]> rtime.felk.cvut.cz Git - linux-imx.git/blob - mm/hugetlb.c
mm: fix negative commitlimit when gigantic hugepages are allocated
[linux-imx.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include <linux/node.h>
28 #include "internal.h"
29
30 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32 unsigned long hugepages_treat_as_movable;
33
34 static int max_hstate;
35 unsigned int default_hstate_idx;
36 struct hstate hstates[HUGE_MAX_HSTATE];
37
38 __initdata LIST_HEAD(huge_boot_pages);
39
40 /* for command line parsing */
41 static struct hstate * __initdata parsed_hstate;
42 static unsigned long __initdata default_hstate_max_huge_pages;
43 static unsigned long __initdata default_hstate_size;
44
45 #define for_each_hstate(h) \
46         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47
48 /*
49  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50  */
51 static DEFINE_SPINLOCK(hugetlb_lock);
52
53 /*
54  * Region tracking -- allows tracking of reservations and instantiated pages
55  *                    across the pages in a mapping.
56  *
57  * The region data structures are protected by a combination of the mmap_sem
58  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59  * must either hold the mmap_sem for write, or the mmap_sem for read and
60  * the hugetlb_instantiation mutex:
61  *
62  *      down_write(&mm->mmap_sem);
63  * or
64  *      down_read(&mm->mmap_sem);
65  *      mutex_lock(&hugetlb_instantiation_mutex);
66  */
67 struct file_region {
68         struct list_head link;
69         long from;
70         long to;
71 };
72
73 static long region_add(struct list_head *head, long f, long t)
74 {
75         struct file_region *rg, *nrg, *trg;
76
77         /* Locate the region we are either in or before. */
78         list_for_each_entry(rg, head, link)
79                 if (f <= rg->to)
80                         break;
81
82         /* Round our left edge to the current segment if it encloses us. */
83         if (f > rg->from)
84                 f = rg->from;
85
86         /* Check for and consume any regions we now overlap with. */
87         nrg = rg;
88         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89                 if (&rg->link == head)
90                         break;
91                 if (rg->from > t)
92                         break;
93
94                 /* If this area reaches higher then extend our area to
95                  * include it completely.  If this is not the first area
96                  * which we intend to reuse, free it. */
97                 if (rg->to > t)
98                         t = rg->to;
99                 if (rg != nrg) {
100                         list_del(&rg->link);
101                         kfree(rg);
102                 }
103         }
104         nrg->from = f;
105         nrg->to = t;
106         return 0;
107 }
108
109 static long region_chg(struct list_head *head, long f, long t)
110 {
111         struct file_region *rg, *nrg;
112         long chg = 0;
113
114         /* Locate the region we are before or in. */
115         list_for_each_entry(rg, head, link)
116                 if (f <= rg->to)
117                         break;
118
119         /* If we are below the current region then a new region is required.
120          * Subtle, allocate a new region at the position but make it zero
121          * size such that we can guarantee to record the reservation. */
122         if (&rg->link == head || t < rg->from) {
123                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124                 if (!nrg)
125                         return -ENOMEM;
126                 nrg->from = f;
127                 nrg->to   = f;
128                 INIT_LIST_HEAD(&nrg->link);
129                 list_add(&nrg->link, rg->link.prev);
130
131                 return t - f;
132         }
133
134         /* Round our left edge to the current segment if it encloses us. */
135         if (f > rg->from)
136                 f = rg->from;
137         chg = t - f;
138
139         /* Check for and consume any regions we now overlap with. */
140         list_for_each_entry(rg, rg->link.prev, link) {
141                 if (&rg->link == head)
142                         break;
143                 if (rg->from > t)
144                         return chg;
145
146                 /* We overlap with this area, if it extends futher than
147                  * us then we must extend ourselves.  Account for its
148                  * existing reservation. */
149                 if (rg->to > t) {
150                         chg += rg->to - t;
151                         t = rg->to;
152                 }
153                 chg -= rg->to - rg->from;
154         }
155         return chg;
156 }
157
158 static long region_truncate(struct list_head *head, long end)
159 {
160         struct file_region *rg, *trg;
161         long chg = 0;
162
163         /* Locate the region we are either in or before. */
164         list_for_each_entry(rg, head, link)
165                 if (end <= rg->to)
166                         break;
167         if (&rg->link == head)
168                 return 0;
169
170         /* If we are in the middle of a region then adjust it. */
171         if (end > rg->from) {
172                 chg = rg->to - end;
173                 rg->to = end;
174                 rg = list_entry(rg->link.next, typeof(*rg), link);
175         }
176
177         /* Drop any remaining regions. */
178         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179                 if (&rg->link == head)
180                         break;
181                 chg += rg->to - rg->from;
182                 list_del(&rg->link);
183                 kfree(rg);
184         }
185         return chg;
186 }
187
188 static long region_count(struct list_head *head, long f, long t)
189 {
190         struct file_region *rg;
191         long chg = 0;
192
193         /* Locate each segment we overlap with, and count that overlap. */
194         list_for_each_entry(rg, head, link) {
195                 int seg_from;
196                 int seg_to;
197
198                 if (rg->to <= f)
199                         continue;
200                 if (rg->from >= t)
201                         break;
202
203                 seg_from = max(rg->from, f);
204                 seg_to = min(rg->to, t);
205
206                 chg += seg_to - seg_from;
207         }
208
209         return chg;
210 }
211
212 /*
213  * Convert the address within this vma to the page offset within
214  * the mapping, in pagecache page units; huge pages here.
215  */
216 static pgoff_t vma_hugecache_offset(struct hstate *h,
217                         struct vm_area_struct *vma, unsigned long address)
218 {
219         return ((address - vma->vm_start) >> huge_page_shift(h)) +
220                         (vma->vm_pgoff >> huge_page_order(h));
221 }
222
223 /*
224  * Return the size of the pages allocated when backing a VMA. In the majority
225  * cases this will be same size as used by the page table entries.
226  */
227 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 {
229         struct hstate *hstate;
230
231         if (!is_vm_hugetlb_page(vma))
232                 return PAGE_SIZE;
233
234         hstate = hstate_vma(vma);
235
236         return 1UL << (hstate->order + PAGE_SHIFT);
237 }
238 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239
240 /*
241  * Return the page size being used by the MMU to back a VMA. In the majority
242  * of cases, the page size used by the kernel matches the MMU size. On
243  * architectures where it differs, an architecture-specific version of this
244  * function is required.
245  */
246 #ifndef vma_mmu_pagesize
247 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248 {
249         return vma_kernel_pagesize(vma);
250 }
251 #endif
252
253 /*
254  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255  * bits of the reservation map pointer, which are always clear due to
256  * alignment.
257  */
258 #define HPAGE_RESV_OWNER    (1UL << 0)
259 #define HPAGE_RESV_UNMAPPED (1UL << 1)
260 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261
262 /*
263  * These helpers are used to track how many pages are reserved for
264  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265  * is guaranteed to have their future faults succeed.
266  *
267  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268  * the reserve counters are updated with the hugetlb_lock held. It is safe
269  * to reset the VMA at fork() time as it is not in use yet and there is no
270  * chance of the global counters getting corrupted as a result of the values.
271  *
272  * The private mapping reservation is represented in a subtly different
273  * manner to a shared mapping.  A shared mapping has a region map associated
274  * with the underlying file, this region map represents the backing file
275  * pages which have ever had a reservation assigned which this persists even
276  * after the page is instantiated.  A private mapping has a region map
277  * associated with the original mmap which is attached to all VMAs which
278  * reference it, this region map represents those offsets which have consumed
279  * reservation ie. where pages have been instantiated.
280  */
281 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282 {
283         return (unsigned long)vma->vm_private_data;
284 }
285
286 static void set_vma_private_data(struct vm_area_struct *vma,
287                                                         unsigned long value)
288 {
289         vma->vm_private_data = (void *)value;
290 }
291
292 struct resv_map {
293         struct kref refs;
294         struct list_head regions;
295 };
296
297 static struct resv_map *resv_map_alloc(void)
298 {
299         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300         if (!resv_map)
301                 return NULL;
302
303         kref_init(&resv_map->refs);
304         INIT_LIST_HEAD(&resv_map->regions);
305
306         return resv_map;
307 }
308
309 static void resv_map_release(struct kref *ref)
310 {
311         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313         /* Clear out any active regions before we release the map. */
314         region_truncate(&resv_map->regions, 0);
315         kfree(resv_map);
316 }
317
318 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 {
320         VM_BUG_ON(!is_vm_hugetlb_page(vma));
321         if (!(vma->vm_flags & VM_MAYSHARE))
322                 return (struct resv_map *)(get_vma_private_data(vma) &
323                                                         ~HPAGE_RESV_MASK);
324         return NULL;
325 }
326
327 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331
332         set_vma_private_data(vma, (get_vma_private_data(vma) &
333                                 HPAGE_RESV_MASK) | (unsigned long)map);
334 }
335
336 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342 }
343
344 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345 {
346         VM_BUG_ON(!is_vm_hugetlb_page(vma));
347
348         return (get_vma_private_data(vma) & flag) != 0;
349 }
350
351 /* Decrement the reserved pages in the hugepage pool by one */
352 static void decrement_hugepage_resv_vma(struct hstate *h,
353                         struct vm_area_struct *vma)
354 {
355         if (vma->vm_flags & VM_NORESERVE)
356                 return;
357
358         if (vma->vm_flags & VM_MAYSHARE) {
359                 /* Shared mappings always use reserves */
360                 h->resv_huge_pages--;
361         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362                 /*
363                  * Only the process that called mmap() has reserves for
364                  * private mappings.
