]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/usb/host/xhci-mem.c
Merge tag 'usb-3.11-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-imx.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30
31 /*
32  * Allocates a generic ring segment from the ring pool, sets the dma address,
33  * initializes the segment to zero, and sets the private next pointer to NULL.
34  *
35  * Section 4.11.1.1:
36  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37  */
38 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
39                                         unsigned int cycle_state, gfp_t flags)
40 {
41         struct xhci_segment *seg;
42         dma_addr_t      dma;
43         int             i;
44
45         seg = kzalloc(sizeof *seg, flags);
46         if (!seg)
47                 return NULL;
48
49         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
50         if (!seg->trbs) {
51                 kfree(seg);
52                 return NULL;
53         }
54
55         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
56         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57         if (cycle_state == 0) {
58                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
59                         seg->trbs[i].link.control |= TRB_CYCLE;
60         }
61         seg->dma = dma;
62         seg->next = NULL;
63
64         return seg;
65 }
66
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69         if (seg->trbs) {
70                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71                 seg->trbs = NULL;
72         }
73         kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77                                 struct xhci_segment *first)
78 {
79         struct xhci_segment *seg;
80
81         seg = first->next;
82         while (seg != first) {
83                 struct xhci_segment *next = seg->next;
84                 xhci_segment_free(xhci, seg);
85                 seg = next;
86         }
87         xhci_segment_free(xhci, first);
88 }
89
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98                 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100         u32 val;
101
102         if (!prev || !next)
103                 return;
104         prev->next = next;
105         if (type != TYPE_EVENT) {
106                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107                         cpu_to_le64(next->dma);
108
109                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111                 val &= ~TRB_TYPE_BITMASK;
112                 val |= TRB_TYPE(TRB_LINK);
113                 /* Always set the chain bit with 0.95 hardware */
114                 /* Set chain bit for isoc rings on AMD 0.96 host */
115                 if (xhci_link_trb_quirk(xhci) ||
116                                 (type == TYPE_ISOC &&
117                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
118                         val |= TRB_CHAIN;
119                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132
133         if (!ring || !first || !last)
134                 return;
135
136         next = ring->enq_seg->next;
137         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138         xhci_link_segments(xhci, last, next, ring->type);
139         ring->num_segs += num_segs;
140         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144                         &= ~cpu_to_le32(LINK_TOGGLE);
145                 last->trbs[TRBS_PER_SEGMENT-1].link.control
146                         |= cpu_to_le32(LINK_TOGGLE);
147                 ring->last_seg = last;
148         }
149 }
150
151 /* XXX: Do we need the hcd structure in all these functions? */
152 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
153 {
154         if (!ring)
155                 return;
156
157         if (ring->first_seg)
158                 xhci_free_segments_for_ring(xhci, ring->first_seg);
159
160         kfree(ring);
161 }
162
163 static void xhci_initialize_ring_info(struct xhci_ring *ring,
164                                         unsigned int cycle_state)
165 {
166         /* The ring is empty, so the enqueue pointer == dequeue pointer */
167         ring->enqueue = ring->first_seg->trbs;
168         ring->enq_seg = ring->first_seg;
169         ring->dequeue = ring->enqueue;
170         ring->deq_seg = ring->first_seg;
171         /* The ring is initialized to 0. The producer must write 1 to the cycle
172          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
173          * compare CCS to the cycle bit to check ownership, so CCS = 1.
174          *
175          * New rings are initialized with cycle state equal to 1; if we are
176          * handling ring expansion, set the cycle state equal to the old ring.
177          */
178         ring->cycle_state = cycle_state;
179         /* Not necessary for new rings, but needed for re-initialized rings */
180         ring->enq_updates = 0;
181         ring->deq_updates = 0;
182
183         /*
184          * Each segment has a link TRB, and leave an extra TRB for SW
185          * accounting purpose
186          */
187         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
188 }
189
190 /* Allocate segments and link them for a ring */
191 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
192                 struct xhci_segment **first, struct xhci_segment **last,
193                 unsigned int num_segs, unsigned int cycle_state,
194                 enum xhci_ring_type type, gfp_t flags)
195 {
196         struct xhci_segment *prev;
197
198         prev = xhci_segment_alloc(xhci, cycle_state, flags);
199         if (!prev)
200                 return -ENOMEM;
201         num_segs--;
202
203         *first = prev;
204         while (num_segs > 0) {
205                 struct xhci_segment     *next;
206
207                 next = xhci_segment_alloc(xhci, cycle_state, flags);
208                 if (!next) {
209                         prev = *first;
210                         while (prev) {
211                                 next = prev->next;
212                                 xhci_segment_free(xhci, prev);
213                                 prev = next;
214                         }
215                         return -ENOMEM;
216                 }
217                 xhci_link_segments(xhci, prev, next, type);
218
219                 prev = next;
220                 num_segs--;
221         }
222         xhci_link_segments(xhci, prev, *first, type);
223         *last = prev;
224
225         return 0;
226 }
227
228 /**
229  * Create a new ring with zero or more segments.
230  *
231  * Link each segment together into a ring.
232  * Set the end flag and the cycle toggle bit on the last segment.
233  * See section 4.9.1 and figures 15 and 16.
234  */
235 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
236                 unsigned int num_segs, unsigned int cycle_state,
237                 enum xhci_ring_type type, gfp_t flags)
238 {
239         struct xhci_ring        *ring;
240         int ret;
241
242         ring = kzalloc(sizeof *(ring), flags);
243         if (!ring)
244                 return NULL;
245
246         ring->num_segs = num_segs;
247         INIT_LIST_HEAD(&ring->td_list);
248         ring->type = type;
249         if (num_segs == 0)
250                 return ring;
251
252         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
253                         &ring->last_seg, num_segs, cycle_state, type, flags);
254         if (ret)
255                 goto fail;
256
257         /* Only event ring does not use link TRB */
258         if (type != TYPE_EVENT) {
259                 /* See section 4.9.2.1 and 6.4.4.1 */
260                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
261                         cpu_to_le32(LINK_TOGGLE);
262         }
263         xhci_initialize_ring_info(ring, cycle_state);
264         return ring;
265
266 fail:
267         kfree(ring);
268         return NULL;
269 }
270
271 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
272                 struct xhci_virt_device *virt_dev,
273                 unsigned int ep_index)
274 {
275         int rings_cached;
276
277         rings_cached = virt_dev->num_rings_cached;
278         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
279                 virt_dev->ring_cache[rings_cached] =
280                         virt_dev->eps[ep_index].ring;
281                 virt_dev->num_rings_cached++;
282                 xhci_dbg(xhci, "Cached old ring, "
283                                 "%d ring%s cached\n",
284                                 virt_dev->num_rings_cached,
285                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
286         } else {
287                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
288                 xhci_dbg(xhci, "Ring cache full (%d rings), "
289                                 "freeing ring\n",
290                                 virt_dev->num_rings_cached);
291         }
292         virt_dev->eps[ep_index].ring = NULL;
293 }
294
295 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
296  * pointers to the beginning of the ring.
297  */
298 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
299                         struct xhci_ring *ring, unsigned int cycle_state,
300                         enum xhci_ring_type type)
301 {
302         struct xhci_segment     *seg = ring->first_seg;
303         int i;
304
305         do {
306                 memset(seg->trbs, 0,
307                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
308                 if (cycle_state == 0) {
309                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
310                                 seg->trbs[i].link.control |= TRB_CYCLE;
311                 }
312                 /* All endpoint rings have link TRBs */
313                 xhci_link_segments(xhci, seg, seg->next, type);
314                 seg = seg->next;
315         } while (seg != ring->first_seg);
316         ring->type = type;
317         xhci_initialize_ring_info(ring, cycle_state);
318         /* td list should be empty since all URBs have been cancelled,
319          * but just in case...
320          */
321         INIT_LIST_HEAD(&ring->td_list);
322 }
323
324 /*
325  * Expand an existing ring.
326  * Look for a cached ring or allocate a new ring which has same segment numbers
327  * and link the two rings.
328  */
329 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
330                                 unsigned int num_trbs, gfp_t flags)
331 {
332         struct xhci_segment     *first;
333         struct xhci_segment     *last;
334         unsigned int            num_segs;
335         unsigned int            num_segs_needed;
336         int                     ret;
337
338         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
339                                 (TRBS_PER_SEGMENT - 1);
340
341         /* Allocate number of segments we needed, or double the ring size */
342         num_segs = ring->num_segs > num_segs_needed ?
