0 && delta < 2*TICK_NSEC)
3999                         perf_adjust_period(event, delta, hwc->last_period);
4000         }
4001
4002         /*
4003          * XXX event_limit might not quite work as expected on inherited
4004          * events
4005          */
4006
4007         event->pending_kill = POLL_IN;
4008         if (events && atomic_dec_and_test(&event->event_limit)) {
4009                 ret = 1;
4010                 event->pending_kill = POLL_HUP;
4011                 if (nmi) {
4012                         event->pending_disable = 1;
4013                         perf_pending_queue(&event->pending,
4014                                            perf_pending_event);
4015                 } else
4016                         perf_event_disable(event);
4017         }
4018
4019         if (event->overflow_handler)
4020                 event->overflow_handler(event, nmi, data, regs);
4021         else
4022                 perf_event_output(event, nmi, data, regs);
4023
4024         return ret;
4025 }
4026
4027 int perf_event_overflow(struct perf_event *event, int nmi,
4028                           struct perf_sample_data *data,
4029                           struct pt_regs *regs)
4030 {
4031         return __perf_event_overflow(event, nmi, 1, data, regs);
4032 }
4033
4034 /*
4035  * Generic software event infrastructure
4036  */
4037
4038 /*
4039  * We directly increment event->count and keep a second value in
4040  * event->hw.period_left to count intervals. This period event
4041  * is kept in the range [-sample_period, 0] so that we can use the
4042  * sign as trigger.
4043  */
4044
4045 static u64 perf_swevent_set_period(struct perf_event *event)
4046 {
4047         struct hw_perf_event *hwc = &event->hw;
4048         u64 period = hwc->last_period;
4049         u64 nr, offset;
4050         s64 old, val;
4051
4052         hwc->last_period = hwc->sample_period;
4053
4054 again:
4055         old = val = local64_read(&hwc->period_left);
4056         if (val < 0)
4057                 return 0;
4058
4059         nr = div64_u64(period + val, period);
4060         offset = nr * period;
4061         val -= offset;
4062         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4063                 goto again;
4064
4065         return nr;
4066 }
4067
4068 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4069                                     int nmi, struct perf_sample_data *data,
4070                                     struct pt_regs *regs)
4071 {
4072         struct hw_perf_event *hwc = &event->hw;
4073         int throttle = 0;
4074
4075         data->period = event->hw.last_period;
4076         if (!overflow)
4077                 overflow = perf_swevent_set_period(event);
4078
4079         if (hwc->interrupts == MAX_INTERRUPTS)
4080                 return;
4081
4082         for (; overflow; overflow--) {
4083                 if (__perf_event_overflow(event, nmi, throttle,
4084                                             data, regs)) {
4085                         /*
4086                          * We inhibit the overflow from happening when
4087                          * hwc->interrupts == MAX_INTERRUPTS.
4088                          */
4089                         break;
4090                 }
4091                 throttle = 1;
4092         }
4093 }
4094
4095 static void perf_swevent_add(struct perf_event *event, u64 nr,
4096                                int nmi, struct perf_sample_data *data,
4097                                struct pt_regs *regs)
4098 {
4099         struct hw_perf_event *hwc = &event->hw;
4100
4101         local64_add(nr, &event->count);
4102
4103         if (!regs)
4104                 return;
4105
4106         if (!hwc->sample_period)
4107                 return;
4108
4109         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4110                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4111
4112         if (local64_add_negative(nr, &hwc->period_left))
4113                 return;
4114
4115         perf_swevent_overflow(event, 0, nmi, data, regs);
4116 }
4117
4118 static int perf_exclude_event(struct perf_event *event,
4119                               struct pt_regs *regs)
4120 {
4121         if (regs) {
4122                 if (event->attr.exclude_user && user_mode(regs))
4123                         return 1;
4124
4125                 if (event->attr.exclude_kernel && !user_mode(regs))
4126                         return 1;
4127         }
4128
4129         return 0;
4130 }
4131
4132 static int perf_swevent_match(struct perf_event *event,
4133                                 enum perf_type_id type,
4134                                 u32 event_id,
4135                                 struct perf_sample_data *data,
4136                                 struct pt_regs *regs)
4137 {
4138         if (event->attr.type != type)
4139                 return 0;
4140
4141         if (event->attr.config != event_id)
4142                 return 0;
4143
4144         if (perf_exclude_event(event, regs))
4145                 return 0;
4146
4147         return 1;
4148 }
4149
4150 static inline u64 swevent_hash(u64 type, u32 event_id)
4151 {
4152         u64 val = event_id | (type << 32);
4153
4154         return hash_64(val, SWEVENT_HLIST_BITS);
4155 }
4156
4157 static inline struct hlist_head *
4158 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4159 {
4160         u64 hash = swevent_hash(type, event_id);
4161
4162         return &hlist->heads[hash];
4163 }
4164
4165 /* For the read side: events when they trigger */
4166 static inline struct hlist_head *
4167 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4168 {
4169         struct swevent_hlist *hlist;
4170
4171         hlist = rcu_dereference(ctx->swevent_hlist);
4172         if (!hlist)
4173                 return NULL;
4174
4175         return __find_swevent_head(hlist, type, event_id);
4176 }
4177
4178 /* For the event head insertion and removal in the hlist */
4179 static inline struct hlist_head *
4180 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4181 {
4182         struct swevent_hlist *hlist;
4183         u32 event_id = event->attr.config;
4184         u64 type = event->attr.type;
4185
4186         /*
4187          * Event scheduling is always serialized against hlist allocation
4188          * and release. Which makes the protected version suitable here.
4189          * The context lock guarantees that.