365                  */
366                 h->resv_huge_pages--;
367         }
368 }
369
370 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372 {
373         VM_BUG_ON(!is_vm_hugetlb_page(vma));
374         if (!(vma->vm_flags & VM_MAYSHARE))
375                 vma->vm_private_data = (void *)0;
376 }
377
378 /* Returns true if the VMA has associated reserve pages */
379 static int vma_has_reserves(struct vm_area_struct *vma)
380 {
381         if (vma->vm_flags & VM_MAYSHARE)
382                 return 1;
383         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384                 return 1;
385         return 0;
386 }
387
388 static void clear_gigantic_page(struct page *page,
389                         unsigned long addr, unsigned long sz)
390 {
391         int i;
392         struct page *p = page;
393
394         might_sleep();
395         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396                 cond_resched();
397                 clear_user_highpage(p, addr + i * PAGE_SIZE);
398         }
399 }
400 static void clear_huge_page(struct page *page,
401                         unsigned long addr, unsigned long sz)
402 {
403         int i;
404
405         if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406                 clear_gigantic_page(page, addr, sz);
407                 return;
408         }
409
410         might_sleep();
411         for (i = 0; i < sz/PAGE_SIZE; i++) {
412                 cond_resched();
413                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414         }
415 }
416
417 static void copy_gigantic_page(struct page *dst, struct page *src,
418                            unsigned long addr, struct vm_area_struct *vma)
419 {
420         int i;
421         struct hstate *h = hstate_vma(vma);
422         struct page *dst_base = dst;
423         struct page *src_base = src;
424         might_sleep();
425         for (i = 0; i < pages_per_huge_page(h); ) {
426                 cond_resched();
427                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429                 i++;
430                 dst = mem_map_next(dst, dst_base, i);
431                 src = mem_map_next(src, src_base, i);
432         }
433 }
434 static void copy_huge_page(struct page *dst, struct page *src,
435                            unsigned long addr, struct vm_area_struct *vma)
436 {
437         int i;
438         struct hstate *h = hstate_vma(vma);
439
440         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441                 copy_gigantic_page(dst, src, addr, vma);
442                 return;
443         }
444
445         might_sleep();
446         for (i = 0; i < pages_per_huge_page(h); i++) {
447                 cond_resched();
448                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449         }
450 }
451
452 static void enqueue_huge_page(struct hstate *h, struct page *page)
453 {
454         int nid = page_to_nid(page);
455         list_add(&page->lru, &h->hugepage_freelists[nid]);
456         h->free_huge_pages++;
457         h->free_huge_pages_node[nid]++;
458 }
459
460 static struct page *dequeue_huge_page_vma(struct hstate *h,
461                                 struct vm_area_struct *vma,
462                                 unsigned long address, int avoid_reserve)
463 {
464         int nid;
465         struct page *page = NULL;
466         struct mempolicy *mpol;
467         nodemask_t *nodemask;
468         struct zonelist *zonelist;
469         struct zone *zone;
470         struct zoneref *z;
471
472         get_mems_allowed();
473         zonelist = huge_zonelist(vma, address,
474                                         htlb_alloc_mask, &mpol, &nodemask);
475         /*
476          * A child process with MAP_PRIVATE mappings created by their parent
477          * have no page reserves. This check ensures that reservations are
478          * not "stolen". The child may still get SIGKILLed
479          */
480         if (!vma_has_reserves(vma) &&
481                         h->free_huge_pages - h->resv_huge_pages == 0)
482                 goto err;
483
484         /* If reserves cannot be used, ensure enough pages are in the pool */
485         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
486                 goto err;;
487
488         for_each_zone_zonelist_nodemask(zone, z, zonelist,
489                                                 MAX_NR_ZONES - 1, nodemask) {
490                 nid = zone_to_nid(zone);
491                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
492                     !list_empty(&h->hugepage_freelists[nid])) {
493                         page = list_entry(h->hugepage_freelists[nid].next,
494                                           struct page, lru);
495                         list_del(&page->lru);
496                         h->free_huge_pages--;
497                         h->free_huge_pages_node[nid]--;
498
499                         if (!avoid_reserve)
500                                 decrement_hugepage_resv_vma(h, vma);
501
502                         break;
503                 }
504         }
505 err:
506         mpol_cond_put(mpol);
507         put_mems_allowed();
508         return page;
509 }
510
511 static void update_and_free_page(struct hstate *h, struct page *page)
512 {
513         int i;
514
515         VM_BUG_ON(h->order >= MAX_ORDER);
516
517         h->nr_huge_pages--;
518         h->nr_huge_pages_node[page_to_nid(page)]--;
519         for (i = 0; i < pages_per_huge_page(h); i++) {
520                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
521                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
522                                 1 << PG_private | 1<< PG_writeback);
523         }
524         set_compound_page_dtor(page, NULL);
525         set_page_refcounted(page);
526         arch_release_hugepage(page);
527         __free_pages(page, huge_page_order(h));
528 }
529
530 struct hstate *size_to_hstate(unsigned long size)
531 {
532         struct hstate *h;
533
534         for_each_hstate(h) {
535                 if (huge_page_size(h) == size)
536                         return h;
537         }
538         return NULL;
539 }
540
541 static void free_huge_page(struct page *page)
542 {
543         /*
544          * Can't pass hstate in here because it is called from the
545          * compound page destructor.
546          */
547         struct hstate *h = page_hstate(page);
548         int nid = page_to_nid(page);
549         struct address_space *mapping;
550
551         mapping = (struct address_space *) page_private(page);
552         set_page_private(page, 0);
553         page->mapping = NULL;
554         BUG_ON(page_count(page));
555         INIT_LIST_HEAD(&page->lru);
556
557         spin_lock(&hugetlb_lock);
558         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
559                 update_and_free_page(h, page);
560                 h->surplus_huge_pages--;
561                 h->surplus_huge_pages_node[nid]--;
562         } else {
563                 enqueue_huge_page(h, page);
564         }
565         spin_unlock(&hugetlb_lock);
566         if (mapping)
567                 hugetlb_put_quota(mapping, 1);
568 }
569
570 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
571 {
572         set_compound_page_dtor(page, free_huge_page);
573         spin_lock(&hugetlb_lock);
574         h->nr_huge_pages++;
575         h->nr_huge_pages_node[nid]++;
576         spin_unlock(&hugetlb_lock);
577         put_page(page); /* free it into the hugepage allocator */
578 }
579
580 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
581 {
582         int i;
583         int nr_pages = 1 << order;
584         struct page *p = page + 1;
585
586         /* we rely on prep_new_huge_page to set the destructor */
587         set_compound_order(page, order);
588         __SetPageHead(page);
589         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
590                 __SetPageTail(p);
591                 p->first_page = page;
592         }
593 }
594
595 int PageHuge(struct page *page)
596 {
597         compound_page_dtor *dtor;
598
599         if (!PageCompound(page))
600                 return 0;
601
602         page = compound_head(page);
603         dtor = get_compound_page_dtor(page);
604
605         return dtor == free_huge_page;
606 }
607
608 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
609 {
610         struct page *page;
611
612         if (h->order >= MAX_ORDER)
613                 return NULL;
614
615         page = alloc_pages_exact_node(nid,
616                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
617                                                 __GFP_REPEAT|__GFP_NOWARN,
618                 huge_page_order(h));
619         if (page) {
620                 if (arch_prepare_hugepage(page)) {
621                         __free_pages(page, huge_page_order(h));
622                         return NULL;
623                 }
624                 prep_new_huge_page(h, page, nid);
625         }
626
627         return page;
628 }
629
630 /*
631  * common helper functions for hstate_next_node_to_{alloc|free}.
632  * We may have allocated or freed a huge page based on a different
633  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
634  * be outside of *nodes_allowed.  Ensure that we use an allowed
635  * node for alloc or free.
636  */
637 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639         nid = next_node(nid, *nodes_allowed);
640         if (nid == MAX_NUMNODES)
641                 nid = first_node(*nodes_allowed);
642         VM_BUG_ON(nid >= MAX_NUMNODES);
643
644         return nid;
645 }
646
647 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
648 {
649         if (!node_isset(nid, *nodes_allowed))
650                 nid = next_node_allowed(nid, nodes_allowed);
651         return nid;
652 }
653
654 /*
655  * returns the previously saved node ["this node"] from which to
656  * allocate a persistent huge page for the pool and advance the
657  * next node from which to allocate, handling wrap at end of node
658  * mask.
659  */
660 static int hstate_next_node_to_alloc(struct hstate *h,
661                                         nodemask_t *nodes_allowed)
662 {
663         int nid;
664
665         VM_BUG_ON(!nodes_allowed);
666
667         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
668         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
669
670         return nid;
671 }
672
673 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
674 {
675         struct page *page;
676         int start_nid;
677         int next_nid;
678         int ret = 0;
679
680         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
681         next_nid = start_nid;
682
683         do {
684                 page = alloc_fresh_huge_page_node(h, next_nid);
685                 if (page) {
686                         ret = 1;
687                         break;
688                 }
689                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
690         } while (next_nid != start_nid);
691
692         if (ret)
693                 count_vm_event(HTLB_BUDDY_PGALLOC);
694         else
695                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
696
697         return ret;
698 }
699
700 /*
701  * helper for free_pool_huge_page() - return the previously saved
702  * node ["this node"] from which to free a huge page.  Advance the
703  * next node id whether or not we find a free huge page to free so
704  * that the next attempt to free addresses the next node.
705  */
706 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
707 {
708         int nid;
709
710         VM_BUG_ON(!nodes_allowed);
711
712         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
713         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
714
715         return nid;
716 }
717
718 /*
719  * Free huge page from pool from next node to free.
720  * Attempt to keep persistent huge pages more or less
721  * balanced over allowed nodes.
722  * Called with hugetlb_lock locked.
723  */
724 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
725                                                          bool acct_surplus)
726 {
727         int start_nid;
728         int next_nid;
729         int ret = 0;
730
731         start_nid = hstate_next_node_to_free(h, nodes_allowed);
732         next_nid = start_nid;
733
734         do {
735                 /*
736                  * If we're returning unused surplus pages, only examine
737                  * nodes with surplus pages.
738                  */
739                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
740                     !list_empty(&h->hugepage_freelists[next_nid])) {
741                         struct page *page =
742                                 list_entry(h->hugepage_freelists[next_nid].next,
743                                           struct page, lru);
744                         list_del(&page->lru);
745                         h->free_huge_pages--;
746                         h->free_huge_pages_node[next_nid]--;
747                         if (acct_surplus) {
748                                 h->surplus_huge_pages--;
749                                 h->surplus_huge_pages_node[next_nid]--;
750                         }
751                         update_and_free_page(h, page);
752                         ret = 1;
753                         break;
754                 }
755                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
756         } while (next_nid != start_nid);
757
758         return ret;
759 }
760
761 static struct page *alloc_buddy_huge_page(struct hstate *h,
762                         struct vm_area_struct *vma, unsigned long address)
763 {
764         struct page *page;
765         unsigned int nid;
766
767         if (h->order >= MAX_ORDER)
768                 return NULL;
769
770         /*
771          * Assume we will successfully allocate the surplus page to
772          * prevent racing processes from causing the surplus to exceed
773          * overcommit
774          *
775          * This however introduces a different race, where a process B
776          * tries to grow the static hugepage pool while alloc_pages() is
777          * called by process A. B will only examine the per-node
778          * counters in determining if surplus huge pages can be
779          * converted to normal huge pages in adjust_pool_surplus(). A
780          * won't be able to increment the per-node counter, until the
781          * lock is dropped by B, but B doesn't drop hugetlb_lock until
782          * no more huge pages can be converted from surplus to normal
783          * state (and doesn't try to convert again). Thus, we have a
784          * case where a surplus huge page exists, the pool is grown, and
785          * the surplus huge page still exists after, even though it
786          * should just have been converted to a normal huge page. This
787          * does not leak memory, though, as the hugepage will be freed
788          * once it is out of use. It also does not allow the counters to
789          * go out of whack in adjust_pool_surplus() as we don't modify
790          * the node values until we've gotten the hugepage and only the
791          * per-node value is checked there.