343                         ring->num_segs : num_segs_needed;
344
345         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
346                         num_segs, ring->cycle_state, ring->type, flags);
347         if (ret)
348                 return -ENOMEM;
349
350         xhci_link_rings(xhci, ring, first, last, num_segs);
351         xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
352                         ring->num_segs);
353
354         return 0;
355 }
356
357 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
358
359 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
360                                                     int type, gfp_t flags)
361 {
362         struct xhci_container_ctx *ctx;
363
364         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
365                 return NULL;
366
367         ctx = kzalloc(sizeof(*ctx), flags);
368         if (!ctx)
369                 return NULL;
370
371         ctx->type = type;
372         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
373         if (type == XHCI_CTX_TYPE_INPUT)
374                 ctx->size += CTX_SIZE(xhci->hcc_params);
375
376         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
377         if (!ctx->bytes) {
378                 kfree(ctx);
379                 return NULL;
380         }
381         memset(ctx->bytes, 0, ctx->size);
382         return ctx;
383 }
384
385 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
386                              struct xhci_container_ctx *ctx)
387 {
388         if (!ctx)
389                 return;
390         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
391         kfree(ctx);
392 }
393
394 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
395                                               struct xhci_container_ctx *ctx)
396 {
397         if (ctx->type != XHCI_CTX_TYPE_INPUT)
398                 return NULL;
399
400         return (struct xhci_input_control_ctx *)ctx->bytes;
401 }
402
403 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
404                                         struct xhci_container_ctx *ctx)
405 {
406         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
407                 return (struct xhci_slot_ctx *)ctx->bytes;
408
409         return (struct xhci_slot_ctx *)
410                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
411 }
412
413 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
414                                     struct xhci_container_ctx *ctx,
415                                     unsigned int ep_index)
416 {
417         /* increment ep index by offset of start of ep ctx array */
418         ep_index++;
419         if (ctx->type == XHCI_CTX_TYPE_INPUT)
420                 ep_index++;
421
422         return (struct xhci_ep_ctx *)
423                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
424 }
425
426
427 /***************** Streams structures manipulation *************************/
428
429 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
430                 unsigned int num_stream_ctxs,
431                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
432 {
433         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
434
435         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
436                 dma_free_coherent(&pdev->dev,
437                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
438                                 stream_ctx, dma);
439         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
440                 return dma_pool_free(xhci->small_streams_pool,
441                                 stream_ctx, dma);
442         else
443                 return dma_pool_free(xhci->medium_streams_pool,
444                                 stream_ctx, dma);
445 }
446
447 /*
448  * The stream context array for each endpoint with bulk streams enabled can
449  * vary in size, based on:
450  *  - how many streams the endpoint supports,
451  *  - the maximum primary stream array size the host controller supports,
452  *  - and how many streams the device driver asks for.
453  *
454  * The stream context array must be a power of 2, and can be as small as
455  * 64 bytes or as large as 1MB.
456  */
457 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
458                 unsigned int num_stream_ctxs, dma_addr_t *dma,
459                 gfp_t mem_flags)
460 {
461         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
462
463         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
464                 return dma_alloc_coherent(&pdev->dev,
465                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
466                                 dma, mem_flags);
467         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
468                 return dma_pool_alloc(xhci->small_streams_pool,
469                                 mem_flags, dma);
470         else
471                 return dma_pool_alloc(xhci->medium_streams_pool,
472                                 mem_flags, dma);
473 }
474
475 struct xhci_ring *xhci_dma_to_transfer_ring(
476                 struct xhci_virt_ep *ep,
477                 u64 address)
478 {
479         if (ep->ep_state & EP_HAS_STREAMS)
480                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
481                                 address >> TRB_SEGMENT_SHIFT);
482         return ep->ring;
483 }
484
485 /* Only use this when you know stream_info is valid */
486 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
487 static struct xhci_ring *dma_to_stream_ring(
488                 struct xhci_stream_info *stream_info,
489                 u64 address)
490 {
491         return radix_tree_lookup(&stream_info->trb_address_map,
492                         address >> TRB_SEGMENT_SHIFT);
493 }
494 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
495
496 struct xhci_ring *xhci_stream_id_to_ring(
497                 struct xhci_virt_device *dev,
498                 unsigned int ep_index,
499                 unsigned int stream_id)
500 {
501         struct xhci_virt_ep *ep = &dev->eps[ep_index];
502
503         if (stream_id == 0)
504                 return ep->ring;
505         if (!ep->stream_info)
506                 return NULL;
507
508         if (stream_id > ep->stream_info->num_streams)
509                 return NULL;
510         return ep->stream_info->stream_rings[stream_id];
511 }
512
513 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
514 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
515                 unsigned int num_streams,
516                 struct xhci_stream_info *stream_info)
517 {
518         u32 cur_stream;
519         struct xhci_ring *cur_ring;
520         u64 addr;
521
522         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
523                 struct xhci_ring *mapped_ring;
524                 int trb_size = sizeof(union xhci_trb);
525
526                 cur_ring = stream_info->stream_rings[cur_stream];
527                 for (addr = cur_ring->first_seg->dma;
528                                 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
529                                 addr += trb_size) {
530                         mapped_ring = dma_to_stream_ring(stream_info, addr);
531                         if (cur_ring != mapped_ring) {
532                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
533                                                 "didn't map to stream ID %u; "
534                                                 "mapped to ring %p\n",
535                                                 (unsigned long long) addr,
536                                                 cur_stream,
537                                                 mapped_ring);
538                                 return -EINVAL;
539                         }
540                 }
541                 /* One TRB after the end of the ring segment shouldn't return a
542                  * pointer to the current ring (although it may be a part of a
543                  * different ring).
544                  */
545                 mapped_ring = dma_to_stream_ring(stream_info, addr);
546                 if (mapped_ring != cur_ring) {
547                         /* One TRB before should also fail */
548                         addr = cur_ring->first_seg->dma - trb_size;
549                         mapped_ring = dma_to_stream_ring(stream_info, addr);
550                 }
551                 if (mapped_ring == cur_ring) {
552                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
553                                         "mapped to valid stream ID %u; "
554                                         "mapped ring = %p\n",
555                                         (unsigned long long) addr,
556                                         cur_stream,
557                                         mapped_ring);
558                         return -EINVAL;
559                 }
560         }
561         return 0;
562 }
563 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
564
565 /*
566  * Change an endpoint's internal structure so it supports stream IDs.  The
567  * number of requested streams includes stream 0, which cannot be used by device
568  * drivers.
569  *
570  * The number of stream contexts in the stream context array may be bigger than
571  * the number of streams the driver wants to use.  This is because the number of
572  * stream context array entries must be a power of two.
573  *
574  * We need a radix tree for mapping physical addresses of TRBs to which stream
575  * ID they belong to.  We need to do this because the host controller won't tell
576  * us which stream ring the TRB came from.  We could store the stream ID in an
577  * event data TRB, but that doesn't help us for the cancellation case, since the
578  * endpoint may stop before it reaches that event data TRB.
579  *
580  * The radix tree maps the upper portion of the TRB DMA address to a ring
581  * segment that has the same upper portion of DMA addresses.  For example, say I
582  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
583  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
584  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
585  * pass the radix tree a key to get the right stream ID:
586  *
587  *      0x10c90fff >> 10 = 0x43243
588  *      0x10c912c0 >> 10 = 0x43244
589  *      0x10c91400 >> 10 = 0x43245
590  *
591  * Obviously, only those TRBs with DMA addresses that are within the segment
592  * will make the radix tree return the stream ID for that ring.
593  *
594  * Caveats for the radix tree:
595  *
596  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
597  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
598  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
599  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
600  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
601  * extended systems (where the DMA address can be bigger than 32-bits),
602  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
603  */
604 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
605                 unsigned int num_stream_ctxs,
606                 unsigned int num_streams, gfp_t mem_flags)
607 {
608         struct xhci_stream_info *stream_info;
609         u32 cur_stream;
610         struct xhci_ring *cur_ring;
611         unsigned long key;
612         u64 addr;
613         int ret;
614
615         xhci_dbg(xhci, "Allocating %u streams and %u "
616                         "stream context array entries.\n",
617                         num_streams, num_stream_ctxs);
618         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620                 return NULL;
621         }
622         xhci->cmd_ring_reserved_trbs++;
623
624         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
625         if (!stream_info)
626                 goto cleanup_trbs;
627
628         stream_info->num_streams = num_streams;
629         stream_info->num_stream_ctxs = num_stream_ctxs;
630
631         /* Initialize the array of virtual pointers to stream rings. */
632         stream_info->stream_rings = kzalloc(
633                         sizeof(struct xhci_ring *)*num_streams,
634                         mem_flags);
635         if (!stream_info->stream_rings)
636                 goto cleanup_info;
637
638         /* Initialize the array of DMA addresses for stream rings for the HW. */
639         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
640                         num_stream_ctxs, &stream_info->ctx_array_dma,
641                         mem_flags);
642         if (!stream_info->stream_ctx_array)
643                 goto cleanup_ctx;
644         memset(stream_info->stream_ctx_array, 0,
645                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
646
647         /* Allocate everything needed to free the stream rings later */
648         stream_info->free_streams_command =
649                 xhci_alloc_command(xhci, true, true, mem_flags);
650         if (!stream_info->free_streams_command)
651                 goto cleanup_ctx;
652
653         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
654
655         /* Allocate rings for all the streams that the driver will use,
656          * and add their segment DMA addresses to the radix tree.
657          * Stream 0 is reserved.
658          */
659         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
660                 stream_info->stream_rings[cur_stream] =
661                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
662                 cur_ring = stream_info->stream_rings[cur_stream];
663                 if (!cur_ring)
664                         goto cleanup_rings;
665                 cur_ring->stream_id = cur_stream;
666                 /* Set deq ptr, cycle bit, and stream context type */
667                 addr = cur_ring->first_seg->dma |
668                         SCT_FOR_CTX(SCT_PRI_TR) |
669                         cur_ring->cycle_state;
670                 stream_info->stream_ctx_array[cur_stream].stream_ring =
671                         cpu_to_le64(addr);
672                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
673                                 cur_stream, (unsigned long long) addr);
674
675                 key = (unsigned long)
676                         (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
677                 ret = radix_tree_insert(&stream_info->trb_address_map,
678                                 key, cur_ring);
679                 if (ret) {
680                         xhci_ring_free(xhci, cur_ring);
681                         stream_info->stream_rings[cur_stream] = NULL;
682                         goto cleanup_rings;
683                 }
684         }
685         /* Leave the other unused stream ring pointers in the stream context
686          * array initialized to zero.  This will cause the xHC to give us an
687          * error if the device asks for a stream ID we don't have setup (if it
688          * was any other way, the host controller would assume the ring is
689          * "empty" and wait forever for data to be queued to that stream ID).
