]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: simplify intel_crtc_driving_pch
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
941 {
942         struct drm_i915_private *dev_priv = dev->dev_private;
943         u32 frame, frame_reg = PIPEFRAME(pipe);
944
945         frame = I915_READ(frame_reg);
946
947         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
948                 DRM_DEBUG_KMS("vblank wait timed out\n");
949 }
950
951 /**
952  * intel_wait_for_vblank - wait for vblank on a given pipe
953  * @dev: drm device
954  * @pipe: pipe to wait for
955  *
956  * Wait for vblank to occur on a given pipe.  Needed for various bits of
957  * mode setting code.
958  */
959 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
960 {
961         struct drm_i915_private *dev_priv = dev->dev_private;
962         int pipestat_reg = PIPESTAT(pipe);
963
964         if (INTEL_INFO(dev)->gen >= 5) {
965                 ironlake_wait_for_vblank(dev, pipe);
966                 return;
967         }
968
969         /* Clear existing vblank status. Note this will clear any other
970          * sticky status fields as well.
971          *
972          * This races with i915_driver_irq_handler() with the result
973          * that either function could miss a vblank event.  Here it is not
974          * fatal, as we will either wait upon the next vblank interrupt or
975          * timeout.  Generally speaking intel_wait_for_vblank() is only
976          * called during modeset at which time the GPU should be idle and
977          * should *not* be performing page flips and thus not waiting on
978          * vblanks...
979          * Currently, the result of us stealing a vblank from the irq
980          * handler is that a single frame will be skipped during swapbuffers.
981          */
982         I915_WRITE(pipestat_reg,
983                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
984
985         /* Wait for vblank interrupt bit to set */
986         if (wait_for(I915_READ(pipestat_reg) &
987                      PIPE_VBLANK_INTERRUPT_STATUS,
988                      50))
989                 DRM_DEBUG_KMS("vblank wait timed out\n");
990 }
991
992 /*
993  * intel_wait_for_pipe_off - wait for pipe to turn off
994  * @dev: drm device
995  * @pipe: pipe to wait for
996  *
997  * After disabling a pipe, we can't wait for vblank in the usual way,
998  * spinning on the vblank interrupt status bit, since we won't actually
999  * see an interrupt when the pipe is disabled.
1000  *
1001  * On Gen4 and above:
1002  *   wait for the pipe register state bit to turn off
1003  *
1004  * Otherwise:
1005  *   wait for the display line value to settle (it usually
1006  *   ends up stopping at the start of the next frame).
1007  *
1008  */
1009 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1010 {
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012
1013         if (INTEL_INFO(dev)->gen >= 4) {
1014                 int reg = PIPECONF(pipe);
1015
1016                 /* Wait for the Pipe State to go off */
1017                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1018                              100))
1019                         WARN(1, "pipe_off wait timed out\n");
1020         } else {
1021                 u32 last_line, line_mask;
1022                 int reg = PIPEDSL(pipe);
1023                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1024
1025                 if (IS_GEN2(dev))
1026                         line_mask = DSL_LINEMASK_GEN2;
1027                 else
1028                         line_mask = DSL_LINEMASK_GEN3;
1029
1030                 /* Wait for the display line to settle */
1031                 do {
1032                         last_line = I915_READ(reg) & line_mask;
1033                         mdelay(5);
1034                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1035                          time_after(timeout, jiffies));
1036                 if (time_after(jiffies, timeout))
1037                         WARN(1, "pipe_off wait timed out\n");
1038         }
1039 }
1040
1041 static const char *state_string(bool enabled)
1042 {
1043         return enabled ? "on" : "off";
1044 }
1045
1046 /* Only for pre-ILK configs */
1047 static void assert_pll(struct drm_i915_private *dev_priv,
1048                        enum pipe pipe, bool state)
1049 {
1050         int reg;
1051         u32 val;
1052         bool cur_state;
1053
1054         reg = DPLL(pipe);
1055         val = I915_READ(reg);
1056         cur_state = !!(val & DPLL_VCO_ENABLE);
1057         WARN(cur_state != state,
1058              "PLL state assertion failure (expected %s, current %s)\n",
1059              state_string(state), state_string(cur_state));
1060 }
1061 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1062 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1063
1064 /* For ILK+ */
1065 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1066                            struct intel_pch_pll *pll,
1067                            struct intel_crtc *crtc,
1068                            bool state)
1069 {
1070         u32 val;
1071         bool cur_state;
1072
1073         if (HAS_PCH_LPT(dev_priv->dev)) {
1074                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1075                 return;
1076         }
1077
1078         if (WARN (!pll,
1079                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1080                 return;
1081
1082         val = I915_READ(pll->pll_reg);
1083         cur_state = !!(val & DPLL_VCO_ENABLE);
1084         WARN(cur_state != state,
1085              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1086              pll->pll_reg, state_string(state), state_string(cur_state), val);
1087
1088         /* Make sure the selected PLL is correctly attached to the transcoder */
1089         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1090                 u32 pch_dpll;
1091
1092                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1093                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1094                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1095                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1096                           cur_state, crtc->pipe, pch_dpll)) {
1097                         cur_state = !!(val >> (4*crtc->pipe + 3));
1098                         WARN(cur_state != state,
1099                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1100                              pll->pll_reg == _PCH_DPLL_B,
1101                              state_string(state),
1102                              crtc->pipe,
1103                              val);
1104                 }
1105         }
1106 }
1107 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1108 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1109
1110 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1111                           enum pipe pipe, bool state)
1112 {
1113         int reg;
1114         u32 val;
1115         bool cur_state;
1116
1117         if (IS_HASWELL(dev_priv->dev)) {
1118                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1119                 reg = DDI_FUNC_CTL(pipe);
1120                 val = I915_READ(reg);
1121                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1122         } else {
1123                 reg = FDI_TX_CTL(pipe);
1124                 val = I915_READ(reg);
1125                 cur_state = !!(val & FDI_TX_ENABLE);
1126         }
1127         WARN(cur_state != state,
1128              "FDI TX state assertion failure (expected %s, current %s)\n",
1129              state_string(state), state_string(cur_state));
1130 }
1131 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1132 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1133
1134 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1135                           enum pipe pipe, bool state)
1136 {
1137         int reg;
1138         u32 val;
1139         bool cur_state;
1140
1141         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1142                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1143                         return;
1144         } else {
1145                 reg = FDI_RX_CTL(pipe);
1146                 val = I915_READ(reg);
1147                 cur_state = !!(val & FDI_RX_ENABLE);
1148         }
1149         WARN(cur_state != state,
1150              "FDI RX state assertion failure (expected %s, current %s)\n",
1151              state_string(state), state_string(cur_state));
1152 }
1153 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1154 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1155
1156 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1157                                       enum pipe pipe)
1158 {
1159         int reg;
1160         u32 val;
1161
1162         /* ILK FDI PLL is always enabled */
1163         if (dev_priv->info->gen == 5)
1164                 return;
1165
1166         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1167         if (IS_HASWELL(dev_priv->dev))
1168                 return;
1169
1170         reg = FDI_TX_CTL(pipe);
1171         val = I915_READ(reg);
1172         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1173 }
1174
1175 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1176                                       enum pipe pipe)
1177 {
1178         int reg;
1179         u32 val;
1180
1181         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1182                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1183                 return;
1184         }
1185         reg = FDI_RX_CTL(pipe);
1186         val = I915_READ(reg);
1187         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1188 }
1189
1190 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191                                   enum pipe pipe)
1192 {
1193         int pp_reg, lvds_reg;
1194         u32 val;
1195         enum pipe panel_pipe = PIPE_A;
1196         bool locked = true;
1197
1198         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1199                 pp_reg = PCH_PP_CONTROL;
1200                 lvds_reg = PCH_LVDS;
1201         } else {
1202                 pp_reg = PP_CONTROL;
1203                 lvds_reg = LVDS;
1204         }
1205
1206         val = I915_READ(pp_reg);
1207         if (!(val & PANEL_POWER_ON) ||
1208             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1209                 locked = false;
1210
1211         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1212                 panel_pipe = PIPE_B;
1213
1214         WARN(panel_pipe == pipe && locked,
1215              "panel assertion failure, pipe %c regs locked\n",
1216              pipe_name(pipe));
1217 }
1218
1219 void assert_pipe(struct drm_i915_private *dev_priv,
1220                  enum pipe pipe, bool state)
1221 {
1222         int reg;
1223         u32 val;
1224         bool cur_state;
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         reg = PIPECONF(pipe);
1231         val = I915_READ(reg);
1232         cur_state = !!(val & PIPECONF_ENABLE);
1233         WARN(cur_state != state,
1234              "pipe %c assertion failure (expected %s, current %s)\n",
1235              pipe_name(pipe), state_string(state), state_string(cur_state));
1236 }
1237
1238 static void assert_plane(struct drm_i915_private *dev_priv,
1239                          enum plane plane, bool state)
1240 {
1241         int reg;
1242         u32 val;
1243         bool cur_state;
1244
1245         reg = DSPCNTR(plane);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1248         WARN(cur_state != state,
1249              "plane %c assertion failure (expected %s, current %s)\n",
1250              plane_name(plane), state_string(state), state_string(cur_state));
1251 }
1252
1253 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1254 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1255
1256 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1257                                    enum pipe pipe)
1258 {
1259         int reg, i;
1260         u32 val;
1261         int cur_pipe;
1262
1263         /* Planes are fixed to pipes on ILK+ */
1264         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1265                 reg = DSPCNTR(pipe);
1266                 val = I915_READ(reg);
1267                 WARN((val & DISPLAY_PLANE_ENABLE),
1268                      "plane %c assertion failure, should be disabled but not\n",
1269                      plane_name(pipe));
1270                 return;
1271         }
1272
1273         /* Need to check both planes against the pipe */
1274         for (i = 0; i < 2; i++) {
1275                 reg = DSPCNTR(i);
1276                 val = I915_READ(reg);
1277                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1278                         DISPPLANE_SEL_PIPE_SHIFT;
1279                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1280                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1281                      plane_name(i), pipe_name(pipe));
1282         }
1283 }
1284
1285 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1286 {
1287         u32 val;
1288         bool enabled;
1289
1290         if (HAS_PCH_LPT(dev_priv->dev)) {
1291                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1292                 return;
1293         }
1294
1295         val = I915_READ(PCH_DREF_CONTROL);
1296         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1297                             DREF_SUPERSPREAD_SOURCE_MASK));
1298         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1299 }
1300
1301 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1302                                        enum pipe pipe)
1303 {
1304         int reg;
1305         u32 val;
1306         bool enabled;
1307
1308         reg = TRANSCONF(pipe);
1309         val = I915_READ(reg);
1310         enabled = !!(val & TRANS_ENABLE);
1311         WARN(enabled,
1312              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1313              pipe_name(pipe));
1314 }
1315
1316 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1317                             enum pipe pipe, u32 port_sel, u32 val)
1318 {
1319         if ((val & DP_PORT_EN) == 0)
1320                 return false;
1321
1322         if (HAS_PCH_CPT(dev_priv->dev)) {
1323                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1324                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1325                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1326                         return false;
1327         } else {
1328                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1329                         return false;
1330         }
1331         return true;
1332 }
1333
1334 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1335                               enum pipe pipe, u32 val)
1336 {
1337         if ((val & PORT_ENABLE) == 0)
1338                 return false;
1339
1340         if (HAS_PCH_CPT(dev_priv->dev)) {
1341                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1342                         return false;
1343         } else {
1344                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1351                               enum pipe pipe, u32 val)
1352 {
1353         if ((val & LVDS_PORT_EN) == 0)
1354                 return false;
1355
1356         if (HAS_PCH_CPT(dev_priv->dev)) {
1357                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1358                         return false;
1359         } else {
1360                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1361                         return false;
1362         }
1363         return true;
1364 }
1365
1366 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1367                               enum pipe pipe, u32 val)
1368 {
1369         if ((val & ADPA_DAC_ENABLE) == 0)
1370                 return false;
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1382                                    enum pipe pipe, int reg, u32 port_sel)
1383 {
1384         u32 val = I915_READ(reg);
1385         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1386              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1387              reg, pipe_name(pipe));
1388
1389         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1390              && (val & DP_PIPEB_SELECT),
1391              "IBX PCH dp port still using transcoder B\n");
1392 }
1393
1394 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1395                                      enum pipe pipe, int reg)
1396 {
1397         u32 val = I915_READ(reg);
1398         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1399              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1400              reg, pipe_name(pipe));
1401
1402         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1403              && (val & SDVO_PIPE_B_SELECT),
1404              "IBX PCH hdmi port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1408                                       enum pipe pipe)
1409 {
1410         int reg;
1411         u32 val;
1412
1413         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1414         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1415         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1416
1417         reg = PCH_ADPA;
1418         val = I915_READ(reg);
1419         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1420              "PCH VGA enabled on transcoder %c, should be disabled\n",
1421              pipe_name(pipe));
1422
1423         reg = PCH_LVDS;
1424         val = I915_READ(reg);
1425         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1426              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1427              pipe_name(pipe));
1428
1429         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1430         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1431         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1432 }
1433
1434 /**
1435  * intel_enable_pll - enable a PLL
1436  * @dev_priv: i915 private structure
1437  * @pipe: pipe PLL to enable
1438  *
1439  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1440  * make sure the PLL reg is writable first though, since the panel write
1441  * protect mechanism may be enabled.
1442  *
1443  * Note!  This is for pre-ILK only.
1444  *
1445  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1446  */
1447 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1448 {
1449         int reg;
1450         u32 val;
1451
1452         /* No really, not for ILK+ */
1453         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1454
1455         /* PLL is protected by panel, make sure we can write it */
1456         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1457                 assert_panel_unlocked(dev_priv, pipe);
1458
1459         reg = DPLL(pipe);
1460         val = I915_READ(reg);
1461         val |= DPLL_VCO_ENABLE;
1462
1463         /* We do this three times for luck */
1464         I915_WRITE(reg, val);
1465         POSTING_READ(reg);
1466         udelay(150); /* wait for warmup */
1467         I915_WRITE(reg, val);
1468         POSTING_READ(reg);
1469         udelay(150); /* wait for warmup */
1470         I915_WRITE(reg, val);
1471         POSTING_READ(reg);
1472         udelay(150); /* wait for warmup */
1473 }
1474
1475 /**
1476  * intel_disable_pll - disable a PLL
1477  * @dev_priv: i915 private structure
1478  * @pipe: pipe PLL to disable
1479  *
1480  * Disable the PLL for @pipe, making sure the pipe is off first.
1481  *
1482  * Note!  This is for pre-ILK only.
1483  */
1484 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1485 {
1486         int reg;
1487         u32 val;
1488
1489         /* Don't disable pipe A or pipe A PLLs if needed */
1490         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1491                 return;
1492
1493         /* Make sure the pipe isn't still relying on us */
1494         assert_pipe_disabled(dev_priv, pipe);
1495
1496         reg = DPLL(pipe);
1497         val = I915_READ(reg);
1498         val &= ~DPLL_VCO_ENABLE;
1499         I915_WRITE(reg, val);
1500         POSTING_READ(reg);
1501 }
1502
1503 /* SBI access */
1504 static void
1505 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1506 {
1507         unsigned long flags;
1508
1509         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1510         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1511                                 100)) {
1512                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1513                 goto out_unlock;
1514         }
1515
1516         I915_WRITE(SBI_ADDR,
1517                         (reg << 16));
1518         I915_WRITE(SBI_DATA,
1519                         value);
1520         I915_WRITE(SBI_CTL_STAT,
1521                         SBI_BUSY |
1522                         SBI_CTL_OP_CRWR);
1523
1524         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1525                                 100)) {
1526                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1527                 goto out_unlock;
1528         }
1529
1530 out_unlock:
1531         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1532 }
1533
1534 static u32
1535 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1536 {
1537         unsigned long flags;
1538         u32 value = 0;
1539
1540         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1541         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1542                                 100)) {
1543                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1544                 goto out_unlock;
1545         }
1546
1547         I915_WRITE(SBI_ADDR,
1548                         (reg << 16));
1549         I915_WRITE(SBI_CTL_STAT,
1550                         SBI_BUSY |
1551                         SBI_CTL_OP_CRRD);
1552
1553         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1554                                 100)) {
1555                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1556                 goto out_unlock;
1557         }
1558
1559         value = I915_READ(SBI_DATA);
1560
1561 out_unlock:
1562         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1563         return value;
1564 }
1565
1566 /**
1567  * intel_enable_pch_pll - enable PCH PLL
1568  * @dev_priv: i915 private structure
1569  * @pipe: pipe PLL to enable
1570  *
1571  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1572  * drives the transcoder clock.
1573  */
1574 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1575 {
1576         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1577         struct intel_pch_pll *pll;
1578         int reg;
1579         u32 val;
1580
1581         /* PCH PLLs only available on ILK, SNB and IVB */
1582         BUG_ON(dev_priv->info->gen < 5);
1583         pll = intel_crtc->pch_pll;
1584         if (pll == NULL)
1585                 return;
1586
1587         if (WARN_ON(pll->refcount == 0))
1588                 return;
1589
1590         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1591                       pll->pll_reg, pll->active, pll->on,
1592                       intel_crtc->base.base.id);
1593
1594         /* PCH refclock must be enabled first */
1595         assert_pch_refclk_enabled(dev_priv);
1596
1597         if (pll->active++ && pll->on) {
1598                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1599                 return;
1600         }
1601
1602         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1603
1604         reg = pll->pll_reg;
1605         val = I915_READ(reg);
1606         val |= DPLL_VCO_ENABLE;
1607         I915_WRITE(reg, val);
1608         POSTING_READ(reg);
1609         udelay(200);
1610
1611         pll->on = true;
1612 }
1613
1614 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1615 {
1616         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1617         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1618         int reg;
1619         u32 val;
1620
1621         /* PCH only available on ILK+ */
1622         BUG_ON(dev_priv->info->gen < 5);
1623         if (pll == NULL)
1624                return;
1625
1626         if (WARN_ON(pll->refcount == 0))
1627                 return;
1628
1629         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1630                       pll->pll_reg, pll->active, pll->on,
1631                       intel_crtc->base.base.id);
1632
1633         if (WARN_ON(pll->active == 0)) {
1634                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1635                 return;
1636         }
1637
1638         if (--pll->active) {
1639                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1640                 return;
1641         }
1642
1643         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1644
1645         /* Make sure transcoder isn't still depending on us */
1646         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1647
1648         reg = pll->pll_reg;
1649         val = I915_READ(reg);
1650         val &= ~DPLL_VCO_ENABLE;
1651         I915_WRITE(reg, val);
1652         POSTING_READ(reg);
1653         udelay(200);
1654
1655         pll->on = false;
1656 }
1657
1658 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1659                                     enum pipe pipe)
1660 {
1661         int reg;
1662         u32 val, pipeconf_val;
1663         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1664
1665         /* PCH only available on ILK+ */
1666         BUG_ON(dev_priv->info->gen < 5);
1667
1668         /* Make sure PCH DPLL is enabled */
1669         assert_pch_pll_enabled(dev_priv,
1670                                to_intel_crtc(crtc)->pch_pll,
1671                                to_intel_crtc(crtc));
1672
1673         /* FDI must be feeding us bits for PCH ports */
1674         assert_fdi_tx_enabled(dev_priv, pipe);
1675         assert_fdi_rx_enabled(dev_priv, pipe);
1676
1677         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1678                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1679                 return;
1680         }
1681         reg = TRANSCONF(pipe);
1682         val = I915_READ(reg);
1683         pipeconf_val = I915_READ(PIPECONF(pipe));
1684
1685         if (HAS_PCH_IBX(dev_priv->dev)) {
1686                 /*
1687                  * make the BPC in transcoder be consistent with
1688                  * that in pipeconf reg.
1689                  */
1690                 val &= ~PIPE_BPC_MASK;
1691                 val |= pipeconf_val & PIPE_BPC_MASK;
1692         }
1693
1694         val &= ~TRANS_INTERLACE_MASK;
1695         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1696                 if (HAS_PCH_IBX(dev_priv->dev) &&
1697                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1698                         val |= TRANS_LEGACY_INTERLACED_ILK;
1699                 else
1700                         val |= TRANS_INTERLACED;
1701         else
1702                 val |= TRANS_PROGRESSIVE;
1703
1704         I915_WRITE(reg, val | TRANS_ENABLE);
1705         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1706                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1707 }
1708
1709 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1710                                      enum pipe pipe)
1711 {
1712         int reg;
1713         u32 val;
1714
1715         /* FDI relies on the transcoder */
1716         assert_fdi_tx_disabled(dev_priv, pipe);
1717         assert_fdi_rx_disabled(dev_priv, pipe);
1718
1719         /* Ports must be off as well */
1720         assert_pch_ports_disabled(dev_priv, pipe);
1721
1722         reg = TRANSCONF(pipe);
1723         val = I915_READ(reg);
1724         val &= ~TRANS_ENABLE;
1725         I915_WRITE(reg, val);
1726         /* wait for PCH transcoder off, transcoder state */
1727         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1728                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1729 }
1730
1731 /**
1732  * intel_enable_pipe - enable a pipe, asserting requirements
1733  * @dev_priv: i915 private structure
1734  * @pipe: pipe to enable
1735  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1736  *
1737  * Enable @pipe, making sure that various hardware specific requirements
1738  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1739  *
1740  * @pipe should be %PIPE_A or %PIPE_B.
1741  *
1742  * Will wait until the pipe is actually running (i.e. first vblank) before
1743  * returning.
1744  */
1745 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1746                               bool pch_port)
1747 {
1748         int reg;
1749         u32 val;
1750
1751         /*
1752          * A pipe without a PLL won't actually be able to drive bits from
1753          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1754          * need the check.
1755          */
1756         if (!HAS_PCH_SPLIT(dev_priv->dev))
1757                 assert_pll_enabled(dev_priv, pipe);
1758         else {
1759                 if (pch_port) {
1760                         /* if driving the PCH, we need FDI enabled */
1761                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1762                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1763                 }
1764                 /* FIXME: assert CPU port conditions for SNB+ */
1765         }
1766
1767         reg = PIPECONF(pipe);
1768         val = I915_READ(reg);
1769         if (val & PIPECONF_ENABLE)
1770                 return;
1771
1772         I915_WRITE(reg, val | PIPECONF_ENABLE);
1773         intel_wait_for_vblank(dev_priv->dev, pipe);
1774 }
1775
1776 /**
1777  * intel_disable_pipe - disable a pipe, asserting requirements
1778  * @dev_priv: i915 private structure
1779  * @pipe: pipe to disable
1780  *
1781  * Disable @pipe, making sure that various hardware specific requirements
1782  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1783  *
1784  * @pipe should be %PIPE_A or %PIPE_B.
1785  *
1786  * Will wait until the pipe has shut down before returning.
1787  */
1788 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1789                                enum pipe pipe)
1790 {
1791         int reg;
1792         u32 val;
1793
1794         /*
1795          * Make sure planes won't keep trying to pump pixels to us,
1796          * or we might hang the display.
1797          */
1798         assert_planes_disabled(dev_priv, pipe);
1799
1800         /* Don't disable pipe A or pipe A PLLs if needed */
1801         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1802                 return;
1803
1804         reg = PIPECONF(pipe);
1805         val = I915_READ(reg);
1806         if ((val & PIPECONF_ENABLE) == 0)
1807                 return;
1808
1809         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1810         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1811 }
1812
1813 /*
1814  * Plane regs are double buffered, going from enabled->disabled needs a
1815  * trigger in order to latch.  The display address reg provides this.
1816  */
1817 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1818                                       enum plane plane)
1819 {
1820         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1821         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1822 }
1823
1824 /**
1825  * intel_enable_plane - enable a display plane on a given pipe
1826  * @dev_priv: i915 private structure
1827  * @plane: plane to enable
1828  * @pipe: pipe being fed
1829  *
1830  * Enable @plane on @pipe, making sure that @pipe is running first.
1831  */
1832 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833                                enum plane plane, enum pipe pipe)
1834 {
1835         int reg;
1836         u32 val;
1837
1838         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839         assert_pipe_enabled(dev_priv, pipe);
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if (val & DISPLAY_PLANE_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 /**
1852  * intel_disable_plane - disable a display plane
1853  * @dev_priv: i915 private structure
1854  * @plane: plane to disable
1855  * @pipe: pipe consuming the data
1856  *
1857  * Disable @plane; should be an independent operation.
1858  */
1859 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860                                 enum plane plane, enum pipe pipe)
1861 {
1862         int reg;
1863         u32 val;
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868                 return;
1869
1870         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 int
1876 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1877                            struct drm_i915_gem_object *obj,
1878                            struct intel_ring_buffer *pipelined)
1879 {
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         u32 alignment;
1882         int ret;
1883
1884         switch (obj->tiling_mode) {
1885         case I915_TILING_NONE:
1886                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1887                         alignment = 128 * 1024;
1888                 else if (INTEL_INFO(dev)->gen >= 4)
1889                         alignment = 4 * 1024;
1890                 else
1891                         alignment = 64 * 1024;
1892                 break;
1893         case I915_TILING_X:
1894                 /* pin() will align the object as required by fence */
1895                 alignment = 0;
1896                 break;
1897         case I915_TILING_Y:
1898                 /* FIXME: Is this true? */
1899                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1900                 return -EINVAL;
1901         default:
1902                 BUG();
1903         }
1904
1905         dev_priv->mm.interruptible = false;
1906         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1907         if (ret)
1908                 goto err_interruptible;
1909
1910         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1911          * fence, whereas 965+ only requires a fence if using
1912          * framebuffer compression.  For simplicity, we always install
1913          * a fence as the cost is not that onerous.
1914          */
1915         ret = i915_gem_object_get_fence(obj);
1916         if (ret)
1917                 goto err_unpin;
1918
1919         i915_gem_object_pin_fence(obj);
1920
1921         dev_priv->mm.interruptible = true;
1922         return 0;
1923
1924 err_unpin:
1925         i915_gem_object_unpin(obj);
1926 err_interruptible:
1927         dev_priv->mm.interruptible = true;
1928         return ret;
1929 }
1930
1931 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1932 {
1933         i915_gem_object_unpin_fence(obj);
1934         i915_gem_object_unpin(obj);
1935 }
1936
1937 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1938  * is assumed to be a power-of-two. */
1939 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1940                                                         unsigned int bpp,
1941                                                         unsigned int pitch)
1942 {
1943         int tile_rows, tiles;
1944
1945         tile_rows = *y / 8;
1946         *y %= 8;
1947         tiles = *x / (512/bpp);
1948         *x %= 512/bpp;
1949
1950         return tile_rows * pitch * 8 + tiles * 4096;
1951 }
1952
1953 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1954                              int x, int y)
1955 {
1956         struct drm_device *dev = crtc->dev;
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959         struct intel_framebuffer *intel_fb;
1960         struct drm_i915_gem_object *obj;
1961         int plane = intel_crtc->plane;
1962         unsigned long linear_offset;
1963         u32 dspcntr;
1964         u32 reg;
1965
1966         switch (plane) {
1967         case 0:
1968         case 1:
1969                 break;
1970         default:
1971                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1972                 return -EINVAL;
1973         }
1974
1975         intel_fb = to_intel_framebuffer(fb);
1976         obj = intel_fb->obj;
1977
1978         reg = DSPCNTR(plane);
1979         dspcntr = I915_READ(reg);
1980         /* Mask out pixel format bits in case we change it */
1981         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1982         switch (fb->bits_per_pixel) {
1983         case 8:
1984                 dspcntr |= DISPPLANE_8BPP;
1985                 break;
1986         case 16:
1987                 if (fb->depth == 15)
1988                         dspcntr |= DISPPLANE_15_16BPP;
1989                 else
1990                         dspcntr |= DISPPLANE_16BPP;
1991                 break;
1992         case 24:
1993         case 32:
1994                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1995                 break;
1996         default:
1997                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1998                 return -EINVAL;
1999         }
2000         if (INTEL_INFO(dev)->gen >= 4) {
2001                 if (obj->tiling_mode != I915_TILING_NONE)
2002                         dspcntr |= DISPPLANE_TILED;
2003                 else
2004                         dspcntr &= ~DISPPLANE_TILED;
2005         }
2006
2007         I915_WRITE(reg, dspcntr);
2008
2009         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2010
2011         if (INTEL_INFO(dev)->gen >= 4) {
2012                 intel_crtc->dspaddr_offset =
2013                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2014                                                            fb->bits_per_pixel / 8,
2015                                                            fb->pitches[0]);
2016                 linear_offset -= intel_crtc->dspaddr_offset;
2017         } else {
2018                 intel_crtc->dspaddr_offset = linear_offset;
2019         }
2020
2021         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2022                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2023         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2024         if (INTEL_INFO(dev)->gen >= 4) {
2025                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2026                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2027                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2028                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2029         } else
2030                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2031         POSTING_READ(reg);
2032
2033         return 0;
2034 }
2035
2036 static int ironlake_update_plane(struct drm_crtc *crtc,
2037                                  struct drm_framebuffer *fb, int x, int y)
2038 {
2039         struct drm_device *dev = crtc->dev;
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2042         struct intel_framebuffer *intel_fb;
2043         struct drm_i915_gem_object *obj;
2044         int plane = intel_crtc->plane;
2045         unsigned long linear_offset;
2046         u32 dspcntr;
2047         u32 reg;
2048
2049         switch (plane) {
2050         case 0:
2051         case 1:
2052         case 2:
2053                 break;
2054         default:
2055                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2056                 return -EINVAL;
2057         }
2058
2059         intel_fb = to_intel_framebuffer(fb);
2060         obj = intel_fb->obj;
2061
2062         reg = DSPCNTR(plane);
2063         dspcntr = I915_READ(reg);
2064         /* Mask out pixel format bits in case we change it */
2065         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2066         switch (fb->bits_per_pixel) {
2067         case 8:
2068                 dspcntr |= DISPPLANE_8BPP;
2069                 break;
2070         case 16:
2071                 if (fb->depth != 16)
2072                         return -EINVAL;
2073
2074                 dspcntr |= DISPPLANE_16BPP;
2075                 break;
2076         case 24:
2077         case 32:
2078                 if (fb->depth == 24)
2079                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2080                 else if (fb->depth == 30)
2081                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2082                 else
2083                         return -EINVAL;
2084                 break;
2085         default:
2086                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2087                 return -EINVAL;
2088         }
2089
2090         if (obj->tiling_mode != I915_TILING_NONE)
2091                 dspcntr |= DISPPLANE_TILED;
2092         else
2093                 dspcntr &= ~DISPPLANE_TILED;
2094
2095         /* must disable */
2096         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2097
2098         I915_WRITE(reg, dspcntr);
2099
2100         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2101         intel_crtc->dspaddr_offset =
2102                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2103                                                    fb->bits_per_pixel / 8,
2104                                                    fb->pitches[0]);
2105         linear_offset -= intel_crtc->dspaddr_offset;
2106
2107         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2108                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2109         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2110         I915_MODIFY_DISPBASE(DSPSURF(plane),
2111                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2112         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2113         I915_WRITE(DSPLINOFF(plane), linear_offset);
2114         POSTING_READ(reg);
2115
2116         return 0;
2117 }
2118
2119 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2120 static int
2121 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2122                            int x, int y, enum mode_set_atomic state)
2123 {
2124         struct drm_device *dev = crtc->dev;
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126
2127         if (dev_priv->display.disable_fbc)
2128                 dev_priv->display.disable_fbc(dev);
2129         intel_increase_pllclock(crtc);
2130
2131         return dev_priv->display.update_plane(crtc, fb, x, y);
2132 }
2133
2134 static int
2135 intel_finish_fb(struct drm_framebuffer *old_fb)
2136 {
2137         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2138         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2139         bool was_interruptible = dev_priv->mm.interruptible;
2140         int ret;
2141
2142         wait_event(dev_priv->pending_flip_queue,
2143                    atomic_read(&dev_priv->mm.wedged) ||
2144                    atomic_read(&obj->pending_flip) == 0);
2145
2146         /* Big Hammer, we also need to ensure that any pending
2147          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2148          * current scanout is retired before unpinning the old
2149          * framebuffer.
