]> rtime.felk.cvut.cz Git - linux-imx.git/blob - net/sunrpc/sched.c
SUNRPC: remove BUG_ON from rpc_sleep_on*
[linux-imx.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %lu ms\n",
93                         task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102  * Add new request to a priority queue.
103  */
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105                 struct rpc_task *task,
106                 unsigned char queue_priority)
107 {
108         struct list_head *q;
109         struct rpc_task *t;
110
111         INIT_LIST_HEAD(&task->u.tk_wait.links);
112         q = &queue->tasks[queue_priority];
113         if (unlikely(queue_priority > queue->maxpriority))
114                 q = &queue->tasks[queue->maxpriority];
115         list_for_each_entry(t, q, u.tk_wait.list) {
116                 if (t->tk_owner == task->tk_owner) {
117                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118                         return;
119                 }
120         }
121         list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125  * Add new request to wait queue.
126  *
127  * Swapper tasks always get inserted at the head of the queue.
128  * This should avoid many nasty memory deadlocks and hopefully
129  * improve overall performance.
130  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131  */
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133                 struct rpc_task *task,
134                 unsigned char queue_priority)
135 {
136         BUG_ON (RPC_IS_QUEUED(task));
137
138         if (RPC_IS_PRIORITY(queue))
139                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140         else if (RPC_IS_SWAPPER(task))
141                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142         else
143                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144         task->tk_waitqueue = queue;
145         queue->qlen++;
146         rpc_set_queued(task);
147
148         dprintk("RPC: %5u added to queue %p \"%s\"\n",
149                         task->tk_pid, queue, rpc_qname(queue));
150 }
151
152 /*
153  * Remove request from a priority queue.
154  */
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
156 {
157         struct rpc_task *t;
158
159         if (!list_empty(&task->u.tk_wait.links)) {
160                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
163         }
164 }
165
166 /*
167  * Remove request from queue.
168  * Note: must be called with spin lock held.
169  */
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
171 {
172         __rpc_disable_timer(queue, task);
173         if (RPC_IS_PRIORITY(queue))
174                 __rpc_remove_wait_queue_priority(task);
175         list_del(&task->u.tk_wait.list);
176         queue->qlen--;
177         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178                         task->tk_pid, queue, rpc_qname(queue));
179 }
180
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
182 {
183         queue->priority = priority;
184         queue->count = 1 << (priority * 2);
185 }
186
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
188 {
189         queue->owner = pid;
190         queue->nr = RPC_BATCH_COUNT;
191 }
192
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
194 {
195         rpc_set_waitqueue_priority(queue, queue->maxpriority);
196         rpc_set_waitqueue_owner(queue, 0);
197 }
198
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
200 {
201         int i;
202
203         spin_lock_init(&queue->lock);
204         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205                 INIT_LIST_HEAD(&queue->tasks[i]);
206         queue->maxpriority = nr_queues - 1;
207         rpc_reset_waitqueue_priority(queue);
208         queue->qlen = 0;
209         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210         INIT_LIST_HEAD(&queue->timer_list.list);
211         rpc_assign_waitqueue_name(queue, qname);
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222         __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228         del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         freezable_schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255         trace_rpc_task_begin(task->tk_client, task, NULL);
256
257         rpc_task_set_debuginfo(task);
258         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259 }
260
261 /*
262  * Mark an RPC call as having completed by clearing the 'active' bit
263  * and then waking up all tasks that were sleeping.
264  */
265 static int rpc_complete_task(struct rpc_task *task)
266 {
267         void *m = &task->tk_runstate;
268         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270         unsigned long flags;
271         int ret;
272
273         trace_rpc_task_complete(task->tk_client, task, NULL);
274
275         spin_lock_irqsave(&wq->lock, flags);
276         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277         ret = atomic_dec_and_test(&task->tk_count);
278         if (waitqueue_active(wq))
279                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280         spin_unlock_irqrestore(&wq->lock, flags);
281         return ret;
282 }
283
284 /*
285  * Allow callers to wait for completion of an RPC call
286  *
287  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288  * to enforce taking of the wq->lock and hence avoid races with
289  * rpc_complete_task().