690          */
691 #if XHCI_DEBUG
692         /* Do a little test on the radix tree to make sure it returns the
693          * correct values.
694          */
695         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
696                 goto cleanup_rings;
697 #endif
698
699         return stream_info;
700
701 cleanup_rings:
702         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
703                 cur_ring = stream_info->stream_rings[cur_stream];
704                 if (cur_ring) {
705                         addr = cur_ring->first_seg->dma;
706                         radix_tree_delete(&stream_info->trb_address_map,
707                                         addr >> TRB_SEGMENT_SHIFT);
708                         xhci_ring_free(xhci, cur_ring);
709                         stream_info->stream_rings[cur_stream] = NULL;
710                 }
711         }
712         xhci_free_command(xhci, stream_info->free_streams_command);
713 cleanup_ctx:
714         kfree(stream_info->stream_rings);
715 cleanup_info:
716         kfree(stream_info);
717 cleanup_trbs:
718         xhci->cmd_ring_reserved_trbs--;
719         return NULL;
720 }
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field.
723  * Sets the dequeue pointer to the stream context array.
724  */
725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726                 struct xhci_ep_ctx *ep_ctx,
727                 struct xhci_stream_info *stream_info)
728 {
729         u32 max_primary_streams;
730         /* MaxPStreams is the number of stream context array entries, not the
731          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
732          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733          */
734         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
736                         1 << (max_primary_streams + 1));
737         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
738         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
739                                        | EP_HAS_LSA);
740         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
741 }
742
743 /*
744  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
745  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
746  * not at the beginning of the ring).
747  */
748 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
749                 struct xhci_ep_ctx *ep_ctx,
750                 struct xhci_virt_ep *ep)
751 {
752         dma_addr_t addr;
753         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757
758 /* Frees all stream contexts associated with the endpoint,
759  *
760  * Caller should fix the endpoint context streams fields.
761  */
762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763                 struct xhci_stream_info *stream_info)
764 {
765         int cur_stream;
766         struct xhci_ring *cur_ring;
767         dma_addr_t addr;
768
769         if (!stream_info)
770                 return;
771
772         for (cur_stream = 1; cur_stream < stream_info->num_streams;
773                         cur_stream++) {
774                 cur_ring = stream_info->stream_rings[cur_stream];
775                 if (cur_ring) {
776                         addr = cur_ring->first_seg->dma;
777                         radix_tree_delete(&stream_info->trb_address_map,
778                                         addr >> TRB_SEGMENT_SHIFT);
779                         xhci_ring_free(xhci, cur_ring);
780                         stream_info->stream_rings[cur_stream] = NULL;
781                 }
782         }
783         xhci_free_command(xhci, stream_info->free_streams_command);
784         xhci->cmd_ring_reserved_trbs--;
785         if (stream_info->stream_ctx_array)
786                 xhci_free_stream_ctx(xhci,
787                                 stream_info->num_stream_ctxs,
788                                 stream_info->stream_ctx_array,
789                                 stream_info->ctx_array_dma);
790
791         if (stream_info)
792                 kfree(stream_info->stream_rings);
793         kfree(stream_info);
794 }
795
796
797 /***************** Device context manipulation *************************/
798
799 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
800                 struct xhci_virt_ep *ep)
801 {
802         init_timer(&ep->stop_cmd_timer);
803         ep->stop_cmd_timer.data = (unsigned long) ep;
804         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
805         ep->xhci = xhci;
806 }
807
808 static void xhci_free_tt_info(struct xhci_hcd *xhci,
809                 struct xhci_virt_device *virt_dev,
810                 int slot_id)
811 {
812         struct list_head *tt_list_head;
813         struct xhci_tt_bw_info *tt_info, *next;
814         bool slot_found = false;
815
816         /* If the device never made it past the Set Address stage,
817          * it may not have the real_port set correctly.
818          */
819         if (virt_dev->real_port == 0 ||
820                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
821                 xhci_dbg(xhci, "Bad real port.\n");
822                 return;
823         }
824
825         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
826         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
827                 /* Multi-TT hubs will have more than one entry */
828                 if (tt_info->slot_id == slot_id) {
829                         slot_found = true;
830                         list_del(&tt_info->tt_list);
831                         kfree(tt_info);
832                 } else if (slot_found) {
833                         break;
834                 }
835         }
836 }
837
838 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
839                 struct xhci_virt_device *virt_dev,
840                 struct usb_device *hdev,
841                 struct usb_tt *tt, gfp_t mem_flags)
842 {
843         struct xhci_tt_bw_info          *tt_info;
844         unsigned int                    num_ports;
845         int                             i, j;
846
847         if (!tt->multi)
848                 num_ports = 1;
849         else
850                 num_ports = hdev->maxchild;
851
852         for (i = 0; i < num_ports; i++, tt_info++) {
853                 struct xhci_interval_bw_table *bw_table;
854
855                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
856                 if (!tt_info)
857                         goto free_tts;
858                 INIT_LIST_HEAD(&tt_info->tt_list);
859                 list_add(&tt_info->tt_list,
860                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
861                 tt_info->slot_id = virt_dev->udev->slot_id;
862                 if (tt->multi)
863                         tt_info->ttport = i+1;
864                 bw_table = &tt_info->bw_table;
865                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
866                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
867         }
868         return 0;
869
870 free_tts:
871         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
872         return -ENOMEM;
873 }
874
875
876 /* All the xhci_tds in the ring's TD list should be freed at this point.
877  * Should be called with xhci->lock held if there is any chance the TT lists
878  * will be manipulated by the configure endpoint, allocate device, or update
879  * hub functions while this function is removing the TT entries from the list.
880  */
881 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
882 {
883         struct xhci_virt_device *dev;
884         int i;
885         int old_active_eps = 0;
886
887         /* Slot ID 0 is reserved */
888         if (slot_id == 0 || !xhci->devs[slot_id])
889                 return;
890
891         dev = xhci->devs[slot_id];
892         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
893         if (!dev)
894                 return;
895
896         if (dev->tt_info)
897                 old_active_eps = dev->tt_info->active_eps;
898
899         for (i = 0; i < 31; ++i) {
900                 if (dev->eps[i].ring)
901                         xhci_ring_free(xhci, dev->eps[i].ring);
902                 if (dev->eps[i].stream_info)
903                         xhci_free_stream_info(xhci,
904                                         dev->eps[i].stream_info);
905                 /* Endpoints on the TT/root port lists should have been removed
906                  * when usb_disable_device() was called for the device.
907                  * We can't drop them anyway, because the udev might have gone
908                  * away by this point, and we can't tell what speed it was.
909                  */
910                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
911                         xhci_warn(xhci, "Slot %u endpoint %u "
912                                         "not removed from BW list!\n",
913                                         slot_id, i);
914         }
915         /* If this is a hub, free the TT(s) from the TT list */
916         xhci_free_tt_info(xhci, dev, slot_id);
917         /* If necessary, update the number of active TTs on this root port */
918         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
919
920         if (dev->ring_cache) {
921                 for (i = 0; i < dev->num_rings_cached; i++)
922                         xhci_ring_free(xhci, dev->ring_cache[i]);
923                 kfree(dev->ring_cache);
924         }
925
926         if (dev->in_ctx)
927                 xhci_free_container_ctx(xhci, dev->in_ctx);
928         if (dev->out_ctx)
929                 xhci_free_container_ctx(xhci, dev->out_ctx);
930
931         kfree(xhci->devs[slot_id]);
932         xhci->devs[slot_id] = NULL;
933 }
934
935 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
936                 struct usb_device *udev, gfp_t flags)
937 {
938         struct xhci_virt_device *dev;
939         int i;
940
941         /* Slot ID 0 is reserved */
942         if (slot_id == 0 || xhci->devs[slot_id]) {
943                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
944                 return 0;
945         }
946
947         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
948         if (!xhci->devs[slot_id])
949                 return 0;
950         dev = xhci->devs[slot_id];
951
952         /* Allocate the (output) device context that will be used in the HC. */
953         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
954         if (!dev->out_ctx)
955                 goto fail;
956
957         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
958                         (unsigned long long)dev->out_ctx->dma);
959
960         /* Allocate the (input) device context for address device command */
961         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
962         if (!dev->in_ctx)
963                 goto fail;
964
965         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
966                         (unsigned long long)dev->in_ctx->dma);
967
968         /* Initialize the cancellation list and watchdog timers for each ep */
969         for (i = 0; i < 31; i++) {
970                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
971                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
972                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
973         }
974
975         /* Allocate endpoint 0 ring */
976         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
977         if (!dev->eps[0].ring)
978                 goto fail;
979
980         /* Allocate pointers to the ring cache */
981         dev->ring_cache = kzalloc(
982                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
983                         flags);
984         if (!dev->ring_cache)
985                 goto fail;
986         dev->num_rings_cached = 0;
987
988         init_completion(&dev->cmd_completion);
989         INIT_LIST_HEAD(&dev->cmd_list);
990         dev->udev = udev;
991
992         /* Point to output device context in dcbaa. */
993         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
994         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
995                  slot_id,
996                  &xhci->dcbaa->dev_context_ptrs[slot_id],
997                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
998
999         return 1;
1000 fail:
1001         xhci_free_virt_device(xhci, slot_id);
1002         return 0;
1003 }
1004
1005 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1006                 struct usb_device *udev)
1007 {
1008         struct xhci_virt_device *virt_dev;
1009         struct xhci_ep_ctx      *ep0_ctx;
1010         struct xhci_ring        *ep_ring;
1011
1012         virt_dev = xhci->devs[udev->slot_id];
1013         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1014         ep_ring = virt_dev->eps[0].ring;
1015         /*
1016          * FIXME we don't keep track of the dequeue pointer very well after a
1017          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1018          * host to our enqueue pointer.  This should only be called after a
1019          * configured device has reset, so all control transfers should have
1020          * been completed or cancelled before the reset.