2150          *
2151          * This should only fail upon a hung GPU, in which case we
2152          * can safely continue.
2153          */
2154         dev_priv->mm.interruptible = false;
2155         ret = i915_gem_object_finish_gpu(obj);
2156         dev_priv->mm.interruptible = was_interruptible;
2157
2158         return ret;
2159 }
2160
2161 static int
2162 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2163                     struct drm_framebuffer *fb)
2164 {
2165         struct drm_device *dev = crtc->dev;
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         struct drm_i915_master_private *master_priv;
2168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169         struct drm_framebuffer *old_fb;
2170         int ret;
2171
2172         /* no fb bound */
2173         if (!fb) {
2174                 DRM_ERROR("No FB bound\n");
2175                 return 0;
2176         }
2177
2178         if(intel_crtc->plane > dev_priv->num_pipe) {
2179                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2180                                 intel_crtc->plane,
2181                                 dev_priv->num_pipe);
2182                 return -EINVAL;
2183         }
2184
2185         mutex_lock(&dev->struct_mutex);
2186         ret = intel_pin_and_fence_fb_obj(dev,
2187                                          to_intel_framebuffer(fb)->obj,
2188                                          NULL);
2189         if (ret != 0) {
2190                 mutex_unlock(&dev->struct_mutex);
2191                 DRM_ERROR("pin & fence failed\n");
2192                 return ret;
2193         }
2194
2195         if (crtc->fb)
2196                 intel_finish_fb(crtc->fb);
2197
2198         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2199         if (ret) {
2200                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2201                 mutex_unlock(&dev->struct_mutex);
2202                 DRM_ERROR("failed to update base address\n");
2203                 return ret;
2204         }
2205
2206         old_fb = crtc->fb;
2207         crtc->fb = fb;
2208         crtc->x = x;
2209         crtc->y = y;
2210
2211         if (old_fb) {
2212                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2213                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2214         }
2215
2216         intel_update_fbc(dev);
2217         mutex_unlock(&dev->struct_mutex);
2218
2219         if (!dev->primary->master)
2220                 return 0;
2221
2222         master_priv = dev->primary->master->driver_priv;
2223         if (!master_priv->sarea_priv)
2224                 return 0;
2225
2226         if (intel_crtc->pipe) {
2227                 master_priv->sarea_priv->pipeB_x = x;
2228                 master_priv->sarea_priv->pipeB_y = y;
2229         } else {
2230                 master_priv->sarea_priv->pipeA_x = x;
2231                 master_priv->sarea_priv->pipeA_y = y;
2232         }
2233
2234         return 0;
2235 }
2236
2237 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2238 {
2239         struct drm_device *dev = crtc->dev;
2240         struct drm_i915_private *dev_priv = dev->dev_private;
2241         u32 dpa_ctl;
2242
2243         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2244         dpa_ctl = I915_READ(DP_A);
2245         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2246
2247         if (clock < 200000) {
2248                 u32 temp;
2249                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2250                 /* workaround for 160Mhz:
2251                    1) program 0x4600c bits 15:0 = 0x8124
2252                    2) program 0x46010 bit 0 = 1
2253                    3) program 0x46034 bit 24 = 1
2254                    4) program 0x64000 bit 14 = 1
2255                    */
2256                 temp = I915_READ(0x4600c);
2257                 temp &= 0xffff0000;
2258                 I915_WRITE(0x4600c, temp | 0x8124);
2259
2260                 temp = I915_READ(0x46010);
2261                 I915_WRITE(0x46010, temp | 1);
2262
2263                 temp = I915_READ(0x46034);
2264                 I915_WRITE(0x46034, temp | (1 << 24));
2265         } else {
2266                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2267         }
2268         I915_WRITE(DP_A, dpa_ctl);
2269
2270         POSTING_READ(DP_A);
2271         udelay(500);
2272 }
2273
2274 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279         int pipe = intel_crtc->pipe;
2280         u32 reg, temp;
2281
2282         /* enable normal train */
2283         reg = FDI_TX_CTL(pipe);
2284         temp = I915_READ(reg);
2285         if (IS_IVYBRIDGE(dev)) {
2286                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2287                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2288         } else {
2289                 temp &= ~FDI_LINK_TRAIN_NONE;
2290                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2291         }
2292         I915_WRITE(reg, temp);
2293
2294         reg = FDI_RX_CTL(pipe);
2295         temp = I915_READ(reg);
2296         if (HAS_PCH_CPT(dev)) {
2297                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2298                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2299         } else {
2300                 temp &= ~FDI_LINK_TRAIN_NONE;
2301                 temp |= FDI_LINK_TRAIN_NONE;
2302         }
2303         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2304
2305         /* wait one idle pattern time */
2306         POSTING_READ(reg);
2307         udelay(1000);
2308
2309         /* IVB wants error correction enabled */
2310         if (IS_IVYBRIDGE(dev))
2311                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2312                            FDI_FE_ERRC_ENABLE);
2313 }
2314
2315 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2316 {
2317         struct drm_i915_private *dev_priv = dev->dev_private;
2318         u32 flags = I915_READ(SOUTH_CHICKEN1);
2319
2320         flags |= FDI_PHASE_SYNC_OVR(pipe);
2321         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2322         flags |= FDI_PHASE_SYNC_EN(pipe);
2323         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2324         POSTING_READ(SOUTH_CHICKEN1);
2325 }
2326
2327 /* The FDI link training functions for ILK/Ibexpeak. */
2328 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2329 {
2330         struct drm_device *dev = crtc->dev;
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2333         int pipe = intel_crtc->pipe;
2334         int plane = intel_crtc->plane;
2335         u32 reg, temp, tries;
2336
2337         /* FDI needs bits from pipe & plane first */
2338         assert_pipe_enabled(dev_priv, pipe);
2339         assert_plane_enabled(dev_priv, plane);
2340
2341         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2342            for train result */
2343         reg = FDI_RX_IMR(pipe);
2344         temp = I915_READ(reg);
2345         temp &= ~FDI_RX_SYMBOL_LOCK;
2346         temp &= ~FDI_RX_BIT_LOCK;
2347         I915_WRITE(reg, temp);
2348         I915_READ(reg);
2349         udelay(150);
2350
2351         /* enable CPU FDI TX and PCH FDI RX */
2352         reg = FDI_TX_CTL(pipe);
2353         temp = I915_READ(reg);
2354         temp &= ~(7 << 19);
2355         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2356         temp &= ~FDI_LINK_TRAIN_NONE;
2357         temp |= FDI_LINK_TRAIN_PATTERN_1;
2358         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2359
2360         reg = FDI_RX_CTL(pipe);
2361         temp = I915_READ(reg);
2362         temp &= ~FDI_LINK_TRAIN_NONE;
2363         temp |= FDI_LINK_TRAIN_PATTERN_1;
2364         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2365
2366         POSTING_READ(reg);
2367         udelay(150);
2368
2369         /* Ironlake workaround, enable clock pointer after FDI enable*/
2370         if (HAS_PCH_IBX(dev)) {
2371                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2372                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2373                            FDI_RX_PHASE_SYNC_POINTER_EN);
2374         }
2375
2376         reg = FDI_RX_IIR(pipe);
2377         for (tries = 0; tries < 5; tries++) {
2378                 temp = I915_READ(reg);
2379                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2380
2381                 if ((temp & FDI_RX_BIT_LOCK)) {
2382                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2383                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2384                         break;
2385                 }
2386         }
2387         if (tries == 5)
2388                 DRM_ERROR("FDI train 1 fail!\n");
2389
2390         /* Train 2 */
2391         reg = FDI_TX_CTL(pipe);
2392         temp = I915_READ(reg);
2393         temp &= ~FDI_LINK_TRAIN_NONE;
2394         temp |= FDI_LINK_TRAIN_PATTERN_2;
2395         I915_WRITE(reg, temp);
2396
2397         reg = FDI_RX_CTL(pipe);
2398         temp = I915_READ(reg);
2399         temp &= ~FDI_LINK_TRAIN_NONE;
2400         temp |= FDI_LINK_TRAIN_PATTERN_2;
2401         I915_WRITE(reg, temp);
2402
2403         POSTING_READ(reg);
2404         udelay(150);
2405
2406         reg = FDI_RX_IIR(pipe);
2407         for (tries = 0; tries < 5; tries++) {
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if (temp & FDI_RX_SYMBOL_LOCK) {
2412                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2414                         break;
2415                 }
2416         }
2417         if (tries == 5)
2418                 DRM_ERROR("FDI train 2 fail!\n");
2419
2420         DRM_DEBUG_KMS("FDI train done\n");
2421
2422 }
2423
2424 static const int snb_b_fdi_train_param[] = {
2425         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2426         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2427         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2428         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2429 };
2430
2431 /* The FDI link training functions for SNB/Cougarpoint. */
2432 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2433 {
2434         struct drm_device *dev = crtc->dev;
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2437         int pipe = intel_crtc->pipe;
2438         u32 reg, temp, i, retry;
2439
2440         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2441            for train result */
2442         reg = FDI_RX_IMR(pipe);
2443         temp = I915_READ(reg);
2444         temp &= ~FDI_RX_SYMBOL_LOCK;
2445         temp &= ~FDI_RX_BIT_LOCK;
2446         I915_WRITE(reg, temp);
2447
2448         POSTING_READ(reg);
2449         udelay(150);
2450
2451         /* enable CPU FDI TX and PCH FDI RX */
2452         reg = FDI_TX_CTL(pipe);
2453         temp = I915_READ(reg);
2454         temp &= ~(7 << 19);
2455         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2456         temp &= ~FDI_LINK_TRAIN_NONE;
2457         temp |= FDI_LINK_TRAIN_PATTERN_1;
2458         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2459         /* SNB-B */
2460         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2461         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2462
2463         reg = FDI_RX_CTL(pipe);
2464         temp = I915_READ(reg);
2465         if (HAS_PCH_CPT(dev)) {
2466                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2467                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2468         } else {
2469                 temp &= ~FDI_LINK_TRAIN_NONE;
2470                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2471         }
2472         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2473
2474         POSTING_READ(reg);
2475         udelay(150);
2476
2477         if (HAS_PCH_CPT(dev))
2478                 cpt_phase_pointer_enable(dev, pipe);
2479
2480         for (i = 0; i < 4; i++) {
2481                 reg = FDI_TX_CTL(pipe);
2482                 temp = I915_READ(reg);
2483                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2484                 temp |= snb_b_fdi_train_param[i];
2485                 I915_WRITE(reg, temp);
2486
2487                 POSTING_READ(reg);
2488                 udelay(500);
2489
2490                 for (retry = 0; retry < 5; retry++) {
2491                         reg = FDI_RX_IIR(pipe);
2492                         temp = I915_READ(reg);
2493                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2494                         if (temp & FDI_RX_BIT_LOCK) {
2495                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2496                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2497                                 break;
2498                         }
2499                         udelay(50);
2500                 }
2501                 if (retry < 5)
2502                         break;
2503         }
2504         if (i == 4)
2505                 DRM_ERROR("FDI train 1 fail!\n");
2506
2507         /* Train 2 */
2508         reg = FDI_TX_CTL(pipe);
2509         temp = I915_READ(reg);
2510         temp &= ~FDI_LINK_TRAIN_NONE;
2511         temp |= FDI_LINK_TRAIN_PATTERN_2;
2512         if (IS_GEN6(dev)) {
2513                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2514                 /* SNB-B */
2515                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2516         }
2517         I915_WRITE(reg, temp);
2518
2519         reg = FDI_RX_CTL(pipe);
2520         temp = I915_READ(reg);
2521         if (HAS_PCH_CPT(dev)) {
2522                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2523                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2524         } else {
2525                 temp &= ~FDI_LINK_TRAIN_NONE;
2526                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2527         }
2528         I915_WRITE(reg, temp);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         for (i = 0; i < 4; i++) {
2534                 reg = FDI_TX_CTL(pipe);
2535                 temp = I915_READ(reg);
2536                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2537                 temp |= snb_b_fdi_train_param[i];
2538                 I915_WRITE(reg, temp);
2539
2540                 POSTING_READ(reg);
2541                 udelay(500);
2542
2543                 for (retry = 0; retry < 5; retry++) {
2544                         reg = FDI_RX_IIR(pipe);
2545                         temp = I915_READ(reg);
2546                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2547                         if (temp & FDI_RX_SYMBOL_LOCK) {
2548                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2550                                 break;
2551                         }
2552                         udelay(50);
2553                 }
2554                 if (retry < 5)
2555                         break;
2556         }
2557         if (i == 4)
2558                 DRM_ERROR("FDI train 2 fail!\n");
2559
2560         DRM_DEBUG_KMS("FDI train done.\n");
2561 }
2562
2563 /* Manual link training for Ivy Bridge A0 parts */
2564 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2565 {
2566         struct drm_device *dev = crtc->dev;
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2569         int pipe = intel_crtc->pipe;
2570         u32 reg, temp, i;
2571
2572         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2573            for train result */
2574         reg = FDI_RX_IMR(pipe);
2575         temp = I915_READ(reg);
2576         temp &= ~FDI_RX_SYMBOL_LOCK;
2577         temp &= ~FDI_RX_BIT_LOCK;
2578         I915_WRITE(reg, temp);
2579
2580         POSTING_READ(reg);
2581         udelay(150);
2582
2583         /* enable CPU FDI TX and PCH FDI RX */
2584         reg = FDI_TX_CTL(pipe);
2585         temp = I915_READ(reg);
2586         temp &= ~(7 << 19);
2587         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2588         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2589         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2590         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2591         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2592         temp |= FDI_COMPOSITE_SYNC;
2593         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2594
2595         reg = FDI_RX_CTL(pipe);
2596         temp = I915_READ(reg);
2597         temp &= ~FDI_LINK_TRAIN_AUTO;
2598         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2599         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2600         temp |= FDI_COMPOSITE_SYNC;
2601         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2602
2603         POSTING_READ(reg);
2604         udelay(150);
2605
2606         if (HAS_PCH_CPT(dev))
2607                 cpt_phase_pointer_enable(dev, pipe);
2608
2609         for (i = 0; i < 4; i++) {
2610                 reg = FDI_TX_CTL(pipe);
2611                 temp = I915_READ(reg);
2612                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2613                 temp |= snb_b_fdi_train_param[i];
2614                 I915_WRITE(reg, temp);
2615
2616                 POSTING_READ(reg);
2617                 udelay(500);
2618
2619                 reg = FDI_RX_IIR(pipe);
2620                 temp = I915_READ(reg);
2621                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2622
2623                 if (temp & FDI_RX_BIT_LOCK ||
2624                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2625                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2626                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2627                         break;
2628                 }
2629         }
2630         if (i == 4)
2631                 DRM_ERROR("FDI train 1 fail!\n");
2632
2633         /* Train 2 */
2634         reg = FDI_TX_CTL(pipe);
2635         temp = I915_READ(reg);
2636         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2637         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2638         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2640         I915_WRITE(reg, temp);
2641
2642         reg = FDI_RX_CTL(pipe);
2643         temp = I915_READ(reg);
2644         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2645         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2646         I915_WRITE(reg, temp);
2647
2648         POSTING_READ(reg);
2649         udelay(150);
2650
2651         for (i = 0; i < 4; i++) {
2652                 reg = FDI_TX_CTL(pipe);
2653                 temp = I915_READ(reg);
2654                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2655                 temp |= snb_b_fdi_train_param[i];
2656                 I915_WRITE(reg, temp);
2657
2658                 POSTING_READ(reg);
2659                 udelay(500);
2660
2661                 reg = FDI_RX_IIR(pipe);
2662                 temp = I915_READ(reg);
2663                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2664
2665                 if (temp & FDI_RX_SYMBOL_LOCK) {
2666                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2667                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2668                         break;
2669                 }
2670         }
2671         if (i == 4)
2672                 DRM_ERROR("FDI train 2 fail!\n");
2673
2674         DRM_DEBUG_KMS("FDI train done.\n");
2675 }
2676
2677 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2678 {
2679         struct drm_device *dev = intel_crtc->base.dev;
2680         struct drm_i915_private *dev_priv = dev->dev_private;
2681         int pipe = intel_crtc->pipe;
2682         u32 reg, temp;
2683
2684         /* Write the TU size bits so error detection works */
2685         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2686                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2687
2688         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2689         reg = FDI_RX_CTL(pipe);
2690         temp = I915_READ(reg);
2691         temp &= ~((0x7 << 19) | (0x7 << 16));
2692         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2693         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2694         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2695
2696         POSTING_READ(reg);
2697         udelay(200);
2698
2699         /* Switch from Rawclk to PCDclk */
2700         temp = I915_READ(reg);
2701         I915_WRITE(reg, temp | FDI_PCDCLK);
2702
2703         POSTING_READ(reg);
2704         udelay(200);
2705
2706         /* On Haswell, the PLL configuration for ports and pipes is handled
2707          * separately, as part of DDI setup */
2708         if (!IS_HASWELL(dev)) {
2709                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2710                 reg = FDI_TX_CTL(pipe);
2711                 temp = I915_READ(reg);
2712                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2713                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2714
2715                         POSTING_READ(reg);
2716                         udelay(100);
2717                 }
2718         }
2719 }
2720
2721 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2722 {
2723         struct drm_device *dev = intel_crtc->base.dev;
2724         struct drm_i915_private *dev_priv = dev->dev_private;
2725         int pipe = intel_crtc->pipe;
2726         u32 reg, temp;
2727
2728         /* Switch from PCDclk to Rawclk */
2729         reg = FDI_RX_CTL(pipe);
2730         temp = I915_READ(reg);
2731         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2732
2733         /* Disable CPU FDI TX PLL */
2734         reg = FDI_TX_CTL(pipe);
2735         temp = I915_READ(reg);
2736         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2737
2738         POSTING_READ(reg);
2739         udelay(100);
2740
2741         reg = FDI_RX_CTL(pipe);
2742         temp = I915_READ(reg);
2743         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2744
2745         /* Wait for the clocks to turn off. */
2746         POSTING_READ(reg);
2747         udelay(100);
2748 }
2749
2750 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2751 {
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         u32 flags = I915_READ(SOUTH_CHICKEN1);
2754
2755         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2756         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2757         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2758         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2759         POSTING_READ(SOUTH_CHICKEN1);
2760 }
2761 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2762 {
2763         struct drm_device *dev = crtc->dev;
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2766         int pipe = intel_crtc->pipe;
2767         u32 reg, temp;
2768
2769         /* disable CPU FDI tx and PCH FDI rx */
2770         reg = FDI_TX_CTL(pipe);
2771         temp = I915_READ(reg);
2772         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2773         POSTING_READ(reg);
2774
2775         reg = FDI_RX_CTL(pipe);
2776         temp = I915_READ(reg);
2777         temp &= ~(0x7 << 16);
2778         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2780
2781         POSTING_READ(reg);
2782         udelay(100);
2783
2784         /* Ironlake workaround, disable clock pointer after downing FDI */
2785         if (HAS_PCH_IBX(dev)) {
2786                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2787                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2788                            I915_READ(FDI_RX_CHICKEN(pipe) &
2789                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2790         } else if (HAS_PCH_CPT(dev)) {
2791                 cpt_phase_pointer_disable(dev, pipe);
2792         }
2793
2794         /* still set train pattern 1 */
2795         reg = FDI_TX_CTL(pipe);
2796         temp = I915_READ(reg);
2797         temp &= ~FDI_LINK_TRAIN_NONE;
2798         temp |= FDI_LINK_TRAIN_PATTERN_1;
2799         I915_WRITE(reg, temp);
2800
2801         reg = FDI_RX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         if (HAS_PCH_CPT(dev)) {
2804                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2805                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2806         } else {
2807                 temp &= ~FDI_LINK_TRAIN_NONE;
2808                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2809         }
2810         /* BPC in FDI rx is consistent with that in PIPECONF */
2811         temp &= ~(0x07 << 16);
2812         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2813         I915_WRITE(reg, temp);
2814
2815         POSTING_READ(reg);
2816         udelay(100);
2817 }
2818
2819 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2820 {
2821         struct drm_device *dev = crtc->dev;
2822         struct drm_i915_private *dev_priv = dev->dev_private;
2823         unsigned long flags;
2824         bool pending;
2825
2826         if (atomic_read(&dev_priv->mm.wedged))
2827                 return false;
2828
2829         spin_lock_irqsave(&dev->event_lock, flags);
2830         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2831         spin_unlock_irqrestore(&dev->event_lock, flags);
2832
2833         return pending;
2834 }
2835
2836 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2837 {
2838         struct drm_device *dev = crtc->dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840
2841         if (crtc->fb == NULL)
2842                 return;
2843
2844         wait_event(dev_priv->pending_flip_queue,
2845                    !intel_crtc_has_pending_flip(crtc));
2846
2847         mutex_lock(&dev->struct_mutex);
2848         intel_finish_fb(crtc->fb);
2849         mutex_unlock(&dev->struct_mutex);
2850 }
2851
2852 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->dev;
2855         struct intel_encoder *intel_encoder;
2856
2857         /*
2858          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2859          * must be driven by its own crtc; no sharing is possible.
2860          */
2861         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2862                 switch (intel_encoder->type) {
2863                 case INTEL_OUTPUT_EDP:
2864                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2865                                 return false;
2866                         continue;
2867                 }
2868         }
2869
2870         return true;
2871 }
2872
2873 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2874 {
2875         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2876 }
2877
2878 /* Program iCLKIP clock to the desired frequency */
2879 static void lpt_program_iclkip(struct drm_crtc *crtc)
2880 {
2881         struct drm_device *dev = crtc->dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2884         u32 temp;
2885
2886         /* It is necessary to ungate the pixclk gate prior to programming
2887          * the divisors, and gate it back when it is done.
2888          */
2889         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2890
2891         /* Disable SSCCTL */
2892         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2893                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2894                                         SBI_SSCCTL_DISABLE);
2895
2896         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2897         if (crtc->mode.clock == 20000) {
2898                 auxdiv = 1;
2899                 divsel = 0x41;
2900                 phaseinc = 0x20;
2901         } else {
2902                 /* The iCLK virtual clock root frequency is in MHz,
2903                  * but the crtc->mode.clock in in KHz. To get the divisors,
2904                  * it is necessary to divide one by another, so we
2905                  * convert the virtual clock precision to KHz here for higher
2906                  * precision.
