]> rtime.felk.cvut.cz Git - linux-imx.git/blob - arch/arm/mm/mmu.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-imx.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED        0
52 #define CPOLICY_BUFFERED        1
53 #define CPOLICY_WRITETHROUGH    2
54 #define CPOLICY_WRITEBACK       3
55 #define CPOLICY_WRITEALLOC      4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69         const char      policy[16];
70         unsigned int    cr_mask;
71         pmdval_t        pmd;
72         pteval_t        pte;
73         pteval_t        pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)       policy
78 #else
79 #define s2_policy(policy)       0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83         {
84                 .policy         = "uncached",
85                 .cr_mask        = CR_W|CR_C,
86                 .pmd            = PMD_SECT_UNCACHED,
87                 .pte            = L_PTE_MT_UNCACHED,
88                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
89         }, {
90                 .policy         = "buffered",
91                 .cr_mask        = CR_C,
92                 .pmd            = PMD_SECT_BUFFERED,
93                 .pte            = L_PTE_MT_BUFFERABLE,
94                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
95         }, {
96                 .policy         = "writethrough",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WT,
99                 .pte            = L_PTE_MT_WRITETHROUGH,
100                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101         }, {
102                 .policy         = "writeback",
103                 .cr_mask        = 0,
104                 .pmd            = PMD_SECT_WB,
105                 .pte            = L_PTE_MT_WRITEBACK,
106                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
107         }, {
108                 .policy         = "writealloc",
109                 .cr_mask        = 0,
110                 .pmd            = PMD_SECT_WBWA,
111                 .pte            = L_PTE_MT_WRITEALLOC,
112                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
113         }
114 };
115
116 #ifdef CONFIG_CPU_CP15
117 /*
118  * These are useful for identifying cache coherency
119  * problems by allowing the cache or the cache and
120  * writebuffer to be turned off.  (Note: the write
121  * buffer should not be on and the cache off).
122  */
123 static int __init early_cachepolicy(char *p)
124 {
125         int i;
126
127         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128                 int len = strlen(cache_policies[i].policy);
129
130                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
131                         cachepolicy = i;
132                         cr_alignment &= ~cache_policies[i].cr_mask;
133                         cr_no_alignment &= ~cache_policies[i].cr_mask;
134                         break;
135                 }
136         }
137         if (i == ARRAY_SIZE(cache_policies))
138                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139         /*
140          * This restriction is partly to do with the way we boot; it is
141          * unpredictable to have memory mapped using two different sets of
142          * memory attributes (shared, type, and cache attribs).  We can not
143          * change these attributes once the initial assembly has setup the
144          * page tables.
145          */
146         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148                 cachepolicy = CPOLICY_WRITEBACK;
149         }
150         flush_cache_all();
151         set_cr(cr_alignment);
152         return 0;
153 }
154 early_param("cachepolicy", early_cachepolicy);
155
156 static int __init early_nocache(char *__unused)
157 {
158         char *p = "buffered";
159         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160         early_cachepolicy(p);
161         return 0;
162 }
163 early_param("nocache", early_nocache);
164
165 static int __init early_nowrite(char *__unused)
166 {
167         char *p = "uncached";
168         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169         early_cachepolicy(p);
170         return 0;
171 }
172 early_param("nowb", early_nowrite);
173
174 #ifndef CONFIG_ARM_LPAE
175 static int __init early_ecc(char *p)
176 {
177         if (memcmp(p, "on", 2) == 0)
178                 ecc_mask = PMD_PROTECTION;
179         else if (memcmp(p, "off", 3) == 0)
180                 ecc_mask = 0;
181         return 0;
182 }
183 early_param("ecc", early_ecc);
184 #endif
185
186 static int __init noalign_setup(char *__unused)
187 {
188         cr_alignment &= ~CR_A;
189         cr_no_alignment &= ~CR_A;
190         set_cr(cr_alignment);
191         return 1;
192 }
193 __setup("noalign", noalign_setup);
194
195 #ifndef CONFIG_SMP
196 void adjust_cr(unsigned long mask, unsigned long set)
197 {
198         unsigned long flags;
199
200         mask &= ~CR_A;
201
202         set &= mask;
203
204         local_irq_save(flags);
205
206         cr_no_alignment = (cr_no_alignment & ~mask) | set;
207         cr_alignment = (cr_alignment & ~mask) | set;
208
209         set_cr((get_cr() & ~mask) | set);
210
211         local_irq_restore(flags);
212 }
213 #endif
214
215 #else /* ifdef CONFIG_CPU_CP15 */
216
217 static int __init early_cachepolicy(char *p)
218 {
219         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220 }
221 early_param("cachepolicy", early_cachepolicy);
222
223 static int __init noalign_setup(char *__unused)
224 {
225         pr_warning("noalign kernel parameter not supported without cp15\n");
226 }
227 __setup("noalign", noalign_setup);
228
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
230
231 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
233
234 static struct mem_type mem_types[] = {
235         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