290  */
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
292 {
293         if (action == NULL)
294                 action = rpc_wait_bit_killable;
295         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296                         action, TASK_KILLABLE);
297 }
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
299
300 /*
301  * Make an RPC task runnable.
302  *
303  * Note: If the task is ASYNC, and is being made runnable after sitting on an
304  * rpc_wait_queue, this must be called with the queue spinlock held to protect
305  * the wait queue operation.
306  */
307 static void rpc_make_runnable(struct rpc_task *task)
308 {
309         rpc_clear_queued(task);
310         if (rpc_test_and_set_running(task))
311                 return;
312         if (RPC_IS_ASYNC(task)) {
313                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
314                 queue_work(rpciod_workqueue, &task->u.tk_work);
315         } else
316                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
317 }
318
319 /*
320  * Prepare for sleeping on a wait queue.
321  * By always appending tasks to the list we ensure FIFO behavior.
322  * NB: An RPC task will only receive interrupt-driven events as long
323  * as it's on a wait queue.
324  */
325 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
326                 struct rpc_task *task,
327                 rpc_action action,
328                 unsigned char queue_priority)
329 {
330         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
331                         task->tk_pid, rpc_qname(q), jiffies);
332
333         trace_rpc_task_sleep(task->tk_client, task, q);
334
335         __rpc_add_wait_queue(q, task, queue_priority);
336
337         BUG_ON(task->tk_callback != NULL);
338         task->tk_callback = action;
339         __rpc_add_timer(q, task);
340 }
341
342 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
343                                 rpc_action action)
344 {
345         /* We shouldn't ever put an inactive task to sleep */
346         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
347         if (!RPC_IS_ACTIVATED(task)) {
348                 task->tk_status = -EIO;
349                 rpc_put_task_async(task);
350                 return;
351         }
352
353         /*
354          * Protect the queue operations.
355          */
356         spin_lock_bh(&q->lock);
357         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
358         spin_unlock_bh(&q->lock);
359 }
360 EXPORT_SYMBOL_GPL(rpc_sleep_on);
361
362 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
363                 rpc_action action, int priority)
364 {
365         /* We shouldn't ever put an inactive task to sleep */
366         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
367         if (!RPC_IS_ACTIVATED(task)) {
368                 task->tk_status = -EIO;
369                 rpc_put_task_async(task);
370                 return;
371         }
372
373         /*
374          * Protect the queue operations.
375          */
376         spin_lock_bh(&q->lock);
377         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
378         spin_unlock_bh(&q->lock);
379 }
380
381 /**
382  * __rpc_do_wake_up_task - wake up a single rpc_task
383  * @queue: wait queue
384  * @task: task to be woken up
385  *
386  * Caller must hold queue->lock, and have cleared the task queued flag.
387  */
388 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
389 {
390         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
391                         task->tk_pid, jiffies);
392
393         /* Has the task been executed yet? If not, we cannot wake it up! */
394         if (!RPC_IS_ACTIVATED(task)) {
395                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
396                 return;
397         }
398
399         trace_rpc_task_wakeup(task->tk_client, task, queue);
400
401         __rpc_remove_wait_queue(queue, task);
402
403         rpc_make_runnable(task);
404
405         dprintk("RPC:       __rpc_wake_up_task done\n");
406 }
407
408 /*
409  * Wake up a queued task while the queue lock is being held
410  */
411 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
412 {
413         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
414                 __rpc_do_wake_up_task(queue, task);
415 }
416
417 /*
418  * Tests whether rpc queue is empty
419  */
420 int rpc_queue_empty(struct rpc_wait_queue *queue)
421 {
422         int res;
423
424         spin_lock_bh(&queue->lock);
425         res = queue->qlen;
426         spin_unlock_bh(&queue->lock);
427         return res == 0;
428 }
429 EXPORT_SYMBOL_GPL(rpc_queue_empty);
430
431 /*
432  * Wake up a task on a specific queue
433  */
434 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
435 {
436         spin_lock_bh(&queue->lock);
437         rpc_wake_up_task_queue_locked(queue, task);
438         spin_unlock_bh(&queue->lock);
439 }
440 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
441
442 /*
443  * Wake up the next task on a priority queue.