1021          */
1022         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1023                                                         ep_ring->enqueue)
1024                                    | ep_ring->cycle_state);
1025 }
1026
1027 /*
1028  * The xHCI roothub may have ports of differing speeds in any order in the port
1029  * status registers.  xhci->port_array provides an array of the port speed for
1030  * each offset into the port status registers.
1031  *
1032  * The xHCI hardware wants to know the roothub port number that the USB device
1033  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1034  * know is the index of that port under either the USB 2.0 or the USB 3.0
1035  * roothub, but that doesn't give us the real index into the HW port status
1036  * registers. Call xhci_find_raw_port_number() to get real index.
1037  */
1038 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1039                 struct usb_device *udev)
1040 {
1041         struct usb_device *top_dev;
1042         struct usb_hcd *hcd;
1043
1044         if (udev->speed == USB_SPEED_SUPER)
1045                 hcd = xhci->shared_hcd;
1046         else
1047                 hcd = xhci->main_hcd;
1048
1049         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1050                         top_dev = top_dev->parent)
1051                 /* Found device below root hub */;
1052
1053         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1054 }
1055
1056 /* Setup an xHCI virtual device for a Set Address command */
1057 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1058 {
1059         struct xhci_virt_device *dev;
1060         struct xhci_ep_ctx      *ep0_ctx;
1061         struct xhci_slot_ctx    *slot_ctx;
1062         u32                     port_num;
1063         u32                     max_packets;
1064         struct usb_device *top_dev;
1065
1066         dev = xhci->devs[udev->slot_id];
1067         /* Slot ID 0 is reserved */
1068         if (udev->slot_id == 0 || !dev) {
1069                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1070                                 udev->slot_id);
1071                 return -EINVAL;
1072         }
1073         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1074         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1075
1076         /* 3) Only the control endpoint is valid - one endpoint context */
1077         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1078         switch (udev->speed) {
1079         case USB_SPEED_SUPER:
1080                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1081                 max_packets = MAX_PACKET(512);
1082                 break;
1083         case USB_SPEED_HIGH:
1084                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1085                 max_packets = MAX_PACKET(64);
1086                 break;
1087         /* USB core guesses at a 64-byte max packet first for FS devices */
1088         case USB_SPEED_FULL:
1089                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1090                 max_packets = MAX_PACKET(64);
1091                 break;
1092         case USB_SPEED_LOW:
1093                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1094                 max_packets = MAX_PACKET(8);
1095                 break;
1096         case USB_SPEED_WIRELESS:
1097                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1098                 return -EINVAL;
1099                 break;
1100         default:
1101                 /* Speed was set earlier, this shouldn't happen. */
1102                 return -EINVAL;
1103         }
1104         /* Find the root hub port this device is under */
1105         port_num = xhci_find_real_port_number(xhci, udev);
1106         if (!port_num)
1107                 return -EINVAL;
1108         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1109         /* Set the port number in the virtual_device to the faked port number */
1110         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1111                         top_dev = top_dev->parent)
1112                 /* Found device below root hub */;
1113         dev->fake_port = top_dev->portnum;
1114         dev->real_port = port_num;
1115         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1116         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1117
1118         /* Find the right bandwidth table that this device will be a part of.
1119          * If this is a full speed device attached directly to a root port (or a
1120          * decendent of one), it counts as a primary bandwidth domain, not a
1121          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122          * will never be created for the HS root hub.
1123          */
1124         if (!udev->tt || !udev->tt->hub->parent) {
1125                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1126         } else {
1127                 struct xhci_root_port_bw_info *rh_bw;
1128                 struct xhci_tt_bw_info *tt_bw;
1129
1130                 rh_bw = &xhci->rh_bw[port_num - 1];
1131                 /* Find the right TT. */
1132                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134                                 continue;
1135
1136                         if (!dev->udev->tt->multi ||
1137                                         (udev->tt->multi &&
1138                                          tt_bw->ttport == dev->udev->ttport)) {
1139                                 dev->bw_table = &tt_bw->bw_table;
1140                                 dev->tt_info = tt_bw;
1141                                 break;
1142                         }
1143                 }
1144                 if (!dev->tt_info)
1145                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146         }
1147
1148         /* Is this a LS/FS device under an external HS hub? */
1149         if (udev->tt && udev->tt->hub->parent) {
1150                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151                                                 (udev->ttport << 8));
1152                 if (udev->tt->multi)
1153                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154         }
1155         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157
1158         /* Step 4 - ring already allocated */
1159         /* Step 5 */
1160         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161
1162         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164                                          max_packets);
1165
1166         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167                                    dev->eps[0].ring->cycle_state);
1168
1169         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1170
1171         return 0;
1172 }
1173
1174 /*
1175  * Convert interval expressed as 2^(bInterval - 1) == interval into
1176  * straight exponent value 2^n == interval.
1177  *
1178  */
1179 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1180                 struct usb_host_endpoint *ep)
1181 {
1182         unsigned int interval;
1183
1184         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1185         if (interval != ep->desc.bInterval - 1)
1186                 dev_warn(&udev->dev,
1187                          "ep %#x - rounding interval to %d %sframes\n",
1188                          ep->desc.bEndpointAddress,
1189                          1 << interval,
1190                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1191
1192         if (udev->speed == USB_SPEED_FULL) {
1193                 /*
1194                  * Full speed isoc endpoints specify interval in frames,
1195                  * not microframes. We are using microframes everywhere,
1196                  * so adjust accordingly.
1197                  */
1198                 interval += 3;  /* 1 frame = 2^3 uframes */
1199         }
1200
1201         return interval;
1202 }
1203
1204 /*
1205  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1206  * microframes, rounded down to nearest power of 2.
1207  */
1208 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1209                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1210                 unsigned int min_exponent, unsigned int max_exponent)
1211 {
1212         unsigned int interval;
1213
1214         interval = fls(desc_interval) - 1;
1215         interval = clamp_val(interval, min_exponent, max_exponent);
1216         if ((1 << interval) != desc_interval)
1217                 dev_warn(&udev->dev,
1218                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1219                          ep->desc.bEndpointAddress,
1220                          1 << interval,
1221                          desc_interval);
1222
1223         return interval;
1224 }
1225
1226 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1227                 struct usb_host_endpoint *ep)
1228 {
1229         if (ep->desc.bInterval == 0)
1230                 return 0;
1231         return xhci_microframes_to_exponent(udev, ep,
1232                         ep->desc.bInterval, 0, 15);
1233 }
1234
1235
1236 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1237                 struct usb_host_endpoint *ep)
1238 {
1239         return xhci_microframes_to_exponent(udev, ep,
1240                         ep->desc.bInterval * 8, 3, 10);
1241 }
1242
1243 /* Return the polling or NAK interval.
1244  *
1245  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1246  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1247  *
1248  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1249  * is set to 0.
1250  */
1251 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1252                 struct usb_host_endpoint *ep)
1253 {
1254         unsigned int interval = 0;
1255
1256         switch (udev->speed) {
1257         case USB_SPEED_HIGH:
1258                 /* Max NAK rate */
1259                 if (usb_endpoint_xfer_control(&ep->desc) ||
1260                     usb_endpoint_xfer_bulk(&ep->desc)) {
1261                         interval = xhci_parse_microframe_interval(udev, ep);
1262                         break;
1263                 }
1264                 /* Fall through - SS and HS isoc/int have same decoding */
1265
1266         case USB_SPEED_SUPER:
1267                 if (usb_endpoint_xfer_int(&ep->desc) ||
1268                     usb_endpoint_xfer_isoc(&ep->desc)) {
1269                         interval = xhci_parse_exponent_interval(udev, ep);
1270                 }
1271                 break;
1272
1273         case USB_SPEED_FULL:
1274                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1275                         interval = xhci_parse_exponent_interval(udev, ep);
1276                         break;
1277                 }
1278                 /*
1279                  * Fall through for interrupt endpoint interval decoding
1280                  * since it uses the same rules as low speed interrupt
1281                  * endpoints.
1282                  */
1283
1284         case USB_SPEED_LOW:
1285                 if (usb_endpoint_xfer_int(&ep->desc) ||
1286                     usb_endpoint_xfer_isoc(&ep->desc)) {
1287
1288                         interval = xhci_parse_frame_interval(udev, ep);
1289                 }
1290                 break;
1291
1292         default:
1293                 BUG();
1294         }
1295         return EP_INTERVAL(interval);
1296 }
1297
1298 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1299  * High speed endpoint descriptors can define "the number of additional
1300  * transaction opportunities per microframe", but that goes in the Max Burst
1301  * endpoint context field.