236                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
237                                   L_PTE_SHARED,
238                 .prot_l1        = PMD_TYPE_TABLE,
239                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
240                 .domain         = DOMAIN_IO,
241         },
242         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
243                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
244                 .prot_l1        = PMD_TYPE_TABLE,
245                 .prot_sect      = PROT_SECT_DEVICE,
246                 .domain         = DOMAIN_IO,
247         },
248         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
249                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
250                 .prot_l1        = PMD_TYPE_TABLE,
251                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
252                 .domain         = DOMAIN_IO,
253         },
254         [MT_DEVICE_WC] = {      /* ioremap_wc */
255                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
256                 .prot_l1        = PMD_TYPE_TABLE,
257                 .prot_sect      = PROT_SECT_DEVICE,
258                 .domain         = DOMAIN_IO,
259         },
260         [MT_UNCACHED] = {
261                 .prot_pte       = PROT_PTE_DEVICE,
262                 .prot_l1        = PMD_TYPE_TABLE,
263                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
264                 .domain         = DOMAIN_IO,
265         },
266         [MT_CACHECLEAN] = {
267                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
268                 .domain    = DOMAIN_KERNEL,
269         },
270 #ifndef CONFIG_ARM_LPAE
271         [MT_MINICLEAN] = {
272                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
273                 .domain    = DOMAIN_KERNEL,
274         },
275 #endif
276         [MT_LOW_VECTORS] = {
277                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278                                 L_PTE_RDONLY,
279                 .prot_l1   = PMD_TYPE_TABLE,
280                 .domain    = DOMAIN_USER,
281         },
282         [MT_HIGH_VECTORS] = {
283                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
284                                 L_PTE_USER | L_PTE_RDONLY,
285                 .prot_l1   = PMD_TYPE_TABLE,
286                 .domain    = DOMAIN_USER,
287         },
288         [MT_MEMORY] = {
289                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
290                 .prot_l1   = PMD_TYPE_TABLE,
291                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
292                 .domain    = DOMAIN_KERNEL,
293         },
294         [MT_ROM] = {
295                 .prot_sect = PMD_TYPE_SECT,
296                 .domain    = DOMAIN_KERNEL,
297         },
298         [MT_MEMORY_NONCACHED] = {
299                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
300                                 L_PTE_MT_BUFFERABLE,
301                 .prot_l1   = PMD_TYPE_TABLE,
302                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303                 .domain    = DOMAIN_KERNEL,
304         },
305         [MT_MEMORY_DTCM] = {
306                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307                                 L_PTE_XN,
308                 .prot_l1   = PMD_TYPE_TABLE,
309                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
310                 .domain    = DOMAIN_KERNEL,
311         },
312         [MT_MEMORY_ITCM] = {
313                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
314                 .prot_l1   = PMD_TYPE_TABLE,
315                 .domain    = DOMAIN_KERNEL,
316         },
317         [MT_MEMORY_SO] = {
318                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319                                 L_PTE_MT_UNCACHED | L_PTE_XN,
320                 .prot_l1   = PMD_TYPE_TABLE,
321                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
322                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
323                 .domain    = DOMAIN_KERNEL,
324         },
325         [MT_MEMORY_DMA_READY] = {
326                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
327                 .prot_l1   = PMD_TYPE_TABLE,
328                 .domain    = DOMAIN_KERNEL,
329         },
330 };
331
332 const struct mem_type *get_mem_type(unsigned int type)
333 {
334         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
335 }
336 EXPORT_SYMBOL(get_mem_type);
337
338 /*
339  * Adjust the PMD section entries according to the CPU in use.
340  */
341 static void __init build_mem_type_table(void)
342 {
343         struct cachepolicy *cp;
344         unsigned int cr = get_cr();
345         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
346         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
347         int cpu_arch = cpu_architecture();
348         int i;
349
350         if (cpu_arch < CPU_ARCH_ARMv6) {
351 #if defined(CONFIG_CPU_DCACHE_DISABLE)
352                 if (cachepolicy > CPOLICY_BUFFERED)
353                         cachepolicy = CPOLICY_BUFFERED;
354 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
355                 if (cachepolicy > CPOLICY_WRITETHROUGH)
356                         cachepolicy = CPOLICY_WRITETHROUGH;
357 #endif
358         }
359         if (cpu_arch < CPU_ARCH_ARMv5) {
360                 if (cachepolicy >= CPOLICY_WRITEALLOC)
361                         cachepolicy = CPOLICY_WRITEBACK;
362                 ecc_mask = 0;
363         }
364         if (is_smp())
365                 cachepolicy = CPOLICY_WRITEALLOC;
366
367         /*
368          * Strip out features not present on earlier architectures.
369          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
370          * without extended page tables don't have the 'Shared' bit.