2907                  */
2908                 u32 iclk_virtual_root_freq = 172800 * 1000;
2909                 u32 iclk_pi_range = 64;
2910                 u32 desired_divisor, msb_divisor_value, pi_value;
2911
2912                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2913                 msb_divisor_value = desired_divisor / iclk_pi_range;
2914                 pi_value = desired_divisor % iclk_pi_range;
2915
2916                 auxdiv = 0;
2917                 divsel = msb_divisor_value - 2;
2918                 phaseinc = pi_value;
2919         }
2920
2921         /* This should not happen with any sane values */
2922         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2923                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2924         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2925                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2926
2927         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2928                         crtc->mode.clock,
2929                         auxdiv,
2930                         divsel,
2931                         phasedir,
2932                         phaseinc);
2933
2934         /* Program SSCDIVINTPHASE6 */
2935         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2936         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2937         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2938         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2939         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2940         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2941         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2942
2943         intel_sbi_write(dev_priv,
2944                         SBI_SSCDIVINTPHASE6,
2945                         temp);
2946
2947         /* Program SSCAUXDIV */
2948         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2949         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2950         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2951         intel_sbi_write(dev_priv,
2952                         SBI_SSCAUXDIV6,
2953                         temp);
2954
2955
2956         /* Enable modulator and associated divider */
2957         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2958         temp &= ~SBI_SSCCTL_DISABLE;
2959         intel_sbi_write(dev_priv,
2960                         SBI_SSCCTL6,
2961                         temp);
2962
2963         /* Wait for initialization time */
2964         udelay(24);
2965
2966         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2967 }
2968
2969 /*
2970  * Enable PCH resources required for PCH ports:
2971  *   - PCH PLLs
2972  *   - FDI training & RX/TX
2973  *   - update transcoder timings
2974  *   - DP transcoding bits
2975  *   - transcoder
2976  */
2977 static void ironlake_pch_enable(struct drm_crtc *crtc)
2978 {
2979         struct drm_device *dev = crtc->dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2982         int pipe = intel_crtc->pipe;
2983         u32 reg, temp;
2984
2985         assert_transcoder_disabled(dev_priv, pipe);
2986
2987         /* For PCH output, training FDI link */
2988         dev_priv->display.fdi_link_train(crtc);
2989
2990         intel_enable_pch_pll(intel_crtc);
2991
2992         if (HAS_PCH_LPT(dev)) {
2993                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2994                 lpt_program_iclkip(crtc);
2995         } else if (HAS_PCH_CPT(dev)) {
2996                 u32 sel;
2997
2998                 temp = I915_READ(PCH_DPLL_SEL);
2999                 switch (pipe) {
3000                 default:
3001                 case 0:
3002                         temp |= TRANSA_DPLL_ENABLE;
3003                         sel = TRANSA_DPLLB_SEL;
3004                         break;
3005                 case 1:
3006                         temp |= TRANSB_DPLL_ENABLE;
3007                         sel = TRANSB_DPLLB_SEL;
3008                         break;
3009                 case 2:
3010                         temp |= TRANSC_DPLL_ENABLE;
3011                         sel = TRANSC_DPLLB_SEL;
3012                         break;
3013                 }
3014                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3015                         temp |= sel;
3016                 else
3017                         temp &= ~sel;
3018                 I915_WRITE(PCH_DPLL_SEL, temp);
3019         }
3020
3021         /* set transcoder timing, panel must allow it */
3022         assert_panel_unlocked(dev_priv, pipe);
3023         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3024         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3025         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3026
3027         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3028         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3029         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3030         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3031
3032         if (!IS_HASWELL(dev))
3033                 intel_fdi_normal_train(crtc);
3034
3035         /* For PCH DP, enable TRANS_DP_CTL */
3036         if (HAS_PCH_CPT(dev) &&
3037             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3038              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3039                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3040                 reg = TRANS_DP_CTL(pipe);
3041                 temp = I915_READ(reg);
3042                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3043                           TRANS_DP_SYNC_MASK |
3044                           TRANS_DP_BPC_MASK);
3045                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3046                          TRANS_DP_ENH_FRAMING);
3047                 temp |= bpc << 9; /* same format but at 11:9 */
3048
3049                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3050                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3051                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3052                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3053
3054                 switch (intel_trans_dp_port_sel(crtc)) {
3055                 case PCH_DP_B:
3056                         temp |= TRANS_DP_PORT_SEL_B;
3057                         break;
3058                 case PCH_DP_C:
3059                         temp |= TRANS_DP_PORT_SEL_C;
3060                         break;
3061                 case PCH_DP_D:
3062                         temp |= TRANS_DP_PORT_SEL_D;
3063                         break;
3064                 default:
3065                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3066                         temp |= TRANS_DP_PORT_SEL_B;
3067                         break;
3068                 }
3069
3070                 I915_WRITE(reg, temp);
3071         }
3072
3073         intel_enable_transcoder(dev_priv, pipe);
3074 }
3075
3076 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3077 {
3078         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3079
3080         if (pll == NULL)
3081                 return;
3082
3083         if (pll->refcount == 0) {
3084                 WARN(1, "bad PCH PLL refcount\n");
3085                 return;
3086         }
3087
3088         --pll->refcount;
3089         intel_crtc->pch_pll = NULL;
3090 }
3091
3092 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3093 {
3094         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3095         struct intel_pch_pll *pll;
3096         int i;
3097
3098         pll = intel_crtc->pch_pll;
3099         if (pll) {
3100                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3101                               intel_crtc->base.base.id, pll->pll_reg);
3102                 goto prepare;
3103         }
3104
3105         if (HAS_PCH_IBX(dev_priv->dev)) {
3106                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3107                 i = intel_crtc->pipe;
3108                 pll = &dev_priv->pch_plls[i];
3109
3110                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3111                               intel_crtc->base.base.id, pll->pll_reg);
3112
3113                 goto found;
3114         }
3115
3116         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3117                 pll = &dev_priv->pch_plls[i];
3118
3119                 /* Only want to check enabled timings first */
3120                 if (pll->refcount == 0)
3121                         continue;
3122
3123                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3124                     fp == I915_READ(pll->fp0_reg)) {
3125                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3126                                       intel_crtc->base.base.id,
3127                                       pll->pll_reg, pll->refcount, pll->active);
3128
3129                         goto found;
3130                 }
3131         }
3132
3133         /* Ok no matching timings, maybe there's a free one? */
3134         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3135                 pll = &dev_priv->pch_plls[i];
3136                 if (pll->refcount == 0) {
3137                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3138                                       intel_crtc->base.base.id, pll->pll_reg);
3139                         goto found;
3140                 }
3141         }
3142
3143         return NULL;
3144
3145 found:
3146         intel_crtc->pch_pll = pll;
3147         pll->refcount++;
3148         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3149 prepare: /* separate function? */
3150         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3151
3152         /* Wait for the clocks to stabilize before rewriting the regs */
3153         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3154         POSTING_READ(pll->pll_reg);
3155         udelay(150);
3156
3157         I915_WRITE(pll->fp0_reg, fp);
3158         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3159         pll->on = false;
3160         return pll;
3161 }
3162
3163 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3164 {
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3167         u32 temp;
3168
3169         temp = I915_READ(dslreg);
3170         udelay(500);
3171         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3172                 /* Without this, mode sets may fail silently on FDI */
3173                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3174                 udelay(250);
3175                 I915_WRITE(tc2reg, 0);
3176                 if (wait_for(I915_READ(dslreg) != temp, 5))
3177                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3178         }
3179 }
3180
3181 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3182 {
3183         struct drm_device *dev = crtc->dev;
3184         struct drm_i915_private *dev_priv = dev->dev_private;
3185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186         struct intel_encoder *encoder;
3187         int pipe = intel_crtc->pipe;
3188         int plane = intel_crtc->plane;
3189         u32 temp;
3190         bool is_pch_port;
3191
3192         WARN_ON(!crtc->enabled);
3193
3194         if (intel_crtc->active)
3195                 return;
3196
3197         intel_crtc->active = true;
3198         intel_update_watermarks(dev);
3199
3200         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3201                 temp = I915_READ(PCH_LVDS);
3202                 if ((temp & LVDS_PORT_EN) == 0)
3203                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3204         }
3205
3206         is_pch_port = ironlake_crtc_driving_pch(crtc);
3207
3208         if (is_pch_port) {
3209                 ironlake_fdi_pll_enable(intel_crtc);
3210         } else {
3211                 assert_fdi_tx_disabled(dev_priv, pipe);
3212                 assert_fdi_rx_disabled(dev_priv, pipe);
3213         }
3214
3215         for_each_encoder_on_crtc(dev, crtc, encoder)
3216                 if (encoder->pre_enable)
3217                         encoder->pre_enable(encoder);
3218
3219         /* Enable panel fitting for LVDS */
3220         if (dev_priv->pch_pf_size &&
3221             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3222                 /* Force use of hard-coded filter coefficients
3223                  * as some pre-programmed values are broken,
3224                  * e.g. x201.
3225                  */
3226                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3227                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3228                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3229         }
3230
3231         /*
3232          * On ILK+ LUT must be loaded before the pipe is running but with
3233          * clocks enabled
3234          */
3235         intel_crtc_load_lut(crtc);
3236
3237         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3238         intel_enable_plane(dev_priv, plane, pipe);
3239
3240         if (is_pch_port)
3241                 ironlake_pch_enable(crtc);
3242
3243         mutex_lock(&dev->struct_mutex);
3244         intel_update_fbc(dev);
3245         mutex_unlock(&dev->struct_mutex);
3246
3247         intel_crtc_update_cursor(crtc, true);
3248
3249         for_each_encoder_on_crtc(dev, crtc, encoder)
3250                 encoder->enable(encoder);
3251
3252         if (HAS_PCH_CPT(dev))
3253                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3254
3255         /*
3256          * There seems to be a race in PCH platform hw (at least on some
3257          * outputs) where an enabled pipe still completes any pageflip right
3258          * away (as if the pipe is off) instead of waiting for vblank. As soon
3259          * as the first vblank happend, everything works as expected. Hence just
3260          * wait for one vblank before returning to avoid strange things
3261          * happening.
3262          */
3263         intel_wait_for_vblank(dev, intel_crtc->pipe);
3264 }
3265
3266 static void haswell_crtc_enable(struct drm_crtc *crtc)
3267 {
3268         struct drm_device *dev = crtc->dev;
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271         struct intel_encoder *encoder;
3272         int pipe = intel_crtc->pipe;
3273         int plane = intel_crtc->plane;
3274         bool is_pch_port;
3275
3276         WARN_ON(!crtc->enabled);
3277
3278         if (intel_crtc->active)
3279                 return;
3280
3281         intel_crtc->active = true;
3282         intel_update_watermarks(dev);
3283
3284         is_pch_port = haswell_crtc_driving_pch(crtc);
3285
3286         if (is_pch_port) {
3287                 ironlake_fdi_pll_enable(intel_crtc);
3288         } else {
3289                 assert_fdi_tx_disabled(dev_priv, pipe);
3290                 assert_fdi_rx_disabled(dev_priv, pipe);
3291         }
3292
3293         for_each_encoder_on_crtc(dev, crtc, encoder)
3294                 if (encoder->pre_enable)
3295                         encoder->pre_enable(encoder);
3296
3297         intel_ddi_enable_pipe_clock(intel_crtc);
3298
3299         /* Enable panel fitting for eDP */
3300         if (dev_priv->pch_pf_size && HAS_eDP) {
3301                 /* Force use of hard-coded filter coefficients
3302                  * as some pre-programmed values are broken,
3303                  * e.g. x201.
3304                  */
3305                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3306                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3307                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3308         }
3309
3310         /*
3311          * On ILK+ LUT must be loaded before the pipe is running but with
3312          * clocks enabled
3313          */
3314         intel_crtc_load_lut(crtc);
3315
3316         intel_ddi_set_pipe_settings(crtc);
3317         intel_ddi_enable_pipe_func(crtc);
3318
3319         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3320         intel_enable_plane(dev_priv, plane, pipe);
3321
3322         if (is_pch_port)
3323                 ironlake_pch_enable(crtc);
3324
3325         mutex_lock(&dev->struct_mutex);
3326         intel_update_fbc(dev);
3327         mutex_unlock(&dev->struct_mutex);
3328
3329         intel_crtc_update_cursor(crtc, true);
3330
3331         for_each_encoder_on_crtc(dev, crtc, encoder)
3332                 encoder->enable(encoder);
3333
3334         /*
3335          * There seems to be a race in PCH platform hw (at least on some
3336          * outputs) where an enabled pipe still completes any pageflip right
3337          * away (as if the pipe is off) instead of waiting for vblank. As soon
3338          * as the first vblank happend, everything works as expected. Hence just
3339          * wait for one vblank before returning to avoid strange things
3340          * happening.
3341          */
3342         intel_wait_for_vblank(dev, intel_crtc->pipe);
3343 }
3344
3345 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3346 {
3347         struct drm_device *dev = crtc->dev;
3348         struct drm_i915_private *dev_priv = dev->dev_private;
3349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3350         struct intel_encoder *encoder;
3351         int pipe = intel_crtc->pipe;
3352         int plane = intel_crtc->plane;
3353         u32 reg, temp;
3354
3355
3356         if (!intel_crtc->active)
3357                 return;
3358
3359         for_each_encoder_on_crtc(dev, crtc, encoder)
3360                 encoder->disable(encoder);
3361
3362         intel_crtc_wait_for_pending_flips(crtc);
3363         drm_vblank_off(dev, pipe);
3364         intel_crtc_update_cursor(crtc, false);
3365
3366         intel_disable_plane(dev_priv, plane, pipe);
3367
3368         if (dev_priv->cfb_plane == plane)
3369                 intel_disable_fbc(dev);
3370
3371         intel_disable_pipe(dev_priv, pipe);
3372
3373         /* Disable PF */
3374         I915_WRITE(PF_CTL(pipe), 0);
3375         I915_WRITE(PF_WIN_SZ(pipe), 0);
3376
3377         for_each_encoder_on_crtc(dev, crtc, encoder)
3378                 if (encoder->post_disable)
3379                         encoder->post_disable(encoder);
3380
3381         ironlake_fdi_disable(crtc);
3382
3383         intel_disable_transcoder(dev_priv, pipe);
3384
3385         if (HAS_PCH_CPT(dev)) {
3386                 /* disable TRANS_DP_CTL */
3387                 reg = TRANS_DP_CTL(pipe);
3388                 temp = I915_READ(reg);
3389                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3390                 temp |= TRANS_DP_PORT_SEL_NONE;
3391                 I915_WRITE(reg, temp);
3392
3393                 /* disable DPLL_SEL */
3394                 temp = I915_READ(PCH_DPLL_SEL);
3395                 switch (pipe) {
3396                 case 0:
3397                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3398                         break;
3399                 case 1:
3400                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3401                         break;
3402                 case 2:
3403                         /* C shares PLL A or B */
3404                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3405                         break;
3406                 default:
3407                         BUG(); /* wtf */
3408                 }
3409                 I915_WRITE(PCH_DPLL_SEL, temp);
3410         }
3411
3412         /* disable PCH DPLL */
3413         intel_disable_pch_pll(intel_crtc);
3414
3415         ironlake_fdi_pll_disable(intel_crtc);
3416
3417         intel_crtc->active = false;
3418         intel_update_watermarks(dev);
3419
3420         mutex_lock(&dev->struct_mutex);
3421         intel_update_fbc(dev);
3422         mutex_unlock(&dev->struct_mutex);
3423 }
3424
3425 static void haswell_crtc_disable(struct drm_crtc *crtc)
3426 {
3427         struct drm_device *dev = crtc->dev;
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3430         struct intel_encoder *encoder;
3431         int pipe = intel_crtc->pipe;
3432         int plane = intel_crtc->plane;
3433
3434         if (!intel_crtc->active)
3435                 return;
3436
3437         for_each_encoder_on_crtc(dev, crtc, encoder)
3438                 encoder->disable(encoder);
3439
3440         intel_crtc_wait_for_pending_flips(crtc);
3441         drm_vblank_off(dev, pipe);
3442         intel_crtc_update_cursor(crtc, false);
3443
3444         intel_disable_plane(dev_priv, plane, pipe);
3445
3446         if (dev_priv->cfb_plane == plane)
3447                 intel_disable_fbc(dev);
3448
3449         intel_disable_pipe(dev_priv, pipe);
3450
3451         intel_ddi_disable_pipe_func(dev_priv, pipe);
3452
3453         /* Disable PF */
3454         I915_WRITE(PF_CTL(pipe), 0);
3455         I915_WRITE(PF_WIN_SZ(pipe), 0);
3456
3457         intel_ddi_disable_pipe_clock(intel_crtc);
3458
3459         for_each_encoder_on_crtc(dev, crtc, encoder)
3460                 if (encoder->post_disable)
3461                         encoder->post_disable(encoder);
3462
3463         ironlake_fdi_disable(crtc);
3464
3465         intel_disable_transcoder(dev_priv, pipe);
3466
3467         /* disable PCH DPLL */
3468         intel_disable_pch_pll(intel_crtc);
3469
3470         ironlake_fdi_pll_disable(intel_crtc);
3471
3472         intel_crtc->active = false;
3473         intel_update_watermarks(dev);
3474
3475         mutex_lock(&dev->struct_mutex);
3476         intel_update_fbc(dev);
3477         mutex_unlock(&dev->struct_mutex);
3478 }
3479
3480 static void ironlake_crtc_off(struct drm_crtc *crtc)
3481 {
3482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483         intel_put_pch_pll(intel_crtc);
3484 }
3485
3486 static void haswell_crtc_off(struct drm_crtc *crtc)
3487 {
3488         intel_ddi_put_crtc_pll(crtc);
3489 }
3490
3491 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3492 {
3493         if (!enable && intel_crtc->overlay) {
3494                 struct drm_device *dev = intel_crtc->base.dev;
3495                 struct drm_i915_private *dev_priv = dev->dev_private;
3496
3497                 mutex_lock(&dev->struct_mutex);
3498                 dev_priv->mm.interruptible = false;
3499                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3500                 dev_priv->mm.interruptible = true;
3501                 mutex_unlock(&dev->struct_mutex);
3502         }
3503
3504         /* Let userspace switch the overlay on again. In most cases userspace
3505          * has to recompute where to put it anyway.
3506          */
3507 }
3508
3509 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3510 {
3511         struct drm_device *dev = crtc->dev;
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514         struct intel_encoder *encoder;
3515         int pipe = intel_crtc->pipe;
3516         int plane = intel_crtc->plane;
3517
3518         WARN_ON(!crtc->enabled);
3519
3520         if (intel_crtc->active)
3521                 return;
3522
3523         intel_crtc->active = true;
3524         intel_update_watermarks(dev);
3525
3526         intel_enable_pll(dev_priv, pipe);
3527         intel_enable_pipe(dev_priv, pipe, false);
3528         intel_enable_plane(dev_priv, plane, pipe);
3529
3530         intel_crtc_load_lut(crtc);
3531         intel_update_fbc(dev);
3532
3533         /* Give the overlay scaler a chance to enable if it's on this pipe */
3534         intel_crtc_dpms_overlay(intel_crtc, true);
3535         intel_crtc_update_cursor(crtc, true);
3536
3537         for_each_encoder_on_crtc(dev, crtc, encoder)
3538                 encoder->enable(encoder);
3539 }
3540
3541 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3542 {
3543         struct drm_device *dev = crtc->dev;
3544         struct drm_i915_private *dev_priv = dev->dev_private;
3545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546         struct intel_encoder *encoder;
3547         int pipe = intel_crtc->pipe;
3548         int plane = intel_crtc->plane;
3549
3550
3551         if (!intel_crtc->active)
3552                 return;
3553
3554         for_each_encoder_on_crtc(dev, crtc, encoder)
3555                 encoder->disable(encoder);
3556
3557         /* Give the overlay scaler a chance to disable if it's on this pipe */
3558         intel_crtc_wait_for_pending_flips(crtc);
3559         drm_vblank_off(dev, pipe);
3560         intel_crtc_dpms_overlay(intel_crtc, false);
3561         intel_crtc_update_cursor(crtc, false);
3562
3563         if (dev_priv->cfb_plane == plane)
3564                 intel_disable_fbc(dev);
3565
3566         intel_disable_plane(dev_priv, plane, pipe);
3567         intel_disable_pipe(dev_priv, pipe);
3568         intel_disable_pll(dev_priv, pipe);
3569
3570         intel_crtc->active = false;
3571         intel_update_fbc(dev);
3572         intel_update_watermarks(dev);
3573 }
3574
3575 static void i9xx_crtc_off(struct drm_crtc *crtc)
3576 {
3577 }
3578
3579 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3580                                     bool enabled)
3581 {
3582         struct drm_device *dev = crtc->dev;
3583         struct drm_i915_master_private *master_priv;
3584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3585         int pipe = intel_crtc->pipe;
3586
3587         if (!dev->primary->master)
3588                 return;
3589
3590         master_priv = dev->primary->master->driver_priv;
3591         if (!master_priv->sarea_priv)
3592                 return;
3593
3594         switch (pipe) {
3595         case 0:
3596                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3597                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3598                 break;
3599         case 1:
3600                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3601                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3602                 break;
3603         default:
3604                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3605                 break;
3606         }
3607 }
3608
3609 /**
3610  * Sets the power management mode of the pipe and plane.
3611  */
3612 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3613 {
3614         struct drm_device *dev = crtc->dev;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         struct intel_encoder *intel_encoder;
3617         bool enable = false;
3618
3619         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3620                 enable |= intel_encoder->connectors_active;
3621
3622         if (enable)
3623                 dev_priv->display.crtc_enable(crtc);
3624         else
3625                 dev_priv->display.crtc_disable(crtc);
3626
3627         intel_crtc_update_sarea(crtc, enable);
3628 }
3629
3630 static void intel_crtc_noop(struct drm_crtc *crtc)
3631 {
3632 }
3633
3634 static void intel_crtc_disable(struct drm_crtc *crtc)
3635 {
3636         struct drm_device *dev = crtc->dev;
3637         struct drm_connector *connector;
3638         struct drm_i915_private *dev_priv = dev->dev_private;
3639
3640         /* crtc should still be enabled when we disable it. */
3641         WARN_ON(!crtc->enabled);
3642
3643         dev_priv->display.crtc_disable(crtc);
3644         intel_crtc_update_sarea(crtc, false);
3645         dev_priv->display.off(crtc);
3646
3647         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3648         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3649
3650         if (crtc->fb) {
3651                 mutex_lock(&dev->struct_mutex);
3652                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3653                 mutex_unlock(&dev->struct_mutex);
3654                 crtc->fb = NULL;
3655         }
3656
3657         /* Update computed state. */
3658         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3659                 if (!connector->encoder || !connector->encoder->crtc)
3660                         continue;
3661
3662                 if (connector->encoder->crtc != crtc)
3663                         continue;
3664
3665                 connector->dpms = DRM_MODE_DPMS_OFF;
3666                 to_intel_encoder(connector->encoder)->connectors_active = false;
3667         }
3668 }
3669
3670 void intel_modeset_disable(struct drm_device *dev)
3671 {
3672         struct drm_crtc *crtc;
3673
3674         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3675                 if (crtc->enabled)
3676                         intel_crtc_disable(crtc);
3677         }
3678 }
3679
3680 void intel_encoder_noop(struct drm_encoder *encoder)
3681 {
3682 }
3683
3684 void intel_encoder_destroy(struct drm_encoder *encoder)
3685 {
3686         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3687
3688         drm_encoder_cleanup(encoder);
3689         kfree(intel_encoder);
3690 }
3691
3692 /* Simple dpms helper for encodres with just one connector, no cloning and only
3693  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3694  * state of the entire output pipe. */
3695 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3696 {
3697         if (mode == DRM_MODE_DPMS_ON) {
3698                 encoder->connectors_active = true;
3699
3700                 intel_crtc_update_dpms(encoder->base.crtc);
3701         } else {
3702                 encoder->connectors_active = false;
3703
3704                 intel_crtc_update_dpms(encoder->base.crtc);
3705         }
3706 }
3707
3708 /* Cross check the actual hw state with our own modeset state tracking (and it's
3709  * internal consistency). */
3710 static void intel_connector_check_state(struct intel_connector *connector)
3711 {
3712         if (connector->get_hw_state(connector)) {
3713                 struct intel_encoder *encoder = connector->encoder;
3714                 struct drm_crtc *crtc;
3715                 bool encoder_enabled;
3716                 enum pipe pipe;
3717
3718                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3719                               connector->base.base.id,
3720                               drm_get_connector_name(&connector->base));
3721
3722                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3723                      "wrong connector dpms state\n");
3724                 WARN(connector->base.encoder != &encoder->base,
3725                      "active connector not linked to encoder\n");
3726                 WARN(!encoder->connectors_active,
3727                      "encoder->connectors_active not set\n");
3728
3729                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3730                 WARN(!encoder_enabled, "encoder not enabled\n");
3731                 if (WARN_ON(!encoder->base.crtc))
3732                         return;
3733
3734                 crtc = encoder->base.crtc;
3735
3736                 WARN(!crtc->enabled, "crtc not enabled\n");
3737                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3738                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3739                      "encoder active on the wrong pipe\n");
3740         }
3741 }
3742
3743 /* Even simpler default implementation, if there's really no special case to
3744  * consider. */
3745 void intel_connector_dpms(struct drm_connector *connector, int mode)
3746 {
3747         struct intel_encoder *encoder = intel_attached_encoder(connector);
3748
3749         /* All the simple cases only support two dpms states. */
3750         if (mode != DRM_MODE_DPMS_ON)
3751                 mode = DRM_MODE_DPMS_OFF;
3752
3753         if (mode == connector->dpms)
3754                 return;
3755
3756         connector->dpms = mode;
3757
3758         /* Only need to change hw state when actually enabled */
3759         if (encoder->base.crtc)
3760                 intel_encoder_dpms(encoder, mode);
3761         else
3762                 WARN_ON(encoder->connectors_active != false);
3763
3764         intel_modeset_check_state(connector->dev);
3765 }
3766
3767 /* Simple connector->get_hw_state implementation for encoders that support only
3768  * one connector and no cloning and hence the encoder state determines the state
3769  * of the connector. */
3770 bool intel_connector_get_hw_state(struct intel_connector *connector)
3771 {
3772         enum pipe pipe = 0;
3773         struct intel_encoder *encoder = connector->encoder;
3774
3775         return encoder->get_hw_state(encoder, &pipe);
3776 }
3777
3778 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3779                                   const struct drm_display_mode *mode,
3780                                   struct drm_display_mode *adjusted_mode)
3781 {
3782         struct drm_device *dev = crtc->dev;
3783
3784         if (HAS_PCH_SPLIT(dev)) {
3785                 /* FDI link clock is fixed at 2.7G */
3786                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3787                         return false;
3788         }
3789
3790         /* All interlaced capable intel hw wants timings in frames. Note though
3791          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3792          * timings, so we need to be careful not to clobber these.*/
3793         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3794                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3795
3796         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3797          * with a hsync front porch of 0.
3798          */
3799         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3800                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3801                 return false;
3802
3803         return true;
3804 }
3805
3806 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3807 {
3808         return 400000; /* FIXME */
3809 }
3810
3811 static int i945_get_display_clock_speed(struct drm_device *dev)
3812 {
3813         return 400000;
3814 }
3815
3816 static int i915_get_display_clock_speed(struct drm_device *dev)
3817 {
3818         return 333000;
3819 }
3820
3821 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3822 {
3823         return 200000;
3824 }
3825
3826 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3827 {
3828         u16 gcfgc = 0;
3829
3830         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3831
3832         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3833                 return 133000;
3834         else {
3835                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3836                 case GC_DISPLAY_CLOCK_333_MHZ:
3837                         return 333000;
3838                 default:
3839                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3840                         return 190000;
3841                 }
3842         }
3843 }
3844
3845 static int i865_get_display_clock_speed(struct drm_device *dev)
3846 {
3847         return 266000;
3848 }
3849
3850 static int i855_get_display_clock_speed(struct drm_device *dev)
3851 {
3852         u16 hpllcc = 0;
3853         /* Assume that the hardware is in the high speed state.  This
3854          * should be the default.
3855          */
3856         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3857         case GC_CLOCK_133_200:
3858         case GC_CLOCK_100_200:
3859                 return 200000;
3860         case GC_CLOCK_166_250:
3861                 return 250000;
3862         case GC_CLOCK_100_133:
3863                 return 133000;
3864         }
3865
3866         /* Shouldn't happen */
3867         return 0;
3868 }
3869
3870 static int i830_get_display_clock_speed(struct drm_device *dev)
3871 {
3872         return 133000;
3873 }
3874
3875 struct fdi_m_n {
3876         u32        tu;
3877         u32        gmch_m;
3878         u32        gmch_n;
3879         u32        link_m;
3880         u32        link_n;
3881 };
3882
3883 static void
3884 fdi_reduce_ratio(u32 *num, u32 *den)
3885 {
3886         while (*num > 0xffffff || *den > 0xffffff) {
3887                 *num >>= 1;
3888                 *den >>= 1;
3889         }
3890 }
3891
3892 static void
3893 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3894                      int link_clock, struct fdi_m_n *m_n)
3895 {
3896         m_n->tu = 64; /* default size */
3897
3898         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3899         m_n->gmch_m = bits_per_pixel * pixel_clock;
3900         m_n->gmch_n = link_clock * nlanes * 8;
3901         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3902
3903         m_n->link_m = pixel_clock;
3904         m_n->link_n = link_clock;
3905         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3906 }
3907
3908 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3909 {
3910         if (i915_panel_use_ssc >= 0)
3911                 return i915_panel_use_ssc != 0;
3912         return dev_priv->lvds_use_ssc
3913                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3914 }
3915
3916 /**
3917  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3918  * @crtc: CRTC structure
3919  * @mode: requested mode
3920  *
3921  * A pipe may be connected to one or more outputs.  Based on the depth of the
3922  * attached framebuffer, choose a good color depth to use on the pipe.
3923  *
3924  * If possible, match the pipe depth to the fb depth.  In some cases, this
3925  * isn't ideal, because the connected output supports a lesser or restricted
3926  * set of depths.  Resolve that here:
3927  *    LVDS typically supports only 6bpc, so clamp down in that case
3928  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3929  *    Displays may support a restricted set as well, check EDID and clamp as
3930  *      appropriate.
3931  *    DP may want to dither down to 6bpc to fit larger modes
3932  *
3933  * RETURNS:
3934  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3935  * true if they don't match).
3936  */
3937 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3938                                          struct drm_framebuffer *fb,
3939                                          unsigned int *pipe_bpp,
3940                                          struct drm_display_mode *mode)
3941 {
3942         struct drm_device *dev = crtc->dev;
3943         struct drm_i915_private *dev_priv = dev->dev_private;
3944         struct drm_connector *connector;
3945         struct intel_encoder *intel_encoder;
3946         unsigned int display_bpc = UINT_MAX, bpc;
3947
3948         /* Walk the encoders & connectors on this crtc, get min bpc */
3949         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3950
3951                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3952                         unsigned int lvds_bpc;
3953
3954                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3955                             LVDS_A3_POWER_UP)
3956                                 lvds_bpc = 8;
3957                         else
3958                                 lvds_bpc = 6;
3959
3960                         if (lvds_bpc < display_bpc) {
3961                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3962                                 display_bpc = lvds_bpc;
3963                         }
3964                         continue;
3965                 }
3966
3967                 /* Not one of the known troublemakers, check the EDID */
3968                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3969                                     head) {
3970                         if (connector->encoder != &intel_encoder->base)
3971                                 continue;
3972
3973                         /* Don't use an invalid EDID bpc value */
3974                         if (connector->display_info.bpc &&
3975                             connector->display_info.bpc < display_bpc) {
3976                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3977                                 display_bpc = connector->display_info.bpc;
3978                         }
3979                 }
3980
3981                 /*
3982                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3983                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3984                  */
3985                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3986                         if (display_bpc > 8 && display_bpc < 12) {
3987                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3988                                 display_bpc = 12;
3989                         } else {
3990                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3991                                 display_bpc = 8;
3992                         }
3993                 }
3994         }
3995
3996         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3997                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3998                 display_bpc = 6;
3999         }
4000
4001         /*
4002          * We could just drive the pipe at the highest bpc all the time and
4003          * enable dithering as needed, but that costs bandwidth.  So choose
4004          * the minimum value that expresses the full color range of the fb but
4005          * also stays within the max display bpc discovered above.
