]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/inode.c
btrfs: don't loop on large offsets in readdir
[linux-imx.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
53 #include "xattr.h"
54 #include "tree-log.h"
55 #include "volumes.h"
56 #include "compression.h"
57 #include "locking.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
60 #include "backref.h"
61 #include "hash.h"
62
63 struct btrfs_iget_args {
64         u64 ino;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_root *root, struct inode *inode,
130                                 u64 start, size_t size, size_t compressed_size,
131                                 int compress_type,
132                                 struct page **compressed_pages)
133 {
134         struct btrfs_key key;
135         struct btrfs_path *path;
136         struct extent_buffer *leaf;
137         struct page *page = NULL;
138         char *kaddr;
139         unsigned long ptr;
140         struct btrfs_file_extent_item *ei;
141         int err = 0;
142         int ret;
143         size_t cur_size = size;
144         size_t datasize;
145         unsigned long offset;
146
147         if (compressed_size && compressed_pages)
148                 cur_size = compressed_size;
149
150         path = btrfs_alloc_path();
151         if (!path)
152                 return -ENOMEM;
153
154         path->leave_spinning = 1;
155
156         key.objectid = btrfs_ino(inode);
157         key.offset = start;
158         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159         datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161         inode_add_bytes(inode, size);
162         ret = btrfs_insert_empty_item(trans, root, path, &key,
163                                       datasize);
164         if (ret) {
165                 err = ret;
166                 goto fail;
167         }
168         leaf = path->nodes[0];
169         ei = btrfs_item_ptr(leaf, path->slots[0],
170                             struct btrfs_file_extent_item);
171         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173         btrfs_set_file_extent_encryption(leaf, ei, 0);
174         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176         ptr = btrfs_file_extent_inline_start(ei);
177
178         if (compress_type != BTRFS_COMPRESS_NONE) {
179                 struct page *cpage;
180                 int i = 0;
181                 while (compressed_size > 0) {
182                         cpage = compressed_pages[i];
183                         cur_size = min_t(unsigned long, compressed_size,
184                                        PAGE_CACHE_SIZE);
185
186                         kaddr = kmap_atomic(cpage);
187                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
188                         kunmap_atomic(kaddr);
189
190                         i++;
191                         ptr += cur_size;
192                         compressed_size -= cur_size;
193                 }
194                 btrfs_set_file_extent_compression(leaf, ei,
195                                                   compress_type);
196         } else {
197                 page = find_get_page(inode->i_mapping,
198                                      start >> PAGE_CACHE_SHIFT);
199                 btrfs_set_file_extent_compression(leaf, ei, 0);
200                 kaddr = kmap_atomic(page);
201                 offset = start & (PAGE_CACHE_SIZE - 1);
202                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
203                 kunmap_atomic(kaddr);
204                 page_cache_release(page);
205         }
206         btrfs_mark_buffer_dirty(leaf);
207         btrfs_free_path(path);
208
209         /*
210          * we're an inline extent, so nobody can
211          * extend the file past i_size without locking
212          * a page we already have locked.
213          *
214          * We must do any isize and inode updates
215          * before we unlock the pages.  Otherwise we
216          * could end up racing with unlink.
217          */
218         BTRFS_I(inode)->disk_i_size = inode->i_size;
219         ret = btrfs_update_inode(trans, root, inode);
220
221         return ret;
222 fail:
223         btrfs_free_path(path);
224         return err;
225 }
226
227
228 /*
229  * conditionally insert an inline extent into the file.  This
230  * does the checks required to make sure the data is small enough
231  * to fit as an inline extent.
232  */
233 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
234                                  struct btrfs_root *root,
235                                  struct inode *inode, u64 start, u64 end,
236                                  size_t compressed_size, int compress_type,
237                                  struct page **compressed_pages)
238 {
239         u64 isize = i_size_read(inode);
240         u64 actual_end = min(end + 1, isize);
241         u64 inline_len = actual_end - start;
242         u64 aligned_end = ALIGN(end, root->sectorsize);
243         u64 data_len = inline_len;
244         int ret;
245
246         if (compressed_size)
247                 data_len = compressed_size;
248
249         if (start > 0 ||
250             actual_end >= PAGE_CACHE_SIZE ||
251             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252             (!compressed_size &&
253             (actual_end & (root->sectorsize - 1)) == 0) ||
254             end + 1 < isize ||
255             data_len > root->fs_info->max_inline) {
256                 return 1;
257         }
258
259         ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
260         if (ret)
261                 return ret;
262
263         if (isize > actual_end)
264                 inline_len = min_t(u64, isize, actual_end);
265         ret = insert_inline_extent(trans, root, inode, start,
266                                    inline_len, compressed_size,
267                                    compress_type, compressed_pages);
268         if (ret && ret != -ENOSPC) {
269                 btrfs_abort_transaction(trans, root, ret);
270                 return ret;
271         } else if (ret == -ENOSPC) {
272                 return 1;
273         }
274
275         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
276         btrfs_delalloc_release_metadata(inode, end + 1 - start);
277         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
278         return 0;
279 }
280
281 struct async_extent {
282         u64 start;
283         u64 ram_size;
284         u64 compressed_size;
285         struct page **pages;
286         unsigned long nr_pages;
287         int compress_type;
288         struct list_head list;
289 };
290
291 struct async_cow {
292         struct inode *inode;
293         struct btrfs_root *root;
294         struct page *locked_page;
295         u64 start;
296         u64 end;
297         struct list_head extents;
298         struct btrfs_work work;
299 };
300
301 static noinline int add_async_extent(struct async_cow *cow,
302                                      u64 start, u64 ram_size,
303                                      u64 compressed_size,
304                                      struct page **pages,
305                                      unsigned long nr_pages,
306                                      int compress_type)
307 {
308         struct async_extent *async_extent;
309
310         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
311         BUG_ON(!async_extent); /* -ENOMEM */
312         async_extent->start = start;
313         async_extent->ram_size = ram_size;
314         async_extent->compressed_size = compressed_size;
315         async_extent->pages = pages;
316         async_extent->nr_pages = nr_pages;
317         async_extent->compress_type = compress_type;
318         list_add_tail(&async_extent->list, &cow->extents);
319         return 0;
320 }
321
322 /*
323  * we create compressed extents in two phases.  The first
324  * phase compresses a range of pages that have already been
325  * locked (both pages and state bits are locked).
326  *
327  * This is done inside an ordered work queue, and the compression
328  * is spread across many cpus.  The actual IO submission is step
329  * two, and the ordered work queue takes care of making sure that
330  * happens in the same order things were put onto the queue by
331  * writepages and friends.
332  *
333  * If this code finds it can't get good compression, it puts an
334  * entry onto the work queue to write the uncompressed bytes.  This
335  * makes sure that both compressed inodes and uncompressed inodes
336  * are written in the same order that the flusher thread sent them
337  * down.
338  */
339 static noinline int compress_file_range(struct inode *inode,
340                                         struct page *locked_page,
341                                         u64 start, u64 end,
342                                         struct async_cow *async_cow,
343                                         int *num_added)
344 {
345         struct btrfs_root *root = BTRFS_I(inode)->root;
346         struct btrfs_trans_handle *trans;
347         u64 num_bytes;
348         u64 blocksize = root->sectorsize;
349         u64 actual_end;
350         u64 isize = i_size_read(inode);
351         int ret = 0;
352         struct page **pages = NULL;
353         unsigned long nr_pages;
354         unsigned long nr_pages_ret = 0;
355         unsigned long total_compressed = 0;
356         unsigned long total_in = 0;
357         unsigned long max_compressed = 128 * 1024;
358         unsigned long max_uncompressed = 128 * 1024;
359         int i;
360         int will_compress;
361         int compress_type = root->fs_info->compress_type;
362         int redirty = 0;
363
364         /* if this is a small write inside eof, kick off a defrag */
365         if ((end - start + 1) < 16 * 1024 &&
366             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
367                 btrfs_add_inode_defrag(NULL, inode);
368
369         actual_end = min_t(u64, isize, end + 1);
370 again:
371         will_compress = 0;
372         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
374
375         /*
376          * we don't want to send crud past the end of i_size through
377          * compression, that's just a waste of CPU time.  So, if the
378          * end of the file is before the start of our current
379          * requested range of bytes, we bail out to the uncompressed
380          * cleanup code that can deal with all of this.
381          *
382          * It isn't really the fastest way to fix things, but this is a
383          * very uncommon corner.
384          */
385         if (actual_end <= start)
386                 goto cleanup_and_bail_uncompressed;
387
388         total_compressed = actual_end - start;
389
390         /* we want to make sure that amount of ram required to uncompress
391          * an extent is reasonable, so we limit the total size in ram
392          * of a compressed extent to 128k.  This is a crucial number
393          * because it also controls how easily we can spread reads across
394          * cpus for decompression.
395          *
396          * We also want to make sure the amount of IO required to do
397          * a random read is reasonably small, so we limit the size of
398          * a compressed extent to 128k.
399          */
400         total_compressed = min(total_compressed, max_uncompressed);
401         num_bytes = ALIGN(end - start + 1, blocksize);
402         num_bytes = max(blocksize,  num_bytes);
403         total_in = 0;
404         ret = 0;
405
406         /*
407          * we do compression for mount -o compress and when the
408          * inode has not been flagged as nocompress.  This flag can
409          * change at any time if we discover bad compression ratios.
410          */
411         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
412             (btrfs_test_opt(root, COMPRESS) ||
413              (BTRFS_I(inode)->force_compress) ||
414              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
415                 WARN_ON(pages);
416                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
417                 if (!pages) {
418                         /* just bail out to the uncompressed code */
419                         goto cont;
420                 }
421
422                 if (BTRFS_I(inode)->force_compress)
423                         compress_type = BTRFS_I(inode)->force_compress;
424
425                 /*
426                  * we need to call clear_page_dirty_for_io on each
427                  * page in the range.  Otherwise applications with the file
428                  * mmap'd can wander in and change the page contents while
429                  * we are compressing them.
430                  *
431                  * If the compression fails for any reason, we set the pages
432                  * dirty again later on.
433                  */
434                 extent_range_clear_dirty_for_io(inode, start, end);
435                 redirty = 1;
436                 ret = btrfs_compress_pages(compress_type,
437                                            inode->i_mapping, start,
438                                            total_compressed, pages,
439                                            nr_pages, &nr_pages_ret,
440                                            &total_in,
441                                            &total_compressed,
442                                            max_compressed);
443
444                 if (!ret) {
445                         unsigned long offset = total_compressed &
446                                 (PAGE_CACHE_SIZE - 1);
447                         struct page *page = pages[nr_pages_ret - 1];
448                         char *kaddr;
449
450                         /* zero the tail end of the last page, we might be
451                          * sending it down to disk
452                          */
453                         if (offset) {
454                                 kaddr = kmap_atomic(page);
455                                 memset(kaddr + offset, 0,
456                                        PAGE_CACHE_SIZE - offset);
457                                 kunmap_atomic(kaddr);
458                         }
459                         will_compress = 1;
460                 }
461         }
462 cont:
463         if (start == 0) {
464                 trans = btrfs_join_transaction(root);
465                 if (IS_ERR(trans)) {
466                         ret = PTR_ERR(trans);
467                         trans = NULL;
468                         goto cleanup_and_out;
469                 }
470                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
471
472                 /* lets try to make an inline extent */
473                 if (ret || total_in < (actual_end - start)) {
474                         /* we didn't compress the entire range, try
475                          * to make an uncompressed inline extent.
476                          */
477                         ret = cow_file_range_inline(trans, root, inode,
478                                                     start, end, 0, 0, NULL);
479                 } else {
480                         /* try making a compressed inline extent */
481                         ret = cow_file_range_inline(trans, root, inode,
482                                                     start, end,
483                                                     total_compressed,
484                                                     compress_type, pages);
485                 }
486                 if (ret <= 0) {
487                         /*
488                          * inline extent creation worked or returned error,
489                          * we don't need to create any more async work items.
490                          * Unlock and free up our temp pages.
491                          */
492                         extent_clear_unlock_delalloc(inode,
493                              &BTRFS_I(inode)->io_tree,
494                              start, end, NULL,
495                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
496                              EXTENT_CLEAR_DELALLOC |
497                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
498
499                         btrfs_end_transaction(trans, root);
500                         goto free_pages_out;
501                 }
502                 btrfs_end_transaction(trans, root);
503         }
504
505         if (will_compress) {
506                 /*
507                  * we aren't doing an inline extent round the compressed size
508                  * up to a block size boundary so the allocator does sane
509                  * things
510                  */
511                 total_compressed = ALIGN(total_compressed, blocksize);
512
513                 /*
514                  * one last check to make sure the compression is really a
515                  * win, compare the page count read with the blocks on disk
516                  */
517                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518                 if (total_compressed >= total_in) {
519                         will_compress = 0;
520                 } else {
521                         num_bytes = total_in;
522                 }
523         }
524         if (!will_compress && pages) {
525                 /*
526                  * the compression code ran but failed to make things smaller,
527                  * free any pages it allocated and our page pointer array
528                  */
529                 for (i = 0; i < nr_pages_ret; i++) {
530                         WARN_ON(pages[i]->mapping);
531                         page_cache_release(pages[i]);
532                 }
533                 kfree(pages);
534                 pages = NULL;
535                 total_compressed = 0;
536                 nr_pages_ret = 0;
537
538                 /* flag the file so we don't compress in the future */
539                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540                     !(BTRFS_I(inode)->force_compress)) {
541                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
542                 }
543         }
544         if (will_compress) {
545                 *num_added += 1;
546
547                 /* the async work queues will take care of doing actual
548                  * allocation on disk for these compressed pages,
549                  * and will submit them to the elevator.