1302  */
1303 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1304                 struct usb_host_endpoint *ep)
1305 {
1306         if (udev->speed != USB_SPEED_SUPER ||
1307                         !usb_endpoint_xfer_isoc(&ep->desc))
1308                 return 0;
1309         return ep->ss_ep_comp.bmAttributes;
1310 }
1311
1312 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1313                 struct usb_host_endpoint *ep)
1314 {
1315         int in;
1316         u32 type;
1317
1318         in = usb_endpoint_dir_in(&ep->desc);
1319         if (usb_endpoint_xfer_control(&ep->desc)) {
1320                 type = EP_TYPE(CTRL_EP);
1321         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1322                 if (in)
1323                         type = EP_TYPE(BULK_IN_EP);
1324                 else
1325                         type = EP_TYPE(BULK_OUT_EP);
1326         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1327                 if (in)
1328                         type = EP_TYPE(ISOC_IN_EP);
1329                 else
1330                         type = EP_TYPE(ISOC_OUT_EP);
1331         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1332                 if (in)
1333                         type = EP_TYPE(INT_IN_EP);
1334                 else
1335                         type = EP_TYPE(INT_OUT_EP);
1336         } else {
1337                 type = 0;
1338         }
1339         return type;
1340 }
1341
1342 /* Return the maximum endpoint service interval time (ESIT) payload.
1343  * Basically, this is the maxpacket size, multiplied by the burst size
1344  * and mult size.
1345  */
1346 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1347                 struct usb_device *udev,
1348                 struct usb_host_endpoint *ep)
1349 {
1350         int max_burst;
1351         int max_packet;
1352
1353         /* Only applies for interrupt or isochronous endpoints */
1354         if (usb_endpoint_xfer_control(&ep->desc) ||
1355                         usb_endpoint_xfer_bulk(&ep->desc))
1356                 return 0;
1357
1358         if (udev->speed == USB_SPEED_SUPER)
1359                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1360
1361         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1362         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1363         /* A 0 in max burst means 1 transfer per ESIT */
1364         return max_packet * (max_burst + 1);
1365 }
1366
1367 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1368  * Drivers will have to call usb_alloc_streams() to do that.
1369  */
1370 int xhci_endpoint_init(struct xhci_hcd *xhci,
1371                 struct xhci_virt_device *virt_dev,
1372                 struct usb_device *udev,
1373                 struct usb_host_endpoint *ep,
1374                 gfp_t mem_flags)
1375 {
1376         unsigned int ep_index;
1377         struct xhci_ep_ctx *ep_ctx;
1378         struct xhci_ring *ep_ring;
1379         unsigned int max_packet;
1380         unsigned int max_burst;
1381         enum xhci_ring_type type;
1382         u32 max_esit_payload;
1383         u32 endpoint_type;
1384
1385         ep_index = xhci_get_endpoint_index(&ep->desc);
1386         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1387
1388         endpoint_type = xhci_get_endpoint_type(udev, ep);
1389         if (!endpoint_type)
1390                 return -EINVAL;
1391         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1392
1393         type = usb_endpoint_type(&ep->desc);
1394         /* Set up the endpoint ring */
1395         virt_dev->eps[ep_index].new_ring =
1396                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1397         if (!virt_dev->eps[ep_index].new_ring) {
1398                 /* Attempt to use the ring cache */
1399                 if (virt_dev->num_rings_cached == 0)
1400                         return -ENOMEM;
1401                 virt_dev->eps[ep_index].new_ring =
1402                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1403                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1404                 virt_dev->num_rings_cached--;
1405                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1406                                         1, type);
1407         }
1408         virt_dev->eps[ep_index].skip = false;
1409         ep_ring = virt_dev->eps[ep_index].new_ring;
1410         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1411
1412         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1413                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1414
1415         /* FIXME dig Mult and streams info out of ep companion desc */
1416
1417         /* Allow 3 retries for everything but isoc;
1418          * CErr shall be set to 0 for Isoch endpoints.
1419          */
1420         if (!usb_endpoint_xfer_isoc(&ep->desc))
1421                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1422         else
1423                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1424
1425         /* Set the max packet size and max burst */
1426         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1427         max_burst = 0;
1428         switch (udev->speed) {
1429         case USB_SPEED_SUPER:
1430                 /* dig out max burst from ep companion desc */
1431                 max_burst = ep->ss_ep_comp.bMaxBurst;
1432                 break;
1433         case USB_SPEED_HIGH:
1434                 /* Some devices get this wrong */
1435                 if (usb_endpoint_xfer_bulk(&ep->desc))
1436                         max_packet = 512;
1437                 /* bits 11:12 specify the number of additional transaction
1438                  * opportunities per microframe (USB 2.0, section 9.6.6)
1439                  */
1440                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1441                                 usb_endpoint_xfer_int(&ep->desc)) {
1442                         max_burst = (usb_endpoint_maxp(&ep->desc)
1443                                      & 0x1800) >> 11;
1444                 }
1445                 break;
1446         case USB_SPEED_FULL:
1447         case USB_SPEED_LOW:
1448                 break;
1449         default:
1450                 BUG();
1451         }
1452         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1453                         MAX_BURST(max_burst));
1454         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1455         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1456
1457         /*
1458          * XXX no idea how to calculate the average TRB buffer length for bulk
1459          * endpoints, as the driver gives us no clue how big each scatter gather
1460          * list entry (or buffer) is going to be.
1461          *
1462          * For isochronous and interrupt endpoints, we set it to the max
1463          * available, until we have new API in the USB core to allow drivers to
1464          * declare how much bandwidth they actually need.
1465          *
1466          * Normally, it would be calculated by taking the total of the buffer
1467          * lengths in the TD and then dividing by the number of TRBs in a TD,
1468          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1469          * use Event Data TRBs, and we don't chain in a link TRB on short
1470          * transfers, we're basically dividing by 1.
1471          *
1472          * xHCI 1.0 specification indicates that the Average TRB Length should
1473          * be set to 8 for control endpoints.
1474          */
1475         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1476                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1477         else
1478                 ep_ctx->tx_info |=
1479                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1480
1481         /* FIXME Debug endpoint context */
1482         return 0;
1483 }
1484
1485 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1486                 struct xhci_virt_device *virt_dev,
1487                 struct usb_host_endpoint *ep)
1488 {
1489         unsigned int ep_index;
1490         struct xhci_ep_ctx *ep_ctx;
1491
1492         ep_index = xhci_get_endpoint_index(&ep->desc);
1493         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1494
1495         ep_ctx->ep_info = 0;
1496         ep_ctx->ep_info2 = 0;
1497         ep_ctx->deq = 0;
1498         ep_ctx->tx_info = 0;
1499         /* Don't free the endpoint ring until the set interface or configuration
1500          * request succeeds.
1501          */
1502 }
1503
1504 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1505 {
1506         bw_info->ep_interval = 0;
1507         bw_info->mult = 0;
1508         bw_info->num_packets = 0;
1509         bw_info->max_packet_size = 0;
1510         bw_info->type = 0;
1511         bw_info->max_esit_payload = 0;
1512 }
1513
1514 void xhci_update_bw_info(struct xhci_hcd *xhci,
1515                 struct xhci_container_ctx *in_ctx,
1516                 struct xhci_input_control_ctx *ctrl_ctx,
1517                 struct xhci_virt_device *virt_dev)
1518 {
1519         struct xhci_bw_info *bw_info;
1520         struct xhci_ep_ctx *ep_ctx;
1521         unsigned int ep_type;
1522         int i;
1523
1524         for (i = 1; i < 31; ++i) {
1525                 bw_info = &virt_dev->eps[i].bw_info;
1526
1527                 /* We can't tell what endpoint type is being dropped, but
1528                  * unconditionally clearing the bandwidth info for non-periodic
1529                  * endpoints should be harmless because the info will never be
1530                  * set in the first place.
1531                  */
1532                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1533                         /* Dropped endpoint */
1534                         xhci_clear_endpoint_bw_info(bw_info);
1535                         continue;
1536                 }
1537
1538                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1539                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1540                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1541
1542                         /* Ignore non-periodic endpoints */
1543                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1544                                         ep_type != ISOC_IN_EP &&
1545                                         ep_type != INT_IN_EP)
1546                                 continue;
1547
1548                         /* Added or changed endpoint */
1549                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1550                                         le32_to_cpu(ep_ctx->ep_info));
1551                         /* Number of packets and mult are zero-based in the
1552                          * input context, but we want one-based for the
1553                          * interval table.
1554                          */
1555                         bw_info->mult = CTX_TO_EP_MULT(
1556                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1557                         bw_info->num_packets = CTX_TO_MAX_BURST(
1558                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1559                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1560                                         le32_to_cpu(ep_ctx->ep_info2));
1561                         bw_info->type = ep_type;
1562                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1563                                         le32_to_cpu(ep_ctx->tx_info));
1564                 }
1565         }
1566 }
1567
1568 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1569  * Useful when you want to change one particular aspect of the endpoint and then
1570  * issue a configure endpoint command.
1571  */
1572 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1573                 struct xhci_container_ctx *in_ctx,
1574                 struct xhci_container_ctx *out_ctx,
1575                 unsigned int ep_index)
1576 {
1577         struct xhci_ep_ctx *out_ep_ctx;
1578         struct xhci_ep_ctx *in_ep_ctx;
1579
1580         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1581         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1582
1583         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1584         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1585         in_ep_ctx->deq = out_ep_ctx->deq;
1586         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1587 }
1588
1589 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1590  * Useful when you want to change one particular aspect of the endpoint and then
1591  * issue a configure endpoint command.  Only the context entries field matters,
1592  * but we'll copy the whole thing anyway.