4006          */
4007
4008         switch (fb->depth) {
4009         case 8:
4010                 bpc = 8; /* since we go through a colormap */
4011                 break;
4012         case 15:
4013         case 16:
4014                 bpc = 6; /* min is 18bpp */
4015                 break;
4016         case 24:
4017                 bpc = 8;
4018                 break;
4019         case 30:
4020                 bpc = 10;
4021                 break;
4022         case 48:
4023                 bpc = 12;
4024                 break;
4025         default:
4026                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4027                 bpc = min((unsigned int)8, display_bpc);
4028                 break;
4029         }
4030
4031         display_bpc = min(display_bpc, bpc);
4032
4033         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4034                       bpc, display_bpc);
4035
4036         *pipe_bpp = display_bpc * 3;
4037
4038         return display_bpc != bpc;
4039 }
4040
4041 static int vlv_get_refclk(struct drm_crtc *crtc)
4042 {
4043         struct drm_device *dev = crtc->dev;
4044         struct drm_i915_private *dev_priv = dev->dev_private;
4045         int refclk = 27000; /* for DP & HDMI */
4046
4047         return 100000; /* only one validated so far */
4048
4049         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4050                 refclk = 96000;
4051         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4052                 if (intel_panel_use_ssc(dev_priv))
4053                         refclk = 100000;
4054                 else
4055                         refclk = 96000;
4056         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4057                 refclk = 100000;
4058         }
4059
4060         return refclk;
4061 }
4062
4063 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4064 {
4065         struct drm_device *dev = crtc->dev;
4066         struct drm_i915_private *dev_priv = dev->dev_private;
4067         int refclk;
4068
4069         if (IS_VALLEYVIEW(dev)) {
4070                 refclk = vlv_get_refclk(crtc);
4071         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4072             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4073                 refclk = dev_priv->lvds_ssc_freq * 1000;
4074                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4075                               refclk / 1000);
4076         } else if (!IS_GEN2(dev)) {
4077                 refclk = 96000;
4078         } else {
4079                 refclk = 48000;
4080         }
4081
4082         return refclk;
4083 }
4084
4085 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4086                                       intel_clock_t *clock)
4087 {
4088         /* SDVO TV has fixed PLL values depend on its clock range,
4089            this mirrors vbios setting. */
4090         if (adjusted_mode->clock >= 100000
4091             && adjusted_mode->clock < 140500) {
4092                 clock->p1 = 2;
4093                 clock->p2 = 10;
4094                 clock->n = 3;
4095                 clock->m1 = 16;
4096                 clock->m2 = 8;
4097         } else if (adjusted_mode->clock >= 140500
4098                    && adjusted_mode->clock <= 200000) {
4099                 clock->p1 = 1;
4100                 clock->p2 = 10;
4101                 clock->n = 6;
4102                 clock->m1 = 12;
4103                 clock->m2 = 8;
4104         }
4105 }
4106
4107 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4108                                      intel_clock_t *clock,
4109                                      intel_clock_t *reduced_clock)
4110 {
4111         struct drm_device *dev = crtc->dev;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4114         int pipe = intel_crtc->pipe;
4115         u32 fp, fp2 = 0;
4116
4117         if (IS_PINEVIEW(dev)) {
4118                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4119                 if (reduced_clock)
4120                         fp2 = (1 << reduced_clock->n) << 16 |
4121                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4122         } else {
4123                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4124                 if (reduced_clock)
4125                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4126                                 reduced_clock->m2;
4127         }
4128
4129         I915_WRITE(FP0(pipe), fp);
4130
4131         intel_crtc->lowfreq_avail = false;
4132         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4133             reduced_clock && i915_powersave) {
4134                 I915_WRITE(FP1(pipe), fp2);
4135                 intel_crtc->lowfreq_avail = true;
4136         } else {
4137                 I915_WRITE(FP1(pipe), fp);
4138         }
4139 }
4140
4141 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4142                               struct drm_display_mode *adjusted_mode)
4143 {
4144         struct drm_device *dev = crtc->dev;
4145         struct drm_i915_private *dev_priv = dev->dev_private;
4146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4147         int pipe = intel_crtc->pipe;
4148         u32 temp;
4149
4150         temp = I915_READ(LVDS);
4151         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4152         if (pipe == 1) {
4153                 temp |= LVDS_PIPEB_SELECT;
4154         } else {
4155                 temp &= ~LVDS_PIPEB_SELECT;
4156         }
4157         /* set the corresponsding LVDS_BORDER bit */
4158         temp |= dev_priv->lvds_border_bits;
4159         /* Set the B0-B3 data pairs corresponding to whether we're going to
4160          * set the DPLLs for dual-channel mode or not.
4161          */
4162         if (clock->p2 == 7)
4163                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4164         else
4165                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4166
4167         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4168          * appropriately here, but we need to look more thoroughly into how
4169          * panels behave in the two modes.
4170          */
4171         /* set the dithering flag on LVDS as needed */
4172         if (INTEL_INFO(dev)->gen >= 4) {
4173                 if (dev_priv->lvds_dither)
4174                         temp |= LVDS_ENABLE_DITHER;
4175                 else
4176                         temp &= ~LVDS_ENABLE_DITHER;
4177         }
4178         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4179         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4180                 temp |= LVDS_HSYNC_POLARITY;
4181         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4182                 temp |= LVDS_VSYNC_POLARITY;
4183         I915_WRITE(LVDS, temp);
4184 }
4185
4186 static void vlv_update_pll(struct drm_crtc *crtc,
4187                            struct drm_display_mode *mode,
4188                            struct drm_display_mode *adjusted_mode,
4189                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4190                            int num_connectors)
4191 {
4192         struct drm_device *dev = crtc->dev;
4193         struct drm_i915_private *dev_priv = dev->dev_private;
4194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4195         int pipe = intel_crtc->pipe;
4196         u32 dpll, mdiv, pdiv;
4197         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4198         bool is_sdvo;
4199         u32 temp;
4200
4201         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4202                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4203
4204         dpll = DPLL_VGA_MODE_DIS;
4205         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4206         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4207         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4208
4209         I915_WRITE(DPLL(pipe), dpll);
4210         POSTING_READ(DPLL(pipe));
4211
4212         bestn = clock->n;
4213         bestm1 = clock->m1;
4214         bestm2 = clock->m2;
4215         bestp1 = clock->p1;
4216         bestp2 = clock->p2;
4217
4218         /*
4219          * In Valleyview PLL and program lane counter registers are exposed
4220          * through DPIO interface
4221          */
4222         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4223         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4224         mdiv |= ((bestn << DPIO_N_SHIFT));
4225         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4226         mdiv |= (1 << DPIO_K_SHIFT);
4227         mdiv |= DPIO_ENABLE_CALIBRATION;
4228         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4229
4230         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4231
4232         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4233                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4234                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4235                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4236         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4237
4238         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4239
4240         dpll |= DPLL_VCO_ENABLE;
4241         I915_WRITE(DPLL(pipe), dpll);
4242         POSTING_READ(DPLL(pipe));
4243         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4244                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4245
4246         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4247
4248         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4249                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4250
4251         I915_WRITE(DPLL(pipe), dpll);
4252
4253         /* Wait for the clocks to stabilize. */
4254         POSTING_READ(DPLL(pipe));
4255         udelay(150);
4256
4257         temp = 0;
4258         if (is_sdvo) {
4259                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4260                 if (temp > 1)
4261                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4262                 else
4263                         temp = 0;
4264         }
4265         I915_WRITE(DPLL_MD(pipe), temp);
4266         POSTING_READ(DPLL_MD(pipe));
4267
4268         /* Now program lane control registers */
4269         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4270                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4271         {
4272                 temp = 0x1000C4;
4273                 if(pipe == 1)
4274                         temp |= (1 << 21);
4275                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4276         }
4277         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4278         {
4279                 temp = 0x1000C4;
4280                 if(pipe == 1)
4281                         temp |= (1 << 21);
4282                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4283         }
4284 }
4285
4286 static void i9xx_update_pll(struct drm_crtc *crtc,
4287                             struct drm_display_mode *mode,
4288                             struct drm_display_mode *adjusted_mode,
4289                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4290                             int num_connectors)
4291 {
4292         struct drm_device *dev = crtc->dev;
4293         struct drm_i915_private *dev_priv = dev->dev_private;
4294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4295         int pipe = intel_crtc->pipe;
4296         u32 dpll;
4297         bool is_sdvo;
4298
4299         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4300
4301         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4302                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4303
4304         dpll = DPLL_VGA_MODE_DIS;
4305
4306         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4307                 dpll |= DPLLB_MODE_LVDS;
4308         else
4309                 dpll |= DPLLB_MODE_DAC_SERIAL;
4310         if (is_sdvo) {
4311                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4312                 if (pixel_multiplier > 1) {
4313                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4314                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4315                 }
4316                 dpll |= DPLL_DVO_HIGH_SPEED;
4317         }
4318         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4319                 dpll |= DPLL_DVO_HIGH_SPEED;
4320
4321         /* compute bitmask from p1 value */
4322         if (IS_PINEVIEW(dev))
4323                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4324         else {
4325                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4326                 if (IS_G4X(dev) && reduced_clock)
4327                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4328         }
4329         switch (clock->p2) {
4330         case 5:
4331                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4332                 break;
4333         case 7:
4334                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4335                 break;
4336         case 10:
4337                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4338                 break;
4339         case 14:
4340                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4341                 break;
4342         }
4343         if (INTEL_INFO(dev)->gen >= 4)
4344                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4345
4346         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4347                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4348         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4349                 /* XXX: just matching BIOS for now */
4350                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4351                 dpll |= 3;
4352         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4353                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4354                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4355         else
4356                 dpll |= PLL_REF_INPUT_DREFCLK;
4357
4358         dpll |= DPLL_VCO_ENABLE;
4359         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4360         POSTING_READ(DPLL(pipe));
4361         udelay(150);
4362
4363         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4364          * This is an exception to the general rule that mode_set doesn't turn
4365          * things on.
4366          */
4367         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4368                 intel_update_lvds(crtc, clock, adjusted_mode);
4369
4370         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4371                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4372
4373         I915_WRITE(DPLL(pipe), dpll);
4374
4375         /* Wait for the clocks to stabilize. */
4376         POSTING_READ(DPLL(pipe));
4377         udelay(150);
4378
4379         if (INTEL_INFO(dev)->gen >= 4) {
4380                 u32 temp = 0;
4381                 if (is_sdvo) {
4382                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4383                         if (temp > 1)
4384                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4385                         else
4386                                 temp = 0;
4387                 }
4388                 I915_WRITE(DPLL_MD(pipe), temp);
4389         } else {
4390                 /* The pixel multiplier can only be updated once the
4391                  * DPLL is enabled and the clocks are stable.
4392                  *
4393                  * So write it again.
4394                  */
4395                 I915_WRITE(DPLL(pipe), dpll);
4396         }
4397 }
4398
4399 static void i8xx_update_pll(struct drm_crtc *crtc,
4400                             struct drm_display_mode *adjusted_mode,
4401                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4402                             int num_connectors)
4403 {
4404         struct drm_device *dev = crtc->dev;
4405         struct drm_i915_private *dev_priv = dev->dev_private;
4406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4407         int pipe = intel_crtc->pipe;
4408         u32 dpll;
4409
4410         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4411
4412         dpll = DPLL_VGA_MODE_DIS;
4413
4414         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4415                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4416         } else {
4417                 if (clock->p1 == 2)
4418                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4419                 else
4420                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4421                 if (clock->p2 == 4)
4422                         dpll |= PLL_P2_DIVIDE_BY_4;
4423         }
4424
4425         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4426                 /* XXX: just matching BIOS for now */
4427                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4428                 dpll |= 3;
4429         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4430                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4431                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4432         else
4433                 dpll |= PLL_REF_INPUT_DREFCLK;
4434
4435         dpll |= DPLL_VCO_ENABLE;
4436         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4437         POSTING_READ(DPLL(pipe));
4438         udelay(150);
4439
4440         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4441          * This is an exception to the general rule that mode_set doesn't turn
4442          * things on.
4443          */
4444         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4445                 intel_update_lvds(crtc, clock, adjusted_mode);
4446
4447         I915_WRITE(DPLL(pipe), dpll);
4448
4449         /* Wait for the clocks to stabilize. */
4450         POSTING_READ(DPLL(pipe));
4451         udelay(150);
4452
4453         /* The pixel multiplier can only be updated once the
4454          * DPLL is enabled and the clocks are stable.
4455          *
4456          * So write it again.
4457          */
4458         I915_WRITE(DPLL(pipe), dpll);
4459 }
4460
4461 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4462                                    struct drm_display_mode *mode,
4463                                    struct drm_display_mode *adjusted_mode)
4464 {
4465         struct drm_device *dev = intel_crtc->base.dev;
4466         struct drm_i915_private *dev_priv = dev->dev_private;
4467         enum pipe pipe = intel_crtc->pipe;
4468         uint32_t vsyncshift;
4469
4470         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4471                 /* the chip adds 2 halflines automatically */
4472                 adjusted_mode->crtc_vtotal -= 1;
4473                 adjusted_mode->crtc_vblank_end -= 1;
4474                 vsyncshift = adjusted_mode->crtc_hsync_start
4475                              - adjusted_mode->crtc_htotal / 2;
4476         } else {
4477                 vsyncshift = 0;
4478         }
4479
4480         if (INTEL_INFO(dev)->gen > 3)
4481                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4482
4483         I915_WRITE(HTOTAL(pipe),
4484                    (adjusted_mode->crtc_hdisplay - 1) |
4485                    ((adjusted_mode->crtc_htotal - 1) << 16));
4486         I915_WRITE(HBLANK(pipe),
4487                    (adjusted_mode->crtc_hblank_start - 1) |
4488                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4489         I915_WRITE(HSYNC(pipe),
4490                    (adjusted_mode->crtc_hsync_start - 1) |
4491                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4492
4493         I915_WRITE(VTOTAL(pipe),
4494                    (adjusted_mode->crtc_vdisplay - 1) |
4495                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4496         I915_WRITE(VBLANK(pipe),
4497                    (adjusted_mode->crtc_vblank_start - 1) |
4498                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4499         I915_WRITE(VSYNC(pipe),
4500                    (adjusted_mode->crtc_vsync_start - 1) |
4501                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4502
4503         /* pipesrc controls the size that is scaled from, which should
4504          * always be the user's requested size.
4505          */
4506         I915_WRITE(PIPESRC(pipe),
4507                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4508 }
4509
4510 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4511                               struct drm_display_mode *mode,
4512                               struct drm_display_mode *adjusted_mode,
4513                               int x, int y,
4514                               struct drm_framebuffer *fb)
4515 {
4516         struct drm_device *dev = crtc->dev;
4517         struct drm_i915_private *dev_priv = dev->dev_private;
4518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4519         int pipe = intel_crtc->pipe;
4520         int plane = intel_crtc->plane;
4521         int refclk, num_connectors = 0;
4522         intel_clock_t clock, reduced_clock;
4523         u32 dspcntr, pipeconf;
4524         bool ok, has_reduced_clock = false, is_sdvo = false;
4525         bool is_lvds = false, is_tv = false, is_dp = false;
4526         struct intel_encoder *encoder;
4527         const intel_limit_t *limit;
4528         int ret;
4529
4530         for_each_encoder_on_crtc(dev, crtc, encoder) {
4531                 switch (encoder->type) {
4532                 case INTEL_OUTPUT_LVDS:
4533                         is_lvds = true;
4534                         break;
4535                 case INTEL_OUTPUT_SDVO:
4536                 case INTEL_OUTPUT_HDMI:
4537                         is_sdvo = true;
4538                         if (encoder->needs_tv_clock)
4539                                 is_tv = true;
4540                         break;
4541                 case INTEL_OUTPUT_TVOUT:
4542                         is_tv = true;
4543                         break;
4544                 case INTEL_OUTPUT_DISPLAYPORT:
4545                         is_dp = true;
4546                         break;
4547                 }
4548
4549                 num_connectors++;
4550         }
4551
4552         refclk = i9xx_get_refclk(crtc, num_connectors);
4553
4554         /*
4555          * Returns a set of divisors for the desired target clock with the given
4556          * refclk, or FALSE.  The returned values represent the clock equation:
4557          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4558          */
4559         limit = intel_limit(crtc, refclk);
4560         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4561                              &clock);
4562         if (!ok) {
4563                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4564                 return -EINVAL;
4565         }
4566
4567         /* Ensure that the cursor is valid for the new mode before changing... */
4568         intel_crtc_update_cursor(crtc, true);
4569
4570         if (is_lvds && dev_priv->lvds_downclock_avail) {
4571                 /*
4572                  * Ensure we match the reduced clock's P to the target clock.
4573                  * If the clocks don't match, we can't switch the display clock
4574                  * by using the FP0/FP1. In such case we will disable the LVDS
4575                  * downclock feature.
4576                 */
4577                 has_reduced_clock = limit->find_pll(limit, crtc,
4578                                                     dev_priv->lvds_downclock,
4579                                                     refclk,
4580                                                     &clock,
4581                                                     &reduced_clock);
4582         }
4583
4584         if (is_sdvo && is_tv)
4585                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4586
4587         if (IS_GEN2(dev))
4588                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4589                                 has_reduced_clock ? &reduced_clock : NULL,
4590                                 num_connectors);
4591         else if (IS_VALLEYVIEW(dev))
4592                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4593                                 has_reduced_clock ? &reduced_clock : NULL,
4594                                 num_connectors);
4595         else
4596                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4597                                 has_reduced_clock ? &reduced_clock : NULL,
4598                                 num_connectors);
4599
4600         /* setup pipeconf */
4601         pipeconf = I915_READ(PIPECONF(pipe));
4602
4603         /* Set up the display plane register */
4604         dspcntr = DISPPLANE_GAMMA_ENABLE;
4605
4606         if (pipe == 0)
4607                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4608         else
4609                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4610
4611         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4612                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4613                  * core speed.
4614                  *
4615                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4616                  * pipe == 0 check?
4617                  */
4618                 if (mode->clock >
4619                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4620                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4621                 else
4622                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4623         }
4624
4625         /* default to 8bpc */
4626         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4627         if (is_dp) {
4628                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4629                         pipeconf |= PIPECONF_BPP_6 |
4630                                     PIPECONF_DITHER_EN |
4631                                     PIPECONF_DITHER_TYPE_SP;
4632                 }
4633         }
4634
4635         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4636                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4637                         pipeconf |= PIPECONF_BPP_6 |
4638                                         PIPECONF_ENABLE |
4639                                         I965_PIPECONF_ACTIVE;
4640                 }
4641         }
4642
4643         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4644         drm_mode_debug_printmodeline(mode);
4645
4646         if (HAS_PIPE_CXSR(dev)) {
4647                 if (intel_crtc->lowfreq_avail) {
4648                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4649                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4650                 } else {
4651                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4652                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4653                 }
4654         }
4655
4656         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4657         if (!IS_GEN2(dev) &&
4658             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4659                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4660         else
4661                 pipeconf |= PIPECONF_PROGRESSIVE;
4662
4663         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4664
4665         /* pipesrc and dspsize control the size that is scaled from,
4666          * which should always be the user's requested size.
4667          */
4668         I915_WRITE(DSPSIZE(plane),
4669                    ((mode->vdisplay - 1) << 16) |
4670                    (mode->hdisplay - 1));
4671         I915_WRITE(DSPPOS(plane), 0);
4672
4673         I915_WRITE(PIPECONF(pipe), pipeconf);
4674         POSTING_READ(PIPECONF(pipe));
4675         intel_enable_pipe(dev_priv, pipe, false);
4676
4677         intel_wait_for_vblank(dev, pipe);
4678
4679         I915_WRITE(DSPCNTR(plane), dspcntr);
4680         POSTING_READ(DSPCNTR(plane));
4681
4682         ret = intel_pipe_set_base(crtc, x, y, fb);
4683
4684         intel_update_watermarks(dev);
4685
4686         return ret;
4687 }
4688
4689 /*
4690  * Initialize reference clocks when the driver loads
4691  */
4692 void ironlake_init_pch_refclk(struct drm_device *dev)
4693 {
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         struct drm_mode_config *mode_config = &dev->mode_config;
4696         struct intel_encoder *encoder;
4697         u32 temp;
4698         bool has_lvds = false;
4699         bool has_cpu_edp = false;
4700         bool has_pch_edp = false;
4701         bool has_panel = false;
4702         bool has_ck505 = false;
4703         bool can_ssc = false;
4704
4705         /* We need to take the global config into account */
4706         list_for_each_entry(encoder, &mode_config->encoder_list,
4707                             base.head) {
4708                 switch (encoder->type) {
4709                 case INTEL_OUTPUT_LVDS:
4710                         has_panel = true;
4711                         has_lvds = true;
4712                         break;
4713                 case INTEL_OUTPUT_EDP:
4714                         has_panel = true;
4715                         if (intel_encoder_is_pch_edp(&encoder->base))
4716                                 has_pch_edp = true;
4717                         else
4718                                 has_cpu_edp = true;
4719                         break;
4720                 }
4721         }
4722
4723         if (HAS_PCH_IBX(dev)) {
4724                 has_ck505 = dev_priv->display_clock_mode;
4725                 can_ssc = has_ck505;
4726         } else {
4727                 has_ck505 = false;
4728                 can_ssc = true;
4729         }
4730
4731         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4732                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4733                       has_ck505);
4734
4735         /* Ironlake: try to setup display ref clock before DPLL
4736          * enabling. This is only under driver's control after
4737          * PCH B stepping, previous chipset stepping should be
4738          * ignoring this setting.
4739          */
4740         temp = I915_READ(PCH_DREF_CONTROL);
4741         /* Always enable nonspread source */
4742         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4743
4744         if (has_ck505)
4745                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4746         else
4747                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4748
4749         if (has_panel) {
4750                 temp &= ~DREF_SSC_SOURCE_MASK;
4751                 temp |= DREF_SSC_SOURCE_ENABLE;
4752
4753                 /* SSC must be turned on before enabling the CPU output  */
4754                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4755                         DRM_DEBUG_KMS("Using SSC on panel\n");
4756                         temp |= DREF_SSC1_ENABLE;
4757                 } else
4758                         temp &= ~DREF_SSC1_ENABLE;
4759
4760                 /* Get SSC going before enabling the outputs */
4761                 I915_WRITE(PCH_DREF_CONTROL, temp);
4762                 POSTING_READ(PCH_DREF_CONTROL);
4763                 udelay(200);
4764
4765                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4766
4767                 /* Enable CPU source on CPU attached eDP */
4768                 if (has_cpu_edp) {
4769                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4770                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4771                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4772                         }
4773                         else
4774                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4775                 } else
4776                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4777
4778                 I915_WRITE(PCH_DREF_CONTROL, temp);
4779                 POSTING_READ(PCH_DREF_CONTROL);
4780                 udelay(200);
4781         } else {
4782                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4783
4784                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4785
4786                 /* Turn off CPU output */
4787                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4788
4789                 I915_WRITE(PCH_DREF_CONTROL, temp);
4790                 POSTING_READ(PCH_DREF_CONTROL);
4791                 udelay(200);
4792
4793                 /* Turn off the SSC source */
4794                 temp &= ~DREF_SSC_SOURCE_MASK;
4795                 temp |= DREF_SSC_SOURCE_DISABLE;
4796
4797                 /* Turn off SSC1 */
4798                 temp &= ~ DREF_SSC1_ENABLE;
4799
4800                 I915_WRITE(PCH_DREF_CONTROL, temp);
4801                 POSTING_READ(PCH_DREF_CONTROL);
4802                 udelay(200);
4803         }
4804 }
4805
4806 static int ironlake_get_refclk(struct drm_crtc *crtc)
4807 {
4808         struct drm_device *dev = crtc->dev;
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810         struct intel_encoder *encoder;
4811         struct intel_encoder *edp_encoder = NULL;
4812         int num_connectors = 0;
4813         bool is_lvds = false;
4814
4815         for_each_encoder_on_crtc(dev, crtc, encoder) {
4816                 switch (encoder->type) {
4817                 case INTEL_OUTPUT_LVDS:
4818                         is_lvds = true;
4819                         break;
4820                 case INTEL_OUTPUT_EDP:
4821                         edp_encoder = encoder;
4822                         break;
4823                 }
4824                 num_connectors++;
4825         }
4826
4827         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4828                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4829                               dev_priv->lvds_ssc_freq);
4830                 return dev_priv->lvds_ssc_freq * 1000;
4831         }
4832
4833         return 120000;
4834 }
4835
4836 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4837                                   struct drm_display_mode *adjusted_mode,
4838                                   bool dither)
4839 {
4840         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842         int pipe = intel_crtc->pipe;
4843         uint32_t val;
4844
4845         val = I915_READ(PIPECONF(pipe));
4846
4847         val &= ~PIPE_BPC_MASK;
4848         switch (intel_crtc->bpp) {
4849         case 18:
4850                 val |= PIPE_6BPC;
4851                 break;
4852         case 24:
4853                 val |= PIPE_8BPC;
4854                 break;
4855         case 30:
4856                 val |= PIPE_10BPC;
4857                 break;
4858         case 36:
4859                 val |= PIPE_12BPC;
4860                 break;
4861         default:
4862                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4863                 BUG();
4864         }
4865
4866         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4867         if (dither)
4868                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4869
4870         val &= ~PIPECONF_INTERLACE_MASK;
4871         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4872                 val |= PIPECONF_INTERLACED_ILK;
4873         else
4874                 val |= PIPECONF_PROGRESSIVE;
4875
4876         I915_WRITE(PIPECONF(pipe), val);
4877         POSTING_READ(PIPECONF(pipe));
4878 }
4879
4880 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4881                                  struct drm_display_mode *adjusted_mode,
4882                                  bool dither)
4883 {
4884         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4886         int pipe = intel_crtc->pipe;
4887         uint32_t val;
4888
4889         val = I915_READ(PIPECONF(pipe));
4890
4891         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4892         if (dither)
4893                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4894
4895         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4896         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4897                 val |= PIPECONF_INTERLACED_ILK;
4898         else
4899                 val |= PIPECONF_PROGRESSIVE;
4900
4901         I915_WRITE(PIPECONF(pipe), val);
4902         POSTING_READ(PIPECONF(pipe));
4903 }
4904
4905 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4906                                     struct drm_display_mode *adjusted_mode,
4907                                     intel_clock_t *clock,
4908                                     bool *has_reduced_clock,
4909                                     intel_clock_t *reduced_clock)
4910 {
4911         struct drm_device *dev = crtc->dev;
4912         struct drm_i915_private *dev_priv = dev->dev_private;
4913         struct intel_encoder *intel_encoder;
4914         int refclk;
4915         const intel_limit_t *limit;
4916         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4917
4918         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4919                 switch (intel_encoder->type) {
4920                 case INTEL_OUTPUT_LVDS:
4921                         is_lvds = true;
4922                         break;
4923                 case INTEL_OUTPUT_SDVO:
4924                 case INTEL_OUTPUT_HDMI:
4925                         is_sdvo = true;
4926                         if (intel_encoder->needs_tv_clock)
4927                                 is_tv = true;
4928                         break;
4929                 case INTEL_OUTPUT_TVOUT:
4930                         is_tv = true;
4931                         break;
4932                 }
4933         }
4934
4935         refclk = ironlake_get_refclk(crtc);
4936
4937         /*
4938          * Returns a set of divisors for the desired target clock with the given
4939          * refclk, or FALSE.  The returned values represent the clock equation:
4940          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4941          */
4942         limit = intel_limit(crtc, refclk);
4943         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4944                               clock);
4945         if (!ret)
4946                 return false;
4947
4948         if (is_lvds && dev_priv->lvds_downclock_avail) {
4949                 /*
4950                  * Ensure we match the reduced clock's P to the target clock.
4951                  * If the clocks don't match, we can't switch the display clock
4952                  * by using the FP0/FP1. In such case we will disable the LVDS
4953                  * downclock feature.
4954                 */
4955                 *has_reduced_clock = limit->find_pll(limit, crtc,
4956                                                      dev_priv->lvds_downclock,
4957                                                      refclk,
4958                                                      clock,
4959                                                      reduced_clock);
4960         }
4961
4962         if (is_sdvo && is_tv)
4963                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4964
4965         return true;
4966 }
4967
4968 static void ironlake_set_m_n(struct drm_crtc *crtc,
4969                              struct drm_display_mode *mode,
4970                              struct drm_display_mode *adjusted_mode)
4971 {
4972         struct drm_device *dev = crtc->dev;
4973         struct drm_i915_private *dev_priv = dev->dev_private;
4974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4975         enum pipe pipe = intel_crtc->pipe;
4976         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4977         struct fdi_m_n m_n = {0};
4978         int target_clock, pixel_multiplier, lane, link_bw;
4979         bool is_dp = false, is_cpu_edp = false;
4980
4981         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4982                 switch (intel_encoder->type) {
4983                 case INTEL_OUTPUT_DISPLAYPORT:
4984                         is_dp = true;
4985                         break;
4986                 case INTEL_OUTPUT_EDP:
4987                         is_dp = true;
4988                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4989                                 is_cpu_edp = true;
4990                         edp_encoder = intel_encoder;
4991                         break;
4992                 }
4993         }
4994
4995         /* FDI link */
4996         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4997         lane = 0;
4998         /* CPU eDP doesn't require FDI link, so just set DP M/N
4999            according to current link config */
5000         if (is_cpu_edp) {
5001                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5002         } else {
5003                 /* FDI is a binary signal running at ~2.7GHz, encoding
5004                  * each output octet as 10 bits. The actual frequency
5005                  * is stored as a divider into a 100MHz clock, and the
5006                  * mode pixel clock is stored in units of 1KHz.
5007                  * Hence the bw of each lane in terms of the mode signal
5008                  * is:
5009                  */
5010                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5011         }
5012
5013         /* [e]DP over FDI requires target mode clock instead of link clock. */
5014         if (edp_encoder)
5015                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5016         else if (is_dp)
5017                 target_clock = mode->clock;
5018         else
5019                 target_clock = adjusted_mode->clock;
5020
5021         if (!lane) {
5022                 /*
5023                  * Account for spread spectrum to avoid
5024                  * oversubscribing the link. Max center spread
5025                  * is 2.5%; use 5% for safety's sake.