4190          */
4191         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4192                                           lockdep_is_held(&event->ctx->lock));
4193         if (!hlist)
4194                 return NULL;
4195
4196         return __find_swevent_head(hlist, type, event_id);
4197 }
4198
4199 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4200                                     u64 nr, int nmi,
4201                                     struct perf_sample_data *data,
4202                                     struct pt_regs *regs)
4203 {
4204         struct perf_cpu_context *cpuctx;
4205         struct perf_event *event;
4206         struct hlist_node *node;
4207         struct hlist_head *head;
4208
4209         cpuctx = &__get_cpu_var(perf_cpu_context);
4210
4211         rcu_read_lock();
4212
4213         head = find_swevent_head_rcu(cpuctx, type, event_id);
4214
4215         if (!head)
4216                 goto end;
4217
4218         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4219                 if (perf_swevent_match(event, type, event_id, data, regs))
4220                         perf_swevent_add(event, nr, nmi, data, regs);
4221         }
4222 end:
4223         rcu_read_unlock();
4224 }
4225
4226 int perf_swevent_get_recursion_context(void)
4227 {
4228         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4229         int rctx;
4230
4231         if (in_nmi())
4232                 rctx = 3;
4233         else if (in_irq())
4234                 rctx = 2;
4235         else if (in_softirq())
4236                 rctx = 1;
4237         else
4238                 rctx = 0;
4239
4240         if (cpuctx->recursion[rctx])
4241                 return -1;
4242
4243         cpuctx->recursion[rctx]++;
4244         barrier();
4245
4246         return rctx;
4247 }
4248 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4249
4250 void inline perf_swevent_put_recursion_context(int rctx)
4251 {
4252         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4253         barrier();
4254         cpuctx->recursion[rctx]--;
4255 }
4256
4257 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4258                             struct pt_regs *regs, u64 addr)
4259 {
4260         struct perf_sample_data data;
4261         int rctx;
4262
4263         preempt_disable_notrace();
4264         rctx = perf_swevent_get_recursion_context();
4265         if (rctx < 0)
4266                 return;
4267
4268         perf_sample_data_init(&data, addr);
4269
4270         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4271
4272         perf_swevent_put_recursion_context(rctx);
4273         preempt_enable_notrace();
4274 }
4275
4276 static void perf_swevent_read(struct perf_event *event)
4277 {
4278 }
4279
4280 static int perf_swevent_enable(struct perf_event *event)
4281 {
4282         struct hw_perf_event *hwc = &event->hw;
4283         struct perf_cpu_context *cpuctx;
4284         struct hlist_head *head;
4285
4286         cpuctx = &__get_cpu_var(perf_cpu_context);
4287
4288         if (hwc->sample_period) {
4289                 hwc->last_period = hwc->sample_period;
4290                 perf_swevent_set_period(event);
4291         }
4292
4293         head = find_swevent_head(cpuctx, event);
4294         if (WARN_ON_ONCE(!head))
4295                 return -EINVAL;
4296
4297         hlist_add_head_rcu(&event->hlist_entry, head);
4298
4299         return 0;
4300 }
4301
4302 static void perf_swevent_disable(struct perf_event *event)
4303 {
4304         hlist_del_rcu(&event->hlist_entry);
4305 }
4306
4307 static void perf_swevent_void(struct perf_event *event)
4308 {
4309 }
4310
4311 static int perf_swevent_int(struct perf_event *event)
4312 {
4313         return 0;
4314 }
4315
4316 static const struct pmu perf_ops_generic = {
4317         .enable         = perf_swevent_enable,
4318         .disable        = perf_swevent_disable,
4319         .start          = perf_swevent_int,
4320         .stop           = perf_swevent_void,
4321         .read           = perf_swevent_read,
4322         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4323 };
4324
4325 /*
4326  * hrtimer based swevent callback
4327  */
4328
4329 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4330 {
4331         enum hrtimer_restart ret = HRTIMER_RESTART;
4332         struct perf_sample_data data;
4333         struct pt_regs *regs;
4334         struct perf_event *event;
4335         u64 period;
4336
4337         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4338         event->pmu->read(event);
4339
4340         perf_sample_data_init(&data, 0);
4341         data.period = event->hw.last_period;
4342         regs = get_irq_regs();
4343
4344         if (regs && !perf_exclude_event(event, regs)) {
4345                 if (!(event->attr.exclude_idle && current->pid == 0))
4346                         if (perf_event_overflow(event, 0, &data, regs))
4347                                 ret = HRTIMER_NORESTART;
4348         }
4349
4350         period = max_t(u64, 10000, event->hw.sample_period);
4351         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4352
4353         return ret;
4354 }
4355
4356 static void perf_swevent_start_hrtimer(struct perf_event *event)
4357 {
4358         struct hw_perf_event *hwc = &event->hw;
4359
4360         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4361         hwc->hrtimer.function = perf_swevent_hrtimer;
4362         if (hwc->sample_period) {
4363                 u64 period;
4364
4365                 if (hwc->remaining) {
4366                         if (hwc->remaining < 0)
4367                                 period = 10000;
4368                         else
4369                                 period = hwc->remaining;
4370                         hwc->remaining = 0;
4371                 } else {
4372                         period = max_t(u64, 10000, hwc->sample_period);
4373                 }
4374                 __hrtimer_start_range_ns(&hwc->hrtimer,
4375                                 ns_to_ktime(period), 0,
4376                                 HRTIMER_MODE_REL, 0);
4377         }
4378 }
4379
4380 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4381 {
4382         struct hw_perf_event *hwc = &event->hw;
4383
4384         if (hwc->sample_period) {
4385                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4386                 hwc->remaining = ktime_to_ns(remaining);
4387
4388                 hrtimer_cancel(&hwc->hrtimer);
4389         }
4390 }
4391
4392 /*
4393  * Software event: cpu wall time clock
4394  */
4395
4396 static void cpu_clock_perf_event_update(struct perf_event *event)
4397 {
4398         int cpu = raw_smp_processor_id();
4399         s64 prev;
4400         u64 now;
4401
4402         now = cpu_clock(cpu);
4403         prev = local64_xchg(&event->hw.prev_count, now);
4404         local64_add(now - prev, &event->count);
4405 }
4406
4407 static int cpu_clock_perf_event_enable(struct perf_event *event)
4408 {
4409         struct hw_perf_event *hwc = &event->hw;
4410         int cpu = raw_smp_processor_id();
4411
4412         local64_set(&hwc->prev_count, cpu_clock(cpu));
4413         perf_swevent_start_hrtimer(event);
4414
4415         return 0;
4416 }
4417
4418 static void cpu_clock_perf_event_disable(struct perf_event *event)
4419 {
4420         perf_swevent_cancel_hrtimer(event);
4421         cpu_clock_perf_event_update(event);
4422 }
4423
4424 static void cpu_clock_perf_event_read(struct perf_event *event)
4425 {
4426         cpu_clock_perf_event_update(event);
4427 }
4428
4429 static const struct pmu perf_ops_cpu_clock = {
4430         .enable         = cpu_clock_perf_event_enable,
4431         .disable        = cpu_clock_perf_event_disable,
4432         .read           = cpu_clock_perf_event_read,
4433 };
4434
4435 /*
4436  * Software event: task time clock
4437  */
4438
4439 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4440 {
4441         u64 prev;
4442         s64 delta;
4443
4444         prev = local64_xchg(&event->hw.prev_count, now);
4445         delta = now - prev;
4446         local64_add(delta, &event->count);
4447 }
4448
4449 static int task_clock_perf_event_enable(struct perf_event *event)
4450 {
4451         struct hw_perf_event *hwc = &event->hw;
4452         u64 now;
4453
4454         now = event->ctx->time;
4455
4456         local64_set(&hwc->prev_count, now);
4457
4458         perf_swevent_start_hrtimer(event);
4459
4460         return 0;
4461 }
4462
4463 static void task_clock_perf_event_disable(struct perf_event *event)
4464 {
4465         perf_swevent_cancel_hrtimer(event);
4466         task_clock_perf_event_update(event, event->ctx->time);
4467
4468 }
4469
4470 static void task_clock_perf_event_read(struct perf_event *event)
4471 {
4472         u64 time;
4473
4474         if (!in_nmi()) {
4475                 update_context_time(event->ctx);
4476                 time = event->ctx->time;
4477         } else {
4478                 u64 now = perf_clock();
4479                 u64 delta = now - event->ctx->timestamp;
4480                 time = event->ctx->time + delta;
