]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: store adjusted dotclock in adjusted_mode->clock
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62 };
63
64 /* FDI */
65 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
66
67 int
68 intel_pch_rawclk(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         WARN_ON(!HAS_PCH_SPLIT(dev));
73
74         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
75 }
76
77 static inline u32 /* units of 100MHz */
78 intel_fdi_link_freq(struct drm_device *dev)
79 {
80         if (IS_GEN5(dev)) {
81                 struct drm_i915_private *dev_priv = dev->dev_private;
82                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
83         } else
84                 return 27;
85 }
86
87 static const intel_limit_t intel_limits_i8xx_dvo = {
88         .dot = { .min = 25000, .max = 350000 },
89         .vco = { .min = 930000, .max = 1400000 },
90         .n = { .min = 3, .max = 16 },
91         .m = { .min = 96, .max = 140 },
92         .m1 = { .min = 18, .max = 26 },
93         .m2 = { .min = 6, .max = 16 },
94         .p = { .min = 4, .max = 128 },
95         .p1 = { .min = 2, .max = 33 },
96         .p2 = { .dot_limit = 165000,
97                 .p2_slow = 4, .p2_fast = 2 },
98 };
99
100 static const intel_limit_t intel_limits_i8xx_lvds = {
101         .dot = { .min = 25000, .max = 350000 },
102         .vco = { .min = 930000, .max = 1400000 },
103         .n = { .min = 3, .max = 16 },
104         .m = { .min = 96, .max = 140 },
105         .m1 = { .min = 18, .max = 26 },
106         .m2 = { .min = 6, .max = 16 },
107         .p = { .min = 4, .max = 128 },
108         .p1 = { .min = 1, .max = 6 },
109         .p2 = { .dot_limit = 165000,
110                 .p2_slow = 14, .p2_fast = 7 },
111 };
112
113 static const intel_limit_t intel_limits_i9xx_sdvo = {
114         .dot = { .min = 20000, .max = 400000 },
115         .vco = { .min = 1400000, .max = 2800000 },
116         .n = { .min = 1, .max = 6 },
117         .m = { .min = 70, .max = 120 },
118         .m1 = { .min = 8, .max = 18 },
119         .m2 = { .min = 3, .max = 7 },
120         .p = { .min = 5, .max = 80 },
121         .p1 = { .min = 1, .max = 8 },
122         .p2 = { .dot_limit = 200000,
123                 .p2_slow = 10, .p2_fast = 5 },
124 };
125
126 static const intel_limit_t intel_limits_i9xx_lvds = {
127         .dot = { .min = 20000, .max = 400000 },
128         .vco = { .min = 1400000, .max = 2800000 },
129         .n = { .min = 1, .max = 6 },
130         .m = { .min = 70, .max = 120 },
131         .m1 = { .min = 8, .max = 18 },
132         .m2 = { .min = 3, .max = 7 },
133         .p = { .min = 7, .max = 98 },
134         .p1 = { .min = 1, .max = 8 },
135         .p2 = { .dot_limit = 112000,
136                 .p2_slow = 14, .p2_fast = 7 },
137 };
138
139
140 static const intel_limit_t intel_limits_g4x_sdvo = {
141         .dot = { .min = 25000, .max = 270000 },
142         .vco = { .min = 1750000, .max = 3500000},
143         .n = { .min = 1, .max = 4 },
144         .m = { .min = 104, .max = 138 },
145         .m1 = { .min = 17, .max = 23 },
146         .m2 = { .min = 5, .max = 11 },
147         .p = { .min = 10, .max = 30 },
148         .p1 = { .min = 1, .max = 3},
149         .p2 = { .dot_limit = 270000,
150                 .p2_slow = 10,
151                 .p2_fast = 10
152         },
153 };
154
155 static const intel_limit_t intel_limits_g4x_hdmi = {
156         .dot = { .min = 22000, .max = 400000 },
157         .vco = { .min = 1750000, .max = 3500000},
158         .n = { .min = 1, .max = 4 },
159         .m = { .min = 104, .max = 138 },
160         .m1 = { .min = 16, .max = 23 },
161         .m2 = { .min = 5, .max = 11 },
162         .p = { .min = 5, .max = 80 },
163         .p1 = { .min = 1, .max = 8},
164         .p2 = { .dot_limit = 165000,
165                 .p2_slow = 10, .p2_fast = 5 },
166 };
167
168 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
169         .dot = { .min = 20000, .max = 115000 },
170         .vco = { .min = 1750000, .max = 3500000 },
171         .n = { .min = 1, .max = 3 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 28, .max = 112 },
176         .p1 = { .min = 2, .max = 8 },
177         .p2 = { .dot_limit = 0,
178                 .p2_slow = 14, .p2_fast = 14
179         },
180 };
181
182 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
183         .dot = { .min = 80000, .max = 224000 },
184         .vco = { .min = 1750000, .max = 3500000 },
185         .n = { .min = 1, .max = 3 },
186         .m = { .min = 104, .max = 138 },
187         .m1 = { .min = 17, .max = 23 },
188         .m2 = { .min = 5, .max = 11 },
189         .p = { .min = 14, .max = 42 },
190         .p1 = { .min = 2, .max = 6 },
191         .p2 = { .dot_limit = 0,
192                 .p2_slow = 7, .p2_fast = 7
193         },
194 };
195
196 static const intel_limit_t intel_limits_pineview_sdvo = {
197         .dot = { .min = 20000, .max = 400000},
198         .vco = { .min = 1700000, .max = 3500000 },
199         /* Pineview's Ncounter is a ring counter */
200         .n = { .min = 3, .max = 6 },
201         .m = { .min = 2, .max = 256 },
202         /* Pineview only has one combined m divider, which we treat as m2. */
203         .m1 = { .min = 0, .max = 0 },
204         .m2 = { .min = 0, .max = 254 },
205         .p = { .min = 5, .max = 80 },
206         .p1 = { .min = 1, .max = 8 },
207         .p2 = { .dot_limit = 200000,
208                 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_pineview_lvds = {
212         .dot = { .min = 20000, .max = 400000 },
213         .vco = { .min = 1700000, .max = 3500000 },
214         .n = { .min = 3, .max = 6 },
215         .m = { .min = 2, .max = 256 },
216         .m1 = { .min = 0, .max = 0 },
217         .m2 = { .min = 0, .max = 254 },
218         .p = { .min = 7, .max = 112 },
219         .p1 = { .min = 1, .max = 8 },
220         .p2 = { .dot_limit = 112000,
221                 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 /* Ironlake / Sandybridge
225  *
226  * We calculate clock using (register_value + 2) for N/M1/M2, so here
227  * the range value for them is (actual_value - 2).
228  */
229 static const intel_limit_t intel_limits_ironlake_dac = {
230         .dot = { .min = 25000, .max = 350000 },
231         .vco = { .min = 1760000, .max = 3510000 },
232         .n = { .min = 1, .max = 5 },
233         .m = { .min = 79, .max = 127 },
234         .m1 = { .min = 12, .max = 22 },
235         .m2 = { .min = 5, .max = 9 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 225000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_ironlake_single_lvds = {
243         .dot = { .min = 25000, .max = 350000 },
244         .vco = { .min = 1760000, .max = 3510000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 79, .max = 118 },
247         .m1 = { .min = 12, .max = 22 },
248         .m2 = { .min = 5, .max = 9 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 225000,
252                 .p2_slow = 14, .p2_fast = 14 },
253 };
254
255 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
256         .dot = { .min = 25000, .max = 350000 },
257         .vco = { .min = 1760000, .max = 3510000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 79, .max = 127 },
260         .m1 = { .min = 12, .max = 22 },
261         .m2 = { .min = 5, .max = 9 },
262         .p = { .min = 14, .max = 56 },
263         .p1 = { .min = 2, .max = 8 },
264         .p2 = { .dot_limit = 225000,
265                 .p2_slow = 7, .p2_fast = 7 },
266 };
267
268 /* LVDS 100mhz refclk limits. */
269 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
270         .dot = { .min = 25000, .max = 350000 },
271         .vco = { .min = 1760000, .max = 3510000 },
272         .n = { .min = 1, .max = 2 },
273         .m = { .min = 79, .max = 126 },
274         .m1 = { .min = 12, .max = 22 },
275         .m2 = { .min = 5, .max = 9 },
276         .p = { .min = 28, .max = 112 },
277         .p1 = { .min = 2, .max = 8 },
278         .p2 = { .dot_limit = 225000,
279                 .p2_slow = 14, .p2_fast = 14 },
280 };
281
282 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 3 },
286         .m = { .min = 79, .max = 126 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 14, .max = 42 },
290         .p1 = { .min = 2, .max = 6 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 7, .p2_fast = 7 },
293 };
294
295 static const intel_limit_t intel_limits_vlv_dac = {
296         .dot = { .min = 25000, .max = 270000 },
297         .vco = { .min = 4000000, .max = 6000000 },
298         .n = { .min = 1, .max = 7 },
299         .m = { .min = 22, .max = 450 }, /* guess */
300         .m1 = { .min = 2, .max = 3 },
301         .m2 = { .min = 11, .max = 156 },
302         .p = { .min = 10, .max = 30 },
303         .p1 = { .min = 1, .max = 3 },
304         .p2 = { .dot_limit = 270000,
305                 .p2_slow = 2, .p2_fast = 20 },
306 };
307
308 static const intel_limit_t intel_limits_vlv_hdmi = {
309         .dot = { .min = 25000, .max = 270000 },
310         .vco = { .min = 4000000, .max = 6000000 },
311         .n = { .min = 1, .max = 7 },
312         .m = { .min = 60, .max = 300 }, /* guess */
313         .m1 = { .min = 2, .max = 3 },
314         .m2 = { .min = 11, .max = 156 },
315         .p = { .min = 10, .max = 30 },
316         .p1 = { .min = 2, .max = 3 },
317         .p2 = { .dot_limit = 270000,
318                 .p2_slow = 2, .p2_fast = 20 },
319 };
320
321 static const intel_limit_t intel_limits_vlv_dp = {
322         .dot = { .min = 25000, .max = 270000 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m = { .min = 22, .max = 450 },
326         .m1 = { .min = 2, .max = 3 },
327         .m2 = { .min = 11, .max = 156 },
328         .p = { .min = 10, .max = 30 },
329         .p1 = { .min = 1, .max = 3 },
330         .p2 = { .dot_limit = 270000,
331                 .p2_slow = 2, .p2_fast = 20 },
332 };
333
334 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
335                                                 int refclk)
336 {
337         struct drm_device *dev = crtc->dev;
338         const intel_limit_t *limit;
339
340         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
341                 if (intel_is_dual_link_lvds(dev)) {
342                         if (refclk == 100000)
343                                 limit = &intel_limits_ironlake_dual_lvds_100m;
344                         else
345                                 limit = &intel_limits_ironlake_dual_lvds;
346                 } else {
347                         if (refclk == 100000)
348                                 limit = &intel_limits_ironlake_single_lvds_100m;
349                         else
350                                 limit = &intel_limits_ironlake_single_lvds;
351                 }
352         } else
353                 limit = &intel_limits_ironlake_dac;
354
355         return limit;
356 }
357
358 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
359 {
360         struct drm_device *dev = crtc->dev;
361         const intel_limit_t *limit;
362
363         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
364                 if (intel_is_dual_link_lvds(dev))
365                         limit = &intel_limits_g4x_dual_channel_lvds;
366                 else
367                         limit = &intel_limits_g4x_single_channel_lvds;
368         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
369                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
370                 limit = &intel_limits_g4x_hdmi;
371         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
372                 limit = &intel_limits_g4x_sdvo;
373         } else /* The option is for other outputs */
374                 limit = &intel_limits_i9xx_sdvo;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (HAS_PCH_SPLIT(dev))
385                 limit = intel_ironlake_limit(crtc, refclk);
386         else if (IS_G4X(dev)) {
387                 limit = intel_g4x_limit(crtc);
388         } else if (IS_PINEVIEW(dev)) {
389                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
390                         limit = &intel_limits_pineview_lvds;
391                 else
392                         limit = &intel_limits_pineview_sdvo;
393         } else if (IS_VALLEYVIEW(dev)) {
394                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
395                         limit = &intel_limits_vlv_dac;
396                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
397                         limit = &intel_limits_vlv_hdmi;
398                 else
399                         limit = &intel_limits_vlv_dp;
400         } else if (!IS_GEN2(dev)) {
401                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
402                         limit = &intel_limits_i9xx_lvds;
403                 else
404                         limit = &intel_limits_i9xx_sdvo;
405         } else {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_i8xx_lvds;
408                 else
409                         limit = &intel_limits_i8xx_dvo;
410         }
411         return limit;
412 }
413
414 /* m1 is reserved as 0 in Pineview, n is a ring counter */
415 static void pineview_clock(int refclk, intel_clock_t *clock)
416 {
417         clock->m = clock->m2 + 2;
418         clock->p = clock->p1 * clock->p2;
419         clock->vco = refclk * clock->m / clock->n;
420         clock->dot = clock->vco / clock->p;
421 }
422
423 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
424 {
425         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
426 }
427
428 static void i9xx_clock(int refclk, intel_clock_t *clock)
429 {
430         clock->m = i9xx_dpll_compute_m(clock);
431         clock->p = clock->p1 * clock->p2;
432         clock->vco = refclk * clock->m / (clock->n + 2);
433         clock->dot = clock->vco / clock->p;
434 }
435
436 /**
437  * Returns whether any output on the specified pipe is of the specified type
438  */
439 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
440 {
441         struct drm_device *dev = crtc->dev;
442         struct intel_encoder *encoder;
443
444         for_each_encoder_on_crtc(dev, crtc, encoder)
445                 if (encoder->type == type)
446                         return true;
447
448         return false;
449 }
450
451 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
452 /**
453  * Returns whether the given set of divisors are valid for a given refclk with
454  * the given connectors.
455  */
456
457 static bool intel_PLL_is_valid(struct drm_device *dev,
458                                const intel_limit_t *limit,
459                                const intel_clock_t *clock)
460 {
461         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
462                 INTELPllInvalid("p1 out of range\n");
463         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
464                 INTELPllInvalid("p out of range\n");
465         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
466                 INTELPllInvalid("m2 out of range\n");
467         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
468                 INTELPllInvalid("m1 out of range\n");
469         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
470                 INTELPllInvalid("m1 <= m2\n");
471         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
472                 INTELPllInvalid("m out of range\n");
473         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
474                 INTELPllInvalid("n out of range\n");
475         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
476                 INTELPllInvalid("vco out of range\n");
477         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
478          * connector, etc., rather than just a single range.
479          */
480         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
481                 INTELPllInvalid("dot out of range\n");
482
483         return true;
484 }
485
486 static bool
487 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
488                     int target, int refclk, intel_clock_t *match_clock,
489                     intel_clock_t *best_clock)
490 {
491         struct drm_device *dev = crtc->dev;
492         intel_clock_t clock;
493         int err = target;
494
495         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496                 /*
497                  * For LVDS just rely on its current settings for dual-channel.
498                  * We haven't figured out how to reliably set up different
499                  * single/dual channel state, if we even can.
500                  */
501                 if (intel_is_dual_link_lvds(dev))
502                         clock.p2 = limit->p2.p2_fast;
503                 else
504                         clock.p2 = limit->p2.p2_slow;
505         } else {
506                 if (target < limit->p2.dot_limit)
507                         clock.p2 = limit->p2.p2_slow;
508                 else
509                         clock.p2 = limit->p2.p2_fast;
510         }
511
512         memset(best_clock, 0, sizeof(*best_clock));
513
514         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
515              clock.m1++) {
516                 for (clock.m2 = limit->m2.min;
517                      clock.m2 <= limit->m2.max; clock.m2++) {
518                         if (clock.m2 >= clock.m1)
519                                 break;
520                         for (clock.n = limit->n.min;
521                              clock.n <= limit->n.max; clock.n++) {
522                                 for (clock.p1 = limit->p1.min;
523                                         clock.p1 <= limit->p1.max; clock.p1++) {
524                                         int this_err;
525
526                                         i9xx_clock(refclk, &clock);
527                                         if (!intel_PLL_is_valid(dev, limit,
528                                                                 &clock))
529                                                 continue;
530                                         if (match_clock &&
531                                             clock.p != match_clock->p)
532                                                 continue;
533
534                                         this_err = abs(clock.dot - target);
535                                         if (this_err < err) {
536                                                 *best_clock = clock;
537                                                 err = this_err;
538                                         }
539                                 }
540                         }
541                 }
542         }
543
544         return (err != target);
545 }
546
547 static bool
548 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
549                    int target, int refclk, intel_clock_t *match_clock,
550                    intel_clock_t *best_clock)
551 {
552         struct drm_device *dev = crtc->dev;
553         intel_clock_t clock;
554         int err = target;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 /*
558                  * For LVDS just rely on its current settings for dual-channel.
559                  * We haven't figured out how to reliably set up different
560                  * single/dual channel state, if we even can.
561                  */
562                 if (intel_is_dual_link_lvds(dev))
563                         clock.p2 = limit->p2.p2_fast;
564                 else
565                         clock.p2 = limit->p2.p2_slow;
566         } else {
567                 if (target < limit->p2.dot_limit)
568                         clock.p2 = limit->p2.p2_slow;
569                 else
570                         clock.p2 = limit->p2.p2_fast;
571         }
572
573         memset(best_clock, 0, sizeof(*best_clock));
574
575         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
576              clock.m1++) {
577                 for (clock.m2 = limit->m2.min;
578                      clock.m2 <= limit->m2.max; clock.m2++) {
579                         for (clock.n = limit->n.min;
580                              clock.n <= limit->n.max; clock.n++) {
581                                 for (clock.p1 = limit->p1.min;
582                                         clock.p1 <= limit->p1.max; clock.p1++) {
583                                         int this_err;
584
585                                         pineview_clock(refclk, &clock);
586                                         if (!intel_PLL_is_valid(dev, limit,
587                                                                 &clock))
588                                                 continue;
589                                         if (match_clock &&
590                                             clock.p != match_clock->p)
591                                                 continue;
592
593                                         this_err = abs(clock.dot - target);
594                                         if (this_err < err) {
595                                                 *best_clock = clock;
596                                                 err = this_err;
597                                         }
598                                 }
599                         }
600                 }
601         }
602
603         return (err != target);
604 }
605
606 static bool
607 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
608                    int target, int refclk, intel_clock_t *match_clock,
609                    intel_clock_t *best_clock)
610 {
611         struct drm_device *dev = crtc->dev;
612         intel_clock_t clock;
613         int max_n;
614         bool found;
615         /* approximately equals target * 0.00585 */
616         int err_most = (target >> 8) + (target >> 9);
617         found = false;
618
619         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
620                 if (intel_is_dual_link_lvds(dev))
621                         clock.p2 = limit->p2.p2_fast;
622                 else
623                         clock.p2 = limit->p2.p2_slow;
624         } else {
625                 if (target < limit->p2.dot_limit)
626                         clock.p2 = limit->p2.p2_slow;
627                 else
628                         clock.p2 = limit->p2.p2_fast;
629         }
630
631         memset(best_clock, 0, sizeof(*best_clock));
632         max_n = limit->n.max;
633         /* based on hardware requirement, prefer smaller n to precision */
634         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
635                 /* based on hardware requirement, prefere larger m1,m2 */
636                 for (clock.m1 = limit->m1.max;
637                      clock.m1 >= limit->m1.min; clock.m1--) {
638                         for (clock.m2 = limit->m2.max;
639                              clock.m2 >= limit->m2.min; clock.m2--) {
640                                 for (clock.p1 = limit->p1.max;
641                                      clock.p1 >= limit->p1.min; clock.p1--) {
642                                         int this_err;
643
644                                         i9xx_clock(refclk, &clock);
645                                         if (!intel_PLL_is_valid(dev, limit,
646                                                                 &clock))
647                                                 continue;
648
649                                         this_err = abs(clock.dot - target);
650                                         if (this_err < err_most) {
651                                                 *best_clock = clock;
652                                                 err_most = this_err;
653                                                 max_n = clock.n;
654                                                 found = true;
655                                         }
656                                 }
657                         }
658                 }
659         }
660         return found;
661 }
662
663 static bool
664 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
665                    int target, int refclk, intel_clock_t *match_clock,
666                    intel_clock_t *best_clock)
667 {
668         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
669         u32 m, n, fastclk;
670         u32 updrate, minupdate, fracbits, p;
671         unsigned long bestppm, ppm, absppm;
672         int dotclk, flag;
673
674         flag = 0;
675         dotclk = target * 1000;
676         bestppm = 1000000;
677         ppm = absppm = 0;
678         fastclk = dotclk / (2*100);
679         updrate = 0;
680         minupdate = 19200;
681         fracbits = 1;
682         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
683         bestm1 = bestm2 = bestp1 = bestp2 = 0;
684
685         /* based on hardware requirement, prefer smaller n to precision */
686         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
687                 updrate = refclk / n;
688                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
689                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
690                                 if (p2 > 10)
691                                         p2 = p2 - 1;
692                                 p = p1 * p2;
693                                 /* based on hardware requirement, prefer bigger m1,m2 values */
694                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
695                                         m2 = (((2*(fastclk * p * n / m1 )) +
696                                                refclk) / (2*refclk));
697                                         m = m1 * m2;
698                                         vco = updrate * m;
699                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
700                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
701                                                 absppm = (ppm > 0) ? ppm : (-ppm);
702                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
703                                                         bestppm = 0;
704                                                         flag = 1;
705                                                 }
706                                                 if (absppm < bestppm - 10) {
707                                                         bestppm = absppm;
708                                                         flag = 1;
709                                                 }
710                                                 if (flag) {
711                                                         bestn = n;
712                                                         bestm1 = m1;
713                                                         bestm2 = m2;
714                                                         bestp1 = p1;
715                                                         bestp2 = p2;
716                                                         flag = 0;
717                                                 }
718                                         }
719                                 }
720                         }
721                 }
722         }
723         best_clock->n = bestn;
724         best_clock->m1 = bestm1;
725         best_clock->m2 = bestm2;
726         best_clock->p1 = bestp1;
727         best_clock->p2 = bestp2;
728
729         return true;
730 }
731
732 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
733                                              enum pipe pipe)
734 {
735         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         return intel_crtc->config.cpu_transcoder;
739 }
740
741 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
742 {
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         u32 frame, frame_reg = PIPEFRAME(pipe);
745
746         frame = I915_READ(frame_reg);
747
748         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
749                 DRM_DEBUG_KMS("vblank wait timed out\n");
750 }
751
752 /**
753  * intel_wait_for_vblank - wait for vblank on a given pipe
754  * @dev: drm device
755  * @pipe: pipe to wait for
756  *
757  * Wait for vblank to occur on a given pipe.  Needed for various bits of
758  * mode setting code.
759  */
760 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         int pipestat_reg = PIPESTAT(pipe);
764
765         if (INTEL_INFO(dev)->gen >= 5) {
766                 ironlake_wait_for_vblank(dev, pipe);
767                 return;
768         }
769
770         /* Clear existing vblank status. Note this will clear any other
771          * sticky status fields as well.
772          *
773          * This races with i915_driver_irq_handler() with the result
774          * that either function could miss a vblank event.  Here it is not
775          * fatal, as we will either wait upon the next vblank interrupt or
776          * timeout.  Generally speaking intel_wait_for_vblank() is only
777          * called during modeset at which time the GPU should be idle and
778          * should *not* be performing page flips and thus not waiting on
779          * vblanks...
780          * Currently, the result of us stealing a vblank from the irq
781          * handler is that a single frame will be skipped during swapbuffers.
782          */
783         I915_WRITE(pipestat_reg,
784                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
785
786         /* Wait for vblank interrupt bit to set */
787         if (wait_for(I915_READ(pipestat_reg) &
788                      PIPE_VBLANK_INTERRUPT_STATUS,
789                      50))
790                 DRM_DEBUG_KMS("vblank wait timed out\n");
791 }
792
793 /*
794  * intel_wait_for_pipe_off - wait for pipe to turn off
795  * @dev: drm device
796  * @pipe: pipe to wait for
797  *
798  * After disabling a pipe, we can't wait for vblank in the usual way,
799  * spinning on the vblank interrupt status bit, since we won't actually
800  * see an interrupt when the pipe is disabled.
801  *
802  * On Gen4 and above:
803  *   wait for the pipe register state bit to turn off
804  *
805  * Otherwise:
806  *   wait for the display line value to settle (it usually
807  *   ends up stopping at the start of the next frame).
808  *
809  */
810 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
811 {
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
814                                                                       pipe);
815
816         if (INTEL_INFO(dev)->gen >= 4) {
817                 int reg = PIPECONF(cpu_transcoder);
818
819                 /* Wait for the Pipe State to go off */
820                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
821                              100))
822                         WARN(1, "pipe_off wait timed out\n");
823         } else {
824                 u32 last_line, line_mask;
825                 int reg = PIPEDSL(pipe);
826                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
827
828                 if (IS_GEN2(dev))
829                         line_mask = DSL_LINEMASK_GEN2;
830                 else
831                         line_mask = DSL_LINEMASK_GEN3;
832
833                 /* Wait for the display line to settle */
834                 do {
835                         last_line = I915_READ(reg) & line_mask;
836                         mdelay(5);
837                 } while (((I915_READ(reg) & line_mask) != last_line) &&
838                          time_after(timeout, jiffies));
839                 if (time_after(jiffies, timeout))
840                         WARN(1, "pipe_off wait timed out\n");
841         }
842 }
843
844 /*
845  * ibx_digital_port_connected - is the specified port connected?
846  * @dev_priv: i915 private structure
847  * @port: the port to test
848  *
849  * Returns true if @port is connected, false otherwise.
850  */
851 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
852                                 struct intel_digital_port *port)
853 {
854         u32 bit;
855
856         if (HAS_PCH_IBX(dev_priv->dev)) {
857                 switch(port->port) {
858                 case PORT_B:
859                         bit = SDE_PORTB_HOTPLUG;
860                         break;
861                 case PORT_C:
862                         bit = SDE_PORTC_HOTPLUG;
863                         break;
864                 case PORT_D:
865                         bit = SDE_PORTD_HOTPLUG;
866                         break;
867                 default:
868                         return true;
869                 }
870         } else {
871                 switch(port->port) {
872                 case PORT_B:
873                         bit = SDE_PORTB_HOTPLUG_CPT;
874                         break;
875                 case PORT_C:
876                         bit = SDE_PORTC_HOTPLUG_CPT;
877                         break;
878                 case PORT_D:
879                         bit = SDE_PORTD_HOTPLUG_CPT;
880                         break;
881                 default:
882                         return true;
883                 }
884         }
885
886         return I915_READ(SDEISR) & bit;
887 }
888
889 static const char *state_string(bool enabled)
890 {
891         return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 static void assert_pll(struct drm_i915_private *dev_priv,
896                        enum pipe pipe, bool state)
897 {
898         int reg;
899         u32 val;
900         bool cur_state;
901
902         reg = DPLL(pipe);
903         val = I915_READ(reg);
904         cur_state = !!(val & DPLL_VCO_ENABLE);
905         WARN(cur_state != state,
906              "PLL state assertion failure (expected %s, current %s)\n",
907              state_string(state), state_string(cur_state));
908 }
909 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
910 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
911
912 /* For ILK+ */
913 static void assert_pch_pll(struct drm_i915_private *dev_priv,
914                            struct intel_pch_pll *pll,
915                            struct intel_crtc *crtc,
916                            bool state)
917 {
918         u32 val;
919         bool cur_state;
920
921         if (HAS_PCH_LPT(dev_priv->dev)) {
922                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
923                 return;
924         }
925
926         if (WARN (!pll,
927                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
928                 return;
929
930         val = I915_READ(pll->pll_reg);
931         cur_state = !!(val & DPLL_VCO_ENABLE);
932         WARN(cur_state != state,
933              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
934              pll->pll_reg, state_string(state), state_string(cur_state), val);
935
936         /* Make sure the selected PLL is correctly attached to the transcoder */
937         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
938                 u32 pch_dpll;
939
940                 pch_dpll = I915_READ(PCH_DPLL_SEL);
941                 cur_state = pll->pll_reg == _PCH_DPLL_B;
942                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
943                           "PLL[%d] not attached to this transcoder %c: %08x\n",
944                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
945                         cur_state = !!(val >> (4*crtc->pipe + 3));
946                         WARN(cur_state != state,
947                              "PLL[%d] not %s on this transcoder %c: %08x\n",
948                              pll->pll_reg == _PCH_DPLL_B,
949                              state_string(state),
950                              pipe_name(crtc->pipe),
951                              val);
952                 }
953         }
954 }
955 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
956 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
957
958 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
959                           enum pipe pipe, bool state)
960 {
961         int reg;
962         u32 val;
963         bool cur_state;
964         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
965                                                                       pipe);
966
967         if (HAS_DDI(dev_priv->dev)) {
968                 /* DDI does not have a specific FDI_TX register */
969                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
970                 val = I915_READ(reg);
971                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
972         } else {
973                 reg = FDI_TX_CTL(pipe);
974                 val = I915_READ(reg);
975                 cur_state = !!(val & FDI_TX_ENABLE);
976         }
977         WARN(cur_state != state,
978              "FDI TX state assertion failure (expected %s, current %s)\n",
979              state_string(state), state_string(cur_state));
980 }
981 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
982 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
983
984 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
985                           enum pipe pipe, bool state)
986 {
987         int reg;
988         u32 val;
989         bool cur_state;
990
991         reg = FDI_RX_CTL(pipe);
992         val = I915_READ(reg);
993         cur_state = !!(val & FDI_RX_ENABLE);
994         WARN(cur_state != state,
995              "FDI RX state assertion failure (expected %s, current %s)\n",
996              state_string(state), state_string(cur_state));
997 }
998 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
999 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1000
1001 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1002                                       enum pipe pipe)
1003 {
1004         int reg;
1005         u32 val;
1006
1007         /* ILK FDI PLL is always enabled */
1008         if (dev_priv->info->gen == 5)
1009                 return;
1010
1011         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1012         if (HAS_DDI(dev_priv->dev))
1013                 return;
1014
1015         reg = FDI_TX_CTL(pipe);
1016         val = I915_READ(reg);
1017         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1018 }
1019
1020 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         reg = FDI_RX_CTL(pipe);
1027         val = I915_READ(reg);
1028         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1029 }
1030
1031 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1032                                   enum pipe pipe)
1033 {
1034         int pp_reg, lvds_reg;
1035         u32 val;
1036         enum pipe panel_pipe = PIPE_A;
1037         bool locked = true;
1038
1039         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1040                 pp_reg = PCH_PP_CONTROL;
1041                 lvds_reg = PCH_LVDS;
1042         } else {
1043                 pp_reg = PP_CONTROL;
1044                 lvds_reg = LVDS;
1045         }
1046
1047         val = I915_READ(pp_reg);
1048         if (!(val & PANEL_POWER_ON) ||
1049             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1050                 locked = false;
1051
1052         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1053                 panel_pipe = PIPE_B;
1054
1055         WARN(panel_pipe == pipe && locked,
1056              "panel assertion failure, pipe %c regs locked\n",
1057              pipe_name(pipe));
1058 }
1059
1060 void assert_pipe(struct drm_i915_private *dev_priv,
1061                  enum pipe pipe, bool state)
1062 {
1063         int reg;
1064         u32 val;
1065         bool cur_state;
1066         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1067                                                                       pipe);
1068
1069         /* if we need the pipe A quirk it must be always on */
1070         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1071                 state = true;
1072
1073         if (!intel_display_power_enabled(dev_priv->dev,
1074                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1075                 cur_state = false;
1076         } else {
1077                 reg = PIPECONF(cpu_transcoder);
1078                 val = I915_READ(reg);
1079                 cur_state = !!(val & PIPECONF_ENABLE);
1080         }
1081
1082         WARN(cur_state != state,
1083              "pipe %c assertion failure (expected %s, current %s)\n",
1084              pipe_name(pipe), state_string(state), state_string(cur_state));
1085 }
1086
1087 static void assert_plane(struct drm_i915_private *dev_priv,
1088                          enum plane plane, bool state)
1089 {
1090         int reg;
1091         u32 val;
1092         bool cur_state;
1093
1094         reg = DSPCNTR(plane);
1095         val = I915_READ(reg);
1096         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1097         WARN(cur_state != state,
1098              "plane %c assertion failure (expected %s, current %s)\n",
1099              plane_name(plane), state_string(state), state_string(cur_state));
1100 }
1101
1102 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1103 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1104
1105 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1106                                    enum pipe pipe)
1107 {
1108         int reg, i;
1109         u32 val;
1110         int cur_pipe;
1111
1112         /* Planes are fixed to pipes on ILK+ */
1113         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1114                 reg = DSPCNTR(pipe);
1115                 val = I915_READ(reg);
1116                 WARN((val & DISPLAY_PLANE_ENABLE),
1117                      "plane %c assertion failure, should be disabled but not\n",
1118                      plane_name(pipe));
1119                 return;
1120         }
1121
1122         /* Need to check both planes against the pipe */
1123         for (i = 0; i < 2; i++) {
1124                 reg = DSPCNTR(i);
1125                 val = I915_READ(reg);
1126                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1127                         DISPPLANE_SEL_PIPE_SHIFT;
1128                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1129                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1130                      plane_name(i), pipe_name(pipe));
1131         }
1132 }
1133
1134 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1135                                     enum pipe pipe)
1136 {
1137         int reg, i;
1138         u32 val;
1139
1140         if (!IS_VALLEYVIEW(dev_priv->dev))
1141                 return;
1142
1143         /* Need to check both planes against the pipe */
1144         for (i = 0; i < dev_priv->num_plane; i++) {
1145                 reg = SPCNTR(pipe, i);
1146                 val = I915_READ(reg);
1147                 WARN((val & SP_ENABLE),
1148                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1149                      sprite_name(pipe, i), pipe_name(pipe));
1150         }
1151 }
1152
1153 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1154 {
1155         u32 val;
1156         bool enabled;
1157
1158         if (HAS_PCH_LPT(dev_priv->dev)) {
1159                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1160                 return;
1161         }
1162
1163         val = I915_READ(PCH_DREF_CONTROL);
1164         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1165                             DREF_SUPERSPREAD_SOURCE_MASK));
1166         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1167 }
1168
1169 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1170                                            enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174         bool enabled;
1175
1176         reg = PCH_TRANSCONF(pipe);
1177         val = I915_READ(reg);
1178         enabled = !!(val & TRANS_ENABLE);
1179         WARN(enabled,
1180              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1181              pipe_name(pipe));
1182 }
1183
1184 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1185                             enum pipe pipe, u32 port_sel, u32 val)
1186 {
1187         if ((val & DP_PORT_EN) == 0)
1188                 return false;
1189
1190         if (HAS_PCH_CPT(dev_priv->dev)) {
1191                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1192                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1193                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1194                         return false;
1195         } else {
1196                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1197                         return false;
1198         }
1199         return true;
1200 }
1201
1202 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1203                               enum pipe pipe, u32 val)
1204 {
1205         if ((val & SDVO_ENABLE) == 0)
1206                 return false;
1207
1208         if (HAS_PCH_CPT(dev_priv->dev)) {
1209                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1210                         return false;
1211         } else {
1212                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1213                         return false;
1214         }
1215         return true;
1216 }
1217
1218 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1219                               enum pipe pipe, u32 val)
1220 {
1221         if ((val & LVDS_PORT_EN) == 0)
1222                 return false;
1223
1224         if (HAS_PCH_CPT(dev_priv->dev)) {
1225                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1226                         return false;
1227         } else {
1228                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1229                         return false;
1230         }
1231         return true;
1232 }
1233
1234 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1235                               enum pipe pipe, u32 val)
1236 {
1237         if ((val & ADPA_DAC_ENABLE) == 0)
1238                 return false;
1239         if (HAS_PCH_CPT(dev_priv->dev)) {
1240                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1241                         return false;
1242         } else {
1243                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1244                         return false;
1245         }
1246         return true;
1247 }
1248
1249 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1250                                    enum pipe pipe, int reg, u32 port_sel)
1251 {
1252         u32 val = I915_READ(reg);
1253         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1254              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1255              reg, pipe_name(pipe));
1256
1257         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1258              && (val & DP_PIPEB_SELECT),
1259              "IBX PCH dp port still using transcoder B\n");
1260 }
1261
1262 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1263                                      enum pipe pipe, int reg)
1264 {
1265         u32 val = I915_READ(reg);
1266         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1267              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1268              reg, pipe_name(pipe));
1269
1270         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1271              && (val & SDVO_PIPE_B_SELECT),
1272              "IBX PCH hdmi port still using transcoder B\n");
1273 }
1274
1275 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1276                                       enum pipe pipe)
1277 {
1278         int reg;
1279         u32 val;
1280
1281         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1282         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1283         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1284
1285         reg = PCH_ADPA;
1286         val = I915_READ(reg);
1287         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1288              "PCH VGA enabled on transcoder %c, should be disabled\n",
1289              pipe_name(pipe));
1290
1291         reg = PCH_LVDS;
1292         val = I915_READ(reg);
1293         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1294              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1295              pipe_name(pipe));
1296
1297         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1298         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1299         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1300 }
1301
1302 /**
1303  * intel_enable_pll - enable a PLL
1304  * @dev_priv: i915 private structure
1305  * @pipe: pipe PLL to enable
1306  *
1307  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1308  * make sure the PLL reg is writable first though, since the panel write
1309  * protect mechanism may be enabled.