1593  */
1594 void xhci_slot_copy(struct xhci_hcd *xhci,
1595                 struct xhci_container_ctx *in_ctx,
1596                 struct xhci_container_ctx *out_ctx)
1597 {
1598         struct xhci_slot_ctx *in_slot_ctx;
1599         struct xhci_slot_ctx *out_slot_ctx;
1600
1601         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1602         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1603
1604         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1605         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1606         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1607         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1608 }
1609
1610 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1611 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1612 {
1613         int i;
1614         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1615         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1616
1617         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1618
1619         if (!num_sp)
1620                 return 0;
1621
1622         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1623         if (!xhci->scratchpad)
1624                 goto fail_sp;
1625
1626         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1627                                      num_sp * sizeof(u64),
1628                                      &xhci->scratchpad->sp_dma, flags);
1629         if (!xhci->scratchpad->sp_array)
1630                 goto fail_sp2;
1631
1632         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1633         if (!xhci->scratchpad->sp_buffers)
1634                 goto fail_sp3;
1635
1636         xhci->scratchpad->sp_dma_buffers =
1637                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1638
1639         if (!xhci->scratchpad->sp_dma_buffers)
1640                 goto fail_sp4;
1641
1642         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1643         for (i = 0; i < num_sp; i++) {
1644                 dma_addr_t dma;
1645                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1646                                 flags);
1647                 if (!buf)
1648                         goto fail_sp5;
1649
1650                 xhci->scratchpad->sp_array[i] = dma;
1651                 xhci->scratchpad->sp_buffers[i] = buf;
1652                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1653         }
1654
1655         return 0;
1656
1657  fail_sp5:
1658         for (i = i - 1; i >= 0; i--) {
1659                 dma_free_coherent(dev, xhci->page_size,
1660                                     xhci->scratchpad->sp_buffers[i],
1661                                     xhci->scratchpad->sp_dma_buffers[i]);
1662         }
1663         kfree(xhci->scratchpad->sp_dma_buffers);
1664
1665  fail_sp4:
1666         kfree(xhci->scratchpad->sp_buffers);
1667
1668  fail_sp3:
1669         dma_free_coherent(dev, num_sp * sizeof(u64),
1670                             xhci->scratchpad->sp_array,
1671                             xhci->scratchpad->sp_dma);
1672
1673  fail_sp2:
1674         kfree(xhci->scratchpad);
1675         xhci->scratchpad = NULL;
1676
1677  fail_sp:
1678         return -ENOMEM;
1679 }
1680
1681 static void scratchpad_free(struct xhci_hcd *xhci)
1682 {
1683         int num_sp;
1684         int i;
1685         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1686
1687         if (!xhci->scratchpad)
1688                 return;
1689
1690         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1691
1692         for (i = 0; i < num_sp; i++) {
1693                 dma_free_coherent(&pdev->dev, xhci->page_size,
1694                                     xhci->scratchpad->sp_buffers[i],
1695                                     xhci->scratchpad->sp_dma_buffers[i]);
1696         }
1697         kfree(xhci->scratchpad->sp_dma_buffers);
1698         kfree(xhci->scratchpad->sp_buffers);
1699         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1700                             xhci->scratchpad->sp_array,
1701                             xhci->scratchpad->sp_dma);
1702         kfree(xhci->scratchpad);
1703         xhci->scratchpad = NULL;
1704 }
1705
1706 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1707                 bool allocate_in_ctx, bool allocate_completion,
1708                 gfp_t mem_flags)
1709 {
1710         struct xhci_command *command;
1711
1712         command = kzalloc(sizeof(*command), mem_flags);
1713         if (!command)
1714                 return NULL;
1715
1716         if (allocate_in_ctx) {
1717                 command->in_ctx =
1718                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1719                                         mem_flags);
1720                 if (!command->in_ctx) {
1721                         kfree(command);
1722                         return NULL;
1723                 }
1724         }
1725
1726         if (allocate_completion) {
1727                 command->completion =
1728                         kzalloc(sizeof(struct completion), mem_flags);
1729                 if (!command->completion) {
1730                         xhci_free_container_ctx(xhci, command->in_ctx);
1731                         kfree(command);
1732                         return NULL;
1733                 }
1734                 init_completion(command->completion);
1735         }
1736
1737         command->status = 0;
1738         INIT_LIST_HEAD(&command->cmd_list);
1739         return command;
1740 }
1741
1742 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1743 {
1744         if (urb_priv) {
1745                 kfree(urb_priv->td[0]);
1746                 kfree(urb_priv);
1747         }
1748 }
1749
1750 void xhci_free_command(struct xhci_hcd *xhci,
1751                 struct xhci_command *command)
1752 {
1753         xhci_free_container_ctx(xhci,
1754                         command->in_ctx);
1755         kfree(command->completion);
1756         kfree(command);
1757 }
1758
1759 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1760 {
1761         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1762         struct dev_info *dev_info, *next;
1763         struct xhci_cd  *cur_cd, *next_cd;
1764         unsigned long   flags;
1765         int size;
1766         int i, j, num_ports;
1767
1768         /* Free the Event Ring Segment Table and the actual Event Ring */
1769         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1770         if (xhci->erst.entries)
1771                 dma_free_coherent(&pdev->dev, size,
1772                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1773         xhci->erst.entries = NULL;
1774         xhci_dbg(xhci, "Freed ERST\n");
1775         if (xhci->event_ring)
1776                 xhci_ring_free(xhci, xhci->event_ring);
1777         xhci->event_ring = NULL;
1778         xhci_dbg(xhci, "Freed event ring\n");
1779
1780         if (xhci->lpm_command)
1781                 xhci_free_command(xhci, xhci->lpm_command);
1782         xhci->cmd_ring_reserved_trbs = 0;
1783         if (xhci->cmd_ring)
1784                 xhci_ring_free(xhci, xhci->cmd_ring);
1785         xhci->cmd_ring = NULL;
1786         xhci_dbg(xhci, "Freed command ring\n");
1787         list_for_each_entry_safe(cur_cd, next_cd,
1788                         &xhci->cancel_cmd_list, cancel_cmd_list) {
1789                 list_del(&cur_cd->cancel_cmd_list);
1790                 kfree(cur_cd);
1791         }
1792
1793         for (i = 1; i < MAX_HC_SLOTS; ++i)
1794                 xhci_free_virt_device(xhci, i);
1795
1796         if (xhci->segment_pool)
1797                 dma_pool_destroy(xhci->segment_pool);
1798         xhci->segment_pool = NULL;
1799         xhci_dbg(xhci, "Freed segment pool\n");
1800
1801         if (xhci->device_pool)
1802                 dma_pool_destroy(xhci->device_pool);
1803         xhci->device_pool = NULL;
1804         xhci_dbg(xhci, "Freed device context pool\n");
1805
1806         if (xhci->small_streams_pool)
1807                 dma_pool_destroy(xhci->small_streams_pool);
1808         xhci->small_streams_pool = NULL;
1809         xhci_dbg(xhci, "Freed small stream array pool\n");
1810
1811         if (xhci->medium_streams_pool)
1812                 dma_pool_destroy(xhci->medium_streams_pool);
1813         xhci->medium_streams_pool = NULL;
1814         xhci_dbg(xhci, "Freed medium stream array pool\n");
1815
1816         if (xhci->dcbaa)
1817                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1818                                 xhci->dcbaa, xhci->dcbaa->dma);
1819         xhci->dcbaa = NULL;
1820
1821         scratchpad_free(xhci);
1822
1823         spin_lock_irqsave(&xhci->lock, flags);
1824         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1825                 list_del(&dev_info->list);
1826                 kfree(dev_info);
1827         }
1828         spin_unlock_irqrestore(&xhci->lock, flags);
1829
1830         if (!xhci->rh_bw)
1831                 goto no_bw;
1832
1833         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1834         for (i = 0; i < num_ports; i++) {
1835                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1836                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1837                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1838                         while (!list_empty(ep))
1839                                 list_del_init(ep->next);
1840                 }
1841         }
1842
1843         for (i = 0; i < num_ports; i++) {
1844                 struct xhci_tt_bw_info *tt, *n;
1845                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1846                         list_del(&tt->tt_list);
1847                         kfree(tt);
1848                 }
1849         }
1850
1851 no_bw:
1852         xhci->num_usb2_ports = 0;
1853         xhci->num_usb3_ports = 0;
1854         xhci->num_active_eps = 0;
1855         kfree(xhci->usb2_ports);
1856         kfree(xhci->usb3_ports);
1857         kfree(xhci->port_array);
1858         kfree(xhci->rh_bw);
1859         kfree(xhci->ext_caps);
1860
1861         xhci->page_size = 0;
1862         xhci->page_shift = 0;
1863         xhci->bus_state[0].bus_suspended = 0;
1864         xhci->bus_state[1].bus_suspended = 0;
1865 }
1866
1867 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1868                 struct xhci_segment *input_seg,
1869                 union xhci_trb *start_trb,
1870                 union xhci_trb *end_trb,
1871                 dma_addr_t input_dma,
1872                 struct xhci_segment *result_seg,
1873                 char *test_name, int test_number)
1874 {
1875         unsigned long long start_dma;
1876         unsigned long long end_dma;
1877         struct xhci_segment *seg;
1878
1879         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1880         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1881
1882         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1883         if (seg != result_seg) {
1884                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1885                                 test_name, test_number);
1886                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1887                                 "input DMA 0x%llx\n",
1888                                 input_seg,
1889                                 (unsigned long long) input_dma);
1890                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1891                                 "ending TRB %p (0x%llx DMA)\n",
1892                                 start_trb, start_dma,
1893                                 end_trb, end_dma);
1894                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1895                                 result_seg, seg);
1896                 return -1;
1897         }
1898         return 0;
1899 }
1900
1901 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1902 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1903 {
1904         struct {
1905                 dma_addr_t              input_dma;
1906                 struct xhci_segment     *result_seg;
1907         } simple_test_vector [] = {
1908                 /* A zeroed DMA field should fail */
1909                 { 0, NULL },
1910                 /* One TRB before the ring start should fail */
1911                 { xhci->event_ring->first_seg->dma - 16, NULL },
1912                 /* One byte before the ring start should fail */
1913                 { xhci->event_ring->first_seg->dma - 1, NULL },
1914                 /* Starting TRB should succeed */