4481         }
4482
4483         task_clock_perf_event_update(event, time);
4484 }
4485
4486 static const struct pmu perf_ops_task_clock = {
4487         .enable         = task_clock_perf_event_enable,
4488         .disable        = task_clock_perf_event_disable,
4489         .read           = task_clock_perf_event_read,
4490 };
4491
4492 /* Deref the hlist from the update side */
4493 static inline struct swevent_hlist *
4494 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4495 {
4496         return rcu_dereference_protected(cpuctx->swevent_hlist,
4497                                          lockdep_is_held(&cpuctx->hlist_mutex));
4498 }
4499
4500 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4501 {
4502         struct swevent_hlist *hlist;
4503
4504         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4505         kfree(hlist);
4506 }
4507
4508 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4509 {
4510         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4511
4512         if (!hlist)
4513                 return;
4514
4515         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4516         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4517 }
4518
4519 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4520 {
4521         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4522
4523         mutex_lock(&cpuctx->hlist_mutex);
4524
4525         if (!--cpuctx->hlist_refcount)
4526                 swevent_hlist_release(cpuctx);
4527
4528         mutex_unlock(&cpuctx->hlist_mutex);
4529 }
4530
4531 static void swevent_hlist_put(struct perf_event *event)
4532 {
4533         int cpu;
4534
4535         if (event->cpu != -1) {
4536                 swevent_hlist_put_cpu(event, event->cpu);
4537                 return;
4538         }
4539
4540         for_each_possible_cpu(cpu)
4541                 swevent_hlist_put_cpu(event, cpu);
4542 }
4543
4544 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4545 {
4546         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4547         int err = 0;
4548
4549         mutex_lock(&cpuctx->hlist_mutex);
4550
4551         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4552                 struct swevent_hlist *hlist;
4553
4554                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4555                 if (!hlist) {
4556                         err = -ENOMEM;
4557                         goto exit;
4558                 }
4559                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4560         }
4561         cpuctx->hlist_refcount++;
4562  exit:
4563         mutex_unlock(&cpuctx->hlist_mutex);
4564
4565         return err;
4566 }
4567
4568 static int swevent_hlist_get(struct perf_event *event)
4569 {
4570         int err;
4571         int cpu, failed_cpu;
4572
4573         if (event->cpu != -1)
4574                 return swevent_hlist_get_cpu(event, event->cpu);
4575
4576         get_online_cpus();
4577         for_each_possible_cpu(cpu) {
4578                 err = swevent_hlist_get_cpu(event, cpu);
4579                 if (err) {
4580                         failed_cpu = cpu;
4581                         goto fail;
4582                 }
4583         }
4584         put_online_cpus();
4585
4586         return 0;
4587  fail:
4588         for_each_possible_cpu(cpu) {
4589                 if (cpu == failed_cpu)
4590                         break;
4591                 swevent_hlist_put_cpu(event, cpu);
4592         }
4593
4594         put_online_cpus();
4595         return err;
4596 }
4597
4598 #ifdef CONFIG_EVENT_TRACING
4599
4600 static const struct pmu perf_ops_tracepoint = {
4601         .enable         = perf_trace_enable,
4602         .disable        = perf_trace_disable,
4603         .start          = perf_swevent_int,
4604         .stop           = perf_swevent_void,
4605         .read           = perf_swevent_read,
4606         .unthrottle     = perf_swevent_void,
4607 };
4608
4609 static int perf_tp_filter_match(struct perf_event *event,
4610                                 struct perf_sample_data *data)
4611 {
4612         void *record = data->raw->data;
4613
4614         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4615                 return 1;
4616         return 0;
4617 }
4618
4619 static int perf_tp_event_match(struct perf_event *event,
4620                                 struct perf_sample_data *data,
4621                                 struct pt_regs *regs)
4622 {
4623         /*
4624          * All tracepoints are from kernel-space.
4625          */
4626         if (event->attr.exclude_kernel)
4627                 return 0;
4628
4629         if (!perf_tp_filter_match(event, data))
4630                 return 0;
4631
4632         return 1;
4633 }
4634
4635 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4636                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4637 {
4638         struct perf_sample_data data;
4639         struct perf_event *event;
4640         struct hlist_node *node;
4641
4642         struct perf_raw_record raw = {
4643                 .size = entry_size,
4644                 .data = record,
4645         };
4646
4647         perf_sample_data_init(&data, addr);
4648         data.raw = &raw;
4649
4650         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4651                 if (perf_tp_event_match(event, &data, regs))
4652                         perf_swevent_add(event, count, 1, &data, regs);
4653         }
4654
4655         perf_swevent_put_recursion_context(rctx);
4656 }
4657 EXPORT_SYMBOL_GPL(perf_tp_event);
4658
4659 static void tp_perf_event_destroy(struct perf_event *event)
4660 {
4661         perf_trace_destroy(event);
4662 }
4663
4664 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4665 {
4666         int err;
4667
4668         /*
4669          * Raw tracepoint data is a severe data leak, only allow root to
4670          * have these.
4671          */
4672         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4673                         perf_paranoid_tracepoint_raw() &&
4674                         !capable(CAP_SYS_ADMIN))
4675                 return ERR_PTR(-EPERM);
4676
4677         err = perf_trace_init(event);
4678         if (err)
4679                 return NULL;
4680
4681         event->destroy = tp_perf_event_destroy;
4682
4683         return &perf_ops_tracepoint;
4684 }
4685
4686 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4687 {
4688         char *filter_str;
4689         int ret;
4690
4691         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4692                 return -EINVAL;
4693
4694         filter_str = strndup_user(arg, PAGE_SIZE);
4695         if (IS_ERR(filter_str))
4696                 return PTR_ERR(filter_str);
4697
4698         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4699
4700         kfree(filter_str);
4701         return ret;
4702 }
4703
4704 static void perf_event_free_filter(struct perf_event *event)
4705 {
4706         ftrace_profile_free_filter(event);
4707 }
4708
4709 #else
4710
4711 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4712 {
4713         return NULL;
4714 }
4715
4716 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4717 {
4718         return -ENOENT;
4719 }
4720
4721 static void perf_event_free_filter(struct perf_event *event)
4722 {
4723 }
4724
4725 #endif /* CONFIG_EVENT_TRACING */
4726
4727 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4728 static void bp_perf_event_destroy(struct perf_event *event)
4729 {
4730         release_bp_slot(event);
4731 }
4732
4733 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4734 {
4735         int err;
4736
4737         err = register_perf_hw_breakpoint(bp);
4738         if (err)
4739                 return ERR_PTR(err);
4740
4741         bp->destroy = bp_perf_event_destroy;
4742
4743         return &perf_ops_bp;
4744 }
4745
4746 void perf_bp_event(struct perf_event *bp, void *data)
4747 {
4748         struct perf_sample_data sample;
4749         struct pt_regs *regs = data;
4750
4751         perf_sample_data_init(&sample, bp->attr.bp_addr);
4752
4753         if (!perf_exclude_event(bp, regs))
4754                 perf_swevent_add(bp, 1, 1, &sample, regs);
4755 }
4756 #else
4757 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4758 {
4759         return NULL;
4760 }
4761
4762 void perf_bp_event(struct perf_event *bp, void *regs)
4763 {
4764 }
4765 #endif
4766
4767 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4768
4769 static void sw_perf_event_destroy(struct perf_event *event)
4770 {
4771         u64 event_id = event->attr.config;
4772
4773         WARN_ON(event->parent);
4774
4775         atomic_dec(&perf_swevent_enabled[event_id]);
4776         swevent_hlist_put(event);
4777 }
4778
4779 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4780 {
4781         const struct pmu *pmu = NULL;
4782         u64 event_id = event->attr.config;
4783
4784         /*
4785          * Software events (currently) can't in general distinguish
4786          * between user, kernel and hypervisor events.