550                  */
551                 add_async_extent(async_cow, start, num_bytes,
552                                  total_compressed, pages, nr_pages_ret,
553                                  compress_type);
554
555                 if (start + num_bytes < end) {
556                         start += num_bytes;
557                         pages = NULL;
558                         cond_resched();
559                         goto again;
560                 }
561         } else {
562 cleanup_and_bail_uncompressed:
563                 /*
564                  * No compression, but we still need to write the pages in
565                  * the file we've been given so far.  redirty the locked
566                  * page if it corresponds to our extent and set things up
567                  * for the async work queue to run cow_file_range to do
568                  * the normal delalloc dance
569                  */
570                 if (page_offset(locked_page) >= start &&
571                     page_offset(locked_page) <= end) {
572                         __set_page_dirty_nobuffers(locked_page);
573                         /* unlocked later on in the async handlers */
574                 }
575                 if (redirty)
576                         extent_range_redirty_for_io(inode, start, end);
577                 add_async_extent(async_cow, start, end - start + 1,
578                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
579                 *num_added += 1;
580         }
581
582 out:
583         return ret;
584
585 free_pages_out:
586         for (i = 0; i < nr_pages_ret; i++) {
587                 WARN_ON(pages[i]->mapping);
588                 page_cache_release(pages[i]);
589         }
590         kfree(pages);
591
592         goto out;
593
594 cleanup_and_out:
595         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
596                                      start, end, NULL,
597                                      EXTENT_CLEAR_UNLOCK_PAGE |
598                                      EXTENT_CLEAR_DIRTY |
599                                      EXTENT_CLEAR_DELALLOC |
600                                      EXTENT_SET_WRITEBACK |
601                                      EXTENT_END_WRITEBACK);
602         if (!trans || IS_ERR(trans))
603                 btrfs_error(root->fs_info, ret, "Failed to join transaction");
604         else
605                 btrfs_abort_transaction(trans, root, ret);
606         goto free_pages_out;
607 }
608
609 /*
610  * phase two of compressed writeback.  This is the ordered portion
611  * of the code, which only gets called in the order the work was
612  * queued.  We walk all the async extents created by compress_file_range
613  * and send them down to the disk.
614  */
615 static noinline int submit_compressed_extents(struct inode *inode,
616                                               struct async_cow *async_cow)
617 {
618         struct async_extent *async_extent;
619         u64 alloc_hint = 0;
620         struct btrfs_trans_handle *trans;
621         struct btrfs_key ins;
622         struct extent_map *em;
623         struct btrfs_root *root = BTRFS_I(inode)->root;
624         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625         struct extent_io_tree *io_tree;
626         int ret = 0;
627
628         if (list_empty(&async_cow->extents))
629                 return 0;
630
631 again:
632         while (!list_empty(&async_cow->extents)) {
633                 async_extent = list_entry(async_cow->extents.next,
634                                           struct async_extent, list);
635                 list_del(&async_extent->list);
636
637                 io_tree = &BTRFS_I(inode)->io_tree;
638
639 retry:
640                 /* did the compression code fall back to uncompressed IO? */
641                 if (!async_extent->pages) {
642                         int page_started = 0;
643                         unsigned long nr_written = 0;
644
645                         lock_extent(io_tree, async_extent->start,
646                                          async_extent->start +
647                                          async_extent->ram_size - 1);
648
649                         /* allocate blocks */
650                         ret = cow_file_range(inode, async_cow->locked_page,
651                                              async_extent->start,
652                                              async_extent->start +
653                                              async_extent->ram_size - 1,
654                                              &page_started, &nr_written, 0);
655
656                         /* JDM XXX */
657
658                         /*
659                          * if page_started, cow_file_range inserted an
660                          * inline extent and took care of all the unlocking
661                          * and IO for us.  Otherwise, we need to submit
662                          * all those pages down to the drive.
663                          */
664                         if (!page_started && !ret)
665                                 extent_write_locked_range(io_tree,
666                                                   inode, async_extent->start,
667                                                   async_extent->start +
668                                                   async_extent->ram_size - 1,
669                                                   btrfs_get_extent,
670                                                   WB_SYNC_ALL);
671                         else if (ret)
672                                 unlock_page(async_cow->locked_page);
673                         kfree(async_extent);
674                         cond_resched();
675                         continue;
676                 }
677
678                 lock_extent(io_tree, async_extent->start,
679                             async_extent->start + async_extent->ram_size - 1);
680
681                 trans = btrfs_join_transaction(root);
682                 if (IS_ERR(trans)) {
683                         ret = PTR_ERR(trans);
684                 } else {
685                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686                         ret = btrfs_reserve_extent(trans, root,
687                                            async_extent->compressed_size,
688                                            async_extent->compressed_size,
689                                            0, alloc_hint, &ins, 1);
690                         if (ret && ret != -ENOSPC)
691                                 btrfs_abort_transaction(trans, root, ret);
692                         btrfs_end_transaction(trans, root);
693                 }
694
695                 if (ret) {
696                         int i;
697
698                         for (i = 0; i < async_extent->nr_pages; i++) {
699                                 WARN_ON(async_extent->pages[i]->mapping);
700                                 page_cache_release(async_extent->pages[i]);
701                         }
702                         kfree(async_extent->pages);
703                         async_extent->nr_pages = 0;
704                         async_extent->pages = NULL;
705
706                         if (ret == -ENOSPC) {
707                                 unlock_extent(io_tree, async_extent->start,
708                                               async_extent->start +
709                                               async_extent->ram_size - 1);
710                                 goto retry;
711                         }
712                         goto out_free;
713                 }
714
715                 /*
716                  * here we're doing allocation and writeback of the
717                  * compressed pages
718                  */
719                 btrfs_drop_extent_cache(inode, async_extent->start,
720                                         async_extent->start +
721                                         async_extent->ram_size - 1, 0);
722
723                 em = alloc_extent_map();
724                 if (!em) {
725                         ret = -ENOMEM;
726                         goto out_free_reserve;
727                 }
728                 em->start = async_extent->start;
729                 em->len = async_extent->ram_size;
730                 em->orig_start = em->start;
731                 em->mod_start = em->start;
732                 em->mod_len = em->len;
733
734                 em->block_start = ins.objectid;
735                 em->block_len = ins.offset;
736                 em->orig_block_len = ins.offset;
737                 em->ram_bytes = async_extent->ram_size;
738                 em->bdev = root->fs_info->fs_devices->latest_bdev;
739                 em->compress_type = async_extent->compress_type;
740                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
742                 em->generation = -1;
743
744                 while (1) {
745                         write_lock(&em_tree->lock);
746                         ret = add_extent_mapping(em_tree, em, 1);
747                         write_unlock(&em_tree->lock);
748                         if (ret != -EEXIST) {
749                                 free_extent_map(em);
750                                 break;
751                         }
752                         btrfs_drop_extent_cache(inode, async_extent->start,
753                                                 async_extent->start +
754                                                 async_extent->ram_size - 1, 0);
755                 }
756
757                 if (ret)
758                         goto out_free_reserve;
759
760                 ret = btrfs_add_ordered_extent_compress(inode,
761                                                 async_extent->start,
762                                                 ins.objectid,
763                                                 async_extent->ram_size,
764                                                 ins.offset,
765                                                 BTRFS_ORDERED_COMPRESSED,
766                                                 async_extent->compress_type);
767                 if (ret)
768                         goto out_free_reserve;
769
770                 /*
771                  * clear dirty, set writeback and unlock the pages.
772                  */
773                 extent_clear_unlock_delalloc(inode,
774                                 &BTRFS_I(inode)->io_tree,
775                                 async_extent->start,
776                                 async_extent->start +
777                                 async_extent->ram_size - 1,
778                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
779                                 EXTENT_CLEAR_UNLOCK |
780                                 EXTENT_CLEAR_DELALLOC |
781                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
782
783                 ret = btrfs_submit_compressed_write(inode,
784                                     async_extent->start,
785                                     async_extent->ram_size,
786                                     ins.objectid,
787                                     ins.offset, async_extent->pages,
788                                     async_extent->nr_pages);
789                 alloc_hint = ins.objectid + ins.offset;
790                 kfree(async_extent);
791                 if (ret)
792                         goto out;
793                 cond_resched();
794         }
795         ret = 0;
796 out:
797         return ret;
798 out_free_reserve:
799         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
800 out_free:
801         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
802                                      async_extent->start,
803                                      async_extent->start +
804                                      async_extent->ram_size - 1,
805                                      NULL, EXTENT_CLEAR_UNLOCK_PAGE |
806                                      EXTENT_CLEAR_UNLOCK |
807                                      EXTENT_CLEAR_DELALLOC |
808                                      EXTENT_CLEAR_DIRTY |
809                                      EXTENT_SET_WRITEBACK |
810                                      EXTENT_END_WRITEBACK);
811         kfree(async_extent);
812         goto again;
813 }
814
815 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
816                                       u64 num_bytes)
817 {
818         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819         struct extent_map *em;
820         u64 alloc_hint = 0;
821
822         read_lock(&em_tree->lock);
823         em = search_extent_mapping(em_tree, start, num_bytes);
824         if (em) {
825                 /*
826                  * if block start isn't an actual block number then find the
827                  * first block in this inode and use that as a hint.  If that
828                  * block is also bogus then just don't worry about it.
829                  */
830                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
831                         free_extent_map(em);
832                         em = search_extent_mapping(em_tree, 0, 0);
833                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
834                                 alloc_hint = em->block_start;
835                         if (em)
836                                 free_extent_map(em);
837                 } else {
838                         alloc_hint = em->block_start;
839                         free_extent_map(em);
840                 }
841         }
842         read_unlock(&em_tree->lock);
843
844         return alloc_hint;
845 }
846
847 /*
848  * when extent_io.c finds a delayed allocation range in the file,
849  * the call backs end up in this code.  The basic idea is to
850  * allocate extents on disk for the range, and create ordered data structs
851  * in ram to track those extents.
852  *
853  * locked_page is the page that writepage had locked already.  We use
854  * it to make sure we don't do extra locks or unlocks.
855  *
856  * *page_started is set to one if we unlock locked_page and do everything
857  * required to start IO on it.  It may be clean and already done with
858  * IO when we return.