5026                  */
5027                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5028                 lane = bps / (link_bw * 8) + 1;
5029         }
5030
5031         intel_crtc->fdi_lanes = lane;
5032
5033         if (pixel_multiplier > 1)
5034                 link_bw *= pixel_multiplier;
5035         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5036                              &m_n);
5037
5038         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5039         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5040         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5041         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5042 }
5043
5044 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5045                                       struct drm_display_mode *adjusted_mode,
5046                                       intel_clock_t *clock, u32 fp)
5047 {
5048         struct drm_crtc *crtc = &intel_crtc->base;
5049         struct drm_device *dev = crtc->dev;
5050         struct drm_i915_private *dev_priv = dev->dev_private;
5051         struct intel_encoder *intel_encoder;
5052         uint32_t dpll;
5053         int factor, pixel_multiplier, num_connectors = 0;
5054         bool is_lvds = false, is_sdvo = false, is_tv = false;
5055         bool is_dp = false, is_cpu_edp = false;
5056
5057         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5058                 switch (intel_encoder->type) {
5059                 case INTEL_OUTPUT_LVDS:
5060                         is_lvds = true;
5061                         break;
5062                 case INTEL_OUTPUT_SDVO:
5063                 case INTEL_OUTPUT_HDMI:
5064                         is_sdvo = true;
5065                         if (intel_encoder->needs_tv_clock)
5066                                 is_tv = true;
5067                         break;
5068                 case INTEL_OUTPUT_TVOUT:
5069                         is_tv = true;
5070                         break;
5071                 case INTEL_OUTPUT_DISPLAYPORT:
5072                         is_dp = true;
5073                         break;
5074                 case INTEL_OUTPUT_EDP:
5075                         is_dp = true;
5076                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5077                                 is_cpu_edp = true;
5078                         break;
5079                 }
5080
5081                 num_connectors++;
5082         }
5083
5084         /* Enable autotuning of the PLL clock (if permissible) */
5085         factor = 21;
5086         if (is_lvds) {
5087                 if ((intel_panel_use_ssc(dev_priv) &&
5088                      dev_priv->lvds_ssc_freq == 100) ||
5089                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5090                         factor = 25;
5091         } else if (is_sdvo && is_tv)
5092                 factor = 20;
5093
5094         if (clock->m < factor * clock->n)
5095                 fp |= FP_CB_TUNE;
5096
5097         dpll = 0;
5098
5099         if (is_lvds)
5100                 dpll |= DPLLB_MODE_LVDS;
5101         else
5102                 dpll |= DPLLB_MODE_DAC_SERIAL;
5103         if (is_sdvo) {
5104                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5105                 if (pixel_multiplier > 1) {
5106                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5107                 }
5108                 dpll |= DPLL_DVO_HIGH_SPEED;
5109         }
5110         if (is_dp && !is_cpu_edp)
5111                 dpll |= DPLL_DVO_HIGH_SPEED;
5112
5113         /* compute bitmask from p1 value */
5114         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5115         /* also FPA1 */
5116         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5117
5118         switch (clock->p2) {
5119         case 5:
5120                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5121                 break;
5122         case 7:
5123                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5124                 break;
5125         case 10:
5126                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5127                 break;
5128         case 14:
5129                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5130                 break;
5131         }
5132
5133         if (is_sdvo && is_tv)
5134                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5135         else if (is_tv)
5136                 /* XXX: just matching BIOS for now */
5137                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5138                 dpll |= 3;
5139         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5140                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5141         else
5142                 dpll |= PLL_REF_INPUT_DREFCLK;
5143
5144         return dpll;
5145 }
5146
5147 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5148                                   struct drm_display_mode *mode,
5149                                   struct drm_display_mode *adjusted_mode,
5150                                   int x, int y,
5151                                   struct drm_framebuffer *fb)
5152 {
5153         struct drm_device *dev = crtc->dev;
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5156         int pipe = intel_crtc->pipe;
5157         int plane = intel_crtc->plane;
5158         int num_connectors = 0;
5159         intel_clock_t clock, reduced_clock;
5160         u32 dpll, fp = 0, fp2 = 0;
5161         bool ok, has_reduced_clock = false;
5162         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5163         struct intel_encoder *encoder;
5164         u32 temp;
5165         int ret;
5166         bool dither;
5167
5168         for_each_encoder_on_crtc(dev, crtc, encoder) {
5169                 switch (encoder->type) {
5170                 case INTEL_OUTPUT_LVDS:
5171                         is_lvds = true;
5172                         break;
5173                 case INTEL_OUTPUT_DISPLAYPORT:
5174                         is_dp = true;
5175                         break;
5176                 case INTEL_OUTPUT_EDP:
5177                         is_dp = true;
5178                         if (!intel_encoder_is_pch_edp(&encoder->base))
5179                                 is_cpu_edp = true;
5180                         break;
5181                 }
5182
5183                 num_connectors++;
5184         }
5185
5186         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5187              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5188
5189         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5190                                      &has_reduced_clock, &reduced_clock);
5191         if (!ok) {
5192                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5193                 return -EINVAL;
5194         }
5195
5196         /* Ensure that the cursor is valid for the new mode before changing... */
5197         intel_crtc_update_cursor(crtc, true);
5198
5199         /* determine panel color depth */
5200         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5201         if (is_lvds && dev_priv->lvds_dither)
5202                 dither = true;
5203
5204         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5205         if (has_reduced_clock)
5206                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5207                         reduced_clock.m2;
5208
5209         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5210
5211         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5212         drm_mode_debug_printmodeline(mode);
5213
5214         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5215         if (!is_cpu_edp) {
5216                 struct intel_pch_pll *pll;
5217
5218                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5219                 if (pll == NULL) {
5220                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5221                                          pipe);
5222                         return -EINVAL;
5223                 }
5224         } else
5225                 intel_put_pch_pll(intel_crtc);
5226
5227         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5228          * This is an exception to the general rule that mode_set doesn't turn
5229          * things on.
5230          */
5231         if (is_lvds) {
5232                 temp = I915_READ(PCH_LVDS);
5233                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5234                 if (HAS_PCH_CPT(dev)) {
5235                         temp &= ~PORT_TRANS_SEL_MASK;
5236                         temp |= PORT_TRANS_SEL_CPT(pipe);
5237                 } else {
5238                         if (pipe == 1)
5239                                 temp |= LVDS_PIPEB_SELECT;
5240                         else
5241                                 temp &= ~LVDS_PIPEB_SELECT;
5242                 }
5243
5244                 /* set the corresponsding LVDS_BORDER bit */
5245                 temp |= dev_priv->lvds_border_bits;
5246                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5247                  * set the DPLLs for dual-channel mode or not.
5248                  */
5249                 if (clock.p2 == 7)
5250                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5251                 else
5252                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5253
5254                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5255                  * appropriately here, but we need to look more thoroughly into how
5256                  * panels behave in the two modes.
5257                  */
5258                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5259                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5260                         temp |= LVDS_HSYNC_POLARITY;
5261                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5262                         temp |= LVDS_VSYNC_POLARITY;
5263                 I915_WRITE(PCH_LVDS, temp);
5264         }
5265
5266         if (is_dp && !is_cpu_edp) {
5267                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5268         } else {
5269                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5270                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5271                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5272                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5273                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5274         }
5275
5276         if (intel_crtc->pch_pll) {
5277                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5278
5279                 /* Wait for the clocks to stabilize. */
5280                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5281                 udelay(150);
5282
5283                 /* The pixel multiplier can only be updated once the
5284                  * DPLL is enabled and the clocks are stable.
5285                  *
5286                  * So write it again.
5287                  */
5288                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5289         }
5290
5291         intel_crtc->lowfreq_avail = false;
5292         if (intel_crtc->pch_pll) {
5293                 if (is_lvds && has_reduced_clock && i915_powersave) {
5294                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5295                         intel_crtc->lowfreq_avail = true;
5296                 } else {
5297                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5298                 }
5299         }
5300
5301         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5302
5303         ironlake_set_m_n(crtc, mode, adjusted_mode);
5304
5305         if (is_cpu_edp)
5306                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5307
5308         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5309
5310         intel_wait_for_vblank(dev, pipe);
5311
5312         /* Set up the display plane register */
5313         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5314         POSTING_READ(DSPCNTR(plane));
5315
5316         ret = intel_pipe_set_base(crtc, x, y, fb);
5317
5318         intel_update_watermarks(dev);
5319
5320         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5321
5322         return ret;
5323 }
5324
5325 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5326                                  struct drm_display_mode *mode,
5327                                  struct drm_display_mode *adjusted_mode,
5328                                  int x, int y,
5329                                  struct drm_framebuffer *fb)
5330 {
5331         struct drm_device *dev = crtc->dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5334         int pipe = intel_crtc->pipe;
5335         int plane = intel_crtc->plane;
5336         int num_connectors = 0;
5337         intel_clock_t clock, reduced_clock;
5338         u32 dpll = 0, fp = 0, fp2 = 0;
5339         bool ok, has_reduced_clock = false;
5340         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5341         struct intel_encoder *encoder;
5342         u32 temp;
5343         int ret;
5344         bool dither;
5345
5346         for_each_encoder_on_crtc(dev, crtc, encoder) {
5347                 switch (encoder->type) {
5348                 case INTEL_OUTPUT_LVDS:
5349                         is_lvds = true;
5350                         break;
5351                 case INTEL_OUTPUT_DISPLAYPORT:
5352                         is_dp = true;
5353                         break;
5354                 case INTEL_OUTPUT_EDP:
5355                         is_dp = true;
5356                         if (!intel_encoder_is_pch_edp(&encoder->base))
5357                                 is_cpu_edp = true;
5358                         break;
5359                 }
5360
5361                 num_connectors++;
5362         }
5363
5364         /* We are not sure yet this won't happen. */
5365         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5366              INTEL_PCH_TYPE(dev));
5367
5368         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5369              num_connectors, pipe_name(pipe));
5370
5371         WARN_ON(I915_READ(PIPECONF(pipe)) &
5372                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5373
5374         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5375
5376         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5377                 return -EINVAL;
5378
5379         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5380                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5381                                              &has_reduced_clock,
5382                                              &reduced_clock);
5383                 if (!ok) {
5384                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5385                         return -EINVAL;
5386                 }
5387         }
5388
5389         /* Ensure that the cursor is valid for the new mode before changing... */
5390         intel_crtc_update_cursor(crtc, true);
5391
5392         /* determine panel color depth */
5393         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5394         if (is_lvds && dev_priv->lvds_dither)
5395                 dither = true;
5396
5397         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5398         drm_mode_debug_printmodeline(mode);
5399
5400         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5401                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5402                 if (has_reduced_clock)
5403                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5404                               reduced_clock.m2;
5405
5406                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5407                                              fp);
5408
5409                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5410                  * own on pre-Haswell/LPT generation */
5411                 if (!is_cpu_edp) {
5412                         struct intel_pch_pll *pll;
5413
5414                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5415                         if (pll == NULL) {
5416                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5417                                                  pipe);
5418                                 return -EINVAL;
5419                         }
5420                 } else
5421                         intel_put_pch_pll(intel_crtc);
5422
5423                 /* The LVDS pin pair needs to be on before the DPLLs are
5424                  * enabled.  This is an exception to the general rule that
5425                  * mode_set doesn't turn things on.
5426                  */
5427                 if (is_lvds) {
5428                         temp = I915_READ(PCH_LVDS);
5429                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5430                         if (HAS_PCH_CPT(dev)) {
5431                                 temp &= ~PORT_TRANS_SEL_MASK;
5432                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5433                         } else {
5434                                 if (pipe == 1)
5435                                         temp |= LVDS_PIPEB_SELECT;
5436                                 else
5437                                         temp &= ~LVDS_PIPEB_SELECT;
5438                         }
5439
5440                         /* set the corresponsding LVDS_BORDER bit */
5441                         temp |= dev_priv->lvds_border_bits;
5442                         /* Set the B0-B3 data pairs corresponding to whether
5443                          * we're going to set the DPLLs for dual-channel mode or
5444                          * not.
5445                          */
5446                         if (clock.p2 == 7)
5447                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5448                         else
5449                                 temp &= ~(LVDS_B0B3_POWER_UP |
5450                                           LVDS_CLKB_POWER_UP);
5451
5452                         /* It would be nice to set 24 vs 18-bit mode
5453                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5454                          * look more thoroughly into how panels behave in the
5455                          * two modes.
5456                          */
5457                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5458                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5459                                 temp |= LVDS_HSYNC_POLARITY;
5460                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5461                                 temp |= LVDS_VSYNC_POLARITY;
5462                         I915_WRITE(PCH_LVDS, temp);
5463                 }
5464         }
5465
5466         if (is_dp && !is_cpu_edp) {
5467                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5468         } else {
5469                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5470                         /* For non-DP output, clear any trans DP clock recovery
5471                          * setting.*/
5472                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5473                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5474                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5475                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5476                 }
5477         }
5478
5479         intel_crtc->lowfreq_avail = false;
5480         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5481                 if (intel_crtc->pch_pll) {
5482                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5483
5484                         /* Wait for the clocks to stabilize. */
5485                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5486                         udelay(150);
5487
5488                         /* The pixel multiplier can only be updated once the
5489                          * DPLL is enabled and the clocks are stable.
5490                          *
5491                          * So write it again.
5492                          */
5493                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5494                 }
5495
5496                 if (intel_crtc->pch_pll) {
5497                         if (is_lvds && has_reduced_clock && i915_powersave) {
5498                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5499                                 intel_crtc->lowfreq_avail = true;
5500                         } else {
5501                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5502                         }
5503                 }
5504         }
5505
5506         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5507
5508         if (!is_dp || is_cpu_edp)
5509                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5510
5511         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5512                 if (is_cpu_edp)
5513                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5514
5515         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5516
5517         /* Set up the display plane register */
5518         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5519         POSTING_READ(DSPCNTR(plane));
5520
5521         ret = intel_pipe_set_base(crtc, x, y, fb);
5522
5523         intel_update_watermarks(dev);
5524
5525         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5526
5527         return ret;
5528 }
5529
5530 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5531                                struct drm_display_mode *mode,
5532                                struct drm_display_mode *adjusted_mode,
5533                                int x, int y,
5534                                struct drm_framebuffer *fb)
5535 {
5536         struct drm_device *dev = crtc->dev;
5537         struct drm_i915_private *dev_priv = dev->dev_private;
5538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5539         int pipe = intel_crtc->pipe;
5540         int ret;
5541
5542         drm_vblank_pre_modeset(dev, pipe);
5543
5544         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5545                                               x, y, fb);
5546         drm_vblank_post_modeset(dev, pipe);
5547
5548         return ret;
5549 }
5550
5551 static bool intel_eld_uptodate(struct drm_connector *connector,
5552                                int reg_eldv, uint32_t bits_eldv,
5553                                int reg_elda, uint32_t bits_elda,
5554                                int reg_edid)
5555 {
5556         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5557         uint8_t *eld = connector->eld;
5558         uint32_t i;
5559
5560         i = I915_READ(reg_eldv);
5561         i &= bits_eldv;
5562
5563         if (!eld[0])
5564                 return !i;
5565
5566         if (!i)
5567                 return false;
5568
5569         i = I915_READ(reg_elda);
5570         i &= ~bits_elda;
5571         I915_WRITE(reg_elda, i);
5572
5573         for (i = 0; i < eld[2]; i++)
5574                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5575                         return false;
5576
5577         return true;
5578 }
5579
5580 static void g4x_write_eld(struct drm_connector *connector,
5581                           struct drm_crtc *crtc)
5582 {
5583         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5584         uint8_t *eld = connector->eld;
5585         uint32_t eldv;
5586         uint32_t len;
5587         uint32_t i;
5588
5589         i = I915_READ(G4X_AUD_VID_DID);
5590
5591         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5592                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5593         else
5594                 eldv = G4X_ELDV_DEVCTG;
5595
5596         if (intel_eld_uptodate(connector,
5597                                G4X_AUD_CNTL_ST, eldv,
5598                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5599                                G4X_HDMIW_HDMIEDID))
5600                 return;
5601
5602         i = I915_READ(G4X_AUD_CNTL_ST);
5603         i &= ~(eldv | G4X_ELD_ADDR);
5604         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5605         I915_WRITE(G4X_AUD_CNTL_ST, i);
5606
5607         if (!eld[0])
5608                 return;
5609
5610         len = min_t(uint8_t, eld[2], len);
5611         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5612         for (i = 0; i < len; i++)
5613                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5614
5615         i = I915_READ(G4X_AUD_CNTL_ST);
5616         i |= eldv;
5617         I915_WRITE(G4X_AUD_CNTL_ST, i);
5618 }
5619
5620 static void haswell_write_eld(struct drm_connector *connector,
5621                                      struct drm_crtc *crtc)
5622 {
5623         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5624         uint8_t *eld = connector->eld;
5625         struct drm_device *dev = crtc->dev;
5626         uint32_t eldv;
5627         uint32_t i;
5628         int len;
5629         int pipe = to_intel_crtc(crtc)->pipe;
5630         int tmp;
5631
5632         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5633         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5634         int aud_config = HSW_AUD_CFG(pipe);
5635         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5636
5637
5638         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5639
5640         /* Audio output enable */
5641         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5642         tmp = I915_READ(aud_cntrl_st2);
5643         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5644         I915_WRITE(aud_cntrl_st2, tmp);
5645
5646         /* Wait for 1 vertical blank */
5647         intel_wait_for_vblank(dev, pipe);
5648
5649         /* Set ELD valid state */
5650         tmp = I915_READ(aud_cntrl_st2);
5651         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5652         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5653         I915_WRITE(aud_cntrl_st2, tmp);
5654         tmp = I915_READ(aud_cntrl_st2);
5655         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5656
5657         /* Enable HDMI mode */
5658         tmp = I915_READ(aud_config);
5659         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5660         /* clear N_programing_enable and N_value_index */
5661         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5662         I915_WRITE(aud_config, tmp);
5663
5664         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5665
5666         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5667
5668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5669                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5670                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5671                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5672         } else
5673                 I915_WRITE(aud_config, 0);
5674
5675         if (intel_eld_uptodate(connector,
5676                                aud_cntrl_st2, eldv,
5677                                aud_cntl_st, IBX_ELD_ADDRESS,
5678                                hdmiw_hdmiedid))
5679                 return;
5680
5681         i = I915_READ(aud_cntrl_st2);
5682         i &= ~eldv;
5683         I915_WRITE(aud_cntrl_st2, i);
5684
5685         if (!eld[0])
5686                 return;
5687
5688         i = I915_READ(aud_cntl_st);
5689         i &= ~IBX_ELD_ADDRESS;
5690         I915_WRITE(aud_cntl_st, i);
5691         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5692         DRM_DEBUG_DRIVER("port num:%d\n", i);
5693
5694         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5695         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5696         for (i = 0; i < len; i++)
5697                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5698
5699         i = I915_READ(aud_cntrl_st2);
5700         i |= eldv;
5701         I915_WRITE(aud_cntrl_st2, i);
5702
5703 }
5704
5705 static void ironlake_write_eld(struct drm_connector *connector,
5706                                      struct drm_crtc *crtc)
5707 {
5708         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5709         uint8_t *eld = connector->eld;
5710         uint32_t eldv;
5711         uint32_t i;
5712         int len;
5713         int hdmiw_hdmiedid;
5714         int aud_config;
5715         int aud_cntl_st;
5716         int aud_cntrl_st2;
5717         int pipe = to_intel_crtc(crtc)->pipe;
5718
5719         if (HAS_PCH_IBX(connector->dev)) {
5720                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5721                 aud_config = IBX_AUD_CFG(pipe);
5722                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5723                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5724         } else {
5725                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5726                 aud_config = CPT_AUD_CFG(pipe);
5727                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5728                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5729         }
5730
5731         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5732
5733         i = I915_READ(aud_cntl_st);
5734         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5735         if (!i) {
5736                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5737                 /* operate blindly on all ports */
5738                 eldv = IBX_ELD_VALIDB;
5739                 eldv |= IBX_ELD_VALIDB << 4;
5740                 eldv |= IBX_ELD_VALIDB << 8;
5741         } else {
5742                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5743                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5744         }
5745
5746         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5747                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5748                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5749                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5750         } else
5751                 I915_WRITE(aud_config, 0);
5752
5753         if (intel_eld_uptodate(connector,
5754                                aud_cntrl_st2, eldv,
5755                                aud_cntl_st, IBX_ELD_ADDRESS,
5756                                hdmiw_hdmiedid))
5757                 return;
5758
5759         i = I915_READ(aud_cntrl_st2);
5760         i &= ~eldv;
5761         I915_WRITE(aud_cntrl_st2, i);
5762
5763         if (!eld[0])
5764                 return;
5765
5766         i = I915_READ(aud_cntl_st);
5767         i &= ~IBX_ELD_ADDRESS;
5768         I915_WRITE(aud_cntl_st, i);
5769
5770         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5771         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5772         for (i = 0; i < len; i++)
5773                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5774
5775         i = I915_READ(aud_cntrl_st2);
5776         i |= eldv;
5777         I915_WRITE(aud_cntrl_st2, i);
5778 }
5779
5780 void intel_write_eld(struct drm_encoder *encoder,
5781                      struct drm_display_mode *mode)
5782 {
5783         struct drm_crtc *crtc = encoder->crtc;
5784         struct drm_connector *connector;
5785         struct drm_device *dev = encoder->dev;
5786         struct drm_i915_private *dev_priv = dev->dev_private;
5787
5788         connector = drm_select_eld(encoder, mode);
5789         if (!connector)
5790                 return;
5791
5792         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5793                          connector->base.id,
5794                          drm_get_connector_name(connector),
5795                          connector->encoder->base.id,
5796                          drm_get_encoder_name(connector->encoder));
5797
5798         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5799
5800         if (dev_priv->display.write_eld)
5801                 dev_priv->display.write_eld(connector, crtc);
5802 }
5803
5804 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5805 void intel_crtc_load_lut(struct drm_crtc *crtc)
5806 {
5807         struct drm_device *dev = crtc->dev;
5808         struct drm_i915_private *dev_priv = dev->dev_private;
5809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5810         int palreg = PALETTE(intel_crtc->pipe);
5811         int i;
5812
5813         /* The clocks have to be on to load the palette. */
5814         if (!crtc->enabled || !intel_crtc->active)
5815                 return;
5816
5817         /* use legacy palette for Ironlake */
5818         if (HAS_PCH_SPLIT(dev))
5819                 palreg = LGC_PALETTE(intel_crtc->pipe);
5820
5821         for (i = 0; i < 256; i++) {
5822                 I915_WRITE(palreg + 4 * i,
5823                            (intel_crtc->lut_r[i] << 16) |
5824                            (intel_crtc->lut_g[i] << 8) |
5825                            intel_crtc->lut_b[i]);
5826         }
5827 }
5828
5829 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5830 {
5831         struct drm_device *dev = crtc->dev;
5832         struct drm_i915_private *dev_priv = dev->dev_private;
5833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5834         bool visible = base != 0;
5835         u32 cntl;
5836
5837         if (intel_crtc->cursor_visible == visible)
5838                 return;
5839
5840         cntl = I915_READ(_CURACNTR);
5841         if (visible) {
5842                 /* On these chipsets we can only modify the base whilst
5843                  * the cursor is disabled.
5844                  */
5845                 I915_WRITE(_CURABASE, base);
5846
5847                 cntl &= ~(CURSOR_FORMAT_MASK);
5848                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5849                 cntl |= CURSOR_ENABLE |
5850                         CURSOR_GAMMA_ENABLE |
5851                         CURSOR_FORMAT_ARGB;
5852         } else
5853                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5854         I915_WRITE(_CURACNTR, cntl);
5855
5856         intel_crtc->cursor_visible = visible;
5857 }
5858
5859 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5860 {
5861         struct drm_device *dev = crtc->dev;
5862         struct drm_i915_private *dev_priv = dev->dev_private;
5863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5864         int pipe = intel_crtc->pipe;
5865         bool visible = base != 0;
5866
5867         if (intel_crtc->cursor_visible != visible) {
5868                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5869                 if (base) {
5870                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5871                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5872                         cntl |= pipe << 28; /* Connect to correct pipe */
5873                 } else {
5874                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5875                         cntl |= CURSOR_MODE_DISABLE;
5876                 }
5877                 I915_WRITE(CURCNTR(pipe), cntl);
5878
5879                 intel_crtc->cursor_visible = visible;
5880         }
5881         /* and commit changes on next vblank */
5882         I915_WRITE(CURBASE(pipe), base);
5883 }
5884
5885 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5886 {
5887         struct drm_device *dev = crtc->dev;
5888         struct drm_i915_private *dev_priv = dev->dev_private;
5889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5890         int pipe = intel_crtc->pipe;
5891         bool visible = base != 0;
5892
5893         if (intel_crtc->cursor_visible != visible) {
5894                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5895                 if (base) {
5896                         cntl &= ~CURSOR_MODE;
5897                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5898                 } else {
5899                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5900                         cntl |= CURSOR_MODE_DISABLE;
5901                 }
5902                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5903
5904                 intel_crtc->cursor_visible = visible;
5905         }
5906         /* and commit changes on next vblank */
5907         I915_WRITE(CURBASE_IVB(pipe), base);
5908 }
5909
5910 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5911 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5912                                      bool on)
5913 {
5914         struct drm_device *dev = crtc->dev;
5915         struct drm_i915_private *dev_priv = dev->dev_private;
5916         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5917         int pipe = intel_crtc->pipe;
5918         int x = intel_crtc->cursor_x;
5919         int y = intel_crtc->cursor_y;
5920         u32 base, pos;
5921         bool visible;
5922
5923         pos = 0;
5924
5925         if (on && crtc->enabled && crtc->fb) {
5926                 base = intel_crtc->cursor_addr;
5927                 if (x > (int) crtc->fb->width)
5928                         base = 0;
5929
5930                 if (y > (int) crtc->fb->height)
5931                         base = 0;
5932         } else
5933                 base = 0;
5934
5935         if (x < 0) {
5936                 if (x + intel_crtc->cursor_width < 0)
5937                         base = 0;
5938
5939                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5940                 x = -x;
5941         }
5942         pos |= x << CURSOR_X_SHIFT;
5943
5944         if (y < 0) {
5945                 if (y + intel_crtc->cursor_height < 0)
5946                         base = 0;
5947
5948                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5949                 y = -y;
5950         }
5951         pos |= y << CURSOR_Y_SHIFT;
5952
5953         visible = base != 0;
5954         if (!visible && !intel_crtc->cursor_visible)
5955                 return;
5956
5957         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5958                 I915_WRITE(CURPOS_IVB(pipe), pos);
5959                 ivb_update_cursor(crtc, base);
5960         } else {
5961                 I915_WRITE(CURPOS(pipe), pos);
5962                 if (IS_845G(dev) || IS_I865G(dev))
5963                         i845_update_cursor(crtc, base);
5964                 else
5965                         i9xx_update_cursor(crtc, base);
5966         }
5967 }
5968
5969 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5970                                  struct drm_file *file,
5971                                  uint32_t handle,
5972                                  uint32_t width, uint32_t height)
5973 {
5974         struct drm_device *dev = crtc->dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5977         struct drm_i915_gem_object *obj;
5978         uint32_t addr;
5979         int ret;
5980
5981         /* if we want to turn off the cursor ignore width and height */
5982         if (!handle) {
5983                 DRM_DEBUG_KMS("cursor off\n");
5984                 addr = 0;
5985                 obj = NULL;
5986                 mutex_lock(&dev->struct_mutex);
5987                 goto finish;
5988         }
5989
5990         /* Currently we only support 64x64 cursors */
5991         if (width != 64 || height != 64) {
5992                 DRM_ERROR("we currently only support 64x64 cursors\n");
5993                 return -EINVAL;
5994         }
5995
5996         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5997         if (&obj->base == NULL)
5998                 return -ENOENT;
5999
6000         if (obj->base.size < width * height * 4) {
6001                 DRM_ERROR("buffer is to small\n");
6002                 ret = -ENOMEM;
6003                 goto fail;
6004         }
6005
6006         /* we only need to pin inside GTT if cursor is non-phy */
6007         mutex_lock(&dev->struct_mutex);
6008         if (!dev_priv->info->cursor_needs_physical) {
6009                 if (obj->tiling_mode) {
6010                         DRM_ERROR("cursor cannot be tiled\n");
6011                         ret = -EINVAL;
6012                         goto fail_locked;
6013                 }
6014
6015                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6016                 if (ret) {
6017                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6018                         goto fail_locked;
6019                 }
6020
6021                 ret = i915_gem_object_put_fence(obj);
6022                 if (ret) {
6023                         DRM_ERROR("failed to release fence for cursor");
6024                         goto fail_unpin;
6025                 }
6026
6027                 addr = obj->gtt_offset;
6028         } else {
6029                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6030                 ret = i915_gem_attach_phys_object(dev, obj,
6031                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6032                                                   align);
6033                 if (ret) {
6034                         DRM_ERROR("failed to attach phys object\n");
6035                         goto fail_locked;
6036                 }
6037                 addr = obj->phys_obj->handle->busaddr;
6038         }
6039
6040         if (IS_GEN2(dev))
6041                 I915_WRITE(CURSIZE, (height << 12) | width);
6042
6043  finish:
6044         if (intel_crtc->cursor_bo) {
6045                 if (dev_priv->info->cursor_needs_physical) {
6046                         if (intel_crtc->cursor_bo != obj)
6047                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6048                 } else
6049                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6050                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6051         }
6052
6053         mutex_unlock(&dev->struct_mutex);
6054
6055         intel_crtc->cursor_addr = addr;
6056         intel_crtc->cursor_bo = obj;
6057         intel_crtc->cursor_width = width;
6058         intel_crtc->cursor_height = height;
6059
6060         intel_crtc_update_cursor(crtc, true);
6061
6062         return 0;
6063 fail_unpin:
6064         i915_gem_object_unpin(obj);
6065 fail_locked:
6066         mutex_unlock(&dev->struct_mutex);
6067 fail:
6068         drm_gem_object_unreference_unlocked(&obj->base);
6069         return ret;
6070 }
6071
6072 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6073 {
6074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6075
6076         intel_crtc->cursor_x = x;
6077         intel_crtc->cursor_y = y;
6078
6079         intel_crtc_update_cursor(crtc, true);
6080
6081         return 0;
6082 }
6083
6084 /** Sets the color ramps on behalf of RandR */
6085 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6086                                  u16 blue, int regno)
6087 {
6088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6089
6090         intel_crtc->lut_r[regno] = red >> 8;
6091         intel_crtc->lut_g[regno] = green >> 8;
6092         intel_crtc->lut_b[regno] = blue >> 8;
6093 }
6094
6095 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6096                              u16 *blue, int regno)
6097 {
6098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6099
6100         *red = intel_crtc->lut_r[regno] << 8;
6101         *green = intel_crtc->lut_g[regno] << 8;
6102         *blue = intel_crtc->lut_b[regno] << 8;
6103 }
6104
6105 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6106                                  u16 *blue, uint32_t start, uint32_t size)
6107 {
6108         int end = (start + size > 256) ? 256 : start + size, i;
6109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6110
6111         for (i = start; i < end; i++) {
6112                 intel_crtc->lut_r[i] = red[i] >> 8;
6113                 intel_crtc->lut_g[i] = green[i] >> 8;
6114                 intel_crtc->lut_b[i] = blue[i] >> 8;
6115         }
6116
6117         intel_crtc_load_lut(crtc);
6118 }
6119
6120 /**
6121  * Get a pipe with a simple mode set on it for doing load-based monitor
6122  * detection.