1310  *
1311  * Note!  This is for pre-ILK only.
1312  *
1313  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1314  */
1315 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319
1320         assert_pipe_disabled(dev_priv, pipe);
1321
1322         /* No really, not for ILK+ */
1323         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1324
1325         /* PLL is protected by panel, make sure we can write it */
1326         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1327                 assert_panel_unlocked(dev_priv, pipe);
1328
1329         reg = DPLL(pipe);
1330         val = I915_READ(reg);
1331         val |= DPLL_VCO_ENABLE;
1332
1333         /* We do this three times for luck */
1334         I915_WRITE(reg, val);
1335         POSTING_READ(reg);
1336         udelay(150); /* wait for warmup */
1337         I915_WRITE(reg, val);
1338         POSTING_READ(reg);
1339         udelay(150); /* wait for warmup */
1340         I915_WRITE(reg, val);
1341         POSTING_READ(reg);
1342         udelay(150); /* wait for warmup */
1343 }
1344
1345 /**
1346  * intel_disable_pll - disable a PLL
1347  * @dev_priv: i915 private structure
1348  * @pipe: pipe PLL to disable
1349  *
1350  * Disable the PLL for @pipe, making sure the pipe is off first.
1351  *
1352  * Note!  This is for pre-ILK only.
1353  */
1354 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1355 {
1356         int reg;
1357         u32 val;
1358
1359         /* Don't disable pipe A or pipe A PLLs if needed */
1360         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1361                 return;
1362
1363         /* Make sure the pipe isn't still relying on us */
1364         assert_pipe_disabled(dev_priv, pipe);
1365
1366         reg = DPLL(pipe);
1367         val = I915_READ(reg);
1368         val &= ~DPLL_VCO_ENABLE;
1369         I915_WRITE(reg, val);
1370         POSTING_READ(reg);
1371 }
1372
1373 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1374 {
1375         u32 port_mask;
1376
1377         if (!port)
1378                 port_mask = DPLL_PORTB_READY_MASK;
1379         else
1380                 port_mask = DPLL_PORTC_READY_MASK;
1381
1382         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1383                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1384                      'B' + port, I915_READ(DPLL(0)));
1385 }
1386
1387 /**
1388  * ironlake_enable_pch_pll - enable PCH PLL
1389  * @dev_priv: i915 private structure
1390  * @pipe: pipe PLL to enable
1391  *
1392  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1393  * drives the transcoder clock.
1394  */
1395 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1396 {
1397         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1398         struct intel_pch_pll *pll;
1399         int reg;
1400         u32 val;
1401
1402         /* PCH PLLs only available on ILK, SNB and IVB */
1403         BUG_ON(dev_priv->info->gen < 5);
1404         pll = intel_crtc->pch_pll;
1405         if (pll == NULL)
1406                 return;
1407
1408         if (WARN_ON(pll->refcount == 0))
1409                 return;
1410
1411         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1412                       pll->pll_reg, pll->active, pll->on,
1413                       intel_crtc->base.base.id);
1414
1415         /* PCH refclock must be enabled first */
1416         assert_pch_refclk_enabled(dev_priv);
1417
1418         if (pll->active++ && pll->on) {
1419                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1420                 return;
1421         }
1422
1423         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1424
1425         reg = pll->pll_reg;
1426         val = I915_READ(reg);
1427         val |= DPLL_VCO_ENABLE;
1428         I915_WRITE(reg, val);
1429         POSTING_READ(reg);
1430         udelay(200);
1431
1432         pll->on = true;
1433 }
1434
1435 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1436 {
1437         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1438         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1439         int reg;
1440         u32 val;
1441
1442         /* PCH only available on ILK+ */
1443         BUG_ON(dev_priv->info->gen < 5);
1444         if (pll == NULL)
1445                return;
1446
1447         if (WARN_ON(pll->refcount == 0))
1448                 return;
1449
1450         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1451                       pll->pll_reg, pll->active, pll->on,
1452                       intel_crtc->base.base.id);
1453
1454         if (WARN_ON(pll->active == 0)) {
1455                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1456                 return;
1457         }
1458
1459         if (--pll->active) {
1460                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1461                 return;
1462         }
1463
1464         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1465
1466         /* Make sure transcoder isn't still depending on us */
1467         assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
1468
1469         reg = pll->pll_reg;
1470         val = I915_READ(reg);
1471         val &= ~DPLL_VCO_ENABLE;
1472         I915_WRITE(reg, val);
1473         POSTING_READ(reg);
1474         udelay(200);
1475
1476         pll->on = false;
1477 }
1478
1479 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1480                                            enum pipe pipe)
1481 {
1482         struct drm_device *dev = dev_priv->dev;
1483         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1484         uint32_t reg, val, pipeconf_val;
1485
1486         /* PCH only available on ILK+ */
1487         BUG_ON(dev_priv->info->gen < 5);
1488
1489         /* Make sure PCH DPLL is enabled */
1490         assert_pch_pll_enabled(dev_priv,
1491                                to_intel_crtc(crtc)->pch_pll,
1492                                to_intel_crtc(crtc));
1493
1494         /* FDI must be feeding us bits for PCH ports */
1495         assert_fdi_tx_enabled(dev_priv, pipe);
1496         assert_fdi_rx_enabled(dev_priv, pipe);
1497
1498         if (HAS_PCH_CPT(dev)) {
1499                 /* Workaround: Set the timing override bit before enabling the
1500                  * pch transcoder. */
1501                 reg = TRANS_CHICKEN2(pipe);
1502                 val = I915_READ(reg);
1503                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1504                 I915_WRITE(reg, val);
1505         }
1506
1507         reg = PCH_TRANSCONF(pipe);
1508         val = I915_READ(reg);
1509         pipeconf_val = I915_READ(PIPECONF(pipe));
1510
1511         if (HAS_PCH_IBX(dev_priv->dev)) {
1512                 /*
1513                  * make the BPC in transcoder be consistent with
1514                  * that in pipeconf reg.
1515                  */
1516                 val &= ~PIPECONF_BPC_MASK;
1517                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1518         }
1519
1520         val &= ~TRANS_INTERLACE_MASK;
1521         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1522                 if (HAS_PCH_IBX(dev_priv->dev) &&
1523                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1524                         val |= TRANS_LEGACY_INTERLACED_ILK;
1525                 else
1526                         val |= TRANS_INTERLACED;
1527         else
1528                 val |= TRANS_PROGRESSIVE;
1529
1530         I915_WRITE(reg, val | TRANS_ENABLE);
1531         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1532                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1533 }
1534
1535 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1536                                       enum transcoder cpu_transcoder)
1537 {
1538         u32 val, pipeconf_val;
1539
1540         /* PCH only available on ILK+ */
1541         BUG_ON(dev_priv->info->gen < 5);
1542
1543         /* FDI must be feeding us bits for PCH ports */
1544         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1545         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1546
1547         /* Workaround: set timing override bit. */
1548         val = I915_READ(_TRANSA_CHICKEN2);
1549         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1550         I915_WRITE(_TRANSA_CHICKEN2, val);
1551
1552         val = TRANS_ENABLE;
1553         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1554
1555         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1556             PIPECONF_INTERLACED_ILK)
1557                 val |= TRANS_INTERLACED;
1558         else
1559                 val |= TRANS_PROGRESSIVE;
1560
1561         I915_WRITE(LPT_TRANSCONF, val);
1562         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1563                 DRM_ERROR("Failed to enable PCH transcoder\n");
1564 }
1565
1566 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1567                                             enum pipe pipe)
1568 {
1569         struct drm_device *dev = dev_priv->dev;
1570         uint32_t reg, val;
1571
1572         /* FDI relies on the transcoder */
1573         assert_fdi_tx_disabled(dev_priv, pipe);
1574         assert_fdi_rx_disabled(dev_priv, pipe);
1575
1576         /* Ports must be off as well */
1577         assert_pch_ports_disabled(dev_priv, pipe);
1578
1579         reg = PCH_TRANSCONF(pipe);
1580         val = I915_READ(reg);
1581         val &= ~TRANS_ENABLE;
1582         I915_WRITE(reg, val);
1583         /* wait for PCH transcoder off, transcoder state */
1584         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1585                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1586
1587         if (!HAS_PCH_IBX(dev)) {
1588                 /* Workaround: Clear the timing override chicken bit again. */
1589                 reg = TRANS_CHICKEN2(pipe);
1590                 val = I915_READ(reg);
1591                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1592                 I915_WRITE(reg, val);
1593         }
1594 }
1595
1596 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1597 {
1598         u32 val;
1599
1600         val = I915_READ(LPT_TRANSCONF);
1601         val &= ~TRANS_ENABLE;
1602         I915_WRITE(LPT_TRANSCONF, val);
1603         /* wait for PCH transcoder off, transcoder state */
1604         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1605                 DRM_ERROR("Failed to disable PCH transcoder\n");
1606
1607         /* Workaround: clear timing override bit. */
1608         val = I915_READ(_TRANSA_CHICKEN2);
1609         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1610         I915_WRITE(_TRANSA_CHICKEN2, val);
1611 }
1612
1613 /**
1614  * intel_enable_pipe - enable a pipe, asserting requirements
1615  * @dev_priv: i915 private structure
1616  * @pipe: pipe to enable
1617  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1618  *
1619  * Enable @pipe, making sure that various hardware specific requirements
1620  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1621  *
1622  * @pipe should be %PIPE_A or %PIPE_B.
1623  *
1624  * Will wait until the pipe is actually running (i.e. first vblank) before
1625  * returning.
1626  */
1627 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1628                               bool pch_port)
1629 {
1630         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1631                                                                       pipe);
1632         enum pipe pch_transcoder;
1633         int reg;
1634         u32 val;
1635
1636         assert_planes_disabled(dev_priv, pipe);
1637         assert_sprites_disabled(dev_priv, pipe);
1638
1639         if (HAS_PCH_LPT(dev_priv->dev))
1640                 pch_transcoder = TRANSCODER_A;
1641         else
1642                 pch_transcoder = pipe;
1643
1644         /*
1645          * A pipe without a PLL won't actually be able to drive bits from
1646          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1647          * need the check.
1648          */
1649         if (!HAS_PCH_SPLIT(dev_priv->dev))
1650                 assert_pll_enabled(dev_priv, pipe);
1651         else {
1652                 if (pch_port) {
1653                         /* if driving the PCH, we need FDI enabled */
1654                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1655                         assert_fdi_tx_pll_enabled(dev_priv,
1656                                                   (enum pipe) cpu_transcoder);
1657                 }
1658                 /* FIXME: assert CPU port conditions for SNB+ */
1659         }
1660
1661         reg = PIPECONF(cpu_transcoder);
1662         val = I915_READ(reg);
1663         if (val & PIPECONF_ENABLE)
1664                 return;
1665
1666         I915_WRITE(reg, val | PIPECONF_ENABLE);
1667         intel_wait_for_vblank(dev_priv->dev, pipe);
1668 }
1669
1670 /**
1671  * intel_disable_pipe - disable a pipe, asserting requirements
1672  * @dev_priv: i915 private structure
1673  * @pipe: pipe to disable
1674  *
1675  * Disable @pipe, making sure that various hardware specific requirements
1676  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1677  *
1678  * @pipe should be %PIPE_A or %PIPE_B.
1679  *
1680  * Will wait until the pipe has shut down before returning.
1681  */
1682 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1683                                enum pipe pipe)
1684 {
1685         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1686                                                                       pipe);
1687         int reg;
1688         u32 val;
1689
1690         /*
1691          * Make sure planes won't keep trying to pump pixels to us,
1692          * or we might hang the display.
1693          */
1694         assert_planes_disabled(dev_priv, pipe);
1695         assert_sprites_disabled(dev_priv, pipe);
1696
1697         /* Don't disable pipe A or pipe A PLLs if needed */
1698         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1699                 return;
1700
1701         reg = PIPECONF(cpu_transcoder);
1702         val = I915_READ(reg);
1703         if ((val & PIPECONF_ENABLE) == 0)
1704                 return;
1705
1706         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1707         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1708 }
1709
1710 /*
1711  * Plane regs are double buffered, going from enabled->disabled needs a
1712  * trigger in order to latch.  The display address reg provides this.
1713  */
1714 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1715                                       enum plane plane)
1716 {
1717         if (dev_priv->info->gen >= 4)
1718                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1719         else
1720                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1721 }
1722
1723 /**
1724  * intel_enable_plane - enable a display plane on a given pipe
1725  * @dev_priv: i915 private structure
1726  * @plane: plane to enable
1727  * @pipe: pipe being fed
1728  *
1729  * Enable @plane on @pipe, making sure that @pipe is running first.
1730  */
1731 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1732                                enum plane plane, enum pipe pipe)
1733 {
1734         int reg;
1735         u32 val;
1736
1737         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1738         assert_pipe_enabled(dev_priv, pipe);
1739
1740         reg = DSPCNTR(plane);
1741         val = I915_READ(reg);
1742         if (val & DISPLAY_PLANE_ENABLE)
1743                 return;
1744
1745         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1746         intel_flush_display_plane(dev_priv, plane);
1747         intel_wait_for_vblank(dev_priv->dev, pipe);
1748 }
1749
1750 /**
1751  * intel_disable_plane - disable a display plane
1752  * @dev_priv: i915 private structure
1753  * @plane: plane to disable
1754  * @pipe: pipe consuming the data
1755  *
1756  * Disable @plane; should be an independent operation.
1757  */
1758 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1759                                 enum plane plane, enum pipe pipe)
1760 {
1761         int reg;
1762         u32 val;
1763
1764         reg = DSPCNTR(plane);
1765         val = I915_READ(reg);
1766         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1767                 return;
1768
1769         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1770         intel_flush_display_plane(dev_priv, plane);
1771         intel_wait_for_vblank(dev_priv->dev, pipe);
1772 }
1773
1774 static bool need_vtd_wa(struct drm_device *dev)
1775 {
1776 #ifdef CONFIG_INTEL_IOMMU
1777         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1778                 return true;
1779 #endif
1780         return false;
1781 }
1782
1783 int
1784 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1785                            struct drm_i915_gem_object *obj,
1786                            struct intel_ring_buffer *pipelined)
1787 {
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         u32 alignment;
1790         int ret;
1791
1792         switch (obj->tiling_mode) {
1793         case I915_TILING_NONE:
1794                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1795                         alignment = 128 * 1024;
1796                 else if (INTEL_INFO(dev)->gen >= 4)
1797                         alignment = 4 * 1024;
1798                 else
1799                         alignment = 64 * 1024;
1800                 break;
1801         case I915_TILING_X:
1802                 /* pin() will align the object as required by fence */
1803                 alignment = 0;
1804                 break;
1805         case I915_TILING_Y:
1806                 /* Despite that we check this in framebuffer_init userspace can
1807                  * screw us over and change the tiling after the fact. Only
1808                  * pinned buffers can't change their tiling. */
1809                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1810                 return -EINVAL;
1811         default:
1812                 BUG();
1813         }
1814
1815         /* Note that the w/a also requires 64 PTE of padding following the
1816          * bo. We currently fill all unused PTE with the shadow page and so
1817          * we should always have valid PTE following the scanout preventing
1818          * the VT-d warning.
1819          */
1820         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1821                 alignment = 256 * 1024;
1822
1823         dev_priv->mm.interruptible = false;
1824         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1825         if (ret)
1826                 goto err_interruptible;
1827
1828         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1829          * fence, whereas 965+ only requires a fence if using
1830          * framebuffer compression.  For simplicity, we always install
1831          * a fence as the cost is not that onerous.
1832          */
1833         ret = i915_gem_object_get_fence(obj);
1834         if (ret)
1835                 goto err_unpin;
1836
1837         i915_gem_object_pin_fence(obj);
1838
1839         dev_priv->mm.interruptible = true;
1840         return 0;
1841
1842 err_unpin:
1843         i915_gem_object_unpin(obj);
1844 err_interruptible:
1845         dev_priv->mm.interruptible = true;
1846         return ret;
1847 }
1848
1849 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1850 {
1851         i915_gem_object_unpin_fence(obj);
1852         i915_gem_object_unpin(obj);
1853 }
1854
1855 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1856  * is assumed to be a power-of-two. */
1857 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1858                                              unsigned int tiling_mode,
1859                                              unsigned int cpp,
1860                                              unsigned int pitch)
1861 {
1862         if (tiling_mode != I915_TILING_NONE) {
1863                 unsigned int tile_rows, tiles;
1864
1865                 tile_rows = *y / 8;
1866                 *y %= 8;
1867
1868                 tiles = *x / (512/cpp);
1869                 *x %= 512/cpp;
1870
1871                 return tile_rows * pitch * 8 + tiles * 4096;
1872         } else {
1873                 unsigned int offset;
1874
1875                 offset = *y * pitch + *x * cpp;
1876                 *y = 0;
1877                 *x = (offset & 4095) / cpp;
1878                 return offset & -4096;
1879         }
1880 }
1881
1882 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1883                              int x, int y)
1884 {
1885         struct drm_device *dev = crtc->dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1888         struct intel_framebuffer *intel_fb;
1889         struct drm_i915_gem_object *obj;
1890         int plane = intel_crtc->plane;
1891         unsigned long linear_offset;
1892         u32 dspcntr;
1893         u32 reg;
1894
1895         switch (plane) {
1896         case 0:
1897         case 1:
1898                 break;
1899         default:
1900                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1901                 return -EINVAL;
1902         }
1903
1904         intel_fb = to_intel_framebuffer(fb);
1905         obj = intel_fb->obj;
1906
1907         reg = DSPCNTR(plane);
1908         dspcntr = I915_READ(reg);
1909         /* Mask out pixel format bits in case we change it */
1910         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1911         switch (fb->pixel_format) {
1912         case DRM_FORMAT_C8:
1913                 dspcntr |= DISPPLANE_8BPP;
1914                 break;
1915         case DRM_FORMAT_XRGB1555:
1916         case DRM_FORMAT_ARGB1555:
1917                 dspcntr |= DISPPLANE_BGRX555;
1918                 break;
1919         case DRM_FORMAT_RGB565:
1920                 dspcntr |= DISPPLANE_BGRX565;
1921                 break;
1922         case DRM_FORMAT_XRGB8888:
1923         case DRM_FORMAT_ARGB8888:
1924                 dspcntr |= DISPPLANE_BGRX888;
1925                 break;
1926         case DRM_FORMAT_XBGR8888:
1927         case DRM_FORMAT_ABGR8888:
1928                 dspcntr |= DISPPLANE_RGBX888;
1929                 break;
1930         case DRM_FORMAT_XRGB2101010:
1931         case DRM_FORMAT_ARGB2101010:
1932                 dspcntr |= DISPPLANE_BGRX101010;
1933                 break;
1934         case DRM_FORMAT_XBGR2101010:
1935         case DRM_FORMAT_ABGR2101010:
1936                 dspcntr |= DISPPLANE_RGBX101010;
1937                 break;
1938         default:
1939                 BUG();
1940         }
1941
1942         if (INTEL_INFO(dev)->gen >= 4) {
1943                 if (obj->tiling_mode != I915_TILING_NONE)
1944                         dspcntr |= DISPPLANE_TILED;
1945                 else
1946                         dspcntr &= ~DISPPLANE_TILED;
1947         }
1948
1949         I915_WRITE(reg, dspcntr);
1950
1951         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1952
1953         if (INTEL_INFO(dev)->gen >= 4) {
1954                 intel_crtc->dspaddr_offset =
1955                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1956                                                        fb->bits_per_pixel / 8,
1957                                                        fb->pitches[0]);
1958                 linear_offset -= intel_crtc->dspaddr_offset;
1959         } else {
1960                 intel_crtc->dspaddr_offset = linear_offset;
1961         }
1962
1963         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1964                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1965         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1966         if (INTEL_INFO(dev)->gen >= 4) {
1967                 I915_MODIFY_DISPBASE(DSPSURF(plane),
1968                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
1969                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1970                 I915_WRITE(DSPLINOFF(plane), linear_offset);
1971         } else
1972                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1973         POSTING_READ(reg);
1974
1975         return 0;
1976 }
1977
1978 static int ironlake_update_plane(struct drm_crtc *crtc,
1979                                  struct drm_framebuffer *fb, int x, int y)
1980 {
1981         struct drm_device *dev = crtc->dev;
1982         struct drm_i915_private *dev_priv = dev->dev_private;
1983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1984         struct intel_framebuffer *intel_fb;
1985         struct drm_i915_gem_object *obj;
1986         int plane = intel_crtc->plane;
1987         unsigned long linear_offset;
1988         u32 dspcntr;
1989         u32 reg;
1990
1991         switch (plane) {
1992         case 0:
1993         case 1:
1994         case 2:
1995                 break;
1996         default:
1997                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1998                 return -EINVAL;
1999         }
2000
2001         intel_fb = to_intel_framebuffer(fb);
2002         obj = intel_fb->obj;
2003
2004         reg = DSPCNTR(plane);
2005         dspcntr = I915_READ(reg);
2006         /* Mask out pixel format bits in case we change it */
2007         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2008         switch (fb->pixel_format) {
2009         case DRM_FORMAT_C8:
2010                 dspcntr |= DISPPLANE_8BPP;
2011                 break;
2012         case DRM_FORMAT_RGB565:
2013                 dspcntr |= DISPPLANE_BGRX565;
2014                 break;
2015         case DRM_FORMAT_XRGB8888:
2016         case DRM_FORMAT_ARGB8888:
2017                 dspcntr |= DISPPLANE_BGRX888;
2018                 break;
2019         case DRM_FORMAT_XBGR8888:
2020         case DRM_FORMAT_ABGR8888:
2021                 dspcntr |= DISPPLANE_RGBX888;
2022                 break;
2023         case DRM_FORMAT_XRGB2101010:
2024         case DRM_FORMAT_ARGB2101010:
2025                 dspcntr |= DISPPLANE_BGRX101010;
2026                 break;
2027         case DRM_FORMAT_XBGR2101010:
2028         case DRM_FORMAT_ABGR2101010:
2029                 dspcntr |= DISPPLANE_RGBX101010;
2030                 break;
2031         default:
2032                 BUG();
2033         }
2034
2035         if (obj->tiling_mode != I915_TILING_NONE)
2036                 dspcntr |= DISPPLANE_TILED;
2037         else
2038                 dspcntr &= ~DISPPLANE_TILED;
2039
2040         /* must disable */
2041         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2042
2043         I915_WRITE(reg, dspcntr);
2044
2045         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2046         intel_crtc->dspaddr_offset =
2047                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2048                                                fb->bits_per_pixel / 8,
2049                                                fb->pitches[0]);
2050         linear_offset -= intel_crtc->dspaddr_offset;
2051
2052         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2053                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2054         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2055         I915_MODIFY_DISPBASE(DSPSURF(plane),
2056                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2057         if (IS_HASWELL(dev)) {
2058                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2059         } else {
2060                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2061                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2062         }
2063         POSTING_READ(reg);
2064
2065         return 0;
2066 }
2067
2068 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2069 static int
2070 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2071                            int x, int y, enum mode_set_atomic state)
2072 {
2073         struct drm_device *dev = crtc->dev;
2074         struct drm_i915_private *dev_priv = dev->dev_private;
2075
2076         if (dev_priv->display.disable_fbc)
2077                 dev_priv->display.disable_fbc(dev);
2078         intel_increase_pllclock(crtc);
2079
2080         return dev_priv->display.update_plane(crtc, fb, x, y);
2081 }
2082
2083 void intel_display_handle_reset(struct drm_device *dev)
2084 {
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         struct drm_crtc *crtc;
2087
2088         /*
2089          * Flips in the rings have been nuked by the reset,
2090          * so complete all pending flips so that user space
2091          * will get its events and not get stuck.
2092          *
2093          * Also update the base address of all primary
2094          * planes to the the last fb to make sure we're
2095          * showing the correct fb after a reset.
2096          *
2097          * Need to make two loops over the crtcs so that we
2098          * don't try to grab a crtc mutex before the
2099          * pending_flip_queue really got woken up.
2100          */
2101
2102         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2103                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2104                 enum plane plane = intel_crtc->plane;
2105
2106                 intel_prepare_page_flip(dev, plane);
2107                 intel_finish_page_flip_plane(dev, plane);
2108         }
2109
2110         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2111                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2112
2113                 mutex_lock(&crtc->mutex);
2114                 if (intel_crtc->active)
2115                         dev_priv->display.update_plane(crtc, crtc->fb,
2116                                                        crtc->x, crtc->y);
2117                 mutex_unlock(&crtc->mutex);
2118         }
2119 }
2120
2121 static int
2122 intel_finish_fb(struct drm_framebuffer *old_fb)
2123 {
2124         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2125         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2126         bool was_interruptible = dev_priv->mm.interruptible;
2127         int ret;
2128
2129         /* Big Hammer, we also need to ensure that any pending
2130          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2131          * current scanout is retired before unpinning the old
2132          * framebuffer.
2133          *
2134          * This should only fail upon a hung GPU, in which case we
2135          * can safely continue.
2136          */
2137         dev_priv->mm.interruptible = false;
2138         ret = i915_gem_object_finish_gpu(obj);
2139         dev_priv->mm.interruptible = was_interruptible;
2140
2141         return ret;
2142 }
2143
2144 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2145 {
2146         struct drm_device *dev = crtc->dev;
2147         struct drm_i915_master_private *master_priv;
2148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2149
2150         if (!dev->primary->master)
2151                 return;
2152
2153         master_priv = dev->primary->master->driver_priv;
2154         if (!master_priv->sarea_priv)
2155                 return;
2156
2157         switch (intel_crtc->pipe) {
2158         case 0:
2159                 master_priv->sarea_priv->pipeA_x = x;
2160                 master_priv->sarea_priv->pipeA_y = y;
2161                 break;
2162         case 1:
2163                 master_priv->sarea_priv->pipeB_x = x;
2164                 master_priv->sarea_priv->pipeB_y = y;
2165                 break;
2166         default:
2167                 break;
2168         }
2169 }
2170
2171 static int
2172 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2173                     struct drm_framebuffer *fb)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2178         struct drm_framebuffer *old_fb;
2179         int ret;
2180
2181         /* no fb bound */
2182         if (!fb) {
2183                 DRM_ERROR("No FB bound\n");
2184                 return 0;
2185         }
2186
2187         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2188                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2189                           plane_name(intel_crtc->plane),
2190                           INTEL_INFO(dev)->num_pipes);
2191                 return -EINVAL;
2192         }
2193
2194         mutex_lock(&dev->struct_mutex);
2195         ret = intel_pin_and_fence_fb_obj(dev,
2196                                          to_intel_framebuffer(fb)->obj,
2197                                          NULL);
2198         if (ret != 0) {
2199                 mutex_unlock(&dev->struct_mutex);
2200                 DRM_ERROR("pin & fence failed\n");
2201                 return ret;
2202         }
2203
2204         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2205         if (ret) {
2206                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2207                 mutex_unlock(&dev->struct_mutex);
2208                 DRM_ERROR("failed to update base address\n");
2209                 return ret;
2210         }
2211
2212         old_fb = crtc->fb;
2213         crtc->fb = fb;
2214         crtc->x = x;
2215         crtc->y = y;
2216
2217         if (old_fb) {
2218                 if (intel_crtc->active && old_fb != fb)
2219                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2220                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2221         }
2222
2223         intel_update_fbc(dev);
2224         mutex_unlock(&dev->struct_mutex);
2225
2226         intel_crtc_update_sarea_pos(crtc, x, y);
2227
2228         return 0;
2229 }
2230
2231 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2232 {
2233         struct drm_device *dev = crtc->dev;
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2236         int pipe = intel_crtc->pipe;
2237         u32 reg, temp;
2238
2239         /* enable normal train */
2240         reg = FDI_TX_CTL(pipe);
2241         temp = I915_READ(reg);
2242         if (IS_IVYBRIDGE(dev)) {
2243                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2244                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2245         } else {
2246                 temp &= ~FDI_LINK_TRAIN_NONE;
2247                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2248         }
2249         I915_WRITE(reg, temp);
2250
2251         reg = FDI_RX_CTL(pipe);
2252         temp = I915_READ(reg);
2253         if (HAS_PCH_CPT(dev)) {
2254                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2255                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2256         } else {
2257                 temp &= ~FDI_LINK_TRAIN_NONE;
2258                 temp |= FDI_LINK_TRAIN_NONE;
2259         }
2260         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2261
2262         /* wait one idle pattern time */
2263         POSTING_READ(reg);
2264         udelay(1000);
2265
2266         /* IVB wants error correction enabled */
2267         if (IS_IVYBRIDGE(dev))
2268                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2269                            FDI_FE_ERRC_ENABLE);
2270 }
2271
2272 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2273 {
2274         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2275 }
2276
2277 static void ivb_modeset_global_resources(struct drm_device *dev)
2278 {
2279         struct drm_i915_private *dev_priv = dev->dev_private;
2280         struct intel_crtc *pipe_B_crtc =
2281                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2282         struct intel_crtc *pipe_C_crtc =
2283                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2284         uint32_t temp;
2285
2286         /*
2287          * When everything is off disable fdi C so that we could enable fdi B
2288          * with all lanes. Note that we don't care about enabled pipes without
2289          * an enabled pch encoder.