4787          * However, context switches and cpu migrations are considered
4788          * to be kernel events, and page faults are never hypervisor
4789          * events.
4790          */
4791         switch (event_id) {
4792         case PERF_COUNT_SW_CPU_CLOCK:
4793                 pmu = &perf_ops_cpu_clock;
4794
4795                 break;
4796         case PERF_COUNT_SW_TASK_CLOCK:
4797                 /*
4798                  * If the user instantiates this as a per-cpu event,
4799                  * use the cpu_clock event instead.
4800                  */
4801                 if (event->ctx->task)
4802                         pmu = &perf_ops_task_clock;
4803                 else
4804                         pmu = &perf_ops_cpu_clock;
4805
4806                 break;
4807         case PERF_COUNT_SW_PAGE_FAULTS:
4808         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4809         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4810         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4811         case PERF_COUNT_SW_CPU_MIGRATIONS:
4812         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4813         case PERF_COUNT_SW_EMULATION_FAULTS:
4814                 if (!event->parent) {
4815                         int err;
4816
4817                         err = swevent_hlist_get(event);
4818                         if (err)
4819                                 return ERR_PTR(err);
4820
4821                         atomic_inc(&perf_swevent_enabled[event_id]);
4822                         event->destroy = sw_perf_event_destroy;
4823                 }
4824                 pmu = &perf_ops_generic;
4825                 break;
4826         }
4827
4828         return pmu;
4829 }
4830
4831 /*
4832  * Allocate and initialize a event structure
4833  */
4834 static struct perf_event *
4835 perf_event_alloc(struct perf_event_attr *attr,
4836                    int cpu,
4837                    struct perf_event_context *ctx,
4838                    struct perf_event *group_leader,
4839                    struct perf_event *parent_event,
4840                    perf_overflow_handler_t overflow_handler,
4841                    gfp_t gfpflags)
4842 {
4843         const struct pmu *pmu;
4844         struct perf_event *event;
4845         struct hw_perf_event *hwc;
4846         long err;
4847
4848         event = kzalloc(sizeof(*event), gfpflags);
4849         if (!event)
4850                 return ERR_PTR(-ENOMEM);
4851
4852         /*
4853          * Single events are their own group leaders, with an
4854          * empty sibling list:
4855          */
4856         if (!group_leader)
4857                 group_leader = event;
4858
4859         mutex_init(&event->child_mutex);
4860         INIT_LIST_HEAD(&event->child_list);
4861
4862         INIT_LIST_HEAD(&event->group_entry);
4863         INIT_LIST_HEAD(&event->event_entry);
4864         INIT_LIST_HEAD(&event->sibling_list);
4865         init_waitqueue_head(&event->waitq);
4866
4867         mutex_init(&event->mmap_mutex);
4868
4869         event->cpu              = cpu;
4870         event->attr             = *attr;
4871         event->group_leader     = group_leader;
4872         event->pmu              = NULL;
4873         event->ctx              = ctx;
4874         event->oncpu            = -1;
4875
4876         event->parent           = parent_event;
4877
4878         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4879         event->id               = atomic64_inc_return(&perf_event_id);
4880
4881         event->state            = PERF_EVENT_STATE_INACTIVE;
4882
4883         if (!overflow_handler && parent_event)
4884                 overflow_handler = parent_event->overflow_handler;
4885         
4886         event->overflow_handler = overflow_handler;
4887
4888         if (attr->disabled)
4889                 event->state = PERF_EVENT_STATE_OFF;
4890
4891         pmu = NULL;
4892
4893         hwc = &event->hw;
4894         hwc->sample_period = attr->sample_period;
4895         if (attr->freq && attr->sample_freq)
4896                 hwc->sample_period = 1;
4897         hwc->last_period = hwc->sample_period;
4898
4899         local64_set(&hwc->period_left, hwc->sample_period);
4900
4901         /*
4902          * we currently do not support PERF_FORMAT_GROUP on inherited events
4903          */
4904         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4905                 goto done;
4906
4907         switch (attr->type) {
4908         case PERF_TYPE_RAW:
4909         case PERF_TYPE_HARDWARE:
4910         case PERF_TYPE_HW_CACHE:
4911                 pmu = hw_perf_event_init(event);
4912                 break;
4913
4914         case PERF_TYPE_SOFTWARE:
4915                 pmu = sw_perf_event_init(event);
4916                 break;
4917
4918         case PERF_TYPE_TRACEPOINT:
4919                 pmu = tp_perf_event_init(event);
4920                 break;
4921
4922         case PERF_TYPE_BREAKPOINT:
4923                 pmu = bp_perf_event_init(event);
4924                 break;
4925
4926
4927         default:
4928                 break;
4929         }
4930 done:
4931         err = 0;
4932         if (!pmu)
4933                 err = -EINVAL;
4934         else if (IS_ERR(pmu))
4935                 err = PTR_ERR(pmu);
4936
4937         if (err) {
4938                 if (event->ns)
4939                         put_pid_ns(event->ns);
4940                 kfree(event);
4941                 return ERR_PTR(err);
4942         }
4943
4944         event->pmu = pmu;
4945
4946         if (!event->parent) {
4947                 atomic_inc(&nr_events);
4948                 if (event->attr.mmap || event->attr.mmap_data)
4949                         atomic_inc(&nr_mmap_events);
4950                 if (event->attr.comm)
4951                         atomic_inc(&nr_comm_events);
4952                 if (event->attr.task)
4953                         atomic_inc(&nr_task_events);
4954         }
4955
4956         return event;
4957 }
4958
4959 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4960                           struct perf_event_attr *attr)
4961 {
4962         u32 size;
4963         int ret;
4964
4965         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4966                 return -EFAULT;
4967
4968         /*
4969          * zero the full structure, so that a short copy will be nice.
4970          */
4971         memset(attr, 0, sizeof(*attr));
4972
4973         ret = get_user(size, &uattr->size);
4974         if (ret)
4975                 return ret;
4976
4977         if (size > PAGE_SIZE)   /* silly large */
4978                 goto err_size;
4979
4980         if (!size)              /* abi compat */
4981                 size = PERF_ATTR_SIZE_VER0;
4982
4983         if (size < PERF_ATTR_SIZE_VER0)
4984                 goto err_size;
4985
4986         /*
4987          * If we're handed a bigger struct than we know of,
4988          * ensure all the unknown bits are 0 - i.e. new
4989          * user-space does not rely on any kernel feature
4990          * extensions we dont know about yet.