859  */
860 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
861                                      struct inode *inode,
862                                      struct btrfs_root *root,
863                                      struct page *locked_page,
864                                      u64 start, u64 end, int *page_started,
865                                      unsigned long *nr_written,
866                                      int unlock)
867 {
868         u64 alloc_hint = 0;
869         u64 num_bytes;
870         unsigned long ram_size;
871         u64 disk_num_bytes;
872         u64 cur_alloc_size;
873         u64 blocksize = root->sectorsize;
874         struct btrfs_key ins;
875         struct extent_map *em;
876         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877         int ret = 0;
878
879         BUG_ON(btrfs_is_free_space_inode(inode));
880
881         num_bytes = ALIGN(end - start + 1, blocksize);
882         num_bytes = max(blocksize,  num_bytes);
883         disk_num_bytes = num_bytes;
884
885         /* if this is a small write inside eof, kick off defrag */
886         if (num_bytes < 64 * 1024 &&
887             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
888                 btrfs_add_inode_defrag(trans, inode);
889
890         if (start == 0) {
891                 /* lets try to make an inline extent */
892                 ret = cow_file_range_inline(trans, root, inode,
893                                             start, end, 0, 0, NULL);
894                 if (ret == 0) {
895                         extent_clear_unlock_delalloc(inode,
896                                      &BTRFS_I(inode)->io_tree,
897                                      start, end, NULL,
898                                      EXTENT_CLEAR_UNLOCK_PAGE |
899                                      EXTENT_CLEAR_UNLOCK |
900                                      EXTENT_CLEAR_DELALLOC |
901                                      EXTENT_CLEAR_DIRTY |
902                                      EXTENT_SET_WRITEBACK |
903                                      EXTENT_END_WRITEBACK);
904
905                         *nr_written = *nr_written +
906                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
907                         *page_started = 1;
908                         goto out;
909                 } else if (ret < 0) {
910                         btrfs_abort_transaction(trans, root, ret);
911                         goto out_unlock;
912                 }
913         }
914
915         BUG_ON(disk_num_bytes >
916                btrfs_super_total_bytes(root->fs_info->super_copy));
917
918         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
919         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
920
921         while (disk_num_bytes > 0) {
922                 unsigned long op;
923
924                 cur_alloc_size = disk_num_bytes;
925                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
926                                            root->sectorsize, 0, alloc_hint,
927                                            &ins, 1);
928                 if (ret < 0) {
929                         btrfs_abort_transaction(trans, root, ret);
930                         goto out_unlock;
931                 }
932
933                 em = alloc_extent_map();
934                 if (!em) {
935                         ret = -ENOMEM;
936                         goto out_reserve;
937                 }
938                 em->start = start;
939                 em->orig_start = em->start;
940                 ram_size = ins.offset;
941                 em->len = ins.offset;
942                 em->mod_start = em->start;
943                 em->mod_len = em->len;
944
945                 em->block_start = ins.objectid;
946                 em->block_len = ins.offset;
947                 em->orig_block_len = ins.offset;
948                 em->ram_bytes = ram_size;
949                 em->bdev = root->fs_info->fs_devices->latest_bdev;
950                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
951                 em->generation = -1;
952
953                 while (1) {
954                         write_lock(&em_tree->lock);
955                         ret = add_extent_mapping(em_tree, em, 1);
956                         write_unlock(&em_tree->lock);
957                         if (ret != -EEXIST) {
958                                 free_extent_map(em);
959                                 break;
960                         }
961                         btrfs_drop_extent_cache(inode, start,
962                                                 start + ram_size - 1, 0);
963                 }
964                 if (ret)
965                         goto out_reserve;
966
967                 cur_alloc_size = ins.offset;
968                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
969                                                ram_size, cur_alloc_size, 0);
970                 if (ret)
971                         goto out_reserve;
972
973                 if (root->root_key.objectid ==
974                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
975                         ret = btrfs_reloc_clone_csums(inode, start,
976                                                       cur_alloc_size);
977                         if (ret) {
978                                 btrfs_abort_transaction(trans, root, ret);
979                                 goto out_reserve;
980                         }
981                 }
982
983                 if (disk_num_bytes < cur_alloc_size)
984                         break;
985
986                 /* we're not doing compressed IO, don't unlock the first
987                  * page (which the caller expects to stay locked), don't
988                  * clear any dirty bits and don't set any writeback bits
989                  *
990                  * Do set the Private2 bit so we know this page was properly
991                  * setup for writepage
992                  */
993                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
994                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
995                         EXTENT_SET_PRIVATE2;
996
997                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
998                                              start, start + ram_size - 1,
999                                              locked_page, op);
1000                 disk_num_bytes -= cur_alloc_size;
1001                 num_bytes -= cur_alloc_size;
1002                 alloc_hint = ins.objectid + ins.offset;
1003                 start += cur_alloc_size;
1004         }
1005 out:
1006         return ret;
1007
1008 out_reserve:
1009         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1010 out_unlock:
1011         extent_clear_unlock_delalloc(inode,
1012                      &BTRFS_I(inode)->io_tree,
1013                      start, end, locked_page,
1014                      EXTENT_CLEAR_UNLOCK_PAGE |
1015                      EXTENT_CLEAR_UNLOCK |
1016                      EXTENT_CLEAR_DELALLOC |
1017                      EXTENT_CLEAR_DIRTY |
1018                      EXTENT_SET_WRITEBACK |
1019                      EXTENT_END_WRITEBACK);
1020
1021         goto out;
1022 }
1023
1024 static noinline int cow_file_range(struct inode *inode,
1025                                    struct page *locked_page,
1026                                    u64 start, u64 end, int *page_started,
1027                                    unsigned long *nr_written,
1028                                    int unlock)
1029 {
1030         struct btrfs_trans_handle *trans;
1031         struct btrfs_root *root = BTRFS_I(inode)->root;
1032         int ret;
1033
1034         trans = btrfs_join_transaction(root);
1035         if (IS_ERR(trans)) {
1036                 extent_clear_unlock_delalloc(inode,
1037                              &BTRFS_I(inode)->io_tree,
1038                              start, end, locked_page,
1039                              EXTENT_CLEAR_UNLOCK_PAGE |
1040                              EXTENT_CLEAR_UNLOCK |
1041                              EXTENT_CLEAR_DELALLOC |
1042                              EXTENT_CLEAR_DIRTY |
1043                              EXTENT_SET_WRITEBACK |
1044                              EXTENT_END_WRITEBACK);
1045                 return PTR_ERR(trans);
1046         }
1047         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1048
1049         ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050                                page_started, nr_written, unlock);
1051
1052         btrfs_end_transaction(trans, root);
1053
1054         return ret;
1055 }
1056
1057 /*
1058  * work queue call back to started compression on a file and pages
1059  */
1060 static noinline void async_cow_start(struct btrfs_work *work)
1061 {
1062         struct async_cow *async_cow;
1063         int num_added = 0;
1064         async_cow = container_of(work, struct async_cow, work);
1065
1066         compress_file_range(async_cow->inode, async_cow->locked_page,
1067                             async_cow->start, async_cow->end, async_cow,
1068                             &num_added);
1069         if (num_added == 0) {
1070                 btrfs_add_delayed_iput(async_cow->inode);
1071                 async_cow->inode = NULL;
1072         }
1073 }
1074
1075 /*
1076  * work queue call back to submit previously compressed pages
1077  */
1078 static noinline void async_cow_submit(struct btrfs_work *work)
1079 {
1080         struct async_cow *async_cow;
1081         struct btrfs_root *root;
1082         unsigned long nr_pages;
1083
1084         async_cow = container_of(work, struct async_cow, work);
1085
1086         root = async_cow->root;
1087         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1088                 PAGE_CACHE_SHIFT;
1089
1090         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1091             5 * 1024 * 1024 &&
1092             waitqueue_active(&root->fs_info->async_submit_wait))
1093                 wake_up(&root->fs_info->async_submit_wait);
1094
1095         if (async_cow->inode)
1096                 submit_compressed_extents(async_cow->inode, async_cow);
1097 }
1098
1099 static noinline void async_cow_free(struct btrfs_work *work)
1100 {
1101         struct async_cow *async_cow;
1102         async_cow = container_of(work, struct async_cow, work);
1103         if (async_cow->inode)
1104                 btrfs_add_delayed_iput(async_cow->inode);
1105         kfree(async_cow);
1106 }
1107
1108 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109                                 u64 start, u64 end, int *page_started,
1110                                 unsigned long *nr_written)
1111 {
1112         struct async_cow *async_cow;
1113         struct btrfs_root *root = BTRFS_I(inode)->root;
1114         unsigned long nr_pages;
1115         u64 cur_end;
1116         int limit = 10 * 1024 * 1024;
1117
1118         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119                          1, 0, NULL, GFP_NOFS);
1120         while (start < end) {
1121                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1122                 BUG_ON(!async_cow); /* -ENOMEM */
1123                 async_cow->inode = igrab(inode);
1124                 async_cow->root = root;
1125                 async_cow->locked_page = locked_page;
1126                 async_cow->start = start;
1127
1128                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1129                         cur_end = end;
1130                 else
1131                         cur_end = min(end, start + 512 * 1024 - 1);
1132
1133                 async_cow->end = cur_end;
1134                 INIT_LIST_HEAD(&async_cow->extents);
1135
1136                 async_cow->work.func = async_cow_start;
1137                 async_cow->work.ordered_func = async_cow_submit;
1138                 async_cow->work.ordered_free = async_cow_free;
1139                 async_cow->work.flags = 0;
1140
1141                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1142                         PAGE_CACHE_SHIFT;
1143                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1144
1145                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1146                                    &async_cow->work);
1147
1148                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149                         wait_event(root->fs_info->async_submit_wait,
1150                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1151                             limit));
1152                 }
1153
1154                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1155                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1156                         wait_event(root->fs_info->async_submit_wait,
1157                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1158                            0));
1159                 }
1160
1161                 *nr_written += nr_pages;
1162                 start = cur_end + 1;
1163         }
1164         *page_started = 1;
1165         return 0;
1166 }
1167
1168 static noinline int csum_exist_in_range(struct btrfs_root *root,
1169                                         u64 bytenr, u64 num_bytes)
1170 {
1171         int ret;
1172         struct btrfs_ordered_sum *sums;
1173         LIST_HEAD(list);
1174
1175         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1176                                        bytenr + num_bytes - 1, &list, 0);
1177         if (ret == 0 && list_empty(&list))
1178                 return 0;
1179
1180         while (!list_empty(&list)) {
1181                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182                 list_del(&sums->list);
1183                 kfree(sums);
1184         }
1185         return 1;
1186 }
1187
1188 /*
1189  * when nowcow writeback call back.  This checks for snapshots or COW copies
1190  * of the extents that exist in the file, and COWs the file as required.
1191  *
1192  * If no cow copies or snapshots exist, we write directly to the existing
1193  * blocks on disk
1194  */
1195 static noinline int run_delalloc_nocow(struct inode *inode,
1196                                        struct page *locked_page,
1197                               u64 start, u64 end, int *page_started, int force,
1198                               unsigned long *nr_written)
1199 {
1200         struct btrfs_root *root = BTRFS_I(inode)->root;
1201         struct btrfs_trans_handle *trans;
1202         struct extent_buffer *leaf;
1203         struct btrfs_path *path;
1204         struct btrfs_file_extent_item *fi;
1205         struct btrfs_key found_key;
1206         u64 cow_start;
1207         u64 cur_offset;
1208         u64 extent_end;
1209         u64 extent_offset;
1210         u64 disk_bytenr;
1211         u64 num_bytes;
1212         u64 disk_num_bytes;
1213         u64 ram_bytes;
1214         int extent_type;
1215         int ret, err;
1216         int type;
1217         int nocow;
1218         int check_prev = 1;
1219         bool nolock;
1220         u64 ino = btrfs_ino(inode);
1221
1222         path = btrfs_alloc_path();
1223         if (!path) {
1224                 extent_clear_unlock_delalloc(inode,
1225                              &BTRFS_I(inode)->io_tree,
1226                              start, end, locked_page,
1227                              EXTENT_CLEAR_UNLOCK_PAGE |
1228                              EXTENT_CLEAR_UNLOCK |
1229                              EXTENT_CLEAR_DELALLOC |
1230                              EXTENT_CLEAR_DIRTY |
1231                              EXTENT_SET_WRITEBACK |
1232                              EXTENT_END_WRITEBACK);
1233                 return -ENOMEM;
1234         }
1235
1236         nolock = btrfs_is_free_space_inode(inode);
1237
1238         if (nolock)
1239                 trans = btrfs_join_transaction_nolock(root);
1240         else
1241                 trans = btrfs_join_transaction(root);
1242
1243         if (IS_ERR(trans)) {
1244                 extent_clear_unlock_delalloc(inode,
1245                              &BTRFS_I(inode)->io_tree,
1246                              start, end, locked_page,
1247                              EXTENT_CLEAR_UNLOCK_PAGE |
1248                              EXTENT_CLEAR_UNLOCK |
1249                              EXTENT_CLEAR_DELALLOC |
1250                              EXTENT_CLEAR_DIRTY |
1251                              EXTENT_SET_WRITEBACK |
1252                              EXTENT_END_WRITEBACK);
1253                 btrfs_free_path(path);
1254                 return PTR_ERR(trans);
1255         }
1256
1257         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1258
1259         cow_start = (u64)-1;
1260         cur_offset = start;
1261         while (1) {
1262                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1263                                                cur_offset, 0);
1264                 if (ret < 0) {
1265                         btrfs_abort_transaction(trans, root, ret);
1266                         goto error;
1267                 }
1268                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269                         leaf = path->nodes[0];
1270                         btrfs_item_key_to_cpu(leaf, &found_key,
1271                                               path->slots[0] - 1);
1272                         if (found_key.objectid == ino &&
1273                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1274                                 path->slots[0]--;
1275                 }
1276                 check_prev = 0;
1277 next_slot:
1278                 leaf = path->nodes[0];
1279                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280                         ret = btrfs_next_leaf(root, path);
1281                         if (ret < 0) {
1282                                 btrfs_abort_transaction(trans, root, ret);
1283                                 goto error;
1284                         }
1285                         if (ret > 0)
1286                                 break;
1287                         leaf = path->nodes[0];
1288                 }
1289
1290                 nocow = 0;
1291                 disk_bytenr = 0;
1292                 num_bytes = 0;
1293                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1294
1295                 if (found_key.objectid > ino ||
1296                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297                     found_key.offset > end)
1298                         break;
1299
1300                 if (found_key.offset > cur_offset) {
1301                         extent_end = found_key.offset;
1302                         extent_type = 0;
1303                         goto out_check;
1304                 }
1305
1306                 fi = btrfs_item_ptr(leaf, path->slots[0],
1307                                     struct btrfs_file_extent_item);
1308                 extent_type = btrfs_file_extent_type(leaf, fi);
1309
1310                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1311                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1313                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1314                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1315                         extent_end = found_key.offset +
1316                                 btrfs_file_extent_num_bytes(leaf, fi);
1317                         disk_num_bytes =
1318                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1319                         if (extent_end <= start) {
1320                                 path->slots[0]++;
1321                                 goto next_slot;
1322                         }
1323                         if (disk_bytenr == 0)
1324                                 goto out_check;
1325                         if (btrfs_file_extent_compression(leaf, fi) ||
1326                             btrfs_file_extent_encryption(leaf, fi) ||
1327                             btrfs_file_extent_other_encoding(leaf, fi))
1328                                 goto out_check;
1329                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1330                                 goto out_check;
1331                         if (btrfs_extent_readonly(root, disk_bytenr))
1332                                 goto out_check;
1333                         if (btrfs_cross_ref_exist(trans, root, ino,
1334                                                   found_key.offset -
1335                                                   extent_offset, disk_bytenr))
1336                                 goto out_check;
1337                         disk_bytenr += extent_offset;
1338                         disk_bytenr += cur_offset - found_key.offset;
1339                         num_bytes = min(end + 1, extent_end) - cur_offset;
1340                         /*
1341                          * force cow if csum exists in the range.