2290          */
2291         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2292             !pipe_has_enabled_pch(pipe_C_crtc)) {
2293                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2294                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2295
2296                 temp = I915_READ(SOUTH_CHICKEN1);
2297                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2298                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2299                 I915_WRITE(SOUTH_CHICKEN1, temp);
2300         }
2301 }
2302
2303 /* The FDI link training functions for ILK/Ibexpeak. */
2304 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2305 {
2306         struct drm_device *dev = crtc->dev;
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2309         int pipe = intel_crtc->pipe;
2310         int plane = intel_crtc->plane;
2311         u32 reg, temp, tries;
2312
2313         /* FDI needs bits from pipe & plane first */
2314         assert_pipe_enabled(dev_priv, pipe);
2315         assert_plane_enabled(dev_priv, plane);
2316
2317         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2318            for train result */
2319         reg = FDI_RX_IMR(pipe);
2320         temp = I915_READ(reg);
2321         temp &= ~FDI_RX_SYMBOL_LOCK;
2322         temp &= ~FDI_RX_BIT_LOCK;
2323         I915_WRITE(reg, temp);
2324         I915_READ(reg);
2325         udelay(150);
2326
2327         /* enable CPU FDI TX and PCH FDI RX */
2328         reg = FDI_TX_CTL(pipe);
2329         temp = I915_READ(reg);
2330         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2331         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2332         temp &= ~FDI_LINK_TRAIN_NONE;
2333         temp |= FDI_LINK_TRAIN_PATTERN_1;
2334         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2335
2336         reg = FDI_RX_CTL(pipe);
2337         temp = I915_READ(reg);
2338         temp &= ~FDI_LINK_TRAIN_NONE;
2339         temp |= FDI_LINK_TRAIN_PATTERN_1;
2340         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2341
2342         POSTING_READ(reg);
2343         udelay(150);
2344
2345         /* Ironlake workaround, enable clock pointer after FDI enable*/
2346         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2347         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2348                    FDI_RX_PHASE_SYNC_POINTER_EN);
2349
2350         reg = FDI_RX_IIR(pipe);
2351         for (tries = 0; tries < 5; tries++) {
2352                 temp = I915_READ(reg);
2353                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2354
2355                 if ((temp & FDI_RX_BIT_LOCK)) {
2356                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2357                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2358                         break;
2359                 }
2360         }
2361         if (tries == 5)
2362                 DRM_ERROR("FDI train 1 fail!\n");
2363
2364         /* Train 2 */
2365         reg = FDI_TX_CTL(pipe);
2366         temp = I915_READ(reg);
2367         temp &= ~FDI_LINK_TRAIN_NONE;
2368         temp |= FDI_LINK_TRAIN_PATTERN_2;
2369         I915_WRITE(reg, temp);
2370
2371         reg = FDI_RX_CTL(pipe);
2372         temp = I915_READ(reg);
2373         temp &= ~FDI_LINK_TRAIN_NONE;
2374         temp |= FDI_LINK_TRAIN_PATTERN_2;
2375         I915_WRITE(reg, temp);
2376
2377         POSTING_READ(reg);
2378         udelay(150);
2379
2380         reg = FDI_RX_IIR(pipe);
2381         for (tries = 0; tries < 5; tries++) {
2382                 temp = I915_READ(reg);
2383                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2384
2385                 if (temp & FDI_RX_SYMBOL_LOCK) {
2386                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2387                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2388                         break;
2389                 }
2390         }
2391         if (tries == 5)
2392                 DRM_ERROR("FDI train 2 fail!\n");
2393
2394         DRM_DEBUG_KMS("FDI train done\n");
2395
2396 }
2397
2398 static const int snb_b_fdi_train_param[] = {
2399         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2400         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2401         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2402         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2403 };
2404
2405 /* The FDI link training functions for SNB/Cougarpoint. */
2406 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2407 {
2408         struct drm_device *dev = crtc->dev;
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2411         int pipe = intel_crtc->pipe;
2412         u32 reg, temp, i, retry;
2413
2414         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2415            for train result */
2416         reg = FDI_RX_IMR(pipe);
2417         temp = I915_READ(reg);
2418         temp &= ~FDI_RX_SYMBOL_LOCK;
2419         temp &= ~FDI_RX_BIT_LOCK;
2420         I915_WRITE(reg, temp);
2421
2422         POSTING_READ(reg);
2423         udelay(150);
2424
2425         /* enable CPU FDI TX and PCH FDI RX */
2426         reg = FDI_TX_CTL(pipe);
2427         temp = I915_READ(reg);
2428         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2429         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2430         temp &= ~FDI_LINK_TRAIN_NONE;
2431         temp |= FDI_LINK_TRAIN_PATTERN_1;
2432         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2433         /* SNB-B */
2434         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2435         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2436
2437         I915_WRITE(FDI_RX_MISC(pipe),
2438                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2439
2440         reg = FDI_RX_CTL(pipe);
2441         temp = I915_READ(reg);
2442         if (HAS_PCH_CPT(dev)) {
2443                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2444                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2445         } else {
2446                 temp &= ~FDI_LINK_TRAIN_NONE;
2447                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448         }
2449         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2450
2451         POSTING_READ(reg);
2452         udelay(150);
2453
2454         for (i = 0; i < 4; i++) {
2455                 reg = FDI_TX_CTL(pipe);
2456                 temp = I915_READ(reg);
2457                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2458                 temp |= snb_b_fdi_train_param[i];
2459                 I915_WRITE(reg, temp);
2460
2461                 POSTING_READ(reg);
2462                 udelay(500);
2463
2464                 for (retry = 0; retry < 5; retry++) {
2465                         reg = FDI_RX_IIR(pipe);
2466                         temp = I915_READ(reg);
2467                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2468                         if (temp & FDI_RX_BIT_LOCK) {
2469                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2470                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2471                                 break;
2472                         }
2473                         udelay(50);
2474                 }
2475                 if (retry < 5)
2476                         break;
2477         }
2478         if (i == 4)
2479                 DRM_ERROR("FDI train 1 fail!\n");
2480
2481         /* Train 2 */
2482         reg = FDI_TX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         temp &= ~FDI_LINK_TRAIN_NONE;
2485         temp |= FDI_LINK_TRAIN_PATTERN_2;
2486         if (IS_GEN6(dev)) {
2487                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2488                 /* SNB-B */
2489                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2490         }
2491         I915_WRITE(reg, temp);
2492
2493         reg = FDI_RX_CTL(pipe);
2494         temp = I915_READ(reg);
2495         if (HAS_PCH_CPT(dev)) {
2496                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2497                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2498         } else {
2499                 temp &= ~FDI_LINK_TRAIN_NONE;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2501         }
2502         I915_WRITE(reg, temp);
2503
2504         POSTING_READ(reg);
2505         udelay(150);
2506
2507         for (i = 0; i < 4; i++) {
2508                 reg = FDI_TX_CTL(pipe);
2509                 temp = I915_READ(reg);
2510                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511                 temp |= snb_b_fdi_train_param[i];
2512                 I915_WRITE(reg, temp);
2513
2514                 POSTING_READ(reg);
2515                 udelay(500);
2516
2517                 for (retry = 0; retry < 5; retry++) {
2518                         reg = FDI_RX_IIR(pipe);
2519                         temp = I915_READ(reg);
2520                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2521                         if (temp & FDI_RX_SYMBOL_LOCK) {
2522                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2523                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2524                                 break;
2525                         }
2526                         udelay(50);
2527                 }
2528                 if (retry < 5)
2529                         break;
2530         }
2531         if (i == 4)
2532                 DRM_ERROR("FDI train 2 fail!\n");
2533
2534         DRM_DEBUG_KMS("FDI train done.\n");
2535 }
2536
2537 /* Manual link training for Ivy Bridge A0 parts */
2538 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2539 {
2540         struct drm_device *dev = crtc->dev;
2541         struct drm_i915_private *dev_priv = dev->dev_private;
2542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2543         int pipe = intel_crtc->pipe;
2544         u32 reg, temp, i;
2545
2546         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2547            for train result */
2548         reg = FDI_RX_IMR(pipe);
2549         temp = I915_READ(reg);
2550         temp &= ~FDI_RX_SYMBOL_LOCK;
2551         temp &= ~FDI_RX_BIT_LOCK;
2552         I915_WRITE(reg, temp);
2553
2554         POSTING_READ(reg);
2555         udelay(150);
2556
2557         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2558                       I915_READ(FDI_RX_IIR(pipe)));
2559
2560         /* enable CPU FDI TX and PCH FDI RX */
2561         reg = FDI_TX_CTL(pipe);
2562         temp = I915_READ(reg);
2563         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2564         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2565         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2566         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2567         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2568         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2569         temp |= FDI_COMPOSITE_SYNC;
2570         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2571
2572         I915_WRITE(FDI_RX_MISC(pipe),
2573                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2574
2575         reg = FDI_RX_CTL(pipe);
2576         temp = I915_READ(reg);
2577         temp &= ~FDI_LINK_TRAIN_AUTO;
2578         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2579         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2580         temp |= FDI_COMPOSITE_SYNC;
2581         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2582
2583         POSTING_READ(reg);
2584         udelay(150);
2585
2586         for (i = 0; i < 4; i++) {
2587                 reg = FDI_TX_CTL(pipe);
2588                 temp = I915_READ(reg);
2589                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2590                 temp |= snb_b_fdi_train_param[i];
2591                 I915_WRITE(reg, temp);
2592
2593                 POSTING_READ(reg);
2594                 udelay(500);
2595
2596                 reg = FDI_RX_IIR(pipe);
2597                 temp = I915_READ(reg);
2598                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2599
2600                 if (temp & FDI_RX_BIT_LOCK ||
2601                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2602                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2603                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2604                         break;
2605                 }
2606         }
2607         if (i == 4)
2608                 DRM_ERROR("FDI train 1 fail!\n");
2609
2610         /* Train 2 */
2611         reg = FDI_TX_CTL(pipe);
2612         temp = I915_READ(reg);
2613         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2614         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2615         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2616         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2617         I915_WRITE(reg, temp);
2618
2619         reg = FDI_RX_CTL(pipe);
2620         temp = I915_READ(reg);
2621         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2622         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2623         I915_WRITE(reg, temp);
2624
2625         POSTING_READ(reg);
2626         udelay(150);
2627
2628         for (i = 0; i < 4; i++) {
2629                 reg = FDI_TX_CTL(pipe);
2630                 temp = I915_READ(reg);
2631                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2632                 temp |= snb_b_fdi_train_param[i];
2633                 I915_WRITE(reg, temp);
2634
2635                 POSTING_READ(reg);
2636                 udelay(500);
2637
2638                 reg = FDI_RX_IIR(pipe);
2639                 temp = I915_READ(reg);
2640                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2641
2642                 if (temp & FDI_RX_SYMBOL_LOCK) {
2643                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2644                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2645                         break;
2646                 }
2647         }
2648         if (i == 4)
2649                 DRM_ERROR("FDI train 2 fail!\n");
2650
2651         DRM_DEBUG_KMS("FDI train done.\n");
2652 }
2653
2654 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2655 {
2656         struct drm_device *dev = intel_crtc->base.dev;
2657         struct drm_i915_private *dev_priv = dev->dev_private;
2658         int pipe = intel_crtc->pipe;
2659         u32 reg, temp;
2660
2661
2662         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2663         reg = FDI_RX_CTL(pipe);
2664         temp = I915_READ(reg);
2665         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2666         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2667         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2668         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2669
2670         POSTING_READ(reg);
2671         udelay(200);
2672
2673         /* Switch from Rawclk to PCDclk */
2674         temp = I915_READ(reg);
2675         I915_WRITE(reg, temp | FDI_PCDCLK);
2676
2677         POSTING_READ(reg);
2678         udelay(200);
2679
2680         /* Enable CPU FDI TX PLL, always on for Ironlake */
2681         reg = FDI_TX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2684                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2685
2686                 POSTING_READ(reg);
2687                 udelay(100);
2688         }
2689 }
2690
2691 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2692 {
2693         struct drm_device *dev = intel_crtc->base.dev;
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         int pipe = intel_crtc->pipe;
2696         u32 reg, temp;
2697
2698         /* Switch from PCDclk to Rawclk */
2699         reg = FDI_RX_CTL(pipe);
2700         temp = I915_READ(reg);
2701         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2702
2703         /* Disable CPU FDI TX PLL */
2704         reg = FDI_TX_CTL(pipe);
2705         temp = I915_READ(reg);
2706         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2707
2708         POSTING_READ(reg);
2709         udelay(100);
2710
2711         reg = FDI_RX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2714
2715         /* Wait for the clocks to turn off. */
2716         POSTING_READ(reg);
2717         udelay(100);
2718 }
2719
2720 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2721 {
2722         struct drm_device *dev = crtc->dev;
2723         struct drm_i915_private *dev_priv = dev->dev_private;
2724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2725         int pipe = intel_crtc->pipe;
2726         u32 reg, temp;
2727
2728         /* disable CPU FDI tx and PCH FDI rx */
2729         reg = FDI_TX_CTL(pipe);
2730         temp = I915_READ(reg);
2731         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2732         POSTING_READ(reg);
2733
2734         reg = FDI_RX_CTL(pipe);
2735         temp = I915_READ(reg);
2736         temp &= ~(0x7 << 16);
2737         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2738         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2739
2740         POSTING_READ(reg);
2741         udelay(100);
2742
2743         /* Ironlake workaround, disable clock pointer after downing FDI */
2744         if (HAS_PCH_IBX(dev)) {
2745                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2746         }
2747
2748         /* still set train pattern 1 */
2749         reg = FDI_TX_CTL(pipe);
2750         temp = I915_READ(reg);
2751         temp &= ~FDI_LINK_TRAIN_NONE;
2752         temp |= FDI_LINK_TRAIN_PATTERN_1;
2753         I915_WRITE(reg, temp);
2754
2755         reg = FDI_RX_CTL(pipe);
2756         temp = I915_READ(reg);
2757         if (HAS_PCH_CPT(dev)) {
2758                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2759                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2760         } else {
2761                 temp &= ~FDI_LINK_TRAIN_NONE;
2762                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2763         }
2764         /* BPC in FDI rx is consistent with that in PIPECONF */
2765         temp &= ~(0x07 << 16);
2766         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2767         I915_WRITE(reg, temp);
2768
2769         POSTING_READ(reg);
2770         udelay(100);
2771 }
2772
2773 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2774 {
2775         struct drm_device *dev = crtc->dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778         unsigned long flags;
2779         bool pending;
2780
2781         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2782             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2783                 return false;
2784
2785         spin_lock_irqsave(&dev->event_lock, flags);
2786         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2787         spin_unlock_irqrestore(&dev->event_lock, flags);
2788
2789         return pending;
2790 }
2791
2792 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2793 {
2794         struct drm_device *dev = crtc->dev;
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796
2797         if (crtc->fb == NULL)
2798                 return;
2799
2800         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2801
2802         wait_event(dev_priv->pending_flip_queue,
2803                    !intel_crtc_has_pending_flip(crtc));
2804
2805         mutex_lock(&dev->struct_mutex);
2806         intel_finish_fb(crtc->fb);
2807         mutex_unlock(&dev->struct_mutex);
2808 }
2809
2810 /* Program iCLKIP clock to the desired frequency */
2811 static void lpt_program_iclkip(struct drm_crtc *crtc)
2812 {
2813         struct drm_device *dev = crtc->dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2816         u32 temp;
2817
2818         mutex_lock(&dev_priv->dpio_lock);
2819
2820         /* It is necessary to ungate the pixclk gate prior to programming
2821          * the divisors, and gate it back when it is done.
2822          */
2823         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2824
2825         /* Disable SSCCTL */
2826         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2827                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2828                                 SBI_SSCCTL_DISABLE,
2829                         SBI_ICLK);
2830
2831         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2832         if (crtc->mode.clock == 20000) {
2833                 auxdiv = 1;
2834                 divsel = 0x41;
2835                 phaseinc = 0x20;
2836         } else {
2837                 /* The iCLK virtual clock root frequency is in MHz,
2838                  * but the crtc->mode.clock in in KHz. To get the divisors,
2839                  * it is necessary to divide one by another, so we
2840                  * convert the virtual clock precision to KHz here for higher
2841                  * precision.
2842                  */
2843                 u32 iclk_virtual_root_freq = 172800 * 1000;
2844                 u32 iclk_pi_range = 64;
2845                 u32 desired_divisor, msb_divisor_value, pi_value;
2846
2847                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2848                 msb_divisor_value = desired_divisor / iclk_pi_range;
2849                 pi_value = desired_divisor % iclk_pi_range;
2850
2851                 auxdiv = 0;
2852                 divsel = msb_divisor_value - 2;
2853                 phaseinc = pi_value;
2854         }
2855
2856         /* This should not happen with any sane values */
2857         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2858                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2859         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2860                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2861
2862         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2863                         crtc->mode.clock,
2864                         auxdiv,
2865                         divsel,
2866                         phasedir,
2867                         phaseinc);
2868
2869         /* Program SSCDIVINTPHASE6 */
2870         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2871         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2872         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2873         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2874         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2875         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2876         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2877         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2878
2879         /* Program SSCAUXDIV */
2880         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2881         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2882         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2883         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2884
2885         /* Enable modulator and associated divider */
2886         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2887         temp &= ~SBI_SSCCTL_DISABLE;
2888         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2889
2890         /* Wait for initialization time */
2891         udelay(24);
2892
2893         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2894
2895         mutex_unlock(&dev_priv->dpio_lock);
2896 }
2897
2898 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2899                                                 enum pipe pch_transcoder)
2900 {
2901         struct drm_device *dev = crtc->base.dev;
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2904
2905         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2906                    I915_READ(HTOTAL(cpu_transcoder)));
2907         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2908                    I915_READ(HBLANK(cpu_transcoder)));
2909         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2910                    I915_READ(HSYNC(cpu_transcoder)));
2911
2912         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2913                    I915_READ(VTOTAL(cpu_transcoder)));
2914         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2915                    I915_READ(VBLANK(cpu_transcoder)));
2916         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2917                    I915_READ(VSYNC(cpu_transcoder)));
2918         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2919                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2920 }
2921
2922 /*
2923  * Enable PCH resources required for PCH ports:
2924  *   - PCH PLLs
2925  *   - FDI training & RX/TX
2926  *   - update transcoder timings
2927  *   - DP transcoding bits
2928  *   - transcoder
2929  */
2930 static void ironlake_pch_enable(struct drm_crtc *crtc)
2931 {
2932         struct drm_device *dev = crtc->dev;
2933         struct drm_i915_private *dev_priv = dev->dev_private;
2934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2935         int pipe = intel_crtc->pipe;
2936         u32 reg, temp;
2937
2938         assert_pch_transcoder_disabled(dev_priv, pipe);
2939
2940         /* Write the TU size bits before fdi link training, so that error
2941          * detection works. */
2942         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2943                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2944
2945         /* For PCH output, training FDI link */
2946         dev_priv->display.fdi_link_train(crtc);
2947
2948         /* XXX: pch pll's can be enabled any time before we enable the PCH
2949          * transcoder, and we actually should do this to not upset any PCH
2950          * transcoder that already use the clock when we share it.
2951          *
2952          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
2953          * unconditionally resets the pll - we need that to have the right LVDS
2954          * enable sequence. */
2955         ironlake_enable_pch_pll(intel_crtc);
2956
2957         if (HAS_PCH_CPT(dev)) {
2958                 u32 sel;
2959
2960                 temp = I915_READ(PCH_DPLL_SEL);
2961                 switch (pipe) {
2962                 default:
2963                 case 0:
2964                         temp |= TRANSA_DPLL_ENABLE;
2965                         sel = TRANSA_DPLLB_SEL;
2966                         break;
2967                 case 1:
2968                         temp |= TRANSB_DPLL_ENABLE;
2969                         sel = TRANSB_DPLLB_SEL;
2970                         break;
2971                 case 2:
2972                         temp |= TRANSC_DPLL_ENABLE;
2973                         sel = TRANSC_DPLLB_SEL;
2974                         break;
2975                 }
2976                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2977                         temp |= sel;
2978                 else
2979                         temp &= ~sel;
2980                 I915_WRITE(PCH_DPLL_SEL, temp);
2981         }
2982
2983         /* set transcoder timing, panel must allow it */
2984         assert_panel_unlocked(dev_priv, pipe);
2985         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2986
2987         intel_fdi_normal_train(crtc);
2988
2989         /* For PCH DP, enable TRANS_DP_CTL */
2990         if (HAS_PCH_CPT(dev) &&
2991             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2992              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2993                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2994                 reg = TRANS_DP_CTL(pipe);
2995                 temp = I915_READ(reg);
2996                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2997                           TRANS_DP_SYNC_MASK |
2998                           TRANS_DP_BPC_MASK);
2999                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3000                          TRANS_DP_ENH_FRAMING);
3001                 temp |= bpc << 9; /* same format but at 11:9 */
3002
3003                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3004                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3005                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3006                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3007
3008                 switch (intel_trans_dp_port_sel(crtc)) {
3009                 case PCH_DP_B:
3010                         temp |= TRANS_DP_PORT_SEL_B;
3011                         break;
3012                 case PCH_DP_C:
3013                         temp |= TRANS_DP_PORT_SEL_C;
3014                         break;
3015                 case PCH_DP_D:
3016                         temp |= TRANS_DP_PORT_SEL_D;
3017                         break;
3018                 default:
3019                         BUG();
3020                 }
3021
3022                 I915_WRITE(reg, temp);
3023         }
3024
3025         ironlake_enable_pch_transcoder(dev_priv, pipe);
3026 }
3027
3028 static void lpt_pch_enable(struct drm_crtc *crtc)
3029 {
3030         struct drm_device *dev = crtc->dev;
3031         struct drm_i915_private *dev_priv = dev->dev_private;
3032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3033         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3034
3035         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3036
3037         lpt_program_iclkip(crtc);
3038
3039         /* Set transcoder timing. */
3040         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3041
3042         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3043 }
3044
3045 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3046 {
3047         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3048
3049         if (pll == NULL)
3050                 return;
3051
3052         if (pll->refcount == 0) {
3053                 WARN(1, "bad PCH PLL refcount\n");
3054                 return;
3055         }
3056
3057         --pll->refcount;
3058         intel_crtc->pch_pll = NULL;
3059 }
3060
3061 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3062 {
3063         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3064         struct intel_pch_pll *pll;
3065         int i;
3066
3067         pll = intel_crtc->pch_pll;
3068         if (pll) {
3069                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3070                               intel_crtc->base.base.id, pll->pll_reg);
3071                 goto prepare;
3072         }
3073
3074         if (HAS_PCH_IBX(dev_priv->dev)) {
3075                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3076                 i = intel_crtc->pipe;
3077                 pll = &dev_priv->pch_plls[i];
3078
3079                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3080                               intel_crtc->base.base.id, pll->pll_reg);
3081
3082                 goto found;
3083         }
3084
3085         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3086                 pll = &dev_priv->pch_plls[i];
3087
3088                 /* Only want to check enabled timings first */
3089                 if (pll->refcount == 0)
3090                         continue;
3091
3092                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3093                     fp == I915_READ(pll->fp0_reg)) {
3094                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3095                                       intel_crtc->base.base.id,
3096                                       pll->pll_reg, pll->refcount, pll->active);
3097
3098                         goto found;
3099                 }
3100         }
3101
3102         /* Ok no matching timings, maybe there's a free one? */
3103         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3104                 pll = &dev_priv->pch_plls[i];
3105                 if (pll->refcount == 0) {
3106                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3107                                       intel_crtc->base.base.id, pll->pll_reg);
3108                         goto found;
3109                 }
3110         }
3111
3112         return NULL;
3113
3114 found:
3115         intel_crtc->pch_pll = pll;
3116         pll->refcount++;
3117         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3118 prepare: /* separate function? */
3119         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3120
3121         /* Wait for the clocks to stabilize before rewriting the regs */
3122         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3123         POSTING_READ(pll->pll_reg);
3124         udelay(150);
3125
3126         I915_WRITE(pll->fp0_reg, fp);
3127         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3128         pll->on = false;
3129         return pll;
3130 }
3131
3132 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3133 {
3134         struct drm_i915_private *dev_priv = dev->dev_private;
3135         int dslreg = PIPEDSL(pipe);
3136         u32 temp;
3137
3138         temp = I915_READ(dslreg);
3139         udelay(500);
3140         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3141                 if (wait_for(I915_READ(dslreg) != temp, 5))
3142                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3143         }
3144 }
3145
3146 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3147 {
3148         struct drm_device *dev = crtc->base.dev;
3149         struct drm_i915_private *dev_priv = dev->dev_private;
3150         int pipe = crtc->pipe;
3151
3152         if (crtc->config.pch_pfit.size) {
3153                 /* Force use of hard-coded filter coefficients
3154                  * as some pre-programmed values are broken,
3155                  * e.g. x201.
3156                  */
3157                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3158                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3159                                                  PF_PIPE_SEL_IVB(pipe));
3160                 else
3161                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3162                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3163                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3164         }
3165 }
3166
3167 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3168 {
3169         struct drm_device *dev = crtc->dev;
3170         struct drm_i915_private *dev_priv = dev->dev_private;
3171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172         struct intel_encoder *encoder;
3173         int pipe = intel_crtc->pipe;
3174         int plane = intel_crtc->plane;
3175         u32 temp;
3176
3177         WARN_ON(!crtc->enabled);
3178
3179         if (intel_crtc->active)
3180                 return;
3181
3182         intel_crtc->active = true;
3183
3184         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3185         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3186
3187         intel_update_watermarks(dev);
3188
3189         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3190                 temp = I915_READ(PCH_LVDS);
3191                 if ((temp & LVDS_PORT_EN) == 0)
3192                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3193         }
3194
3195
3196         if (intel_crtc->config.has_pch_encoder) {
3197                 /* Note: FDI PLL enabling _must_ be done before we enable the
3198                  * cpu pipes, hence this is separate from all the other fdi/pch
3199                  * enabling. */
3200                 ironlake_fdi_pll_enable(intel_crtc);
3201         } else {
3202                 assert_fdi_tx_disabled(dev_priv, pipe);
3203                 assert_fdi_rx_disabled(dev_priv, pipe);
3204         }
3205
3206         for_each_encoder_on_crtc(dev, crtc, encoder)
3207                 if (encoder->pre_enable)
3208                         encoder->pre_enable(encoder);
3209
3210         /* Enable panel fitting for LVDS */
3211         ironlake_pfit_enable(intel_crtc);
3212
3213         /*
3214          * On ILK+ LUT must be loaded before the pipe is running but with
3215          * clocks enabled
3216          */
3217         intel_crtc_load_lut(crtc);
3218
3219         intel_enable_pipe(dev_priv, pipe,
3220                           intel_crtc->config.has_pch_encoder);
3221         intel_enable_plane(dev_priv, plane, pipe);
3222
3223         if (intel_crtc->config.has_pch_encoder)
3224                 ironlake_pch_enable(crtc);
3225
3226         mutex_lock(&dev->struct_mutex);
3227         intel_update_fbc(dev);
3228         mutex_unlock(&dev->struct_mutex);
3229
3230         intel_crtc_update_cursor(crtc, true);
3231
3232         for_each_encoder_on_crtc(dev, crtc, encoder)
3233                 encoder->enable(encoder);
3234
3235         if (HAS_PCH_CPT(dev))
3236                 cpt_verify_modeset(dev, intel_crtc->pipe);
3237
3238         /*
3239          * There seems to be a race in PCH platform hw (at least on some
3240          * outputs) where an enabled pipe still completes any pageflip right
3241          * away (as if the pipe is off) instead of waiting for vblank. As soon
3242          * as the first vblank happend, everything works as expected. Hence just
3243          * wait for one vblank before returning to avoid strange things
3244          * happening.
3245          */
3246         intel_wait_for_vblank(dev, intel_crtc->pipe);
3247 }
3248
3249 /* IPS only exists on ULT machines and is tied to pipe A. */
3250 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3251 {
3252         return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
3253 }
3254
3255 static void hsw_enable_ips(struct intel_crtc *crtc)
3256 {
3257         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258
3259         if (!crtc->config.ips_enabled)
3260                 return;
3261
3262         /* We can only enable IPS after we enable a plane and wait for a vblank.
3263          * We guarantee that the plane is enabled by calling intel_enable_ips
3264          * only after intel_enable_plane. And intel_enable_plane already waits
3265          * for a vblank, so all we need to do here is to enable the IPS bit. */
3266         assert_plane_enabled(dev_priv, crtc->plane);
3267         I915_WRITE(IPS_CTL, IPS_ENABLE);
3268 }
3269
3270 static void hsw_disable_ips(struct intel_crtc *crtc)
3271 {
3272         struct drm_device *dev = crtc->base.dev;
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275         if (!crtc->config.ips_enabled)
3276                 return;
3277
3278         assert_plane_enabled(dev_priv, crtc->plane);
3279         I915_WRITE(IPS_CTL, 0);
3280
3281         /* We need to wait for a vblank before we can disable the plane. */
3282         intel_wait_for_vblank(dev, crtc->pipe);
3283 }
3284
3285 static void haswell_crtc_enable(struct drm_crtc *crtc)
3286 {
3287         struct drm_device *dev = crtc->dev;
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290         struct intel_encoder *encoder;
3291         int pipe = intel_crtc->pipe;
3292         int plane = intel_crtc->plane;
3293
3294         WARN_ON(!crtc->enabled);
3295
3296         if (intel_crtc->active)
3297                 return;
3298
3299         intel_crtc->active = true;
3300
3301         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3302         if (intel_crtc->config.has_pch_encoder)
3303                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3304
3305         intel_update_watermarks(dev);
3306
3307         if (intel_crtc->config.has_pch_encoder)
3308                 dev_priv->display.fdi_link_train(crtc);
3309
3310         for_each_encoder_on_crtc(dev, crtc, encoder)
3311                 if (encoder->pre_enable)
3312                         encoder->pre_enable(encoder);
3313
3314         intel_ddi_enable_pipe_clock(intel_crtc);
3315
3316         /* Enable panel fitting for eDP */
3317         ironlake_pfit_enable(intel_crtc);
3318
3319         /*
3320          * On ILK+ LUT must be loaded before the pipe is running but with
3321          * clocks enabled
3322          */
3323         intel_crtc_load_lut(crtc);
3324
3325         intel_ddi_set_pipe_settings(crtc);
3326         intel_ddi_enable_transcoder_func(crtc);
3327
3328         intel_enable_pipe(dev_priv, pipe,
3329                           intel_crtc->config.has_pch_encoder);
3330         intel_enable_plane(dev_priv, plane, pipe);
3331
3332         hsw_enable_ips(intel_crtc);
3333
3334         if (intel_crtc->config.has_pch_encoder)
3335                 lpt_pch_enable(crtc);
3336
3337         mutex_lock(&dev->struct_mutex);
3338         intel_update_fbc(dev);
3339         mutex_unlock(&dev->struct_mutex);
3340
3341         intel_crtc_update_cursor(crtc, true);
3342
3343         for_each_encoder_on_crtc(dev, crtc, encoder)
3344                 encoder->enable(encoder);
3345
3346         /*
3347          * There seems to be a race in PCH platform hw (at least on some
3348          * outputs) where an enabled pipe still completes any pageflip right
3349          * away (as if the pipe is off) instead of waiting for vblank. As soon
3350          * as the first vblank happend, everything works as expected. Hence just
3351          * wait for one vblank before returning to avoid strange things
3352          * happening.
3353          */
3354         intel_wait_for_vblank(dev, intel_crtc->pipe);
3355 }
3356
3357 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3358 {
3359         struct drm_device *dev = crtc->base.dev;
3360         struct drm_i915_private *dev_priv = dev->dev_private;
3361         int pipe = crtc->pipe;
3362
3363         /* To avoid upsetting the power well on haswell only disable the pfit if
3364          * it's in use. The hw state code will make sure we get this right. */
3365         if (crtc->config.pch_pfit.size) {
3366                 I915_WRITE(PF_CTL(pipe), 0);
3367                 I915_WRITE(PF_WIN_POS(pipe), 0);
3368                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3369         }
3370 }
3371
3372 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3373 {
3374         struct drm_device *dev = crtc->dev;
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3377         struct intel_encoder *encoder;
3378         int pipe = intel_crtc->pipe;
3379         int plane = intel_crtc->plane;
3380         u32 reg, temp;
3381
3382
3383         if (!intel_crtc->active)
3384                 return;
3385
3386         for_each_encoder_on_crtc(dev, crtc, encoder)
3387                 encoder->disable(encoder);
3388
3389         intel_crtc_wait_for_pending_flips(crtc);
3390         drm_vblank_off(dev, pipe);
3391         intel_crtc_update_cursor(crtc, false);
3392
3393         intel_disable_plane(dev_priv, plane, pipe);
3394
3395         if (dev_priv->cfb_plane == plane)
3396                 intel_disable_fbc(dev);
3397
3398         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3399         intel_disable_pipe(dev_priv, pipe);
3400
3401         ironlake_pfit_disable(intel_crtc);
3402
3403         for_each_encoder_on_crtc(dev, crtc, encoder)
3404                 if (encoder->post_disable)
3405                         encoder->post_disable(encoder);
3406
3407         ironlake_fdi_disable(crtc);
3408
3409         ironlake_disable_pch_transcoder(dev_priv, pipe);
3410         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3411
3412         if (HAS_PCH_CPT(dev)) {
3413                 /* disable TRANS_DP_CTL */
3414                 reg = TRANS_DP_CTL(pipe);
3415                 temp = I915_READ(reg);
3416                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3417                 temp |= TRANS_DP_PORT_SEL_NONE;
3418                 I915_WRITE(reg, temp);
3419
3420                 /* disable DPLL_SEL */
3421                 temp = I915_READ(PCH_DPLL_SEL);
3422                 switch (pipe) {
3423                 case 0:
3424                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3425                         break;
3426                 case 1:
3427                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3428                         break;
3429                 case 2:
3430                         /* C shares PLL A or B */
3431                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3432                         break;
3433                 default:
3434                         BUG(); /* wtf */
3435                 }
3436                 I915_WRITE(PCH_DPLL_SEL, temp);
3437         }
3438
3439         /* disable PCH DPLL */
3440         intel_disable_pch_pll(intel_crtc);
3441
3442         ironlake_fdi_pll_disable(intel_crtc);
3443
3444         intel_crtc->active = false;
3445         intel_update_watermarks(dev);
3446
3447         mutex_lock(&dev->struct_mutex);
3448         intel_update_fbc(dev);
3449         mutex_unlock(&dev->struct_mutex);
3450 }
3451
3452 static void haswell_crtc_disable(struct drm_crtc *crtc)
3453 {
3454         struct drm_device *dev = crtc->dev;
3455         struct drm_i915_private *dev_priv = dev->dev_private;
3456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3457         struct intel_encoder *encoder;
3458         int pipe = intel_crtc->pipe;
3459         int plane = intel_crtc->plane;
3460         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3461
3462         if (!intel_crtc->active)
3463                 return;
3464
3465         for_each_encoder_on_crtc(dev, crtc, encoder)
3466                 encoder->disable(encoder);
3467
3468         intel_crtc_wait_for_pending_flips(crtc);
3469         drm_vblank_off(dev, pipe);
3470         intel_crtc_update_cursor(crtc, false);
3471
3472         /* FBC must be disabled before disabling the plane on HSW. */
3473         if (dev_priv->cfb_plane == plane)
3474                 intel_disable_fbc(dev);
3475
3476         hsw_disable_ips(intel_crtc);
3477
3478         intel_disable_plane(dev_priv, plane, pipe);
3479
3480         if (intel_crtc->config.has_pch_encoder)
3481                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3482         intel_disable_pipe(dev_priv, pipe);
3483
3484         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3485
3486         ironlake_pfit_disable(intel_crtc);
3487
3488         intel_ddi_disable_pipe_clock(intel_crtc);
3489
3490         for_each_encoder_on_crtc(dev, crtc, encoder)
3491                 if (encoder->post_disable)
3492                         encoder->post_disable(encoder);
3493
3494         if (intel_crtc->config.has_pch_encoder) {
3495                 lpt_disable_pch_transcoder(dev_priv);
3496                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3497                 intel_ddi_fdi_disable(crtc);
3498         }
3499
3500         intel_crtc->active = false;
3501         intel_update_watermarks(dev);
3502
3503         mutex_lock(&dev->struct_mutex);
3504         intel_update_fbc(dev);
3505         mutex_unlock(&dev->struct_mutex);
3506 }
3507
3508 static void ironlake_crtc_off(struct drm_crtc *crtc)
3509 {
3510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3511         intel_put_pch_pll(intel_crtc);
3512 }
3513
3514 static void haswell_crtc_off(struct drm_crtc *crtc)
3515 {
3516         intel_ddi_put_crtc_pll(crtc);
3517 }
3518
3519 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3520 {
3521         if (!enable && intel_crtc->overlay) {
3522                 struct drm_device *dev = intel_crtc->base.dev;
3523                 struct drm_i915_private *dev_priv = dev->dev_private;
3524
3525                 mutex_lock(&dev->struct_mutex);
3526                 dev_priv->mm.interruptible = false;
3527                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3528                 dev_priv->mm.interruptible = true;
3529                 mutex_unlock(&dev->struct_mutex);
3530         }
3531
3532         /* Let userspace switch the overlay on again. In most cases userspace
3533          * has to recompute where to put it anyway.
3534          */
3535 }
3536
3537 /**
3538  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3539  * cursor plane briefly if not already running after enabling the display
3540  * plane.
3541  * This workaround avoids occasional blank screens when self refresh is
3542  * enabled.
3543  */
3544 static void
3545 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3546 {
3547         u32 cntl = I915_READ(CURCNTR(pipe));
3548
3549         if ((cntl & CURSOR_MODE) == 0) {
3550                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3551
3552                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3553                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3554                 intel_wait_for_vblank(dev_priv->dev, pipe);
3555                 I915_WRITE(CURCNTR(pipe), cntl);
3556                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3557                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3558         }
3559 }
3560
3561 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3562 {
3563         struct drm_device *dev = crtc->base.dev;
3564         struct drm_i915_private *dev_priv = dev->dev_private;
3565         struct intel_crtc_config *pipe_config = &crtc->config;
3566
3567         if (!crtc->config.gmch_pfit.control)
3568                 return;
3569
3570         /*
3571          * The panel fitter should only be adjusted whilst the pipe is disabled,
3572          * according to register description and PRM.
3573          */
3574         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3575         assert_pipe_disabled(dev_priv, crtc->pipe);
3576
3577         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3578         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3579
3580         /* Border color in case we don't scale up to the full screen. Black by
3581          * default, change to something else for debugging. */
3582         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3583 }
3584
3585 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3586 {
3587         struct drm_device *dev = crtc->dev;
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3590         struct intel_encoder *encoder;
3591         int pipe = intel_crtc->pipe;
3592         int plane = intel_crtc->plane;
3593
3594         WARN_ON(!crtc->enabled);
3595
3596         if (intel_crtc->active)
3597                 return;
3598
3599         intel_crtc->active = true;
3600         intel_update_watermarks(dev);
3601
3602         mutex_lock(&dev_priv->dpio_lock);
3603
3604         for_each_encoder_on_crtc(dev, crtc, encoder)
3605                 if (encoder->pre_pll_enable)
3606                         encoder->pre_pll_enable(encoder);
3607
3608         intel_enable_pll(dev_priv, pipe);
3609
3610         for_each_encoder_on_crtc(dev, crtc, encoder)
3611                 if (encoder->pre_enable)
3612                         encoder->pre_enable(encoder);
3613
3614         /* VLV wants encoder enabling _before_ the pipe is up. */
3615         for_each_encoder_on_crtc(dev, crtc, encoder)
3616                 encoder->enable(encoder);
3617
3618         /* Enable panel fitting for eDP */
3619         i9xx_pfit_enable(intel_crtc);
3620
3621         intel_enable_pipe(dev_priv, pipe, false);
3622         intel_enable_plane(dev_priv, plane, pipe);
3623
3624         intel_crtc_load_lut(crtc);
3625         intel_update_fbc(dev);
3626
3627         /* Give the overlay scaler a chance to enable if it's on this pipe */
3628         intel_crtc_dpms_overlay(intel_crtc, true);
3629         intel_crtc_update_cursor(crtc, true);
3630
3631         mutex_unlock(&dev_priv->dpio_lock);
3632 }
3633
3634 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3635 {
3636         struct drm_device *dev = crtc->dev;
3637         struct drm_i915_private *dev_priv = dev->dev_private;
3638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3639         struct intel_encoder *encoder;
3640         int pipe = intel_crtc->pipe;
3641         int plane = intel_crtc->plane;
3642
3643         WARN_ON(!crtc->enabled);
3644
3645         if (intel_crtc->active)
3646                 return;
3647
3648         intel_crtc->active = true;
3649         intel_update_watermarks(dev);
3650
3651         intel_enable_pll(dev_priv, pipe);
3652
3653         for_each_encoder_on_crtc(dev, crtc, encoder)
3654                 if (encoder->pre_enable)
3655                         encoder->pre_enable(encoder);
3656
3657         /* Enable panel fitting for LVDS */
3658         i9xx_pfit_enable(intel_crtc);
3659
3660         intel_enable_pipe(dev_priv, pipe, false);
3661         intel_enable_plane(dev_priv, plane, pipe);
3662         if (IS_G4X(dev))
3663                 g4x_fixup_plane(dev_priv, pipe);
3664
3665         intel_crtc_load_lut(crtc);
3666         intel_update_fbc(dev);
3667
3668         /* Give the overlay scaler a chance to enable if it's on this pipe */
3669         intel_crtc_dpms_overlay(intel_crtc, true);
3670         intel_crtc_update_cursor(crtc, true);
3671
3672         for_each_encoder_on_crtc(dev, crtc, encoder)
3673                 encoder->enable(encoder);
3674 }
3675
3676 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3677 {
3678         struct drm_device *dev = crtc->base.dev;
3679         struct drm_i915_private *dev_priv = dev->dev_private;
3680
3681         if (!crtc->config.gmch_pfit.control)
3682                 return;
3683
3684         assert_pipe_disabled(dev_priv, crtc->pipe);
3685
3686         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3687                          I915_READ(PFIT_CONTROL));
3688         I915_WRITE(PFIT_CONTROL, 0);
3689 }
3690
3691 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3692 {
3693         struct drm_device *dev = crtc->dev;
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696         struct intel_encoder *encoder;
3697         int pipe = intel_crtc->pipe;
3698         int plane = intel_crtc->plane;
3699
3700         if (!intel_crtc->active)
3701                 return;
3702
3703         for_each_encoder_on_crtc(dev, crtc, encoder)
3704                 encoder->disable(encoder);
3705
3706         /* Give the overlay scaler a chance to disable if it's on this pipe */
3707         intel_crtc_wait_for_pending_flips(crtc);
3708         drm_vblank_off(dev, pipe);
3709         intel_crtc_dpms_overlay(intel_crtc, false);
3710         intel_crtc_update_cursor(crtc, false);
3711
3712         if (dev_priv->cfb_plane == plane)
3713                 intel_disable_fbc(dev);
3714
3715         intel_disable_plane(dev_priv, plane, pipe);
3716         intel_disable_pipe(dev_priv, pipe);
3717
3718         i9xx_pfit_disable(intel_crtc);
3719
3720         for_each_encoder_on_crtc(dev, crtc, encoder)
3721                 if (encoder->post_disable)
3722                         encoder->post_disable(encoder);
3723
3724         intel_disable_pll(dev_priv, pipe);
3725
3726         intel_crtc->active = false;
3727         intel_update_fbc(dev);
3728         intel_update_watermarks(dev);
3729 }
3730
3731 static void i9xx_crtc_off(struct drm_crtc *crtc)
3732 {
3733 }
3734
3735 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3736                                     bool enabled)
3737 {
3738         struct drm_device *dev = crtc->dev;
3739         struct drm_i915_master_private *master_priv;
3740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741         int pipe = intel_crtc->pipe;
3742
3743         if (!dev->primary->master)
3744                 return;
3745
3746         master_priv = dev->primary->master->driver_priv;
3747         if (!master_priv->sarea_priv)
3748                 return;
3749
3750         switch (pipe) {
3751         case 0:
3752                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3753                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3754                 break;
3755         case 1:
3756                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3757                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3758                 break;
3759         default:
3760                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3761                 break;
3762         }
3763 }
3764
3765 /**
3766  * Sets the power management mode of the pipe and plane.