4991          */
4992         if (size > sizeof(*attr)) {
4993                 unsigned char __user *addr;
4994                 unsigned char __user *end;
4995                 unsigned char val;
4996
4997                 addr = (void __user *)uattr + sizeof(*attr);
4998                 end  = (void __user *)uattr + size;
4999
5000                 for (; addr < end; addr++) {
5001                         ret = get_user(val, addr);
5002                         if (ret)
5003                                 return ret;
5004                         if (val)
5005                                 goto err_size;
5006                 }
5007                 size = sizeof(*attr);
5008         }
5009
5010         ret = copy_from_user(attr, uattr, size);
5011         if (ret)
5012                 return -EFAULT;
5013
5014         /*
5015          * If the type exists, the corresponding creation will verify
5016          * the attr->config.
5017          */
5018         if (attr->type >= PERF_TYPE_MAX)
5019                 return -EINVAL;
5020
5021         if (attr->__reserved_1)
5022                 return -EINVAL;
5023
5024         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5025                 return -EINVAL;
5026
5027         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5028                 return -EINVAL;
5029
5030 out:
5031         return ret;
5032
5033 err_size:
5034         put_user(sizeof(*attr), &uattr->size);
5035         ret = -E2BIG;
5036         goto out;
5037 }
5038
5039 static int
5040 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5041 {
5042         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5043         int ret = -EINVAL;
5044
5045         if (!output_event)
5046                 goto set;
5047
5048         /* don't allow circular references */
5049         if (event == output_event)
5050                 goto out;
5051
5052         /*
5053          * Don't allow cross-cpu buffers
5054          */
5055         if (output_event->cpu != event->cpu)
5056                 goto out;
5057
5058         /*
5059          * If its not a per-cpu buffer, it must be the same task.
5060          */
5061         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5062                 goto out;
5063
5064 set:
5065         mutex_lock(&event->mmap_mutex);
5066         /* Can't redirect output if we've got an active mmap() */
5067         if (atomic_read(&event->mmap_count))
5068                 goto unlock;
5069
5070         if (output_event) {
5071                 /* get the buffer we want to redirect to */
5072                 buffer = perf_buffer_get(output_event);
5073                 if (!buffer)
5074                         goto unlock;
5075         }
5076
5077         old_buffer = event->buffer;
5078         rcu_assign_pointer(event->buffer, buffer);
5079         ret = 0;
5080 unlock:
5081         mutex_unlock(&event->mmap_mutex);
5082
5083         if (old_buffer)
5084                 perf_buffer_put(old_buffer);
5085 out:
5086         return ret;
5087 }
5088
5089 /**
5090  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5091  *
5092  * @attr_uptr:  event_id type attributes for monitoring/sampling
5093  * @pid:                target pid
5094  * @cpu:                target cpu
5095  * @group_fd:           group leader event fd
5096  */
5097 SYSCALL_DEFINE5(perf_event_open,
5098                 struct perf_event_attr __user *, attr_uptr,
5099                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5100 {
5101         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5102         struct perf_event_attr attr;
5103         struct perf_event_context *ctx;
5104         struct file *event_file = NULL;
5105         struct file *group_file = NULL;
5106         int event_fd;
5107         int fput_needed = 0;
5108         int err;
5109
5110         /* for future expandability... */
5111         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5112                 return -EINVAL;
5113
5114         err = perf_copy_attr(attr_uptr, &attr);
5115         if (err)
5116                 return err;
5117
5118         if (!attr.exclude_kernel) {
5119                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5120                         return -EACCES;
5121         }
5122
5123         if (attr.freq) {
5124                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5125                         return -EINVAL;
5126         }
5127
5128         event_fd = get_unused_fd_flags(O_RDWR);
5129         if (event_fd < 0)
5130                 return event_fd;
5131
5132         /*
5133          * Get the target context (task or percpu):
5134          */
5135         ctx = find_get_context(pid, cpu);
5136         if (IS_ERR(ctx)) {
5137                 err = PTR_ERR(ctx);
5138                 goto err_fd;
5139         }
5140
5141         if (group_fd != -1) {
5142                 group_leader = perf_fget_light(group_fd, &fput_needed);
5143                 if (IS_ERR(group_leader)) {
5144                         err = PTR_ERR(group_leader);
5145                         goto err_put_context;
5146                 }
5147                 group_file = group_leader->filp;
5148                 if (flags & PERF_FLAG_FD_OUTPUT)
5149                         output_event = group_leader;
5150                 if (flags & PERF_FLAG_FD_NO_GROUP)
5151                         group_leader = NULL;
5152         }
5153
5154         /*
5155          * Look up the group leader (we will attach this event to it):
5156          */
5157         if (group_leader) {
5158                 err = -EINVAL;
5159
5160                 /*
5161                  * Do not allow a recursive hierarchy (this new sibling
5162                  * becoming part of another group-sibling):
5163                  */
5164                 if (group_leader->group_leader != group_leader)
5165                         goto err_put_context;
5166                 /*
5167                  * Do not allow to attach to a group in a different
5168                  * task or CPU context:
5169                  */
5170                 if (group_leader->ctx != ctx)
5171                         goto err_put_context;
5172                 /*
5173                  * Only a group leader can be exclusive or pinned
5174                  */
5175                 if (attr.exclusive || attr.pinned)
5176                         goto err_put_context;
5177         }
5178
5179         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5180                                      NULL, NULL, GFP_KERNEL);
5181         if (IS_ERR(event)) {
5182                 err = PTR_ERR(event);
5183                 goto err_put_context;
5184         }
5185
5186         if (output_event) {
5187                 err = perf_event_set_output(event, output_event);
5188                 if (err)
5189                         goto err_free_put_context;
5190         }
5191
5192         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5193         if (IS_ERR(event_file)) {
5194                 err = PTR_ERR(event_file);
5195                 goto err_free_put_context;
5196         }
5197
5198         event->filp = event_file;
5199         WARN_ON_ONCE(ctx->parent_ctx);
5200         mutex_lock(&ctx->mutex);
5201         perf_install_in_context(ctx, event, cpu);
5202         ++ctx->generation;
5203         mutex_unlock(&ctx->mutex);
5204
5205         event->owner = current;
5206         get_task_struct(current);
5207         mutex_lock(&current->perf_event_mutex);
5208         list_add_tail(&event->owner_entry, &current->perf_event_list);
5209         mutex_unlock(&current->perf_event_mutex);
5210
5211         /*
5212          * Drop the reference on the group_event after placing the
5213          * new event on the sibling_list. This ensures destruction
5214          * of the group leader will find the pointer to itself in
5215          * perf_group_detach().