792          */
793         spin_lock(&hugetlb_lock);
794         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
795                 spin_unlock(&hugetlb_lock);
796                 return NULL;
797         } else {
798                 h->nr_huge_pages++;
799                 h->surplus_huge_pages++;
800         }
801         spin_unlock(&hugetlb_lock);
802
803         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
804                                         __GFP_REPEAT|__GFP_NOWARN,
805                                         huge_page_order(h));
806
807         if (page && arch_prepare_hugepage(page)) {
808                 __free_pages(page, huge_page_order(h));
809                 return NULL;
810         }
811
812         spin_lock(&hugetlb_lock);
813         if (page) {
814                 /*
815                  * This page is now managed by the hugetlb allocator and has
816                  * no users -- drop the buddy allocator's reference.
817                  */
818                 put_page_testzero(page);
819                 VM_BUG_ON(page_count(page));
820                 nid = page_to_nid(page);
821                 set_compound_page_dtor(page, free_huge_page);
822                 /*
823                  * We incremented the global counters already
824                  */
825                 h->nr_huge_pages_node[nid]++;
826                 h->surplus_huge_pages_node[nid]++;
827                 __count_vm_event(HTLB_BUDDY_PGALLOC);
828         } else {
829                 h->nr_huge_pages--;
830                 h->surplus_huge_pages--;
831                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832         }
833         spin_unlock(&hugetlb_lock);
834
835         return page;
836 }
837
838 /*
839  * Increase the hugetlb pool such that it can accomodate a reservation
840  * of size 'delta'.
841  */
842 static int gather_surplus_pages(struct hstate *h, int delta)
843 {
844         struct list_head surplus_list;
845         struct page *page, *tmp;
846         int ret, i;
847         int needed, allocated;
848
849         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
850         if (needed <= 0) {
851                 h->resv_huge_pages += delta;
852                 return 0;
853         }
854
855         allocated = 0;
856         INIT_LIST_HEAD(&surplus_list);
857
858         ret = -ENOMEM;
859 retry:
860         spin_unlock(&hugetlb_lock);
861         for (i = 0; i < needed; i++) {
862                 page = alloc_buddy_huge_page(h, NULL, 0);
863                 if (!page) {
864                         /*
865                          * We were not able to allocate enough pages to
866                          * satisfy the entire reservation so we free what
867                          * we've allocated so far.
868                          */
869                         spin_lock(&hugetlb_lock);
870                         needed = 0;
871                         goto free;
872                 }
873
874                 list_add(&page->lru, &surplus_list);
875         }
876         allocated += needed;
877
878         /*
879          * After retaking hugetlb_lock, we need to recalculate 'needed'
880          * because either resv_huge_pages or free_huge_pages may have changed.
881          */
882         spin_lock(&hugetlb_lock);
883         needed = (h->resv_huge_pages + delta) -
884                         (h->free_huge_pages + allocated);
885         if (needed > 0)
886                 goto retry;
887
888         /*
889          * The surplus_list now contains _at_least_ the number of extra pages
890          * needed to accomodate the reservation.  Add the appropriate number
891          * of pages to the hugetlb pool and free the extras back to the buddy
892          * allocator.  Commit the entire reservation here to prevent another
893          * process from stealing the pages as they are added to the pool but
894          * before they are reserved.
895          */
896         needed += allocated;
897         h->resv_huge_pages += delta;
898         ret = 0;
899 free:
900         /* Free the needed pages to the hugetlb pool */
901         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
902                 if ((--needed) < 0)
903                         break;
904                 list_del(&page->lru);
905                 enqueue_huge_page(h, page);
906         }
907
908         /* Free unnecessary surplus pages to the buddy allocator */
909         if (!list_empty(&surplus_list)) {
910                 spin_unlock(&hugetlb_lock);
911                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
912                         list_del(&page->lru);
913                         /*
914                          * The page has a reference count of zero already, so
915                          * call free_huge_page directly instead of using
916                          * put_page.  This must be done with hugetlb_lock
917                          * unlocked which is safe because free_huge_page takes
918                          * hugetlb_lock before deciding how to free the page.
919                          */
920                         free_huge_page(page);
921                 }
922                 spin_lock(&hugetlb_lock);
923         }
924
925         return ret;
926 }
927
928 /*
929  * When releasing a hugetlb pool reservation, any surplus pages that were
930  * allocated to satisfy the reservation must be explicitly freed if they were
931  * never used.
932  * Called with hugetlb_lock held.
933  */
934 static void return_unused_surplus_pages(struct hstate *h,
935                                         unsigned long unused_resv_pages)
936 {
937         unsigned long nr_pages;
938
939         /* Uncommit the reservation */
940         h->resv_huge_pages -= unused_resv_pages;
941
942         /* Cannot return gigantic pages currently */
943         if (h->order >= MAX_ORDER)
944                 return;
945
946         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
947
948         /*
949          * We want to release as many surplus pages as possible, spread
950          * evenly across all nodes with memory. Iterate across these nodes
951          * until we can no longer free unreserved surplus pages. This occurs
952          * when the nodes with surplus pages have no free pages.
953          * free_pool_huge_page() will balance the the freed pages across the
954          * on-line nodes with memory and will handle the hstate accounting.
955          */
956         while (nr_pages--) {
957                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
958                         break;
959         }
960 }
961
962 /*
963  * Determine if the huge page at addr within the vma has an associated
964  * reservation.  Where it does not we will need to logically increase
965  * reservation and actually increase quota before an allocation can occur.
966  * Where any new reservation would be required the reservation change is
967  * prepared, but not committed.  Once the page has been quota'd allocated
968  * an instantiated the change should be committed via vma_commit_reservation.
969  * No action is required on failure.
970  */
971 static long vma_needs_reservation(struct hstate *h,
972                         struct vm_area_struct *vma, unsigned long addr)
973 {
974         struct address_space *mapping = vma->vm_file->f_mapping;
975         struct inode *inode = mapping->host;
976
977         if (vma->vm_flags & VM_MAYSHARE) {
978                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
979                 return region_chg(&inode->i_mapping->private_list,
980                                                         idx, idx + 1);
981
982         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
983                 return 1;
984
985         } else  {
986                 long err;
987                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
988                 struct resv_map *reservations = vma_resv_map(vma);
989
990                 err = region_chg(&reservations->regions, idx, idx + 1);
991                 if (err < 0)
992                         return err;
993                 return 0;
994         }
995 }
996 static void vma_commit_reservation(struct hstate *h,
997                         struct vm_area_struct *vma, unsigned long addr)
998 {
999         struct address_space *mapping = vma->vm_file->f_mapping;
1000         struct inode *inode = mapping->host;
1001
1002         if (vma->vm_flags & VM_MAYSHARE) {
1003                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1004                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1005
1006         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008                 struct resv_map *reservations = vma_resv_map(vma);
1009
1010                 /* Mark this page used in the map. */
1011                 region_add(&reservations->regions, idx, idx + 1);
1012         }
1013 }
1014
1015 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1016                                     unsigned long addr, int avoid_reserve)
1017 {
1018         struct hstate *h = hstate_vma(vma);
1019         struct page *page;
1020         struct address_space *mapping = vma->vm_file->f_mapping;
1021         struct inode *inode = mapping->host;
1022         long chg;
1023
1024         /*
1025          * Processes that did not create the mapping will have no reserves and
1026          * will not have accounted against quota. Check that the quota can be
1027          * made before satisfying the allocation
1028          * MAP_NORESERVE mappings may also need pages and quota allocated
1029          * if no reserve mapping overlaps.
1030          */
1031         chg = vma_needs_reservation(h, vma, addr);
1032         if (chg < 0)
1033                 return ERR_PTR(-VM_FAULT_OOM);
1034         if (chg)
1035                 if (hugetlb_get_quota(inode->i_mapping, chg))
1036                         return ERR_PTR(-VM_FAULT_SIGBUS);
1037
1038         spin_lock(&hugetlb_lock);
1039         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1040         spin_unlock(&hugetlb_lock);
1041
1042         if (!page) {
1043                 page = alloc_buddy_huge_page(h, vma, addr);
1044                 if (!page) {
1045                         hugetlb_put_quota(inode->i_mapping, chg);
1046                         return ERR_PTR(-VM_FAULT_SIGBUS);
1047                 }
1048         }
1049
1050         set_page_refcounted(page);
1051         set_page_private(page, (unsigned long) mapping);
1052
1053         vma_commit_reservation(h, vma, addr);
1054
1055         return page;
1056 }
1057
1058 int __weak alloc_bootmem_huge_page(struct hstate *h)
1059 {
1060         struct huge_bootmem_page *m;
1061         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1062
1063         while (nr_nodes) {
1064                 void *addr;
1065
1066                 addr = __alloc_bootmem_node_nopanic(
1067                                 NODE_DATA(hstate_next_node_to_alloc(h,
1068                                                 &node_states[N_HIGH_MEMORY])),
1069                                 huge_page_size(h), huge_page_size(h), 0);
1070
1071                 if (addr) {
1072                         /*
1073                          * Use the beginning of the huge page to store the
1074                          * huge_bootmem_page struct (until gather_bootmem
1075                          * puts them into the mem_map).
1076                          */
1077                         m = addr;
1078                         goto found;
1079                 }
1080                 nr_nodes--;
1081         }
1082         return 0;
1083
1084 found:
1085         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1086         /* Put them into a private list first because mem_map is not up yet */
1087         list_add(&m->list, &huge_boot_pages);
1088         m->hstate = h;
1089         return 1;
1090 }
1091
1092 static void prep_compound_huge_page(struct page *page, int order)
1093 {
1094         if (unlikely(order > (MAX_ORDER - 1)))
1095                 prep_compound_gigantic_page(page, order);
1096         else
1097                 prep_compound_page(page, order);
1098 }
1099
1100 /* Put bootmem huge pages into the standard lists after mem_map is up */
1101 static void __init gather_bootmem_prealloc(void)
1102 {
1103         struct huge_bootmem_page *m;
1104
1105         list_for_each_entry(m, &huge_boot_pages, list) {
1106                 struct page *page = virt_to_page(m);
1107                 struct hstate *h = m->hstate;
1108                 __ClearPageReserved(page);
1109                 WARN_ON(page_count(page) != 1);
1110                 prep_compound_huge_page(page, h->order);
1111                 prep_new_huge_page(h, page, page_to_nid(page));
1112                 /*
1113                  * If we had gigantic hugepages allocated at boot time, we need
1114                  * to restore the 'stolen' pages to totalram_pages in order to
1115                  * fix confusing memory reports from free(1) and another
1116                  * side-effects, like CommitLimit going negative.