3767  */
3768 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3769 {
3770         struct drm_device *dev = crtc->dev;
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772         struct intel_encoder *intel_encoder;
3773         bool enable = false;
3774
3775         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3776                 enable |= intel_encoder->connectors_active;
3777
3778         if (enable)
3779                 dev_priv->display.crtc_enable(crtc);
3780         else
3781                 dev_priv->display.crtc_disable(crtc);
3782
3783         intel_crtc_update_sarea(crtc, enable);
3784 }
3785
3786 static void intel_crtc_disable(struct drm_crtc *crtc)
3787 {
3788         struct drm_device *dev = crtc->dev;
3789         struct drm_connector *connector;
3790         struct drm_i915_private *dev_priv = dev->dev_private;
3791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3792
3793         /* crtc should still be enabled when we disable it. */
3794         WARN_ON(!crtc->enabled);
3795
3796         dev_priv->display.crtc_disable(crtc);
3797         intel_crtc->eld_vld = false;
3798         intel_crtc_update_sarea(crtc, false);
3799         dev_priv->display.off(crtc);
3800
3801         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3802         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3803
3804         if (crtc->fb) {
3805                 mutex_lock(&dev->struct_mutex);
3806                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3807                 mutex_unlock(&dev->struct_mutex);
3808                 crtc->fb = NULL;
3809         }
3810
3811         /* Update computed state. */
3812         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3813                 if (!connector->encoder || !connector->encoder->crtc)
3814                         continue;
3815
3816                 if (connector->encoder->crtc != crtc)
3817                         continue;
3818
3819                 connector->dpms = DRM_MODE_DPMS_OFF;
3820                 to_intel_encoder(connector->encoder)->connectors_active = false;
3821         }
3822 }
3823
3824 void intel_modeset_disable(struct drm_device *dev)
3825 {
3826         struct drm_crtc *crtc;
3827
3828         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3829                 if (crtc->enabled)
3830                         intel_crtc_disable(crtc);
3831         }
3832 }
3833
3834 void intel_encoder_destroy(struct drm_encoder *encoder)
3835 {
3836         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3837
3838         drm_encoder_cleanup(encoder);
3839         kfree(intel_encoder);
3840 }
3841
3842 /* Simple dpms helper for encodres with just one connector, no cloning and only
3843  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3844  * state of the entire output pipe. */
3845 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3846 {
3847         if (mode == DRM_MODE_DPMS_ON) {
3848                 encoder->connectors_active = true;
3849
3850                 intel_crtc_update_dpms(encoder->base.crtc);
3851         } else {
3852                 encoder->connectors_active = false;
3853
3854                 intel_crtc_update_dpms(encoder->base.crtc);
3855         }
3856 }
3857
3858 /* Cross check the actual hw state with our own modeset state tracking (and it's
3859  * internal consistency). */
3860 static void intel_connector_check_state(struct intel_connector *connector)
3861 {
3862         if (connector->get_hw_state(connector)) {
3863                 struct intel_encoder *encoder = connector->encoder;
3864                 struct drm_crtc *crtc;
3865                 bool encoder_enabled;
3866                 enum pipe pipe;
3867
3868                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3869                               connector->base.base.id,
3870                               drm_get_connector_name(&connector->base));
3871
3872                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3873                      "wrong connector dpms state\n");
3874                 WARN(connector->base.encoder != &encoder->base,
3875                      "active connector not linked to encoder\n");
3876                 WARN(!encoder->connectors_active,
3877                      "encoder->connectors_active not set\n");
3878
3879                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3880                 WARN(!encoder_enabled, "encoder not enabled\n");
3881                 if (WARN_ON(!encoder->base.crtc))
3882                         return;
3883
3884                 crtc = encoder->base.crtc;
3885
3886                 WARN(!crtc->enabled, "crtc not enabled\n");
3887                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3888                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3889                      "encoder active on the wrong pipe\n");
3890         }
3891 }
3892
3893 /* Even simpler default implementation, if there's really no special case to
3894  * consider. */
3895 void intel_connector_dpms(struct drm_connector *connector, int mode)
3896 {
3897         struct intel_encoder *encoder = intel_attached_encoder(connector);
3898
3899         /* All the simple cases only support two dpms states. */
3900         if (mode != DRM_MODE_DPMS_ON)
3901                 mode = DRM_MODE_DPMS_OFF;
3902
3903         if (mode == connector->dpms)
3904                 return;
3905
3906         connector->dpms = mode;
3907
3908         /* Only need to change hw state when actually enabled */
3909         if (encoder->base.crtc)
3910                 intel_encoder_dpms(encoder, mode);
3911         else
3912                 WARN_ON(encoder->connectors_active != false);
3913
3914         intel_modeset_check_state(connector->dev);
3915 }
3916
3917 /* Simple connector->get_hw_state implementation for encoders that support only
3918  * one connector and no cloning and hence the encoder state determines the state
3919  * of the connector. */
3920 bool intel_connector_get_hw_state(struct intel_connector *connector)
3921 {
3922         enum pipe pipe = 0;
3923         struct intel_encoder *encoder = connector->encoder;
3924
3925         return encoder->get_hw_state(encoder, &pipe);
3926 }
3927
3928 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3929                                      struct intel_crtc_config *pipe_config)
3930 {
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         struct intel_crtc *pipe_B_crtc =
3933                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3934
3935         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3936                       pipe_name(pipe), pipe_config->fdi_lanes);
3937         if (pipe_config->fdi_lanes > 4) {
3938                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3939                               pipe_name(pipe), pipe_config->fdi_lanes);
3940                 return false;
3941         }
3942
3943         if (IS_HASWELL(dev)) {
3944                 if (pipe_config->fdi_lanes > 2) {
3945                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3946                                       pipe_config->fdi_lanes);
3947                         return false;
3948                 } else {
3949                         return true;
3950                 }
3951         }
3952
3953         if (INTEL_INFO(dev)->num_pipes == 2)
3954                 return true;
3955
3956         /* Ivybridge 3 pipe is really complicated */
3957         switch (pipe) {
3958         case PIPE_A:
3959                 return true;
3960         case PIPE_B:
3961                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3962                     pipe_config->fdi_lanes > 2) {
3963                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3964                                       pipe_name(pipe), pipe_config->fdi_lanes);
3965                         return false;
3966                 }
3967                 return true;
3968         case PIPE_C:
3969                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3970                     pipe_B_crtc->config.fdi_lanes <= 2) {
3971                         if (pipe_config->fdi_lanes > 2) {
3972                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3973                                               pipe_name(pipe), pipe_config->fdi_lanes);
3974                                 return false;
3975                         }
3976                 } else {
3977                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
3978                         return false;
3979                 }
3980                 return true;
3981         default:
3982                 BUG();
3983         }
3984 }
3985
3986 #define RETRY 1
3987 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3988                                        struct intel_crtc_config *pipe_config)
3989 {
3990         struct drm_device *dev = intel_crtc->base.dev;
3991         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3992         int lane, link_bw, fdi_dotclock;
3993         bool setup_ok, needs_recompute = false;
3994
3995 retry:
3996         /* FDI is a binary signal running at ~2.7GHz, encoding
3997          * each output octet as 10 bits. The actual frequency
3998          * is stored as a divider into a 100MHz clock, and the
3999          * mode pixel clock is stored in units of 1KHz.
4000          * Hence the bw of each lane in terms of the mode signal
4001          * is:
4002          */
4003         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4004
4005         fdi_dotclock = adjusted_mode->clock;
4006         if (pipe_config->pixel_multiplier > 1)
4007                 fdi_dotclock /= pipe_config->pixel_multiplier;
4008
4009         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4010                                            pipe_config->pipe_bpp);
4011
4012         pipe_config->fdi_lanes = lane;
4013
4014         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4015                                link_bw, &pipe_config->fdi_m_n);
4016
4017         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4018                                             intel_crtc->pipe, pipe_config);
4019         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4020                 pipe_config->pipe_bpp -= 2*3;
4021                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4022                               pipe_config->pipe_bpp);
4023                 needs_recompute = true;
4024                 pipe_config->bw_constrained = true;
4025
4026                 goto retry;
4027         }
4028
4029         if (needs_recompute)
4030                 return RETRY;
4031
4032         return setup_ok ? 0 : -EINVAL;
4033 }
4034
4035 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4036                                    struct intel_crtc_config *pipe_config)
4037 {
4038         pipe_config->ips_enabled = i915_enable_ips &&
4039                                    hsw_crtc_supports_ips(crtc) &&
4040                                    pipe_config->pipe_bpp == 24;
4041 }
4042
4043 static int intel_crtc_compute_config(struct drm_crtc *crtc,
4044                                      struct intel_crtc_config *pipe_config)
4045 {
4046         struct drm_device *dev = crtc->dev;
4047         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049
4050         if (HAS_PCH_SPLIT(dev)) {
4051                 /* FDI link clock is fixed at 2.7G */
4052                 if (pipe_config->requested_mode.clock * 3
4053                     > IRONLAKE_FDI_FREQ * 4)
4054                         return -EINVAL;
4055         }
4056
4057         /* All interlaced capable intel hw wants timings in frames. Note though
4058          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4059          * timings, so we need to be careful not to clobber these.*/
4060         if (!pipe_config->timings_set)
4061                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4062
4063         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4064          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4065          */
4066         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4067                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4068                 return -EINVAL;
4069
4070         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4071                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4072         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4073                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4074                  * for lvds. */
4075                 pipe_config->pipe_bpp = 8*3;
4076         }
4077
4078         if (IS_HASWELL(dev))
4079                 hsw_compute_ips_config(intel_crtc, pipe_config);
4080
4081         if (pipe_config->has_pch_encoder)
4082                 return ironlake_fdi_compute_config(intel_crtc, pipe_config);
4083
4084         return 0;
4085 }
4086
4087 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4088 {
4089         return 400000; /* FIXME */
4090 }
4091
4092 static int i945_get_display_clock_speed(struct drm_device *dev)
4093 {
4094         return 400000;
4095 }
4096
4097 static int i915_get_display_clock_speed(struct drm_device *dev)
4098 {
4099         return 333000;
4100 }
4101
4102 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4103 {
4104         return 200000;
4105 }
4106
4107 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4108 {
4109         u16 gcfgc = 0;
4110
4111         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4112
4113         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4114                 return 133000;
4115         else {
4116                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4117                 case GC_DISPLAY_CLOCK_333_MHZ:
4118                         return 333000;
4119                 default:
4120                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4121                         return 190000;
4122                 }
4123         }
4124 }
4125
4126 static int i865_get_display_clock_speed(struct drm_device *dev)
4127 {
4128         return 266000;
4129 }
4130
4131 static int i855_get_display_clock_speed(struct drm_device *dev)
4132 {
4133         u16 hpllcc = 0;
4134         /* Assume that the hardware is in the high speed state.  This
4135          * should be the default.
4136          */
4137         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4138         case GC_CLOCK_133_200:
4139         case GC_CLOCK_100_200:
4140                 return 200000;
4141         case GC_CLOCK_166_250:
4142                 return 250000;
4143         case GC_CLOCK_100_133:
4144                 return 133000;
4145         }
4146
4147         /* Shouldn't happen */
4148         return 0;
4149 }
4150
4151 static int i830_get_display_clock_speed(struct drm_device *dev)
4152 {
4153         return 133000;
4154 }
4155
4156 static void
4157 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4158 {
4159         while (*num > DATA_LINK_M_N_MASK ||
4160                *den > DATA_LINK_M_N_MASK) {
4161                 *num >>= 1;
4162                 *den >>= 1;
4163         }
4164 }
4165
4166 static void compute_m_n(unsigned int m, unsigned int n,
4167                         uint32_t *ret_m, uint32_t *ret_n)
4168 {
4169         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4170         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4171         intel_reduce_m_n_ratio(ret_m, ret_n);
4172 }
4173
4174 void
4175 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4176                        int pixel_clock, int link_clock,
4177                        struct intel_link_m_n *m_n)
4178 {
4179         m_n->tu = 64;
4180
4181         compute_m_n(bits_per_pixel * pixel_clock,
4182                     link_clock * nlanes * 8,
4183                     &m_n->gmch_m, &m_n->gmch_n);
4184
4185         compute_m_n(pixel_clock, link_clock,
4186                     &m_n->link_m, &m_n->link_n);
4187 }
4188
4189 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4190 {
4191         if (i915_panel_use_ssc >= 0)
4192                 return i915_panel_use_ssc != 0;
4193         return dev_priv->vbt.lvds_use_ssc
4194                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4195 }
4196
4197 static int vlv_get_refclk(struct drm_crtc *crtc)
4198 {
4199         struct drm_device *dev = crtc->dev;
4200         struct drm_i915_private *dev_priv = dev->dev_private;
4201         int refclk = 27000; /* for DP & HDMI */
4202
4203         return 100000; /* only one validated so far */
4204
4205         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4206                 refclk = 96000;
4207         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4208                 if (intel_panel_use_ssc(dev_priv))
4209                         refclk = 100000;
4210                 else
4211                         refclk = 96000;
4212         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4213                 refclk = 100000;
4214         }
4215
4216         return refclk;
4217 }
4218
4219 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4220 {
4221         struct drm_device *dev = crtc->dev;
4222         struct drm_i915_private *dev_priv = dev->dev_private;
4223         int refclk;
4224
4225         if (IS_VALLEYVIEW(dev)) {
4226                 refclk = vlv_get_refclk(crtc);
4227         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4228             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4229                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4230                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4231                               refclk / 1000);
4232         } else if (!IS_GEN2(dev)) {
4233                 refclk = 96000;
4234         } else {
4235                 refclk = 48000;
4236         }
4237
4238         return refclk;
4239 }
4240
4241 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4242 {
4243         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4244 }
4245
4246 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4247 {
4248         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4249 }
4250
4251 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4252                                      intel_clock_t *reduced_clock)
4253 {
4254         struct drm_device *dev = crtc->base.dev;
4255         struct drm_i915_private *dev_priv = dev->dev_private;
4256         int pipe = crtc->pipe;
4257         u32 fp, fp2 = 0;
4258
4259         if (IS_PINEVIEW(dev)) {
4260                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4261                 if (reduced_clock)
4262                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4263         } else {
4264                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4265                 if (reduced_clock)
4266                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4267         }
4268
4269         I915_WRITE(FP0(pipe), fp);
4270
4271         crtc->lowfreq_avail = false;
4272         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4273             reduced_clock && i915_powersave) {
4274                 I915_WRITE(FP1(pipe), fp2);
4275                 crtc->lowfreq_avail = true;
4276         } else {
4277                 I915_WRITE(FP1(pipe), fp);
4278         }
4279 }
4280
4281 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4282 {
4283         u32 reg_val;
4284
4285         /*
4286          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4287          * and set it to a reasonable value instead.
4288          */
4289         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4290         reg_val &= 0xffffff00;
4291         reg_val |= 0x00000030;
4292         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4293
4294         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4295         reg_val &= 0x8cffffff;
4296         reg_val = 0x8c000000;
4297         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4298
4299         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4300         reg_val &= 0xffffff00;
4301         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4302
4303         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4304         reg_val &= 0x00ffffff;
4305         reg_val |= 0xb0000000;
4306         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4307 }
4308
4309 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4310                                          struct intel_link_m_n *m_n)
4311 {
4312         struct drm_device *dev = crtc->base.dev;
4313         struct drm_i915_private *dev_priv = dev->dev_private;
4314         int pipe = crtc->pipe;
4315
4316         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4317         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4318         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4319         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4320 }
4321
4322 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4323                                          struct intel_link_m_n *m_n)
4324 {
4325         struct drm_device *dev = crtc->base.dev;
4326         struct drm_i915_private *dev_priv = dev->dev_private;
4327         int pipe = crtc->pipe;
4328         enum transcoder transcoder = crtc->config.cpu_transcoder;
4329
4330         if (INTEL_INFO(dev)->gen >= 5) {
4331                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4332                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4333                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4334                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4335         } else {
4336                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4337                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4338                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4339                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4340         }
4341 }
4342
4343 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4344 {
4345         if (crtc->config.has_pch_encoder)
4346                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4347         else
4348                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4349 }
4350
4351 static void vlv_update_pll(struct intel_crtc *crtc)
4352 {
4353         struct drm_device *dev = crtc->base.dev;
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         struct intel_encoder *encoder;
4356         int pipe = crtc->pipe;
4357         u32 dpll, mdiv;
4358         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4359         bool is_hdmi;
4360         u32 coreclk, reg_val, dpll_md;
4361
4362         mutex_lock(&dev_priv->dpio_lock);
4363
4364         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4365
4366         bestn = crtc->config.dpll.n;
4367         bestm1 = crtc->config.dpll.m1;
4368         bestm2 = crtc->config.dpll.m2;
4369         bestp1 = crtc->config.dpll.p1;
4370         bestp2 = crtc->config.dpll.p2;
4371
4372         /* See eDP HDMI DPIO driver vbios notes doc */
4373
4374         /* PLL B needs special handling */
4375         if (pipe)
4376                 vlv_pllb_recal_opamp(dev_priv);
4377
4378         /* Set up Tx target for periodic Rcomp update */
4379         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4380
4381         /* Disable target IRef on PLL */
4382         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4383         reg_val &= 0x00ffffff;
4384         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4385
4386         /* Disable fast lock */
4387         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4388
4389         /* Set idtafcrecal before PLL is enabled */
4390         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4391         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4392         mdiv |= ((bestn << DPIO_N_SHIFT));
4393         mdiv |= (1 << DPIO_K_SHIFT);
4394
4395         /*
4396          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4397          * but we don't support that).
4398          * Note: don't use the DAC post divider as it seems unstable.
4399          */
4400         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4401         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4402
4403         mdiv |= DPIO_ENABLE_CALIBRATION;
4404         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4405
4406         /* Set HBR and RBR LPF coefficients */
4407         if (crtc->config.port_clock == 162000 ||
4408             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4409                 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4410                                  0x005f0021);
4411         else
4412                 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4413                                  0x00d0000f);
4414
4415         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4416             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4417                 /* Use SSC source */
4418                 if (!pipe)
4419                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4420                                          0x0df40000);
4421                 else
4422                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4423                                          0x0df70000);
4424         } else { /* HDMI or VGA */
4425                 /* Use bend source */
4426                 if (!pipe)
4427                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4428                                          0x0df70000);
4429                 else
4430                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4431                                          0x0df40000);
4432         }
4433
4434         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4435         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4436         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4437             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4438                 coreclk |= 0x01000000;
4439         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4440
4441         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4442
4443         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4444                 if (encoder->pre_pll_enable)
4445                         encoder->pre_pll_enable(encoder);
4446
4447         /* Enable DPIO clock input */
4448         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4449                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4450         if (pipe)
4451                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4452
4453         dpll |= DPLL_VCO_ENABLE;
4454         I915_WRITE(DPLL(pipe), dpll);
4455         POSTING_READ(DPLL(pipe));
4456         udelay(150);
4457
4458         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4459                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4460
4461         dpll_md = 0;
4462         if (crtc->config.pixel_multiplier > 1) {
4463                 dpll_md = (crtc->config.pixel_multiplier - 1)
4464                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4465         }
4466         I915_WRITE(DPLL_MD(pipe), dpll_md);
4467         POSTING_READ(DPLL_MD(pipe));
4468
4469         if (crtc->config.has_dp_encoder)
4470                 intel_dp_set_m_n(crtc);
4471
4472         mutex_unlock(&dev_priv->dpio_lock);
4473 }
4474
4475 static void i9xx_update_pll(struct intel_crtc *crtc,
4476                             intel_clock_t *reduced_clock,
4477                             int num_connectors)
4478 {
4479         struct drm_device *dev = crtc->base.dev;
4480         struct drm_i915_private *dev_priv = dev->dev_private;
4481         struct intel_encoder *encoder;
4482         int pipe = crtc->pipe;
4483         u32 dpll;
4484         bool is_sdvo;
4485         struct dpll *clock = &crtc->config.dpll;
4486
4487         i9xx_update_pll_dividers(crtc, reduced_clock);
4488
4489         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4490                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4491
4492         dpll = DPLL_VGA_MODE_DIS;
4493
4494         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4495                 dpll |= DPLLB_MODE_LVDS;
4496         else
4497                 dpll |= DPLLB_MODE_DAC_SERIAL;
4498
4499         if ((crtc->config.pixel_multiplier > 1) &&
4500             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4501                 dpll |= (crtc->config.pixel_multiplier - 1)
4502                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4503         }
4504
4505         if (is_sdvo)
4506                 dpll |= DPLL_DVO_HIGH_SPEED;
4507
4508         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4509                 dpll |= DPLL_DVO_HIGH_SPEED;
4510
4511         /* compute bitmask from p1 value */
4512         if (IS_PINEVIEW(dev))
4513                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4514         else {
4515                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4516                 if (IS_G4X(dev) && reduced_clock)
4517                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4518         }
4519         switch (clock->p2) {
4520         case 5:
4521                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4522                 break;
4523         case 7:
4524                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4525                 break;
4526         case 10:
4527                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4528                 break;
4529         case 14:
4530                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4531                 break;
4532         }
4533         if (INTEL_INFO(dev)->gen >= 4)
4534                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4535
4536         if (crtc->config.sdvo_tv_clock)
4537                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4538         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4539                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4540                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4541         else
4542                 dpll |= PLL_REF_INPUT_DREFCLK;
4543
4544         dpll |= DPLL_VCO_ENABLE;
4545         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4546         POSTING_READ(DPLL(pipe));
4547         udelay(150);
4548
4549         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4550                 if (encoder->pre_pll_enable)
4551                         encoder->pre_pll_enable(encoder);
4552
4553         if (crtc->config.has_dp_encoder)
4554                 intel_dp_set_m_n(crtc);
4555
4556         I915_WRITE(DPLL(pipe), dpll);
4557
4558         /* Wait for the clocks to stabilize. */
4559         POSTING_READ(DPLL(pipe));
4560         udelay(150);
4561
4562         if (INTEL_INFO(dev)->gen >= 4) {
4563                 u32 dpll_md = 0;
4564                 if (crtc->config.pixel_multiplier > 1) {
4565                         dpll_md = (crtc->config.pixel_multiplier - 1)
4566                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4567                 }
4568                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4569         } else {
4570                 /* The pixel multiplier can only be updated once the
4571                  * DPLL is enabled and the clocks are stable.
4572                  *
4573                  * So write it again.
4574                  */
4575                 I915_WRITE(DPLL(pipe), dpll);
4576         }
4577 }
4578
4579 static void i8xx_update_pll(struct intel_crtc *crtc,
4580                             struct drm_display_mode *adjusted_mode,
4581                             intel_clock_t *reduced_clock,
4582                             int num_connectors)
4583 {
4584         struct drm_device *dev = crtc->base.dev;
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586         struct intel_encoder *encoder;
4587         int pipe = crtc->pipe;
4588         u32 dpll;
4589         struct dpll *clock = &crtc->config.dpll;
4590
4591         i9xx_update_pll_dividers(crtc, reduced_clock);
4592
4593         dpll = DPLL_VGA_MODE_DIS;
4594
4595         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4596                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4597         } else {
4598                 if (clock->p1 == 2)
4599                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4600                 else
4601                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4602                 if (clock->p2 == 4)
4603                         dpll |= PLL_P2_DIVIDE_BY_4;
4604         }
4605
4606         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4607                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4608                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4609         else
4610                 dpll |= PLL_REF_INPUT_DREFCLK;
4611
4612         dpll |= DPLL_VCO_ENABLE;
4613         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4614         POSTING_READ(DPLL(pipe));
4615         udelay(150);
4616
4617         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4618                 if (encoder->pre_pll_enable)
4619                         encoder->pre_pll_enable(encoder);
4620
4621         I915_WRITE(DPLL(pipe), dpll);
4622
4623         /* Wait for the clocks to stabilize. */
4624         POSTING_READ(DPLL(pipe));
4625         udelay(150);
4626
4627         /* The pixel multiplier can only be updated once the
4628          * DPLL is enabled and the clocks are stable.
4629          *
4630          * So write it again.
4631          */
4632         I915_WRITE(DPLL(pipe), dpll);
4633 }
4634
4635 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4636                                    struct drm_display_mode *mode,
4637                                    struct drm_display_mode *adjusted_mode)
4638 {
4639         struct drm_device *dev = intel_crtc->base.dev;
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         enum pipe pipe = intel_crtc->pipe;
4642         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4643         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4644
4645         /* We need to be careful not to changed the adjusted mode, for otherwise
4646          * the hw state checker will get angry at the mismatch. */
4647         crtc_vtotal = adjusted_mode->crtc_vtotal;
4648         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4649
4650         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4651                 /* the chip adds 2 halflines automatically */
4652                 crtc_vtotal -= 1;
4653                 crtc_vblank_end -= 1;
4654                 vsyncshift = adjusted_mode->crtc_hsync_start
4655                              - adjusted_mode->crtc_htotal / 2;
4656         } else {
4657                 vsyncshift = 0;
4658         }
4659
4660         if (INTEL_INFO(dev)->gen > 3)
4661                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4662
4663         I915_WRITE(HTOTAL(cpu_transcoder),
4664                    (adjusted_mode->crtc_hdisplay - 1) |
4665                    ((adjusted_mode->crtc_htotal - 1) << 16));
4666         I915_WRITE(HBLANK(cpu_transcoder),
4667                    (adjusted_mode->crtc_hblank_start - 1) |
4668                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4669         I915_WRITE(HSYNC(cpu_transcoder),
4670                    (adjusted_mode->crtc_hsync_start - 1) |
4671                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4672
4673         I915_WRITE(VTOTAL(cpu_transcoder),
4674                    (adjusted_mode->crtc_vdisplay - 1) |
4675                    ((crtc_vtotal - 1) << 16));
4676         I915_WRITE(VBLANK(cpu_transcoder),
4677                    (adjusted_mode->crtc_vblank_start - 1) |
4678                    ((crtc_vblank_end - 1) << 16));
4679         I915_WRITE(VSYNC(cpu_transcoder),
4680                    (adjusted_mode->crtc_vsync_start - 1) |
4681                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4682
4683         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4684          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4685          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4686          * bits. */
4687         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4688             (pipe == PIPE_B || pipe == PIPE_C))
4689                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4690
4691         /* pipesrc controls the size that is scaled from, which should
4692          * always be the user's requested size.
4693          */
4694         I915_WRITE(PIPESRC(pipe),
4695                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4696 }
4697
4698 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4699                                    struct intel_crtc_config *pipe_config)
4700 {
4701         struct drm_device *dev = crtc->base.dev;
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4704         uint32_t tmp;
4705
4706         tmp = I915_READ(HTOTAL(cpu_transcoder));
4707         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4708         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4709         tmp = I915_READ(HBLANK(cpu_transcoder));
4710         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4711         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4712         tmp = I915_READ(HSYNC(cpu_transcoder));
4713         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4714         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4715
4716         tmp = I915_READ(VTOTAL(cpu_transcoder));
4717         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4718         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4719         tmp = I915_READ(VBLANK(cpu_transcoder));
4720         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4721         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4722         tmp = I915_READ(VSYNC(cpu_transcoder));
4723         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4724         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4725
4726         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4727                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4728                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4729                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4730         }
4731
4732         tmp = I915_READ(PIPESRC(crtc->pipe));
4733         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4734         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4735 }
4736
4737 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4738 {
4739         struct drm_device *dev = intel_crtc->base.dev;
4740         struct drm_i915_private *dev_priv = dev->dev_private;
4741         uint32_t pipeconf;
4742
4743         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4744
4745         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4746                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4747                  * core speed.
4748                  *
4749                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4750                  * pipe == 0 check?
4751                  */
4752                 if (intel_crtc->config.requested_mode.clock >
4753                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4754                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4755                 else
4756                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4757         }
4758
4759         /* only g4x and later have fancy bpc/dither controls */
4760         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4761                 pipeconf &= ~(PIPECONF_BPC_MASK |
4762                               PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4763
4764                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4765                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4766                         pipeconf |= PIPECONF_DITHER_EN |
4767                                     PIPECONF_DITHER_TYPE_SP;
4768
4769                 switch (intel_crtc->config.pipe_bpp) {
4770                 case 18:
4771                         pipeconf |= PIPECONF_6BPC;
4772                         break;
4773                 case 24:
4774                         pipeconf |= PIPECONF_8BPC;
4775                         break;
4776                 case 30:
4777                         pipeconf |= PIPECONF_10BPC;
4778                         break;
4779                 default:
4780                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4781                         BUG();
4782                 }
4783         }
4784
4785         if (HAS_PIPE_CXSR(dev)) {
4786                 if (intel_crtc->lowfreq_avail) {
4787                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4788                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4789                 } else {
4790                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4791                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4792                 }
4793         }
4794
4795         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4796         if (!IS_GEN2(dev) &&
4797             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4798                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4799         else
4800                 pipeconf |= PIPECONF_PROGRESSIVE;
4801
4802         if (IS_VALLEYVIEW(dev)) {
4803                 if (intel_crtc->config.limited_color_range)
4804                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4805                 else
4806                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4807         }
4808
4809         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4810         POSTING_READ(PIPECONF(intel_crtc->pipe));
4811 }
4812
4813 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4814                               int x, int y,
4815                               struct drm_framebuffer *fb)
4816 {
4817         struct drm_device *dev = crtc->dev;
4818         struct drm_i915_private *dev_priv = dev->dev_private;
4819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4820         struct drm_display_mode *adjusted_mode =
4821                 &intel_crtc->config.adjusted_mode;
4822         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4823         int pipe = intel_crtc->pipe;
4824         int plane = intel_crtc->plane;
4825         int refclk, num_connectors = 0;
4826         intel_clock_t clock, reduced_clock;
4827         u32 dspcntr;
4828         bool ok, has_reduced_clock = false;
4829         bool is_lvds = false;
4830         struct intel_encoder *encoder;
4831         const intel_limit_t *limit;
4832         int ret;
4833
4834         for_each_encoder_on_crtc(dev, crtc, encoder) {
4835                 switch (encoder->type) {
4836                 case INTEL_OUTPUT_LVDS:
4837                         is_lvds = true;
4838                         break;
4839                 }
4840
4841                 num_connectors++;
4842         }
4843
4844         refclk = i9xx_get_refclk(crtc, num_connectors);
4845
4846         /*
4847          * Returns a set of divisors for the desired target clock with the given
4848          * refclk, or FALSE.  The returned values represent the clock equation:
4849          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4850          */
4851         limit = intel_limit(crtc, refclk);
4852         ok = dev_priv->display.find_dpll(limit, crtc,
4853                                          intel_crtc->config.port_clock,
4854                                          refclk, NULL, &clock);
4855         if (!ok && !intel_crtc->config.clock_set) {
4856                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4857                 return -EINVAL;
4858         }
4859
4860         /* Ensure that the cursor is valid for the new mode before changing... */
4861         intel_crtc_update_cursor(crtc, true);
4862
4863         if (is_lvds && dev_priv->lvds_downclock_avail) {
4864                 /*
4865                  * Ensure we match the reduced clock's P to the target clock.
4866                  * If the clocks don't match, we can't switch the display clock
4867                  * by using the FP0/FP1. In such case we will disable the LVDS
4868                  * downclock feature.
4869                 */
4870                 has_reduced_clock =
4871                         dev_priv->display.find_dpll(limit, crtc,
4872                                                     dev_priv->lvds_downclock,
4873                                                     refclk, &clock,
4874                                                     &reduced_clock);
4875         }
4876         /* Compat-code for transition, will disappear. */
4877         if (!intel_crtc->config.clock_set) {
4878                 intel_crtc->config.dpll.n = clock.n;
4879                 intel_crtc->config.dpll.m1 = clock.m1;
4880                 intel_crtc->config.dpll.m2 = clock.m2;
4881                 intel_crtc->config.dpll.p1 = clock.p1;
4882                 intel_crtc->config.dpll.p2 = clock.p2;
4883         }
4884
4885         if (IS_GEN2(dev))
4886                 i8xx_update_pll(intel_crtc, adjusted_mode,
4887                                 has_reduced_clock ? &reduced_clock : NULL,
4888                                 num_connectors);
4889         else if (IS_VALLEYVIEW(dev))
4890                 vlv_update_pll(intel_crtc);
4891         else
4892                 i9xx_update_pll(intel_crtc,
4893                                 has_reduced_clock ? &reduced_clock : NULL,
4894                                 num_connectors);
4895
4896         /* Set up the display plane register */
4897         dspcntr = DISPPLANE_GAMMA_ENABLE;
4898
4899         if (!IS_VALLEYVIEW(dev)) {
4900                 if (pipe == 0)
4901                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4902                 else
4903                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4904         }
4905
4906         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4907
4908         /* pipesrc and dspsize control the size that is scaled from,
4909          * which should always be the user's requested size.