371          */
372         if (cpu_arch < CPU_ARCH_ARMv5)
373                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
374                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
375         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
376                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
377                         mem_types[i].prot_sect &= ~PMD_SECT_S;
378
379         /*
380          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
381          * "update-able on write" bit on ARM610).  However, Xscale and
382          * Xscale3 require this bit to be cleared.
383          */
384         if (cpu_is_xscale() || cpu_is_xsc3()) {
385                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
386                         mem_types[i].prot_sect &= ~PMD_BIT4;
387                         mem_types[i].prot_l1 &= ~PMD_BIT4;
388                 }
389         } else if (cpu_arch < CPU_ARCH_ARMv6) {
390                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391                         if (mem_types[i].prot_l1)
392                                 mem_types[i].prot_l1 |= PMD_BIT4;
393                         if (mem_types[i].prot_sect)
394                                 mem_types[i].prot_sect |= PMD_BIT4;
395                 }
396         }
397
398         /*
399          * Mark the device areas according to the CPU/architecture.
400          */
401         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
402                 if (!cpu_is_xsc3()) {
403                         /*
404                          * Mark device regions on ARMv6+ as execute-never
405                          * to prevent speculative instruction fetches.
406                          */
407                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
408                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
409                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
410                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
411                 }
412                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
413                         /*
414                          * For ARMv7 with TEX remapping,
415                          * - shared device is SXCB=1100
416                          * - nonshared device is SXCB=0100
417                          * - write combine device mem is SXCB=0001
418                          * (Uncached Normal memory)
419                          */
420                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
421                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
422                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
423                 } else if (cpu_is_xsc3()) {
424                         /*
425                          * For Xscale3,
426                          * - shared device is TEXCB=00101
427                          * - nonshared device is TEXCB=01000
428                          * - write combine device mem is TEXCB=00100
429                          * (Inner/Outer Uncacheable in xsc3 parlance)
430                          */
431                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
432                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
433                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
434                 } else {
435                         /*
436                          * For ARMv6 and ARMv7 without TEX remapping,
437                          * - shared device is TEXCB=00001
438                          * - nonshared device is TEXCB=01000
439                          * - write combine device mem is TEXCB=00100
440                          * (Uncached Normal in ARMv6 parlance).
441                          */
442                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
443                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
444                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
445                 }
446         } else {
447                 /*
448                  * On others, write combining is "Uncached/Buffered"
449                  */
450                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
451         }
452
453         /*
454          * Now deal with the memory-type mappings
455          */
456         cp = &cache_policies[cachepolicy];
457         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
458         s2_pgprot = cp->pte_s2;
459         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
460
461         /*
462          * ARMv6 and above have extended page tables.
463          */
464         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
465 #ifndef CONFIG_ARM_LPAE
466                 /*
467                  * Mark cache clean areas and XIP ROM read only
468                  * from SVC mode and no access from userspace.
469                  */
470                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
471                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
473 #endif
474
475                 if (is_smp()) {
476                         /*
477                          * Mark memory with the "shared" attribute
478                          * for SMP systems
479                          */
480                         user_pgprot |= L_PTE_SHARED;
481                         kern_pgprot |= L_PTE_SHARED;
482                         vecs_pgprot |= L_PTE_SHARED;
483                         s2_pgprot |= L_PTE_SHARED;
484                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
485                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
486                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
487                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
488                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
489                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
490                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
491                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
492                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
493                 }
494         }
495
496         /*
497          * Non-cacheable Normal - intended for memory areas that must
498          * not cause dirty cache line writebacks when used
499          */
500         if (cpu_arch >= CPU_ARCH_ARMv6) {
501                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502                         /* Non-cacheable Normal is XCB = 001 */
503                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
504                                 PMD_SECT_BUFFERED;
505                 } else {
506                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
507                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
508                                 PMD_SECT_TEX(1);
509                 }
510         } else {
511                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
512         }
513
514 #ifdef CONFIG_ARM_LPAE
515         /*
516          * Do not generate access flag faults for the kernel mappings.