444  */
445 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
446 {
447         struct list_head *q;
448         struct rpc_task *task;
449
450         /*
451          * Service a batch of tasks from a single owner.
452          */
453         q = &queue->tasks[queue->priority];
454         if (!list_empty(q)) {
455                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
456                 if (queue->owner == task->tk_owner) {
457                         if (--queue->nr)
458                                 goto out;
459                         list_move_tail(&task->u.tk_wait.list, q);
460                 }
461                 /*
462                  * Check if we need to switch queues.
463                  */
464                 if (--queue->count)
465                         goto new_owner;
466         }
467
468         /*
469          * Service the next queue.
470          */
471         do {
472                 if (q == &queue->tasks[0])
473                         q = &queue->tasks[queue->maxpriority];
474                 else
475                         q = q - 1;
476                 if (!list_empty(q)) {
477                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
478                         goto new_queue;
479                 }
480         } while (q != &queue->tasks[queue->priority]);
481
482         rpc_reset_waitqueue_priority(queue);
483         return NULL;
484
485 new_queue:
486         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
487 new_owner:
488         rpc_set_waitqueue_owner(queue, task->tk_owner);
489 out:
490         return task;
491 }
492
493 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
494 {
495         if (RPC_IS_PRIORITY(queue))
496                 return __rpc_find_next_queued_priority(queue);
497         if (!list_empty(&queue->tasks[0]))
498                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
499         return NULL;
500 }
501
502 /*
503  * Wake up the first task on the wait queue.
504  */
505 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
506                 bool (*func)(struct rpc_task *, void *), void *data)
507 {
508         struct rpc_task *task = NULL;
509
510         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
511                         queue, rpc_qname(queue));
512         spin_lock_bh(&queue->lock);
513         task = __rpc_find_next_queued(queue);
514         if (task != NULL) {
515                 if (func(task, data))
516                         rpc_wake_up_task_queue_locked(queue, task);
517                 else
518                         task = NULL;
519         }
520         spin_unlock_bh(&queue->lock);
521
522         return task;
523 }
524 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
525
526 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
527 {
528         return true;
529 }
530
531 /*
532  * Wake up the next task on the wait queue.
533 */
534 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
535 {
536         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
537 }
538 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
539
540 /**
541  * rpc_wake_up - wake up all rpc_tasks
542  * @queue: rpc_wait_queue on which the tasks are sleeping
543  *
544  * Grabs queue->lock
545  */
546 void rpc_wake_up(struct rpc_wait_queue *queue)
547 {
548         struct list_head *head;
549
550         spin_lock_bh(&queue->lock);
551         head = &queue->tasks[queue->maxpriority];
552         for (;;) {
553                 while (!list_empty(head)) {
554                         struct rpc_task *task;
555                         task = list_first_entry(head,
556                                         struct rpc_task,
557                                         u.tk_wait.list);
558                         rpc_wake_up_task_queue_locked(queue, task);
559                 }
560                 if (head == &queue->tasks[0])
561                         break;
562                 head--;
563         }
564         spin_unlock_bh(&queue->lock);
565 }
566 EXPORT_SYMBOL_GPL(rpc_wake_up);
567
568 /**
569  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
570  * @queue: rpc_wait_queue on which the tasks are sleeping
571  * @status: status value to set
572  *
573  * Grabs queue->lock
574  */
575 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
576 {
577         struct list_head *head;
578
579         spin_lock_bh(&queue->lock);
580         head = &queue->tasks[queue->maxpriority];
581         for (;;) {
582                 while (!list_empty(head)) {
583                         struct rpc_task *task;
584                         task = list_first_entry(head,