4910          */
4911         I915_WRITE(DSPSIZE(plane),
4912                    ((mode->vdisplay - 1) << 16) |
4913                    (mode->hdisplay - 1));
4914         I915_WRITE(DSPPOS(plane), 0);
4915
4916         i9xx_set_pipeconf(intel_crtc);
4917
4918         I915_WRITE(DSPCNTR(plane), dspcntr);
4919         POSTING_READ(DSPCNTR(plane));
4920
4921         ret = intel_pipe_set_base(crtc, x, y, fb);
4922
4923         intel_update_watermarks(dev);
4924
4925         return ret;
4926 }
4927
4928 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4929                                  struct intel_crtc_config *pipe_config)
4930 {
4931         struct drm_device *dev = crtc->base.dev;
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         uint32_t tmp;
4934
4935         tmp = I915_READ(PFIT_CONTROL);
4936
4937         if (INTEL_INFO(dev)->gen < 4) {
4938                 if (crtc->pipe != PIPE_B)
4939                         return;
4940
4941                 /* gen2/3 store dither state in pfit control, needs to match */
4942                 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4943         } else {
4944                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4945                         return;
4946         }
4947
4948         if (!(tmp & PFIT_ENABLE))
4949                 return;
4950
4951         pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4952         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4953         if (INTEL_INFO(dev)->gen < 5)
4954                 pipe_config->gmch_pfit.lvds_border_bits =
4955                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4956 }
4957
4958 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4959                                  struct intel_crtc_config *pipe_config)
4960 {
4961         struct drm_device *dev = crtc->base.dev;
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963         uint32_t tmp;
4964
4965         pipe_config->cpu_transcoder = crtc->pipe;
4966
4967         tmp = I915_READ(PIPECONF(crtc->pipe));
4968         if (!(tmp & PIPECONF_ENABLE))
4969                 return false;
4970
4971         intel_get_pipe_timings(crtc, pipe_config);
4972
4973         i9xx_get_pfit_config(crtc, pipe_config);
4974
4975         return true;
4976 }
4977
4978 static void ironlake_init_pch_refclk(struct drm_device *dev)
4979 {
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981         struct drm_mode_config *mode_config = &dev->mode_config;
4982         struct intel_encoder *encoder;
4983         u32 val, final;
4984         bool has_lvds = false;
4985         bool has_cpu_edp = false;
4986         bool has_panel = false;
4987         bool has_ck505 = false;
4988         bool can_ssc = false;
4989
4990         /* We need to take the global config into account */
4991         list_for_each_entry(encoder, &mode_config->encoder_list,
4992                             base.head) {
4993                 switch (encoder->type) {
4994                 case INTEL_OUTPUT_LVDS:
4995                         has_panel = true;
4996                         has_lvds = true;
4997                         break;
4998                 case INTEL_OUTPUT_EDP:
4999                         has_panel = true;
5000                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5001                                 has_cpu_edp = true;
5002                         break;
5003                 }
5004         }
5005
5006         if (HAS_PCH_IBX(dev)) {
5007                 has_ck505 = dev_priv->vbt.display_clock_mode;
5008                 can_ssc = has_ck505;
5009         } else {
5010                 has_ck505 = false;
5011                 can_ssc = true;
5012         }
5013
5014         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5015                       has_panel, has_lvds, has_ck505);
5016
5017         /* Ironlake: try to setup display ref clock before DPLL
5018          * enabling. This is only under driver's control after
5019          * PCH B stepping, previous chipset stepping should be
5020          * ignoring this setting.
5021          */
5022         val = I915_READ(PCH_DREF_CONTROL);
5023
5024         /* As we must carefully and slowly disable/enable each source in turn,
5025          * compute the final state we want first and check if we need to
5026          * make any changes at all.
5027          */
5028         final = val;
5029         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5030         if (has_ck505)
5031                 final |= DREF_NONSPREAD_CK505_ENABLE;
5032         else
5033                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5034
5035         final &= ~DREF_SSC_SOURCE_MASK;
5036         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5037         final &= ~DREF_SSC1_ENABLE;
5038
5039         if (has_panel) {
5040                 final |= DREF_SSC_SOURCE_ENABLE;
5041
5042                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5043                         final |= DREF_SSC1_ENABLE;
5044
5045                 if (has_cpu_edp) {
5046                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5047                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5048                         else
5049                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5050                 } else
5051                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5052         } else {
5053                 final |= DREF_SSC_SOURCE_DISABLE;
5054                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5055         }
5056
5057         if (final == val)
5058                 return;
5059
5060         /* Always enable nonspread source */
5061         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5062
5063         if (has_ck505)
5064                 val |= DREF_NONSPREAD_CK505_ENABLE;
5065         else
5066                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5067
5068         if (has_panel) {
5069                 val &= ~DREF_SSC_SOURCE_MASK;
5070                 val |= DREF_SSC_SOURCE_ENABLE;
5071
5072                 /* SSC must be turned on before enabling the CPU output  */
5073                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5074                         DRM_DEBUG_KMS("Using SSC on panel\n");
5075                         val |= DREF_SSC1_ENABLE;
5076                 } else
5077                         val &= ~DREF_SSC1_ENABLE;
5078
5079                 /* Get SSC going before enabling the outputs */
5080                 I915_WRITE(PCH_DREF_CONTROL, val);
5081                 POSTING_READ(PCH_DREF_CONTROL);
5082                 udelay(200);
5083
5084                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5085
5086                 /* Enable CPU source on CPU attached eDP */
5087                 if (has_cpu_edp) {
5088                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5089                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5090                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5091                         }
5092                         else
5093                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5094                 } else
5095                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5096
5097                 I915_WRITE(PCH_DREF_CONTROL, val);
5098                 POSTING_READ(PCH_DREF_CONTROL);
5099                 udelay(200);
5100         } else {
5101                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5102
5103                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5104
5105                 /* Turn off CPU output */
5106                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5107
5108                 I915_WRITE(PCH_DREF_CONTROL, val);
5109                 POSTING_READ(PCH_DREF_CONTROL);
5110                 udelay(200);
5111
5112                 /* Turn off the SSC source */
5113                 val &= ~DREF_SSC_SOURCE_MASK;
5114                 val |= DREF_SSC_SOURCE_DISABLE;
5115
5116                 /* Turn off SSC1 */
5117                 val &= ~DREF_SSC1_ENABLE;
5118
5119                 I915_WRITE(PCH_DREF_CONTROL, val);
5120                 POSTING_READ(PCH_DREF_CONTROL);
5121                 udelay(200);
5122         }
5123
5124         BUG_ON(val != final);
5125 }
5126
5127 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5128 static void lpt_init_pch_refclk(struct drm_device *dev)
5129 {
5130         struct drm_i915_private *dev_priv = dev->dev_private;
5131         struct drm_mode_config *mode_config = &dev->mode_config;
5132         struct intel_encoder *encoder;
5133         bool has_vga = false;
5134         bool is_sdv = false;
5135         u32 tmp;
5136
5137         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5138                 switch (encoder->type) {
5139                 case INTEL_OUTPUT_ANALOG:
5140                         has_vga = true;
5141                         break;
5142                 }
5143         }
5144
5145         if (!has_vga)
5146                 return;
5147
5148         mutex_lock(&dev_priv->dpio_lock);
5149
5150         /* XXX: Rip out SDV support once Haswell ships for real. */
5151         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5152                 is_sdv = true;
5153
5154         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5155         tmp &= ~SBI_SSCCTL_DISABLE;
5156         tmp |= SBI_SSCCTL_PATHALT;
5157         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5158
5159         udelay(24);
5160
5161         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5162         tmp &= ~SBI_SSCCTL_PATHALT;
5163         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5164
5165         if (!is_sdv) {
5166                 tmp = I915_READ(SOUTH_CHICKEN2);
5167                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5168                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5169
5170                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5171                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5172                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5173
5174                 tmp = I915_READ(SOUTH_CHICKEN2);
5175                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5176                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5177
5178                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5179                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5180                                        100))
5181                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5182         }
5183
5184         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5185         tmp &= ~(0xFF << 24);
5186         tmp |= (0x12 << 24);
5187         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5188
5189         if (is_sdv) {
5190                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5191                 tmp |= 0x7FFF;
5192                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5193         }
5194
5195         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5196         tmp |= (1 << 11);
5197         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5198
5199         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5200         tmp |= (1 << 11);
5201         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5202
5203         if (is_sdv) {
5204                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5205                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5206                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5207
5208                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5209                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5210                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5211
5212                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5213                 tmp |= (0x3F << 8);
5214                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5215
5216                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5217                 tmp |= (0x3F << 8);
5218                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5219         }
5220
5221         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5222         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5223         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5224
5225         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5226         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5227         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5228
5229         if (!is_sdv) {
5230                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5231                 tmp &= ~(7 << 13);
5232                 tmp |= (5 << 13);
5233                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5234
5235                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5236                 tmp &= ~(7 << 13);
5237                 tmp |= (5 << 13);
5238                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5239         }
5240
5241         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5242         tmp &= ~0xFF;
5243         tmp |= 0x1C;
5244         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5245
5246         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5247         tmp &= ~0xFF;
5248         tmp |= 0x1C;
5249         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5250
5251         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5252         tmp &= ~(0xFF << 16);
5253         tmp |= (0x1C << 16);
5254         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5255
5256         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5257         tmp &= ~(0xFF << 16);
5258         tmp |= (0x1C << 16);
5259         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5260
5261         if (!is_sdv) {
5262                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5263                 tmp |= (1 << 27);
5264                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5265
5266                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5267                 tmp |= (1 << 27);
5268                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5269
5270                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5271                 tmp &= ~(0xF << 28);
5272                 tmp |= (4 << 28);
5273                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5274
5275                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5276                 tmp &= ~(0xF << 28);
5277                 tmp |= (4 << 28);
5278                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5279         }
5280
5281         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5282         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5283         tmp |= SBI_DBUFF0_ENABLE;
5284         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5285
5286         mutex_unlock(&dev_priv->dpio_lock);
5287 }
5288
5289 /*
5290  * Initialize reference clocks when the driver loads
5291  */
5292 void intel_init_pch_refclk(struct drm_device *dev)
5293 {
5294         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5295                 ironlake_init_pch_refclk(dev);
5296         else if (HAS_PCH_LPT(dev))
5297                 lpt_init_pch_refclk(dev);
5298 }
5299
5300 static int ironlake_get_refclk(struct drm_crtc *crtc)
5301 {
5302         struct drm_device *dev = crtc->dev;
5303         struct drm_i915_private *dev_priv = dev->dev_private;
5304         struct intel_encoder *encoder;
5305         int num_connectors = 0;
5306         bool is_lvds = false;
5307
5308         for_each_encoder_on_crtc(dev, crtc, encoder) {
5309                 switch (encoder->type) {
5310                 case INTEL_OUTPUT_LVDS:
5311                         is_lvds = true;
5312                         break;
5313                 }
5314                 num_connectors++;
5315         }
5316
5317         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5318                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5319                               dev_priv->vbt.lvds_ssc_freq);
5320                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5321         }
5322
5323         return 120000;
5324 }
5325
5326 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5327 {
5328         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5330         int pipe = intel_crtc->pipe;
5331         uint32_t val;
5332
5333         val = I915_READ(PIPECONF(pipe));
5334
5335         val &= ~PIPECONF_BPC_MASK;
5336         switch (intel_crtc->config.pipe_bpp) {
5337         case 18:
5338                 val |= PIPECONF_6BPC;
5339                 break;
5340         case 24:
5341                 val |= PIPECONF_8BPC;
5342                 break;
5343         case 30:
5344                 val |= PIPECONF_10BPC;
5345                 break;
5346         case 36:
5347                 val |= PIPECONF_12BPC;
5348                 break;
5349         default:
5350                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5351                 BUG();
5352         }
5353
5354         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5355         if (intel_crtc->config.dither)
5356                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5357
5358         val &= ~PIPECONF_INTERLACE_MASK;
5359         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5360                 val |= PIPECONF_INTERLACED_ILK;
5361         else
5362                 val |= PIPECONF_PROGRESSIVE;
5363
5364         if (intel_crtc->config.limited_color_range)
5365                 val |= PIPECONF_COLOR_RANGE_SELECT;
5366         else
5367                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5368
5369         I915_WRITE(PIPECONF(pipe), val);
5370         POSTING_READ(PIPECONF(pipe));
5371 }
5372
5373 /*
5374  * Set up the pipe CSC unit.
5375  *
5376  * Currently only full range RGB to limited range RGB conversion
5377  * is supported, but eventually this should handle various
5378  * RGB<->YCbCr scenarios as well.
5379  */
5380 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5381 {
5382         struct drm_device *dev = crtc->dev;
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5385         int pipe = intel_crtc->pipe;
5386         uint16_t coeff = 0x7800; /* 1.0 */
5387
5388         /*
5389          * TODO: Check what kind of values actually come out of the pipe
5390          * with these coeff/postoff values and adjust to get the best
5391          * accuracy. Perhaps we even need to take the bpc value into
5392          * consideration.
5393          */
5394
5395         if (intel_crtc->config.limited_color_range)
5396                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5397
5398         /*
5399          * GY/GU and RY/RU should be the other way around according
5400          * to BSpec, but reality doesn't agree. Just set them up in
5401          * a way that results in the correct picture.
5402          */
5403         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5404         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5405
5406         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5407         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5408
5409         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5410         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5411
5412         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5413         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5414         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5415
5416         if (INTEL_INFO(dev)->gen > 6) {
5417                 uint16_t postoff = 0;
5418
5419                 if (intel_crtc->config.limited_color_range)
5420                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5421
5422                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5423                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5424                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5425
5426                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5427         } else {
5428                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5429
5430                 if (intel_crtc->config.limited_color_range)
5431                         mode |= CSC_BLACK_SCREEN_OFFSET;
5432
5433                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5434         }
5435 }
5436
5437 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5438 {
5439         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5441         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5442         uint32_t val;
5443
5444         val = I915_READ(PIPECONF(cpu_transcoder));
5445
5446         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5447         if (intel_crtc->config.dither)
5448                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5449
5450         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5451         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5452                 val |= PIPECONF_INTERLACED_ILK;
5453         else
5454                 val |= PIPECONF_PROGRESSIVE;
5455
5456         I915_WRITE(PIPECONF(cpu_transcoder), val);
5457         POSTING_READ(PIPECONF(cpu_transcoder));
5458 }
5459
5460 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5461                                     intel_clock_t *clock,
5462                                     bool *has_reduced_clock,
5463                                     intel_clock_t *reduced_clock)
5464 {
5465         struct drm_device *dev = crtc->dev;
5466         struct drm_i915_private *dev_priv = dev->dev_private;
5467         struct intel_encoder *intel_encoder;
5468         int refclk;
5469         const intel_limit_t *limit;
5470         bool ret, is_lvds = false;
5471
5472         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5473                 switch (intel_encoder->type) {
5474                 case INTEL_OUTPUT_LVDS:
5475                         is_lvds = true;
5476                         break;
5477                 }
5478         }
5479
5480         refclk = ironlake_get_refclk(crtc);
5481
5482         /*
5483          * Returns a set of divisors for the desired target clock with the given
5484          * refclk, or FALSE.  The returned values represent the clock equation:
5485          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5486          */
5487         limit = intel_limit(crtc, refclk);
5488         ret = dev_priv->display.find_dpll(limit, crtc,
5489                                           to_intel_crtc(crtc)->config.port_clock,
5490                                           refclk, NULL, clock);
5491         if (!ret)
5492                 return false;
5493
5494         if (is_lvds && dev_priv->lvds_downclock_avail) {
5495                 /*
5496                  * Ensure we match the reduced clock's P to the target clock.
5497                  * If the clocks don't match, we can't switch the display clock
5498                  * by using the FP0/FP1. In such case we will disable the LVDS
5499                  * downclock feature.
5500                 */
5501                 *has_reduced_clock =
5502                         dev_priv->display.find_dpll(limit, crtc,
5503                                                     dev_priv->lvds_downclock,
5504                                                     refclk, clock,
5505                                                     reduced_clock);
5506         }
5507
5508         return true;
5509 }
5510
5511 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5512 {
5513         struct drm_i915_private *dev_priv = dev->dev_private;
5514         uint32_t temp;
5515
5516         temp = I915_READ(SOUTH_CHICKEN1);
5517         if (temp & FDI_BC_BIFURCATION_SELECT)
5518                 return;
5519
5520         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5521         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5522
5523         temp |= FDI_BC_BIFURCATION_SELECT;
5524         DRM_DEBUG_KMS("enabling fdi C rx\n");
5525         I915_WRITE(SOUTH_CHICKEN1, temp);
5526         POSTING_READ(SOUTH_CHICKEN1);
5527 }
5528
5529 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5530 {
5531         struct drm_device *dev = intel_crtc->base.dev;
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533
5534         switch (intel_crtc->pipe) {
5535         case PIPE_A:
5536                 break;
5537         case PIPE_B:
5538                 if (intel_crtc->config.fdi_lanes > 2)
5539                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5540                 else
5541                         cpt_enable_fdi_bc_bifurcation(dev);
5542
5543                 break;
5544         case PIPE_C:
5545                 cpt_enable_fdi_bc_bifurcation(dev);
5546
5547                 break;
5548         default:
5549                 BUG();
5550         }
5551 }
5552
5553 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5554 {
5555         /*
5556          * Account for spread spectrum to avoid
5557          * oversubscribing the link. Max center spread
5558          * is 2.5%; use 5% for safety's sake.
5559          */
5560         u32 bps = target_clock * bpp * 21 / 20;
5561         return bps / (link_bw * 8) + 1;
5562 }
5563
5564 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5565 {
5566         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5567 }
5568
5569 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5570                                       u32 *fp,
5571                                       intel_clock_t *reduced_clock, u32 *fp2)
5572 {
5573         struct drm_crtc *crtc = &intel_crtc->base;
5574         struct drm_device *dev = crtc->dev;
5575         struct drm_i915_private *dev_priv = dev->dev_private;
5576         struct intel_encoder *intel_encoder;
5577         uint32_t dpll;
5578         int factor, num_connectors = 0;
5579         bool is_lvds = false, is_sdvo = false;
5580
5581         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5582                 switch (intel_encoder->type) {
5583                 case INTEL_OUTPUT_LVDS:
5584                         is_lvds = true;
5585                         break;
5586                 case INTEL_OUTPUT_SDVO:
5587                 case INTEL_OUTPUT_HDMI:
5588                         is_sdvo = true;
5589                         break;
5590                 }
5591
5592                 num_connectors++;
5593         }
5594
5595         /* Enable autotuning of the PLL clock (if permissible) */
5596         factor = 21;
5597         if (is_lvds) {
5598                 if ((intel_panel_use_ssc(dev_priv) &&
5599                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5600                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5601                         factor = 25;
5602         } else if (intel_crtc->config.sdvo_tv_clock)
5603                 factor = 20;
5604
5605         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5606                 *fp |= FP_CB_TUNE;
5607
5608         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5609                 *fp2 |= FP_CB_TUNE;
5610
5611         dpll = 0;
5612
5613         if (is_lvds)
5614                 dpll |= DPLLB_MODE_LVDS;
5615         else
5616                 dpll |= DPLLB_MODE_DAC_SERIAL;
5617
5618         if (intel_crtc->config.pixel_multiplier > 1) {
5619                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5620                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5621         }
5622
5623         if (is_sdvo)
5624                 dpll |= DPLL_DVO_HIGH_SPEED;
5625         if (intel_crtc->config.has_dp_encoder)
5626                 dpll |= DPLL_DVO_HIGH_SPEED;
5627
5628         /* compute bitmask from p1 value */
5629         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5630         /* also FPA1 */
5631         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5632
5633         switch (intel_crtc->config.dpll.p2) {
5634         case 5:
5635                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5636                 break;
5637         case 7:
5638                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5639                 break;
5640         case 10:
5641                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5642                 break;
5643         case 14:
5644                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5645                 break;
5646         }
5647
5648         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5649                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5650         else
5651                 dpll |= PLL_REF_INPUT_DREFCLK;
5652
5653         return dpll;
5654 }
5655
5656 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5657                                   int x, int y,
5658                                   struct drm_framebuffer *fb)
5659 {
5660         struct drm_device *dev = crtc->dev;
5661         struct drm_i915_private *dev_priv = dev->dev_private;
5662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5663         struct drm_display_mode *adjusted_mode =
5664                 &intel_crtc->config.adjusted_mode;
5665         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5666         int pipe = intel_crtc->pipe;
5667         int plane = intel_crtc->plane;
5668         int num_connectors = 0;
5669         intel_clock_t clock, reduced_clock;
5670         u32 dpll = 0, fp = 0, fp2 = 0;
5671         bool ok, has_reduced_clock = false;
5672         bool is_lvds = false;
5673         struct intel_encoder *encoder;
5674         int ret;
5675
5676         for_each_encoder_on_crtc(dev, crtc, encoder) {
5677                 switch (encoder->type) {
5678                 case INTEL_OUTPUT_LVDS:
5679                         is_lvds = true;
5680                         break;
5681                 }
5682
5683                 num_connectors++;
5684         }
5685
5686         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5687              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5688
5689         ok = ironlake_compute_clocks(crtc, &clock,
5690                                      &has_reduced_clock, &reduced_clock);
5691         if (!ok && !intel_crtc->config.clock_set) {
5692                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5693                 return -EINVAL;
5694         }
5695         /* Compat-code for transition, will disappear. */
5696         if (!intel_crtc->config.clock_set) {
5697                 intel_crtc->config.dpll.n = clock.n;
5698                 intel_crtc->config.dpll.m1 = clock.m1;
5699                 intel_crtc->config.dpll.m2 = clock.m2;
5700                 intel_crtc->config.dpll.p1 = clock.p1;
5701                 intel_crtc->config.dpll.p2 = clock.p2;
5702         }
5703
5704         /* Ensure that the cursor is valid for the new mode before changing... */
5705         intel_crtc_update_cursor(crtc, true);
5706
5707         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5708         if (intel_crtc->config.has_pch_encoder) {
5709                 struct intel_pch_pll *pll;
5710
5711                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5712                 if (has_reduced_clock)
5713                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5714
5715                 dpll = ironlake_compute_dpll(intel_crtc,
5716                                              &fp, &reduced_clock,
5717                                              has_reduced_clock ? &fp2 : NULL);
5718
5719                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5720                 if (pll == NULL) {
5721                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5722                                          pipe_name(pipe));
5723                         return -EINVAL;
5724                 }
5725         } else
5726                 intel_put_pch_pll(intel_crtc);
5727
5728         if (intel_crtc->config.has_dp_encoder)
5729                 intel_dp_set_m_n(intel_crtc);
5730
5731         for_each_encoder_on_crtc(dev, crtc, encoder)
5732                 if (encoder->pre_pll_enable)
5733                         encoder->pre_pll_enable(encoder);
5734
5735         if (intel_crtc->pch_pll) {
5736                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5737
5738                 /* Wait for the clocks to stabilize. */
5739                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5740                 udelay(150);
5741
5742                 /* The pixel multiplier can only be updated once the
5743                  * DPLL is enabled and the clocks are stable.
5744                  *
5745                  * So write it again.
5746                  */
5747                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5748         }
5749
5750         intel_crtc->lowfreq_avail = false;
5751         if (intel_crtc->pch_pll) {
5752                 if (is_lvds && has_reduced_clock && i915_powersave) {
5753                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5754                         intel_crtc->lowfreq_avail = true;
5755                 } else {
5756                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5757                 }
5758         }
5759
5760         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5761
5762         if (intel_crtc->config.has_pch_encoder) {
5763                 intel_cpu_transcoder_set_m_n(intel_crtc,
5764                                              &intel_crtc->config.fdi_m_n);
5765         }
5766
5767         if (IS_IVYBRIDGE(dev))
5768                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5769
5770         ironlake_set_pipeconf(crtc);
5771
5772         /* Set up the display plane register */
5773         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5774         POSTING_READ(DSPCNTR(plane));
5775
5776         ret = intel_pipe_set_base(crtc, x, y, fb);
5777
5778         intel_update_watermarks(dev);
5779
5780         return ret;
5781 }
5782
5783 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5784                                         struct intel_crtc_config *pipe_config)
5785 {
5786         struct drm_device *dev = crtc->base.dev;
5787         struct drm_i915_private *dev_priv = dev->dev_private;
5788         enum transcoder transcoder = pipe_config->cpu_transcoder;
5789
5790         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5791         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5792         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5793                                         & ~TU_SIZE_MASK;
5794         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5795         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5796                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5797 }
5798
5799 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5800                                      struct intel_crtc_config *pipe_config)
5801 {
5802         struct drm_device *dev = crtc->base.dev;
5803         struct drm_i915_private *dev_priv = dev->dev_private;
5804         uint32_t tmp;
5805
5806         tmp = I915_READ(PF_CTL(crtc->pipe));
5807
5808         if (tmp & PF_ENABLE) {
5809                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5810                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5811         }
5812 }
5813
5814 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5815                                      struct intel_crtc_config *pipe_config)
5816 {
5817         struct drm_device *dev = crtc->base.dev;
5818         struct drm_i915_private *dev_priv = dev->dev_private;
5819         uint32_t tmp;
5820
5821         pipe_config->cpu_transcoder = crtc->pipe;
5822
5823         tmp = I915_READ(PIPECONF(crtc->pipe));
5824         if (!(tmp & PIPECONF_ENABLE))
5825                 return false;
5826
5827         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5828                 pipe_config->has_pch_encoder = true;
5829
5830                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5831                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5832                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5833
5834                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5835         }
5836
5837         intel_get_pipe_timings(crtc, pipe_config);
5838
5839         ironlake_get_pfit_config(crtc, pipe_config);
5840
5841         return true;
5842 }
5843
5844 static void haswell_modeset_global_resources(struct drm_device *dev)
5845 {
5846         bool enable = false;
5847         struct intel_crtc *crtc;
5848
5849         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5850                 if (!crtc->base.enabled)
5851                         continue;
5852
5853                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5854                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
5855                         enable = true;
5856         }
5857
5858         intel_set_power_well(dev, enable);
5859 }
5860
5861 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5862                                  int x, int y,
5863                                  struct drm_framebuffer *fb)
5864 {
5865         struct drm_device *dev = crtc->dev;
5866         struct drm_i915_private *dev_priv = dev->dev_private;
5867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5868         struct drm_display_mode *adjusted_mode =
5869                 &intel_crtc->config.adjusted_mode;
5870         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5871         int pipe = intel_crtc->pipe;
5872         int plane = intel_crtc->plane;
5873         int num_connectors = 0;
5874         bool is_cpu_edp = false;
5875         struct intel_encoder *encoder;
5876         int ret;
5877
5878         for_each_encoder_on_crtc(dev, crtc, encoder) {
5879                 switch (encoder->type) {
5880                 case INTEL_OUTPUT_EDP:
5881                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5882                                 is_cpu_edp = true;
5883                         break;
5884                 }
5885
5886                 num_connectors++;
5887         }
5888
5889         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5890              num_connectors, pipe_name(pipe));
5891
5892         if (!intel_ddi_pll_mode_set(crtc))
5893                 return -EINVAL;
5894
5895         /* Ensure that the cursor is valid for the new mode before changing... */
5896         intel_crtc_update_cursor(crtc, true);
5897
5898         if (intel_crtc->config.has_dp_encoder)
5899                 intel_dp_set_m_n(intel_crtc);
5900
5901         intel_crtc->lowfreq_avail = false;
5902
5903         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5904
5905         if (intel_crtc->config.has_pch_encoder) {
5906                 intel_cpu_transcoder_set_m_n(intel_crtc,
5907                                              &intel_crtc->config.fdi_m_n);
5908         }
5909
5910         haswell_set_pipeconf(crtc);
5911
5912         intel_set_pipe_csc(crtc);
5913
5914         /* Set up the display plane register */
5915         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5916         POSTING_READ(DSPCNTR(plane));
5917
5918         ret = intel_pipe_set_base(crtc, x, y, fb);
5919
5920         intel_update_watermarks(dev);
5921
5922         return ret;
5923 }
5924
5925 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5926                                     struct intel_crtc_config *pipe_config)
5927 {
5928         struct drm_device *dev = crtc->base.dev;
5929         struct drm_i915_private *dev_priv = dev->dev_private;
5930         enum intel_display_power_domain pfit_domain;
5931         uint32_t tmp;
5932
5933         pipe_config->cpu_transcoder = crtc->pipe;
5934         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5935         if (tmp & TRANS_DDI_FUNC_ENABLE) {
5936                 enum pipe trans_edp_pipe;
5937                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5938                 default:
5939                         WARN(1, "unknown pipe linked to edp transcoder\n");
5940                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5941                 case TRANS_DDI_EDP_INPUT_A_ON:
5942                         trans_edp_pipe = PIPE_A;
5943                         break;
5944                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5945                         trans_edp_pipe = PIPE_B;
5946                         break;
5947                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5948                         trans_edp_pipe = PIPE_C;
5949                         break;
5950                 }
5951
5952                 if (trans_edp_pipe == crtc->pipe)
5953                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
5954         }
5955
5956         if (!intel_display_power_enabled(dev,
5957                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5958                 return false;
5959
5960         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5961         if (!(tmp & PIPECONF_ENABLE))
5962                 return false;
5963
5964         /*
5965          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5966          * DDI E. So just check whether this pipe is wired to DDI E and whether
5967          * the PCH transcoder is on.
5968          */
5969         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5970         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5971             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5972                 pipe_config->has_pch_encoder = true;
5973
5974                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5975                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5976                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5977
5978                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5979         }
5980
5981         intel_get_pipe_timings(crtc, pipe_config);
5982
5983         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5984         if (intel_display_power_enabled(dev, pfit_domain))
5985                 ironlake_get_pfit_config(crtc, pipe_config);
5986
5987         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5988                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
5989
5990         return true;
5991 }
5992
5993 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5994                                int x, int y,
5995                                struct drm_framebuffer *fb)
5996 {
5997         struct drm_device *dev = crtc->dev;
5998         struct drm_i915_private *dev_priv = dev->dev_private;
5999         struct drm_encoder_helper_funcs *encoder_funcs;
6000         struct intel_encoder *encoder;
6001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6002         struct drm_display_mode *adjusted_mode =
6003                 &intel_crtc->config.adjusted_mode;
6004         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6005         int pipe = intel_crtc->pipe;
6006         int ret;
6007
6008         drm_vblank_pre_modeset(dev, pipe);
6009
6010         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6011
6012         drm_vblank_post_modeset(dev, pipe);
6013
6014         if (ret != 0)
6015                 return ret;
6016
6017         for_each_encoder_on_crtc(dev, crtc, encoder) {
6018                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6019                         encoder->base.base.id,
6020                         drm_get_encoder_name(&encoder->base),
6021                         mode->base.id, mode->name);
6022                 if (encoder->mode_set) {
6023                         encoder->mode_set(encoder);
6024                 } else {
6025                         encoder_funcs = encoder->base.helper_private;
6026                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6027                 }
6028         }
6029
6030         return 0;
6031 }
6032
6033 static bool intel_eld_uptodate(struct drm_connector *connector,
6034                                int reg_eldv, uint32_t bits_eldv,
6035                                int reg_elda, uint32_t bits_elda,
6036                                int reg_edid)
6037 {
6038         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6039         uint8_t *eld = connector->eld;
6040         uint32_t i;
6041
6042         i = I915_READ(reg_eldv);
6043         i &= bits_eldv;
6044
6045         if (!eld[0])
6046                 return !i;
6047
6048         if (!i)
6049                 return false;
6050
6051         i = I915_READ(reg_elda);
6052         i &= ~bits_elda;
6053         I915_WRITE(reg_elda, i);
6054
6055         for (i = 0; i < eld[2]; i++)
6056                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6057                         return false;
6058
6059         return true;
6060 }
6061
6062 static void g4x_write_eld(struct drm_connector *connector,
6063                           struct drm_crtc *crtc)
6064 {
6065         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6066         uint8_t *eld = connector->eld;
6067         uint32_t eldv;
6068         uint32_t len;
6069         uint32_t i;
6070
6071         i = I915_READ(G4X_AUD_VID_DID);
6072
6073         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6074                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6075         else
6076                 eldv = G4X_ELDV_DEVCTG;
6077
6078         if (intel_eld_uptodate(connector,
6079                                G4X_AUD_CNTL_ST, eldv,
6080                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6081                                G4X_HDMIW_HDMIEDID))
6082                 return;
6083
6084         i = I915_READ(G4X_AUD_CNTL_ST);
6085         i &= ~(eldv | G4X_ELD_ADDR);
6086         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6087         I915_WRITE(G4X_AUD_CNTL_ST, i);
6088
6089         if (!eld[0])
6090                 return;
6091
6092         len = min_t(uint8_t, eld[2], len);
6093         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6094         for (i = 0; i < len; i++)
6095                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6096
6097         i = I915_READ(G4X_AUD_CNTL_ST);
6098         i |= eldv;
6099         I915_WRITE(G4X_AUD_CNTL_ST, i);
6100 }
6101
6102 static void haswell_write_eld(struct drm_connector *connector,
6103                                      struct drm_crtc *crtc)
6104 {
6105         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6106         uint8_t *eld = connector->eld;
6107         struct drm_device *dev = crtc->dev;
6108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109         uint32_t eldv;
6110         uint32_t i;
6111         int len;
6112         int pipe = to_intel_crtc(crtc)->pipe;
6113         int tmp;
6114
6115         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6116         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6117         int aud_config = HSW_AUD_CFG(pipe);
6118         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6119
6120
6121         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6122
6123         /* Audio output enable */
6124         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6125         tmp = I915_READ(aud_cntrl_st2);
6126         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6127         I915_WRITE(aud_cntrl_st2, tmp);
6128
6129         /* Wait for 1 vertical blank */
6130         intel_wait_for_vblank(dev, pipe);
6131
6132         /* Set ELD valid state */
6133         tmp = I915_READ(aud_cntrl_st2);
6134         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6135         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6136         I915_WRITE(aud_cntrl_st2, tmp);
6137         tmp = I915_READ(aud_cntrl_st2);
6138         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6139
6140         /* Enable HDMI mode */
6141         tmp = I915_READ(aud_config);
6142         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6143         /* clear N_programing_enable and N_value_index */
6144         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6145         I915_WRITE(aud_config, tmp);
6146
6147         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6148
6149         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6150         intel_crtc->eld_vld = true;
6151
6152         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6153                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6154                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6155                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6156         } else
6157                 I915_WRITE(aud_config, 0);
6158
6159         if (intel_eld_uptodate(connector,
6160                                aud_cntrl_st2, eldv,
6161                                aud_cntl_st, IBX_ELD_ADDRESS,
6162                                hdmiw_hdmiedid))
6163                 return;
6164
6165         i = I915_READ(aud_cntrl_st2);
6166         i &= ~eldv;
6167         I915_WRITE(aud_cntrl_st2, i);
6168
6169         if (!eld[0])
6170                 return;
6171
6172         i = I915_READ(aud_cntl_st);
6173         i &= ~IBX_ELD_ADDRESS;
6174         I915_WRITE(aud_cntl_st, i);
6175         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6176         DRM_DEBUG_DRIVER("port num:%d\n", i);
6177
6178         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6179         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6180         for (i = 0; i < len; i++)
6181                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6182
6183         i = I915_READ(aud_cntrl_st2);
6184         i |= eldv;
6185         I915_WRITE(aud_cntrl_st2, i);
6186
6187 }
6188
6189 static void ironlake_write_eld(struct drm_connector *connector,
6190                                      struct drm_crtc *crtc)
6191 {
6192         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6193         uint8_t *eld = connector->eld;
6194         uint32_t eldv;
6195         uint32_t i;
6196         int len;
6197         int hdmiw_hdmiedid;
6198         int aud_config;
6199         int aud_cntl_st;
6200         int aud_cntrl_st2;
6201         int pipe = to_intel_crtc(crtc)->pipe;
6202
6203         if (HAS_PCH_IBX(connector->dev)) {
6204                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6205                 aud_config = IBX_AUD_CFG(pipe);
6206                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6207                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6208         } else {
6209                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6210                 aud_config = CPT_AUD_CFG(pipe);
6211                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6212                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6213         }
6214
6215         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6216
6217         i = I915_READ(aud_cntl_st);
6218         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6219         if (!i) {
6220                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6221                 /* operate blindly on all ports */
6222                 eldv = IBX_ELD_VALIDB;
6223                 eldv |= IBX_ELD_VALIDB << 4;
6224                 eldv |= IBX_ELD_VALIDB << 8;
6225         } else {
6226                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6227                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6228         }
6229
6230         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6231                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6232                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6233                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6234         } else
6235                 I915_WRITE(aud_config, 0);
6236
6237         if (intel_eld_uptodate(connector,
6238                                aud_cntrl_st2, eldv,
6239                                aud_cntl_st, IBX_ELD_ADDRESS,
6240                                hdmiw_hdmiedid))
6241                 return;
6242
6243         i = I915_READ(aud_cntrl_st2);
6244         i &= ~eldv;
6245         I915_WRITE(aud_cntrl_st2, i);
6246
6247         if (!eld[0])
6248                 return;
6249
6250         i = I915_READ(aud_cntl_st);
6251         i &= ~IBX_ELD_ADDRESS;
6252         I915_WRITE(aud_cntl_st, i);
6253
6254         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6255         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6256         for (i = 0; i < len; i++)
6257                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6258
6259         i = I915_READ(aud_cntrl_st2);
6260         i |= eldv;
6261         I915_WRITE(aud_cntrl_st2, i);
6262 }
6263
6264 void intel_write_eld(struct drm_encoder *encoder,
6265                      struct drm_display_mode *mode)
6266 {
6267         struct drm_crtc *crtc = encoder->crtc;
6268         struct drm_connector *connector;
6269         struct drm_device *dev = encoder->dev;
6270         struct drm_i915_private *dev_priv = dev->dev_private;
6271
6272         connector = drm_select_eld(encoder, mode);
6273         if (!connector)
6274                 return;
6275
6276         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6277                          connector->base.id,
6278                          drm_get_connector_name(connector),
6279                          connector->encoder->base.id,
6280                          drm_get_encoder_name(connector->encoder));
6281
6282         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6283
6284         if (dev_priv->display.write_eld)
6285                 dev_priv->display.write_eld(connector, crtc);
6286 }
6287
6288 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6289 void intel_crtc_load_lut(struct drm_crtc *crtc)
6290 {
6291         struct drm_device *dev = crtc->dev;
6292         struct drm_i915_private *dev_priv = dev->dev_private;
6293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6294         enum pipe pipe = intel_crtc->pipe;
6295         int palreg = PALETTE(pipe);
6296         int i;
6297         bool reenable_ips = false;
6298
6299         /* The clocks have to be on to load the palette. */
6300         if (!crtc->enabled || !intel_crtc->active)
6301                 return;
6302
6303         /* use legacy palette for Ironlake */
6304         if (HAS_PCH_SPLIT(dev))
6305                 palreg = LGC_PALETTE(pipe);
6306
6307         /* Workaround : Do not read or write the pipe palette/gamma data while
6308          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6309          */
6310         if (intel_crtc->config.ips_enabled &&
6311             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6312              GAMMA_MODE_MODE_SPLIT)) {
6313                 hsw_disable_ips(intel_crtc);
6314                 reenable_ips = true;
6315         }
6316
6317         for (i = 0; i < 256; i++) {
6318                 I915_WRITE(palreg + 4 * i,
6319                            (intel_crtc->lut_r[i] << 16) |
6320                            (intel_crtc->lut_g[i] << 8) |
6321                            intel_crtc->lut_b[i]);
6322         }
6323
6324         if (reenable_ips)
6325                 hsw_enable_ips(intel_crtc);
6326 }
6327
6328 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6329 {
6330         struct drm_device *dev = crtc->dev;
6331         struct drm_i915_private *dev_priv = dev->dev_private;
6332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6333         bool visible = base != 0;
6334         u32 cntl;
6335
6336         if (intel_crtc->cursor_visible == visible)
6337                 return;
6338
6339         cntl = I915_READ(_CURACNTR);
6340         if (visible) {
6341                 /* On these chipsets we can only modify the base whilst
6342                  * the cursor is disabled.