517          */
518         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
519                 mem_types[i].prot_pte |= PTE_EXT_AF;
520                 if (mem_types[i].prot_sect)
521                         mem_types[i].prot_sect |= PMD_SECT_AF;
522         }
523         kern_pgprot |= PTE_EXT_AF;
524         vecs_pgprot |= PTE_EXT_AF;
525 #endif
526
527         for (i = 0; i < 16; i++) {
528                 pteval_t v = pgprot_val(protection_map[i]);
529                 protection_map[i] = __pgprot(v | user_pgprot);
530         }
531
532         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
533         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
534
535         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
536         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
537                                  L_PTE_DIRTY | kern_pgprot);
538         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
539         pgprot_s2_device  = __pgprot(s2_device_pgprot);
540         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
541
542         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
543         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
544         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
545         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
546         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
547         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
548         mem_types[MT_ROM].prot_sect |= cp->pmd;
549
550         switch (cp->pmd) {
551         case PMD_SECT_WT:
552                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
553                 break;
554         case PMD_SECT_WB:
555         case PMD_SECT_WBWA:
556                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
557                 break;
558         }
559         printk("Memory policy: ECC %sabled, Data cache %s\n",
560                 ecc_mask ? "en" : "dis", cp->policy);
561
562         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
563                 struct mem_type *t = &mem_types[i];
564                 if (t->prot_l1)
565                         t->prot_l1 |= PMD_DOMAIN(t->domain);
566                 if (t->prot_sect)
567                         t->prot_sect |= PMD_DOMAIN(t->domain);
568         }
569 }
570
571 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
572 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
573                               unsigned long size, pgprot_t vma_prot)
574 {
575         if (!pfn_valid(pfn))
576                 return pgprot_noncached(vma_prot);
577         else if (file->f_flags & O_SYNC)
578                 return pgprot_writecombine(vma_prot);
579         return vma_prot;
580 }
581 EXPORT_SYMBOL(phys_mem_access_prot);
582 #endif
583
584 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
585
586 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
587 {
588         void *ptr = __va(memblock_alloc(sz, align));
589         memset(ptr, 0, sz);
590         return ptr;
591 }
592
593 static void __init *early_alloc(unsigned long sz)
594 {
595         return early_alloc_aligned(sz, sz);
596 }
597
598 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
599 {
600         if (pmd_none(*pmd)) {
601                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
602                 __pmd_populate(pmd, __pa(pte), prot);
603         }
604         BUG_ON(pmd_bad(*pmd));
605         return pte_offset_kernel(pmd, addr);
606 }
607
608 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
609                                   unsigned long end, unsigned long pfn,
610                                   const struct mem_type *type)
611 {
612         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
613         do {
614                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
615                 pfn++;
616         } while (pte++, addr += PAGE_SIZE, addr != end);
617 }
618
619 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
620                         unsigned long end, phys_addr_t phys,
621                         const struct mem_type *type)
622 {
623         pmd_t *p = pmd;
624
625 #ifndef CONFIG_ARM_LPAE
626         /*
627          * In classic MMU format, puds and pmds are folded in to
628          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
629          * group of L1 entries making up one logical pointer to
630          * an L2 table (2MB), where as PMDs refer to the individual
631          * L1 entries (1MB). Hence increment to get the correct
632          * offset for odd 1MB sections.
633          * (See arch/arm/include/asm/pgtable-2level.h)
634          */
635         if (addr & SECTION_SIZE)
636                 pmd++;
637 #endif
638         do {
639                 *pmd = __pmd(phys | type->prot_sect);
640                 phys += SECTION_SIZE;
641         } while (pmd++, addr += SECTION_SIZE, addr != end);
642
643         flush_pmd_entry(p);
644 }
645
646 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
647                                       unsigned long end, phys_addr_t phys,
648                                       const struct mem_type *type)
649 {
650         pmd_t *pmd = pmd_offset(pud, addr);
651         unsigned long next;
652
653         do {
654                 /*
655                  * With LPAE, we must loop over to map
656                  * all the pmds for the given range.
657                  */
658                 next = pmd_addr_end(addr, end);
659
660                 /*
661                  * Try a section mapping - addr, next and phys must all be
662                  * aligned to a section boundary.
663                  */
664                 if (type->prot_sect &&
665                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
666                         __map_init_section(pmd, addr, next, phys, type);
667                 } else {
668                         alloc_init_pte(pmd, addr, next,
669                                                 __phys_to_pfn(phys), type);
670                 }
671
672                 phys += next - addr;
673
674         } while (pmd++, addr = next, addr != end);
675 }
676
677 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
678                                   unsigned long end, phys_addr_t phys,
679                                   const struct mem_type *type)
680 {
681         pud_t *pud = pud_offset(pgd, addr);
682         unsigned long next;
683
684         do {
685                 next = pud_addr_end(addr, end);
686                 alloc_init_pmd(pud, addr, next, phys, type);
687                 phys += next - addr;
688         } while (pud++, addr = next, addr != end);
689 }
690
691 #ifndef CONFIG_ARM_LPAE
692 static void __init create_36bit_mapping(struct map_desc *md,
693                                         const struct mem_type *type)
694 {
695         unsigned long addr, length, end;
696         phys_addr_t phys;
697         pgd_t *pgd;
698
699         addr = md->virtual;
700         phys = __pfn_to_phys(md->pfn);
701         length = PAGE_ALIGN(md->length);
702
703         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
704                 printk(KERN_ERR "MM: CPU does not support supersection "
705                        "mapping for 0x%08llx at 0x%08lx\n",
706                        (long long)__pfn_to_phys((u64)md->pfn), addr);
707                 return;
708         }
709
710         /* N.B. ARMv6 supersections are only defined to work with domain 0.