1117                  */
1118                 if (h->order > (MAX_ORDER - 1))
1119                         totalram_pages += 1 << h->order;
1120         }
1121 }
1122
1123 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1124 {
1125         unsigned long i;
1126
1127         for (i = 0; i < h->max_huge_pages; ++i) {
1128                 if (h->order >= MAX_ORDER) {
1129                         if (!alloc_bootmem_huge_page(h))
1130                                 break;
1131                 } else if (!alloc_fresh_huge_page(h,
1132                                          &node_states[N_HIGH_MEMORY]))
1133                         break;
1134         }
1135         h->max_huge_pages = i;
1136 }
1137
1138 static void __init hugetlb_init_hstates(void)
1139 {
1140         struct hstate *h;
1141
1142         for_each_hstate(h) {
1143                 /* oversize hugepages were init'ed in early boot */
1144                 if (h->order < MAX_ORDER)
1145                         hugetlb_hstate_alloc_pages(h);
1146         }
1147 }
1148
1149 static char * __init memfmt(char *buf, unsigned long n)
1150 {
1151         if (n >= (1UL << 30))
1152                 sprintf(buf, "%lu GB", n >> 30);
1153         else if (n >= (1UL << 20))
1154                 sprintf(buf, "%lu MB", n >> 20);
1155         else
1156                 sprintf(buf, "%lu KB", n >> 10);
1157         return buf;
1158 }
1159
1160 static void __init report_hugepages(void)
1161 {
1162         struct hstate *h;
1163
1164         for_each_hstate(h) {
1165                 char buf[32];
1166                 printk(KERN_INFO "HugeTLB registered %s page size, "
1167                                  "pre-allocated %ld pages\n",
1168                         memfmt(buf, huge_page_size(h)),
1169                         h->free_huge_pages);
1170         }
1171 }
1172
1173 #ifdef CONFIG_HIGHMEM
1174 static void try_to_free_low(struct hstate *h, unsigned long count,
1175                                                 nodemask_t *nodes_allowed)
1176 {
1177         int i;
1178
1179         if (h->order >= MAX_ORDER)
1180                 return;
1181
1182         for_each_node_mask(i, *nodes_allowed) {
1183                 struct page *page, *next;
1184                 struct list_head *freel = &h->hugepage_freelists[i];
1185                 list_for_each_entry_safe(page, next, freel, lru) {
1186                         if (count >= h->nr_huge_pages)
1187                                 return;
1188                         if (PageHighMem(page))
1189                                 continue;
1190                         list_del(&page->lru);
1191                         update_and_free_page(h, page);
1192                         h->free_huge_pages--;
1193                         h->free_huge_pages_node[page_to_nid(page)]--;
1194                 }
1195         }
1196 }
1197 #else
1198 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1199                                                 nodemask_t *nodes_allowed)
1200 {
1201 }
1202 #endif
1203
1204 /*
1205  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1206  * balanced by operating on them in a round-robin fashion.
1207  * Returns 1 if an adjustment was made.
1208  */
1209 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1210                                 int delta)
1211 {
1212         int start_nid, next_nid;
1213         int ret = 0;
1214
1215         VM_BUG_ON(delta != -1 && delta != 1);
1216
1217         if (delta < 0)
1218                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1219         else
1220                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1221         next_nid = start_nid;
1222
1223         do {
1224                 int nid = next_nid;
1225                 if (delta < 0)  {
1226                         /*
1227                          * To shrink on this node, there must be a surplus page
1228                          */
1229                         if (!h->surplus_huge_pages_node[nid]) {
1230                                 next_nid = hstate_next_node_to_alloc(h,
1231                                                                 nodes_allowed);
1232                                 continue;
1233                         }
1234                 }
1235                 if (delta > 0) {
1236                         /*
1237                          * Surplus cannot exceed the total number of pages
1238                          */
1239                         if (h->surplus_huge_pages_node[nid] >=
1240                                                 h->nr_huge_pages_node[nid]) {
1241                                 next_nid = hstate_next_node_to_free(h,
1242                                                                 nodes_allowed);
1243                                 continue;
1244                         }
1245                 }
1246
1247                 h->surplus_huge_pages += delta;
1248                 h->surplus_huge_pages_node[nid] += delta;
1249                 ret = 1;
1250                 break;
1251         } while (next_nid != start_nid);
1252
1253         return ret;
1254 }
1255
1256 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1257 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1258                                                 nodemask_t *nodes_allowed)
1259 {
1260         unsigned long min_count, ret;
1261
1262         if (h->order >= MAX_ORDER)
1263                 return h->max_huge_pages;
1264
1265         /*
1266          * Increase the pool size
1267          * First take pages out of surplus state.  Then make up the
1268          * remaining difference by allocating fresh huge pages.
1269          *
1270          * We might race with alloc_buddy_huge_page() here and be unable
1271          * to convert a surplus huge page to a normal huge page. That is
1272          * not critical, though, it just means the overall size of the
1273          * pool might be one hugepage larger than it needs to be, but
1274          * within all the constraints specified by the sysctls.
1275          */
1276         spin_lock(&hugetlb_lock);
1277         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1278                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1279                         break;
1280         }
1281
1282         while (count > persistent_huge_pages(h)) {
1283                 /*
1284                  * If this allocation races such that we no longer need the
1285                  * page, free_huge_page will handle it by freeing the page
1286                  * and reducing the surplus.
1287                  */
1288                 spin_unlock(&hugetlb_lock);
1289                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1290                 spin_lock(&hugetlb_lock);
1291                 if (!ret)
1292                         goto out;
1293
1294                 /* Bail for signals. Probably ctrl-c from user */
1295                 if (signal_pending(current))
1296                         goto out;
1297         }
1298
1299         /*
1300          * Decrease the pool size
1301          * First return free pages to the buddy allocator (being careful
1302          * to keep enough around to satisfy reservations).  Then place
1303          * pages into surplus state as needed so the pool will shrink
1304          * to the desired size as pages become free.
1305          *
1306          * By placing pages into the surplus state independent of the
1307          * overcommit value, we are allowing the surplus pool size to
1308          * exceed overcommit. There are few sane options here. Since
1309          * alloc_buddy_huge_page() is checking the global counter,
1310          * though, we'll note that we're not allowed to exceed surplus
1311          * and won't grow the pool anywhere else. Not until one of the
1312          * sysctls are changed, or the surplus pages go out of use.
1313          */
1314         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1315         min_count = max(count, min_count);
1316         try_to_free_low(h, min_count, nodes_allowed);
1317         while (min_count < persistent_huge_pages(h)) {
1318                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1319                         break;
1320         }
1321         while (count < persistent_huge_pages(h)) {
1322                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1323                         break;
1324         }
1325 out:
1326         ret = persistent_huge_pages(h);
1327         spin_unlock(&hugetlb_lock);
1328         return ret;
1329 }
1330
1331 #define HSTATE_ATTR_RO(_name) \
1332         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1333
1334 #define HSTATE_ATTR(_name) \
1335         static struct kobj_attribute _name##_attr = \
1336                 __ATTR(_name, 0644, _name##_show, _name##_store)
1337
1338 static struct kobject *hugepages_kobj;
1339 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1340
1341 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1342
1343 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1344 {
1345         int i;
1346
1347         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1348                 if (hstate_kobjs[i] == kobj) {
1349                         if (nidp)
1350                                 *nidp = NUMA_NO_NODE;
1351                         return &hstates[i];
1352                 }
1353
1354         return kobj_to_node_hstate(kobj, nidp);
1355 }
1356
1357 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1358                                         struct kobj_attribute *attr, char *buf)
1359 {
1360         struct hstate *h;
1361         unsigned long nr_huge_pages;
1362         int nid;
1363
1364         h = kobj_to_hstate(kobj, &nid);
1365         if (nid == NUMA_NO_NODE)
1366                 nr_huge_pages = h->nr_huge_pages;
1367         else
1368                 nr_huge_pages = h->nr_huge_pages_node[nid];
1369
1370         return sprintf(buf, "%lu\n", nr_huge_pages);
1371 }
1372 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1373                         struct kobject *kobj, struct kobj_attribute *attr,
1374                         const char *buf, size_t len)
1375 {
1376         int err;
1377         int nid;
1378         unsigned long count;
1379         struct hstate *h;
1380         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1381
1382         err = strict_strtoul(buf, 10, &count);
1383         if (err)
1384                 return 0;
1385
1386         h = kobj_to_hstate(kobj, &nid);
1387         if (nid == NUMA_NO_NODE) {
1388                 /*
1389                  * global hstate attribute
1390                  */
1391                 if (!(obey_mempolicy &&
1392                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1393                         NODEMASK_FREE(nodes_allowed);
1394                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1395                 }
1396         } else if (nodes_allowed) {
1397                 /*
1398                  * per node hstate attribute: adjust count to global,
1399                  * but restrict alloc/free to the specified node.
1400                  */
1401                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1402                 init_nodemask_of_node(nodes_allowed, nid);
1403         } else
1404                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1405
1406         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1407
1408         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409                 NODEMASK_FREE(nodes_allowed);
1410
1411         return len;
1412 }
1413
1414 static ssize_t nr_hugepages_show(struct kobject *kobj,
1415                                        struct kobj_attribute *attr, char *buf)
1416 {
1417         return nr_hugepages_show_common(kobj, attr, buf);
1418 }
1419
1420 static ssize_t nr_hugepages_store(struct kobject *kobj,
1421                struct kobj_attribute *attr, const char *buf, size_t len)
1422 {
1423         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1424 }
1425 HSTATE_ATTR(nr_hugepages);
1426
1427 #ifdef CONFIG_NUMA
1428
1429 /*
1430  * hstate attribute for optionally mempolicy-based constraint on persistent
1431  * huge page alloc/free.