6343                  */
6344                 I915_WRITE(_CURABASE, base);
6345
6346                 cntl &= ~(CURSOR_FORMAT_MASK);
6347                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6348                 cntl |= CURSOR_ENABLE |
6349                         CURSOR_GAMMA_ENABLE |
6350                         CURSOR_FORMAT_ARGB;
6351         } else
6352                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6353         I915_WRITE(_CURACNTR, cntl);
6354
6355         intel_crtc->cursor_visible = visible;
6356 }
6357
6358 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6359 {
6360         struct drm_device *dev = crtc->dev;
6361         struct drm_i915_private *dev_priv = dev->dev_private;
6362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6363         int pipe = intel_crtc->pipe;
6364         bool visible = base != 0;
6365
6366         if (intel_crtc->cursor_visible != visible) {
6367                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6368                 if (base) {
6369                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6370                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6371                         cntl |= pipe << 28; /* Connect to correct pipe */
6372                 } else {
6373                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6374                         cntl |= CURSOR_MODE_DISABLE;
6375                 }
6376                 I915_WRITE(CURCNTR(pipe), cntl);
6377
6378                 intel_crtc->cursor_visible = visible;
6379         }
6380         /* and commit changes on next vblank */
6381         I915_WRITE(CURBASE(pipe), base);
6382 }
6383
6384 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6385 {
6386         struct drm_device *dev = crtc->dev;
6387         struct drm_i915_private *dev_priv = dev->dev_private;
6388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389         int pipe = intel_crtc->pipe;
6390         bool visible = base != 0;
6391
6392         if (intel_crtc->cursor_visible != visible) {
6393                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6394                 if (base) {
6395                         cntl &= ~CURSOR_MODE;
6396                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6397                 } else {
6398                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6399                         cntl |= CURSOR_MODE_DISABLE;
6400                 }
6401                 if (IS_HASWELL(dev))
6402                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6403                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6404
6405                 intel_crtc->cursor_visible = visible;
6406         }
6407         /* and commit changes on next vblank */
6408         I915_WRITE(CURBASE_IVB(pipe), base);
6409 }
6410
6411 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6412 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6413                                      bool on)
6414 {
6415         struct drm_device *dev = crtc->dev;
6416         struct drm_i915_private *dev_priv = dev->dev_private;
6417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6418         int pipe = intel_crtc->pipe;
6419         int x = intel_crtc->cursor_x;
6420         int y = intel_crtc->cursor_y;
6421         u32 base, pos;
6422         bool visible;
6423
6424         pos = 0;
6425
6426         if (on && crtc->enabled && crtc->fb) {
6427                 base = intel_crtc->cursor_addr;
6428                 if (x > (int) crtc->fb->width)
6429                         base = 0;
6430
6431                 if (y > (int) crtc->fb->height)
6432                         base = 0;
6433         } else
6434                 base = 0;
6435
6436         if (x < 0) {
6437                 if (x + intel_crtc->cursor_width < 0)
6438                         base = 0;
6439
6440                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6441                 x = -x;
6442         }
6443         pos |= x << CURSOR_X_SHIFT;
6444
6445         if (y < 0) {
6446                 if (y + intel_crtc->cursor_height < 0)
6447                         base = 0;
6448
6449                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6450                 y = -y;
6451         }
6452         pos |= y << CURSOR_Y_SHIFT;
6453
6454         visible = base != 0;
6455         if (!visible && !intel_crtc->cursor_visible)
6456                 return;
6457
6458         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6459                 I915_WRITE(CURPOS_IVB(pipe), pos);
6460                 ivb_update_cursor(crtc, base);
6461         } else {
6462                 I915_WRITE(CURPOS(pipe), pos);
6463                 if (IS_845G(dev) || IS_I865G(dev))
6464                         i845_update_cursor(crtc, base);
6465                 else
6466                         i9xx_update_cursor(crtc, base);
6467         }
6468 }
6469
6470 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6471                                  struct drm_file *file,
6472                                  uint32_t handle,
6473                                  uint32_t width, uint32_t height)
6474 {
6475         struct drm_device *dev = crtc->dev;
6476         struct drm_i915_private *dev_priv = dev->dev_private;
6477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6478         struct drm_i915_gem_object *obj;
6479         uint32_t addr;
6480         int ret;
6481
6482         /* if we want to turn off the cursor ignore width and height */
6483         if (!handle) {
6484                 DRM_DEBUG_KMS("cursor off\n");
6485                 addr = 0;
6486                 obj = NULL;
6487                 mutex_lock(&dev->struct_mutex);
6488                 goto finish;
6489         }
6490
6491         /* Currently we only support 64x64 cursors */
6492         if (width != 64 || height != 64) {
6493                 DRM_ERROR("we currently only support 64x64 cursors\n");
6494                 return -EINVAL;
6495         }
6496
6497         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6498         if (&obj->base == NULL)
6499                 return -ENOENT;
6500
6501         if (obj->base.size < width * height * 4) {
6502                 DRM_ERROR("buffer is to small\n");
6503                 ret = -ENOMEM;
6504                 goto fail;
6505         }
6506
6507         /* we only need to pin inside GTT if cursor is non-phy */
6508         mutex_lock(&dev->struct_mutex);
6509         if (!dev_priv->info->cursor_needs_physical) {
6510                 unsigned alignment;
6511
6512                 if (obj->tiling_mode) {
6513                         DRM_ERROR("cursor cannot be tiled\n");
6514                         ret = -EINVAL;
6515                         goto fail_locked;
6516                 }
6517
6518                 /* Note that the w/a also requires 2 PTE of padding following
6519                  * the bo. We currently fill all unused PTE with the shadow
6520                  * page and so we should always have valid PTE following the
6521                  * cursor preventing the VT-d warning.
6522                  */
6523                 alignment = 0;
6524                 if (need_vtd_wa(dev))
6525                         alignment = 64*1024;
6526
6527                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6528                 if (ret) {
6529                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6530                         goto fail_locked;
6531                 }
6532
6533                 ret = i915_gem_object_put_fence(obj);
6534                 if (ret) {
6535                         DRM_ERROR("failed to release fence for cursor");
6536                         goto fail_unpin;
6537                 }
6538
6539                 addr = obj->gtt_offset;
6540         } else {
6541                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6542                 ret = i915_gem_attach_phys_object(dev, obj,
6543                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6544                                                   align);
6545                 if (ret) {
6546                         DRM_ERROR("failed to attach phys object\n");
6547                         goto fail_locked;
6548                 }
6549                 addr = obj->phys_obj->handle->busaddr;
6550         }
6551
6552         if (IS_GEN2(dev))
6553                 I915_WRITE(CURSIZE, (height << 12) | width);
6554
6555  finish:
6556         if (intel_crtc->cursor_bo) {
6557                 if (dev_priv->info->cursor_needs_physical) {
6558                         if (intel_crtc->cursor_bo != obj)
6559                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6560                 } else
6561                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6562                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6563         }
6564
6565         mutex_unlock(&dev->struct_mutex);
6566
6567         intel_crtc->cursor_addr = addr;
6568         intel_crtc->cursor_bo = obj;
6569         intel_crtc->cursor_width = width;
6570         intel_crtc->cursor_height = height;
6571
6572         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6573
6574         return 0;
6575 fail_unpin:
6576         i915_gem_object_unpin(obj);
6577 fail_locked:
6578         mutex_unlock(&dev->struct_mutex);
6579 fail:
6580         drm_gem_object_unreference_unlocked(&obj->base);
6581         return ret;
6582 }
6583
6584 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6585 {
6586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6587
6588         intel_crtc->cursor_x = x;
6589         intel_crtc->cursor_y = y;
6590
6591         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6592
6593         return 0;
6594 }
6595
6596 /** Sets the color ramps on behalf of RandR */
6597 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6598                                  u16 blue, int regno)
6599 {
6600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601
6602         intel_crtc->lut_r[regno] = red >> 8;
6603         intel_crtc->lut_g[regno] = green >> 8;
6604         intel_crtc->lut_b[regno] = blue >> 8;
6605 }
6606
6607 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6608                              u16 *blue, int regno)
6609 {
6610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6611
6612         *red = intel_crtc->lut_r[regno] << 8;
6613         *green = intel_crtc->lut_g[regno] << 8;
6614         *blue = intel_crtc->lut_b[regno] << 8;
6615 }
6616
6617 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6618                                  u16 *blue, uint32_t start, uint32_t size)
6619 {
6620         int end = (start + size > 256) ? 256 : start + size, i;
6621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6622
6623         for (i = start; i < end; i++) {
6624                 intel_crtc->lut_r[i] = red[i] >> 8;
6625                 intel_crtc->lut_g[i] = green[i] >> 8;
6626                 intel_crtc->lut_b[i] = blue[i] >> 8;
6627         }
6628
6629         intel_crtc_load_lut(crtc);
6630 }
6631
6632 /* VESA 640x480x72Hz mode to set on the pipe */
6633 static struct drm_display_mode load_detect_mode = {
6634         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6635                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6636 };
6637
6638 static struct drm_framebuffer *
6639 intel_framebuffer_create(struct drm_device *dev,
6640                          struct drm_mode_fb_cmd2 *mode_cmd,
6641                          struct drm_i915_gem_object *obj)
6642 {
6643         struct intel_framebuffer *intel_fb;
6644         int ret;
6645
6646         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6647         if (!intel_fb) {
6648                 drm_gem_object_unreference_unlocked(&obj->base);
6649                 return ERR_PTR(-ENOMEM);
6650         }
6651
6652         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6653         if (ret) {
6654                 drm_gem_object_unreference_unlocked(&obj->base);
6655                 kfree(intel_fb);
6656                 return ERR_PTR(ret);
6657         }
6658
6659         return &intel_fb->base;
6660 }
6661
6662 static u32
6663 intel_framebuffer_pitch_for_width(int width, int bpp)
6664 {
6665         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6666         return ALIGN(pitch, 64);
6667 }
6668
6669 static u32
6670 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6671 {
6672         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6673         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6674 }
6675
6676 static struct drm_framebuffer *
6677 intel_framebuffer_create_for_mode(struct drm_device *dev,
6678                                   struct drm_display_mode *mode,
6679                                   int depth, int bpp)
6680 {
6681         struct drm_i915_gem_object *obj;
6682         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6683
6684         obj = i915_gem_alloc_object(dev,
6685                                     intel_framebuffer_size_for_mode(mode, bpp));
6686         if (obj == NULL)
6687                 return ERR_PTR(-ENOMEM);
6688
6689         mode_cmd.width = mode->hdisplay;
6690         mode_cmd.height = mode->vdisplay;
6691         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6692                                                                 bpp);
6693         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6694
6695         return intel_framebuffer_create(dev, &mode_cmd, obj);
6696 }
6697
6698 static struct drm_framebuffer *
6699 mode_fits_in_fbdev(struct drm_device *dev,
6700                    struct drm_display_mode *mode)
6701 {
6702         struct drm_i915_private *dev_priv = dev->dev_private;
6703         struct drm_i915_gem_object *obj;
6704         struct drm_framebuffer *fb;
6705
6706         if (dev_priv->fbdev == NULL)
6707                 return NULL;
6708
6709         obj = dev_priv->fbdev->ifb.obj;
6710         if (obj == NULL)
6711                 return NULL;
6712
6713         fb = &dev_priv->fbdev->ifb.base;
6714         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6715                                                                fb->bits_per_pixel))
6716                 return NULL;
6717
6718         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6719                 return NULL;
6720
6721         return fb;
6722 }
6723
6724 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6725                                 struct drm_display_mode *mode,
6726                                 struct intel_load_detect_pipe *old)
6727 {
6728         struct intel_crtc *intel_crtc;
6729         struct intel_encoder *intel_encoder =
6730                 intel_attached_encoder(connector);
6731         struct drm_crtc *possible_crtc;
6732         struct drm_encoder *encoder = &intel_encoder->base;
6733         struct drm_crtc *crtc = NULL;
6734         struct drm_device *dev = encoder->dev;
6735         struct drm_framebuffer *fb;
6736         int i = -1;
6737
6738         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6739                       connector->base.id, drm_get_connector_name(connector),
6740                       encoder->base.id, drm_get_encoder_name(encoder));
6741
6742         /*
6743          * Algorithm gets a little messy:
6744          *
6745          *   - if the connector already has an assigned crtc, use it (but make
6746          *     sure it's on first)
6747          *
6748          *   - try to find the first unused crtc that can drive this connector,
6749          *     and use that if we find one
6750          */
6751
6752         /* See if we already have a CRTC for this connector */
6753         if (encoder->crtc) {
6754                 crtc = encoder->crtc;
6755
6756                 mutex_lock(&crtc->mutex);
6757
6758                 old->dpms_mode = connector->dpms;
6759                 old->load_detect_temp = false;
6760
6761                 /* Make sure the crtc and connector are running */
6762                 if (connector->dpms != DRM_MODE_DPMS_ON)
6763                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6764
6765                 return true;
6766         }
6767
6768         /* Find an unused one (if possible) */
6769         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6770                 i++;
6771                 if (!(encoder->possible_crtcs & (1 << i)))
6772                         continue;
6773                 if (!possible_crtc->enabled) {
6774                         crtc = possible_crtc;
6775                         break;
6776                 }
6777         }
6778
6779         /*
6780          * If we didn't find an unused CRTC, don't use any.
6781          */
6782         if (!crtc) {
6783                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6784                 return false;
6785         }
6786
6787         mutex_lock(&crtc->mutex);
6788         intel_encoder->new_crtc = to_intel_crtc(crtc);
6789         to_intel_connector(connector)->new_encoder = intel_encoder;
6790
6791         intel_crtc = to_intel_crtc(crtc);
6792         old->dpms_mode = connector->dpms;
6793         old->load_detect_temp = true;
6794         old->release_fb = NULL;
6795
6796         if (!mode)
6797                 mode = &load_detect_mode;
6798
6799         /* We need a framebuffer large enough to accommodate all accesses
6800          * that the plane may generate whilst we perform load detection.
6801          * We can not rely on the fbcon either being present (we get called
6802          * during its initialisation to detect all boot displays, or it may
6803          * not even exist) or that it is large enough to satisfy the
6804          * requested mode.
6805          */
6806         fb = mode_fits_in_fbdev(dev, mode);
6807         if (fb == NULL) {
6808                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6809                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6810                 old->release_fb = fb;
6811         } else
6812                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6813         if (IS_ERR(fb)) {
6814                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6815                 mutex_unlock(&crtc->mutex);
6816                 return false;
6817         }
6818
6819         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6820                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6821                 if (old->release_fb)
6822                         old->release_fb->funcs->destroy(old->release_fb);
6823                 mutex_unlock(&crtc->mutex);
6824                 return false;
6825         }
6826
6827         /* let the connector get through one full cycle before testing */
6828         intel_wait_for_vblank(dev, intel_crtc->pipe);
6829         return true;
6830 }
6831
6832 void intel_release_load_detect_pipe(struct drm_connector *connector,
6833                                     struct intel_load_detect_pipe *old)
6834 {
6835         struct intel_encoder *intel_encoder =
6836                 intel_attached_encoder(connector);
6837         struct drm_encoder *encoder = &intel_encoder->base;
6838         struct drm_crtc *crtc = encoder->crtc;
6839
6840         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6841                       connector->base.id, drm_get_connector_name(connector),
6842                       encoder->base.id, drm_get_encoder_name(encoder));
6843
6844         if (old->load_detect_temp) {
6845                 to_intel_connector(connector)->new_encoder = NULL;
6846                 intel_encoder->new_crtc = NULL;
6847                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6848
6849                 if (old->release_fb) {
6850                         drm_framebuffer_unregister_private(old->release_fb);
6851                         drm_framebuffer_unreference(old->release_fb);
6852                 }
6853
6854                 mutex_unlock(&crtc->mutex);
6855                 return;
6856         }
6857
6858         /* Switch crtc and encoder back off if necessary */
6859         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6860                 connector->funcs->dpms(connector, old->dpms_mode);
6861
6862         mutex_unlock(&crtc->mutex);
6863 }
6864
6865 /* Returns the clock of the currently programmed mode of the given pipe. */
6866 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6867 {
6868         struct drm_i915_private *dev_priv = dev->dev_private;
6869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6870         int pipe = intel_crtc->pipe;
6871         u32 dpll = I915_READ(DPLL(pipe));
6872         u32 fp;
6873         intel_clock_t clock;
6874
6875         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6876                 fp = I915_READ(FP0(pipe));
6877         else
6878                 fp = I915_READ(FP1(pipe));
6879
6880         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6881         if (IS_PINEVIEW(dev)) {
6882                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6883                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6884         } else {
6885                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6886                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6887         }
6888
6889         if (!IS_GEN2(dev)) {
6890                 if (IS_PINEVIEW(dev))
6891                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6892                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6893                 else
6894                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6895                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6896
6897                 switch (dpll & DPLL_MODE_MASK) {
6898                 case DPLLB_MODE_DAC_SERIAL:
6899                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6900                                 5 : 10;
6901                         break;
6902                 case DPLLB_MODE_LVDS:
6903                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6904                                 7 : 14;
6905                         break;
6906                 default:
6907                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6908                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6909                         return 0;
6910                 }
6911
6912                 if (IS_PINEVIEW(dev))
6913                         pineview_clock(96000, &clock);
6914                 else
6915                         i9xx_clock(96000, &clock);
6916         } else {
6917                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6918
6919                 if (is_lvds) {
6920                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6921                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6922                         clock.p2 = 14;
6923
6924                         if ((dpll & PLL_REF_INPUT_MASK) ==
6925                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6926                                 /* XXX: might not be 66MHz */
6927                                 i9xx_clock(66000, &clock);
6928                         } else
6929                                 i9xx_clock(48000, &clock);
6930                 } else {
6931                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6932                                 clock.p1 = 2;
6933                         else {
6934                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6935                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6936                         }
6937                         if (dpll & PLL_P2_DIVIDE_BY_4)
6938                                 clock.p2 = 4;
6939                         else
6940                                 clock.p2 = 2;
6941
6942                         i9xx_clock(48000, &clock);
6943                 }
6944         }
6945
6946         /* XXX: It would be nice to validate the clocks, but we can't reuse
6947          * i830PllIsValid() because it relies on the xf86_config connector
6948          * configuration being accurate, which it isn't necessarily.
6949          */
6950
6951         return clock.dot;
6952 }
6953
6954 /** Returns the currently programmed mode of the given pipe. */
6955 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6956                                              struct drm_crtc *crtc)
6957 {
6958         struct drm_i915_private *dev_priv = dev->dev_private;
6959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6960         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6961         struct drm_display_mode *mode;
6962         int htot = I915_READ(HTOTAL(cpu_transcoder));
6963         int hsync = I915_READ(HSYNC(cpu_transcoder));
6964         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6965         int vsync = I915_READ(VSYNC(cpu_transcoder));
6966
6967         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6968         if (!mode)
6969                 return NULL;
6970
6971         mode->clock = intel_crtc_clock_get(dev, crtc);
6972         mode->hdisplay = (htot & 0xffff) + 1;
6973         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6974         mode->hsync_start = (hsync & 0xffff) + 1;
6975         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6976         mode->vdisplay = (vtot & 0xffff) + 1;
6977         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6978         mode->vsync_start = (vsync & 0xffff) + 1;
6979         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6980
6981         drm_mode_set_name(mode);
6982
6983         return mode;
6984 }
6985
6986 static void intel_increase_pllclock(struct drm_crtc *crtc)
6987 {
6988         struct drm_device *dev = crtc->dev;
6989         drm_i915_private_t *dev_priv = dev->dev_private;
6990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6991         int pipe = intel_crtc->pipe;
6992         int dpll_reg = DPLL(pipe);
6993         int dpll;
6994
6995         if (HAS_PCH_SPLIT(dev))
6996                 return;
6997
6998         if (!dev_priv->lvds_downclock_avail)
6999                 return;
7000
7001         dpll = I915_READ(dpll_reg);
7002         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7003                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7004
7005                 assert_panel_unlocked(dev_priv, pipe);
7006
7007                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7008                 I915_WRITE(dpll_reg, dpll);
7009                 intel_wait_for_vblank(dev, pipe);
7010
7011                 dpll = I915_READ(dpll_reg);
7012                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7013                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7014         }
7015 }
7016
7017 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7018 {
7019         struct drm_device *dev = crtc->dev;
7020         drm_i915_private_t *dev_priv = dev->dev_private;
7021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7022
7023         if (HAS_PCH_SPLIT(dev))
7024                 return;
7025
7026         if (!dev_priv->lvds_downclock_avail)
7027                 return;
7028
7029         /*
7030          * Since this is called by a timer, we should never get here in
7031          * the manual case.
7032          */
7033         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7034                 int pipe = intel_crtc->pipe;
7035                 int dpll_reg = DPLL(pipe);
7036                 int dpll;
7037
7038                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7039
7040                 assert_panel_unlocked(dev_priv, pipe);
7041
7042                 dpll = I915_READ(dpll_reg);
7043                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7044                 I915_WRITE(dpll_reg, dpll);
7045                 intel_wait_for_vblank(dev, pipe);
7046                 dpll = I915_READ(dpll_reg);
7047                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7048                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7049         }
7050
7051 }
7052
7053 void intel_mark_busy(struct drm_device *dev)
7054 {
7055         i915_update_gfx_val(dev->dev_private);
7056 }
7057
7058 void intel_mark_idle(struct drm_device *dev)
7059 {
7060         struct drm_crtc *crtc;
7061
7062         if (!i915_powersave)
7063                 return;
7064
7065         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7066                 if (!crtc->fb)
7067                         continue;
7068
7069                 intel_decrease_pllclock(crtc);
7070         }
7071 }
7072
7073 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7074 {
7075         struct drm_device *dev = obj->base.dev;
7076         struct drm_crtc *crtc;
7077
7078         if (!i915_powersave)
7079                 return;
7080
7081         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7082                 if (!crtc->fb)
7083                         continue;
7084
7085                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7086                         intel_increase_pllclock(crtc);
7087         }
7088 }
7089
7090 static void intel_crtc_destroy(struct drm_crtc *crtc)
7091 {
7092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7093         struct drm_device *dev = crtc->dev;
7094         struct intel_unpin_work *work;
7095         unsigned long flags;
7096
7097         spin_lock_irqsave(&dev->event_lock, flags);
7098         work = intel_crtc->unpin_work;
7099         intel_crtc->unpin_work = NULL;
7100         spin_unlock_irqrestore(&dev->event_lock, flags);
7101
7102         if (work) {
7103                 cancel_work_sync(&work->work);
7104                 kfree(work);
7105         }
7106
7107         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7108
7109         drm_crtc_cleanup(crtc);
7110
7111         kfree(intel_crtc);
7112 }
7113
7114 static void intel_unpin_work_fn(struct work_struct *__work)
7115 {
7116         struct intel_unpin_work *work =
7117                 container_of(__work, struct intel_unpin_work, work);
7118         struct drm_device *dev = work->crtc->dev;
7119
7120         mutex_lock(&dev->struct_mutex);
7121         intel_unpin_fb_obj(work->old_fb_obj);
7122         drm_gem_object_unreference(&work->pending_flip_obj->base);
7123         drm_gem_object_unreference(&work->old_fb_obj->base);
7124
7125         intel_update_fbc(dev);
7126         mutex_unlock(&dev->struct_mutex);
7127
7128         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7129         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7130
7131         kfree(work);
7132 }
7133
7134 static void do_intel_finish_page_flip(struct drm_device *dev,
7135                                       struct drm_crtc *crtc)
7136 {
7137         drm_i915_private_t *dev_priv = dev->dev_private;
7138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7139         struct intel_unpin_work *work;
7140         unsigned long flags;
7141
7142         /* Ignore early vblank irqs */
7143         if (intel_crtc == NULL)
7144                 return;
7145
7146         spin_lock_irqsave(&dev->event_lock, flags);
7147         work = intel_crtc->unpin_work;
7148
7149         /* Ensure we don't miss a work->pending update ... */
7150         smp_rmb();
7151
7152         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7153                 spin_unlock_irqrestore(&dev->event_lock, flags);
7154                 return;
7155         }
7156
7157         /* and that the unpin work is consistent wrt ->pending. */
7158         smp_rmb();
7159
7160         intel_crtc->unpin_work = NULL;
7161
7162         if (work->event)
7163                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7164
7165         drm_vblank_put(dev, intel_crtc->pipe);
7166
7167         spin_unlock_irqrestore(&dev->event_lock, flags);
7168
7169         wake_up_all(&dev_priv->pending_flip_queue);
7170
7171         queue_work(dev_priv->wq, &work->work);
7172
7173         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7174 }
7175
7176 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7177 {
7178         drm_i915_private_t *dev_priv = dev->dev_private;
7179         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7180
7181         do_intel_finish_page_flip(dev, crtc);
7182 }
7183
7184 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7185 {
7186         drm_i915_private_t *dev_priv = dev->dev_private;
7187         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7188
7189         do_intel_finish_page_flip(dev, crtc);
7190 }
7191
7192 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7193 {
7194         drm_i915_private_t *dev_priv = dev->dev_private;
7195         struct intel_crtc *intel_crtc =
7196                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7197         unsigned long flags;
7198
7199         /* NB: An MMIO update of the plane base pointer will also
7200          * generate a page-flip completion irq, i.e. every modeset
7201          * is also accompanied by a spurious intel_prepare_page_flip().
7202          */
7203         spin_lock_irqsave(&dev->event_lock, flags);
7204         if (intel_crtc->unpin_work)
7205                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7206         spin_unlock_irqrestore(&dev->event_lock, flags);
7207 }
7208
7209 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7210 {
7211         /* Ensure that the work item is consistent when activating it ... */
7212         smp_wmb();
7213         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7214         /* and that it is marked active as soon as the irq could fire. */
7215         smp_wmb();
7216 }
7217
7218 static int intel_gen2_queue_flip(struct drm_device *dev,
7219                                  struct drm_crtc *crtc,
7220                                  struct drm_framebuffer *fb,
7221                                  struct drm_i915_gem_object *obj)
7222 {
7223         struct drm_i915_private *dev_priv = dev->dev_private;
7224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7225         u32 flip_mask;
7226         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7227         int ret;
7228
7229         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7230         if (ret)
7231                 goto err;
7232
7233         ret = intel_ring_begin(ring, 6);
7234         if (ret)
7235                 goto err_unpin;
7236
7237         /* Can't queue multiple flips, so wait for the previous
7238          * one to finish before executing the next.
7239          */
7240         if (intel_crtc->plane)
7241                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7242         else
7243                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7244         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7245         intel_ring_emit(ring, MI_NOOP);
7246         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7247                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7248         intel_ring_emit(ring, fb->pitches[0]);
7249         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7250         intel_ring_emit(ring, 0); /* aux display base address, unused */
7251
7252         intel_mark_page_flip_active(intel_crtc);
7253         intel_ring_advance(ring);
7254         return 0;
7255
7256 err_unpin:
7257         intel_unpin_fb_obj(obj);
7258 err:
7259         return ret;
7260 }
7261
7262 static int intel_gen3_queue_flip(struct drm_device *dev,
7263                                  struct drm_crtc *crtc,
7264                                  struct drm_framebuffer *fb,
7265                                  struct drm_i915_gem_object *obj)
7266 {
7267         struct drm_i915_private *dev_priv = dev->dev_private;
7268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7269         u32 flip_mask;
7270         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7271         int ret;
7272
7273         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7274         if (ret)
7275                 goto err;
7276
7277         ret = intel_ring_begin(ring, 6);
7278         if (ret)
7279                 goto err_unpin;
7280
7281         if (intel_crtc->plane)
7282                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7283         else
7284                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7285         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7286         intel_ring_emit(ring, MI_NOOP);
7287         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7288                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7289         intel_ring_emit(ring, fb->pitches[0]);
7290         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7291         intel_ring_emit(ring, MI_NOOP);
7292
7293         intel_mark_page_flip_active(intel_crtc);
7294         intel_ring_advance(ring);
7295         return 0;
7296
7297 err_unpin:
7298         intel_unpin_fb_obj(obj);
7299 err:
7300         return ret;
7301 }
7302
7303 static int intel_gen4_queue_flip(struct drm_device *dev,
7304                                  struct drm_crtc *crtc,
7305                                  struct drm_framebuffer *fb,
7306                                  struct drm_i915_gem_object *obj)
7307 {
7308         struct drm_i915_private *dev_priv = dev->dev_private;
7309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7310         uint32_t pf, pipesrc;
7311         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7312         int ret;
7313
7314         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7315         if (ret)
7316                 goto err;
7317
7318         ret = intel_ring_begin(ring, 4);
7319         if (ret)
7320                 goto err_unpin;
7321
7322         /* i965+ uses the linear or tiled offsets from the
7323          * Display Registers (which do not change across a page-flip)
7324          * so we need only reprogram the base address.
7325          */
7326         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7327                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7328         intel_ring_emit(ring, fb->pitches[0]);
7329         intel_ring_emit(ring,
7330                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7331                         obj->tiling_mode);
7332
7333         /* XXX Enabling the panel-fitter across page-flip is so far
7334          * untested on non-native modes, so ignore it for now.
7335          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7336          */
7337         pf = 0;
7338         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7339         intel_ring_emit(ring, pf | pipesrc);
7340
7341         intel_mark_page_flip_active(intel_crtc);
7342         intel_ring_advance(ring);
7343         return 0;
7344
7345 err_unpin:
7346         intel_unpin_fb_obj(obj);
7347 err:
7348         return ret;
7349 }
7350
7351 static int intel_gen6_queue_flip(struct drm_device *dev,
7352                                  struct drm_crtc *crtc,
7353                                  struct drm_framebuffer *fb,
7354                                  struct drm_i915_gem_object *obj)
7355 {
7356         struct drm_i915_private *dev_priv = dev->dev_private;
7357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7358         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7359         uint32_t pf, pipesrc;
7360         int ret;
7361
7362         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7363         if (ret)
7364                 goto err;
7365
7366         ret = intel_ring_begin(ring, 4);
7367         if (ret)
7368                 goto err_unpin;
7369
7370         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7371                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7372         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7373         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7374
7375         /* Contrary to the suggestions in the documentation,
7376          * "Enable Panel Fitter" does not seem to be required when page
7377          * flipping with a non-native mode, and worse causes a normal
7378          * modeset to fail.
7379          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7380          */
7381         pf = 0;
7382         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7383         intel_ring_emit(ring, pf | pipesrc);
7384
7385         intel_mark_page_flip_active(intel_crtc);
7386         intel_ring_advance(ring);
7387         return 0;
7388
7389 err_unpin:
7390         intel_unpin_fb_obj(obj);
7391 err:
7392         return ret;
7393 }
7394
7395 /*
7396  * On gen7 we currently use the blit ring because (in early silicon at least)
7397  * the render ring doesn't give us interrpts for page flip completion, which
7398  * means clients will hang after the first flip is queued.  Fortunately the
7399  * blit ring generates interrupts properly, so use it instead.
7400  */
7401 static int intel_gen7_queue_flip(struct drm_device *dev,
7402                                  struct drm_crtc *crtc,
7403                                  struct drm_framebuffer *fb,
7404                                  struct drm_i915_gem_object *obj)
7405 {
7406         struct drm_i915_private *dev_priv = dev->dev_private;
7407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7408         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7409         uint32_t plane_bit = 0;
7410         int ret;
7411
7412         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7413         if (ret)
7414                 goto err;
7415
7416         switch(intel_crtc->plane) {
7417         case PLANE_A:
7418                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7419                 break;
7420         case PLANE_B:
7421                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7422                 break;
7423         case PLANE_C:
7424                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7425                 break;
7426         default:
7427                 WARN_ONCE(1, "unknown plane in flip command\n");
7428                 ret = -ENODEV;
7429                 goto err_unpin;
7430         }
7431
7432         ret = intel_ring_begin(ring, 4);
7433         if (ret)
7434                 goto err_unpin;
7435
7436         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7437         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7438         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7439         intel_ring_emit(ring, (MI_NOOP));
7440
7441         intel_mark_page_flip_active(intel_crtc);
7442         intel_ring_advance(ring);
7443         return 0;
7444
7445 err_unpin:
7446         intel_unpin_fb_obj(obj);
7447 err:
7448         return ret;
7449 }
7450
7451 static int intel_default_queue_flip(struct drm_device *dev,
7452                                     struct drm_crtc *crtc,
7453                                     struct drm_framebuffer *fb,
7454                                     struct drm_i915_gem_object *obj)
7455 {
7456         return -ENODEV;
7457 }
7458
7459 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7460                                 struct drm_framebuffer *fb,
7461                                 struct drm_pending_vblank_event *event)
7462 {
7463         struct drm_device *dev = crtc->dev;
7464         struct drm_i915_private *dev_priv = dev->dev_private;
7465         struct drm_framebuffer *old_fb = crtc->fb;
7466         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7468         struct intel_unpin_work *work;
7469         unsigned long flags;
7470         int ret;
7471
7472         /* Can't change pixel format via MI display flips. */
7473         if (fb->pixel_format != crtc->fb->pixel_format)
7474                 return -EINVAL;
7475
7476         /*
7477          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7478          * Note that pitch changes could also affect these register.