711          *      Since domain assignments can in fact be arbitrary, the
712          *      'domain == 0' check below is required to insure that ARMv6
713          *      supersections are only allocated for domain 0 regardless
714          *      of the actual domain assignments in use.
715          */
716         if (type->domain) {
717                 printk(KERN_ERR "MM: invalid domain in supersection "
718                        "mapping for 0x%08llx at 0x%08lx\n",
719                        (long long)__pfn_to_phys((u64)md->pfn), addr);
720                 return;
721         }
722
723         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
724                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
725                        " at 0x%08lx invalid alignment\n",
726                        (long long)__pfn_to_phys((u64)md->pfn), addr);
727                 return;
728         }
729
730         /*
731          * Shift bits [35:32] of address into bits [23:20] of PMD
732          * (See ARMv6 spec).
733          */
734         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
735
736         pgd = pgd_offset_k(addr);
737         end = addr + length;
738         do {
739                 pud_t *pud = pud_offset(pgd, addr);
740                 pmd_t *pmd = pmd_offset(pud, addr);
741                 int i;
742
743                 for (i = 0; i < 16; i++)
744                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
745
746                 addr += SUPERSECTION_SIZE;
747                 phys += SUPERSECTION_SIZE;
748                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
749         } while (addr != end);
750 }
751 #endif  /* !CONFIG_ARM_LPAE */
752
753 /*
754  * Create the page directory entries and any necessary
755  * page tables for the mapping specified by `md'.  We
756  * are able to cope here with varying sizes and address
757  * offsets, and we take full advantage of sections and
758  * supersections.
759  */
760 static void __init create_mapping(struct map_desc *md)
761 {
762         unsigned long addr, length, end;
763         phys_addr_t phys;
764         const struct mem_type *type;
765         pgd_t *pgd;
766
767         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
768                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
769                        " at 0x%08lx in user region\n",
770                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
771                 return;
772         }
773
774         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
775             md->virtual >= PAGE_OFFSET &&
776             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
777                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
778                        " at 0x%08lx out of vmalloc space\n",
779                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
780         }
781
782         type = &mem_types[md->type];
783
784 #ifndef CONFIG_ARM_LPAE
785         /*
786          * Catch 36-bit addresses
787          */
788         if (md->pfn >= 0x100000) {
789                 create_36bit_mapping(md, type);
790                 return;
791         }
792 #endif
793
794         addr = md->virtual & PAGE_MASK;
795         phys = __pfn_to_phys(md->pfn);
796         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
797
798         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
799                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
800                        "be mapped using pages, ignoring.\n",
801                        (long long)__pfn_to_phys(md->pfn), addr);
802                 return;
803         }
804
805         pgd = pgd_offset_k(addr);
806         end = addr + length;
807         do {
808                 unsigned long next = pgd_addr_end(addr, end);
809
810                 alloc_init_pud(pgd, addr, next, phys, type);
811
812                 phys += next - addr;
813                 addr = next;
814         } while (pgd++, addr != end);
815 }
816
817 /*
818  * Create the architecture specific mappings
819  */
820 void __init iotable_init(struct map_desc *io_desc, int nr)
821 {
822         struct map_desc *md;
823         struct vm_struct *vm;
824         struct static_vm *svm;
825
826         if (!nr)
827                 return;
828
829         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
830
831         for (md = io_desc; nr; md++, nr--) {
832                 create_mapping(md);
833
834                 vm = &svm->vm;
835                 vm->addr = (void *)(md->virtual & PAGE_MASK);
836                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
837                 vm->phys_addr = __pfn_to_phys(md->pfn);
838                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
839                 vm->flags |= VM_ARM_MTYPE(md->type);
840                 vm->caller = iotable_init;
841                 add_static_vm_early(svm++);
842         }
843 }
844
845 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
846                                   void *caller)
847 {
848         struct vm_struct *vm;
849         struct static_vm *svm;
850
851         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
852
853         vm = &svm->vm;
854         vm->addr = (void *)addr;
855         vm->size = size;
856         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
857         vm->caller = caller;
858         add_static_vm_early(svm);
859 }
860
861 #ifndef CONFIG_ARM_LPAE
862
863 /*
864  * The Linux PMD is made of two consecutive section entries covering 2MB
865  * (see definition in include/asm/pgtable-2level.h).  However a call to
866  * create_mapping() may optimize static mappings by using individual
867  * 1MB section mappings.  This leaves the actual PMD potentially half
868  * initialized if the top or bottom section entry isn't used, leaving it
869  * open to problems if a subsequent ioremap() or vmalloc() tries to use
870  * the virtual space left free by that unused section entry.
871  *
872  * Let's avoid the issue by inserting dummy vm entries covering the unused
873  * PMD halves once the static mappings are in place.