585                                         struct rpc_task,
586                                         u.tk_wait.list);
587                         task->tk_status = status;
588                         rpc_wake_up_task_queue_locked(queue, task);
589                 }
590                 if (head == &queue->tasks[0])
591                         break;
592                 head--;
593         }
594         spin_unlock_bh(&queue->lock);
595 }
596 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
597
598 static void __rpc_queue_timer_fn(unsigned long ptr)
599 {
600         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
601         struct rpc_task *task, *n;
602         unsigned long expires, now, timeo;
603
604         spin_lock(&queue->lock);
605         expires = now = jiffies;
606         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
607                 timeo = task->u.tk_wait.expires;
608                 if (time_after_eq(now, timeo)) {
609                         dprintk("RPC: %5u timeout\n", task->tk_pid);
610                         task->tk_status = -ETIMEDOUT;
611                         rpc_wake_up_task_queue_locked(queue, task);
612                         continue;
613                 }
614                 if (expires == now || time_after(expires, timeo))
615                         expires = timeo;
616         }
617         if (!list_empty(&queue->timer_list.list))
618                 rpc_set_queue_timer(queue, expires);
619         spin_unlock(&queue->lock);
620 }
621
622 static void __rpc_atrun(struct rpc_task *task)
623 {
624         task->tk_status = 0;
625 }
626
627 /*
628  * Run a task at a later time
629  */
630 void rpc_delay(struct rpc_task *task, unsigned long delay)
631 {
632         task->tk_timeout = delay;
633         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
634 }
635 EXPORT_SYMBOL_GPL(rpc_delay);
636
637 /*
638  * Helper to call task->tk_ops->rpc_call_prepare
639  */
640 void rpc_prepare_task(struct rpc_task *task)
641 {
642         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
643 }
644
645 static void
646 rpc_init_task_statistics(struct rpc_task *task)
647 {
648         /* Initialize retry counters */
649         task->tk_garb_retry = 2;
650         task->tk_cred_retry = 2;
651         task->tk_rebind_retry = 2;
652
653         /* starting timestamp */
654         task->tk_start = ktime_get();
655 }
656
657 static void
658 rpc_reset_task_statistics(struct rpc_task *task)
659 {
660         task->tk_timeouts = 0;
661         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
662
663         rpc_init_task_statistics(task);
664 }
665
666 /*
667  * Helper that calls task->tk_ops->rpc_call_done if it exists
668  */
669 void rpc_exit_task(struct rpc_task *task)
670 {
671         task->tk_action = NULL;
672         if (task->tk_ops->rpc_call_done != NULL) {
673                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
674                 if (task->tk_action != NULL) {
675                         WARN_ON(RPC_ASSASSINATED(task));
676                         /* Always release the RPC slot and buffer memory */
677                         xprt_release(task);
678                         rpc_reset_task_statistics(task);
679                 }
680         }
681 }
682
683 void rpc_exit(struct rpc_task *task, int status)
684 {
685         task->tk_status = status;
686         task->tk_action = rpc_exit_task;
687         if (RPC_IS_QUEUED(task))
688                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
689 }
690 EXPORT_SYMBOL_GPL(rpc_exit);
691
692 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
693 {
694         if (ops->rpc_release != NULL)
695                 ops->rpc_release(calldata);
696 }
697
698 /*
699  * This is the RPC `scheduler' (or rather, the finite state machine).
700  */
701 static void __rpc_execute(struct rpc_task *task)
702 {
703         struct rpc_wait_queue *queue;
704         int task_is_async = RPC_IS_ASYNC(task);
705         int status = 0;
706
707         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
708                         task->tk_pid, task->tk_flags);
709
710         BUG_ON(RPC_IS_QUEUED(task));
711
712         for (;;) {
713                 void (*do_action)(struct rpc_task *);
714
715                 /*
716                  * Execute any pending callback first.
717                  */
718                 do_action = task->tk_callback;
719                 task->tk_callback = NULL;
720                 if (do_action == NULL) {
721                         /*
722                          * Perform the next FSM step.
723                          * tk_action may be NULL if the task has been killed.