1915                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1916                 /* Ending TRB should succeed */
1917                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1918                         xhci->event_ring->first_seg },
1919                 /* One byte after the ring end should fail */
1920                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1921                 /* One TRB after the ring end should fail */
1922                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1923                 /* An address of all ones should fail */
1924                 { (dma_addr_t) (~0), NULL },
1925         };
1926         struct {
1927                 struct xhci_segment     *input_seg;
1928                 union xhci_trb          *start_trb;
1929                 union xhci_trb          *end_trb;
1930                 dma_addr_t              input_dma;
1931                 struct xhci_segment     *result_seg;
1932         } complex_test_vector [] = {
1933                 /* Test feeding a valid DMA address from a different ring */
1934                 {       .input_seg = xhci->event_ring->first_seg,
1935                         .start_trb = xhci->event_ring->first_seg->trbs,
1936                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1937                         .input_dma = xhci->cmd_ring->first_seg->dma,
1938                         .result_seg = NULL,
1939                 },
1940                 /* Test feeding a valid end TRB from a different ring */
1941                 {       .input_seg = xhci->event_ring->first_seg,
1942                         .start_trb = xhci->event_ring->first_seg->trbs,
1943                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944                         .input_dma = xhci->cmd_ring->first_seg->dma,
1945                         .result_seg = NULL,
1946                 },
1947                 /* Test feeding a valid start and end TRB from a different ring */
1948                 {       .input_seg = xhci->event_ring->first_seg,
1949                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1950                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951                         .input_dma = xhci->cmd_ring->first_seg->dma,
1952                         .result_seg = NULL,
1953                 },
1954                 /* TRB in this ring, but after this TD */
1955                 {       .input_seg = xhci->event_ring->first_seg,
1956                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1957                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1958                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1959                         .result_seg = NULL,
1960                 },
1961                 /* TRB in this ring, but before this TD */
1962                 {       .input_seg = xhci->event_ring->first_seg,
1963                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1964                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1965                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1966                         .result_seg = NULL,
1967                 },
1968                 /* TRB in this ring, but after this wrapped TD */
1969                 {       .input_seg = xhci->event_ring->first_seg,
1970                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1971                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1972                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973                         .result_seg = NULL,
1974                 },
1975                 /* TRB in this ring, but before this wrapped TD */
1976                 {       .input_seg = xhci->event_ring->first_seg,
1977                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1979                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1980                         .result_seg = NULL,
1981                 },
1982                 /* TRB not in this ring, and we have a wrapped TD */
1983                 {       .input_seg = xhci->event_ring->first_seg,
1984                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1986                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1987                         .result_seg = NULL,
1988                 },
1989         };
1990
1991         unsigned int num_tests;
1992         int i, ret;
1993
1994         num_tests = ARRAY_SIZE(simple_test_vector);
1995         for (i = 0; i < num_tests; i++) {
1996                 ret = xhci_test_trb_in_td(xhci,
1997                                 xhci->event_ring->first_seg,
1998                                 xhci->event_ring->first_seg->trbs,
1999                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000                                 simple_test_vector[i].input_dma,
2001                                 simple_test_vector[i].result_seg,
2002                                 "Simple", i);
2003                 if (ret < 0)
2004                         return ret;
2005         }
2006
2007         num_tests = ARRAY_SIZE(complex_test_vector);
2008         for (i = 0; i < num_tests; i++) {
2009                 ret = xhci_test_trb_in_td(xhci,
2010                                 complex_test_vector[i].input_seg,
2011                                 complex_test_vector[i].start_trb,
2012                                 complex_test_vector[i].end_trb,
2013                                 complex_test_vector[i].input_dma,
2014                                 complex_test_vector[i].result_seg,
2015                                 "Complex", i);
2016                 if (ret < 0)
2017                         return ret;
2018         }
2019         xhci_dbg(xhci, "TRB math tests passed.\n");
2020         return 0;
2021 }
2022
2023 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2024 {
2025         u64 temp;
2026         dma_addr_t deq;
2027
2028         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2029                         xhci->event_ring->dequeue);
2030         if (deq == 0 && !in_interrupt())
2031                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2032                                 "dequeue ptr.\n");
2033         /* Update HC event ring dequeue pointer */
2034         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2035         temp &= ERST_PTR_MASK;
2036         /* Don't clear the EHB bit (which is RW1C) because
2037          * there might be more events to service.
2038          */
2039         temp &= ~ERST_EHB;
2040         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2041                         "preserving EHB bit\n");
2042         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2043                         &xhci->ir_set->erst_dequeue);
2044 }
2045
2046 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2047                 __le32 __iomem *addr, u8 major_revision, int max_caps)
2048 {
2049         u32 temp, port_offset, port_count;
2050         int i;
2051
2052         if (major_revision > 0x03) {
2053                 xhci_warn(xhci, "Ignoring unknown port speed, "
2054                                 "Ext Cap %p, revision = 0x%x\n",
2055                                 addr, major_revision);
2056                 /* Ignoring port protocol we can't understand. FIXME */
2057                 return;
2058         }
2059
2060         /* Port offset and count in the third dword, see section 7.2 */
2061         temp = xhci_readl(xhci, addr + 2);
2062         port_offset = XHCI_EXT_PORT_OFF(temp);
2063         port_count = XHCI_EXT_PORT_COUNT(temp);
2064         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2065                         "count = %u, revision = 0x%x\n",
2066                         addr, port_offset, port_count, major_revision);
2067         /* Port count includes the current port offset */
2068         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2069                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2070                 return;
2071
2072         /* cache usb2 port capabilities */
2073         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2074                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2075
2076         /* Check the host's USB2 LPM capability */
2077         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2078                         (temp & XHCI_L1C)) {
2079                 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2080                 xhci->sw_lpm_support = 1;
2081         }
2082
2083         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2084                 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2085                 xhci->sw_lpm_support = 1;
2086                 if (temp & XHCI_HLC) {
2087                         xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2088                         xhci->hw_lpm_support = 1;
2089                 }
2090         }
2091
2092         port_offset--;
2093         for (i = port_offset; i < (port_offset + port_count); i++) {
2094                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2095                 if (xhci->port_array[i] != 0) {
2096                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2097                                         " port %u\n", addr, i);
2098                         xhci_warn(xhci, "Port was marked as USB %u, "
2099                                         "duplicated as USB %u\n",
2100                                         xhci->port_array[i], major_revision);
2101                         /* Only adjust the roothub port counts if we haven't
2102                          * found a similar duplicate.
2103                          */
2104                         if (xhci->port_array[i] != major_revision &&
2105                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2106                                 if (xhci->port_array[i] == 0x03)
2107                                         xhci->num_usb3_ports--;
2108                                 else
2109                                         xhci->num_usb2_ports--;
2110                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2111                         }
2112                         /* FIXME: Should we disable the port? */
2113                         continue;
2114                 }
2115                 xhci->port_array[i] = major_revision;
2116                 if (major_revision == 0x03)
2117                         xhci->num_usb3_ports++;
2118                 else
2119                         xhci->num_usb2_ports++;
2120         }
2121         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2122 }
2123
2124 /*
2125  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2126  * specify what speeds each port is supposed to be.  We can't count on the port
2127  * speed bits in the PORTSC register being correct until a device is connected,
2128  * but we need to set up the two fake roothubs with the correct number of USB
2129  * 3.0 and USB 2.0 ports at host controller initialization time.
2130  */
2131 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2132 {
2133         __le32 __iomem *addr, *tmp_addr;
2134         u32 offset, tmp_offset;
2135         unsigned int num_ports;
2136         int i, j, port_index;
2137         int cap_count = 0;
2138
2139         addr = &xhci->cap_regs->hcc_params;
2140         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2141         if (offset == 0) {
2142                 xhci_err(xhci, "No Extended Capability registers, "
2143                                 "unable to set up roothub.\n");
2144                 return -ENODEV;
2145         }
2146
2147         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2148         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2149         if (!xhci->port_array)
2150                 return -ENOMEM;
2151
2152         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2153         if (!xhci->rh_bw)
2154                 return -ENOMEM;
2155         for (i = 0; i < num_ports; i++) {
2156                 struct xhci_interval_bw_table *bw_table;
2157
2158                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2159                 bw_table = &xhci->rh_bw[i].bw_table;
2160                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2161                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2162         }
2163
2164         /*
2165          * For whatever reason, the first capability offset is from the
2166          * capability register base, not from the HCCPARAMS register.
2167          * See section 5.3.6 for offset calculation.