1342                          * this ensure that csum for a given extent are
1343                          * either valid or do not exist.
1344                          */
1345                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1346                                 goto out_check;
1347                         nocow = 1;
1348                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349                         extent_end = found_key.offset +
1350                                 btrfs_file_extent_inline_len(leaf, fi);
1351                         extent_end = ALIGN(extent_end, root->sectorsize);
1352                 } else {
1353                         BUG_ON(1);
1354                 }
1355 out_check:
1356                 if (extent_end <= start) {
1357                         path->slots[0]++;
1358                         goto next_slot;
1359                 }
1360                 if (!nocow) {
1361                         if (cow_start == (u64)-1)
1362                                 cow_start = cur_offset;
1363                         cur_offset = extent_end;
1364                         if (cur_offset > end)
1365                                 break;
1366                         path->slots[0]++;
1367                         goto next_slot;
1368                 }
1369
1370                 btrfs_release_path(path);
1371                 if (cow_start != (u64)-1) {
1372                         ret = __cow_file_range(trans, inode, root, locked_page,
1373                                                cow_start, found_key.offset - 1,
1374                                                page_started, nr_written, 1);
1375                         if (ret) {
1376                                 btrfs_abort_transaction(trans, root, ret);
1377                                 goto error;
1378                         }
1379                         cow_start = (u64)-1;
1380                 }
1381
1382                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383                         struct extent_map *em;
1384                         struct extent_map_tree *em_tree;
1385                         em_tree = &BTRFS_I(inode)->extent_tree;
1386                         em = alloc_extent_map();
1387                         BUG_ON(!em); /* -ENOMEM */
1388                         em->start = cur_offset;
1389                         em->orig_start = found_key.offset - extent_offset;
1390                         em->len = num_bytes;
1391                         em->block_len = num_bytes;
1392                         em->block_start = disk_bytenr;
1393                         em->orig_block_len = disk_num_bytes;
1394                         em->ram_bytes = ram_bytes;
1395                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1396                         em->mod_start = em->start;
1397                         em->mod_len = em->len;
1398                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1399                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1400                         em->generation = -1;
1401                         while (1) {
1402                                 write_lock(&em_tree->lock);
1403                                 ret = add_extent_mapping(em_tree, em, 1);
1404                                 write_unlock(&em_tree->lock);
1405                                 if (ret != -EEXIST) {
1406                                         free_extent_map(em);
1407                                         break;
1408                                 }
1409                                 btrfs_drop_extent_cache(inode, em->start,
1410                                                 em->start + em->len - 1, 0);
1411                         }
1412                         type = BTRFS_ORDERED_PREALLOC;
1413                 } else {
1414                         type = BTRFS_ORDERED_NOCOW;
1415                 }
1416
1417                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1418                                                num_bytes, num_bytes, type);
1419                 BUG_ON(ret); /* -ENOMEM */
1420
1421                 if (root->root_key.objectid ==
1422                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424                                                       num_bytes);
1425                         if (ret) {
1426                                 btrfs_abort_transaction(trans, root, ret);
1427                                 goto error;
1428                         }
1429                 }
1430
1431                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1432                                 cur_offset, cur_offset + num_bytes - 1,
1433                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435                                 EXTENT_SET_PRIVATE2);
1436                 cur_offset = extent_end;
1437                 if (cur_offset > end)
1438                         break;
1439         }
1440         btrfs_release_path(path);
1441
1442         if (cur_offset <= end && cow_start == (u64)-1) {
1443                 cow_start = cur_offset;
1444                 cur_offset = end;
1445         }
1446
1447         if (cow_start != (u64)-1) {
1448                 ret = __cow_file_range(trans, inode, root, locked_page,
1449                                        cow_start, end,
1450                                        page_started, nr_written, 1);
1451                 if (ret) {
1452                         btrfs_abort_transaction(trans, root, ret);
1453                         goto error;
1454                 }
1455         }
1456
1457 error:
1458         err = btrfs_end_transaction(trans, root);
1459         if (!ret)
1460                 ret = err;
1461
1462         if (ret && cur_offset < end)
1463                 extent_clear_unlock_delalloc(inode,
1464                              &BTRFS_I(inode)->io_tree,
1465                              cur_offset, end, locked_page,
1466                              EXTENT_CLEAR_UNLOCK_PAGE |
1467                              EXTENT_CLEAR_UNLOCK |
1468                              EXTENT_CLEAR_DELALLOC |
1469                              EXTENT_CLEAR_DIRTY |
1470                              EXTENT_SET_WRITEBACK |
1471                              EXTENT_END_WRITEBACK);
1472
1473         btrfs_free_path(path);
1474         return ret;
1475 }
1476
1477 /*
1478  * extent_io.c call back to do delayed allocation processing
1479  */
1480 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1481                               u64 start, u64 end, int *page_started,
1482                               unsigned long *nr_written)
1483 {
1484         int ret;
1485         struct btrfs_root *root = BTRFS_I(inode)->root;
1486
1487         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1488                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1489                                          page_started, 1, nr_written);
1490         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1491                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1492                                          page_started, 0, nr_written);
1493         } else if (!btrfs_test_opt(root, COMPRESS) &&
1494                    !(BTRFS_I(inode)->force_compress) &&
1495                    !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1496                 ret = cow_file_range(inode, locked_page, start, end,
1497                                       page_started, nr_written, 1);
1498         } else {
1499                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500                         &BTRFS_I(inode)->runtime_flags);
1501                 ret = cow_file_range_async(inode, locked_page, start, end,
1502                                            page_started, nr_written);
1503         }
1504         return ret;
1505 }
1506
1507 static void btrfs_split_extent_hook(struct inode *inode,
1508                                     struct extent_state *orig, u64 split)
1509 {
1510         /* not delalloc, ignore it */
1511         if (!(orig->state & EXTENT_DELALLOC))
1512                 return;
1513
1514         spin_lock(&BTRFS_I(inode)->lock);
1515         BTRFS_I(inode)->outstanding_extents++;
1516         spin_unlock(&BTRFS_I(inode)->lock);
1517 }
1518
1519 /*
1520  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521  * extents so we can keep track of new extents that are just merged onto old
1522  * extents, such as when we are doing sequential writes, so we can properly
1523  * account for the metadata space we'll need.
1524  */
1525 static void btrfs_merge_extent_hook(struct inode *inode,
1526                                     struct extent_state *new,
1527                                     struct extent_state *other)
1528 {
1529         /* not delalloc, ignore it */
1530         if (!(other->state & EXTENT_DELALLOC))
1531                 return;
1532
1533         spin_lock(&BTRFS_I(inode)->lock);
1534         BTRFS_I(inode)->outstanding_extents--;
1535         spin_unlock(&BTRFS_I(inode)->lock);
1536 }
1537
1538 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539                                       struct inode *inode)
1540 {
1541         spin_lock(&root->delalloc_lock);
1542         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544                               &root->delalloc_inodes);
1545                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546                         &BTRFS_I(inode)->runtime_flags);
1547                 root->nr_delalloc_inodes++;
1548                 if (root->nr_delalloc_inodes == 1) {
1549                         spin_lock(&root->fs_info->delalloc_root_lock);
1550                         BUG_ON(!list_empty(&root->delalloc_root));
1551                         list_add_tail(&root->delalloc_root,
1552                                       &root->fs_info->delalloc_roots);
1553                         spin_unlock(&root->fs_info->delalloc_root_lock);
1554                 }
1555         }
1556         spin_unlock(&root->delalloc_lock);
1557 }
1558
1559 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560                                      struct inode *inode)
1561 {
1562         spin_lock(&root->delalloc_lock);
1563         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566                           &BTRFS_I(inode)->runtime_flags);
1567                 root->nr_delalloc_inodes--;
1568                 if (!root->nr_delalloc_inodes) {
1569                         spin_lock(&root->fs_info->delalloc_root_lock);
1570                         BUG_ON(list_empty(&root->delalloc_root));
1571                         list_del_init(&root->delalloc_root);
1572                         spin_unlock(&root->fs_info->delalloc_root_lock);
1573                 }
1574         }
1575         spin_unlock(&root->delalloc_lock);
1576 }
1577
1578 /*
1579  * extent_io.c set_bit_hook, used to track delayed allocation
1580  * bytes in this file, and to maintain the list of inodes that
1581  * have pending delalloc work to be done.
1582  */
1583 static void btrfs_set_bit_hook(struct inode *inode,
1584                                struct extent_state *state, unsigned long *bits)
1585 {
1586
1587         /*
1588          * set_bit and clear bit hooks normally require _irqsave/restore
1589          * but in this case, we are only testing for the DELALLOC
1590          * bit, which is only set or cleared with irqs on
1591          */
1592         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1593                 struct btrfs_root *root = BTRFS_I(inode)->root;
1594                 u64 len = state->end + 1 - state->start;
1595                 bool do_list = !btrfs_is_free_space_inode(inode);
1596
1597                 if (*bits & EXTENT_FIRST_DELALLOC) {
1598                         *bits &= ~EXTENT_FIRST_DELALLOC;
1599                 } else {
1600                         spin_lock(&BTRFS_I(inode)->lock);
1601                         BTRFS_I(inode)->outstanding_extents++;
1602                         spin_unlock(&BTRFS_I(inode)->lock);
1603                 }
1604
1605                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606                                      root->fs_info->delalloc_batch);
1607                 spin_lock(&BTRFS_I(inode)->lock);
1608                 BTRFS_I(inode)->delalloc_bytes += len;
1609                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610                                          &BTRFS_I(inode)->runtime_flags))
1611                         btrfs_add_delalloc_inodes(root, inode);
1612                 spin_unlock(&BTRFS_I(inode)->lock);
1613         }
1614 }
1615
1616 /*
1617  * extent_io.c clear_bit_hook, see set_bit_hook for why
1618  */
1619 static void btrfs_clear_bit_hook(struct inode *inode,
1620                                  struct extent_state *state,
1621                                  unsigned long *bits)
1622 {
1623         /*
1624          * set_bit and clear bit hooks normally require _irqsave/restore
1625          * but in this case, we are only testing for the DELALLOC
1626          * bit, which is only set or cleared with irqs on
1627          */
1628         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1629                 struct btrfs_root *root = BTRFS_I(inode)->root;
1630                 u64 len = state->end + 1 - state->start;
1631                 bool do_list = !btrfs_is_free_space_inode(inode);
1632
1633                 if (*bits & EXTENT_FIRST_DELALLOC) {
1634                         *bits &= ~EXTENT_FIRST_DELALLOC;
1635                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636                         spin_lock(&BTRFS_I(inode)->lock);
1637                         BTRFS_I(inode)->outstanding_extents--;
1638                         spin_unlock(&BTRFS_I(inode)->lock);
1639                 }
1640
1641                 if (*bits & EXTENT_DO_ACCOUNTING)
1642                         btrfs_delalloc_release_metadata(inode, len);
1643
1644                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1645                     && do_list && !(state->state & EXTENT_NORESERVE))
1646                         btrfs_free_reserved_data_space(inode, len);
1647
1648                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649                                      root->fs_info->delalloc_batch);
1650                 spin_lock(&BTRFS_I(inode)->lock);
1651                 BTRFS_I(inode)->delalloc_bytes -= len;
1652                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1653                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1654                              &BTRFS_I(inode)->runtime_flags))
1655                         btrfs_del_delalloc_inode(root, inode);
1656                 spin_unlock(&BTRFS_I(inode)->lock);
1657         }
1658 }
1659
1660 /*
1661  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662  * we don't create bios that span stripes or chunks
1663  */
1664 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1665                          size_t size, struct bio *bio,
1666                          unsigned long bio_flags)
1667 {
1668         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1669         u64 logical = (u64)bio->bi_sector << 9;
1670         u64 length = 0;
1671         u64 map_length;
1672         int ret;
1673
1674         if (bio_flags & EXTENT_BIO_COMPRESSED)
1675                 return 0;
1676
1677         length = bio->bi_size;
1678         map_length = length;
1679         ret = btrfs_map_block(root->fs_info, rw, logical,
1680                               &map_length, NULL, 0);
1681         /* Will always return 0 with map_multi == NULL */
1682         BUG_ON(ret < 0);
1683         if (map_length < length + size)
1684                 return 1;
1685         return 0;
1686 }
1687
1688 /*
1689  * in order to insert checksums into the metadata in large chunks,
1690  * we wait until bio submission time.   All the pages in the bio are
1691  * checksummed and sums are attached onto the ordered extent record.