7479          */
7480         if (INTEL_INFO(dev)->gen > 3 &&
7481             (fb->offsets[0] != crtc->fb->offsets[0] ||
7482              fb->pitches[0] != crtc->fb->pitches[0]))
7483                 return -EINVAL;
7484
7485         work = kzalloc(sizeof *work, GFP_KERNEL);
7486         if (work == NULL)
7487                 return -ENOMEM;
7488
7489         work->event = event;
7490         work->crtc = crtc;
7491         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7492         INIT_WORK(&work->work, intel_unpin_work_fn);
7493
7494         ret = drm_vblank_get(dev, intel_crtc->pipe);
7495         if (ret)
7496                 goto free_work;
7497
7498         /* We borrow the event spin lock for protecting unpin_work */
7499         spin_lock_irqsave(&dev->event_lock, flags);
7500         if (intel_crtc->unpin_work) {
7501                 spin_unlock_irqrestore(&dev->event_lock, flags);
7502                 kfree(work);
7503                 drm_vblank_put(dev, intel_crtc->pipe);
7504
7505                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7506                 return -EBUSY;
7507         }
7508         intel_crtc->unpin_work = work;
7509         spin_unlock_irqrestore(&dev->event_lock, flags);
7510
7511         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7512                 flush_workqueue(dev_priv->wq);
7513
7514         ret = i915_mutex_lock_interruptible(dev);
7515         if (ret)
7516                 goto cleanup;
7517
7518         /* Reference the objects for the scheduled work. */
7519         drm_gem_object_reference(&work->old_fb_obj->base);
7520         drm_gem_object_reference(&obj->base);
7521
7522         crtc->fb = fb;
7523
7524         work->pending_flip_obj = obj;
7525
7526         work->enable_stall_check = true;
7527
7528         atomic_inc(&intel_crtc->unpin_work_count);
7529         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7530
7531         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7532         if (ret)
7533                 goto cleanup_pending;
7534
7535         intel_disable_fbc(dev);
7536         intel_mark_fb_busy(obj);
7537         mutex_unlock(&dev->struct_mutex);
7538
7539         trace_i915_flip_request(intel_crtc->plane, obj);
7540
7541         return 0;
7542
7543 cleanup_pending:
7544         atomic_dec(&intel_crtc->unpin_work_count);
7545         crtc->fb = old_fb;
7546         drm_gem_object_unreference(&work->old_fb_obj->base);
7547         drm_gem_object_unreference(&obj->base);
7548         mutex_unlock(&dev->struct_mutex);
7549
7550 cleanup:
7551         spin_lock_irqsave(&dev->event_lock, flags);
7552         intel_crtc->unpin_work = NULL;
7553         spin_unlock_irqrestore(&dev->event_lock, flags);
7554
7555         drm_vblank_put(dev, intel_crtc->pipe);
7556 free_work:
7557         kfree(work);
7558
7559         return ret;
7560 }
7561
7562 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7563         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7564         .load_lut = intel_crtc_load_lut,
7565 };
7566
7567 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7568 {
7569         struct intel_encoder *other_encoder;
7570         struct drm_crtc *crtc = &encoder->new_crtc->base;
7571
7572         if (WARN_ON(!crtc))
7573                 return false;
7574
7575         list_for_each_entry(other_encoder,
7576                             &crtc->dev->mode_config.encoder_list,
7577                             base.head) {
7578
7579                 if (&other_encoder->new_crtc->base != crtc ||
7580                     encoder == other_encoder)
7581                         continue;
7582                 else
7583                         return true;
7584         }
7585
7586         return false;
7587 }
7588
7589 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7590                                   struct drm_crtc *crtc)
7591 {
7592         struct drm_device *dev;
7593         struct drm_crtc *tmp;
7594         int crtc_mask = 1;
7595
7596         WARN(!crtc, "checking null crtc?\n");
7597
7598         dev = crtc->dev;
7599
7600         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7601                 if (tmp == crtc)
7602                         break;
7603                 crtc_mask <<= 1;
7604         }
7605
7606         if (encoder->possible_crtcs & crtc_mask)
7607                 return true;
7608         return false;
7609 }
7610
7611 /**
7612  * intel_modeset_update_staged_output_state
7613  *
7614  * Updates the staged output configuration state, e.g. after we've read out the
7615  * current hw state.
7616  */
7617 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7618 {
7619         struct intel_encoder *encoder;
7620         struct intel_connector *connector;
7621
7622         list_for_each_entry(connector, &dev->mode_config.connector_list,
7623                             base.head) {
7624                 connector->new_encoder =
7625                         to_intel_encoder(connector->base.encoder);
7626         }
7627
7628         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7629                             base.head) {
7630                 encoder->new_crtc =
7631                         to_intel_crtc(encoder->base.crtc);
7632         }
7633 }
7634
7635 /**
7636  * intel_modeset_commit_output_state
7637  *
7638  * This function copies the stage display pipe configuration to the real one.
7639  */
7640 static void intel_modeset_commit_output_state(struct drm_device *dev)
7641 {
7642         struct intel_encoder *encoder;
7643         struct intel_connector *connector;
7644
7645         list_for_each_entry(connector, &dev->mode_config.connector_list,
7646                             base.head) {
7647                 connector->base.encoder = &connector->new_encoder->base;
7648         }
7649
7650         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7651                             base.head) {
7652                 encoder->base.crtc = &encoder->new_crtc->base;
7653         }
7654 }
7655
7656 static void
7657 connected_sink_compute_bpp(struct intel_connector * connector,
7658                            struct intel_crtc_config *pipe_config)
7659 {
7660         int bpp = pipe_config->pipe_bpp;
7661
7662         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7663                 connector->base.base.id,
7664                 drm_get_connector_name(&connector->base));
7665
7666         /* Don't use an invalid EDID bpc value */
7667         if (connector->base.display_info.bpc &&
7668             connector->base.display_info.bpc * 3 < bpp) {
7669                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7670                               bpp, connector->base.display_info.bpc*3);
7671                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7672         }
7673
7674         /* Clamp bpp to 8 on screens without EDID 1.4 */
7675         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7676                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7677                               bpp);
7678                 pipe_config->pipe_bpp = 24;
7679         }
7680 }
7681
7682 static int
7683 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7684                           struct drm_framebuffer *fb,
7685                           struct intel_crtc_config *pipe_config)
7686 {
7687         struct drm_device *dev = crtc->base.dev;
7688         struct intel_connector *connector;
7689         int bpp;
7690
7691         switch (fb->pixel_format) {
7692         case DRM_FORMAT_C8:
7693                 bpp = 8*3; /* since we go through a colormap */
7694                 break;
7695         case DRM_FORMAT_XRGB1555:
7696         case DRM_FORMAT_ARGB1555:
7697                 /* checked in intel_framebuffer_init already */
7698                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7699                         return -EINVAL;
7700         case DRM_FORMAT_RGB565:
7701                 bpp = 6*3; /* min is 18bpp */
7702                 break;
7703         case DRM_FORMAT_XBGR8888:
7704         case DRM_FORMAT_ABGR8888:
7705                 /* checked in intel_framebuffer_init already */
7706                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7707                         return -EINVAL;
7708         case DRM_FORMAT_XRGB8888:
7709         case DRM_FORMAT_ARGB8888:
7710                 bpp = 8*3;
7711                 break;
7712         case DRM_FORMAT_XRGB2101010:
7713         case DRM_FORMAT_ARGB2101010:
7714         case DRM_FORMAT_XBGR2101010:
7715         case DRM_FORMAT_ABGR2101010:
7716                 /* checked in intel_framebuffer_init already */
7717                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7718                         return -EINVAL;
7719                 bpp = 10*3;
7720                 break;
7721         /* TODO: gen4+ supports 16 bpc floating point, too. */
7722         default:
7723                 DRM_DEBUG_KMS("unsupported depth\n");
7724                 return -EINVAL;
7725         }
7726
7727         pipe_config->pipe_bpp = bpp;
7728
7729         /* Clamp display bpp to EDID value */
7730         list_for_each_entry(connector, &dev->mode_config.connector_list,
7731                             base.head) {
7732                 if (!connector->new_encoder ||
7733                     connector->new_encoder->new_crtc != crtc)
7734                         continue;
7735
7736                 connected_sink_compute_bpp(connector, pipe_config);
7737         }
7738
7739         return bpp;
7740 }
7741
7742 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7743                                    struct intel_crtc_config *pipe_config,
7744                                    const char *context)
7745 {
7746         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7747                       context, pipe_name(crtc->pipe));
7748
7749         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7750         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7751                       pipe_config->pipe_bpp, pipe_config->dither);
7752         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7753                       pipe_config->has_pch_encoder,
7754                       pipe_config->fdi_lanes,
7755                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7756                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7757                       pipe_config->fdi_m_n.tu);
7758         DRM_DEBUG_KMS("requested mode:\n");
7759         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7760         DRM_DEBUG_KMS("adjusted mode:\n");
7761         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7762         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7763                       pipe_config->gmch_pfit.control,
7764                       pipe_config->gmch_pfit.pgm_ratios,
7765                       pipe_config->gmch_pfit.lvds_border_bits);
7766         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7767                       pipe_config->pch_pfit.pos,
7768                       pipe_config->pch_pfit.size);
7769         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7770 }
7771
7772 static struct intel_crtc_config *
7773 intel_modeset_pipe_config(struct drm_crtc *crtc,
7774                           struct drm_framebuffer *fb,
7775                           struct drm_display_mode *mode)
7776 {
7777         struct drm_device *dev = crtc->dev;
7778         struct drm_encoder_helper_funcs *encoder_funcs;
7779         struct intel_encoder *encoder;
7780         struct intel_crtc_config *pipe_config;
7781         int plane_bpp, ret = -EINVAL;
7782         bool retry = true;
7783
7784         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7785         if (!pipe_config)
7786                 return ERR_PTR(-ENOMEM);
7787
7788         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7789         drm_mode_copy(&pipe_config->requested_mode, mode);
7790         pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7791
7792         /* Compute a starting value for pipe_config->pipe_bpp taking the source
7793          * plane pixel format and any sink constraints into account. Returns the
7794          * source plane bpp so that dithering can be selected on mismatches
7795          * after encoders and crtc also have had their say. */
7796         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7797                                               fb, pipe_config);
7798         if (plane_bpp < 0)
7799                 goto fail;
7800
7801 encoder_retry:
7802         /* Ensure the port clock default is reset when retrying. */
7803         pipe_config->port_clock = 0;
7804
7805         /* Pass our mode to the connectors and the CRTC to give them a chance to
7806          * adjust it according to limitations or connector properties, and also
7807          * a chance to reject the mode entirely.
7808          */
7809         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7810                             base.head) {
7811
7812                 if (&encoder->new_crtc->base != crtc)
7813                         continue;
7814
7815                 if (encoder->compute_config) {
7816                         if (!(encoder->compute_config(encoder, pipe_config))) {
7817                                 DRM_DEBUG_KMS("Encoder config failure\n");
7818                                 goto fail;
7819                         }
7820
7821                         continue;
7822                 }
7823
7824                 encoder_funcs = encoder->base.helper_private;
7825                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7826                                                 &pipe_config->requested_mode,
7827                                                 &pipe_config->adjusted_mode))) {
7828                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7829                         goto fail;
7830                 }
7831         }
7832
7833         /* Set default port clock if not overwritten by the encoder. Needs to be
7834          * done afterwards in case the encoder adjusts the mode. */
7835         if (!pipe_config->port_clock)
7836                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7837
7838         ret = intel_crtc_compute_config(crtc, pipe_config);
7839         if (ret < 0) {
7840                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7841                 goto fail;
7842         }
7843
7844         if (ret == RETRY) {
7845                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7846                         ret = -EINVAL;
7847                         goto fail;
7848                 }
7849
7850                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7851                 retry = false;
7852                 goto encoder_retry;
7853         }
7854
7855         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7856         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7857                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7858
7859         return pipe_config;
7860 fail:
7861         kfree(pipe_config);
7862         return ERR_PTR(ret);
7863 }
7864
7865 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7866  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7867 static void
7868 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7869                              unsigned *prepare_pipes, unsigned *disable_pipes)
7870 {
7871         struct intel_crtc *intel_crtc;
7872         struct drm_device *dev = crtc->dev;
7873         struct intel_encoder *encoder;
7874         struct intel_connector *connector;
7875         struct drm_crtc *tmp_crtc;
7876
7877         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7878
7879         /* Check which crtcs have changed outputs connected to them, these need
7880          * to be part of the prepare_pipes mask. We don't (yet) support global
7881          * modeset across multiple crtcs, so modeset_pipes will only have one
7882          * bit set at most. */
7883         list_for_each_entry(connector, &dev->mode_config.connector_list,
7884                             base.head) {
7885                 if (connector->base.encoder == &connector->new_encoder->base)
7886                         continue;
7887
7888                 if (connector->base.encoder) {
7889                         tmp_crtc = connector->base.encoder->crtc;
7890
7891                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7892                 }
7893
7894                 if (connector->new_encoder)
7895                         *prepare_pipes |=
7896                                 1 << connector->new_encoder->new_crtc->pipe;
7897         }
7898
7899         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7900                             base.head) {
7901                 if (encoder->base.crtc == &encoder->new_crtc->base)
7902                         continue;
7903
7904                 if (encoder->base.crtc) {
7905                         tmp_crtc = encoder->base.crtc;
7906
7907                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7908                 }
7909
7910                 if (encoder->new_crtc)
7911                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7912         }
7913
7914         /* Check for any pipes that will be fully disabled ... */
7915         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7916                             base.head) {
7917                 bool used = false;
7918
7919                 /* Don't try to disable disabled crtcs. */
7920                 if (!intel_crtc->base.enabled)
7921                         continue;
7922
7923                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7924                                     base.head) {
7925                         if (encoder->new_crtc == intel_crtc)
7926                                 used = true;
7927                 }
7928
7929                 if (!used)
7930                         *disable_pipes |= 1 << intel_crtc->pipe;
7931         }
7932
7933
7934         /* set_mode is also used to update properties on life display pipes. */
7935         intel_crtc = to_intel_crtc(crtc);
7936         if (crtc->enabled)
7937                 *prepare_pipes |= 1 << intel_crtc->pipe;
7938
7939         /*
7940          * For simplicity do a full modeset on any pipe where the output routing
7941          * changed. We could be more clever, but that would require us to be
7942          * more careful with calling the relevant encoder->mode_set functions.
7943          */
7944         if (*prepare_pipes)
7945                 *modeset_pipes = *prepare_pipes;
7946
7947         /* ... and mask these out. */
7948         *modeset_pipes &= ~(*disable_pipes);
7949         *prepare_pipes &= ~(*disable_pipes);
7950
7951         /*
7952          * HACK: We don't (yet) fully support global modesets. intel_set_config
7953          * obies this rule, but the modeset restore mode of
7954          * intel_modeset_setup_hw_state does not.
7955          */
7956         *modeset_pipes &= 1 << intel_crtc->pipe;
7957         *prepare_pipes &= 1 << intel_crtc->pipe;
7958
7959         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7960                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7961 }
7962
7963 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7964 {
7965         struct drm_encoder *encoder;
7966         struct drm_device *dev = crtc->dev;
7967
7968         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7969                 if (encoder->crtc == crtc)
7970                         return true;
7971
7972         return false;
7973 }
7974
7975 static void
7976 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7977 {
7978         struct intel_encoder *intel_encoder;
7979         struct intel_crtc *intel_crtc;
7980         struct drm_connector *connector;
7981
7982         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7983                             base.head) {
7984                 if (!intel_encoder->base.crtc)
7985                         continue;
7986
7987                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7988
7989                 if (prepare_pipes & (1 << intel_crtc->pipe))
7990                         intel_encoder->connectors_active = false;
7991         }
7992
7993         intel_modeset_commit_output_state(dev);
7994
7995         /* Update computed state. */
7996         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7997                             base.head) {
7998                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7999         }
8000
8001         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8002                 if (!connector->encoder || !connector->encoder->crtc)
8003                         continue;
8004
8005                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8006
8007                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8008                         struct drm_property *dpms_property =
8009                                 dev->mode_config.dpms_property;
8010
8011                         connector->dpms = DRM_MODE_DPMS_ON;
8012                         drm_object_property_set_value(&connector->base,
8013                                                          dpms_property,
8014                                                          DRM_MODE_DPMS_ON);
8015
8016                         intel_encoder = to_intel_encoder(connector->encoder);
8017                         intel_encoder->connectors_active = true;
8018                 }
8019         }
8020
8021 }
8022
8023 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8024         list_for_each_entry((intel_crtc), \
8025                             &(dev)->mode_config.crtc_list, \
8026                             base.head) \
8027                 if (mask & (1 <<(intel_crtc)->pipe))
8028
8029 static bool
8030 intel_pipe_config_compare(struct drm_device *dev,
8031                           struct intel_crtc_config *current_config,
8032                           struct intel_crtc_config *pipe_config)
8033 {
8034 #define PIPE_CONF_CHECK_I(name) \
8035         if (current_config->name != pipe_config->name) { \
8036                 DRM_ERROR("mismatch in " #name " " \
8037                           "(expected %i, found %i)\n", \
8038                           current_config->name, \
8039                           pipe_config->name); \
8040                 return false; \
8041         }
8042
8043 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8044         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8045                 DRM_ERROR("mismatch in " #name " " \
8046                           "(expected %i, found %i)\n", \
8047                           current_config->name & (mask), \
8048                           pipe_config->name & (mask)); \
8049                 return false; \
8050         }
8051
8052         PIPE_CONF_CHECK_I(cpu_transcoder);
8053
8054         PIPE_CONF_CHECK_I(has_pch_encoder);
8055         PIPE_CONF_CHECK_I(fdi_lanes);
8056         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8057         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8058         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8059         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8060         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8061
8062         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8063         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8064         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8065         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8066         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8067         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8068
8069         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8070         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8071         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8072         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8073         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8074         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8075
8076         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8077                               DRM_MODE_FLAG_INTERLACE);
8078
8079         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8080                               DRM_MODE_FLAG_PHSYNC);
8081         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8082                               DRM_MODE_FLAG_NHSYNC);
8083         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8084                               DRM_MODE_FLAG_PVSYNC);
8085         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8086                               DRM_MODE_FLAG_NVSYNC);
8087
8088         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8089         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8090
8091         PIPE_CONF_CHECK_I(gmch_pfit.control);
8092         /* pfit ratios are autocomputed by the hw on gen4+ */
8093         if (INTEL_INFO(dev)->gen < 4)
8094                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8095         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8096         PIPE_CONF_CHECK_I(pch_pfit.pos);
8097         PIPE_CONF_CHECK_I(pch_pfit.size);
8098
8099         PIPE_CONF_CHECK_I(ips_enabled);
8100
8101 #undef PIPE_CONF_CHECK_I
8102 #undef PIPE_CONF_CHECK_FLAGS
8103
8104         return true;
8105 }
8106
8107 void
8108 intel_modeset_check_state(struct drm_device *dev)
8109 {
8110         drm_i915_private_t *dev_priv = dev->dev_private;
8111         struct intel_crtc *crtc;
8112         struct intel_encoder *encoder;
8113         struct intel_connector *connector;
8114         struct intel_crtc_config pipe_config;
8115
8116         list_for_each_entry(connector, &dev->mode_config.connector_list,
8117                             base.head) {
8118                 /* This also checks the encoder/connector hw state with the
8119                  * ->get_hw_state callbacks. */
8120                 intel_connector_check_state(connector);
8121
8122                 WARN(&connector->new_encoder->base != connector->base.encoder,
8123                      "connector's staged encoder doesn't match current encoder\n");
8124         }
8125
8126         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8127                             base.head) {
8128                 bool enabled = false;
8129                 bool active = false;
8130                 enum pipe pipe, tracked_pipe;
8131
8132                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8133                               encoder->base.base.id,
8134                               drm_get_encoder_name(&encoder->base));
8135
8136                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8137                      "encoder's stage crtc doesn't match current crtc\n");
8138                 WARN(encoder->connectors_active && !encoder->base.crtc,
8139                      "encoder's active_connectors set, but no crtc\n");
8140
8141                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8142                                     base.head) {
8143                         if (connector->base.encoder != &encoder->base)
8144                                 continue;
8145                         enabled = true;
8146                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8147                                 active = true;
8148                 }
8149                 WARN(!!encoder->base.crtc != enabled,
8150                      "encoder's enabled state mismatch "
8151                      "(expected %i, found %i)\n",
8152                      !!encoder->base.crtc, enabled);
8153                 WARN(active && !encoder->base.crtc,
8154                      "active encoder with no crtc\n");
8155
8156                 WARN(encoder->connectors_active != active,
8157                      "encoder's computed active state doesn't match tracked active state "
8158                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8159
8160                 active = encoder->get_hw_state(encoder, &pipe);
8161                 WARN(active != encoder->connectors_active,
8162                      "encoder's hw state doesn't match sw tracking "
8163                      "(expected %i, found %i)\n",
8164                      encoder->connectors_active, active);
8165
8166                 if (!encoder->base.crtc)
8167                         continue;
8168
8169                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8170                 WARN(active && pipe != tracked_pipe,
8171                      "active encoder's pipe doesn't match"
8172                      "(expected %i, found %i)\n",
8173                      tracked_pipe, pipe);
8174
8175         }
8176
8177         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8178                             base.head) {
8179                 bool enabled = false;
8180                 bool active = false;
8181
8182                 memset(&pipe_config, 0, sizeof(pipe_config));
8183
8184                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8185                               crtc->base.base.id);
8186
8187                 WARN(crtc->active && !crtc->base.enabled,
8188                      "active crtc, but not enabled in sw tracking\n");
8189
8190                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8191                                     base.head) {
8192                         if (encoder->base.crtc != &crtc->base)
8193                                 continue;
8194                         enabled = true;
8195                         if (encoder->connectors_active)
8196                                 active = true;
8197                         if (encoder->get_config)
8198                                 encoder->get_config(encoder, &pipe_config);
8199                 }
8200                 WARN(active != crtc->active,
8201                      "crtc's computed active state doesn't match tracked active state "
8202                      "(expected %i, found %i)\n", active, crtc->active);
8203                 WARN(enabled != crtc->base.enabled,
8204                      "crtc's computed enabled state doesn't match tracked enabled state "
8205                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8206
8207                 active = dev_priv->display.get_pipe_config(crtc,
8208                                                            &pipe_config);
8209                 WARN(crtc->active != active,
8210                      "crtc active state doesn't match with hw state "
8211                      "(expected %i, found %i)\n", crtc->active, active);
8212
8213                 if (active &&
8214                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8215                         WARN(1, "pipe state doesn't match!\n");
8216                         intel_dump_pipe_config(crtc, &pipe_config,
8217                                                "[hw state]");
8218                         intel_dump_pipe_config(crtc, &crtc->config,
8219                                                "[sw state]");
8220                 }
8221         }
8222 }
8223
8224 static int __intel_set_mode(struct drm_crtc *crtc,
8225                             struct drm_display_mode *mode,
8226                             int x, int y, struct drm_framebuffer *fb)
8227 {
8228         struct drm_device *dev = crtc->dev;
8229         drm_i915_private_t *dev_priv = dev->dev_private;
8230         struct drm_display_mode *saved_mode, *saved_hwmode;
8231         struct intel_crtc_config *pipe_config = NULL;
8232         struct intel_crtc *intel_crtc;
8233         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8234         int ret = 0;
8235
8236         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8237         if (!saved_mode)
8238                 return -ENOMEM;
8239         saved_hwmode = saved_mode + 1;
8240
8241         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8242                                      &prepare_pipes, &disable_pipes);
8243
8244         *saved_hwmode = crtc->hwmode;
8245         *saved_mode = crtc->mode;
8246
8247         /* Hack: Because we don't (yet) support global modeset on multiple
8248          * crtcs, we don't keep track of the new mode for more than one crtc.
8249          * Hence simply check whether any bit is set in modeset_pipes in all the
8250          * pieces of code that are not yet converted to deal with mutliple crtcs
8251          * changing their mode at the same time. */
8252         if (modeset_pipes) {
8253                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8254                 if (IS_ERR(pipe_config)) {
8255                         ret = PTR_ERR(pipe_config);
8256                         pipe_config = NULL;
8257
8258                         goto out;
8259                 }
8260                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8261                                        "[modeset]");
8262         }
8263
8264         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8265                 intel_crtc_disable(&intel_crtc->base);
8266
8267         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8268                 if (intel_crtc->base.enabled)
8269                         dev_priv->display.crtc_disable(&intel_crtc->base);
8270         }
8271
8272         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8273          * to set it here already despite that we pass it down the callchain.
8274          */
8275         if (modeset_pipes) {
8276                 crtc->mode = *mode;
8277                 /* mode_set/enable/disable functions rely on a correct pipe
8278                  * config. */
8279                 to_intel_crtc(crtc)->config = *pipe_config;
8280         }
8281
8282         /* Only after disabling all output pipelines that will be changed can we
8283          * update the the output configuration. */
8284         intel_modeset_update_state(dev, prepare_pipes);
8285
8286         if (dev_priv->display.modeset_global_resources)
8287                 dev_priv->display.modeset_global_resources(dev);
8288
8289         /* Set up the DPLL and any encoders state that needs to adjust or depend
8290          * on the DPLL.
8291          */
8292         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8293                 ret = intel_crtc_mode_set(&intel_crtc->base,
8294                                           x, y, fb);
8295                 if (ret)
8296                         goto done;
8297         }
8298
8299         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8300         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8301                 dev_priv->display.crtc_enable(&intel_crtc->base);
8302
8303         if (modeset_pipes) {
8304                 /* Store real post-adjustment hardware mode. */
8305                 crtc->hwmode = pipe_config->adjusted_mode;
8306
8307                 /* Calculate and store various constants which
8308                  * are later needed by vblank and swap-completion
8309                  * timestamping. They are derived from true hwmode.
8310                  */
8311                 drm_calc_timestamping_constants(crtc);
8312         }
8313
8314         /* FIXME: add subpixel order */
8315 done:
8316         if (ret && crtc->enabled) {
8317                 crtc->hwmode = *saved_hwmode;
8318                 crtc->mode = *saved_mode;
8319         }
8320
8321 out:
8322         kfree(pipe_config);
8323         kfree(saved_mode);
8324         return ret;
8325 }
8326
8327 int intel_set_mode(struct drm_crtc *crtc,
8328                      struct drm_display_mode *mode,
8329                      int x, int y, struct drm_framebuffer *fb)
8330 {
8331         int ret;
8332
8333         ret = __intel_set_mode(crtc, mode, x, y, fb);
8334
8335         if (ret == 0)
8336                 intel_modeset_check_state(crtc->dev);
8337
8338         return ret;
8339 }
8340
8341 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8342 {
8343         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8344 }
8345
8346 #undef for_each_intel_crtc_masked
8347
8348 static void intel_set_config_free(struct intel_set_config *config)
8349 {
8350         if (!config)
8351                 return;
8352
8353         kfree(config->save_connector_encoders);
8354         kfree(config->save_encoder_crtcs);
8355         kfree(config);
8356 }
8357
8358 static int intel_set_config_save_state(struct drm_device *dev,
8359                                        struct intel_set_config *config)
8360 {
8361         struct drm_encoder *encoder;
8362         struct drm_connector *connector;
8363         int count;
8364
8365         config->save_encoder_crtcs =
8366                 kcalloc(dev->mode_config.num_encoder,
8367                         sizeof(struct drm_crtc *), GFP_KERNEL);
8368         if (!config->save_encoder_crtcs)
8369                 return -ENOMEM;
8370
8371         config->save_connector_encoders =
8372                 kcalloc(dev->mode_config.num_connector,
8373                         sizeof(struct drm_encoder *), GFP_KERNEL);
8374         if (!config->save_connector_encoders)
8375                 return -ENOMEM;
8376
8377         /* Copy data. Note that driver private data is not affected.
8378          * Should anything bad happen only the expected state is
8379          * restored, not the drivers personal bookkeeping.