1432  */
1433 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1434                                        struct kobj_attribute *attr, char *buf)
1435 {
1436         return nr_hugepages_show_common(kobj, attr, buf);
1437 }
1438
1439 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1440                struct kobj_attribute *attr, const char *buf, size_t len)
1441 {
1442         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1443 }
1444 HSTATE_ATTR(nr_hugepages_mempolicy);
1445 #endif
1446
1447
1448 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1449                                         struct kobj_attribute *attr, char *buf)
1450 {
1451         struct hstate *h = kobj_to_hstate(kobj, NULL);
1452         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1453 }
1454 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1455                 struct kobj_attribute *attr, const char *buf, size_t count)
1456 {
1457         int err;
1458         unsigned long input;
1459         struct hstate *h = kobj_to_hstate(kobj, NULL);
1460
1461         err = strict_strtoul(buf, 10, &input);
1462         if (err)
1463                 return 0;
1464
1465         spin_lock(&hugetlb_lock);
1466         h->nr_overcommit_huge_pages = input;
1467         spin_unlock(&hugetlb_lock);
1468
1469         return count;
1470 }
1471 HSTATE_ATTR(nr_overcommit_hugepages);
1472
1473 static ssize_t free_hugepages_show(struct kobject *kobj,
1474                                         struct kobj_attribute *attr, char *buf)
1475 {
1476         struct hstate *h;
1477         unsigned long free_huge_pages;
1478         int nid;
1479
1480         h = kobj_to_hstate(kobj, &nid);
1481         if (nid == NUMA_NO_NODE)
1482                 free_huge_pages = h->free_huge_pages;
1483         else
1484                 free_huge_pages = h->free_huge_pages_node[nid];
1485
1486         return sprintf(buf, "%lu\n", free_huge_pages);
1487 }
1488 HSTATE_ATTR_RO(free_hugepages);
1489
1490 static ssize_t resv_hugepages_show(struct kobject *kobj,
1491                                         struct kobj_attribute *attr, char *buf)
1492 {
1493         struct hstate *h = kobj_to_hstate(kobj, NULL);
1494         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1495 }
1496 HSTATE_ATTR_RO(resv_hugepages);
1497
1498 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1499                                         struct kobj_attribute *attr, char *buf)
1500 {
1501         struct hstate *h;
1502         unsigned long surplus_huge_pages;
1503         int nid;
1504
1505         h = kobj_to_hstate(kobj, &nid);
1506         if (nid == NUMA_NO_NODE)
1507                 surplus_huge_pages = h->surplus_huge_pages;
1508         else
1509                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1510
1511         return sprintf(buf, "%lu\n", surplus_huge_pages);
1512 }
1513 HSTATE_ATTR_RO(surplus_hugepages);
1514
1515 static struct attribute *hstate_attrs[] = {
1516         &nr_hugepages_attr.attr,
1517         &nr_overcommit_hugepages_attr.attr,
1518         &free_hugepages_attr.attr,
1519         &resv_hugepages_attr.attr,
1520         &surplus_hugepages_attr.attr,
1521 #ifdef CONFIG_NUMA
1522         &nr_hugepages_mempolicy_attr.attr,
1523 #endif
1524         NULL,
1525 };
1526
1527 static struct attribute_group hstate_attr_group = {
1528         .attrs = hstate_attrs,
1529 };
1530
1531 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1532                                     struct kobject **hstate_kobjs,
1533                                     struct attribute_group *hstate_attr_group)
1534 {
1535         int retval;
1536         int hi = h - hstates;
1537
1538         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1539         if (!hstate_kobjs[hi])
1540                 return -ENOMEM;
1541
1542         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1543         if (retval)
1544                 kobject_put(hstate_kobjs[hi]);
1545
1546         return retval;
1547 }
1548
1549 static void __init hugetlb_sysfs_init(void)
1550 {
1551         struct hstate *h;
1552         int err;
1553
1554         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1555         if (!hugepages_kobj)
1556                 return;
1557
1558         for_each_hstate(h) {
1559                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1560                                          hstate_kobjs, &hstate_attr_group);
1561                 if (err)
1562                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1563                                                                 h->name);
1564         }
1565 }
1566
1567 #ifdef CONFIG_NUMA
1568
1569 /*
1570  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1571  * with node sysdevs in node_devices[] using a parallel array.  The array
1572  * index of a node sysdev or _hstate == node id.
1573  * This is here to avoid any static dependency of the node sysdev driver, in
1574  * the base kernel, on the hugetlb module.
1575  */
1576 struct node_hstate {
1577         struct kobject          *hugepages_kobj;
1578         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1579 };
1580 struct node_hstate node_hstates[MAX_NUMNODES];
1581
1582 /*
1583  * A subset of global hstate attributes for node sysdevs
1584  */
1585 static struct attribute *per_node_hstate_attrs[] = {
1586         &nr_hugepages_attr.attr,
1587         &free_hugepages_attr.attr,
1588         &surplus_hugepages_attr.attr,
1589         NULL,
1590 };
1591
1592 static struct attribute_group per_node_hstate_attr_group = {
1593         .attrs = per_node_hstate_attrs,
1594 };
1595
1596 /*
1597  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1598  * Returns node id via non-NULL nidp.
1599  */
1600 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1601 {
1602         int nid;
1603
1604         for (nid = 0; nid < nr_node_ids; nid++) {
1605                 struct node_hstate *nhs = &node_hstates[nid];
1606                 int i;
1607                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1608                         if (nhs->hstate_kobjs[i] == kobj) {
1609                                 if (nidp)
1610                                         *nidp = nid;
1611                                 return &hstates[i];
1612                         }
1613         }
1614
1615         BUG();
1616         return NULL;
1617 }
1618
1619 /*
1620  * Unregister hstate attributes from a single node sysdev.
1621  * No-op if no hstate attributes attached.
1622  */
1623 void hugetlb_unregister_node(struct node *node)
1624 {
1625         struct hstate *h;
1626         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1627
1628         if (!nhs->hugepages_kobj)
1629                 return;         /* no hstate attributes */
1630
1631         for_each_hstate(h)
1632                 if (nhs->hstate_kobjs[h - hstates]) {
1633                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1634                         nhs->hstate_kobjs[h - hstates] = NULL;
1635                 }
1636
1637         kobject_put(nhs->hugepages_kobj);
1638         nhs->hugepages_kobj = NULL;
1639 }
1640
1641 /*
1642  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1643  * that have them.
1644  */
1645 static void hugetlb_unregister_all_nodes(void)
1646 {
1647         int nid;
1648
1649         /*
1650          * disable node sysdev registrations.
1651          */
1652         register_hugetlbfs_with_node(NULL, NULL);
1653
1654         /*
1655          * remove hstate attributes from any nodes that have them.
1656          */
1657         for (nid = 0; nid < nr_node_ids; nid++)
1658                 hugetlb_unregister_node(&node_devices[nid]);
1659 }
1660
1661 /*
1662  * Register hstate attributes for a single node sysdev.
1663  * No-op if attributes already registered.
1664  */
1665 void hugetlb_register_node(struct node *node)
1666 {
1667         struct hstate *h;
1668         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1669         int err;
1670
1671         if (nhs->hugepages_kobj)
1672                 return;         /* already allocated */
1673
1674         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1675                                                         &node->sysdev.kobj);
1676         if (!nhs->hugepages_kobj)
1677                 return;
1678
1679         for_each_hstate(h) {
1680                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1681                                                 nhs->hstate_kobjs,
1682                                                 &per_node_hstate_attr_group);
1683                 if (err) {
1684                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1685                                         " for node %d\n",
1686                                                 h->name, node->sysdev.id);
1687                         hugetlb_unregister_node(node);
1688                         break;
1689                 }
1690         }
1691 }
1692
1693 /*
1694  * hugetlb init time:  register hstate attributes for all registered node
1695  * sysdevs of nodes that have memory.  All on-line nodes should have
1696  * registered their associated sysdev by this time.
1697  */
1698 static void hugetlb_register_all_nodes(void)
1699 {
1700         int nid;
1701
1702         for_each_node_state(nid, N_HIGH_MEMORY) {
1703                 struct node *node = &node_devices[nid];
1704                 if (node->sysdev.id == nid)
1705                         hugetlb_register_node(node);
1706         }
1707
1708         /*
1709          * Let the node sysdev driver know we're here so it can
1710          * [un]register hstate attributes on node hotplug.
1711          */
1712         register_hugetlbfs_with_node(hugetlb_register_node,
1713                                      hugetlb_unregister_node);
1714 }
1715 #else   /* !CONFIG_NUMA */
1716
1717 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1718 {
1719         BUG();
1720         if (nidp)
1721                 *nidp = -1;
1722         return NULL;
1723 }
1724
1725 static void hugetlb_unregister_all_nodes(void) { }
1726
1727 static void hugetlb_register_all_nodes(void) { }
1728
1729 #endif
1730
1731 static void __exit hugetlb_exit(void)
1732 {
1733         struct hstate *h;
1734
1735         hugetlb_unregister_all_nodes();
1736
1737         for_each_hstate(h) {
1738                 kobject_put(hstate_kobjs[h - hstates]);
1739         }
1740
1741         kobject_put(hugepages_kobj);
1742 }
1743 module_exit(hugetlb_exit);
1744
1745 static int __init hugetlb_init(void)
1746 {
1747         /* Some platform decide whether they support huge pages at boot
1748          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1749          * there is no such support
1750          */
1751         if (HPAGE_SHIFT == 0)
1752                 return 0;
1753
1754         if (!size_to_hstate(default_hstate_size)) {
1755                 default_hstate_size = HPAGE_SIZE;
1756                 if (!size_to_hstate(default_hstate_size))
1757                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1758         }
1759         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1760         if (default_hstate_max_huge_pages)
1761                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1762
1763         hugetlb_init_hstates();
1764
1765         gather_bootmem_prealloc();
1766
1767         report_hugepages();
1768
1769         hugetlb_sysfs_init();
1770
1771         hugetlb_register_all_nodes();
1772
1773         return 0;
1774 }
1775 module_init(hugetlb_init);
1776
1777 /* Should be called on processing a hugepagesz=... option */
1778 void __init hugetlb_add_hstate(unsigned order)
1779 {
1780         struct hstate *h;
1781         unsigned long i;
1782
1783         if (size_to_hstate(PAGE_SIZE << order)) {
1784                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1785                 return;
1786         }
1787         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1788         BUG_ON(order == 0);
1789         h = &hstates[max_hstate++];
1790         h->order = order;
1791         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1792         h->nr_huge_pages = 0;
1793         h->free_huge_pages = 0;
1794         for (i = 0; i < MAX_NUMNODES; ++i)
1795                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1796         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1797         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1798         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1799                                         huge_page_size(h)/1024);
1800
1801         parsed_hstate = h;
1802 }
1803
1804 static int __init hugetlb_nrpages_setup(char *s)
1805 {
1806         unsigned long *mhp;
1807         static unsigned long *last_mhp;
1808
1809         /*
1810          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1811          * so this hugepages= parameter goes to the "default hstate".