874  */
875
876 static void __init pmd_empty_section_gap(unsigned long addr)
877 {
878         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
879 }
880
881 static void __init fill_pmd_gaps(void)
882 {
883         struct static_vm *svm;
884         struct vm_struct *vm;
885         unsigned long addr, next = 0;
886         pmd_t *pmd;
887
888         list_for_each_entry(svm, &static_vmlist, list) {
889                 vm = &svm->vm;
890                 addr = (unsigned long)vm->addr;
891                 if (addr < next)
892                         continue;
893
894                 /*
895                  * Check if this vm starts on an odd section boundary.
896                  * If so and the first section entry for this PMD is free
897                  * then we block the corresponding virtual address.
898                  */
899                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
900                         pmd = pmd_off_k(addr);
901                         if (pmd_none(*pmd))
902                                 pmd_empty_section_gap(addr & PMD_MASK);
903                 }
904
905                 /*
906                  * Then check if this vm ends on an odd section boundary.
907                  * If so and the second section entry for this PMD is empty
908                  * then we block the corresponding virtual address.
909                  */
910                 addr += vm->size;
911                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
912                         pmd = pmd_off_k(addr) + 1;
913                         if (pmd_none(*pmd))
914                                 pmd_empty_section_gap(addr);
915                 }
916
917                 /* no need to look at any vm entry until we hit the next PMD */
918                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
919         }
920 }
921
922 #else
923 #define fill_pmd_gaps() do { } while (0)
924 #endif
925
926 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
927 static void __init pci_reserve_io(void)
928 {
929         struct static_vm *svm;
930
931         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
932         if (svm)
933                 return;
934
935         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
936 }
937 #else
938 #define pci_reserve_io() do { } while (0)
939 #endif
940
941 #ifdef CONFIG_DEBUG_LL
942 void __init debug_ll_io_init(void)
943 {
944         struct map_desc map;
945
946         debug_ll_addr(&map.pfn, &map.virtual);
947         if (!map.pfn || !map.virtual)
948                 return;
949         map.pfn = __phys_to_pfn(map.pfn);
950         map.virtual &= PAGE_MASK;
951         map.length = PAGE_SIZE;
952         map.type = MT_DEVICE;
953         iotable_init(&map, 1);
954 }
955 #endif
956
957 static void * __initdata vmalloc_min =
958         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
959
960 /*
961  * vmalloc=size forces the vmalloc area to be exactly 'size'
962  * bytes. This can be used to increase (or decrease) the vmalloc
963  * area - the default is 240m.
964  */
965 static int __init early_vmalloc(char *arg)
966 {
967         unsigned long vmalloc_reserve = memparse(arg, NULL);
968
969         if (vmalloc_reserve < SZ_16M) {
970                 vmalloc_reserve = SZ_16M;
971                 printk(KERN_WARNING
972                         "vmalloc area too small, limiting to %luMB\n",
973                         vmalloc_reserve >> 20);
974         }
975
976         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
977                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
978                 printk(KERN_WARNING
979                         "vmalloc area is too big, limiting to %luMB\n",
980                         vmalloc_reserve >> 20);
981         }
982
983         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
984         return 0;
985 }
986 early_param("vmalloc", early_vmalloc);
987
988 phys_addr_t arm_lowmem_limit __initdata = 0;
989
990 void __init sanity_check_meminfo(void)
991 {
992         phys_addr_t memblock_limit = 0;
993         int i, j, highmem = 0;
994         phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
995
996         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
997                 struct membank *bank = &meminfo.bank[j];
998                 phys_addr_t size_limit;
999
1000                 *bank = meminfo.bank[i];
1001                 size_limit = bank->size;
1002
1003                 if (bank->start >= vmalloc_limit)
1004                         highmem = 1;
1005                 else
1006                         size_limit = vmalloc_limit - bank->start;
1007
1008                 bank->highmem = highmem;
1009
1010 #ifdef CONFIG_HIGHMEM
1011                 /*
1012                  * Split those memory banks which are partially overlapping
1013                  * the vmalloc area greatly simplifying things later.
1014                  */
1015                 if (!highmem && bank->size > size_limit) {
1016                         if (meminfo.nr_banks >= NR_BANKS) {
1017                                 printk(KERN_CRIT "NR_BANKS too low, "
1018                                                  "ignoring high memory\n");
1019                         } else {
1020                                 memmove(bank + 1, bank,
1021                                         (meminfo.nr_banks - i) * sizeof(*bank));
1022                                 meminfo.nr_banks++;
1023                                 i++;
1024                                 bank[1].size -= size_limit;
1025                                 bank[1].start = vmalloc_limit;
1026                                 bank[1].highmem = highmem = 1;
1027                                 j++;
1028                         }
1029                         bank->size = size_limit;
1030                 }
1031 #else
1032                 /*
1033                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1034                  */
1035                 if (highmem) {
1036                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1037                                "(!CONFIG_HIGHMEM).\n",
1038                                (unsigned long long)bank->start,
1039                                (unsigned long long)bank->start + bank->size - 1);
1040                         continue;
1041                 }
1042
1043                 /*
1044                  * Check whether this memory bank would partially overlap
1045                  * the vmalloc area.