8380          */
8381         count = 0;
8382         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8383                 config->save_encoder_crtcs[count++] = encoder->crtc;
8384         }
8385
8386         count = 0;
8387         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8388                 config->save_connector_encoders[count++] = connector->encoder;
8389         }
8390
8391         return 0;
8392 }
8393
8394 static void intel_set_config_restore_state(struct drm_device *dev,
8395                                            struct intel_set_config *config)
8396 {
8397         struct intel_encoder *encoder;
8398         struct intel_connector *connector;
8399         int count;
8400
8401         count = 0;
8402         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8403                 encoder->new_crtc =
8404                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8405         }
8406
8407         count = 0;
8408         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8409                 connector->new_encoder =
8410                         to_intel_encoder(config->save_connector_encoders[count++]);
8411         }
8412 }
8413
8414 static void
8415 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8416                                       struct intel_set_config *config)
8417 {
8418
8419         /* We should be able to check here if the fb has the same properties
8420          * and then just flip_or_move it */
8421         if (set->crtc->fb != set->fb) {
8422                 /* If we have no fb then treat it as a full mode set */
8423                 if (set->crtc->fb == NULL) {
8424                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8425                         config->mode_changed = true;
8426                 } else if (set->fb == NULL) {
8427                         config->mode_changed = true;
8428                 } else if (set->fb->pixel_format !=
8429                            set->crtc->fb->pixel_format) {
8430                         config->mode_changed = true;
8431                 } else
8432                         config->fb_changed = true;
8433         }
8434
8435         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8436                 config->fb_changed = true;
8437
8438         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8439                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8440                 drm_mode_debug_printmodeline(&set->crtc->mode);
8441                 drm_mode_debug_printmodeline(set->mode);
8442                 config->mode_changed = true;
8443         }
8444 }
8445
8446 static int
8447 intel_modeset_stage_output_state(struct drm_device *dev,
8448                                  struct drm_mode_set *set,
8449                                  struct intel_set_config *config)
8450 {
8451         struct drm_crtc *new_crtc;
8452         struct intel_connector *connector;
8453         struct intel_encoder *encoder;
8454         int count, ro;
8455
8456         /* The upper layers ensure that we either disable a crtc or have a list
8457          * of connectors. For paranoia, double-check this. */
8458         WARN_ON(!set->fb && (set->num_connectors != 0));
8459         WARN_ON(set->fb && (set->num_connectors == 0));
8460
8461         count = 0;
8462         list_for_each_entry(connector, &dev->mode_config.connector_list,
8463                             base.head) {
8464                 /* Otherwise traverse passed in connector list and get encoders
8465                  * for them. */
8466                 for (ro = 0; ro < set->num_connectors; ro++) {
8467                         if (set->connectors[ro] == &connector->base) {
8468                                 connector->new_encoder = connector->encoder;
8469                                 break;
8470                         }
8471                 }
8472
8473                 /* If we disable the crtc, disable all its connectors. Also, if
8474                  * the connector is on the changing crtc but not on the new
8475                  * connector list, disable it. */
8476                 if ((!set->fb || ro == set->num_connectors) &&
8477                     connector->base.encoder &&
8478                     connector->base.encoder->crtc == set->crtc) {
8479                         connector->new_encoder = NULL;
8480
8481                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8482                                 connector->base.base.id,
8483                                 drm_get_connector_name(&connector->base));
8484                 }
8485
8486
8487                 if (&connector->new_encoder->base != connector->base.encoder) {
8488                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8489                         config->mode_changed = true;
8490                 }
8491         }
8492         /* connector->new_encoder is now updated for all connectors. */
8493
8494         /* Update crtc of enabled connectors. */
8495         count = 0;
8496         list_for_each_entry(connector, &dev->mode_config.connector_list,
8497                             base.head) {
8498                 if (!connector->new_encoder)
8499                         continue;
8500
8501                 new_crtc = connector->new_encoder->base.crtc;
8502
8503                 for (ro = 0; ro < set->num_connectors; ro++) {
8504                         if (set->connectors[ro] == &connector->base)
8505                                 new_crtc = set->crtc;
8506                 }
8507
8508                 /* Make sure the new CRTC will work with the encoder */
8509                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8510                                            new_crtc)) {
8511                         return -EINVAL;
8512                 }
8513                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8514
8515                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8516                         connector->base.base.id,
8517                         drm_get_connector_name(&connector->base),
8518                         new_crtc->base.id);
8519         }
8520
8521         /* Check for any encoders that needs to be disabled. */
8522         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8523                             base.head) {
8524                 list_for_each_entry(connector,
8525                                     &dev->mode_config.connector_list,
8526                                     base.head) {
8527                         if (connector->new_encoder == encoder) {
8528                                 WARN_ON(!connector->new_encoder->new_crtc);
8529
8530                                 goto next_encoder;
8531                         }
8532                 }
8533                 encoder->new_crtc = NULL;
8534 next_encoder:
8535                 /* Only now check for crtc changes so we don't miss encoders
8536                  * that will be disabled. */
8537                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8538                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8539                         config->mode_changed = true;
8540                 }
8541         }
8542         /* Now we've also updated encoder->new_crtc for all encoders. */
8543
8544         return 0;
8545 }
8546
8547 static int intel_crtc_set_config(struct drm_mode_set *set)
8548 {
8549         struct drm_device *dev;
8550         struct drm_mode_set save_set;
8551         struct intel_set_config *config;
8552         int ret;
8553
8554         BUG_ON(!set);
8555         BUG_ON(!set->crtc);
8556         BUG_ON(!set->crtc->helper_private);
8557
8558         /* Enforce sane interface api - has been abused by the fb helper. */
8559         BUG_ON(!set->mode && set->fb);
8560         BUG_ON(set->fb && set->num_connectors == 0);
8561
8562         if (set->fb) {
8563                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8564                                 set->crtc->base.id, set->fb->base.id,
8565                                 (int)set->num_connectors, set->x, set->y);
8566         } else {
8567                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8568         }
8569
8570         dev = set->crtc->dev;
8571
8572         ret = -ENOMEM;
8573         config = kzalloc(sizeof(*config), GFP_KERNEL);
8574         if (!config)
8575                 goto out_config;
8576
8577         ret = intel_set_config_save_state(dev, config);
8578         if (ret)
8579                 goto out_config;
8580
8581         save_set.crtc = set->crtc;
8582         save_set.mode = &set->crtc->mode;
8583         save_set.x = set->crtc->x;
8584         save_set.y = set->crtc->y;
8585         save_set.fb = set->crtc->fb;
8586
8587         /* Compute whether we need a full modeset, only an fb base update or no
8588          * change at all. In the future we might also check whether only the
8589          * mode changed, e.g. for LVDS where we only change the panel fitter in
8590          * such cases. */
8591         intel_set_config_compute_mode_changes(set, config);
8592
8593         ret = intel_modeset_stage_output_state(dev, set, config);
8594         if (ret)
8595                 goto fail;
8596
8597         if (config->mode_changed) {
8598                 ret = intel_set_mode(set->crtc, set->mode,
8599                                      set->x, set->y, set->fb);
8600                 if (ret) {
8601                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8602                                   set->crtc->base.id, ret);
8603                         goto fail;
8604                 }
8605         } else if (config->fb_changed) {
8606                 intel_crtc_wait_for_pending_flips(set->crtc);
8607
8608                 ret = intel_pipe_set_base(set->crtc,
8609                                           set->x, set->y, set->fb);
8610         }
8611
8612         intel_set_config_free(config);
8613
8614         return 0;
8615
8616 fail:
8617         intel_set_config_restore_state(dev, config);
8618
8619         /* Try to restore the config */
8620         if (config->mode_changed &&
8621             intel_set_mode(save_set.crtc, save_set.mode,
8622                            save_set.x, save_set.y, save_set.fb))
8623                 DRM_ERROR("failed to restore config after modeset failure\n");
8624
8625 out_config:
8626         intel_set_config_free(config);
8627         return ret;
8628 }
8629
8630 static const struct drm_crtc_funcs intel_crtc_funcs = {
8631         .cursor_set = intel_crtc_cursor_set,
8632         .cursor_move = intel_crtc_cursor_move,
8633         .gamma_set = intel_crtc_gamma_set,
8634         .set_config = intel_crtc_set_config,
8635         .destroy = intel_crtc_destroy,
8636         .page_flip = intel_crtc_page_flip,
8637 };
8638
8639 static void intel_cpu_pll_init(struct drm_device *dev)
8640 {
8641         if (HAS_DDI(dev))
8642                 intel_ddi_pll_init(dev);
8643 }
8644
8645 static void intel_pch_pll_init(struct drm_device *dev)
8646 {
8647         drm_i915_private_t *dev_priv = dev->dev_private;
8648         int i;
8649
8650         if (dev_priv->num_pch_pll == 0) {
8651                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8652                 return;
8653         }
8654
8655         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8656                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8657                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8658                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8659         }
8660 }
8661
8662 static void intel_crtc_init(struct drm_device *dev, int pipe)
8663 {
8664         drm_i915_private_t *dev_priv = dev->dev_private;
8665         struct intel_crtc *intel_crtc;
8666         int i;
8667
8668         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8669         if (intel_crtc == NULL)
8670                 return;
8671
8672         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8673
8674         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8675         for (i = 0; i < 256; i++) {
8676                 intel_crtc->lut_r[i] = i;
8677                 intel_crtc->lut_g[i] = i;
8678                 intel_crtc->lut_b[i] = i;
8679         }
8680
8681         /* Swap pipes & planes for FBC on pre-965 */
8682         intel_crtc->pipe = pipe;
8683         intel_crtc->plane = pipe;
8684         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8685                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8686                 intel_crtc->plane = !pipe;
8687         }
8688
8689         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8690                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8691         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8692         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8693
8694         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8695 }
8696
8697 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8698                                 struct drm_file *file)
8699 {
8700         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8701         struct drm_mode_object *drmmode_obj;
8702         struct intel_crtc *crtc;
8703
8704         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8705                 return -ENODEV;
8706
8707         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8708                         DRM_MODE_OBJECT_CRTC);
8709
8710         if (!drmmode_obj) {
8711                 DRM_ERROR("no such CRTC id\n");
8712                 return -EINVAL;
8713         }
8714
8715         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8716         pipe_from_crtc_id->pipe = crtc->pipe;
8717
8718         return 0;
8719 }
8720
8721 static int intel_encoder_clones(struct intel_encoder *encoder)
8722 {
8723         struct drm_device *dev = encoder->base.dev;
8724         struct intel_encoder *source_encoder;
8725         int index_mask = 0;
8726         int entry = 0;
8727
8728         list_for_each_entry(source_encoder,
8729                             &dev->mode_config.encoder_list, base.head) {
8730
8731                 if (encoder == source_encoder)
8732                         index_mask |= (1 << entry);
8733
8734                 /* Intel hw has only one MUX where enocoders could be cloned. */
8735                 if (encoder->cloneable && source_encoder->cloneable)
8736                         index_mask |= (1 << entry);
8737
8738                 entry++;
8739         }
8740
8741         return index_mask;
8742 }
8743
8744 static bool has_edp_a(struct drm_device *dev)
8745 {
8746         struct drm_i915_private *dev_priv = dev->dev_private;
8747
8748         if (!IS_MOBILE(dev))
8749                 return false;
8750
8751         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8752                 return false;
8753
8754         if (IS_GEN5(dev) &&
8755             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8756                 return false;
8757
8758         return true;
8759 }
8760
8761 static void intel_setup_outputs(struct drm_device *dev)
8762 {
8763         struct drm_i915_private *dev_priv = dev->dev_private;
8764         struct intel_encoder *encoder;
8765         bool dpd_is_edp = false;
8766         bool has_lvds;
8767
8768         has_lvds = intel_lvds_init(dev);
8769         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8770                 /* disable the panel fitter on everything but LVDS */
8771                 I915_WRITE(PFIT_CONTROL, 0);
8772         }
8773
8774         if (!IS_ULT(dev))
8775                 intel_crt_init(dev);
8776
8777         if (HAS_DDI(dev)) {
8778                 int found;
8779
8780                 /* Haswell uses DDI functions to detect digital outputs */
8781                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8782                 /* DDI A only supports eDP */
8783                 if (found)
8784                         intel_ddi_init(dev, PORT_A);
8785
8786                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8787                  * register */
8788                 found = I915_READ(SFUSE_STRAP);
8789
8790                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8791                         intel_ddi_init(dev, PORT_B);
8792                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8793                         intel_ddi_init(dev, PORT_C);
8794                 if (found & SFUSE_STRAP_DDID_DETECTED)
8795                         intel_ddi_init(dev, PORT_D);
8796         } else if (HAS_PCH_SPLIT(dev)) {
8797                 int found;
8798                 dpd_is_edp = intel_dpd_is_edp(dev);
8799
8800                 if (has_edp_a(dev))
8801                         intel_dp_init(dev, DP_A, PORT_A);
8802
8803                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8804                         /* PCH SDVOB multiplex with HDMIB */
8805                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8806                         if (!found)
8807                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8808                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8809                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8810                 }
8811
8812                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8813                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8814
8815                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8816                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8817
8818                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8819                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8820
8821                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8822                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8823         } else if (IS_VALLEYVIEW(dev)) {
8824                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8825                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8826                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8827
8828                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8829                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8830                                         PORT_B);
8831                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8832                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8833                 }
8834         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8835                 bool found = false;
8836
8837                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8838                         DRM_DEBUG_KMS("probing SDVOB\n");
8839                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8840                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8841                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8842                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8843                         }
8844
8845                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
8846                                 intel_dp_init(dev, DP_B, PORT_B);
8847                 }
8848
8849                 /* Before G4X SDVOC doesn't have its own detect register */
8850
8851                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8852                         DRM_DEBUG_KMS("probing SDVOC\n");
8853                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8854                 }
8855
8856                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8857
8858                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8859                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8860                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8861                         }
8862                         if (SUPPORTS_INTEGRATED_DP(dev))
8863                                 intel_dp_init(dev, DP_C, PORT_C);
8864                 }
8865
8866                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8867                     (I915_READ(DP_D) & DP_DETECTED))
8868                         intel_dp_init(dev, DP_D, PORT_D);
8869         } else if (IS_GEN2(dev))
8870                 intel_dvo_init(dev);
8871
8872         if (SUPPORTS_TV(dev))
8873                 intel_tv_init(dev);
8874
8875         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8876                 encoder->base.possible_crtcs = encoder->crtc_mask;
8877                 encoder->base.possible_clones =
8878                         intel_encoder_clones(encoder);
8879         }
8880
8881         intel_init_pch_refclk(dev);
8882
8883         drm_helper_move_panel_connectors_to_head(dev);
8884 }
8885
8886 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8887 {
8888         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8889
8890         drm_framebuffer_cleanup(fb);
8891         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8892
8893         kfree(intel_fb);
8894 }
8895
8896 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8897                                                 struct drm_file *file,
8898                                                 unsigned int *handle)
8899 {
8900         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8901         struct drm_i915_gem_object *obj = intel_fb->obj;
8902
8903         return drm_gem_handle_create(file, &obj->base, handle);
8904 }
8905
8906 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8907         .destroy = intel_user_framebuffer_destroy,
8908         .create_handle = intel_user_framebuffer_create_handle,
8909 };
8910
8911 int intel_framebuffer_init(struct drm_device *dev,
8912                            struct intel_framebuffer *intel_fb,
8913                            struct drm_mode_fb_cmd2 *mode_cmd,
8914                            struct drm_i915_gem_object *obj)
8915 {
8916         int ret;
8917
8918         if (obj->tiling_mode == I915_TILING_Y) {
8919                 DRM_DEBUG("hardware does not support tiling Y\n");
8920                 return -EINVAL;
8921         }
8922
8923         if (mode_cmd->pitches[0] & 63) {
8924                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8925                           mode_cmd->pitches[0]);
8926                 return -EINVAL;
8927         }
8928
8929         /* FIXME <= Gen4 stride limits are bit unclear */
8930         if (mode_cmd->pitches[0] > 32768) {
8931                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8932                           mode_cmd->pitches[0]);
8933                 return -EINVAL;
8934         }
8935
8936         if (obj->tiling_mode != I915_TILING_NONE &&
8937             mode_cmd->pitches[0] != obj->stride) {
8938                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8939                           mode_cmd->pitches[0], obj->stride);
8940                 return -EINVAL;
8941         }
8942
8943         /* Reject formats not supported by any plane early. */
8944         switch (mode_cmd->pixel_format) {
8945         case DRM_FORMAT_C8:
8946         case DRM_FORMAT_RGB565:
8947         case DRM_FORMAT_XRGB8888:
8948         case DRM_FORMAT_ARGB8888:
8949                 break;
8950         case DRM_FORMAT_XRGB1555:
8951         case DRM_FORMAT_ARGB1555:
8952                 if (INTEL_INFO(dev)->gen > 3) {
8953                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8954                         return -EINVAL;
8955                 }
8956                 break;
8957         case DRM_FORMAT_XBGR8888:
8958         case DRM_FORMAT_ABGR8888:
8959         case DRM_FORMAT_XRGB2101010:
8960         case DRM_FORMAT_ARGB2101010:
8961         case DRM_FORMAT_XBGR2101010:
8962         case DRM_FORMAT_ABGR2101010:
8963                 if (INTEL_INFO(dev)->gen < 4) {
8964                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8965                         return -EINVAL;
8966                 }
8967                 break;
8968         case DRM_FORMAT_YUYV:
8969         case DRM_FORMAT_UYVY:
8970         case DRM_FORMAT_YVYU:
8971         case DRM_FORMAT_VYUY:
8972                 if (INTEL_INFO(dev)->gen < 5) {
8973                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8974                         return -EINVAL;
8975                 }
8976                 break;
8977         default:
8978                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8979                 return -EINVAL;
8980         }
8981
8982         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8983         if (mode_cmd->offsets[0] != 0)
8984                 return -EINVAL;
8985
8986         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8987         intel_fb->obj = obj;
8988
8989         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8990         if (ret) {
8991                 DRM_ERROR("framebuffer init failed %d\n", ret);
8992                 return ret;
8993         }
8994
8995         return 0;
8996 }
8997
8998 static struct drm_framebuffer *
8999 intel_user_framebuffer_create(struct drm_device *dev,
9000                               struct drm_file *filp,
9001                               struct drm_mode_fb_cmd2 *mode_cmd)
9002 {
9003         struct drm_i915_gem_object *obj;
9004
9005         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9006                                                 mode_cmd->handles[0]));
9007         if (&obj->base == NULL)
9008                 return ERR_PTR(-ENOENT);
9009
9010         return intel_framebuffer_create(dev, mode_cmd, obj);
9011 }
9012
9013 static const struct drm_mode_config_funcs intel_mode_funcs = {
9014         .fb_create = intel_user_framebuffer_create,
9015         .output_poll_changed = intel_fb_output_poll_changed,
9016 };
9017
9018 /* Set up chip specific display functions */
9019 static void intel_init_display(struct drm_device *dev)
9020 {
9021         struct drm_i915_private *dev_priv = dev->dev_private;
9022
9023         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9024                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9025         else if (IS_VALLEYVIEW(dev))
9026                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9027         else if (IS_PINEVIEW(dev))
9028                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9029         else
9030                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9031
9032         if (HAS_DDI(dev)) {
9033                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9034                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9035                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9036                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9037                 dev_priv->display.off = haswell_crtc_off;
9038                 dev_priv->display.update_plane = ironlake_update_plane;
9039         } else if (HAS_PCH_SPLIT(dev)) {
9040                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9041                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9042                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9043                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9044                 dev_priv->display.off = ironlake_crtc_off;
9045                 dev_priv->display.update_plane = ironlake_update_plane;
9046         } else if (IS_VALLEYVIEW(dev)) {
9047                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9048                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9049                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9050                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9051                 dev_priv->display.off = i9xx_crtc_off;
9052                 dev_priv->display.update_plane = i9xx_update_plane;
9053         } else {
9054                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9055                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9056                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9057                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9058                 dev_priv->display.off = i9xx_crtc_off;
9059                 dev_priv->display.update_plane = i9xx_update_plane;
9060         }
9061
9062         /* Returns the core display clock speed */
9063         if (IS_VALLEYVIEW(dev))
9064                 dev_priv->display.get_display_clock_speed =
9065                         valleyview_get_display_clock_speed;
9066         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9067                 dev_priv->display.get_display_clock_speed =
9068                         i945_get_display_clock_speed;
9069         else if (IS_I915G(dev))
9070                 dev_priv->display.get_display_clock_speed =
9071                         i915_get_display_clock_speed;
9072         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9073                 dev_priv->display.get_display_clock_speed =
9074                         i9xx_misc_get_display_clock_speed;
9075         else if (IS_I915GM(dev))
9076                 dev_priv->display.get_display_clock_speed =
9077                         i915gm_get_display_clock_speed;
9078         else if (IS_I865G(dev))
9079                 dev_priv->display.get_display_clock_speed =
9080                         i865_get_display_clock_speed;
9081         else if (IS_I85X(dev))
9082                 dev_priv->display.get_display_clock_speed =
9083                         i855_get_display_clock_speed;
9084         else /* 852, 830 */
9085                 dev_priv->display.get_display_clock_speed =
9086                         i830_get_display_clock_speed;
9087
9088         if (HAS_PCH_SPLIT(dev)) {
9089                 if (IS_GEN5(dev)) {
9090                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9091                         dev_priv->display.write_eld = ironlake_write_eld;
9092                 } else if (IS_GEN6(dev)) {
9093                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9094                         dev_priv->display.write_eld = ironlake_write_eld;
9095                 } else if (IS_IVYBRIDGE(dev)) {
9096                         /* FIXME: detect B0+ stepping and use auto training */
9097                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9098                         dev_priv->display.write_eld = ironlake_write_eld;
9099                         dev_priv->display.modeset_global_resources =
9100                                 ivb_modeset_global_resources;
9101                 } else if (IS_HASWELL(dev)) {
9102                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9103                         dev_priv->display.write_eld = haswell_write_eld;
9104                         dev_priv->display.modeset_global_resources =
9105                                 haswell_modeset_global_resources;
9106                 }
9107         } else if (IS_G4X(dev)) {
9108                 dev_priv->display.write_eld = g4x_write_eld;
9109         }
9110
9111         /* Default just returns -ENODEV to indicate unsupported */
9112         dev_priv->display.queue_flip = intel_default_queue_flip;
9113
9114         switch (INTEL_INFO(dev)->gen) {
9115         case 2:
9116                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9117                 break;
9118
9119         case 3:
9120                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9121                 break;
9122
9123         case 4:
9124         case 5:
9125                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9126                 break;
9127
9128         case 6:
9129                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9130                 break;
9131         case 7:
9132                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9133                 break;
9134         }
9135 }
9136
9137 /*
9138  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9139  * resume, or other times.  This quirk makes sure that's the case for
9140  * affected systems.
9141  */
9142 static void quirk_pipea_force(struct drm_device *dev)
9143 {
9144         struct drm_i915_private *dev_priv = dev->dev_private;
9145
9146         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9147         DRM_INFO("applying pipe a force quirk\n");
9148 }
9149
9150 /*
9151  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9152  */
9153 static void quirk_ssc_force_disable(struct drm_device *dev)
9154 {
9155         struct drm_i915_private *dev_priv = dev->dev_private;
9156         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9157         DRM_INFO("applying lvds SSC disable quirk\n");
9158 }
9159
9160 /*
9161  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9162  * brightness value
9163  */
9164 static void quirk_invert_brightness(struct drm_device *dev)
9165 {
9166         struct drm_i915_private *dev_priv = dev->dev_private;
9167         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9168         DRM_INFO("applying inverted panel brightness quirk\n");
9169 }
9170
9171 struct intel_quirk {
9172         int device;
9173         int subsystem_vendor;
9174         int subsystem_device;
9175         void (*hook)(struct drm_device *dev);
9176 };
9177
9178 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9179 struct intel_dmi_quirk {
9180         void (*hook)(struct drm_device *dev);
9181         const struct dmi_system_id (*dmi_id_list)[];
9182 };
9183
9184 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9185 {
9186         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9187         return 1;
9188 }
9189
9190 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9191         {
9192                 .dmi_id_list = &(const struct dmi_system_id[]) {
9193                         {
9194                                 .callback = intel_dmi_reverse_brightness,
9195                                 .ident = "NCR Corporation",
9196                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9197                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9198                                 },
9199                         },
9200                         { }  /* terminating entry */
9201                 },
9202                 .hook = quirk_invert_brightness,
9203         },
9204 };
9205
9206 static struct intel_quirk intel_quirks[] = {
9207         /* HP Mini needs pipe A force quirk (LP: #322104) */
9208         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9209
9210         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9211         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9212
9213         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9214         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9215
9216         /* 830/845 need to leave pipe A & dpll A up */
9217         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9218         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9219
9220         /* Lenovo U160 cannot use SSC on LVDS */
9221         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9222
9223         /* Sony Vaio Y cannot use SSC on LVDS */
9224         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9225
9226         /* Acer Aspire 5734Z must invert backlight brightness */
9227         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9228
9229         /* Acer/eMachines G725 */
9230         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9231
9232         /* Acer/eMachines e725 */
9233         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9234
9235         /* Acer/Packard Bell NCL20 */
9236         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9237
9238         /* Acer Aspire 4736Z */
9239         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9240 };
9241
9242 static void intel_init_quirks(struct drm_device *dev)
9243 {
9244         struct pci_dev *d = dev->pdev;
9245         int i;
9246
9247         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9248                 struct intel_quirk *q = &intel_quirks[i];
9249
9250                 if (d->device == q->device &&
9251                     (d->subsystem_vendor == q->subsystem_vendor ||
9252                      q->subsystem_vendor == PCI_ANY_ID) &&
9253                     (d->subsystem_device == q->subsystem_device ||
9254                      q->subsystem_device == PCI_ANY_ID))
9255                         q->hook(dev);
9256         }
9257         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9258                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9259                         intel_dmi_quirks[i].hook(dev);
9260         }
9261 }
9262
9263 /* Disable the VGA plane that we never use */
9264 static void i915_disable_vga(struct drm_device *dev)
9265 {
9266         struct drm_i915_private *dev_priv = dev->dev_private;
9267         u8 sr1;
9268         u32 vga_reg = i915_vgacntrl_reg(dev);
9269
9270         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9271         outb(SR01, VGA_SR_INDEX);
9272         sr1 = inb(VGA_SR_DATA);
9273         outb(sr1 | 1<<5, VGA_SR_DATA);
9274         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9275         udelay(300);
9276
9277         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9278         POSTING_READ(vga_reg);
9279 }
9280
9281 void intel_modeset_init_hw(struct drm_device *dev)
9282 {
9283         intel_init_power_well(dev);
9284
9285         intel_prepare_ddi(dev);
9286
9287         intel_init_clock_gating(dev);
9288
9289         mutex_lock(&dev->struct_mutex);
9290         intel_enable_gt_powersave(dev);
9291         mutex_unlock(&dev->struct_mutex);
9292 }
9293
9294 void intel_modeset_suspend_hw(struct drm_device *dev)
9295 {
9296         intel_suspend_hw(dev);
9297 }
9298
9299 void intel_modeset_init(struct drm_device *dev)
9300 {
9301         struct drm_i915_private *dev_priv = dev->dev_private;
9302         int i, j, ret;
9303
9304         drm_mode_config_init(dev);
9305
9306         dev->mode_config.min_width = 0;
9307         dev->mode_config.min_height = 0;
9308
9309         dev->mode_config.preferred_depth = 24;
9310         dev->mode_config.prefer_shadow = 1;
9311
9312         dev->mode_config.funcs = &intel_mode_funcs;
9313
9314         intel_init_quirks(dev);
9315
9316         intel_init_pm(dev);
9317
9318         if (INTEL_INFO(dev)->num_pipes == 0)
9319                 return;
9320
9321         intel_init_display(dev);
9322
9323         if (IS_GEN2(dev)) {
9324                 dev->mode_config.max_width = 2048;
9325                 dev->mode_config.max_height = 2048;
9326         } else if (IS_GEN3(dev)) {
9327                 dev->mode_config.max_width = 4096;
9328                 dev->mode_config.max_height = 4096;
9329         } else {
9330                 dev->mode_config.max_width = 8192;
9331                 dev->mode_config.max_height = 8192;
9332         }
9333         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9334
9335         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9336                       INTEL_INFO(dev)->num_pipes,
9337                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9338
9339         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9340                 intel_crtc_init(dev, i);
9341                 for (j = 0; j < dev_priv->num_plane; j++) {
9342                         ret = intel_plane_init(dev, i, j);
9343                         if (ret)
9344                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9345                                               pipe_name(i), sprite_name(i, j), ret);
9346                 }
9347         }
9348
9349         intel_cpu_pll_init(dev);
9350         intel_pch_pll_init(dev);
9351
9352         /* Just disable it once at startup */
9353         i915_disable_vga(dev);
9354         intel_setup_outputs(dev);
9355
9356         /* Just in case the BIOS is doing something questionable. */
9357         intel_disable_fbc(dev);
9358 }
9359
9360 static void
9361 intel_connector_break_all_links(struct intel_connector *connector)
9362 {
9363         connector->base.dpms = DRM_MODE_DPMS_OFF;
9364         connector->base.encoder = NULL;
9365         connector->encoder->connectors_active = false;
9366         connector->encoder->base.crtc = NULL;
9367 }
9368
9369 static void intel_enable_pipe_a(struct drm_device *dev)
9370 {
9371         struct intel_connector *connector;
9372         struct drm_connector *crt = NULL;
9373         struct intel_load_detect_pipe load_detect_temp;
9374
9375         /* We can't just switch on the pipe A, we need to set things up with a
9376          * proper mode and output configuration. As a gross hack, enable pipe A
9377          * by enabling the load detect pipe once. */
9378         list_for_each_entry(connector,
9379                             &dev->mode_config.connector_list,
9380                             base.head) {
9381                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9382                         crt = &connector->base;
9383                         break;
9384                 }
9385         }
9386
9387         if (!crt)
9388                 return;
9389
9390         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9391                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9392
9393
9394 }
9395
9396 static bool
9397 intel_check_plane_mapping(struct intel_crtc *crtc)
9398 {
9399         struct drm_device *dev = crtc->base.dev;
9400         struct drm_i915_private *dev_priv = dev->dev_private;
9401         u32 reg, val;
9402
9403         if (INTEL_INFO(dev)->num_pipes == 1)
9404                 return true;
9405
9406         reg = DSPCNTR(!crtc->plane);
9407         val = I915_READ(reg);
9408
9409         if ((val & DISPLAY_PLANE_ENABLE) &&
9410             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9411                 return false;
9412
9413         return true;
9414 }
9415
9416 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9417 {
9418         struct drm_device *dev = crtc->base.dev;
9419         struct drm_i915_private *dev_priv = dev->dev_private;
9420         u32 reg;
9421
9422         /* Clear any frame start delays used for debugging left by the BIOS */
9423         reg = PIPECONF(crtc->config.cpu_transcoder);
9424         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9425
9426         /* We need to sanitize the plane -> pipe mapping first because this will
9427          * disable the crtc (and hence change the state) if it is wrong. Note
9428          * that gen4+ has a fixed plane -> pipe mapping.  */
9429         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9430                 struct intel_connector *connector;
9431                 bool plane;
9432
9433                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9434                               crtc->base.base.id);
9435
9436                 /* Pipe has the wrong plane attached and the plane is active.
9437                  * Temporarily change the plane mapping and disable everything
9438                  * ...  */
9439                 plane = crtc->plane;
9440                 crtc->plane = !plane;
9441                 dev_priv->display.crtc_disable(&crtc->base);
9442                 crtc->plane = plane;
9443
9444                 /* ... and break all links. */
9445                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9446                                     base.head) {
9447                         if (connector->encoder->base.crtc != &crtc->base)
9448                                 continue;
9449
9450                         intel_connector_break_all_links(connector);
9451                 }
9452
9453                 WARN_ON(crtc->active);
9454                 crtc->base.enabled = false;
9455         }
9456
9457         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9458             crtc->pipe == PIPE_A && !crtc->active) {
9459                 /* BIOS forgot to enable pipe A, this mostly happens after
9460                  * resume. Force-enable the pipe to fix this, the update_dpms
9461                  * call below we restore the pipe to the right state, but leave
9462                  * the required bits on. */
9463                 intel_enable_pipe_a(dev);
9464         }
9465
9466         /* Adjust the state of the output pipe according to whether we
9467          * have active connectors/encoders. */
9468         intel_crtc_update_dpms(&crtc->base);
9469
9470         if (crtc->active != crtc->base.enabled) {
9471                 struct intel_encoder *encoder;
9472
9473                 /* This can happen either due to bugs in the get_hw_state
9474                  * functions or because the pipe is force-enabled due to the
9475                  * pipe A quirk. */
9476                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9477                               crtc->base.base.id,
9478                               crtc->base.enabled ? "enabled" : "disabled",
9479                               crtc->active ? "enabled" : "disabled");
9480
9481                 crtc->base.enabled = crtc->active;
9482
9483                 /* Because we only establish the connector -> encoder ->
9484                  * crtc links if something is active, this means the
9485                  * crtc is now deactivated. Break the links. connector
9486                  * -> encoder links are only establish when things are
9487                  *  actually up, hence no need to break them. */
9488                 WARN_ON(crtc->active);
9489
9490                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9491                         WARN_ON(encoder->connectors_active);
9492                         encoder->base.crtc = NULL;
9493                 }
9494         }
9495 }
9496
9497 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9498 {
9499         struct intel_connector *connector;
9500         struct drm_device *dev = encoder->base.dev;
9501
9502         /* We need to check both for a crtc link (meaning that the
9503          * encoder is active and trying to read from a pipe) and the
9504          * pipe itself being active. */
9505         bool has_active_crtc = encoder->base.crtc &&
9506                 to_intel_crtc(encoder->base.crtc)->active;
9507
9508         if (encoder->connectors_active && !has_active_crtc) {
9509                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9510                               encoder->base.base.id,
9511                               drm_get_encoder_name(&encoder->base));
9512
9513                 /* Connector is active, but has no active pipe. This is
9514                  * fallout from our resume register restoring. Disable
9515                  * the encoder manually again. */
9516                 if (encoder->base.crtc) {
9517                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9518                                       encoder->base.base.id,
9519                                       drm_get_encoder_name(&encoder->base));
9520                         encoder->disable(encoder);
9521                 }
9522
9523                 /* Inconsistent output/port/pipe state happens presumably due to
9524                  * a bug in one of the get_hw_state functions. Or someplace else
9525                  * in our code, like the register restore mess on resume. Clamp
9526                  * things to off as a safer default. */
9527                 list_for_each_entry(connector,
9528                                     &dev->mode_config.connector_list,
9529                                     base.head) {
9530                         if (connector->encoder != encoder)
9531                                 continue;
9532
9533                         intel_connector_break_all_links(connector);
9534                 }
9535         }
9536         /* Enabled encoders without active connectors will be fixed in
9537          * the crtc fixup. */
9538 }
9539
9540 void i915_redisable_vga(struct drm_device *dev)
9541 {
9542         struct drm_i915_private *dev_priv = dev->dev_private;
9543         u32 vga_reg = i915_vgacntrl_reg(dev);
9544
9545         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9546                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9547                 i915_disable_vga(dev);
9548         }
9549 }
9550
9551 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9552  * and i915 state tracking structures. */
9553 void intel_modeset_setup_hw_state(struct drm_device *dev,
9554                                   bool force_restore)
9555 {
9556         struct drm_i915_private *dev_priv = dev->dev_private;
9557         enum pipe pipe;
9558         struct drm_plane *plane;
9559         struct intel_crtc *crtc;
9560         struct intel_encoder *encoder;
9561         struct intel_connector *connector;
9562
9563         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9564                             base.head) {
9565                 memset(&crtc->config, 0, sizeof(crtc->config));
9566
9567                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9568                                                                  &crtc->config);
9569
9570                 crtc->base.enabled = crtc->active;
9571
9572                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9573                               crtc->base.base.id,
9574                               crtc->active ? "enabled" : "disabled");
9575         }
9576
9577         if (HAS_DDI(dev))
9578                 intel_ddi_setup_hw_pll_state(dev);
9579
9580         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9581                             base.head) {
9582                 pipe = 0;
9583
9584                 if (encoder->get_hw_state(encoder, &pipe)) {
9585                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9586                         encoder->base.crtc = &crtc->base;
9587                         if (encoder->get_config)
9588                                 encoder->get_config(encoder, &crtc->config);
9589                 } else {
9590                         encoder->base.crtc = NULL;
9591                 }
9592
9593                 encoder->connectors_active = false;
9594                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9595                               encoder->base.base.id,
9596                               drm_get_encoder_name(&encoder->base),
9597                               encoder->base.crtc ? "enabled" : "disabled",
9598                               pipe);
9599         }
9600
9601         list_for_each_entry(connector, &dev->mode_config.connector_list,
9602                             base.head) {
9603                 if (connector->get_hw_state(connector)) {
9604                         connector->base.dpms = DRM_MODE_DPMS_ON;
9605                         connector->encoder->connectors_active = true;
9606                         connector->base.encoder = &connector->encoder->base;
9607                 } else {
9608                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9609                         connector->base.encoder = NULL;
9610                 }
9611                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9612                               connector->base.base.id,
9613                               drm_get_connector_name(&connector->base),
9614                               connector->base.encoder ? "enabled" : "disabled");
9615         }
9616
9617         /* HW state is read out, now we need to sanitize this mess. */
9618         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9619                             base.head) {
9620                 intel_sanitize_encoder(encoder);
9621         }
9622
9623         for_each_pipe(pipe) {
9624                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9625                 intel_sanitize_crtc(crtc);
9626                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9627         }
9628
9629         if (force_restore) {
9630                 /*
9631                  * We need to use raw interfaces for restoring state to avoid
9632                  * checking (bogus) intermediate states.
9633                  */
9634                 for_each_pipe(pipe) {
9635                         struct drm_crtc *crtc =
9636                                 dev_priv->pipe_to_crtc_mapping[pipe];
9637
9638                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9639                                          crtc->fb);
9640                 }
9641                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9642                         intel_plane_restore(plane);
9643
9644                 i915_redisable_vga(dev);
9645         } else {
9646                 intel_modeset_update_staged_output_state(dev);
9647         }
9648
9649         intel_modeset_check_state(dev);
9650
9651         drm_mode_config_reset(dev);
9652 }
9653
9654 void intel_modeset_gem_init(struct drm_device *dev)
9655 {
9656         intel_modeset_init_hw(dev);
9657
9658         intel_setup_overlay(dev);
9659
9660         intel_modeset_setup_hw_state(dev, false);
9661 }
9662
9663 void intel_modeset_cleanup(struct drm_device *dev)
9664 {
9665         struct drm_i915_private *dev_priv = dev->dev_private;
9666         struct drm_crtc *crtc;
9667         struct intel_crtc *intel_crtc;
9668
9669         /*
9670          * Interrupts and polling as the first thing to avoid creating havoc.
9671          * Too much stuff here (turning of rps, connectors, ...) would
9672          * experience fancy races otherwise.
9673          */
9674         drm_irq_uninstall(dev);
9675         cancel_work_sync(&dev_priv->hotplug_work);
9676         /*
9677          * Due to the hpd irq storm handling the hotplug work can re-arm the
9678          * poll handlers. Hence disable polling after hpd handling is shut down.
9679          */
9680         drm_kms_helper_poll_fini(dev);
9681
9682         mutex_lock(&dev->struct_mutex);
9683
9684         intel_unregister_dsm_handler();
9685
9686         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9687                 /* Skip inactive CRTCs */
9688                 if (!crtc->fb)
9689                         continue;
9690
9691                 intel_crtc = to_intel_crtc(crtc);
9692                 intel_increase_pllclock(crtc);
9693         }
9694
9695         intel_disable_fbc(dev);
9696
9697         intel_disable_gt_powersave(dev);
9698
9699         ironlake_teardown_rc6(dev);
9700
9701         mutex_unlock(&dev->struct_mutex);
9702
9703         /* flush any delayed tasks or pending work */
9704         flush_scheduled_work();
9705
9706         /* destroy backlight, if any, before the connectors */
9707         intel_panel_destroy_backlight(dev);
9708
9709         drm_mode_config_cleanup(dev);
9710
9711         intel_cleanup_overlay(dev);
9712 }
9713
9714 /*
9715  * Return which encoder is currently attached for connector.
9716  */
9717 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9718 {
9719         return &intel_attached_encoder(connector)->base;
9720 }
9721
9722 void intel_connector_attach_encoder(struct intel_connector *connector,
9723                                     struct intel_encoder *encoder)
9724 {
9725         connector->encoder = encoder;
9726         drm_mode_connector_attach_encoder(&connector->base,
9727                                           &encoder->base);
9728 }
9729
9730 /*
9731  * set vga decode state - true == enable VGA decode
9732  */
9733 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9734 {
9735         struct drm_i915_private *dev_priv = dev->dev_private;
9736         u16 gmch_ctrl;
9737
9738         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9739         if (state)
9740                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9741         else
9742                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9743         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9744         return 0;
9745 }
9746
9747 #ifdef CONFIG_DEBUG_FS
9748 #include <linux/seq_file.h>
9749
9750 struct intel_display_error_state {
9751
9752         u32 power_well_driver;
9753
9754         struct intel_cursor_error_state {
9755                 u32 control;
9756                 u32 position;
9757                 u32 base;
9758                 u32 size;
9759         } cursor[I915_MAX_PIPES];
9760
9761         struct intel_pipe_error_state {
9762                 enum transcoder cpu_transcoder;
9763                 u32 conf;
9764                 u32 source;
9765
9766                 u32 htotal;
9767                 u32 hblank;
9768                 u32 hsync;
9769                 u32 vtotal;
9770                 u32 vblank;
9771                 u32 vsync;
9772         } pipe[I915_MAX_PIPES];
9773
9774         struct intel_plane_error_state {
9775                 u32 control;
9776                 u32 stride;
9777                 u32 size;
9778                 u32 pos;
9779                 u32 addr;
9780                 u32 surface;
9781                 u32 tile_offset;
9782         } plane[I915_MAX_PIPES];
9783 };
9784
9785 struct intel_display_error_state *
9786 intel_display_capture_error_state(struct drm_device *dev)
9787 {
9788         drm_i915_private_t *dev_priv = dev->dev_private;
9789         struct intel_display_error_state *error;
9790         enum transcoder cpu_transcoder;
9791         int i;
9792
9793         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9794         if (error == NULL)
9795                 return NULL;
9796
9797         if (HAS_POWER_WELL(dev))
9798                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
9799
9800         for_each_pipe(i) {
9801                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9802                 error->pipe[i].cpu_transcoder = cpu_transcoder;
9803
9804                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9805                         error->cursor[i].control = I915_READ(CURCNTR(i));
9806                         error->cursor[i].position = I915_READ(CURPOS(i));
9807                         error->cursor[i].base = I915_READ(CURBASE(i));
9808                 } else {
9809                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9810                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9811                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9812                 }
9813
9814                 error->plane[i].control = I915_READ(DSPCNTR(i));
9815                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9816                 if (INTEL_INFO(dev)->gen <= 3) {
9817                         error->plane[i].size = I915_READ(DSPSIZE(i));
9818                         error->plane[i].pos = I915_READ(DSPPOS(i));
9819                 }
9820                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9821                         error->plane[i].addr = I915_READ(DSPADDR(i));
9822                 if (INTEL_INFO(dev)->gen >= 4) {
9823                         error->plane[i].surface = I915_READ(DSPSURF(i));
9824                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9825                 }
9826
9827                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9828                 error->pipe[i].source = I915_READ(PIPESRC(i));
9829                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9830                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9831                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9832                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9833                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9834                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9835         }
9836
9837         /* In the code above we read the registers without checking if the power
9838          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
9839          * prevent the next I915_WRITE from detecting it and printing an error
9840          * message. */
9841         if (HAS_POWER_WELL(dev))
9842                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
9843
9844         return error;
9845 }
9846
9847 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
9848
9849 void
9850 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
9851                                 struct drm_device *dev,
9852                                 struct intel_display_error_state *error)
9853 {
9854         int i;
9855
9856         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9857         if (HAS_POWER_WELL(dev))
9858                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
9859                            error->power_well_driver);
9860         for_each_pipe(i) {
9861                 err_printf(m, "Pipe [%d]:\n", i);
9862                 err_printf(m, "  CPU transcoder: %c\n",
9863                            transcoder_name(error->pipe[i].cpu_transcoder));
9864                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9865                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9866                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9867                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9868                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9869                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9870                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9871                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9872
9873                 err_printf(m, "Plane [%d]:\n", i);
9874                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9875                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9876                 if (INTEL_INFO(dev)->gen <= 3) {
9877                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9878                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
9879                 }
9880                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9881                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9882                 if (INTEL_INFO(dev)->gen >= 4) {
9883                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9884                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9885                 }
9886
9887                 err_printf(m, "Cursor [%d]:\n", i);
9888                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9889                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
9890                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9891         }
9892 }
9893 #endif