2168          */
2169         addr = &xhci->cap_regs->hc_capbase + offset;
2170
2171         tmp_addr = addr;
2172         tmp_offset = offset;
2173
2174         /* count extended protocol capability entries for later caching */
2175         do {
2176                 u32 cap_id;
2177                 cap_id = xhci_readl(xhci, tmp_addr);
2178                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2179                         cap_count++;
2180                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2181                 tmp_addr += tmp_offset;
2182         } while (tmp_offset);
2183
2184         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2185         if (!xhci->ext_caps)
2186                 return -ENOMEM;
2187
2188         while (1) {
2189                 u32 cap_id;
2190
2191                 cap_id = xhci_readl(xhci, addr);
2192                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2193                         xhci_add_in_port(xhci, num_ports, addr,
2194                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2195                                         cap_count);
2196                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2197                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2198                                 == num_ports)
2199                         break;
2200                 /*
2201                  * Once you're into the Extended Capabilities, the offset is
2202                  * always relative to the register holding the offset.
2203                  */
2204                 addr += offset;
2205         }
2206
2207         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2208                 xhci_warn(xhci, "No ports on the roothubs?\n");
2209                 return -ENODEV;
2210         }
2211         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2212                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2213
2214         /* Place limits on the number of roothub ports so that the hub
2215          * descriptors aren't longer than the USB core will allocate.
2216          */
2217         if (xhci->num_usb3_ports > 15) {
2218                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2219                 xhci->num_usb3_ports = 15;
2220         }
2221         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2222                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2223                                 USB_MAXCHILDREN);
2224                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2225         }
2226
2227         /*
2228          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2229          * Not sure how the USB core will handle a hub with no ports...
2230          */
2231         if (xhci->num_usb2_ports) {
2232                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2233                                 xhci->num_usb2_ports, flags);
2234                 if (!xhci->usb2_ports)
2235                         return -ENOMEM;
2236
2237                 port_index = 0;
2238                 for (i = 0; i < num_ports; i++) {
2239                         if (xhci->port_array[i] == 0x03 ||
2240                                         xhci->port_array[i] == 0 ||
2241                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2242                                 continue;
2243
2244                         xhci->usb2_ports[port_index] =
2245                                 &xhci->op_regs->port_status_base +
2246                                 NUM_PORT_REGS*i;
2247                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
2248                                         "addr = %p\n", i,
2249                                         xhci->usb2_ports[port_index]);
2250                         port_index++;
2251                         if (port_index == xhci->num_usb2_ports)
2252                                 break;
2253                 }
2254         }
2255         if (xhci->num_usb3_ports) {
2256                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2257                                 xhci->num_usb3_ports, flags);
2258                 if (!xhci->usb3_ports)
2259                         return -ENOMEM;
2260
2261                 port_index = 0;
2262                 for (i = 0; i < num_ports; i++)
2263                         if (xhci->port_array[i] == 0x03) {
2264                                 xhci->usb3_ports[port_index] =
2265                                         &xhci->op_regs->port_status_base +
2266                                         NUM_PORT_REGS*i;
2267                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2268                                                 "addr = %p\n", i,
2269                                                 xhci->usb3_ports[port_index]);
2270                                 port_index++;
2271                                 if (port_index == xhci->num_usb3_ports)
2272                                         break;
2273                         }
2274         }
2275         return 0;
2276 }
2277
2278 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2279 {
2280         dma_addr_t      dma;
2281         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2282         unsigned int    val, val2;
2283         u64             val_64;
2284         struct xhci_segment     *seg;
2285         u32 page_size, temp;
2286         int i;
2287
2288         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2289         INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2290
2291         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2292         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2293         for (i = 0; i < 16; i++) {
2294                 if ((0x1 & page_size) != 0)
2295                         break;
2296                 page_size = page_size >> 1;
2297         }
2298         if (i < 16)
2299                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2300         else
2301                 xhci_warn(xhci, "WARN: no supported page size\n");
2302         /* Use 4K pages, since that's common and the minimum the HC supports */
2303         xhci->page_shift = 12;
2304         xhci->page_size = 1 << xhci->page_shift;
2305         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2306
2307         /*
2308          * Program the Number of Device Slots Enabled field in the CONFIG
2309          * register with the max value of slots the HC can handle.
2310          */
2311         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2312         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2313                         (unsigned int) val);
2314         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2315         val |= (val2 & ~HCS_SLOTS_MASK);
2316         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2317                         (unsigned int) val);
2318         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2319
2320         /*
2321          * Section 5.4.8 - doorbell array must be
2322          * "physically contiguous and 64-byte (cache line) aligned".
2323          */
2324         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2325                         GFP_KERNEL);
2326         if (!xhci->dcbaa)
2327                 goto fail;
2328         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2329         xhci->dcbaa->dma = dma;
2330         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2331                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2332         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2333
2334         /*
2335          * Initialize the ring segment pool.  The ring must be a contiguous
2336          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2337          * however, the command ring segment needs 64-byte aligned segments,
2338          * so we pick the greater alignment need.
2339          */
2340         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2341                         TRB_SEGMENT_SIZE, 64, xhci->page_size);
2342
2343         /* See Table 46 and Note on Figure 55 */
2344         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2345                         2112, 64, xhci->page_size);
2346         if (!xhci->segment_pool || !xhci->device_pool)
2347                 goto fail;
2348
2349         /* Linear stream context arrays don't have any boundary restrictions,
2350          * and only need to be 16-byte aligned.
2351          */
2352         xhci->small_streams_pool =
2353                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2354                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2355         xhci->medium_streams_pool =
2356                 dma_pool_create("xHCI 1KB stream ctx arrays",
2357                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2358         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2359          * will be allocated with dma_alloc_coherent()
2360          */
2361
2362         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2363                 goto fail;
2364
2365         /* Set up the command ring to have one segments for now. */
2366         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2367         if (!xhci->cmd_ring)
2368                 goto fail;
2369         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2370         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2371                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2372
2373         /* Set the address in the Command Ring Control register */
2374         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2375         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2376                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2377                 xhci->cmd_ring->cycle_state;
2378         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2379         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2380         xhci_dbg_cmd_ptrs(xhci);
2381
2382         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2383         if (!xhci->lpm_command)
2384                 goto fail;
2385
2386         /* Reserve one command ring TRB for disabling LPM.
2387          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2388          * disabling LPM, we only need to reserve one TRB for all devices.
2389          */
2390         xhci->cmd_ring_reserved_trbs++;
2391
2392         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2393         val &= DBOFF_MASK;
2394         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2395                         " from cap regs base addr\n", val);
2396         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2397         xhci_dbg_regs(xhci);
2398         xhci_print_run_regs(xhci);
2399         /* Set ir_set to interrupt register set 0 */
2400         xhci->ir_set = &xhci->run_regs->ir_set[0];
2401
2402         /*
2403          * Event ring setup: Allocate a normal ring, but also setup
2404          * the event ring segment table (ERST).  Section 4.9.3.
2405          */
2406         xhci_dbg(xhci, "// Allocating event ring\n");
2407         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2408                                                 flags);
2409         if (!xhci->event_ring)
2410                 goto fail;
2411         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2412                 goto fail;
2413
2414         xhci->erst.entries = dma_alloc_coherent(dev,
2415                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2416                         GFP_KERNEL);
2417         if (!xhci->erst.entries)
2418                 goto fail;
2419         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2420                         (unsigned long long)dma);
2421
2422         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2423         xhci->erst.num_entries = ERST_NUM_SEGS;
2424         xhci->erst.erst_dma_addr = dma;
2425         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2426                         xhci->erst.num_entries,
2427                         xhci->erst.entries,
2428                         (unsigned long long)xhci->erst.erst_dma_addr);
2429
2430         /* set ring base address and size for each segment table entry */
2431         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2432                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2433                 entry->seg_addr = cpu_to_le64(seg->dma);
2434                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2435                 entry->rsvd = 0;
2436                 seg = seg->next;
2437         }
2438
2439         /* set ERST count with the number of entries in the segment table */
2440         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2441         val &= ERST_SIZE_MASK;
2442         val |= ERST_NUM_SEGS;
2443         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2444                         val);
2445         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2446
2447         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2448         /* set the segment table base address */
2449         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2450                         (unsigned long long)xhci->erst.erst_dma_addr);
2451         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2452         val_64 &= ERST_PTR_MASK;
2453         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2454         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2455
2456         /* Set the event ring dequeue address */
2457         xhci_set_hc_event_deq(xhci);
2458         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2459         xhci_print_ir_set(xhci, 0);
2460
2461         /*
2462          * XXX: Might need to set the Interrupter Moderation Register to
2463          * something other than the default (~1ms minimum between interrupts).
2464          * See section 5.5.1.2.
2465          */
2466         init_completion(&xhci->addr_dev);
2467         for (i = 0; i < MAX_HC_SLOTS; ++i)
2468                 xhci->devs[i] = NULL;
2469         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2470                 xhci->bus_state[0].resume_done[i] = 0;
2471                 xhci->bus_state[1].resume_done[i] = 0;
2472         }
2473
2474         if (scratchpad_alloc(xhci, flags))
2475                 goto fail;
2476         if (xhci_setup_port_arrays(xhci, flags))
2477                 goto fail;
2478
2479         /* Enable USB 3.0 device notifications for function remote wake, which
2480          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2481          * U3 (device suspend).
2482          */
2483         temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2484         temp &= ~DEV_NOTE_MASK;
2485         temp |= DEV_NOTE_FWAKE;
2486         xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2487
2488         return 0;
2489
2490 fail:
2491         xhci_warn(xhci, "Couldn't initialize memory\n");
2492         xhci_halt(xhci);
2493         xhci_reset(xhci);
2494         xhci_mem_cleanup(xhci);
2495         return -ENOMEM;
2496 }