1692  *
1693  * At IO completion time the cums attached on the ordered extent record
1694  * are inserted into the btree
1695  */
1696 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697                                     struct bio *bio, int mirror_num,
1698                                     unsigned long bio_flags,
1699                                     u64 bio_offset)
1700 {
1701         struct btrfs_root *root = BTRFS_I(inode)->root;
1702         int ret = 0;
1703
1704         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1705         BUG_ON(ret); /* -ENOMEM */
1706         return 0;
1707 }
1708
1709 /*
1710  * in order to insert checksums into the metadata in large chunks,
1711  * we wait until bio submission time.   All the pages in the bio are
1712  * checksummed and sums are attached onto the ordered extent record.
1713  *
1714  * At IO completion time the cums attached on the ordered extent record
1715  * are inserted into the btree
1716  */
1717 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1718                           int mirror_num, unsigned long bio_flags,
1719                           u64 bio_offset)
1720 {
1721         struct btrfs_root *root = BTRFS_I(inode)->root;
1722         int ret;
1723
1724         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1725         if (ret)
1726                 bio_endio(bio, ret);
1727         return ret;
1728 }
1729
1730 /*
1731  * extent_io.c submission hook. This does the right thing for csum calculation
1732  * on write, or reading the csums from the tree before a read
1733  */
1734 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1735                           int mirror_num, unsigned long bio_flags,
1736                           u64 bio_offset)
1737 {
1738         struct btrfs_root *root = BTRFS_I(inode)->root;
1739         int ret = 0;
1740         int skip_sum;
1741         int metadata = 0;
1742         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1743
1744         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1745
1746         if (btrfs_is_free_space_inode(inode))
1747                 metadata = 2;
1748
1749         if (!(rw & REQ_WRITE)) {
1750                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1751                 if (ret)
1752                         goto out;
1753
1754                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1755                         ret = btrfs_submit_compressed_read(inode, bio,
1756                                                            mirror_num,
1757                                                            bio_flags);
1758                         goto out;
1759                 } else if (!skip_sum) {
1760                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1761                         if (ret)
1762                                 goto out;
1763                 }
1764                 goto mapit;
1765         } else if (async && !skip_sum) {
1766                 /* csum items have already been cloned */
1767                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1768                         goto mapit;
1769                 /* we're doing a write, do the async checksumming */
1770                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1771                                    inode, rw, bio, mirror_num,
1772                                    bio_flags, bio_offset,
1773                                    __btrfs_submit_bio_start,
1774                                    __btrfs_submit_bio_done);
1775                 goto out;
1776         } else if (!skip_sum) {
1777                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1778                 if (ret)
1779                         goto out;
1780         }
1781
1782 mapit:
1783         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1784
1785 out:
1786         if (ret < 0)
1787                 bio_endio(bio, ret);
1788         return ret;
1789 }
1790
1791 /*
1792  * given a list of ordered sums record them in the inode.  This happens
1793  * at IO completion time based on sums calculated at bio submission time.
1794  */
1795 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1796                              struct inode *inode, u64 file_offset,
1797                              struct list_head *list)
1798 {
1799         struct btrfs_ordered_sum *sum;
1800
1801         list_for_each_entry(sum, list, list) {
1802                 trans->adding_csums = 1;
1803                 btrfs_csum_file_blocks(trans,
1804                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1805                 trans->adding_csums = 0;
1806         }
1807         return 0;
1808 }
1809
1810 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811                               struct extent_state **cached_state)
1812 {
1813         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1814         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1815                                    cached_state, GFP_NOFS);
1816 }
1817
1818 /* see btrfs_writepage_start_hook for details on why this is required */
1819 struct btrfs_writepage_fixup {
1820         struct page *page;
1821         struct btrfs_work work;
1822 };
1823
1824 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1825 {
1826         struct btrfs_writepage_fixup *fixup;
1827         struct btrfs_ordered_extent *ordered;
1828         struct extent_state *cached_state = NULL;
1829         struct page *page;
1830         struct inode *inode;
1831         u64 page_start;
1832         u64 page_end;
1833         int ret;
1834
1835         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1836         page = fixup->page;
1837 again:
1838         lock_page(page);
1839         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840                 ClearPageChecked(page);
1841                 goto out_page;
1842         }
1843
1844         inode = page->mapping->host;
1845         page_start = page_offset(page);
1846         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1847
1848         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1849                          &cached_state);
1850
1851         /* already ordered? We're done */
1852         if (PagePrivate2(page))
1853                 goto out;
1854
1855         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1856         if (ordered) {
1857                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858                                      page_end, &cached_state, GFP_NOFS);
1859                 unlock_page(page);
1860                 btrfs_start_ordered_extent(inode, ordered, 1);
1861                 btrfs_put_ordered_extent(ordered);
1862                 goto again;
1863         }
1864
1865         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1866         if (ret) {
1867                 mapping_set_error(page->mapping, ret);
1868                 end_extent_writepage(page, ret, page_start, page_end);
1869                 ClearPageChecked(page);
1870                 goto out;
1871          }
1872
1873         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1874         ClearPageChecked(page);
1875         set_page_dirty(page);
1876 out:
1877         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878                              &cached_state, GFP_NOFS);
1879 out_page:
1880         unlock_page(page);
1881         page_cache_release(page);
1882         kfree(fixup);
1883 }
1884
1885 /*
1886  * There are a few paths in the higher layers of the kernel that directly
1887  * set the page dirty bit without asking the filesystem if it is a
1888  * good idea.  This causes problems because we want to make sure COW
1889  * properly happens and the data=ordered rules are followed.
1890  *
1891  * In our case any range that doesn't have the ORDERED bit set
1892  * hasn't been properly setup for IO.  We kick off an async process
1893  * to fix it up.  The async helper will wait for ordered extents, set
1894  * the delalloc bit and make it safe to write the page.
1895  */
1896 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1897 {
1898         struct inode *inode = page->mapping->host;
1899         struct btrfs_writepage_fixup *fixup;
1900         struct btrfs_root *root = BTRFS_I(inode)->root;
1901
1902         /* this page is properly in the ordered list */
1903         if (TestClearPagePrivate2(page))
1904                 return 0;
1905
1906         if (PageChecked(page))
1907                 return -EAGAIN;
1908
1909         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1910         if (!fixup)
1911                 return -EAGAIN;
1912
1913         SetPageChecked(page);
1914         page_cache_get(page);
1915         fixup->work.func = btrfs_writepage_fixup_worker;
1916         fixup->page = page;
1917         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1918         return -EBUSY;
1919 }
1920
1921 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922                                        struct inode *inode, u64 file_pos,
1923                                        u64 disk_bytenr, u64 disk_num_bytes,
1924                                        u64 num_bytes, u64 ram_bytes,
1925                                        u8 compression, u8 encryption,
1926                                        u16 other_encoding, int extent_type)
1927 {
1928         struct btrfs_root *root = BTRFS_I(inode)->root;
1929         struct btrfs_file_extent_item *fi;
1930         struct btrfs_path *path;
1931         struct extent_buffer *leaf;
1932         struct btrfs_key ins;
1933         int ret;
1934
1935         path = btrfs_alloc_path();
1936         if (!path)
1937                 return -ENOMEM;
1938
1939         path->leave_spinning = 1;
1940
1941         /*
1942          * we may be replacing one extent in the tree with another.
1943          * The new extent is pinned in the extent map, and we don't want
1944          * to drop it from the cache until it is completely in the btree.
1945          *
1946          * So, tell btrfs_drop_extents to leave this extent in the cache.
1947          * the caller is expected to unpin it and allow it to be merged
1948          * with the others.
1949          */
1950         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1951                                  file_pos + num_bytes, 0);
1952         if (ret)
1953                 goto out;
1954
1955         ins.objectid = btrfs_ino(inode);
1956         ins.offset = file_pos;
1957         ins.type = BTRFS_EXTENT_DATA_KEY;
1958         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1959         if (ret)
1960                 goto out;
1961         leaf = path->nodes[0];
1962         fi = btrfs_item_ptr(leaf, path->slots[0],
1963                             struct btrfs_file_extent_item);
1964         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965         btrfs_set_file_extent_type(leaf, fi, extent_type);
1966         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968         btrfs_set_file_extent_offset(leaf, fi, 0);
1969         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971         btrfs_set_file_extent_compression(leaf, fi, compression);
1972         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1974
1975         btrfs_mark_buffer_dirty(leaf);
1976         btrfs_release_path(path);
1977
1978         inode_add_bytes(inode, num_bytes);
1979
1980         ins.objectid = disk_bytenr;
1981         ins.offset = disk_num_bytes;
1982         ins.type = BTRFS_EXTENT_ITEM_KEY;
1983         ret = btrfs_alloc_reserved_file_extent(trans, root,
1984                                         root->root_key.objectid,
1985                                         btrfs_ino(inode), file_pos, &ins);
1986 out:
1987         btrfs_free_path(path);
1988
1989         return ret;
1990 }
1991
1992 /* snapshot-aware defrag */
1993 struct sa_defrag_extent_backref {
1994         struct rb_node node;
1995         struct old_sa_defrag_extent *old;
1996         u64 root_id;
1997         u64 inum;
1998         u64 file_pos;
1999         u64 extent_offset;
2000         u64 num_bytes;
2001         u64 generation;
2002 };
2003
2004 struct old_sa_defrag_extent {
2005         struct list_head list;
2006         struct new_sa_defrag_extent *new;
2007
2008         u64 extent_offset;
2009         u64 bytenr;
2010         u64 offset;
2011         u64 len;
2012         int count;
2013 };
2014
2015 struct new_sa_defrag_extent {
2016         struct rb_root root;
2017         struct list_head head;
2018         struct btrfs_path *path;
2019         struct inode *inode;
2020         u64 file_pos;
2021         u64 len;
2022         u64 bytenr;
2023         u64 disk_len;
2024         u8 compress_type;
2025 };
2026
2027 static int backref_comp(struct sa_defrag_extent_backref *b1,
2028                         struct sa_defrag_extent_backref *b2)
2029 {
2030         if (b1->root_id < b2->root_id)
2031                 return -1;
2032         else if (b1->root_id > b2->root_id)
2033                 return 1;
2034
2035         if (b1->inum < b2->inum)
2036                 return -1;
2037         else if (b1->inum > b2->inum)
2038                 return 1;
2039
2040         if (b1->file_pos < b2->file_pos)
2041                 return -1;
2042         else if (b1->file_pos > b2->file_pos)
2043                 return 1;
2044
2045         /*
2046          * [------------------------------] ===> (a range of space)
2047          *     |<--->|   |<---->| =============> (fs/file tree A)
2048          * |<---------------------------->| ===> (fs/file tree B)
2049          *
2050          * A range of space can refer to two file extents in one tree while
2051          * refer to only one file extent in another tree.
2052          *
2053          * So we may process a disk offset more than one time(two extents in A)
2054          * and locate at the same extent(one extent in B), then insert two same
2055          * backrefs(both refer to the extent in B).
2056          */
2057         return 0;
2058 }
2059
2060 static void backref_insert(struct rb_root *root,
2061                            struct sa_defrag_extent_backref *backref)
2062 {
2063         struct rb_node **p = &root->rb_node;
2064         struct rb_node *parent = NULL;
2065         struct sa_defrag_extent_backref *entry;
2066         int ret;
2067
2068         while (*p) {
2069                 parent = *p;
2070                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2071
2072                 ret = backref_comp(backref, entry);
2073                 if (ret < 0)
2074                         p = &(*p)->rb_left;
2075                 else
2076                         p = &(*p)->rb_right;
2077         }
2078
2079         rb_link_node(&backref->node, parent, p);
2080         rb_insert_color(&backref->node, root);
2081 }
2082
2083 /*
2084  * Note the backref might has changed, and in this case we just return 0.
2085  */
2086 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2087                                        void *ctx)
2088 {
2089         struct btrfs_file_extent_item *extent;
2090         struct btrfs_fs_info *fs_info;
2091         struct old_sa_defrag_extent *old = ctx;
2092         struct new_sa_defrag_extent *new = old->new;
2093         struct btrfs_path *path = new->path;
2094         struct btrfs_key key;
2095         struct btrfs_root *root;
2096         struct sa_defrag_extent_backref *backref;
2097         struct extent_buffer *leaf;
2098         struct inode *inode = new->inode;
2099         int slot;
2100         int ret;
2101         u64 extent_offset;
2102         u64 num_bytes;
2103
2104         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105             inum == btrfs_ino(inode))
2106                 return 0;
2107
2108         key.objectid = root_id;
2109         key.type = BTRFS_ROOT_ITEM_KEY;
2110         key.offset = (u64)-1;
2111
2112         fs_info = BTRFS_I(inode)->root->fs_info;
2113         root = btrfs_read_fs_root_no_name(fs_info, &key);
2114         if (IS_ERR(root)) {
2115                 if (PTR_ERR(root) == -ENOENT)
2116                         return 0;
2117                 WARN_ON(1);
2118                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119                          inum, offset, root_id);
2120                 return PTR_ERR(root);
2121         }
2122
2123         key.objectid = inum;
2124         key.type = BTRFS_EXTENT_DATA_KEY;
2125         if (offset > (u64)-1 << 32)
2126                 key.offset = 0;
2127         else
2128                 key.offset = offset;
2129
2130         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2131         if (ret < 0) {
2132                 WARN_ON(1);
2133                 return ret;
2134         }
2135
2136         while (1) {
2137                 cond_resched();
2138
2139                 leaf = path->nodes[0];
2140                 slot = path->slots[0];
2141
2142                 if (slot >= btrfs_header_nritems(leaf)) {
2143                         ret = btrfs_next_leaf(root, path);
2144                         if (ret < 0) {
2145                                 goto out;
2146                         } else if (ret > 0) {
2147                                 ret = 0;
2148                                 goto out;
2149                         }
2150                         continue;
2151                 }
2152
2153                 path->slots[0]++;
2154
2155                 btrfs_item_key_to_cpu(leaf, &key, slot);
2156
2157                 if (key.objectid > inum)
2158                         goto out;
2159
2160                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2161                         continue;
2162
2163                 extent = btrfs_item_ptr(leaf, slot,
2164                                         struct btrfs_file_extent_item);
2165
2166                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2167                         continue;
2168
2169                 /*
2170                  * 'offset' refers to the exact key.offset,
2171                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2172                  * (key.offset - extent_offset).