724                          * In particular, note that rpc_killall_tasks may
725                          * do this at any time, so beware when dereferencing.
726                          */
727                         do_action = task->tk_action;
728                         if (do_action == NULL)
729                                 break;
730                 }
731                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
732                 do_action(task);
733
734                 /*
735                  * Lockless check for whether task is sleeping or not.
736                  */
737                 if (!RPC_IS_QUEUED(task))
738                         continue;
739                 /*
740                  * The queue->lock protects against races with
741                  * rpc_make_runnable().
742                  *
743                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
744                  * rpc_task, rpc_make_runnable() can assign it to a
745                  * different workqueue. We therefore cannot assume that the
746                  * rpc_task pointer may still be dereferenced.
747                  */
748                 queue = task->tk_waitqueue;
749                 spin_lock_bh(&queue->lock);
750                 if (!RPC_IS_QUEUED(task)) {
751                         spin_unlock_bh(&queue->lock);
752                         continue;
753                 }
754                 rpc_clear_running(task);
755                 spin_unlock_bh(&queue->lock);
756                 if (task_is_async)
757                         return;
758
759                 /* sync task: sleep here */
760                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
761                 status = out_of_line_wait_on_bit(&task->tk_runstate,
762                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
763                                 TASK_KILLABLE);
764                 if (status == -ERESTARTSYS) {
765                         /*
766                          * When a sync task receives a signal, it exits with
767                          * -ERESTARTSYS. In order to catch any callbacks that
768                          * clean up after sleeping on some queue, we don't
769                          * break the loop here, but go around once more.
770                          */
771                         dprintk("RPC: %5u got signal\n", task->tk_pid);
772                         task->tk_flags |= RPC_TASK_KILLED;
773                         rpc_exit(task, -ERESTARTSYS);
774                 }
775                 rpc_set_running(task);
776                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
777         }
778
779         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
780                         task->tk_status);
781         /* Release all resources associated with the task */
782         rpc_release_task(task);
783 }
784
785 /*
786  * User-visible entry point to the scheduler.
787  *
788  * This may be called recursively if e.g. an async NFS task updates
789  * the attributes and finds that dirty pages must be flushed.
790  * NOTE: Upon exit of this function the task is guaranteed to be
791  *       released. In particular note that tk_release() will have
792  *       been called, so your task memory may have been freed.
793  */
794 void rpc_execute(struct rpc_task *task)
795 {
796         rpc_set_active(task);
797         rpc_make_runnable(task);
798         if (!RPC_IS_ASYNC(task))
799                 __rpc_execute(task);
800 }
801
802 static void rpc_async_schedule(struct work_struct *work)
803 {
804         current->flags |= PF_FSTRANS;
805         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
806         current->flags &= ~PF_FSTRANS;
807 }
808
809 /**
810  * rpc_malloc - allocate an RPC buffer
811  * @task: RPC task that will use this buffer
812  * @size: requested byte size
813  *
814  * To prevent rpciod from hanging, this allocator never sleeps,
815  * returning NULL if the request cannot be serviced immediately.
816  * The caller can arrange to sleep in a way that is safe for rpciod.
817  *
818  * Most requests are 'small' (under 2KiB) and can be serviced from a
819  * mempool, ensuring that NFS reads and writes can always proceed,
820  * and that there is good locality of reference for these buffers.
821  *
822  * In order to avoid memory starvation triggering more writebacks of
823  * NFS requests, we avoid using GFP_KERNEL.