6123  *
6124  * It will be up to the load-detect code to adjust the pipe as appropriate for
6125  * its requirements.  The pipe will be connected to no other encoders.
6126  *
6127  * Currently this code will only succeed if there is a pipe with no encoders
6128  * configured for it.  In the future, it could choose to temporarily disable
6129  * some outputs to free up a pipe for its use.
6130  *
6131  * \return crtc, or NULL if no pipes are available.
6132  */
6133
6134 /* VESA 640x480x72Hz mode to set on the pipe */
6135 static struct drm_display_mode load_detect_mode = {
6136         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6137                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6138 };
6139
6140 static struct drm_framebuffer *
6141 intel_framebuffer_create(struct drm_device *dev,
6142                          struct drm_mode_fb_cmd2 *mode_cmd,
6143                          struct drm_i915_gem_object *obj)
6144 {
6145         struct intel_framebuffer *intel_fb;
6146         int ret;
6147
6148         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6149         if (!intel_fb) {
6150                 drm_gem_object_unreference_unlocked(&obj->base);
6151                 return ERR_PTR(-ENOMEM);
6152         }
6153
6154         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6155         if (ret) {
6156                 drm_gem_object_unreference_unlocked(&obj->base);
6157                 kfree(intel_fb);
6158                 return ERR_PTR(ret);
6159         }
6160
6161         return &intel_fb->base;
6162 }
6163
6164 static u32
6165 intel_framebuffer_pitch_for_width(int width, int bpp)
6166 {
6167         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6168         return ALIGN(pitch, 64);
6169 }
6170
6171 static u32
6172 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6173 {
6174         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6175         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6176 }
6177
6178 static struct drm_framebuffer *
6179 intel_framebuffer_create_for_mode(struct drm_device *dev,
6180                                   struct drm_display_mode *mode,
6181                                   int depth, int bpp)
6182 {
6183         struct drm_i915_gem_object *obj;
6184         struct drm_mode_fb_cmd2 mode_cmd;
6185
6186         obj = i915_gem_alloc_object(dev,
6187                                     intel_framebuffer_size_for_mode(mode, bpp));
6188         if (obj == NULL)
6189                 return ERR_PTR(-ENOMEM);
6190
6191         mode_cmd.width = mode->hdisplay;
6192         mode_cmd.height = mode->vdisplay;
6193         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6194                                                                 bpp);
6195         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6196
6197         return intel_framebuffer_create(dev, &mode_cmd, obj);
6198 }
6199
6200 static struct drm_framebuffer *
6201 mode_fits_in_fbdev(struct drm_device *dev,
6202                    struct drm_display_mode *mode)
6203 {
6204         struct drm_i915_private *dev_priv = dev->dev_private;
6205         struct drm_i915_gem_object *obj;
6206         struct drm_framebuffer *fb;
6207
6208         if (dev_priv->fbdev == NULL)
6209                 return NULL;
6210
6211         obj = dev_priv->fbdev->ifb.obj;
6212         if (obj == NULL)
6213                 return NULL;
6214
6215         fb = &dev_priv->fbdev->ifb.base;
6216         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6217                                                                fb->bits_per_pixel))
6218                 return NULL;
6219
6220         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6221                 return NULL;
6222
6223         return fb;
6224 }
6225
6226 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6227                                 struct drm_display_mode *mode,
6228                                 struct intel_load_detect_pipe *old)
6229 {
6230         struct intel_crtc *intel_crtc;
6231         struct intel_encoder *intel_encoder =
6232                 intel_attached_encoder(connector);
6233         struct drm_crtc *possible_crtc;
6234         struct drm_encoder *encoder = &intel_encoder->base;
6235         struct drm_crtc *crtc = NULL;
6236         struct drm_device *dev = encoder->dev;
6237         struct drm_framebuffer *fb;
6238         int i = -1;
6239
6240         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6241                       connector->base.id, drm_get_connector_name(connector),
6242                       encoder->base.id, drm_get_encoder_name(encoder));
6243
6244         /*
6245          * Algorithm gets a little messy:
6246          *
6247          *   - if the connector already has an assigned crtc, use it (but make
6248          *     sure it's on first)
6249          *
6250          *   - try to find the first unused crtc that can drive this connector,
6251          *     and use that if we find one
6252          */
6253
6254         /* See if we already have a CRTC for this connector */
6255         if (encoder->crtc) {
6256                 crtc = encoder->crtc;
6257
6258                 old->dpms_mode = connector->dpms;
6259                 old->load_detect_temp = false;
6260
6261                 /* Make sure the crtc and connector are running */
6262                 if (connector->dpms != DRM_MODE_DPMS_ON)
6263                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6264
6265                 return true;
6266         }
6267
6268         /* Find an unused one (if possible) */
6269         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6270                 i++;
6271                 if (!(encoder->possible_crtcs & (1 << i)))
6272                         continue;
6273                 if (!possible_crtc->enabled) {
6274                         crtc = possible_crtc;
6275                         break;
6276                 }
6277         }
6278
6279         /*
6280          * If we didn't find an unused CRTC, don't use any.
6281          */
6282         if (!crtc) {
6283                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6284                 return false;
6285         }
6286
6287         intel_encoder->new_crtc = to_intel_crtc(crtc);
6288         to_intel_connector(connector)->new_encoder = intel_encoder;
6289
6290         intel_crtc = to_intel_crtc(crtc);
6291         old->dpms_mode = connector->dpms;
6292         old->load_detect_temp = true;
6293         old->release_fb = NULL;
6294
6295         if (!mode)
6296                 mode = &load_detect_mode;
6297
6298         /* We need a framebuffer large enough to accommodate all accesses
6299          * that the plane may generate whilst we perform load detection.
6300          * We can not rely on the fbcon either being present (we get called
6301          * during its initialisation to detect all boot displays, or it may
6302          * not even exist) or that it is large enough to satisfy the
6303          * requested mode.
6304          */
6305         fb = mode_fits_in_fbdev(dev, mode);
6306         if (fb == NULL) {
6307                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6308                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6309                 old->release_fb = fb;
6310         } else
6311                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6312         if (IS_ERR(fb)) {
6313                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6314                 goto fail;
6315         }
6316
6317         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6318                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6319                 if (old->release_fb)
6320                         old->release_fb->funcs->destroy(old->release_fb);
6321                 goto fail;
6322         }
6323
6324         /* let the connector get through one full cycle before testing */
6325         intel_wait_for_vblank(dev, intel_crtc->pipe);
6326
6327         return true;
6328 fail:
6329         connector->encoder = NULL;
6330         encoder->crtc = NULL;
6331         return false;
6332 }
6333
6334 void intel_release_load_detect_pipe(struct drm_connector *connector,
6335                                     struct intel_load_detect_pipe *old)
6336 {
6337         struct intel_encoder *intel_encoder =
6338                 intel_attached_encoder(connector);
6339         struct drm_encoder *encoder = &intel_encoder->base;
6340
6341         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6342                       connector->base.id, drm_get_connector_name(connector),
6343                       encoder->base.id, drm_get_encoder_name(encoder));
6344
6345         if (old->load_detect_temp) {
6346                 struct drm_crtc *crtc = encoder->crtc;
6347
6348                 to_intel_connector(connector)->new_encoder = NULL;
6349                 intel_encoder->new_crtc = NULL;
6350                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6351
6352                 if (old->release_fb)
6353                         old->release_fb->funcs->destroy(old->release_fb);
6354
6355                 return;
6356         }
6357
6358         /* Switch crtc and encoder back off if necessary */
6359         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6360                 connector->funcs->dpms(connector, old->dpms_mode);
6361 }
6362
6363 /* Returns the clock of the currently programmed mode of the given pipe. */
6364 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6365 {
6366         struct drm_i915_private *dev_priv = dev->dev_private;
6367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6368         int pipe = intel_crtc->pipe;
6369         u32 dpll = I915_READ(DPLL(pipe));
6370         u32 fp;
6371         intel_clock_t clock;
6372
6373         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6374                 fp = I915_READ(FP0(pipe));
6375         else
6376                 fp = I915_READ(FP1(pipe));
6377
6378         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6379         if (IS_PINEVIEW(dev)) {
6380                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6381                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6382         } else {
6383                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6384                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6385         }
6386
6387         if (!IS_GEN2(dev)) {
6388                 if (IS_PINEVIEW(dev))
6389                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6390                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6391                 else
6392                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6393                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6394
6395                 switch (dpll & DPLL_MODE_MASK) {
6396                 case DPLLB_MODE_DAC_SERIAL:
6397                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6398                                 5 : 10;
6399                         break;
6400                 case DPLLB_MODE_LVDS:
6401                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6402                                 7 : 14;
6403                         break;
6404                 default:
6405                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6406                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6407                         return 0;
6408                 }
6409
6410                 /* XXX: Handle the 100Mhz refclk */
6411                 intel_clock(dev, 96000, &clock);
6412         } else {
6413                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6414
6415                 if (is_lvds) {
6416                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6417                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6418                         clock.p2 = 14;
6419
6420                         if ((dpll & PLL_REF_INPUT_MASK) ==
6421                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6422                                 /* XXX: might not be 66MHz */
6423                                 intel_clock(dev, 66000, &clock);
6424                         } else
6425                                 intel_clock(dev, 48000, &clock);
6426                 } else {
6427                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6428                                 clock.p1 = 2;
6429                         else {
6430                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6431                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6432                         }
6433                         if (dpll & PLL_P2_DIVIDE_BY_4)
6434                                 clock.p2 = 4;
6435                         else
6436                                 clock.p2 = 2;
6437
6438                         intel_clock(dev, 48000, &clock);
6439                 }
6440         }
6441
6442         /* XXX: It would be nice to validate the clocks, but we can't reuse
6443          * i830PllIsValid() because it relies on the xf86_config connector
6444          * configuration being accurate, which it isn't necessarily.
6445          */
6446
6447         return clock.dot;
6448 }
6449
6450 /** Returns the currently programmed mode of the given pipe. */
6451 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6452                                              struct drm_crtc *crtc)
6453 {
6454         struct drm_i915_private *dev_priv = dev->dev_private;
6455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6456         int pipe = intel_crtc->pipe;
6457         struct drm_display_mode *mode;
6458         int htot = I915_READ(HTOTAL(pipe));
6459         int hsync = I915_READ(HSYNC(pipe));
6460         int vtot = I915_READ(VTOTAL(pipe));
6461         int vsync = I915_READ(VSYNC(pipe));
6462
6463         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6464         if (!mode)
6465                 return NULL;
6466
6467         mode->clock = intel_crtc_clock_get(dev, crtc);
6468         mode->hdisplay = (htot & 0xffff) + 1;
6469         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6470         mode->hsync_start = (hsync & 0xffff) + 1;
6471         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6472         mode->vdisplay = (vtot & 0xffff) + 1;
6473         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6474         mode->vsync_start = (vsync & 0xffff) + 1;
6475         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6476
6477         drm_mode_set_name(mode);
6478
6479         return mode;
6480 }
6481
6482 static void intel_increase_pllclock(struct drm_crtc *crtc)
6483 {
6484         struct drm_device *dev = crtc->dev;
6485         drm_i915_private_t *dev_priv = dev->dev_private;
6486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6487         int pipe = intel_crtc->pipe;
6488         int dpll_reg = DPLL(pipe);
6489         int dpll;
6490
6491         if (HAS_PCH_SPLIT(dev))
6492                 return;
6493
6494         if (!dev_priv->lvds_downclock_avail)
6495                 return;
6496
6497         dpll = I915_READ(dpll_reg);
6498         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6499                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6500
6501                 assert_panel_unlocked(dev_priv, pipe);
6502
6503                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6504                 I915_WRITE(dpll_reg, dpll);
6505                 intel_wait_for_vblank(dev, pipe);
6506
6507                 dpll = I915_READ(dpll_reg);
6508                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6509                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6510         }
6511 }
6512
6513 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6514 {
6515         struct drm_device *dev = crtc->dev;
6516         drm_i915_private_t *dev_priv = dev->dev_private;
6517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6518
6519         if (HAS_PCH_SPLIT(dev))
6520                 return;
6521
6522         if (!dev_priv->lvds_downclock_avail)
6523                 return;
6524
6525         /*
6526          * Since this is called by a timer, we should never get here in
6527          * the manual case.
6528          */
6529         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6530                 int pipe = intel_crtc->pipe;
6531                 int dpll_reg = DPLL(pipe);
6532                 int dpll;
6533
6534                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6535
6536                 assert_panel_unlocked(dev_priv, pipe);
6537
6538                 dpll = I915_READ(dpll_reg);
6539                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6540                 I915_WRITE(dpll_reg, dpll);
6541                 intel_wait_for_vblank(dev, pipe);
6542                 dpll = I915_READ(dpll_reg);
6543                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6544                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6545         }
6546
6547 }
6548
6549 void intel_mark_busy(struct drm_device *dev)
6550 {
6551         i915_update_gfx_val(dev->dev_private);
6552 }
6553
6554 void intel_mark_idle(struct drm_device *dev)
6555 {
6556 }
6557
6558 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6559 {
6560         struct drm_device *dev = obj->base.dev;
6561         struct drm_crtc *crtc;
6562
6563         if (!i915_powersave)
6564                 return;
6565
6566         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6567                 if (!crtc->fb)
6568                         continue;
6569
6570                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6571                         intel_increase_pllclock(crtc);
6572         }
6573 }
6574
6575 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6576 {
6577         struct drm_device *dev = obj->base.dev;
6578         struct drm_crtc *crtc;
6579
6580         if (!i915_powersave)
6581                 return;
6582
6583         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6584                 if (!crtc->fb)
6585                         continue;
6586
6587                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6588                         intel_decrease_pllclock(crtc);
6589         }
6590 }
6591
6592 static void intel_crtc_destroy(struct drm_crtc *crtc)
6593 {
6594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6595         struct drm_device *dev = crtc->dev;
6596         struct intel_unpin_work *work;
6597         unsigned long flags;
6598
6599         spin_lock_irqsave(&dev->event_lock, flags);
6600         work = intel_crtc->unpin_work;
6601         intel_crtc->unpin_work = NULL;
6602         spin_unlock_irqrestore(&dev->event_lock, flags);
6603
6604         if (work) {
6605                 cancel_work_sync(&work->work);
6606                 kfree(work);
6607         }
6608
6609         drm_crtc_cleanup(crtc);
6610
6611         kfree(intel_crtc);
6612 }
6613
6614 static void intel_unpin_work_fn(struct work_struct *__work)
6615 {
6616         struct intel_unpin_work *work =
6617                 container_of(__work, struct intel_unpin_work, work);
6618
6619         mutex_lock(&work->dev->struct_mutex);
6620         intel_unpin_fb_obj(work->old_fb_obj);
6621         drm_gem_object_unreference(&work->pending_flip_obj->base);
6622         drm_gem_object_unreference(&work->old_fb_obj->base);
6623
6624         intel_update_fbc(work->dev);
6625         mutex_unlock(&work->dev->struct_mutex);
6626         kfree(work);
6627 }
6628
6629 static void do_intel_finish_page_flip(struct drm_device *dev,
6630                                       struct drm_crtc *crtc)
6631 {
6632         drm_i915_private_t *dev_priv = dev->dev_private;
6633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6634         struct intel_unpin_work *work;
6635         struct drm_i915_gem_object *obj;
6636         struct drm_pending_vblank_event *e;
6637         struct timeval tvbl;
6638         unsigned long flags;
6639
6640         /* Ignore early vblank irqs */
6641         if (intel_crtc == NULL)
6642                 return;
6643
6644         spin_lock_irqsave(&dev->event_lock, flags);
6645         work = intel_crtc->unpin_work;
6646         if (work == NULL || !work->pending) {
6647                 spin_unlock_irqrestore(&dev->event_lock, flags);
6648                 return;
6649         }
6650
6651         intel_crtc->unpin_work = NULL;
6652
6653         if (work->event) {
6654                 e = work->event;
6655                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6656
6657                 e->event.tv_sec = tvbl.tv_sec;
6658                 e->event.tv_usec = tvbl.tv_usec;
6659
6660                 list_add_tail(&e->base.link,
6661                               &e->base.file_priv->event_list);
6662                 wake_up_interruptible(&e->base.file_priv->event_wait);
6663         }
6664
6665         drm_vblank_put(dev, intel_crtc->pipe);
6666
6667         spin_unlock_irqrestore(&dev->event_lock, flags);
6668
6669         obj = work->old_fb_obj;
6670
6671         atomic_clear_mask(1 << intel_crtc->plane,
6672                           &obj->pending_flip.counter);
6673
6674         wake_up(&dev_priv->pending_flip_queue);
6675         schedule_work(&work->work);
6676
6677         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6678 }
6679
6680 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6681 {
6682         drm_i915_private_t *dev_priv = dev->dev_private;
6683         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6684
6685         do_intel_finish_page_flip(dev, crtc);
6686 }
6687
6688 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6689 {
6690         drm_i915_private_t *dev_priv = dev->dev_private;
6691         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6692
6693         do_intel_finish_page_flip(dev, crtc);
6694 }
6695
6696 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6697 {
6698         drm_i915_private_t *dev_priv = dev->dev_private;
6699         struct intel_crtc *intel_crtc =
6700                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6701         unsigned long flags;
6702
6703         spin_lock_irqsave(&dev->event_lock, flags);
6704         if (intel_crtc->unpin_work) {
6705                 if ((++intel_crtc->unpin_work->pending) > 1)
6706                         DRM_ERROR("Prepared flip multiple times\n");
6707         } else {
6708                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6709         }
6710         spin_unlock_irqrestore(&dev->event_lock, flags);
6711 }
6712
6713 static int intel_gen2_queue_flip(struct drm_device *dev,
6714                                  struct drm_crtc *crtc,
6715                                  struct drm_framebuffer *fb,
6716                                  struct drm_i915_gem_object *obj)
6717 {
6718         struct drm_i915_private *dev_priv = dev->dev_private;
6719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6720         u32 flip_mask;
6721         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6722         int ret;
6723
6724         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6725         if (ret)
6726                 goto err;
6727
6728         ret = intel_ring_begin(ring, 6);
6729         if (ret)
6730                 goto err_unpin;
6731
6732         /* Can't queue multiple flips, so wait for the previous
6733          * one to finish before executing the next.
6734          */
6735         if (intel_crtc->plane)
6736                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6737         else
6738                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6739         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6740         intel_ring_emit(ring, MI_NOOP);
6741         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6742                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6743         intel_ring_emit(ring, fb->pitches[0]);
6744         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6745         intel_ring_emit(ring, 0); /* aux display base address, unused */
6746         intel_ring_advance(ring);
6747         return 0;
6748
6749 err_unpin:
6750         intel_unpin_fb_obj(obj);
6751 err:
6752         return ret;
6753 }
6754
6755 static int intel_gen3_queue_flip(struct drm_device *dev,
6756                                  struct drm_crtc *crtc,
6757                                  struct drm_framebuffer *fb,
6758                                  struct drm_i915_gem_object *obj)
6759 {
6760         struct drm_i915_private *dev_priv = dev->dev_private;
6761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6762         u32 flip_mask;
6763         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6764         int ret;
6765
6766         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6767         if (ret)
6768                 goto err;
6769
6770         ret = intel_ring_begin(ring, 6);
6771         if (ret)
6772                 goto err_unpin;
6773
6774         if (intel_crtc->plane)
6775                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6776         else
6777                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6778         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6779         intel_ring_emit(ring, MI_NOOP);
6780         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6781                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6782         intel_ring_emit(ring, fb->pitches[0]);
6783         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6784         intel_ring_emit(ring, MI_NOOP);
6785
6786         intel_ring_advance(ring);
6787         return 0;
6788
6789 err_unpin:
6790         intel_unpin_fb_obj(obj);
6791 err:
6792         return ret;
6793 }
6794
6795 static int intel_gen4_queue_flip(struct drm_device *dev,
6796                                  struct drm_crtc *crtc,
6797                                  struct drm_framebuffer *fb,
6798                                  struct drm_i915_gem_object *obj)
6799 {
6800         struct drm_i915_private *dev_priv = dev->dev_private;
6801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6802         uint32_t pf, pipesrc;
6803         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6804         int ret;
6805
6806         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6807         if (ret)
6808                 goto err;
6809
6810         ret = intel_ring_begin(ring, 4);
6811         if (ret)
6812                 goto err_unpin;
6813
6814         /* i965+ uses the linear or tiled offsets from the
6815          * Display Registers (which do not change across a page-flip)
6816          * so we need only reprogram the base address.
6817          */
6818         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6819                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6820         intel_ring_emit(ring, fb->pitches[0]);
6821         intel_ring_emit(ring,
6822                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6823                         obj->tiling_mode);
6824
6825         /* XXX Enabling the panel-fitter across page-flip is so far
6826          * untested on non-native modes, so ignore it for now.
6827          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6828          */
6829         pf = 0;
6830         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6831         intel_ring_emit(ring, pf | pipesrc);
6832         intel_ring_advance(ring);
6833         return 0;
6834
6835 err_unpin:
6836         intel_unpin_fb_obj(obj);
6837 err:
6838         return ret;
6839 }
6840
6841 static int intel_gen6_queue_flip(struct drm_device *dev,
6842                                  struct drm_crtc *crtc,
6843                                  struct drm_framebuffer *fb,
6844                                  struct drm_i915_gem_object *obj)
6845 {
6846         struct drm_i915_private *dev_priv = dev->dev_private;
6847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6848         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6849         uint32_t pf, pipesrc;
6850         int ret;
6851
6852         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6853         if (ret)
6854                 goto err;
6855
6856         ret = intel_ring_begin(ring, 4);
6857         if (ret)
6858                 goto err_unpin;
6859
6860         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6861                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6862         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6863         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6864
6865         /* Contrary to the suggestions in the documentation,
6866          * "Enable Panel Fitter" does not seem to be required when page
6867          * flipping with a non-native mode, and worse causes a normal
6868          * modeset to fail.
6869          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6870          */
6871         pf = 0;
6872         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6873         intel_ring_emit(ring, pf | pipesrc);
6874         intel_ring_advance(ring);
6875         return 0;
6876
6877 err_unpin:
6878         intel_unpin_fb_obj(obj);
6879 err:
6880         return ret;
6881 }
6882
6883 /*
6884  * On gen7 we currently use the blit ring because (in early silicon at least)
6885  * the render ring doesn't give us interrpts for page flip completion, which
6886  * means clients will hang after the first flip is queued.  Fortunately the
6887  * blit ring generates interrupts properly, so use it instead.
6888  */
6889 static int intel_gen7_queue_flip(struct drm_device *dev,
6890                                  struct drm_crtc *crtc,
6891                                  struct drm_framebuffer *fb,
6892                                  struct drm_i915_gem_object *obj)
6893 {
6894         struct drm_i915_private *dev_priv = dev->dev_private;
6895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6896         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6897         uint32_t plane_bit = 0;
6898         int ret;
6899
6900         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6901         if (ret)
6902                 goto err;
6903
6904         switch(intel_crtc->plane) {
6905         case PLANE_A:
6906                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6907                 break;
6908         case PLANE_B:
6909                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6910                 break;
6911         case PLANE_C:
6912                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6913                 break;
6914         default:
6915                 WARN_ONCE(1, "unknown plane in flip command\n");
6916                 ret = -ENODEV;
6917                 goto err_unpin;
6918         }
6919
6920         ret = intel_ring_begin(ring, 4);
6921         if (ret)
6922                 goto err_unpin;
6923
6924         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6925         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6926         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6927         intel_ring_emit(ring, (MI_NOOP));
6928         intel_ring_advance(ring);
6929         return 0;
6930
6931 err_unpin:
6932         intel_unpin_fb_obj(obj);
6933 err:
6934         return ret;
6935 }
6936
6937 static int intel_default_queue_flip(struct drm_device *dev,
6938                                     struct drm_crtc *crtc,
6939                                     struct drm_framebuffer *fb,
6940                                     struct drm_i915_gem_object *obj)
6941 {
6942         return -ENODEV;
6943 }
6944
6945 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6946                                 struct drm_framebuffer *fb,
6947                                 struct drm_pending_vblank_event *event)
6948 {
6949         struct drm_device *dev = crtc->dev;
6950         struct drm_i915_private *dev_priv = dev->dev_private;
6951         struct intel_framebuffer *intel_fb;
6952         struct drm_i915_gem_object *obj;
6953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6954         struct intel_unpin_work *work;
6955         unsigned long flags;
6956         int ret;
6957
6958         /* Can't change pixel format via MI display flips. */
6959         if (fb->pixel_format != crtc->fb->pixel_format)
6960                 return -EINVAL;
6961
6962         /*
6963          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6964          * Note that pitch changes could also affect these register.
6965          */
6966         if (INTEL_INFO(dev)->gen > 3 &&
6967             (fb->offsets[0] != crtc->fb->offsets[0] ||
6968              fb->pitches[0] != crtc->fb->pitches[0]))
6969                 return -EINVAL;
6970
6971         work = kzalloc(sizeof *work, GFP_KERNEL);
6972         if (work == NULL)
6973                 return -ENOMEM;
6974
6975         work->event = event;
6976         work->dev = crtc->dev;
6977         intel_fb = to_intel_framebuffer(crtc->fb);
6978         work->old_fb_obj = intel_fb->obj;
6979         INIT_WORK(&work->work, intel_unpin_work_fn);
6980
6981         ret = drm_vblank_get(dev, intel_crtc->pipe);
6982         if (ret)
6983                 goto free_work;
6984
6985         /* We borrow the event spin lock for protecting unpin_work */
6986         spin_lock_irqsave(&dev->event_lock, flags);
6987         if (intel_crtc->unpin_work) {
6988                 spin_unlock_irqrestore(&dev->event_lock, flags);
6989                 kfree(work);
6990                 drm_vblank_put(dev, intel_crtc->pipe);
6991
6992                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6993                 return -EBUSY;
6994         }
6995         intel_crtc->unpin_work = work;
6996         spin_unlock_irqrestore(&dev->event_lock, flags);
6997
6998         intel_fb = to_intel_framebuffer(fb);
6999         obj = intel_fb->obj;
7000
7001         ret = i915_mutex_lock_interruptible(dev);
7002         if (ret)
7003                 goto cleanup;
7004
7005         /* Reference the objects for the scheduled work. */
7006         drm_gem_object_reference(&work->old_fb_obj->base);
7007         drm_gem_object_reference(&obj->base);
7008
7009         crtc->fb = fb;
7010
7011         work->pending_flip_obj = obj;
7012
7013         work->enable_stall_check = true;
7014
7015         /* Block clients from rendering to the new back buffer until
7016          * the flip occurs and the object is no longer visible.