2173                  */
2174                 if (key.offset != offset)
2175                         continue;
2176
2177                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2178                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2179
2180                 if (extent_offset >= old->extent_offset + old->offset +
2181                     old->len || extent_offset + num_bytes <=
2182                     old->extent_offset + old->offset)
2183                         continue;
2184
2185                 ret = 0;
2186                 break;
2187         }
2188
2189         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2190         if (!backref) {
2191                 ret = -ENOENT;
2192                 goto out;
2193         }
2194
2195         backref->root_id = root_id;
2196         backref->inum = inum;
2197         backref->file_pos = offset;
2198         backref->num_bytes = num_bytes;
2199         backref->extent_offset = extent_offset;
2200         backref->generation = btrfs_file_extent_generation(leaf, extent);
2201         backref->old = old;
2202         backref_insert(&new->root, backref);
2203         old->count++;
2204 out:
2205         btrfs_release_path(path);
2206         WARN_ON(ret);
2207         return ret;
2208 }
2209
2210 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2211                                    struct new_sa_defrag_extent *new)
2212 {
2213         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2214         struct old_sa_defrag_extent *old, *tmp;
2215         int ret;
2216
2217         new->path = path;
2218
2219         list_for_each_entry_safe(old, tmp, &new->head, list) {
2220                 ret = iterate_inodes_from_logical(old->bytenr +
2221                                                   old->extent_offset, fs_info,
2222                                                   path, record_one_backref,
2223                                                   old);
2224                 BUG_ON(ret < 0 && ret != -ENOENT);
2225
2226                 /* no backref to be processed for this extent */
2227                 if (!old->count) {
2228                         list_del(&old->list);
2229                         kfree(old);
2230                 }
2231         }
2232
2233         if (list_empty(&new->head))
2234                 return false;
2235
2236         return true;
2237 }
2238
2239 static int relink_is_mergable(struct extent_buffer *leaf,
2240                               struct btrfs_file_extent_item *fi,
2241                               u64 disk_bytenr)
2242 {
2243         if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2244                 return 0;
2245
2246         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2247                 return 0;
2248
2249         if (btrfs_file_extent_compression(leaf, fi) ||
2250             btrfs_file_extent_encryption(leaf, fi) ||
2251             btrfs_file_extent_other_encoding(leaf, fi))
2252                 return 0;
2253
2254         return 1;
2255 }
2256
2257 /*
2258  * Note the backref might has changed, and in this case we just return 0.
2259  */
2260 static noinline int relink_extent_backref(struct btrfs_path *path,
2261                                  struct sa_defrag_extent_backref *prev,
2262                                  struct sa_defrag_extent_backref *backref)
2263 {
2264         struct btrfs_file_extent_item *extent;
2265         struct btrfs_file_extent_item *item;
2266         struct btrfs_ordered_extent *ordered;
2267         struct btrfs_trans_handle *trans;
2268         struct btrfs_fs_info *fs_info;
2269         struct btrfs_root *root;
2270         struct btrfs_key key;
2271         struct extent_buffer *leaf;
2272         struct old_sa_defrag_extent *old = backref->old;
2273         struct new_sa_defrag_extent *new = old->new;
2274         struct inode *src_inode = new->inode;
2275         struct inode *inode;
2276         struct extent_state *cached = NULL;
2277         int ret = 0;
2278         u64 start;
2279         u64 len;
2280         u64 lock_start;
2281         u64 lock_end;
2282         bool merge = false;
2283         int index;
2284
2285         if (prev && prev->root_id == backref->root_id &&
2286             prev->inum == backref->inum &&
2287             prev->file_pos + prev->num_bytes == backref->file_pos)
2288                 merge = true;
2289
2290         /* step 1: get root */
2291         key.objectid = backref->root_id;
2292         key.type = BTRFS_ROOT_ITEM_KEY;
2293         key.offset = (u64)-1;
2294
2295         fs_info = BTRFS_I(src_inode)->root->fs_info;
2296         index = srcu_read_lock(&fs_info->subvol_srcu);
2297
2298         root = btrfs_read_fs_root_no_name(fs_info, &key);
2299         if (IS_ERR(root)) {
2300                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2301                 if (PTR_ERR(root) == -ENOENT)
2302                         return 0;
2303                 return PTR_ERR(root);
2304         }
2305
2306         /* step 2: get inode */
2307         key.objectid = backref->inum;
2308         key.type = BTRFS_INODE_ITEM_KEY;
2309         key.offset = 0;
2310
2311         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2312         if (IS_ERR(inode)) {
2313                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2314                 return 0;
2315         }
2316
2317         srcu_read_unlock(&fs_info->subvol_srcu, index);
2318
2319         /* step 3: relink backref */
2320         lock_start = backref->file_pos;
2321         lock_end = backref->file_pos + backref->num_bytes - 1;
2322         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2323                          0, &cached);
2324
2325         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2326         if (ordered) {
2327                 btrfs_put_ordered_extent(ordered);
2328                 goto out_unlock;
2329         }
2330
2331         trans = btrfs_join_transaction(root);
2332         if (IS_ERR(trans)) {
2333                 ret = PTR_ERR(trans);
2334                 goto out_unlock;
2335         }
2336
2337         key.objectid = backref->inum;
2338         key.type = BTRFS_EXTENT_DATA_KEY;
2339         key.offset = backref->file_pos;
2340
2341         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2342         if (ret < 0) {
2343                 goto out_free_path;
2344         } else if (ret > 0) {
2345                 ret = 0;
2346                 goto out_free_path;
2347         }
2348
2349         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2350                                 struct btrfs_file_extent_item);
2351
2352         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2353             backref->generation)
2354                 goto out_free_path;
2355
2356         btrfs_release_path(path);
2357
2358         start = backref->file_pos;
2359         if (backref->extent_offset < old->extent_offset + old->offset)
2360                 start += old->extent_offset + old->offset -
2361                          backref->extent_offset;
2362
2363         len = min(backref->extent_offset + backref->num_bytes,
2364                   old->extent_offset + old->offset + old->len);
2365         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2366
2367         ret = btrfs_drop_extents(trans, root, inode, start,
2368                                  start + len, 1);
2369         if (ret)
2370                 goto out_free_path;
2371 again:
2372         key.objectid = btrfs_ino(inode);
2373         key.type = BTRFS_EXTENT_DATA_KEY;
2374         key.offset = start;
2375
2376         path->leave_spinning = 1;
2377         if (merge) {
2378                 struct btrfs_file_extent_item *fi;
2379                 u64 extent_len;
2380                 struct btrfs_key found_key;
2381
2382                 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2383                 if (ret < 0)
2384                         goto out_free_path;
2385
2386                 path->slots[0]--;
2387                 leaf = path->nodes[0];
2388                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2389
2390                 fi = btrfs_item_ptr(leaf, path->slots[0],
2391                                     struct btrfs_file_extent_item);
2392                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2393
2394                 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2395                     extent_len + found_key.offset == start) {
2396                         btrfs_set_file_extent_num_bytes(leaf, fi,
2397                                                         extent_len + len);
2398                         btrfs_mark_buffer_dirty(leaf);
2399                         inode_add_bytes(inode, len);
2400
2401                         ret = 1;
2402                         goto out_free_path;
2403                 } else {
2404                         merge = false;
2405                         btrfs_release_path(path);
2406                         goto again;
2407                 }
2408         }
2409
2410         ret = btrfs_insert_empty_item(trans, root, path, &key,
2411                                         sizeof(*extent));
2412         if (ret) {
2413                 btrfs_abort_transaction(trans, root, ret);
2414                 goto out_free_path;
2415         }
2416
2417         leaf = path->nodes[0];
2418         item = btrfs_item_ptr(leaf, path->slots[0],
2419                                 struct btrfs_file_extent_item);
2420         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2421         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2422         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2423         btrfs_set_file_extent_num_bytes(leaf, item, len);
2424         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2425         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2426         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2427         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2428         btrfs_set_file_extent_encryption(leaf, item, 0);
2429         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2430
2431         btrfs_mark_buffer_dirty(leaf);
2432         inode_add_bytes(inode, len);
2433         btrfs_release_path(path);
2434
2435         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2436                         new->disk_len, 0,
2437                         backref->root_id, backref->inum,
2438                         new->file_pos, 0);      /* start - extent_offset */
2439         if (ret) {
2440                 btrfs_abort_transaction(trans, root, ret);
2441                 goto out_free_path;
2442         }
2443
2444         ret = 1;
2445 out_free_path:
2446         btrfs_release_path(path);
2447         path->leave_spinning = 0;
2448         btrfs_end_transaction(trans, root);
2449 out_unlock:
2450         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2451                              &cached, GFP_NOFS);
2452         iput(inode);
2453         return ret;
2454 }
2455
2456 static void relink_file_extents(struct new_sa_defrag_extent *new)
2457 {
2458         struct btrfs_path *path;
2459         struct old_sa_defrag_extent *old, *tmp;
2460         struct sa_defrag_extent_backref *backref;
2461         struct sa_defrag_extent_backref *prev = NULL;
2462         struct inode *inode;
2463         struct btrfs_root *root;
2464         struct rb_node *node;
2465         int ret;
2466
2467         inode = new->inode;
2468         root = BTRFS_I(inode)->root;
2469
2470         path = btrfs_alloc_path();
2471         if (!path)
2472                 return;
2473
2474         if (!record_extent_backrefs(path, new)) {
2475                 btrfs_free_path(path);
2476                 goto out;
2477         }
2478         btrfs_release_path(path);
2479
2480         while (1) {
2481                 node = rb_first(&new->root);
2482                 if (!node)
2483                         break;
2484                 rb_erase(node, &new->root);
2485
2486                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2487
2488                 ret = relink_extent_backref(path, prev, backref);
2489                 WARN_ON(ret < 0);
2490
2491                 kfree(prev);
2492
2493                 if (ret == 1)
2494                         prev = backref;
2495                 else
2496                         prev = NULL;
2497                 cond_resched();
2498         }
2499         kfree(prev);
2500
2501         btrfs_free_path(path);
2502
2503         list_for_each_entry_safe(old, tmp, &new->head, list) {
2504                 list_del(&old->list);
2505                 kfree(old);
2506         }
2507 out:
2508         atomic_dec(&root->fs_info->defrag_running);
2509         wake_up(&root->fs_info->transaction_wait);
2510
2511         kfree(new);
2512 }
2513
2514 static struct new_sa_defrag_extent *
2515 record_old_file_extents(struct inode *inode,
2516                         struct btrfs_ordered_extent *ordered)
2517 {
2518         struct btrfs_root *root = BTRFS_I(inode)->root;
2519         struct btrfs_path *path;
2520         struct btrfs_key key;
2521         struct old_sa_defrag_extent *old, *tmp;
2522         struct new_sa_defrag_extent *new;
2523         int ret;
2524
2525         new = kmalloc(sizeof(*new), GFP_NOFS);
2526         if (!new)
2527                 return NULL;
2528
2529         new->inode = inode;
2530         new->file_pos = ordered->file_offset;
2531         new->len = ordered->len;
2532         new->bytenr = ordered->start;
2533         new->disk_len = ordered->disk_len;
2534         new->compress_type = ordered->compress_type;
2535         new->root = RB_ROOT;
2536         INIT_LIST_HEAD(&new->head);
2537
2538         path = btrfs_alloc_path();
2539         if (!path)
2540                 goto out_kfree;
2541
2542         key.objectid = btrfs_ino(inode);
2543         key.type = BTRFS_EXTENT_DATA_KEY;
2544         key.offset = new->file_pos;
2545
2546         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2547         if (ret < 0)
2548                 goto out_free_path;
2549         if (ret > 0 && path->slots[0] > 0)
2550                 path->slots[0]--;
2551
2552         /* find out all the old extents for the file range */
2553         while (1) {
2554                 struct btrfs_file_extent_item *extent;
2555                 struct extent_buffer *l;
2556                 int slot;
2557                 u64 num_bytes;
2558                 u64 offset;
2559                 u64 end;
2560                 u64 disk_bytenr;
2561                 u64 extent_offset;
2562
2563                 l = path->nodes[0];
2564                 slot = path->slots[0];
2565
2566                 if (slot >= btrfs_header_nritems(l)) {
2567                         ret = btrfs_next_leaf(root, path);
2568                         if (ret < 0)
2569                                 goto out_free_list;
2570                         else if (ret > 0)
2571                                 break;
2572                         continue;
2573                 }
2574
2575                 btrfs_item_key_to_cpu(l, &key, slot);
2576
2577                 if (key.objectid != btrfs_ino(inode))
2578                         break;
2579                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2580                         break;
2581                 if (key.offset >= new->file_pos + new->len)
2582                         break;
2583
2584                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2585
2586                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2587                 if (key.offset + num_bytes < new->file_pos)
2588                         goto next;
2589
2590                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2591                 if (!disk_bytenr)
2592                         goto next;
2593
2594                 extent_offset = btrfs_file_extent_offset(l, extent);
2595
2596                 old = kmalloc(sizeof(*old), GFP_NOFS);
2597                 if (!old)
2598                         goto out_free_list;
2599
2600                 offset = max(new->file_pos, key.offset);
2601                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2602
2603                 old->bytenr = disk_bytenr;
2604                 old->extent_offset = extent_offset;
2605                 old->offset = offset - key.offset;
2606                 old->len = end - offset;
2607                 old->new = new;
2608                 old->count = 0;
2609                 list_add_tail(&old->list, &new->head);
2610 next:
2611                 path->slots[0]++;
2612                 cond_resched();
2613         }
2614
2615         btrfs_free_path(path);
2616         atomic_inc(&root->fs_info->defrag_running);
2617
2618         return new;
2619
2620 out_free_list:
2621         list_for_each_entry_safe(old, tmp, &new->head, list) {
2622                 list_del(&old->list);
2623                 kfree(old);
2624         }
2625 out_free_path:
2626         btrfs_free_path(path);
2627 out_kfree:
2628         kfree(new);
2629         return NULL;
2630 }
2631
2632 /*
2633  * helper function for btrfs_finish_ordered_io, this
2634  * just reads in some of the csum leaves to prime them into ram
2635  * before we start the transaction.  It limits the amount of btree
2636  * reads required while inside the transaction.