824  */
825 void *rpc_malloc(struct rpc_task *task, size_t size)
826 {
827         struct rpc_buffer *buf;
828         gfp_t gfp = GFP_NOWAIT;
829
830         if (RPC_IS_SWAPPER(task))
831                 gfp |= __GFP_MEMALLOC;
832
833         size += sizeof(struct rpc_buffer);
834         if (size <= RPC_BUFFER_MAXSIZE)
835                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
836         else
837                 buf = kmalloc(size, gfp);
838
839         if (!buf)
840                 return NULL;
841
842         buf->len = size;
843         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
844                         task->tk_pid, size, buf);
845         return &buf->data;
846 }
847 EXPORT_SYMBOL_GPL(rpc_malloc);
848
849 /**
850  * rpc_free - free buffer allocated via rpc_malloc
851  * @buffer: buffer to free
852  *
853  */
854 void rpc_free(void *buffer)
855 {
856         size_t size;
857         struct rpc_buffer *buf;
858
859         if (!buffer)
860                 return;
861
862         buf = container_of(buffer, struct rpc_buffer, data);
863         size = buf->len;
864
865         dprintk("RPC:       freeing buffer of size %zu at %p\n",
866                         size, buf);
867
868         if (size <= RPC_BUFFER_MAXSIZE)
869                 mempool_free(buf, rpc_buffer_mempool);
870         else
871                 kfree(buf);
872 }
873 EXPORT_SYMBOL_GPL(rpc_free);
874
875 /*
876  * Creation and deletion of RPC task structures
877  */
878 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
879 {
880         memset(task, 0, sizeof(*task));
881         atomic_set(&task->tk_count, 1);
882         task->tk_flags  = task_setup_data->flags;
883         task->tk_ops = task_setup_data->callback_ops;
884         task->tk_calldata = task_setup_data->callback_data;
885         INIT_LIST_HEAD(&task->tk_task);
886
887         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
888         task->tk_owner = current->tgid;
889
890         /* Initialize workqueue for async tasks */
891         task->tk_workqueue = task_setup_data->workqueue;
892
893         if (task->tk_ops->rpc_call_prepare != NULL)
894                 task->tk_action = rpc_prepare_task;
895
896         rpc_init_task_statistics(task);
897
898         dprintk("RPC:       new task initialized, procpid %u\n",
899                                 task_pid_nr(current));
900 }
901
902 static struct rpc_task *
903 rpc_alloc_task(void)
904 {
905         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
906 }
907
908 /*
909  * Create a new task for the specified client.
910  */
911 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
912 {
913         struct rpc_task *task = setup_data->task;
914         unsigned short flags = 0;
915
916         if (task == NULL) {
917                 task = rpc_alloc_task();
918                 if (task == NULL) {
919                         rpc_release_calldata(setup_data->callback_ops,
920                                         setup_data->callback_data);
921                         return ERR_PTR(-ENOMEM);
922                 }
923                 flags = RPC_TASK_DYNAMIC;
924         }
925
926         rpc_init_task(task, setup_data);
927         task->tk_flags |= flags;
928         dprintk("RPC:       allocated task %p\n", task);
929         return task;
930 }
931
932 static void rpc_free_task(struct rpc_task *task)
933 {
934         const struct rpc_call_ops *tk_ops = task->tk_ops;
935         void *calldata = task->tk_calldata;
936
937         if (task->tk_flags & RPC_TASK_DYNAMIC) {
938                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
939                 mempool_free(task, rpc_task_mempool);
940         }
941         rpc_release_calldata(tk_ops, calldata);
942 }
943
944 static void rpc_async_release(struct work_struct *work)
945 {
946         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
947 }
948
949 static void rpc_release_resources_task(struct rpc_task *task)
950 {
951         if (task->tk_rqstp)
952                 xprt_release(task);
953         if (task->tk_msg.rpc_cred) {
954                 put_rpccred(task->tk_msg.rpc_cred);
955                 task->tk_msg.rpc_cred = NULL;
956         }
957         rpc_task_release_client(task);
958 }
959
960 static void rpc_final_put_task(struct rpc_task *task,
961                 struct workqueue_struct *q)
962 {
963         if (q != NULL) {
964                 INIT_WORK(&task->u.tk_work, rpc_async_release);
965                 queue_work(q, &task->u.tk_work);
966         } else
967                 rpc_free_task(task);
968 }
969
970 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
971 {
972         if (atomic_dec_and_test(&task->tk_count)) {
973                 rpc_release_resources_task(task);
974                 rpc_final_put_task(task, q);
975         }
976 }
977
978 void rpc_put_task(struct rpc_task *task)
979 {
980         rpc_do_put_task(task, NULL);
981 }
982 EXPORT_SYMBOL_GPL(rpc_put_task);
983
984 void rpc_put_task_async(struct rpc_task *task)
985 {
986         rpc_do_put_task(task, task->tk_workqueue);
987 }
988 EXPORT_SYMBOL_GPL(rpc_put_task_async);
989
990 static void rpc_release_task(struct rpc_task *task)
991 {
992         dprintk("RPC: %5u release task\n", task->tk_pid);
993
994         BUG_ON (RPC_IS_QUEUED(task));
995
996         rpc_release_resources_task(task);
997
998         /*
999          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1000          * so it should be safe to use task->tk_count as a test for whether
1001          * or not any other processes still hold references to our rpc_task.