7017          */
7018         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7019
7020         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7021         if (ret)
7022                 goto cleanup_pending;
7023
7024         intel_disable_fbc(dev);
7025         intel_mark_fb_busy(obj);
7026         mutex_unlock(&dev->struct_mutex);
7027
7028         trace_i915_flip_request(intel_crtc->plane, obj);
7029
7030         return 0;
7031
7032 cleanup_pending:
7033         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7034         drm_gem_object_unreference(&work->old_fb_obj->base);
7035         drm_gem_object_unreference(&obj->base);
7036         mutex_unlock(&dev->struct_mutex);
7037
7038 cleanup:
7039         spin_lock_irqsave(&dev->event_lock, flags);
7040         intel_crtc->unpin_work = NULL;
7041         spin_unlock_irqrestore(&dev->event_lock, flags);
7042
7043         drm_vblank_put(dev, intel_crtc->pipe);
7044 free_work:
7045         kfree(work);
7046
7047         return ret;
7048 }
7049
7050 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7051         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7052         .load_lut = intel_crtc_load_lut,
7053         .disable = intel_crtc_noop,
7054 };
7055
7056 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7057 {
7058         struct intel_encoder *other_encoder;
7059         struct drm_crtc *crtc = &encoder->new_crtc->base;
7060
7061         if (WARN_ON(!crtc))
7062                 return false;
7063
7064         list_for_each_entry(other_encoder,
7065                             &crtc->dev->mode_config.encoder_list,
7066                             base.head) {
7067
7068                 if (&other_encoder->new_crtc->base != crtc ||
7069                     encoder == other_encoder)
7070                         continue;
7071                 else
7072                         return true;
7073         }
7074
7075         return false;
7076 }
7077
7078 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7079                                   struct drm_crtc *crtc)
7080 {
7081         struct drm_device *dev;
7082         struct drm_crtc *tmp;
7083         int crtc_mask = 1;
7084
7085         WARN(!crtc, "checking null crtc?\n");
7086
7087         dev = crtc->dev;
7088
7089         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7090                 if (tmp == crtc)
7091                         break;
7092                 crtc_mask <<= 1;
7093         }
7094
7095         if (encoder->possible_crtcs & crtc_mask)
7096                 return true;
7097         return false;
7098 }
7099
7100 /**
7101  * intel_modeset_update_staged_output_state
7102  *
7103  * Updates the staged output configuration state, e.g. after we've read out the
7104  * current hw state.
7105  */
7106 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7107 {
7108         struct intel_encoder *encoder;
7109         struct intel_connector *connector;
7110
7111         list_for_each_entry(connector, &dev->mode_config.connector_list,
7112                             base.head) {
7113                 connector->new_encoder =
7114                         to_intel_encoder(connector->base.encoder);
7115         }
7116
7117         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7118                             base.head) {
7119                 encoder->new_crtc =
7120                         to_intel_crtc(encoder->base.crtc);
7121         }
7122 }
7123
7124 /**
7125  * intel_modeset_commit_output_state
7126  *
7127  * This function copies the stage display pipe configuration to the real one.
7128  */
7129 static void intel_modeset_commit_output_state(struct drm_device *dev)
7130 {
7131         struct intel_encoder *encoder;
7132         struct intel_connector *connector;
7133
7134         list_for_each_entry(connector, &dev->mode_config.connector_list,
7135                             base.head) {
7136                 connector->base.encoder = &connector->new_encoder->base;
7137         }
7138
7139         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7140                             base.head) {
7141                 encoder->base.crtc = &encoder->new_crtc->base;
7142         }
7143 }
7144
7145 static struct drm_display_mode *
7146 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7147                             struct drm_display_mode *mode)
7148 {
7149         struct drm_device *dev = crtc->dev;
7150         struct drm_display_mode *adjusted_mode;
7151         struct drm_encoder_helper_funcs *encoder_funcs;
7152         struct intel_encoder *encoder;
7153
7154         adjusted_mode = drm_mode_duplicate(dev, mode);
7155         if (!adjusted_mode)
7156                 return ERR_PTR(-ENOMEM);
7157
7158         /* Pass our mode to the connectors and the CRTC to give them a chance to
7159          * adjust it according to limitations or connector properties, and also
7160          * a chance to reject the mode entirely.
7161          */
7162         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7163                             base.head) {
7164
7165                 if (&encoder->new_crtc->base != crtc)
7166                         continue;
7167                 encoder_funcs = encoder->base.helper_private;
7168                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7169                                                 adjusted_mode))) {
7170                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7171                         goto fail;
7172                 }
7173         }
7174
7175         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7176                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7177                 goto fail;
7178         }
7179         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7180
7181         return adjusted_mode;
7182 fail:
7183         drm_mode_destroy(dev, adjusted_mode);
7184         return ERR_PTR(-EINVAL);
7185 }
7186
7187 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7188  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7189 static void
7190 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7191                              unsigned *prepare_pipes, unsigned *disable_pipes)
7192 {
7193         struct intel_crtc *intel_crtc;
7194         struct drm_device *dev = crtc->dev;
7195         struct intel_encoder *encoder;
7196         struct intel_connector *connector;
7197         struct drm_crtc *tmp_crtc;
7198
7199         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7200
7201         /* Check which crtcs have changed outputs connected to them, these need
7202          * to be part of the prepare_pipes mask. We don't (yet) support global
7203          * modeset across multiple crtcs, so modeset_pipes will only have one
7204          * bit set at most. */
7205         list_for_each_entry(connector, &dev->mode_config.connector_list,
7206                             base.head) {
7207                 if (connector->base.encoder == &connector->new_encoder->base)
7208                         continue;
7209
7210                 if (connector->base.encoder) {
7211                         tmp_crtc = connector->base.encoder->crtc;
7212
7213                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7214                 }
7215
7216                 if (connector->new_encoder)
7217                         *prepare_pipes |=
7218                                 1 << connector->new_encoder->new_crtc->pipe;
7219         }
7220
7221         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7222                             base.head) {
7223                 if (encoder->base.crtc == &encoder->new_crtc->base)
7224                         continue;
7225
7226                 if (encoder->base.crtc) {
7227                         tmp_crtc = encoder->base.crtc;
7228
7229                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7230                 }
7231
7232                 if (encoder->new_crtc)
7233                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7234         }
7235
7236         /* Check for any pipes that will be fully disabled ... */
7237         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7238                             base.head) {
7239                 bool used = false;
7240
7241                 /* Don't try to disable disabled crtcs. */
7242                 if (!intel_crtc->base.enabled)
7243                         continue;
7244
7245                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7246                                     base.head) {
7247                         if (encoder->new_crtc == intel_crtc)
7248                                 used = true;
7249                 }
7250
7251                 if (!used)
7252                         *disable_pipes |= 1 << intel_crtc->pipe;
7253         }
7254
7255
7256         /* set_mode is also used to update properties on life display pipes. */
7257         intel_crtc = to_intel_crtc(crtc);
7258         if (crtc->enabled)
7259                 *prepare_pipes |= 1 << intel_crtc->pipe;
7260
7261         /* We only support modeset on one single crtc, hence we need to do that
7262          * only for the passed in crtc iff we change anything else than just
7263          * disable crtcs.
7264          *
7265          * This is actually not true, to be fully compatible with the old crtc
7266          * helper we automatically disable _any_ output (i.e. doesn't need to be
7267          * connected to the crtc we're modesetting on) if it's disconnected.
7268          * Which is a rather nutty api (since changed the output configuration
7269          * without userspace's explicit request can lead to confusion), but
7270          * alas. Hence we currently need to modeset on all pipes we prepare. */
7271         if (*prepare_pipes)
7272                 *modeset_pipes = *prepare_pipes;
7273
7274         /* ... and mask these out. */
7275         *modeset_pipes &= ~(*disable_pipes);
7276         *prepare_pipes &= ~(*disable_pipes);
7277 }
7278
7279 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7280 {
7281         struct drm_encoder *encoder;
7282         struct drm_device *dev = crtc->dev;
7283
7284         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7285                 if (encoder->crtc == crtc)
7286                         return true;
7287
7288         return false;
7289 }
7290
7291 static void
7292 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7293 {
7294         struct intel_encoder *intel_encoder;
7295         struct intel_crtc *intel_crtc;
7296         struct drm_connector *connector;
7297
7298         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7299                             base.head) {
7300                 if (!intel_encoder->base.crtc)
7301                         continue;
7302
7303                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7304
7305                 if (prepare_pipes & (1 << intel_crtc->pipe))
7306                         intel_encoder->connectors_active = false;
7307         }
7308
7309         intel_modeset_commit_output_state(dev);
7310
7311         /* Update computed state. */
7312         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7313                             base.head) {
7314                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7315         }
7316
7317         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7318                 if (!connector->encoder || !connector->encoder->crtc)
7319                         continue;
7320
7321                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7322
7323                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7324                         struct drm_property *dpms_property =
7325                                 dev->mode_config.dpms_property;
7326
7327                         connector->dpms = DRM_MODE_DPMS_ON;
7328                         drm_connector_property_set_value(connector,
7329                                                          dpms_property,
7330                                                          DRM_MODE_DPMS_ON);
7331
7332                         intel_encoder = to_intel_encoder(connector->encoder);
7333                         intel_encoder->connectors_active = true;
7334                 }
7335         }
7336
7337 }
7338
7339 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7340         list_for_each_entry((intel_crtc), \
7341                             &(dev)->mode_config.crtc_list, \
7342                             base.head) \
7343                 if (mask & (1 <<(intel_crtc)->pipe)) \
7344
7345 void
7346 intel_modeset_check_state(struct drm_device *dev)
7347 {
7348         struct intel_crtc *crtc;
7349         struct intel_encoder *encoder;
7350         struct intel_connector *connector;
7351
7352         list_for_each_entry(connector, &dev->mode_config.connector_list,
7353                             base.head) {
7354                 /* This also checks the encoder/connector hw state with the
7355                  * ->get_hw_state callbacks. */
7356                 intel_connector_check_state(connector);
7357
7358                 WARN(&connector->new_encoder->base != connector->base.encoder,
7359                      "connector's staged encoder doesn't match current encoder\n");
7360         }
7361
7362         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7363                             base.head) {
7364                 bool enabled = false;
7365                 bool active = false;
7366                 enum pipe pipe, tracked_pipe;
7367
7368                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7369                               encoder->base.base.id,
7370                               drm_get_encoder_name(&encoder->base));
7371
7372                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7373                      "encoder's stage crtc doesn't match current crtc\n");
7374                 WARN(encoder->connectors_active && !encoder->base.crtc,
7375                      "encoder's active_connectors set, but no crtc\n");
7376
7377                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7378                                     base.head) {
7379                         if (connector->base.encoder != &encoder->base)
7380                                 continue;
7381                         enabled = true;
7382                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7383                                 active = true;
7384                 }
7385                 WARN(!!encoder->base.crtc != enabled,
7386                      "encoder's enabled state mismatch "
7387                      "(expected %i, found %i)\n",
7388                      !!encoder->base.crtc, enabled);
7389                 WARN(active && !encoder->base.crtc,
7390                      "active encoder with no crtc\n");
7391
7392                 WARN(encoder->connectors_active != active,
7393                      "encoder's computed active state doesn't match tracked active state "
7394                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7395
7396                 active = encoder->get_hw_state(encoder, &pipe);
7397                 WARN(active != encoder->connectors_active,
7398                      "encoder's hw state doesn't match sw tracking "
7399                      "(expected %i, found %i)\n",
7400                      encoder->connectors_active, active);
7401
7402                 if (!encoder->base.crtc)
7403                         continue;
7404
7405                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7406                 WARN(active && pipe != tracked_pipe,
7407                      "active encoder's pipe doesn't match"
7408                      "(expected %i, found %i)\n",
7409                      tracked_pipe, pipe);
7410
7411         }
7412
7413         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7414                             base.head) {
7415                 bool enabled = false;
7416                 bool active = false;
7417
7418                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7419                               crtc->base.base.id);
7420
7421                 WARN(crtc->active && !crtc->base.enabled,
7422                      "active crtc, but not enabled in sw tracking\n");
7423
7424                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7425                                     base.head) {
7426                         if (encoder->base.crtc != &crtc->base)
7427                                 continue;
7428                         enabled = true;
7429                         if (encoder->connectors_active)
7430                                 active = true;
7431                 }
7432                 WARN(active != crtc->active,
7433                      "crtc's computed active state doesn't match tracked active state "
7434                      "(expected %i, found %i)\n", active, crtc->active);
7435                 WARN(enabled != crtc->base.enabled,
7436                      "crtc's computed enabled state doesn't match tracked enabled state "
7437                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7438
7439                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7440         }
7441 }
7442
7443 bool intel_set_mode(struct drm_crtc *crtc,
7444                     struct drm_display_mode *mode,
7445                     int x, int y, struct drm_framebuffer *fb)
7446 {
7447         struct drm_device *dev = crtc->dev;
7448         drm_i915_private_t *dev_priv = dev->dev_private;
7449         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7450         struct drm_encoder_helper_funcs *encoder_funcs;
7451         struct drm_encoder *encoder;
7452         struct intel_crtc *intel_crtc;
7453         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7454         bool ret = true;
7455
7456         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7457                                      &prepare_pipes, &disable_pipes);
7458
7459         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7460                       modeset_pipes, prepare_pipes, disable_pipes);
7461
7462         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7463                 intel_crtc_disable(&intel_crtc->base);
7464
7465         saved_hwmode = crtc->hwmode;
7466         saved_mode = crtc->mode;
7467
7468         /* Hack: Because we don't (yet) support global modeset on multiple
7469          * crtcs, we don't keep track of the new mode for more than one crtc.
7470          * Hence simply check whether any bit is set in modeset_pipes in all the
7471          * pieces of code that are not yet converted to deal with mutliple crtcs
7472          * changing their mode at the same time. */
7473         adjusted_mode = NULL;
7474         if (modeset_pipes) {
7475                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7476                 if (IS_ERR(adjusted_mode)) {
7477                         return false;
7478                 }
7479         }
7480
7481         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7482                 if (intel_crtc->base.enabled)
7483                         dev_priv->display.crtc_disable(&intel_crtc->base);
7484         }
7485
7486         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7487          * to set it here already despite that we pass it down the callchain.
7488          */
7489         if (modeset_pipes)
7490                 crtc->mode = *mode;
7491
7492         /* Only after disabling all output pipelines that will be changed can we
7493          * update the the output configuration. */
7494         intel_modeset_update_state(dev, prepare_pipes);
7495
7496         /* Set up the DPLL and any encoders state that needs to adjust or depend
7497          * on the DPLL.
7498          */
7499         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7500                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7501                                            mode, adjusted_mode,
7502                                            x, y, fb);
7503                 if (!ret)
7504                     goto done;
7505
7506                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7507
7508                         if (encoder->crtc != &intel_crtc->base)
7509                                 continue;
7510
7511                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7512                                 encoder->base.id, drm_get_encoder_name(encoder),
7513                                 mode->base.id, mode->name);
7514                         encoder_funcs = encoder->helper_private;
7515                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7516                 }
7517         }
7518
7519         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7520         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7521                 dev_priv->display.crtc_enable(&intel_crtc->base);
7522
7523         if (modeset_pipes) {
7524                 /* Store real post-adjustment hardware mode. */
7525                 crtc->hwmode = *adjusted_mode;
7526
7527                 /* Calculate and store various constants which
7528                  * are later needed by vblank and swap-completion
7529                  * timestamping. They are derived from true hwmode.
7530                  */
7531                 drm_calc_timestamping_constants(crtc);
7532         }
7533
7534         /* FIXME: add subpixel order */
7535 done:
7536         drm_mode_destroy(dev, adjusted_mode);
7537         if (!ret && crtc->enabled) {
7538                 crtc->hwmode = saved_hwmode;
7539                 crtc->mode = saved_mode;
7540         } else {
7541                 intel_modeset_check_state(dev);
7542         }
7543
7544         return ret;
7545 }
7546
7547 #undef for_each_intel_crtc_masked
7548
7549 static void intel_set_config_free(struct intel_set_config *config)
7550 {
7551         if (!config)
7552                 return;
7553
7554         kfree(config->save_connector_encoders);
7555         kfree(config->save_encoder_crtcs);
7556         kfree(config);
7557 }
7558
7559 static int intel_set_config_save_state(struct drm_device *dev,
7560                                        struct intel_set_config *config)
7561 {
7562         struct drm_encoder *encoder;
7563         struct drm_connector *connector;
7564         int count;
7565
7566         config->save_encoder_crtcs =
7567                 kcalloc(dev->mode_config.num_encoder,
7568                         sizeof(struct drm_crtc *), GFP_KERNEL);
7569         if (!config->save_encoder_crtcs)
7570                 return -ENOMEM;
7571
7572         config->save_connector_encoders =
7573                 kcalloc(dev->mode_config.num_connector,
7574                         sizeof(struct drm_encoder *), GFP_KERNEL);
7575         if (!config->save_connector_encoders)
7576                 return -ENOMEM;
7577
7578         /* Copy data. Note that driver private data is not affected.
7579          * Should anything bad happen only the expected state is
7580          * restored, not the drivers personal bookkeeping.
7581          */
7582         count = 0;
7583         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7584                 config->save_encoder_crtcs[count++] = encoder->crtc;
7585         }
7586
7587         count = 0;
7588         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7589                 config->save_connector_encoders[count++] = connector->encoder;
7590         }
7591
7592         return 0;
7593 }
7594
7595 static void intel_set_config_restore_state(struct drm_device *dev,
7596                                            struct intel_set_config *config)
7597 {
7598         struct intel_encoder *encoder;
7599         struct intel_connector *connector;
7600         int count;
7601
7602         count = 0;
7603         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7604                 encoder->new_crtc =
7605                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7606         }
7607
7608         count = 0;
7609         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7610                 connector->new_encoder =
7611                         to_intel_encoder(config->save_connector_encoders[count++]);
7612         }
7613 }
7614
7615 static void
7616 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7617                                       struct intel_set_config *config)
7618 {
7619
7620         /* We should be able to check here if the fb has the same properties
7621          * and then just flip_or_move it */
7622         if (set->crtc->fb != set->fb) {
7623                 /* If we have no fb then treat it as a full mode set */
7624                 if (set->crtc->fb == NULL) {
7625                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7626                         config->mode_changed = true;
7627                 } else if (set->fb == NULL) {
7628                         config->mode_changed = true;
7629                 } else if (set->fb->depth != set->crtc->fb->depth) {
7630                         config->mode_changed = true;
7631                 } else if (set->fb->bits_per_pixel !=
7632                            set->crtc->fb->bits_per_pixel) {
7633                         config->mode_changed = true;
7634                 } else
7635                         config->fb_changed = true;
7636         }
7637
7638         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7639                 config->fb_changed = true;
7640
7641         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7642                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7643                 drm_mode_debug_printmodeline(&set->crtc->mode);
7644                 drm_mode_debug_printmodeline(set->mode);
7645                 config->mode_changed = true;
7646         }
7647 }
7648
7649 static int
7650 intel_modeset_stage_output_state(struct drm_device *dev,
7651                                  struct drm_mode_set *set,
7652                                  struct intel_set_config *config)
7653 {
7654         struct drm_crtc *new_crtc;
7655         struct intel_connector *connector;
7656         struct intel_encoder *encoder;
7657         int count, ro;
7658
7659         /* The upper layers ensure that we either disabl a crtc or have a list
7660          * of connectors. For paranoia, double-check this. */
7661         WARN_ON(!set->fb && (set->num_connectors != 0));
7662         WARN_ON(set->fb && (set->num_connectors == 0));
7663
7664         count = 0;
7665         list_for_each_entry(connector, &dev->mode_config.connector_list,
7666                             base.head) {
7667                 /* Otherwise traverse passed in connector list and get encoders
7668                  * for them. */
7669                 for (ro = 0; ro < set->num_connectors; ro++) {
7670                         if (set->connectors[ro] == &connector->base) {
7671                                 connector->new_encoder = connector->encoder;
7672                                 break;
7673                         }
7674                 }
7675
7676                 /* If we disable the crtc, disable all its connectors. Also, if
7677                  * the connector is on the changing crtc but not on the new
7678                  * connector list, disable it. */
7679                 if ((!set->fb || ro == set->num_connectors) &&
7680                     connector->base.encoder &&
7681                     connector->base.encoder->crtc == set->crtc) {
7682                         connector->new_encoder = NULL;
7683
7684                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7685                                 connector->base.base.id,
7686                                 drm_get_connector_name(&connector->base));
7687                 }
7688
7689
7690                 if (&connector->new_encoder->base != connector->base.encoder) {
7691                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7692                         config->mode_changed = true;
7693                 }
7694
7695                 /* Disable all disconnected encoders. */
7696                 if (connector->base.status == connector_status_disconnected)
7697                         connector->new_encoder = NULL;
7698         }
7699         /* connector->new_encoder is now updated for all connectors. */
7700
7701         /* Update crtc of enabled connectors. */
7702         count = 0;
7703         list_for_each_entry(connector, &dev->mode_config.connector_list,
7704                             base.head) {
7705                 if (!connector->new_encoder)
7706                         continue;
7707
7708                 new_crtc = connector->new_encoder->base.crtc;
7709
7710                 for (ro = 0; ro < set->num_connectors; ro++) {
7711                         if (set->connectors[ro] == &connector->base)
7712                                 new_crtc = set->crtc;
7713                 }
7714
7715                 /* Make sure the new CRTC will work with the encoder */
7716                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7717                                            new_crtc)) {
7718                         return -EINVAL;
7719                 }
7720                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7721
7722                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7723                         connector->base.base.id,
7724                         drm_get_connector_name(&connector->base),
7725                         new_crtc->base.id);
7726         }
7727
7728         /* Check for any encoders that needs to be disabled. */
7729         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7730                             base.head) {
7731                 list_for_each_entry(connector,
7732                                     &dev->mode_config.connector_list,
7733                                     base.head) {
7734                         if (connector->new_encoder == encoder) {
7735                                 WARN_ON(!connector->new_encoder->new_crtc);
7736
7737                                 goto next_encoder;
7738                         }
7739                 }
7740                 encoder->new_crtc = NULL;
7741 next_encoder:
7742                 /* Only now check for crtc changes so we don't miss encoders
7743                  * that will be disabled. */
7744                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7745                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7746                         config->mode_changed = true;
7747                 }
7748         }
7749         /* Now we've also updated encoder->new_crtc for all encoders. */
7750
7751         return 0;
7752 }
7753
7754 static int intel_crtc_set_config(struct drm_mode_set *set)
7755 {
7756         struct drm_device *dev;
7757         struct drm_mode_set save_set;
7758         struct intel_set_config *config;
7759         int ret;
7760
7761         BUG_ON(!set);
7762         BUG_ON(!set->crtc);
7763         BUG_ON(!set->crtc->helper_private);
7764
7765         if (!set->mode)
7766                 set->fb = NULL;
7767
7768         /* The fb helper likes to play gross jokes with ->mode_set_config.