1812          */
1813         if (!max_hstate)
1814                 mhp = &default_hstate_max_huge_pages;
1815         else
1816                 mhp = &parsed_hstate->max_huge_pages;
1817
1818         if (mhp == last_mhp) {
1819                 printk(KERN_WARNING "hugepages= specified twice without "
1820                         "interleaving hugepagesz=, ignoring\n");
1821                 return 1;
1822         }
1823
1824         if (sscanf(s, "%lu", mhp) <= 0)
1825                 *mhp = 0;
1826
1827         /*
1828          * Global state is always initialized later in hugetlb_init.
1829          * But we need to allocate >= MAX_ORDER hstates here early to still
1830          * use the bootmem allocator.
1831          */
1832         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1833                 hugetlb_hstate_alloc_pages(parsed_hstate);
1834
1835         last_mhp = mhp;
1836
1837         return 1;
1838 }
1839 __setup("hugepages=", hugetlb_nrpages_setup);
1840
1841 static int __init hugetlb_default_setup(char *s)
1842 {
1843         default_hstate_size = memparse(s, &s);
1844         return 1;
1845 }
1846 __setup("default_hugepagesz=", hugetlb_default_setup);
1847
1848 static unsigned int cpuset_mems_nr(unsigned int *array)
1849 {
1850         int node;
1851         unsigned int nr = 0;
1852
1853         for_each_node_mask(node, cpuset_current_mems_allowed)
1854                 nr += array[node];
1855
1856         return nr;
1857 }
1858
1859 #ifdef CONFIG_SYSCTL
1860 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1861                          struct ctl_table *table, int write,
1862                          void __user *buffer, size_t *length, loff_t *ppos)
1863 {
1864         struct hstate *h = &default_hstate;
1865         unsigned long tmp;
1866
1867         if (!write)
1868                 tmp = h->max_huge_pages;
1869
1870         table->data = &tmp;
1871         table->maxlen = sizeof(unsigned long);
1872         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1873
1874         if (write) {
1875                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1876                                                 GFP_KERNEL | __GFP_NORETRY);
1877                 if (!(obey_mempolicy &&
1878                                init_nodemask_of_mempolicy(nodes_allowed))) {
1879                         NODEMASK_FREE(nodes_allowed);
1880                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1881                 }
1882                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1883
1884                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1885                         NODEMASK_FREE(nodes_allowed);
1886         }
1887
1888         return 0;
1889 }
1890
1891 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1892                           void __user *buffer, size_t *length, loff_t *ppos)
1893 {
1894
1895         return hugetlb_sysctl_handler_common(false, table, write,
1896                                                         buffer, length, ppos);
1897 }
1898
1899 #ifdef CONFIG_NUMA
1900 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1901                           void __user *buffer, size_t *length, loff_t *ppos)
1902 {
1903         return hugetlb_sysctl_handler_common(true, table, write,
1904                                                         buffer, length, ppos);
1905 }
1906 #endif /* CONFIG_NUMA */
1907
1908 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1909                         void __user *buffer,
1910                         size_t *length, loff_t *ppos)
1911 {
1912         proc_dointvec(table, write, buffer, length, ppos);
1913         if (hugepages_treat_as_movable)
1914                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1915         else
1916                 htlb_alloc_mask = GFP_HIGHUSER;
1917         return 0;
1918 }
1919
1920 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1921                         void __user *buffer,
1922                         size_t *length, loff_t *ppos)
1923 {
1924         struct hstate *h = &default_hstate;
1925         unsigned long tmp;
1926
1927         if (!write)
1928                 tmp = h->nr_overcommit_huge_pages;
1929
1930         table->data = &tmp;
1931         table->maxlen = sizeof(unsigned long);
1932         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1933
1934         if (write) {
1935                 spin_lock(&hugetlb_lock);
1936                 h->nr_overcommit_huge_pages = tmp;
1937                 spin_unlock(&hugetlb_lock);
1938         }
1939
1940         return 0;
1941 }
1942
1943 #endif /* CONFIG_SYSCTL */
1944
1945 void hugetlb_report_meminfo(struct seq_file *m)
1946 {
1947         struct hstate *h = &default_hstate;
1948         seq_printf(m,
1949                         "HugePages_Total:   %5lu\n"
1950                         "HugePages_Free:    %5lu\n"
1951                         "HugePages_Rsvd:    %5lu\n"
1952                         "HugePages_Surp:    %5lu\n"
1953                         "Hugepagesize:   %8lu kB\n",
1954                         h->nr_huge_pages,
1955                         h->free_huge_pages,
1956                         h->resv_huge_pages,
1957                         h->surplus_huge_pages,
1958                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1959 }
1960
1961 int hugetlb_report_node_meminfo(int nid, char *buf)
1962 {
1963         struct hstate *h = &default_hstate;
1964         return sprintf(buf,
1965                 "Node %d HugePages_Total: %5u\n"
1966                 "Node %d HugePages_Free:  %5u\n"
1967                 "Node %d HugePages_Surp:  %5u\n",
1968                 nid, h->nr_huge_pages_node[nid],
1969                 nid, h->free_huge_pages_node[nid],
1970                 nid, h->surplus_huge_pages_node[nid]);
1971 }
1972
1973 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1974 unsigned long hugetlb_total_pages(void)
1975 {
1976         struct hstate *h = &default_hstate;
1977         return h->nr_huge_pages * pages_per_huge_page(h);
1978 }
1979
1980 static int hugetlb_acct_memory(struct hstate *h, long delta)
1981 {
1982         int ret = -ENOMEM;
1983
1984         spin_lock(&hugetlb_lock);
1985         /*
1986          * When cpuset is configured, it breaks the strict hugetlb page
1987          * reservation as the accounting is done on a global variable. Such
1988          * reservation is completely rubbish in the presence of cpuset because
1989          * the reservation is not checked against page availability for the
1990          * current cpuset. Application can still potentially OOM'ed by kernel
1991          * with lack of free htlb page in cpuset that the task is in.
1992          * Attempt to enforce strict accounting with cpuset is almost
1993          * impossible (or too ugly) because cpuset is too fluid that
1994          * task or memory node can be dynamically moved between cpusets.
1995          *
1996          * The change of semantics for shared hugetlb mapping with cpuset is
1997          * undesirable. However, in order to preserve some of the semantics,
1998          * we fall back to check against current free page availability as
1999          * a best attempt and hopefully to minimize the impact of changing
2000          * semantics that cpuset has.
2001          */
2002         if (delta > 0) {
2003                 if (gather_surplus_pages(h, delta) < 0)
2004                         goto out;
2005
2006                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2007                         return_unused_surplus_pages(h, delta);
2008                         goto out;
2009                 }
2010         }
2011
2012         ret = 0;
2013         if (delta < 0)
2014                 return_unused_surplus_pages(h, (unsigned long) -delta);
2015
2016 out:
2017         spin_unlock(&hugetlb_lock);
2018         return ret;
2019 }
2020
2021 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2022 {
2023         struct resv_map *reservations = vma_resv_map(vma);
2024
2025         /*
2026          * This new VMA should share its siblings reservation map if present.
2027          * The VMA will only ever have a valid reservation map pointer where
2028          * it is being copied for another still existing VMA.  As that VMA
2029          * has a reference to the reservation map it cannot dissappear until
2030          * after this open call completes.  It is therefore safe to take a
2031          * new reference here without additional locking.
2032          */
2033         if (reservations)
2034                 kref_get(&reservations->refs);
2035 }
2036
2037 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2038 {
2039         struct hstate *h = hstate_vma(vma);
2040         struct resv_map *reservations = vma_resv_map(vma);
2041         unsigned long reserve;
2042         unsigned long start;
2043         unsigned long end;
2044
2045         if (reservations) {
2046                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2047                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2048
2049                 reserve = (end - start) -
2050                         region_count(&reservations->regions, start, end);
2051
2052                 kref_put(&reservations->refs, resv_map_release);
2053
2054                 if (reserve) {
2055                         hugetlb_acct_memory(h, -reserve);
2056                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2057                 }
2058         }
2059 }
2060
2061 /*
2062  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2063  * handle_mm_fault() to try to instantiate regular-sized pages in the
2064  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2065  * this far.
2066  */
2067 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2068 {
2069         BUG();
2070         return 0;
2071 }
2072
2073 const struct vm_operations_struct hugetlb_vm_ops = {
2074         .fault = hugetlb_vm_op_fault,
2075         .open = hugetlb_vm_op_open,
2076         .close = hugetlb_vm_op_close,
2077 };
2078
2079 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2080                                 int writable)
2081 {
2082         pte_t entry;
2083
2084         if (writable) {
2085                 entry =
2086                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2087         } else {
2088                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2089         }
2090         entry = pte_mkyoung(entry);
2091         entry = pte_mkhuge(entry);
2092
2093         return entry;
2094 }
2095
2096 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2097                                    unsigned long address, pte_t *ptep)
2098 {
2099         pte_t entry;
2100
2101         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2102         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2103                 update_mmu_cache(vma, address, ptep);
2104         }
2105 }
2106
2107
2108 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2109                             struct vm_area_struct *vma)
2110 {
2111         pte_t *src_pte, *dst_pte, entry;
2112         struct page *ptepage;
2113         unsigned long addr;
2114         int cow;
2115         struct hstate *h = hstate_vma(vma);
2116         unsigned long sz = huge_page_size(h);
2117
2118         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2119
2120         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2121                 src_pte = huge_pte_offset(src, addr);
2122                 if (!src_pte)
2123                         continue;
2124                 dst_pte = huge_pte_alloc(dst, addr, sz);
2125                 if (!dst_pte)
2126                         goto nomem;
2127
2128                 /* If the pagetables are shared don't copy or take references */
2129                 if (dst_pte == src_pte)
2130                         continue;
2131
2132                 spin_lock(&dst->page_table_lock);
2133                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2134                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2135                         if (cow)
2136                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2137                         entry = huge_ptep_get(src_pte);
2138                         ptepage = pte_page(entry);
2139                         get_page(ptepage);
2140                         set_huge_pte_at(dst, addr, dst_pte, entry);
2141                 }
2142                 spin_unlock(&src->page_table_lock);
2143                 spin_unlock(&dst->page_table_lock);
2144         }
2145         return 0;
2146
2147 nomem:
2148         return -ENOMEM;
2149 }
2150
2151 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2152                             unsigned long end, struct page *ref_page)
2153 {
2154         struct mm_struct *mm = vma->vm_mm;
2155         unsigned long address;
2156         pte_t *ptep;
2157         pte_t pte;
2158         struct page *page;
2159         struct page *tmp;
2160         struct hstate *h = hstate_vma(vma);
2161         unsigned long sz = huge_page_size(h);
2162
2163         /*
2164          * A page gathering list, protected by per file i_mmap_lock. The
2165          * lock is used to avoid list corruption from multiple unmapping
2166          * of the same page since we are using page->lru.