5216          */
5217         fput_light(group_file, fput_needed);
5218         fd_install(event_fd, event_file);
5219         return event_fd;
5220
5221 err_free_put_context:
5222         free_event(event);
5223 err_put_context:
5224         fput_light(group_file, fput_needed);
5225         put_ctx(ctx);
5226 err_fd:
5227         put_unused_fd(event_fd);
5228         return err;
5229 }
5230
5231 /**
5232  * perf_event_create_kernel_counter
5233  *
5234  * @attr: attributes of the counter to create
5235  * @cpu: cpu in which the counter is bound
5236  * @pid: task to profile
5237  */
5238 struct perf_event *
5239 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5240                                  pid_t pid,
5241                                  perf_overflow_handler_t overflow_handler)
5242 {
5243         struct perf_event *event;
5244         struct perf_event_context *ctx;
5245         int err;
5246
5247         /*
5248          * Get the target context (task or percpu):
5249          */
5250
5251         ctx = find_get_context(pid, cpu);
5252         if (IS_ERR(ctx)) {
5253                 err = PTR_ERR(ctx);
5254                 goto err_exit;
5255         }
5256
5257         event = perf_event_alloc(attr, cpu, ctx, NULL,
5258                                  NULL, overflow_handler, GFP_KERNEL);
5259         if (IS_ERR(event)) {
5260                 err = PTR_ERR(event);
5261                 goto err_put_context;
5262         }
5263
5264         event->filp = NULL;
5265         WARN_ON_ONCE(ctx->parent_ctx);
5266         mutex_lock(&ctx->mutex);
5267         perf_install_in_context(ctx, event, cpu);
5268         ++ctx->generation;
5269         mutex_unlock(&ctx->mutex);
5270
5271         event->owner = current;
5272         get_task_struct(current);
5273         mutex_lock(&current->perf_event_mutex);
5274         list_add_tail(&event->owner_entry, &current->perf_event_list);
5275         mutex_unlock(&current->perf_event_mutex);
5276
5277         return event;
5278
5279  err_put_context:
5280         put_ctx(ctx);
5281  err_exit:
5282         return ERR_PTR(err);
5283 }
5284 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5285
5286 /*
5287  * inherit a event from parent task to child task:
5288  */
5289 static struct perf_event *
5290 inherit_event(struct perf_event *parent_event,
5291               struct task_struct *parent,
5292               struct perf_event_context *parent_ctx,
5293               struct task_struct *child,
5294               struct perf_event *group_leader,
5295               struct perf_event_context *child_ctx)
5296 {
5297         struct perf_event *child_event;
5298
5299         /*
5300          * Instead of creating recursive hierarchies of events,
5301          * we link inherited events back to the original parent,
5302          * which has a filp for sure, which we use as the reference
5303          * count:
5304          */
5305         if (parent_event->parent)
5306                 parent_event = parent_event->parent;
5307
5308         child_event = perf_event_alloc(&parent_event->attr,
5309                                            parent_event->cpu, child_ctx,
5310                                            group_leader, parent_event,
5311                                            NULL, GFP_KERNEL);
5312         if (IS_ERR(child_event))
5313                 return child_event;
5314         get_ctx(child_ctx);
5315
5316         /*
5317          * Make the child state follow the state of the parent event,
5318          * not its attr.disabled bit.  We hold the parent's mutex,
5319          * so we won't race with perf_event_{en, dis}able_family.
5320          */
5321         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5322                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5323         else
5324                 child_event->state = PERF_EVENT_STATE_OFF;
5325
5326         if (parent_event->attr.freq) {
5327                 u64 sample_period = parent_event->hw.sample_period;
5328                 struct hw_perf_event *hwc = &child_event->hw;
5329
5330                 hwc->sample_period = sample_period;
5331                 hwc->last_period   = sample_period;
5332
5333                 local64_set(&hwc->period_left, sample_period);
5334         }
5335
5336         child_event->overflow_handler = parent_event->overflow_handler;
5337
5338         /*
5339          * Link it up in the child's context:
5340          */
5341         add_event_to_ctx(child_event, child_ctx);
5342
5343         /*
5344          * Get a reference to the parent filp - we will fput it
5345          * when the child event exits. This is safe to do because
5346          * we are in the parent and we know that the filp still
5347          * exists and has a nonzero count:
5348          */
5349         atomic_long_inc(&parent_event->filp->f_count);
5350
5351         /*
5352          * Link this into the parent event's child list
5353          */
5354         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5355         mutex_lock(&parent_event->child_mutex);
5356         list_add_tail(&child_event->child_list, &parent_event->child_list);
5357         mutex_unlock(&parent_event->child_mutex);
5358
5359         return child_event;
5360 }
5361
5362 static int inherit_group(struct perf_event *parent_event,
5363               struct task_struct *parent,
5364               struct perf_event_context *parent_ctx,
5365               struct task_struct *child,
5366               struct perf_event_context *child_ctx)
5367 {
5368         struct perf_event *leader;
5369         struct perf_event *sub;
5370         struct perf_event *child_ctr;
5371
5372         leader = inherit_event(parent_event, parent, parent_ctx,
5373                                  child, NULL, child_ctx);
5374         if (IS_ERR(leader))
5375                 return PTR_ERR(leader);
5376         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5377                 child_ctr = inherit_event(sub, parent, parent_ctx,
5378                                             child, leader, child_ctx);
5379                 if (IS_ERR(child_ctr))
5380                         return PTR_ERR(child_ctr);
5381         }
5382         return 0;
5383 }
5384
5385 static void sync_child_event(struct perf_event *child_event,
5386                                struct task_struct *child)
5387 {
5388         struct perf_event *parent_event = child_event->parent;
5389         u64 child_val;
5390
5391         if (child_event->attr.inherit_stat)
5392                 perf_event_read_event(child_event, child);
5393
5394         child_val = perf_event_count(child_event);
5395
5396         /*
5397          * Add back the child's count to the parent's count:
5398          */
5399         atomic64_add(child_val, &parent_event->child_count);
5400         atomic64_add(child_event->total_time_enabled,
5401                      &parent_event->child_total_time_enabled);
5402         atomic64_add(child_event->total_time_running,
5403                      &parent_event->child_total_time_running);
5404
5405         /*
5406          * Remove this event from the parent's list
5407          */
5408         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5409         mutex_lock(&parent_event->child_mutex);
5410         list_del_init(&child_event->child_list);
5411         mutex_unlock(&parent_event->child_mutex);
5412
5413         /*
5414          * Release the parent event, if this was the last
5415          * reference to it.
5416          */
5417         fput(parent_event->filp);
5418 }
5419
5420 static void
5421 __perf_event_exit_task(struct perf_event *child_event,
5422                          struct perf_event_context *child_ctx,
5423                          struct task_struct *child)
5424 {
5425         struct perf_event *parent_event;
5426
5427         perf_event_remove_from_context(child_event);
5428
5429         parent_event = child_event->parent;
5430         /*
5431          * It can happen that parent exits first, and has events
5432          * that are still around due to the child reference. These
5433          * events need to be zapped - but otherwise linger.
5434          */
5435         if (parent_event) {
5436                 sync_child_event(child_event, child);
5437                 free_event(child_event);
5438         }
5439 }
5440
5441 /*
5442  * When a child task exits, feed back event values to parent events.