1046                  */
1047                 if (bank->size > size_limit) {
1048                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1049                                "to -%.8llx (vmalloc region overlap).\n",
1050                                (unsigned long long)bank->start,
1051                                (unsigned long long)bank->start + bank->size - 1,
1052                                (unsigned long long)bank->start + size_limit - 1);
1053                         bank->size = size_limit;
1054                 }
1055 #endif
1056                 if (!bank->highmem) {
1057                         phys_addr_t bank_end = bank->start + bank->size;
1058
1059                         if (bank_end > arm_lowmem_limit)
1060                                 arm_lowmem_limit = bank_end;
1061
1062                         /*
1063                          * Find the first non-section-aligned page, and point
1064                          * memblock_limit at it. This relies on rounding the
1065                          * limit down to be section-aligned, which happens at
1066                          * the end of this function.
1067                          *
1068                          * With this algorithm, the start or end of almost any
1069                          * bank can be non-section-aligned. The only exception
1070                          * is that the start of the bank 0 must be section-
1071                          * aligned, since otherwise memory would need to be
1072                          * allocated when mapping the start of bank 0, which
1073                          * occurs before any free memory is mapped.
1074                          */
1075                         if (!memblock_limit) {
1076                                 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1077                                         memblock_limit = bank->start;
1078                                 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1079                                         memblock_limit = bank_end;
1080                         }
1081                 }
1082                 j++;
1083         }
1084 #ifdef CONFIG_HIGHMEM
1085         if (highmem) {
1086                 const char *reason = NULL;
1087
1088                 if (cache_is_vipt_aliasing()) {
1089                         /*
1090                          * Interactions between kmap and other mappings
1091                          * make highmem support with aliasing VIPT caches
1092                          * rather difficult.
1093                          */
1094                         reason = "with VIPT aliasing cache";
1095                 }
1096                 if (reason) {
1097                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1098                                 reason);
1099                         while (j > 0 && meminfo.bank[j - 1].highmem)
1100                                 j--;
1101                 }
1102         }
1103 #endif
1104         meminfo.nr_banks = j;
1105         high_memory = __va(arm_lowmem_limit - 1) + 1;
1106
1107         /*
1108          * Round the memblock limit down to a section size.  This
1109          * helps to ensure that we will allocate memory from the
1110          * last full section, which should be mapped.
1111          */
1112         if (memblock_limit)
1113                 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1114         if (!memblock_limit)
1115                 memblock_limit = arm_lowmem_limit;
1116
1117         memblock_set_current_limit(memblock_limit);
1118 }
1119
1120 static inline void prepare_page_table(void)
1121 {
1122         unsigned long addr;
1123         phys_addr_t end;
1124
1125         /*
1126          * Clear out all the mappings below the kernel image.
1127          */
1128         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1129                 pmd_clear(pmd_off_k(addr));
1130
1131 #ifdef CONFIG_XIP_KERNEL
1132         /* The XIP kernel is mapped in the module area -- skip over it */
1133         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1134 #endif
1135         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1136                 pmd_clear(pmd_off_k(addr));
1137
1138         /*
1139          * Find the end of the first block of lowmem.
1140          */
1141         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1142         if (end >= arm_lowmem_limit)
1143                 end = arm_lowmem_limit;
1144
1145         /*
1146          * Clear out all the kernel space mappings, except for the first
1147          * memory bank, up to the vmalloc region.
1148          */
1149         for (addr = __phys_to_virt(end);
1150              addr < VMALLOC_START; addr += PMD_SIZE)
1151                 pmd_clear(pmd_off_k(addr));
1152 }
1153
1154 #ifdef CONFIG_ARM_LPAE
1155 /* the first page is reserved for pgd */
1156 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1157                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1158 #else
1159 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1160 #endif
1161
1162 /*
1163  * Reserve the special regions of memory
1164  */
1165 void __init arm_mm_memblock_reserve(void)
1166 {
1167         /*
1168          * Reserve the page tables.  These are already in use,
1169          * and can only be in node 0.
1170          */
1171         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1172
1173 #ifdef CONFIG_SA1111
1174         /*
1175          * Because of the SA1111 DMA bug, we want to preserve our
1176          * precious DMA-able memory...
1177          */
1178         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1179 #endif
1180 }
1181
1182 /*
1183  * Set up the device mappings.  Since we clear out the page tables for all
1184  * mappings above VMALLOC_START, we will remove any debug device mappings.
1185  * This means you have to be careful how you debug this function, or any
1186  * called function.  This means you can't use any function or debugging
1187  * method which may touch any device, otherwise the kernel _will_ crash.