2167          */
2168         LIST_HEAD(page_list);
2169
2170         WARN_ON(!is_vm_hugetlb_page(vma));
2171         BUG_ON(start & ~huge_page_mask(h));
2172         BUG_ON(end & ~huge_page_mask(h));
2173
2174         mmu_notifier_invalidate_range_start(mm, start, end);
2175         spin_lock(&mm->page_table_lock);
2176         for (address = start; address < end; address += sz) {
2177                 ptep = huge_pte_offset(mm, address);
2178                 if (!ptep)
2179                         continue;
2180
2181                 if (huge_pmd_unshare(mm, &address, ptep))
2182                         continue;
2183
2184                 /*
2185                  * If a reference page is supplied, it is because a specific
2186                  * page is being unmapped, not a range. Ensure the page we
2187                  * are about to unmap is the actual page of interest.
2188                  */
2189                 if (ref_page) {
2190                         pte = huge_ptep_get(ptep);
2191                         if (huge_pte_none(pte))
2192                                 continue;
2193                         page = pte_page(pte);
2194                         if (page != ref_page)
2195                                 continue;
2196
2197                         /*
2198                          * Mark the VMA as having unmapped its page so that
2199                          * future faults in this VMA will fail rather than
2200                          * looking like data was lost
2201                          */
2202                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2203                 }
2204
2205                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2206                 if (huge_pte_none(pte))
2207                         continue;
2208
2209                 page = pte_page(pte);
2210                 if (pte_dirty(pte))
2211                         set_page_dirty(page);
2212                 list_add(&page->lru, &page_list);
2213         }
2214         spin_unlock(&mm->page_table_lock);
2215         flush_tlb_range(vma, start, end);
2216         mmu_notifier_invalidate_range_end(mm, start, end);
2217         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2218                 list_del(&page->lru);
2219                 put_page(page);
2220         }
2221 }
2222
2223 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2224                           unsigned long end, struct page *ref_page)
2225 {
2226         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2227         __unmap_hugepage_range(vma, start, end, ref_page);
2228         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2229 }
2230
2231 /*
2232  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2233  * mappping it owns the reserve page for. The intention is to unmap the page
2234  * from other VMAs and let the children be SIGKILLed if they are faulting the
2235  * same region.
2236  */
2237 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2238                                 struct page *page, unsigned long address)
2239 {
2240         struct hstate *h = hstate_vma(vma);
2241         struct vm_area_struct *iter_vma;
2242         struct address_space *mapping;
2243         struct prio_tree_iter iter;
2244         pgoff_t pgoff;
2245
2246         /*
2247          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2248          * from page cache lookup which is in HPAGE_SIZE units.
2249          */
2250         address = address & huge_page_mask(h);
2251         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2252                 + (vma->vm_pgoff >> PAGE_SHIFT);
2253         mapping = (struct address_space *)page_private(page);
2254
2255         /*
2256          * Take the mapping lock for the duration of the table walk. As
2257          * this mapping should be shared between all the VMAs,
2258          * __unmap_hugepage_range() is called as the lock is already held
2259          */
2260         spin_lock(&mapping->i_mmap_lock);
2261         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2262                 /* Do not unmap the current VMA */
2263                 if (iter_vma == vma)
2264                         continue;
2265
2266                 /*
2267                  * Unmap the page from other VMAs without their own reserves.
2268                  * They get marked to be SIGKILLed if they fault in these
2269                  * areas. This is because a future no-page fault on this VMA
2270                  * could insert a zeroed page instead of the data existing
2271                  * from the time of fork. This would look like data corruption
2272                  */
2273                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2274                         __unmap_hugepage_range(iter_vma,
2275                                 address, address + huge_page_size(h),
2276                                 page);
2277         }
2278         spin_unlock(&mapping->i_mmap_lock);
2279
2280         return 1;
2281 }
2282
2283 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2284                         unsigned long address, pte_t *ptep, pte_t pte,
2285                         struct page *pagecache_page)
2286 {
2287         struct hstate *h = hstate_vma(vma);
2288         struct page *old_page, *new_page;
2289         int avoidcopy;
2290         int outside_reserve = 0;
2291
2292         old_page = pte_page(pte);
2293
2294 retry_avoidcopy:
2295         /* If no-one else is actually using this page, avoid the copy
2296          * and just make the page writable */
2297         avoidcopy = (page_count(old_page) == 1);
2298         if (avoidcopy) {
2299                 set_huge_ptep_writable(vma, address, ptep);
2300                 return 0;
2301         }
2302
2303         /*
2304          * If the process that created a MAP_PRIVATE mapping is about to
2305          * perform a COW due to a shared page count, attempt to satisfy
2306          * the allocation without using the existing reserves. The pagecache
2307          * page is used to determine if the reserve at this address was
2308          * consumed or not. If reserves were used, a partial faulted mapping
2309          * at the time of fork() could consume its reserves on COW instead
2310          * of the full address range.
2311          */
2312         if (!(vma->vm_flags & VM_MAYSHARE) &&
2313                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2314                         old_page != pagecache_page)
2315                 outside_reserve = 1;
2316
2317         page_cache_get(old_page);
2318
2319         /* Drop page_table_lock as buddy allocator may be called */
2320         spin_unlock(&mm->page_table_lock);
2321         new_page = alloc_huge_page(vma, address, outside_reserve);
2322
2323         if (IS_ERR(new_page)) {
2324                 page_cache_release(old_page);
2325
2326                 /*
2327                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2328                  * it is due to references held by a child and an insufficient
2329                  * huge page pool. To guarantee the original mappers
2330                  * reliability, unmap the page from child processes. The child
2331                  * may get SIGKILLed if it later faults.
2332                  */
2333                 if (outside_reserve) {
2334                         BUG_ON(huge_pte_none(pte));
2335                         if (unmap_ref_private(mm, vma, old_page, address)) {
2336                                 BUG_ON(page_count(old_page) != 1);
2337                                 BUG_ON(huge_pte_none(pte));
2338                                 spin_lock(&mm->page_table_lock);
2339                                 goto retry_avoidcopy;
2340                         }
2341                         WARN_ON_ONCE(1);
2342                 }
2343
2344                 /* Caller expects lock to be held */
2345                 spin_lock(&mm->page_table_lock);
2346                 return -PTR_ERR(new_page);
2347         }
2348
2349         copy_huge_page(new_page, old_page, address, vma);
2350         __SetPageUptodate(new_page);
2351
2352         /*
2353          * Retake the page_table_lock to check for racing updates
2354          * before the page tables are altered
2355          */
2356         spin_lock(&mm->page_table_lock);
2357         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2358         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2359                 /* Break COW */
2360                 huge_ptep_clear_flush(vma, address, ptep);
2361                 set_huge_pte_at(mm, address, ptep,
2362                                 make_huge_pte(vma, new_page, 1));
2363                 /* Make the old page be freed below */
2364                 new_page = old_page;
2365         }
2366         page_cache_release(new_page);
2367         page_cache_release(old_page);
2368         return 0;
2369 }
2370
2371 /* Return the pagecache page at a given address within a VMA */
2372 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2373                         struct vm_area_struct *vma, unsigned long address)
2374 {
2375         struct address_space *mapping;
2376         pgoff_t idx;
2377
2378         mapping = vma->vm_file->f_mapping;
2379         idx = vma_hugecache_offset(h, vma, address);
2380
2381         return find_lock_page(mapping, idx);
2382 }
2383
2384 /*
2385  * Return whether there is a pagecache page to back given address within VMA.
2386  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2387  */
2388 static bool hugetlbfs_pagecache_present(struct hstate *h,
2389                         struct vm_area_struct *vma, unsigned long address)
2390 {
2391         struct address_space *mapping;
2392         pgoff_t idx;
2393         struct page *page;
2394
2395         mapping = vma->vm_file->f_mapping;
2396         idx = vma_hugecache_offset(h, vma, address);
2397
2398         page = find_get_page(mapping, idx);
2399         if (page)
2400                 put_page(page);
2401         return page != NULL;
2402 }
2403
2404 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2405                         unsigned long address, pte_t *ptep, unsigned int flags)
2406 {
2407         struct hstate *h = hstate_vma(vma);
2408         int ret = VM_FAULT_SIGBUS;
2409         pgoff_t idx;
2410         unsigned long size;
2411         struct page *page;
2412         struct address_space *mapping;
2413         pte_t new_pte;
2414
2415         /*
2416          * Currently, we are forced to kill the process in the event the
2417          * original mapper has unmapped pages from the child due to a failed
2418          * COW. Warn that such a situation has occured as it may not be obvious
2419          */
2420         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2421                 printk(KERN_WARNING
2422                         "PID %d killed due to inadequate hugepage pool\n",
2423                         current->pid);
2424                 return ret;
2425         }
2426
2427         mapping = vma->vm_file->f_mapping;
2428         idx = vma_hugecache_offset(h, vma, address);
2429
2430         /*
2431          * Use page lock to guard against racing truncation
2432          * before we get page_table_lock.
2433          */
2434 retry:
2435         page = find_lock_page(mapping, idx);
2436         if (!page) {
2437                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2438                 if (idx >= size)
2439                         goto out;
2440                 page = alloc_huge_page(vma, address, 0);
2441                 if (IS_ERR(page)) {
2442                         ret = -PTR_ERR(page);
2443                         goto out;
2444                 }
2445                 clear_huge_page(page, address, huge_page_size(h));
2446                 __SetPageUptodate(page);
2447
2448                 if (vma->vm_flags & VM_MAYSHARE) {
2449                         int err;
2450                         struct inode *inode = mapping->host;
2451
2452                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2453                         if (err) {
2454                                 put_page(page);
2455                                 if (err == -EEXIST)
2456                                         goto retry;
2457                                 goto out;
2458                         }
2459
2460                         spin_lock(&inode->i_lock);
2461                         inode->i_blocks += blocks_per_huge_page(h);
2462                         spin_unlock(&inode->i_lock);
2463                 } else {
2464                         lock_page(page);
2465                         page->mapping = HUGETLB_POISON;
2466                 }
2467         }
2468
2469         /*
2470          * If we are going to COW a private mapping later, we examine the
2471          * pending reservations for this page now. This will ensure that
2472          * any allocations necessary to record that reservation occur outside
2473          * the spinlock.