1002          */
1003         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1004                 /* Wake up anyone who may be waiting for task completion */
1005                 if (!rpc_complete_task(task))
1006                         return;
1007         } else {
1008                 if (!atomic_dec_and_test(&task->tk_count))
1009                         return;
1010         }
1011         rpc_final_put_task(task, task->tk_workqueue);
1012 }
1013
1014 int rpciod_up(void)
1015 {
1016         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1017 }
1018
1019 void rpciod_down(void)
1020 {
1021         module_put(THIS_MODULE);
1022 }
1023
1024 /*
1025  * Start up the rpciod workqueue.
1026  */
1027 static int rpciod_start(void)
1028 {
1029         struct workqueue_struct *wq;
1030
1031         /*
1032          * Create the rpciod thread and wait for it to start.
1033          */
1034         dprintk("RPC:       creating workqueue rpciod\n");
1035         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1036         rpciod_workqueue = wq;
1037         return rpciod_workqueue != NULL;
1038 }
1039
1040 static void rpciod_stop(void)
1041 {
1042         struct workqueue_struct *wq = NULL;
1043
1044         if (rpciod_workqueue == NULL)
1045                 return;
1046         dprintk("RPC:       destroying workqueue rpciod\n");
1047
1048         wq = rpciod_workqueue;
1049         rpciod_workqueue = NULL;
1050         destroy_workqueue(wq);
1051 }
1052
1053 void
1054 rpc_destroy_mempool(void)
1055 {
1056         rpciod_stop();
1057         if (rpc_buffer_mempool)
1058                 mempool_destroy(rpc_buffer_mempool);
1059         if (rpc_task_mempool)
1060                 mempool_destroy(rpc_task_mempool);
1061         if (rpc_task_slabp)
1062                 kmem_cache_destroy(rpc_task_slabp);
1063         if (rpc_buffer_slabp)
1064                 kmem_cache_destroy(rpc_buffer_slabp);
1065         rpc_destroy_wait_queue(&delay_queue);
1066 }
1067
1068 int
1069 rpc_init_mempool(void)
1070 {
1071         /*
1072          * The following is not strictly a mempool initialisation,
1073          * but there is no harm in doing it here
1074          */
1075         rpc_init_wait_queue(&delay_queue, "delayq");
1076         if (!rpciod_start())
1077                 goto err_nomem;
1078
1079         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1080                                              sizeof(struct rpc_task),
1081                                              0, SLAB_HWCACHE_ALIGN,
1082                                              NULL);
1083         if (!rpc_task_slabp)
1084                 goto err_nomem;
1085         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1086                                              RPC_BUFFER_MAXSIZE,
1087                                              0, SLAB_HWCACHE_ALIGN,
1088                                              NULL);
1089         if (!rpc_buffer_slabp)
1090                 goto err_nomem;
1091         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1092                                                     rpc_task_slabp);
1093         if (!rpc_task_mempool)
1094                 goto err_nomem;
1095         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1096                                                       rpc_buffer_slabp);
1097         if (!rpc_buffer_mempool)
1098                 goto err_nomem;
1099         return 0;
1100 err_nomem:
1101         rpc_destroy_mempool();
1102         return -ENOMEM;
1103 }