5443  */
5444 void perf_event_exit_task(struct task_struct *child)
5445 {
5446         struct perf_event *child_event, *tmp;
5447         struct perf_event_context *child_ctx;
5448         unsigned long flags;
5449
5450         if (likely(!child->perf_event_ctxp)) {
5451                 perf_event_task(child, NULL, 0);
5452                 return;
5453         }
5454
5455         local_irq_save(flags);
5456         /*
5457          * We can't reschedule here because interrupts are disabled,
5458          * and either child is current or it is a task that can't be
5459          * scheduled, so we are now safe from rescheduling changing
5460          * our context.
5461          */
5462         child_ctx = child->perf_event_ctxp;
5463         __perf_event_task_sched_out(child_ctx);
5464
5465         /*
5466          * Take the context lock here so that if find_get_context is
5467          * reading child->perf_event_ctxp, we wait until it has
5468          * incremented the context's refcount before we do put_ctx below.
5469          */
5470         raw_spin_lock(&child_ctx->lock);
5471         child->perf_event_ctxp = NULL;
5472         /*
5473          * If this context is a clone; unclone it so it can't get
5474          * swapped to another process while we're removing all
5475          * the events from it.
5476          */
5477         unclone_ctx(child_ctx);
5478         update_context_time(child_ctx);
5479         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5480
5481         /*
5482          * Report the task dead after unscheduling the events so that we
5483          * won't get any samples after PERF_RECORD_EXIT. We can however still
5484          * get a few PERF_RECORD_READ events.
5485          */
5486         perf_event_task(child, child_ctx, 0);
5487
5488         /*
5489          * We can recurse on the same lock type through:
5490          *
5491          *   __perf_event_exit_task()
5492          *     sync_child_event()
5493          *       fput(parent_event->filp)
5494          *         perf_release()
5495          *           mutex_lock(&ctx->mutex)
5496          *
5497          * But since its the parent context it won't be the same instance.
5498          */
5499         mutex_lock(&child_ctx->mutex);
5500
5501 again:
5502         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5503                                  group_entry)
5504                 __perf_event_exit_task(child_event, child_ctx, child);
5505
5506         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5507                                  group_entry)
5508                 __perf_event_exit_task(child_event, child_ctx, child);
5509
5510         /*
5511          * If the last event was a group event, it will have appended all
5512          * its siblings to the list, but we obtained 'tmp' before that which
5513          * will still point to the list head terminating the iteration.
5514          */
5515         if (!list_empty(&child_ctx->pinned_groups) ||
5516             !list_empty(&child_ctx->flexible_groups))
5517                 goto again;
5518
5519         mutex_unlock(&child_ctx->mutex);
5520
5521         put_ctx(child_ctx);
5522 }
5523
5524 static void perf_free_event(struct perf_event *event,
5525                             struct perf_event_context *ctx)
5526 {
5527         struct perf_event *parent = event->parent;
5528
5529         if (WARN_ON_ONCE(!parent))
5530                 return;
5531
5532         mutex_lock(&parent->child_mutex);
5533         list_del_init(&event->child_list);
5534         mutex_unlock(&parent->child_mutex);
5535
5536         fput(parent->filp);
5537
5538         perf_group_detach(event);
5539         list_del_event(event, ctx);
5540         free_event(event);
5541 }
5542
5543 /*
5544  * free an unexposed, unused context as created by inheritance by
5545  * init_task below, used by fork() in case of fail.
5546  */
5547 void perf_event_free_task(struct task_struct *task)
5548 {
5549         struct perf_event_context *ctx = task->perf_event_ctxp;
5550         struct perf_event *event, *tmp;
5551
5552         if (!ctx)
5553                 return;
5554
5555         mutex_lock(&ctx->mutex);
5556 again:
5557         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5558                 perf_free_event(event, ctx);
5559
5560         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5561                                  group_entry)
5562                 perf_free_event(event, ctx);
5563
5564         if (!list_empty(&ctx->pinned_groups) ||
5565             !list_empty(&ctx->flexible_groups))
5566                 goto again;
5567
5568         mutex_unlock(&ctx->mutex);
5569
5570         put_ctx(ctx);
5571 }
5572
5573 static int
5574 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5575                    struct perf_event_context *parent_ctx,
5576                    struct task_struct *child,
5577                    int *inherited_all)
5578 {
5579         int ret;
5580         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5581
5582         if (!event->attr.inherit) {
5583                 *inherited_all = 0;
5584                 return 0;
5585         }
5586
5587         if (!child_ctx) {
5588                 /*
5589                  * This is executed from the parent task context, so
5590                  * inherit events that have been marked for cloning.
5591                  * First allocate and initialize a context for the
5592                  * child.
5593                  */
5594
5595                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5596                                     GFP_KERNEL);
5597                 if (!child_ctx)
5598                         return -ENOMEM;
5599
5600                 __perf_event_init_context(child_ctx, child);
5601                 child->perf_event_ctxp = child_ctx;
5602                 get_task_struct(child);
5603         }
5604
5605         ret = inherit_group(event, parent, parent_ctx,
5606                             child, child_ctx);
5607
5608         if (ret)
5609                 *inherited_all = 0;
5610
5611         return ret;
5612 }
5613
5614
5615 /*
5616  * Initialize the perf_event context in task_struct
5617  */
5618 int perf_event_init_task(struct task_struct *child)
5619 {
5620         struct perf_event_context *child_ctx, *parent_ctx;
5621         struct perf_event_context *cloned_ctx;
5622         struct perf_event *event;
5623         struct task_struct *parent = current;
5624         int inherited_all = 1;
5625         int ret = 0;
5626
5627         child->perf_event_ctxp = NULL;
5628
5629         mutex_init(&child->perf_event_mutex);
5630         INIT_LIST_HEAD(&child->perf_event_list);
5631
5632         if (likely(!parent->perf_event_ctxp))
5633                 return 0;
5634
5635         /*
5636          * If the parent's context is a clone, pin it so it won't get
5637          * swapped under us.
5638          */
5639         parent_ctx = perf_pin_task_context(parent);
5640
5641         /*
5642          * No need to check if parent_ctx != NULL here; since we saw
5643          * it non-NULL earlier, the only reason for it to become NULL
5644          * is if we exit, and since we're currently in the middle of
5645          * a fork we can't be exiting at the same time.
5646          */
5647
5648         /*
5649          * Lock the parent list. No need to lock the child - not PID
5650          * hashed yet and not running, so nobody can access it.
5651          */
5652         mutex_lock(&parent_ctx->mutex);
5653
5654         /*
5655          * We dont have to disable NMIs - we are only looking at
5656          * the list, not manipulating it:
5657          */
5658         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5659                 ret = inherit_task_group(event, parent, parent_ctx, child,
5660                                          &inherited_all);
5661                 if (ret)
5662                         break;
5663         }
5664
5665         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5666                 ret = inherit_task_group(event, parent, parent_ctx, child,
5667                                          &inherited_all);
5668                 if (ret)
5669                         break;
5670         }
5671
5672         child_ctx = child->perf_event_ctxp;
5673
5674         if (child_ctx && inherited_all) {
5675                 /*
5676                  * Mark the child context as a clone of the parent
5677                  * context, or of whatever the parent is a clone of.