2474          */
2475         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2476                 if (vma_needs_reservation(h, vma, address) < 0) {
2477                         ret = VM_FAULT_OOM;
2478                         goto backout_unlocked;
2479                 }
2480
2481         spin_lock(&mm->page_table_lock);
2482         size = i_size_read(mapping->host) >> huge_page_shift(h);
2483         if (idx >= size)
2484                 goto backout;
2485
2486         ret = 0;
2487         if (!huge_pte_none(huge_ptep_get(ptep)))
2488                 goto backout;
2489
2490         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2491                                 && (vma->vm_flags & VM_SHARED)));
2492         set_huge_pte_at(mm, address, ptep, new_pte);
2493
2494         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2495                 /* Optimization, do the COW without a second fault */
2496                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2497         }
2498
2499         spin_unlock(&mm->page_table_lock);
2500         unlock_page(page);
2501 out:
2502         return ret;
2503
2504 backout:
2505         spin_unlock(&mm->page_table_lock);
2506 backout_unlocked:
2507         unlock_page(page);
2508         put_page(page);
2509         goto out;
2510 }
2511
2512 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2513                         unsigned long address, unsigned int flags)
2514 {
2515         pte_t *ptep;
2516         pte_t entry;
2517         int ret;
2518         struct page *pagecache_page = NULL;
2519         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2520         struct hstate *h = hstate_vma(vma);
2521
2522         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2523         if (!ptep)
2524                 return VM_FAULT_OOM;
2525
2526         /*
2527          * Serialize hugepage allocation and instantiation, so that we don't
2528          * get spurious allocation failures if two CPUs race to instantiate
2529          * the same page in the page cache.
2530          */
2531         mutex_lock(&hugetlb_instantiation_mutex);
2532         entry = huge_ptep_get(ptep);
2533         if (huge_pte_none(entry)) {
2534                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2535                 goto out_mutex;
2536         }
2537
2538         ret = 0;
2539
2540         /*
2541          * If we are going to COW the mapping later, we examine the pending
2542          * reservations for this page now. This will ensure that any
2543          * allocations necessary to record that reservation occur outside the
2544          * spinlock. For private mappings, we also lookup the pagecache
2545          * page now as it is used to determine if a reservation has been
2546          * consumed.
2547          */
2548         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2549                 if (vma_needs_reservation(h, vma, address) < 0) {
2550                         ret = VM_FAULT_OOM;
2551                         goto out_mutex;
2552                 }
2553
2554                 if (!(vma->vm_flags & VM_MAYSHARE))
2555                         pagecache_page = hugetlbfs_pagecache_page(h,
2556                                                                 vma, address);
2557         }
2558
2559         spin_lock(&mm->page_table_lock);
2560         /* Check for a racing update before calling hugetlb_cow */
2561         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2562                 goto out_page_table_lock;
2563
2564
2565         if (flags & FAULT_FLAG_WRITE) {
2566                 if (!pte_write(entry)) {
2567                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2568                                                         pagecache_page);
2569                         goto out_page_table_lock;
2570                 }
2571                 entry = pte_mkdirty(entry);
2572         }
2573         entry = pte_mkyoung(entry);
2574         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2575                                                 flags & FAULT_FLAG_WRITE))
2576                 update_mmu_cache(vma, address, ptep);
2577
2578 out_page_table_lock:
2579         spin_unlock(&mm->page_table_lock);
2580
2581         if (pagecache_page) {
2582                 unlock_page(pagecache_page);
2583                 put_page(pagecache_page);
2584         }
2585
2586 out_mutex:
2587         mutex_unlock(&hugetlb_instantiation_mutex);
2588
2589         return ret;
2590 }
2591
2592 /* Can be overriden by architectures */
2593 __attribute__((weak)) struct page *
2594 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2595                pud_t *pud, int write)
2596 {
2597         BUG();
2598         return NULL;
2599 }
2600
2601 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2602                         struct page **pages, struct vm_area_struct **vmas,
2603                         unsigned long *position, int *length, int i,
2604                         unsigned int flags)
2605 {
2606         unsigned long pfn_offset;
2607         unsigned long vaddr = *position;
2608         int remainder = *length;
2609         struct hstate *h = hstate_vma(vma);
2610
2611         spin_lock(&mm->page_table_lock);
2612         while (vaddr < vma->vm_end && remainder) {
2613                 pte_t *pte;
2614                 int absent;
2615                 struct page *page;
2616
2617                 /*
2618                  * Some archs (sparc64, sh*) have multiple pte_ts to
2619                  * each hugepage.  We have to make sure we get the
2620                  * first, for the page indexing below to work.
2621                  */
2622                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2623                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2624
2625                 /*
2626                  * When coredumping, it suits get_dump_page if we just return
2627                  * an error where there's an empty slot with no huge pagecache
2628                  * to back it.  This way, we avoid allocating a hugepage, and
2629                  * the sparse dumpfile avoids allocating disk blocks, but its
2630                  * huge holes still show up with zeroes where they need to be.
2631                  */
2632                 if (absent && (flags & FOLL_DUMP) &&
2633                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2634                         remainder = 0;
2635                         break;
2636                 }
2637
2638                 if (absent ||
2639                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2640                         int ret;
2641
2642                         spin_unlock(&mm->page_table_lock);
2643                         ret = hugetlb_fault(mm, vma, vaddr,
2644                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2645                         spin_lock(&mm->page_table_lock);
2646                         if (!(ret & VM_FAULT_ERROR))
2647                                 continue;
2648
2649                         remainder = 0;
2650                         break;
2651                 }
2652
2653                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2654                 page = pte_page(huge_ptep_get(pte));
2655 same_page:
2656                 if (pages) {
2657                         pages[i] = mem_map_offset(page, pfn_offset);
2658                         get_page(pages[i]);
2659                 }
2660
2661                 if (vmas)
2662                         vmas[i] = vma;
2663
2664                 vaddr += PAGE_SIZE;
2665                 ++pfn_offset;
2666                 --remainder;
2667                 ++i;
2668                 if (vaddr < vma->vm_end && remainder &&
2669                                 pfn_offset < pages_per_huge_page(h)) {
2670                         /*
2671                          * We use pfn_offset to avoid touching the pageframes
2672                          * of this compound page.
2673                          */
2674                         goto same_page;
2675                 }
2676         }
2677         spin_unlock(&mm->page_table_lock);
2678         *length = remainder;
2679         *position = vaddr;
2680
2681         return i ? i : -EFAULT;
2682 }
2683
2684 void hugetlb_change_protection(struct vm_area_struct *vma,
2685                 unsigned long address, unsigned long end, pgprot_t newprot)
2686 {
2687         struct mm_struct *mm = vma->vm_mm;
2688         unsigned long start = address;
2689         pte_t *ptep;
2690         pte_t pte;
2691         struct hstate *h = hstate_vma(vma);
2692
2693         BUG_ON(address >= end);
2694         flush_cache_range(vma, address, end);
2695
2696         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2697         spin_lock(&mm->page_table_lock);
2698         for (; address < end; address += huge_page_size(h)) {
2699                 ptep = huge_pte_offset(mm, address);
2700                 if (!ptep)
2701                         continue;
2702                 if (huge_pmd_unshare(mm, &address, ptep))
2703                         continue;
2704                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2705                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2706                         pte = pte_mkhuge(pte_modify(pte, newprot));
2707                         set_huge_pte_at(mm, address, ptep, pte);
2708                 }
2709         }
2710         spin_unlock(&mm->page_table_lock);
2711         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2712
2713         flush_tlb_range(vma, start, end);
2714 }
2715
2716 int hugetlb_reserve_pages(struct inode *inode,
2717                                         long from, long to,
2718                                         struct vm_area_struct *vma,
2719                                         int acctflag)
2720 {
2721         long ret, chg;
2722         struct hstate *h = hstate_inode(inode);
2723
2724         /*
2725          * Only apply hugepage reservation if asked. At fault time, an
2726          * attempt will be made for VM_NORESERVE to allocate a page
2727          * and filesystem quota without using reserves
2728          */
2729         if (acctflag & VM_NORESERVE)
2730                 return 0;
2731
2732         /*
2733          * Shared mappings base their reservation on the number of pages that
2734          * are already allocated on behalf of the file. Private mappings need
2735          * to reserve the full area even if read-only as mprotect() may be
2736          * called to make the mapping read-write. Assume !vma is a shm mapping
2737          */
2738         if (!vma || vma->vm_flags & VM_MAYSHARE)
2739                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2740         else {
2741                 struct resv_map *resv_map = resv_map_alloc();
2742                 if (!resv_map)
2743                         return -ENOMEM;
2744
2745                 chg = to - from;
2746
2747                 set_vma_resv_map(vma, resv_map);
2748                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2749         }
2750
2751         if (chg < 0)
2752                 return chg;
2753
2754         /* There must be enough filesystem quota for the mapping */
2755         if (hugetlb_get_quota(inode->i_mapping, chg))
2756                 return -ENOSPC;
2757
2758         /*
2759          * Check enough hugepages are available for the reservation.
2760          * Hand back the quota if there are not
2761          */
2762         ret = hugetlb_acct_memory(h, chg);
2763         if (ret < 0) {
2764                 hugetlb_put_quota(inode->i_mapping, chg);
2765                 return ret;
2766         }
2767
2768         /*
2769          * Account for the reservations made. Shared mappings record regions
2770          * that have reservations as they are shared by multiple VMAs.
2771          * When the last VMA disappears, the region map says how much
2772          * the reservation was and the page cache tells how much of
2773          * the reservation was consumed. Private mappings are per-VMA and
2774          * only the consumed reservations are tracked. When the VMA
2775          * disappears, the original reservation is the VMA size and the
2776          * consumed reservations are stored in the map. Hence, nothing
2777          * else has to be done for private mappings here
2778          */
2779         if (!vma || vma->vm_flags & VM_MAYSHARE)
2780                 region_add(&inode->i_mapping->private_list, from, to);
2781         return 0;
2782 }
2783
2784 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2785 {
2786         struct hstate *h = hstate_inode(inode);
2787         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2788
2789         spin_lock(&inode->i_lock);
2790         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2791         spin_unlock(&inode->i_lock);
2792
2793         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2794         hugetlb_acct_memory(h, -(chg - freed));
2795 }