2637  */
2638 /* as ordered data IO finishes, this gets called so we can finish
2639  * an ordered extent if the range of bytes in the file it covers are
2640  * fully written.
2641  */
2642 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2643 {
2644         struct inode *inode = ordered_extent->inode;
2645         struct btrfs_root *root = BTRFS_I(inode)->root;
2646         struct btrfs_trans_handle *trans = NULL;
2647         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2648         struct extent_state *cached_state = NULL;
2649         struct new_sa_defrag_extent *new = NULL;
2650         int compress_type = 0;
2651         int ret;
2652         bool nolock;
2653
2654         nolock = btrfs_is_free_space_inode(inode);
2655
2656         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2657                 ret = -EIO;
2658                 goto out;
2659         }
2660
2661         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2662                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2663                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2664                 if (nolock)
2665                         trans = btrfs_join_transaction_nolock(root);
2666                 else
2667                         trans = btrfs_join_transaction(root);
2668                 if (IS_ERR(trans)) {
2669                         ret = PTR_ERR(trans);
2670                         trans = NULL;
2671                         goto out;
2672                 }
2673                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674                 ret = btrfs_update_inode_fallback(trans, root, inode);
2675                 if (ret) /* -ENOMEM or corruption */
2676                         btrfs_abort_transaction(trans, root, ret);
2677                 goto out;
2678         }
2679
2680         lock_extent_bits(io_tree, ordered_extent->file_offset,
2681                          ordered_extent->file_offset + ordered_extent->len - 1,
2682                          0, &cached_state);
2683
2684         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2685                         ordered_extent->file_offset + ordered_extent->len - 1,
2686                         EXTENT_DEFRAG, 1, cached_state);
2687         if (ret) {
2688                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2689                 if (last_snapshot >= BTRFS_I(inode)->generation)
2690                         /* the inode is shared */
2691                         new = record_old_file_extents(inode, ordered_extent);
2692
2693                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2694                         ordered_extent->file_offset + ordered_extent->len - 1,
2695                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2696         }
2697
2698         if (nolock)
2699                 trans = btrfs_join_transaction_nolock(root);
2700         else
2701                 trans = btrfs_join_transaction(root);
2702         if (IS_ERR(trans)) {
2703                 ret = PTR_ERR(trans);
2704                 trans = NULL;
2705                 goto out_unlock;
2706         }
2707         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2708
2709         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2710                 compress_type = ordered_extent->compress_type;
2711         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2712                 BUG_ON(compress_type);
2713                 ret = btrfs_mark_extent_written(trans, inode,
2714                                                 ordered_extent->file_offset,
2715                                                 ordered_extent->file_offset +
2716                                                 ordered_extent->len);
2717         } else {
2718                 BUG_ON(root == root->fs_info->tree_root);
2719                 ret = insert_reserved_file_extent(trans, inode,
2720                                                 ordered_extent->file_offset,
2721                                                 ordered_extent->start,
2722                                                 ordered_extent->disk_len,
2723                                                 ordered_extent->len,
2724                                                 ordered_extent->len,
2725                                                 compress_type, 0, 0,
2726                                                 BTRFS_FILE_EXTENT_REG);
2727         }
2728         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2729                            ordered_extent->file_offset, ordered_extent->len,
2730                            trans->transid);
2731         if (ret < 0) {
2732                 btrfs_abort_transaction(trans, root, ret);
2733                 goto out_unlock;
2734         }
2735
2736         add_pending_csums(trans, inode, ordered_extent->file_offset,
2737                           &ordered_extent->list);
2738
2739         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740         ret = btrfs_update_inode_fallback(trans, root, inode);
2741         if (ret) { /* -ENOMEM or corruption */
2742                 btrfs_abort_transaction(trans, root, ret);
2743                 goto out_unlock;
2744         }
2745         ret = 0;
2746 out_unlock:
2747         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2748                              ordered_extent->file_offset +
2749                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2750 out:
2751         if (root != root->fs_info->tree_root)
2752                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2753         if (trans)
2754                 btrfs_end_transaction(trans, root);
2755
2756         if (ret) {
2757                 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2758                                       ordered_extent->file_offset +
2759                                       ordered_extent->len - 1, NULL, GFP_NOFS);
2760
2761                 /*
2762                  * If the ordered extent had an IOERR or something else went
2763                  * wrong we need to return the space for this ordered extent
2764                  * back to the allocator.
2765                  */
2766                 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2767                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2768                         btrfs_free_reserved_extent(root, ordered_extent->start,
2769                                                    ordered_extent->disk_len);
2770         }
2771
2772
2773         /*
2774          * This needs to be done to make sure anybody waiting knows we are done
2775          * updating everything for this ordered extent.
2776          */
2777         btrfs_remove_ordered_extent(inode, ordered_extent);
2778
2779         /* for snapshot-aware defrag */
2780         if (new)
2781                 relink_file_extents(new);
2782
2783         /* once for us */
2784         btrfs_put_ordered_extent(ordered_extent);
2785         /* once for the tree */
2786         btrfs_put_ordered_extent(ordered_extent);
2787
2788         return ret;
2789 }
2790
2791 static void finish_ordered_fn(struct btrfs_work *work)
2792 {
2793         struct btrfs_ordered_extent *ordered_extent;
2794         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2795         btrfs_finish_ordered_io(ordered_extent);
2796 }
2797
2798 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2799                                 struct extent_state *state, int uptodate)
2800 {
2801         struct inode *inode = page->mapping->host;
2802         struct btrfs_root *root = BTRFS_I(inode)->root;
2803         struct btrfs_ordered_extent *ordered_extent = NULL;
2804         struct btrfs_workers *workers;
2805
2806         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2807
2808         ClearPagePrivate2(page);
2809         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2810                                             end - start + 1, uptodate))
2811                 return 0;
2812
2813         ordered_extent->work.func = finish_ordered_fn;
2814         ordered_extent->work.flags = 0;
2815
2816         if (btrfs_is_free_space_inode(inode))
2817                 workers = &root->fs_info->endio_freespace_worker;
2818         else
2819                 workers = &root->fs_info->endio_write_workers;
2820         btrfs_queue_worker(workers, &ordered_extent->work);
2821
2822         return 0;
2823 }
2824
2825 /*
2826  * when reads are done, we need to check csums to verify the data is correct
2827  * if there's a match, we allow the bio to finish.  If not, the code in
2828  * extent_io.c will try to find good copies for us.
2829  */
2830 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2831                                struct extent_state *state, int mirror)
2832 {
2833         size_t offset = start - page_offset(page);
2834         struct inode *inode = page->mapping->host;
2835         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2836         char *kaddr;
2837         u64 private = ~(u32)0;
2838         int ret;
2839         struct btrfs_root *root = BTRFS_I(inode)->root;
2840         u32 csum = ~(u32)0;
2841         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2842                                       DEFAULT_RATELIMIT_BURST);
2843
2844         if (PageChecked(page)) {
2845                 ClearPageChecked(page);
2846                 goto good;
2847         }
2848
2849         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2850                 goto good;
2851
2852         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2853             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2854                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2855                                   GFP_NOFS);
2856                 return 0;
2857         }
2858
2859         if (state && state->start == start) {
2860                 private = state->private;
2861                 ret = 0;
2862         } else {
2863                 ret = get_state_private(io_tree, start, &private);
2864         }
2865         kaddr = kmap_atomic(page);
2866         if (ret)
2867                 goto zeroit;
2868
2869         csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2870         btrfs_csum_final(csum, (char *)&csum);
2871         if (csum != private)
2872                 goto zeroit;
2873
2874         kunmap_atomic(kaddr);
2875 good:
2876         return 0;
2877
2878 zeroit:
2879         if (__ratelimit(&_rs))
2880                 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2881                         (unsigned long long)btrfs_ino(page->mapping->host),
2882                         (unsigned long long)start, csum,
2883                         (unsigned long long)private);
2884         memset(kaddr + offset, 1, end - start + 1);
2885         flush_dcache_page(page);
2886         kunmap_atomic(kaddr);
2887         if (private == 0)
2888                 return 0;
2889         return -EIO;
2890 }
2891
2892 struct delayed_iput {
2893         struct list_head list;
2894         struct inode *inode;
2895 };
2896
2897 /* JDM: If this is fs-wide, why can't we add a pointer to
2898  * btrfs_inode instead and avoid the allocation? */
2899 void btrfs_add_delayed_iput(struct inode *inode)
2900 {
2901         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902         struct delayed_iput *delayed;
2903
2904         if (atomic_add_unless(&inode->i_count, -1, 1))
2905                 return;
2906
2907         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908         delayed->inode = inode;
2909
2910         spin_lock(&fs_info->delayed_iput_lock);
2911         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912         spin_unlock(&fs_info->delayed_iput_lock);
2913 }
2914
2915 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2916 {
2917         LIST_HEAD(list);
2918         struct btrfs_fs_info *fs_info = root->fs_info;
2919         struct delayed_iput *delayed;
2920         int empty;
2921
2922         spin_lock(&fs_info->delayed_iput_lock);
2923         empty = list_empty(&fs_info->delayed_iputs);
2924         spin_unlock(&fs_info->delayed_iput_lock);
2925         if (empty)
2926                 return;
2927
2928         spin_lock(&fs_info->delayed_iput_lock);
2929         list_splice_init(&fs_info->delayed_iputs, &list);
2930         spin_unlock(&fs_info->delayed_iput_lock);
2931
2932         while (!list_empty(&list)) {
2933                 delayed = list_entry(list.next, struct delayed_iput, list);
2934                 list_del(&delayed->list);
2935                 iput(delayed->inode);
2936                 kfree(delayed);
2937         }
2938 }
2939
2940 /*
2941  * This is called in transaction commit time. If there are no orphan
2942  * files in the subvolume, it removes orphan item and frees block_rsv
2943  * structure.
2944  */
2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946                               struct btrfs_root *root)
2947 {
2948         struct btrfs_block_rsv *block_rsv;
2949         int ret;
2950
2951         if (atomic_read(&root->orphan_inodes) ||
2952             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2953                 return;
2954
2955         spin_lock(&root->orphan_lock);
2956         if (atomic_read(&root->orphan_inodes)) {
2957                 spin_unlock(&root->orphan_lock);
2958                 return;
2959         }
2960
2961         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962                 spin_unlock(&root->orphan_lock);
2963                 return;
2964         }
2965
2966         block_rsv = root->orphan_block_rsv;
2967         root->orphan_block_rsv = NULL;
2968         spin_unlock(&root->orphan_lock);
2969
2970         if (root->orphan_item_inserted &&
2971             btrfs_root_refs(&root->root_item) > 0) {
2972                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973                                             root->root_key.objectid);
2974                 BUG_ON(ret);
2975                 root->orphan_item_inserted = 0;
2976         }
2977
2978         if (block_rsv) {
2979                 WARN_ON(block_rsv->size > 0);
2980                 btrfs_free_block_rsv(root, block_rsv);
2981         }
2982 }
2983
2984 /*
2985  * This creates an orphan entry for the given inode in case something goes
2986  * wrong in the middle of an unlink/truncate.