7769          * Unfortunately the crtc helper doesn't do much at all for this case,
7770          * so we have to cope with this madness until the fb helper is fixed up. */
7771         if (set->fb && set->num_connectors == 0)
7772                 return 0;
7773
7774         if (set->fb) {
7775                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7776                                 set->crtc->base.id, set->fb->base.id,
7777                                 (int)set->num_connectors, set->x, set->y);
7778         } else {
7779                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7780         }
7781
7782         dev = set->crtc->dev;
7783
7784         ret = -ENOMEM;
7785         config = kzalloc(sizeof(*config), GFP_KERNEL);
7786         if (!config)
7787                 goto out_config;
7788
7789         ret = intel_set_config_save_state(dev, config);
7790         if (ret)
7791                 goto out_config;
7792
7793         save_set.crtc = set->crtc;
7794         save_set.mode = &set->crtc->mode;
7795         save_set.x = set->crtc->x;
7796         save_set.y = set->crtc->y;
7797         save_set.fb = set->crtc->fb;
7798
7799         /* Compute whether we need a full modeset, only an fb base update or no
7800          * change at all. In the future we might also check whether only the
7801          * mode changed, e.g. for LVDS where we only change the panel fitter in
7802          * such cases. */
7803         intel_set_config_compute_mode_changes(set, config);
7804
7805         ret = intel_modeset_stage_output_state(dev, set, config);
7806         if (ret)
7807                 goto fail;
7808
7809         if (config->mode_changed) {
7810                 if (set->mode) {
7811                         DRM_DEBUG_KMS("attempting to set mode from"
7812                                         " userspace\n");
7813                         drm_mode_debug_printmodeline(set->mode);
7814                 }
7815
7816                 if (!intel_set_mode(set->crtc, set->mode,
7817                                     set->x, set->y, set->fb)) {
7818                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7819                                   set->crtc->base.id);
7820                         ret = -EINVAL;
7821                         goto fail;
7822                 }
7823         } else if (config->fb_changed) {
7824                 ret = intel_pipe_set_base(set->crtc,
7825                                           set->x, set->y, set->fb);
7826         }
7827
7828         intel_set_config_free(config);
7829
7830         return 0;
7831
7832 fail:
7833         intel_set_config_restore_state(dev, config);
7834
7835         /* Try to restore the config */
7836         if (config->mode_changed &&
7837             !intel_set_mode(save_set.crtc, save_set.mode,
7838                             save_set.x, save_set.y, save_set.fb))
7839                 DRM_ERROR("failed to restore config after modeset failure\n");
7840
7841 out_config:
7842         intel_set_config_free(config);
7843         return ret;
7844 }
7845
7846 static const struct drm_crtc_funcs intel_crtc_funcs = {
7847         .cursor_set = intel_crtc_cursor_set,
7848         .cursor_move = intel_crtc_cursor_move,
7849         .gamma_set = intel_crtc_gamma_set,
7850         .set_config = intel_crtc_set_config,
7851         .destroy = intel_crtc_destroy,
7852         .page_flip = intel_crtc_page_flip,
7853 };
7854
7855 static void intel_cpu_pll_init(struct drm_device *dev)
7856 {
7857         if (IS_HASWELL(dev))
7858                 intel_ddi_pll_init(dev);
7859 }
7860
7861 static void intel_pch_pll_init(struct drm_device *dev)
7862 {
7863         drm_i915_private_t *dev_priv = dev->dev_private;
7864         int i;
7865
7866         if (dev_priv->num_pch_pll == 0) {
7867                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7868                 return;
7869         }
7870
7871         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7872                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7873                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7874                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7875         }
7876 }
7877
7878 static void intel_crtc_init(struct drm_device *dev, int pipe)
7879 {
7880         drm_i915_private_t *dev_priv = dev->dev_private;
7881         struct intel_crtc *intel_crtc;
7882         int i;
7883
7884         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7885         if (intel_crtc == NULL)
7886                 return;
7887
7888         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7889
7890         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7891         for (i = 0; i < 256; i++) {
7892                 intel_crtc->lut_r[i] = i;
7893                 intel_crtc->lut_g[i] = i;
7894                 intel_crtc->lut_b[i] = i;
7895         }
7896
7897         /* Swap pipes & planes for FBC on pre-965 */
7898         intel_crtc->pipe = pipe;
7899         intel_crtc->plane = pipe;
7900         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7901                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7902                 intel_crtc->plane = !pipe;
7903         }
7904
7905         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7906                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7907         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7908         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7909
7910         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7911
7912         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7913 }
7914
7915 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7916                                 struct drm_file *file)
7917 {
7918         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7919         struct drm_mode_object *drmmode_obj;
7920         struct intel_crtc *crtc;
7921
7922         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7923                 return -ENODEV;
7924
7925         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7926                         DRM_MODE_OBJECT_CRTC);
7927
7928         if (!drmmode_obj) {
7929                 DRM_ERROR("no such CRTC id\n");
7930                 return -EINVAL;
7931         }
7932
7933         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7934         pipe_from_crtc_id->pipe = crtc->pipe;
7935
7936         return 0;
7937 }
7938
7939 static int intel_encoder_clones(struct intel_encoder *encoder)
7940 {
7941         struct drm_device *dev = encoder->base.dev;
7942         struct intel_encoder *source_encoder;
7943         int index_mask = 0;
7944         int entry = 0;
7945
7946         list_for_each_entry(source_encoder,
7947                             &dev->mode_config.encoder_list, base.head) {
7948
7949                 if (encoder == source_encoder)
7950                         index_mask |= (1 << entry);
7951
7952                 /* Intel hw has only one MUX where enocoders could be cloned. */
7953                 if (encoder->cloneable && source_encoder->cloneable)
7954                         index_mask |= (1 << entry);
7955
7956                 entry++;
7957         }
7958
7959         return index_mask;
7960 }
7961
7962 static bool has_edp_a(struct drm_device *dev)
7963 {
7964         struct drm_i915_private *dev_priv = dev->dev_private;
7965
7966         if (!IS_MOBILE(dev))
7967                 return false;
7968
7969         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7970                 return false;
7971
7972         if (IS_GEN5(dev) &&
7973             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7974                 return false;
7975
7976         return true;
7977 }
7978
7979 static void intel_setup_outputs(struct drm_device *dev)
7980 {
7981         struct drm_i915_private *dev_priv = dev->dev_private;
7982         struct intel_encoder *encoder;
7983         bool dpd_is_edp = false;
7984         bool has_lvds;
7985
7986         has_lvds = intel_lvds_init(dev);
7987         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7988                 /* disable the panel fitter on everything but LVDS */
7989                 I915_WRITE(PFIT_CONTROL, 0);
7990         }
7991
7992         if (HAS_PCH_SPLIT(dev)) {
7993                 dpd_is_edp = intel_dpd_is_edp(dev);
7994
7995                 if (has_edp_a(dev))
7996                         intel_dp_init(dev, DP_A, PORT_A);
7997
7998                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7999                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8000         }
8001
8002         intel_crt_init(dev);
8003
8004         if (IS_HASWELL(dev)) {
8005                 int found;
8006
8007                 /* Haswell uses DDI functions to detect digital outputs */
8008                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8009                 /* DDI A only supports eDP */
8010                 if (found)
8011                         intel_ddi_init(dev, PORT_A);
8012
8013                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8014                  * register */
8015                 found = I915_READ(SFUSE_STRAP);
8016
8017                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8018                         intel_ddi_init(dev, PORT_B);
8019                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8020                         intel_ddi_init(dev, PORT_C);
8021                 if (found & SFUSE_STRAP_DDID_DETECTED)
8022                         intel_ddi_init(dev, PORT_D);
8023         } else if (HAS_PCH_SPLIT(dev)) {
8024                 int found;
8025
8026                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8027                         /* PCH SDVOB multiplex with HDMIB */
8028                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8029                         if (!found)
8030                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8031                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8032                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8033                 }
8034
8035                 if (I915_READ(HDMIC) & PORT_DETECTED)
8036                         intel_hdmi_init(dev, HDMIC, PORT_C);
8037
8038                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8039                         intel_hdmi_init(dev, HDMID, PORT_D);
8040
8041                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8042                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8043
8044                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8045                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8046         } else if (IS_VALLEYVIEW(dev)) {
8047                 int found;
8048
8049                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8050                 if (I915_READ(DP_C) & DP_DETECTED)
8051                         intel_dp_init(dev, DP_C, PORT_C);
8052
8053                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8054                         /* SDVOB multiplex with HDMIB */
8055                         found = intel_sdvo_init(dev, SDVOB, true);
8056                         if (!found)
8057                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8058                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8059                                 intel_dp_init(dev, DP_B, PORT_B);
8060                 }
8061
8062                 if (I915_READ(SDVOC) & PORT_DETECTED)
8063                         intel_hdmi_init(dev, SDVOC, PORT_C);
8064
8065         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8066                 bool found = false;
8067
8068                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8069                         DRM_DEBUG_KMS("probing SDVOB\n");
8070                         found = intel_sdvo_init(dev, SDVOB, true);
8071                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8072                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8073                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8074                         }
8075
8076                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8077                                 DRM_DEBUG_KMS("probing DP_B\n");
8078                                 intel_dp_init(dev, DP_B, PORT_B);
8079                         }
8080                 }
8081
8082                 /* Before G4X SDVOC doesn't have its own detect register */
8083
8084                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8085                         DRM_DEBUG_KMS("probing SDVOC\n");
8086                         found = intel_sdvo_init(dev, SDVOC, false);
8087                 }
8088
8089                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8090
8091                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8092                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8093                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8094                         }
8095                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8096                                 DRM_DEBUG_KMS("probing DP_C\n");
8097                                 intel_dp_init(dev, DP_C, PORT_C);
8098                         }
8099                 }
8100
8101                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8102                     (I915_READ(DP_D) & DP_DETECTED)) {
8103                         DRM_DEBUG_KMS("probing DP_D\n");
8104                         intel_dp_init(dev, DP_D, PORT_D);
8105                 }
8106         } else if (IS_GEN2(dev))
8107                 intel_dvo_init(dev);
8108
8109         if (SUPPORTS_TV(dev))
8110                 intel_tv_init(dev);
8111
8112         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8113                 encoder->base.possible_crtcs = encoder->crtc_mask;
8114                 encoder->base.possible_clones =
8115                         intel_encoder_clones(encoder);
8116         }
8117
8118         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8119                 ironlake_init_pch_refclk(dev);
8120 }
8121
8122 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8123 {
8124         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8125
8126         drm_framebuffer_cleanup(fb);
8127         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8128
8129         kfree(intel_fb);
8130 }
8131
8132 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8133                                                 struct drm_file *file,
8134                                                 unsigned int *handle)
8135 {
8136         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8137         struct drm_i915_gem_object *obj = intel_fb->obj;
8138
8139         return drm_gem_handle_create(file, &obj->base, handle);
8140 }
8141
8142 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8143         .destroy = intel_user_framebuffer_destroy,
8144         .create_handle = intel_user_framebuffer_create_handle,
8145 };
8146
8147 int intel_framebuffer_init(struct drm_device *dev,
8148                            struct intel_framebuffer *intel_fb,
8149                            struct drm_mode_fb_cmd2 *mode_cmd,
8150                            struct drm_i915_gem_object *obj)
8151 {
8152         int ret;
8153
8154         if (obj->tiling_mode == I915_TILING_Y)
8155                 return -EINVAL;
8156
8157         if (mode_cmd->pitches[0] & 63)
8158                 return -EINVAL;
8159
8160         switch (mode_cmd->pixel_format) {
8161         case DRM_FORMAT_RGB332:
8162         case DRM_FORMAT_RGB565:
8163         case DRM_FORMAT_XRGB8888:
8164         case DRM_FORMAT_XBGR8888:
8165         case DRM_FORMAT_ARGB8888:
8166         case DRM_FORMAT_XRGB2101010:
8167         case DRM_FORMAT_ARGB2101010:
8168                 /* RGB formats are common across chipsets */
8169                 break;
8170         case DRM_FORMAT_YUYV:
8171         case DRM_FORMAT_UYVY:
8172         case DRM_FORMAT_YVYU:
8173         case DRM_FORMAT_VYUY:
8174                 break;
8175         default:
8176                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8177                                 mode_cmd->pixel_format);
8178                 return -EINVAL;
8179         }
8180
8181         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8182         if (ret) {
8183                 DRM_ERROR("framebuffer init failed %d\n", ret);
8184                 return ret;
8185         }
8186
8187         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8188         intel_fb->obj = obj;
8189         return 0;
8190 }
8191
8192 static struct drm_framebuffer *
8193 intel_user_framebuffer_create(struct drm_device *dev,
8194                               struct drm_file *filp,
8195                               struct drm_mode_fb_cmd2 *mode_cmd)
8196 {
8197         struct drm_i915_gem_object *obj;
8198
8199         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8200                                                 mode_cmd->handles[0]));
8201         if (&obj->base == NULL)
8202                 return ERR_PTR(-ENOENT);
8203
8204         return intel_framebuffer_create(dev, mode_cmd, obj);
8205 }
8206
8207 static const struct drm_mode_config_funcs intel_mode_funcs = {
8208         .fb_create = intel_user_framebuffer_create,
8209         .output_poll_changed = intel_fb_output_poll_changed,
8210 };
8211
8212 /* Set up chip specific display functions */
8213 static void intel_init_display(struct drm_device *dev)
8214 {
8215         struct drm_i915_private *dev_priv = dev->dev_private;
8216
8217         /* We always want a DPMS function */
8218         if (IS_HASWELL(dev)) {
8219                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8220                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8221                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8222                 dev_priv->display.off = haswell_crtc_off;
8223                 dev_priv->display.update_plane = ironlake_update_plane;
8224         } else if (HAS_PCH_SPLIT(dev)) {
8225                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8226                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8227                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8228                 dev_priv->display.off = ironlake_crtc_off;
8229                 dev_priv->display.update_plane = ironlake_update_plane;
8230         } else {
8231                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8232                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8233                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8234                 dev_priv->display.off = i9xx_crtc_off;
8235                 dev_priv->display.update_plane = i9xx_update_plane;
8236         }
8237
8238         /* Returns the core display clock speed */
8239         if (IS_VALLEYVIEW(dev))
8240                 dev_priv->display.get_display_clock_speed =
8241                         valleyview_get_display_clock_speed;
8242         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8243                 dev_priv->display.get_display_clock_speed =
8244                         i945_get_display_clock_speed;
8245         else if (IS_I915G(dev))
8246                 dev_priv->display.get_display_clock_speed =
8247                         i915_get_display_clock_speed;
8248         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8249                 dev_priv->display.get_display_clock_speed =
8250                         i9xx_misc_get_display_clock_speed;
8251         else if (IS_I915GM(dev))
8252                 dev_priv->display.get_display_clock_speed =
8253                         i915gm_get_display_clock_speed;
8254         else if (IS_I865G(dev))
8255                 dev_priv->display.get_display_clock_speed =
8256                         i865_get_display_clock_speed;
8257         else if (IS_I85X(dev))
8258                 dev_priv->display.get_display_clock_speed =
8259                         i855_get_display_clock_speed;
8260         else /* 852, 830 */
8261                 dev_priv->display.get_display_clock_speed =
8262                         i830_get_display_clock_speed;
8263
8264         if (HAS_PCH_SPLIT(dev)) {
8265                 if (IS_GEN5(dev)) {
8266                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8267                         dev_priv->display.write_eld = ironlake_write_eld;
8268                 } else if (IS_GEN6(dev)) {
8269                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8270                         dev_priv->display.write_eld = ironlake_write_eld;
8271                 } else if (IS_IVYBRIDGE(dev)) {
8272                         /* FIXME: detect B0+ stepping and use auto training */
8273                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8274                         dev_priv->display.write_eld = ironlake_write_eld;
8275                 } else if (IS_HASWELL(dev)) {
8276                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8277                         dev_priv->display.write_eld = haswell_write_eld;
8278                 } else
8279                         dev_priv->display.update_wm = NULL;
8280         } else if (IS_G4X(dev)) {
8281                 dev_priv->display.write_eld = g4x_write_eld;
8282         }
8283
8284         /* Default just returns -ENODEV to indicate unsupported */
8285         dev_priv->display.queue_flip = intel_default_queue_flip;
8286
8287         switch (INTEL_INFO(dev)->gen) {
8288         case 2:
8289                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8290                 break;
8291
8292         case 3:
8293                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8294                 break;
8295
8296         case 4:
8297         case 5:
8298                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8299                 break;
8300
8301         case 6:
8302                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8303                 break;
8304         case 7:
8305                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8306                 break;
8307         }
8308 }
8309
8310 /*
8311  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8312  * resume, or other times.  This quirk makes sure that's the case for
8313  * affected systems.
8314  */
8315 static void quirk_pipea_force(struct drm_device *dev)
8316 {
8317         struct drm_i915_private *dev_priv = dev->dev_private;
8318
8319         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8320         DRM_INFO("applying pipe a force quirk\n");
8321 }
8322
8323 /*
8324  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8325  */
8326 static void quirk_ssc_force_disable(struct drm_device *dev)
8327 {
8328         struct drm_i915_private *dev_priv = dev->dev_private;
8329         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8330         DRM_INFO("applying lvds SSC disable quirk\n");
8331 }
8332
8333 /*
8334  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8335  * brightness value
8336  */
8337 static void quirk_invert_brightness(struct drm_device *dev)
8338 {
8339         struct drm_i915_private *dev_priv = dev->dev_private;
8340         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8341         DRM_INFO("applying inverted panel brightness quirk\n");
8342 }
8343
8344 struct intel_quirk {
8345         int device;
8346         int subsystem_vendor;
8347         int subsystem_device;
8348         void (*hook)(struct drm_device *dev);
8349 };
8350
8351 static struct intel_quirk intel_quirks[] = {
8352         /* HP Mini needs pipe A force quirk (LP: #322104) */
8353         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8354
8355         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8356         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8357
8358         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8359         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8360
8361         /* 830/845 need to leave pipe A & dpll A up */
8362         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8363         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8364
8365         /* Lenovo U160 cannot use SSC on LVDS */
8366         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8367
8368         /* Sony Vaio Y cannot use SSC on LVDS */
8369         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8370
8371         /* Acer Aspire 5734Z must invert backlight brightness */
8372         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8373 };
8374
8375 static void intel_init_quirks(struct drm_device *dev)
8376 {
8377         struct pci_dev *d = dev->pdev;
8378         int i;
8379
8380         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8381                 struct intel_quirk *q = &intel_quirks[i];
8382
8383                 if (d->device == q->device &&
8384                     (d->subsystem_vendor == q->subsystem_vendor ||
8385                      q->subsystem_vendor == PCI_ANY_ID) &&
8386                     (d->subsystem_device == q->subsystem_device ||
8387                      q->subsystem_device == PCI_ANY_ID))
8388                         q->hook(dev);
8389         }
8390 }
8391
8392 /* Disable the VGA plane that we never use */
8393 static void i915_disable_vga(struct drm_device *dev)
8394 {
8395         struct drm_i915_private *dev_priv = dev->dev_private;
8396         u8 sr1;
8397         u32 vga_reg;
8398
8399         if (HAS_PCH_SPLIT(dev))
8400                 vga_reg = CPU_VGACNTRL;
8401         else
8402                 vga_reg = VGACNTRL;
8403
8404         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8405         outb(SR01, VGA_SR_INDEX);
8406         sr1 = inb(VGA_SR_DATA);
8407         outb(sr1 | 1<<5, VGA_SR_DATA);
8408         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8409         udelay(300);
8410
8411         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8412         POSTING_READ(vga_reg);
8413 }
8414
8415 void intel_modeset_init_hw(struct drm_device *dev)
8416 {
8417         /* We attempt to init the necessary power wells early in the initialization
8418          * time, so the subsystems that expect power to be enabled can work.
8419          */
8420         intel_init_power_wells(dev);
8421
8422         intel_prepare_ddi(dev);
8423
8424         intel_init_clock_gating(dev);
8425
8426         mutex_lock(&dev->struct_mutex);
8427         intel_enable_gt_powersave(dev);
8428         mutex_unlock(&dev->struct_mutex);
8429 }
8430
8431 void intel_modeset_init(struct drm_device *dev)
8432 {
8433         struct drm_i915_private *dev_priv = dev->dev_private;
8434         int i, ret;
8435
8436         drm_mode_config_init(dev);
8437
8438         dev->mode_config.min_width = 0;
8439         dev->mode_config.min_height = 0;
8440
8441         dev->mode_config.preferred_depth = 24;
8442         dev->mode_config.prefer_shadow = 1;
8443
8444         dev->mode_config.funcs = &intel_mode_funcs;
8445
8446         intel_init_quirks(dev);
8447
8448         intel_init_pm(dev);
8449
8450         intel_init_display(dev);
8451
8452         if (IS_GEN2(dev)) {
8453                 dev->mode_config.max_width = 2048;
8454                 dev->mode_config.max_height = 2048;
8455         } else if (IS_GEN3(dev)) {
8456                 dev->mode_config.max_width = 4096;
8457                 dev->mode_config.max_height = 4096;
8458         } else {
8459                 dev->mode_config.max_width = 8192;
8460                 dev->mode_config.max_height = 8192;
8461         }
8462         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8463
8464         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8465                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8466
8467         for (i = 0; i < dev_priv->num_pipe; i++) {
8468                 intel_crtc_init(dev, i);
8469                 ret = intel_plane_init(dev, i);
8470                 if (ret)
8471                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8472         }
8473
8474         intel_cpu_pll_init(dev);
8475         intel_pch_pll_init(dev);
8476
8477         /* Just disable it once at startup */
8478         i915_disable_vga(dev);
8479         intel_setup_outputs(dev);
8480 }
8481
8482 static void
8483 intel_connector_break_all_links(struct intel_connector *connector)
8484 {
8485         connector->base.dpms = DRM_MODE_DPMS_OFF;
8486         connector->base.encoder = NULL;
8487         connector->encoder->connectors_active = false;
8488         connector->encoder->base.crtc = NULL;
8489 }
8490
8491 static void intel_enable_pipe_a(struct drm_device *dev)
8492 {
8493         struct intel_connector *connector;
8494         struct drm_connector *crt = NULL;
8495         struct intel_load_detect_pipe load_detect_temp;
8496
8497         /* We can't just switch on the pipe A, we need to set things up with a
8498          * proper mode and output configuration. As a gross hack, enable pipe A
8499          * by enabling the load detect pipe once. */
8500         list_for_each_entry(connector,
8501                             &dev->mode_config.connector_list,
8502                             base.head) {
8503                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8504                         crt = &connector->base;
8505                         break;
8506                 }
8507         }
8508
8509         if (!crt)
8510                 return;
8511
8512         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8513                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8514
8515
8516 }
8517
8518 static bool
8519 intel_check_plane_mapping(struct intel_crtc *crtc)
8520 {
8521         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8522         u32 reg, val;
8523
8524         if (dev_priv->num_pipe == 1)
8525                 return true;
8526
8527         reg = DSPCNTR(!crtc->plane);
8528         val = I915_READ(reg);
8529
8530         if ((val & DISPLAY_PLANE_ENABLE) &&
8531             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8532                 return false;
8533
8534         return true;
8535 }
8536
8537 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8538 {
8539         struct drm_device *dev = crtc->base.dev;
8540         struct drm_i915_private *dev_priv = dev->dev_private;
8541         u32 reg;
8542
8543         /* Clear any frame start delays used for debugging left by the BIOS */
8544         reg = PIPECONF(crtc->pipe);
8545         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8546
8547         /* We need to sanitize the plane -> pipe mapping first because this will
8548          * disable the crtc (and hence change the state) if it is wrong. Note
8549          * that gen4+ has a fixed plane -> pipe mapping.  */
8550         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8551                 struct intel_connector *connector;
8552                 bool plane;
8553
8554                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8555                               crtc->base.base.id);
8556
8557                 /* Pipe has the wrong plane attached and the plane is active.
8558                  * Temporarily change the plane mapping and disable everything
8559                  * ...  */
8560                 plane = crtc->plane;
8561                 crtc->plane = !plane;
8562                 dev_priv->display.crtc_disable(&crtc->base);
8563                 crtc->plane = plane;
8564
8565                 /* ... and break all links. */
8566                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8567                                     base.head) {
8568                         if (connector->encoder->base.crtc != &crtc->base)
8569                                 continue;
8570
8571                         intel_connector_break_all_links(connector);
8572                 }
8573
8574                 WARN_ON(crtc->active);
8575                 crtc->base.enabled = false;
8576         }
8577
8578         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8579             crtc->pipe == PIPE_A && !crtc->active) {
8580                 /* BIOS forgot to enable pipe A, this mostly happens after
8581                  * resume. Force-enable the pipe to fix this, the update_dpms
8582                  * call below we restore the pipe to the right state, but leave
8583                  * the required bits on. */
8584                 intel_enable_pipe_a(dev);
8585         }
8586
8587         /* Adjust the state of the output pipe according to whether we
8588          * have active connectors/encoders. */
8589         intel_crtc_update_dpms(&crtc->base);
8590
8591         if (crtc->active != crtc->base.enabled) {
8592                 struct intel_encoder *encoder;
8593
8594                 /* This can happen either due to bugs in the get_hw_state
8595                  * functions or because the pipe is force-enabled due to the
8596                  * pipe A quirk. */
8597                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8598                               crtc->base.base.id,
8599                               crtc->base.enabled ? "enabled" : "disabled",
8600                               crtc->active ? "enabled" : "disabled");
8601
8602                 crtc->base.enabled = crtc->active;
8603
8604                 /* Because we only establish the connector -> encoder ->
8605                  * crtc links if something is active, this means the
8606                  * crtc is now deactivated. Break the links. connector
8607                  * -> encoder links are only establish when things are
8608                  *  actually up, hence no need to break them. */
8609                 WARN_ON(crtc->active);
8610
8611                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8612                         WARN_ON(encoder->connectors_active);
8613                         encoder->base.crtc = NULL;
8614                 }
8615         }
8616 }
8617
8618 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8619 {
8620         struct intel_connector *connector;
8621         struct drm_device *dev = encoder->base.dev;
8622
8623         /* We need to check both for a crtc link (meaning that the
8624          * encoder is active and trying to read from a pipe) and the
8625          * pipe itself being active. */
8626         bool has_active_crtc = encoder->base.crtc &&
8627                 to_intel_crtc(encoder->base.crtc)->active;
8628
8629         if (encoder->connectors_active && !has_active_crtc) {
8630                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8631                               encoder->base.base.id,
8632                               drm_get_encoder_name(&encoder->base));
8633
8634                 /* Connector is active, but has no active pipe. This is
8635                  * fallout from our resume register restoring. Disable
8636                  * the encoder manually again. */
8637                 if (encoder->base.crtc) {
8638                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8639                                       encoder->base.base.id,
8640                                       drm_get_encoder_name(&encoder->base));
8641                         encoder->disable(encoder);
8642                 }
8643
8644                 /* Inconsistent output/port/pipe state happens presumably due to
8645                  * a bug in one of the get_hw_state functions. Or someplace else
8646                  * in our code, like the register restore mess on resume. Clamp
8647                  * things to off as a safer default. */
8648                 list_for_each_entry(connector,
8649                                     &dev->mode_config.connector_list,
8650                                     base.head) {
8651                         if (connector->encoder != encoder)
8652                                 continue;
8653
8654                         intel_connector_break_all_links(connector);
8655                 }
8656         }
8657         /* Enabled encoders without active connectors will be fixed in
8658          * the crtc fixup. */
8659 }
8660
8661 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8662  * and i915 state tracking structures. */
8663 void intel_modeset_setup_hw_state(struct drm_device *dev)
8664 {
8665         struct drm_i915_private *dev_priv = dev->dev_private;
8666         enum pipe pipe;
8667         u32 tmp;
8668         struct intel_crtc *crtc;
8669         struct intel_encoder *encoder;
8670         struct intel_connector *connector;
8671
8672         for_each_pipe(pipe) {
8673                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8674
8675                 tmp = I915_READ(PIPECONF(pipe));
8676                 if (tmp & PIPECONF_ENABLE)
8677                         crtc->active = true;
8678                 else
8679                         crtc->active = false;
8680
8681                 crtc->base.enabled = crtc->active;
8682
8683                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8684                               crtc->base.base.id,
8685                               crtc->active ? "enabled" : "disabled");
8686         }
8687
8688         if (IS_HASWELL(dev))
8689                 intel_ddi_setup_hw_pll_state(dev);
8690
8691         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8692                             base.head) {
8693                 pipe = 0;
8694
8695                 if (encoder->get_hw_state(encoder, &pipe)) {
8696                         encoder->base.crtc =
8697                                 dev_priv->pipe_to_crtc_mapping[pipe];
8698                 } else {
8699                         encoder->base.crtc = NULL;
8700                 }
8701
8702                 encoder->connectors_active = false;
8703                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8704                               encoder->base.base.id,
8705                               drm_get_encoder_name(&encoder->base),
8706                               encoder->base.crtc ? "enabled" : "disabled",
8707                               pipe);
8708         }
8709
8710         list_for_each_entry(connector, &dev->mode_config.connector_list,
8711                             base.head) {
8712                 if (connector->get_hw_state(connector)) {
8713                         connector->base.dpms = DRM_MODE_DPMS_ON;
8714                         connector->encoder->connectors_active = true;
8715                         connector->base.encoder = &connector->encoder->base;
8716                 } else {
8717                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8718                         connector->base.encoder = NULL;
8719                 }
8720                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8721                               connector->base.base.id,
8722                               drm_get_connector_name(&connector->base),
8723                               connector->base.encoder ? "enabled" : "disabled");
8724         }
8725
8726         /* HW state is read out, now we need to sanitize this mess. */
8727         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8728                             base.head) {
8729                 intel_sanitize_encoder(encoder);
8730         }
8731
8732         for_each_pipe(pipe) {
8733                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8734                 intel_sanitize_crtc(crtc);
8735         }
8736
8737         intel_modeset_update_staged_output_state(dev);
8738
8739         intel_modeset_check_state(dev);
8740
8741         drm_mode_config_reset(dev);
8742 }
8743
8744 void intel_modeset_gem_init(struct drm_device *dev)
8745 {
8746         intel_modeset_init_hw(dev);
8747
8748         intel_setup_overlay(dev);
8749
8750         intel_modeset_setup_hw_state(dev);
8751 }
8752
8753 void intel_modeset_cleanup(struct drm_device *dev)
8754 {
8755         struct drm_i915_private *dev_priv = dev->dev_private;
8756         struct drm_crtc *crtc;
8757         struct intel_crtc *intel_crtc;
8758
8759         drm_kms_helper_poll_fini(dev);
8760         mutex_lock(&dev->struct_mutex);
8761
8762         intel_unregister_dsm_handler();
8763
8764
8765         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8766                 /* Skip inactive CRTCs */
8767                 if (!crtc->fb)
8768                         continue;
8769
8770                 intel_crtc = to_intel_crtc(crtc);
8771                 intel_increase_pllclock(crtc);
8772         }
8773
8774         intel_disable_fbc(dev);
8775
8776         intel_disable_gt_powersave(dev);
8777
8778         ironlake_teardown_rc6(dev);
8779
8780         if (IS_VALLEYVIEW(dev))
8781                 vlv_init_dpio(dev);
8782
8783         mutex_unlock(&dev->struct_mutex);
8784
8785         /* Disable the irq before mode object teardown, for the irq might
8786          * enqueue unpin/hotplug work. */
8787         drm_irq_uninstall(dev);
8788         cancel_work_sync(&dev_priv->hotplug_work);
8789         cancel_work_sync(&dev_priv->rps.work);
8790
8791         /* flush any delayed tasks or pending work */
8792         flush_scheduled_work();
8793
8794         drm_mode_config_cleanup(dev);
8795 }
8796
8797 /*
8798  * Return which encoder is currently attached for connector.
8799  */
8800 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8801 {
8802         return &intel_attached_encoder(connector)->base;
8803 }
8804
8805 void intel_connector_attach_encoder(struct intel_connector *connector,
8806                                     struct intel_encoder *encoder)
8807 {
8808         connector->encoder = encoder;
8809         drm_mode_connector_attach_encoder(&connector->base,
8810                                           &encoder->base);
8811 }
8812
8813 /*
8814  * set vga decode state - true == enable VGA decode
8815  */
8816 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8817 {
8818         struct drm_i915_private *dev_priv = dev->dev_private;
8819         u16 gmch_ctrl;
8820
8821         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8822         if (state)
8823                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8824         else
8825                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8826         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8827         return 0;
8828 }
8829
8830 #ifdef CONFIG_DEBUG_FS
8831 #include <linux/seq_file.h>
8832
8833 struct intel_display_error_state {
8834         struct intel_cursor_error_state {
8835                 u32 control;
8836                 u32 position;
8837                 u32 base;
8838                 u32 size;
8839         } cursor[I915_MAX_PIPES];
8840
8841         struct intel_pipe_error_state {
8842                 u32 conf;
8843                 u32 source;
8844
8845                 u32 htotal;
8846                 u32 hblank;
8847                 u32 hsync;
8848                 u32 vtotal;
8849                 u32 vblank;
8850                 u32 vsync;
8851         } pipe[I915_MAX_PIPES];
8852
8853         struct intel_plane_error_state {
8854                 u32 control;
8855                 u32 stride;
8856                 u32 size;
8857                 u32 pos;
8858                 u32 addr;
8859                 u32 surface;
8860                 u32 tile_offset;
8861         } plane[I915_MAX_PIPES];
8862 };
8863
8864 struct intel_display_error_state *
8865 intel_display_capture_error_state(struct drm_device *dev)
8866 {
8867         drm_i915_private_t *dev_priv = dev->dev_private;
8868         struct intel_display_error_state *error;
8869         int i;
8870
8871         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8872         if (error == NULL)
8873                 return NULL;
8874
8875         for_each_pipe(i) {
8876                 error->cursor[i].control = I915_READ(CURCNTR(i));
8877                 error->cursor[i].position = I915_READ(CURPOS(i));
8878                 error->cursor[i].base = I915_READ(CURBASE(i));
8879
8880                 error->plane[i].control = I915_READ(DSPCNTR(i));
8881                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8882                 error->plane[i].size = I915_READ(DSPSIZE(i));
8883                 error->plane[i].pos = I915_READ(DSPPOS(i));
8884                 error->plane[i].addr = I915_READ(DSPADDR(i));
8885                 if (INTEL_INFO(dev)->gen >= 4) {
8886                         error->plane[i].surface = I915_READ(DSPSURF(i));
8887                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8888                 }
8889
8890                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8891                 error->pipe[i].source = I915_READ(PIPESRC(i));
8892                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8893                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8894                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8895                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8896                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8897                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8898         }
8899
8900         return error;
8901 }
8902
8903 void
8904 intel_display_print_error_state(struct seq_file *m,
8905                                 struct drm_device *dev,
8906                                 struct intel_display_error_state *error)
8907 {
8908         drm_i915_private_t *dev_priv = dev->dev_private;
8909         int i;
8910
8911         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8912         for_each_pipe(i) {
8913                 seq_printf(m, "Pipe [%d]:\n", i);
8914                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8915                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8916                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8917                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8918                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8919                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8920                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8921                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8922
8923                 seq_printf(m, "Plane [%d]:\n", i);
8924                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8925                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8926                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8927                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8928                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8929                 if (INTEL_INFO(dev)->gen >= 4) {
8930                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8931                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8932                 }
8933
8934                 seq_printf(m, "Cursor [%d]:\n", i);
8935                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8936                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8937                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8938         }
8939 }
8940 #endif