1188  */
1189 static void __init devicemaps_init(struct machine_desc *mdesc)
1190 {
1191         struct map_desc map;
1192         unsigned long addr;
1193         void *vectors;
1194
1195         /*
1196          * Allocate the vector page early.
1197          */
1198         vectors = early_alloc(PAGE_SIZE * 2);
1199
1200         early_trap_init(vectors);
1201
1202         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1203                 pmd_clear(pmd_off_k(addr));
1204
1205         /*
1206          * Map the kernel if it is XIP.
1207          * It is always first in the modulearea.
1208          */
1209 #ifdef CONFIG_XIP_KERNEL
1210         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1211         map.virtual = MODULES_VADDR;
1212         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1213         map.type = MT_ROM;
1214         create_mapping(&map);
1215 #endif
1216
1217         /*
1218          * Map the cache flushing regions.
1219          */
1220 #ifdef FLUSH_BASE
1221         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1222         map.virtual = FLUSH_BASE;
1223         map.length = SZ_1M;
1224         map.type = MT_CACHECLEAN;
1225         create_mapping(&map);
1226 #endif
1227 #ifdef FLUSH_BASE_MINICACHE
1228         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1229         map.virtual = FLUSH_BASE_MINICACHE;
1230         map.length = SZ_1M;
1231         map.type = MT_MINICLEAN;
1232         create_mapping(&map);
1233 #endif
1234
1235         /*
1236          * Create a mapping for the machine vectors at the high-vectors
1237          * location (0xffff0000).  If we aren't using high-vectors, also
1238          * create a mapping at the low-vectors virtual address.
1239          */
1240         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1241         map.virtual = 0xffff0000;
1242         map.length = PAGE_SIZE;
1243 #ifdef CONFIG_KUSER_HELPERS
1244         map.type = MT_HIGH_VECTORS;
1245 #else
1246         map.type = MT_LOW_VECTORS;
1247 #endif
1248         create_mapping(&map);
1249
1250         if (!vectors_high()) {
1251                 map.virtual = 0;
1252                 map.length = PAGE_SIZE * 2;
1253                 map.type = MT_LOW_VECTORS;
1254                 create_mapping(&map);
1255         }
1256
1257         /* Now create a kernel read-only mapping */
1258         map.pfn += 1;
1259         map.virtual = 0xffff0000 + PAGE_SIZE;
1260         map.length = PAGE_SIZE;
1261         map.type = MT_LOW_VECTORS;
1262         create_mapping(&map);
1263
1264         /*
1265          * Ask the machine support to map in the statically mapped devices.
1266          */
1267         if (mdesc->map_io)
1268                 mdesc->map_io();
1269         else
1270                 debug_ll_io_init();
1271         fill_pmd_gaps();
1272
1273         /* Reserve fixed i/o space in VMALLOC region */
1274         pci_reserve_io();
1275
1276         /*
1277          * Finally flush the caches and tlb to ensure that we're in a
1278          * consistent state wrt the writebuffer.  This also ensures that
1279          * any write-allocated cache lines in the vector page are written
1280          * back.  After this point, we can start to touch devices again.
1281          */
1282         local_flush_tlb_all();
1283         flush_cache_all();
1284 }
1285
1286 static void __init kmap_init(void)
1287 {
1288 #ifdef CONFIG_HIGHMEM
1289         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1290                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1291 #endif
1292 }
1293
1294 static void __init map_lowmem(void)
1295 {
1296         struct memblock_region *reg;
1297
1298         /* Map all the lowmem memory banks. */
1299         for_each_memblock(memory, reg) {
1300                 phys_addr_t start = reg->base;
1301                 phys_addr_t end = start + reg->size;
1302                 struct map_desc map;
1303
1304                 if (end > arm_lowmem_limit)
1305                         end = arm_lowmem_limit;
1306                 if (start >= end)
1307                         break;
1308
1309                 map.pfn = __phys_to_pfn(start);
1310                 map.virtual = __phys_to_virt(start);
1311                 map.length = end - start;
1312                 map.type = MT_MEMORY;
1313
1314                 create_mapping(&map);
1315         }
1316 }
1317
1318 /*
1319  * paging_init() sets up the page tables, initialises the zone memory
1320  * maps, and sets up the zero page, bad page and bad page tables.
1321  */
1322 void __init paging_init(struct machine_desc *mdesc)
1323 {
1324         void *zero_page;
1325
1326         build_mem_type_table();
1327         prepare_page_table();
1328         map_lowmem();
1329         dma_contiguous_remap();
1330         devicemaps_init(mdesc);
1331         kmap_init();
1332         tcm_init();
1333
1334         top_pmd = pmd_off_k(0xffff0000);
1335
1336         /* allocate the zero page. */
1337         zero_page = early_alloc(PAGE_SIZE);
1338
1339         bootmem_init();
1340
1341         empty_zero_page = virt_to_page(zero_page);
1342         __flush_dcache_page(NULL, empty_zero_page);
1343 }