5678                  * Note that if the parent is a clone, it could get
5679                  * uncloned at any point, but that doesn't matter
5680                  * because the list of events and the generation
5681                  * count can't have changed since we took the mutex.
5682                  */
5683                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5684                 if (cloned_ctx) {
5685                         child_ctx->parent_ctx = cloned_ctx;
5686                         child_ctx->parent_gen = parent_ctx->parent_gen;
5687                 } else {
5688                         child_ctx->parent_ctx = parent_ctx;
5689                         child_ctx->parent_gen = parent_ctx->generation;
5690                 }
5691                 get_ctx(child_ctx->parent_ctx);
5692         }
5693
5694         mutex_unlock(&parent_ctx->mutex);
5695
5696         perf_unpin_context(parent_ctx);
5697
5698         return ret;
5699 }
5700
5701 static void __init perf_event_init_all_cpus(void)
5702 {
5703         int cpu;
5704         struct perf_cpu_context *cpuctx;
5705
5706         for_each_possible_cpu(cpu) {
5707                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5708                 mutex_init(&cpuctx->hlist_mutex);
5709                 __perf_event_init_context(&cpuctx->ctx, NULL);
5710         }
5711 }
5712
5713 static void __cpuinit perf_event_init_cpu(int cpu)
5714 {
5715         struct perf_cpu_context *cpuctx;
5716
5717         cpuctx = &per_cpu(perf_cpu_context, cpu);
5718
5719         spin_lock(&perf_resource_lock);
5720         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5721         spin_unlock(&perf_resource_lock);
5722
5723         mutex_lock(&cpuctx->hlist_mutex);
5724         if (cpuctx->hlist_refcount > 0) {
5725                 struct swevent_hlist *hlist;
5726
5727                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5728                 WARN_ON_ONCE(!hlist);
5729                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5730         }
5731         mutex_unlock(&cpuctx->hlist_mutex);
5732 }
5733
5734 #ifdef CONFIG_HOTPLUG_CPU
5735 static void __perf_event_exit_cpu(void *info)
5736 {
5737         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5738         struct perf_event_context *ctx = &cpuctx->ctx;
5739         struct perf_event *event, *tmp;
5740
5741         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5742                 __perf_event_remove_from_context(event);
5743         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5744                 __perf_event_remove_from_context(event);
5745 }
5746 static void perf_event_exit_cpu(int cpu)
5747 {
5748         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5749         struct perf_event_context *ctx = &cpuctx->ctx;
5750
5751         mutex_lock(&cpuctx->hlist_mutex);
5752         swevent_hlist_release(cpuctx);
5753         mutex_unlock(&cpuctx->hlist_mutex);
5754
5755         mutex_lock(&ctx->mutex);
5756         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5757         mutex_unlock(&ctx->mutex);
5758 }
5759 #else
5760 static inline void perf_event_exit_cpu(int cpu) { }
5761 #endif
5762
5763 static int __cpuinit
5764 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5765 {
5766         unsigned int cpu = (long)hcpu;
5767
5768         switch (action & ~CPU_TASKS_FROZEN) {
5769
5770         case CPU_UP_PREPARE:
5771         case CPU_DOWN_FAILED:
5772                 perf_event_init_cpu(cpu);
5773                 break;
5774
5775         case CPU_UP_CANCELED:
5776         case CPU_DOWN_PREPARE:
5777                 perf_event_exit_cpu(cpu);
5778                 break;
5779
5780         default:
5781                 break;
5782         }
5783
5784         return NOTIFY_OK;
5785 }
5786
5787 /*
5788  * This has to have a higher priority than migration_notifier in sched.c.
5789  */
5790 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5791         .notifier_call          = perf_cpu_notify,
5792         .priority               = 20,
5793 };
5794
5795 void __init perf_event_init(void)
5796 {
5797         perf_event_init_all_cpus();
5798         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5799                         (void *)(long)smp_processor_id());
5800         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5801                         (void *)(long)smp_processor_id());
5802         register_cpu_notifier(&perf_cpu_nb);
5803 }
5804
5805 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5806                                         struct sysdev_class_attribute *attr,
5807                                         char *buf)
5808 {
5809         return sprintf(buf, "%d\n", perf_reserved_percpu);
5810 }
5811
5812 static ssize_t
5813 perf_set_reserve_percpu(struct sysdev_class *class,
5814                         struct sysdev_class_attribute *attr,
5815                         const char *buf,
5816                         size_t count)
5817 {
5818         struct perf_cpu_context *cpuctx;
5819         unsigned long val;
5820         int err, cpu, mpt;
5821
5822         err = strict_strtoul(buf, 10, &val);
5823         if (err)
5824                 return err;
5825         if (val > perf_max_events)
5826                 return -EINVAL;
5827
5828         spin_lock(&perf_resource_lock);
5829         perf_reserved_percpu = val;
5830         for_each_online_cpu(cpu) {
5831                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5832                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5833                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5834                           perf_max_events - perf_reserved_percpu);
5835                 cpuctx->max_pertask = mpt;
5836                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5837         }
5838         spin_unlock(&perf_resource_lock);
5839
5840         return count;
5841 }
5842
5843 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5844                                     struct sysdev_class_attribute *attr,
5845                                     char *buf)
5846 {
5847         return sprintf(buf, "%d\n", perf_overcommit);
5848 }
5849
5850 static ssize_t
5851 perf_set_overcommit(struct sysdev_class *class,
5852                     struct sysdev_class_attribute *attr,
5853                     const char *buf, size_t count)
5854 {
5855         unsigned long val;
5856         int err;
5857
5858         err = strict_strtoul(buf, 10, &val);
5859         if (err)
5860                 return err;
5861         if (val > 1)
5862                 return -EINVAL;
5863
5864         spin_lock(&perf_resource_lock);
5865         perf_overcommit = val;
5866         spin_unlock(&perf_resource_lock);
5867
5868         return count;
5869 }
5870
5871 static SYSDEV_CLASS_ATTR(
5872                                 reserve_percpu,
5873                                 0644,
5874                                 perf_show_reserve_percpu,
5875                                 perf_set_reserve_percpu
5876                         );
5877
5878 static SYSDEV_CLASS_ATTR(
5879                                 overcommit,
5880                                 0644,
5881                                 perf_show_overcommit,
5882                                 perf_set_overcommit
5883                         );
5884
5885 static struct attribute *perfclass_attrs[] = {
5886         &attr_reserve_percpu.attr,
5887         &attr_overcommit.attr,
5888         NULL
5889 };
5890
5891 static struct attribute_group perfclass_attr_group = {
5892         .attrs                  = perfclass_attrs,
5893         .name                   = "perf_events",
5894 };
5895
5896 static int __init perf_event_sysfs_init(void)
5897 {
5898         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5899                                   &perfclass_attr_group);
5900 }
5901 device_initcall(perf_event_sysfs_init);