2987  *
2988  * NOTE: caller of this function should reserve 5 units of metadata for
2989  *       this function.
2990  */
2991 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2992 {
2993         struct btrfs_root *root = BTRFS_I(inode)->root;
2994         struct btrfs_block_rsv *block_rsv = NULL;
2995         int reserve = 0;
2996         int insert = 0;
2997         int ret;
2998
2999         if (!root->orphan_block_rsv) {
3000                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3001                 if (!block_rsv)
3002                         return -ENOMEM;
3003         }
3004
3005         spin_lock(&root->orphan_lock);
3006         if (!root->orphan_block_rsv) {
3007                 root->orphan_block_rsv = block_rsv;
3008         } else if (block_rsv) {
3009                 btrfs_free_block_rsv(root, block_rsv);
3010                 block_rsv = NULL;
3011         }
3012
3013         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014                               &BTRFS_I(inode)->runtime_flags)) {
3015 #if 0
3016                 /*
3017                  * For proper ENOSPC handling, we should do orphan
3018                  * cleanup when mounting. But this introduces backward
3019                  * compatibility issue.
3020                  */
3021                 if (!xchg(&root->orphan_item_inserted, 1))
3022                         insert = 2;
3023                 else
3024                         insert = 1;
3025 #endif
3026                 insert = 1;
3027                 atomic_inc(&root->orphan_inodes);
3028         }
3029
3030         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3031                               &BTRFS_I(inode)->runtime_flags))
3032                 reserve = 1;
3033         spin_unlock(&root->orphan_lock);
3034
3035         /* grab metadata reservation from transaction handle */
3036         if (reserve) {
3037                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3038                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3039         }
3040
3041         /* insert an orphan item to track this unlinked/truncated file */
3042         if (insert >= 1) {
3043                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3044                 if (ret && ret != -EEXIST) {
3045                         clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3046                                   &BTRFS_I(inode)->runtime_flags);
3047                         btrfs_abort_transaction(trans, root, ret);
3048                         return ret;
3049                 }
3050                 ret = 0;
3051         }
3052
3053         /* insert an orphan item to track subvolume contains orphan files */
3054         if (insert >= 2) {
3055                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3056                                                root->root_key.objectid);
3057                 if (ret && ret != -EEXIST) {
3058                         btrfs_abort_transaction(trans, root, ret);
3059                         return ret;
3060                 }
3061         }
3062         return 0;
3063 }
3064
3065 /*
3066  * We have done the truncate/delete so we can go ahead and remove the orphan
3067  * item for this particular inode.
3068  */
3069 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3070                             struct inode *inode)
3071 {
3072         struct btrfs_root *root = BTRFS_I(inode)->root;
3073         int delete_item = 0;
3074         int release_rsv = 0;
3075         int ret = 0;
3076
3077         spin_lock(&root->orphan_lock);
3078         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3079                                &BTRFS_I(inode)->runtime_flags))
3080                 delete_item = 1;
3081
3082         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3083                                &BTRFS_I(inode)->runtime_flags))
3084                 release_rsv = 1;
3085         spin_unlock(&root->orphan_lock);
3086
3087         if (trans && delete_item) {
3088                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3089                 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3090         }
3091
3092         if (release_rsv) {
3093                 btrfs_orphan_release_metadata(inode);
3094                 atomic_dec(&root->orphan_inodes);
3095         }
3096
3097         return 0;
3098 }
3099
3100 /*
3101  * this cleans up any orphans that may be left on the list from the last use
3102  * of this root.
3103  */
3104 int btrfs_orphan_cleanup(struct btrfs_root *root)
3105 {
3106         struct btrfs_path *path;
3107         struct extent_buffer *leaf;
3108         struct btrfs_key key, found_key;
3109         struct btrfs_trans_handle *trans;
3110         struct inode *inode;
3111         u64 last_objectid = 0;
3112         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3113
3114         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3115                 return 0;
3116
3117         path = btrfs_alloc_path();
3118         if (!path) {
3119                 ret = -ENOMEM;
3120                 goto out;
3121         }
3122         path->reada = -1;
3123
3124         key.objectid = BTRFS_ORPHAN_OBJECTID;
3125         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3126         key.offset = (u64)-1;
3127
3128         while (1) {
3129                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3130                 if (ret < 0)
3131                         goto out;
3132
3133                 /*
3134                  * if ret == 0 means we found what we were searching for, which
3135                  * is weird, but possible, so only screw with path if we didn't
3136                  * find the key and see if we have stuff that matches
3137                  */
3138                 if (ret > 0) {
3139                         ret = 0;
3140                         if (path->slots[0] == 0)
3141                                 break;
3142                         path->slots[0]--;
3143                 }
3144
3145                 /* pull out the item */
3146                 leaf = path->nodes[0];
3147                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3148
3149                 /* make sure the item matches what we want */
3150                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3151                         break;
3152                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3153                         break;
3154
3155                 /* release the path since we're done with it */
3156                 btrfs_release_path(path);
3157
3158                 /*
3159                  * this is where we are basically btrfs_lookup, without the
3160                  * crossing root thing.  we store the inode number in the
3161                  * offset of the orphan item.
3162                  */
3163
3164                 if (found_key.offset == last_objectid) {
3165                         btrfs_err(root->fs_info,
3166                                 "Error removing orphan entry, stopping orphan cleanup");
3167                         ret = -EINVAL;
3168                         goto out;
3169                 }
3170
3171                 last_objectid = found_key.offset;
3172
3173                 found_key.objectid = found_key.offset;
3174                 found_key.type = BTRFS_INODE_ITEM_KEY;
3175                 found_key.offset = 0;
3176                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3177                 ret = PTR_RET(inode);
3178                 if (ret && ret != -ESTALE)
3179                         goto out;
3180
3181                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3182                         struct btrfs_root *dead_root;
3183                         struct btrfs_fs_info *fs_info = root->fs_info;
3184                         int is_dead_root = 0;
3185
3186                         /*
3187                          * this is an orphan in the tree root. Currently these
3188                          * could come from 2 sources:
3189                          *  a) a snapshot deletion in progress
3190                          *  b) a free space cache inode
3191                          * We need to distinguish those two, as the snapshot
3192                          * orphan must not get deleted.
3193                          * find_dead_roots already ran before us, so if this
3194                          * is a snapshot deletion, we should find the root
3195                          * in the dead_roots list
3196                          */
3197                         spin_lock(&fs_info->trans_lock);
3198                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3199                                             root_list) {
3200                                 if (dead_root->root_key.objectid ==
3201                                     found_key.objectid) {
3202                                         is_dead_root = 1;
3203                                         break;
3204                                 }
3205                         }
3206                         spin_unlock(&fs_info->trans_lock);
3207                         if (is_dead_root) {
3208                                 /* prevent this orphan from being found again */
3209                                 key.offset = found_key.objectid - 1;
3210                                 continue;
3211                         }
3212                 }
3213                 /*
3214                  * Inode is already gone but the orphan item is still there,
3215                  * kill the orphan item.
3216                  */
3217                 if (ret == -ESTALE) {
3218                         trans = btrfs_start_transaction(root, 1);
3219                         if (IS_ERR(trans)) {
3220                                 ret = PTR_ERR(trans);
3221                                 goto out;
3222                         }
3223                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3224                                 found_key.objectid);
3225                         ret = btrfs_del_orphan_item(trans, root,
3226                                                     found_key.objectid);
3227                         BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3228                         btrfs_end_transaction(trans, root);
3229                         continue;
3230                 }
3231
3232                 /*
3233                  * add this inode to the orphan list so btrfs_orphan_del does
3234                  * the proper thing when we hit it
3235                  */
3236                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3237                         &BTRFS_I(inode)->runtime_flags);
3238                 atomic_inc(&root->orphan_inodes);
3239
3240                 /* if we have links, this was a truncate, lets do that */
3241                 if (inode->i_nlink) {
3242                         if (!S_ISREG(inode->i_mode)) {
3243                                 WARN_ON(1);
3244                                 iput(inode);
3245                                 continue;
3246                         }
3247                         nr_truncate++;
3248
3249                         /* 1 for the orphan item deletion. */
3250                         trans = btrfs_start_transaction(root, 1);
3251                         if (IS_ERR(trans)) {
3252                                 iput(inode);
3253                                 ret = PTR_ERR(trans);
3254                                 goto out;
3255                         }
3256                         ret = btrfs_orphan_add(trans, inode);
3257                         btrfs_end_transaction(trans, root);
3258                         if (ret) {
3259                                 iput(inode);
3260                                 goto out;
3261                         }
3262
3263                         ret = btrfs_truncate(inode);
3264                         if (ret)
3265                                 btrfs_orphan_del(NULL, inode);
3266                 } else {
3267                         nr_unlink++;
3268                 }
3269
3270                 /* this will do delete_inode and everything for us */
3271                 iput(inode);
3272                 if (ret)
3273                         goto out;
3274         }
3275         /* release the path since we're done with it */
3276         btrfs_release_path(path);
3277
3278         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3279
3280         if (root->orphan_block_rsv)
3281                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3282                                         (u64)-1);
3283
3284         if (root->orphan_block_rsv || root->orphan_item_inserted) {
3285                 trans = btrfs_join_transaction(root);
3286                 if (!IS_ERR(trans))
3287                         btrfs_end_transaction(trans, root);
3288         }
3289
3290         if (nr_unlink)
3291                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3292         if (nr_truncate)
3293                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3294
3295 out:
3296         if (ret)
3297                 btrfs_crit(root->fs_info,
3298                         "could not do orphan cleanup %d", ret);
3299         btrfs_free_path(path);
3300         return ret;
3301 }
3302
3303 /*
3304  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3305  * don't find any xattrs, we know there can't be any acls.
3306  *
3307  * slot is the slot the inode is in, objectid is the objectid of the inode
3308  */
3309 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3310                                           int slot, u64 objectid)
3311 {
3312         u32 nritems = btrfs_header_nritems(leaf);
3313         struct btrfs_key found_key;
3314         static u64 xattr_access = 0;
3315         static u64 xattr_default = 0;
3316         int scanned = 0;
3317
3318         if (!xattr_access) {
3319                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3320                                         strlen(POSIX_ACL_XATTR_ACCESS));
3321                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3322                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3323         }
3324
3325         slot++;
3326         while (slot < nritems) {
3327                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3328
3329                 /* we found a different objectid, there must not be acls */
3330                 if (found_key.objectid != objectid)
3331                         return 0;
3332
3333                 /* we found an xattr, assume we've got an acl */
3334                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3335                         if (found_key.offset == xattr_access ||
3336                             found_key.offset == xattr_default)
3337                                 return 1;
3338                 }
3339
3340                 /*
3341                  * we found a key greater than an xattr key, there can't
3342                  * be any acls later on
3343                  */
3344                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3345                         return 0;
3346
3347                 slot++;
3348                 scanned++;
3349
3350                 /*
3351                  * it goes inode, inode backrefs, xattrs, extents,
3352                  * so if there are a ton of hard links to an inode there can
3353                  * be a lot of backrefs.  Don't waste time searching too hard,
3354                  * this is just an optimization
3355                  */
3356                 if (scanned >= 8)
3357                         break;
3358         }
3359         /* we hit the end of the leaf before we found an xattr or
3360          * something larger than an xattr.  We have to assume the inode
3361          * has acls
3362          */
3363         return 1;
3364 }
3365
3366 /*
3367  * read an inode from the btree into the in-memory inode
3368  */
3369 static void btrfs_read_locked_inode(struct inode *inode)
3370 {
3371         struct btrfs_path *path;
3372         struct extent_buffer *leaf;
3373         struct btrfs_inode_item *inode_item;
3374         struct btrfs_timespec *tspec;
3375         struct btrfs_root *root = BTRFS_I(inode)->root;
3376         struct btrfs_key location;
3377         int maybe_acls;
3378         u32 rdev;
3379         int ret;
3380         bool filled = false;
3381
3382         ret = btrfs_fill_inode(inode, &rdev);
3383         if (!ret)
3384                 filled = true;
3385
3386         path = btrfs_alloc_path();
3387         if (!path)
3388                 goto make_bad;
3389
3390         path->leave_spinning = 1;
3391         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3392
3393         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3394         if (ret)
3395                 goto make_bad;
3396
3397         leaf = path->nodes[0];
3398
3399         if (filled)
3400                 goto cache_acl;
3401
3402         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3403                                     struct btrfs_inode_item);
3404         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3405         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3406         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3407         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3408         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3409
3410         tspec = btrfs_inode_atime(inode_item);
3411         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413
3414         tspec = btrfs_inode_mtime(inode_item);
3415         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3416         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3417
3418         tspec = btrfs_inode_ctime(inode_item);
3419         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3420         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3421
3422         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3423         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3424         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3425
3426         /*
3427          * If we were modified in the current generation and evicted from memory
3428          * and then re-read we need to do a full sync since we don't have any
3429          * idea about which extents were modified before we were evicted from
3430          * cache.
3431          */
3432         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3433                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434                         &BTRFS_I(inode)->runtime_flags);
3435
3436         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3437         inode->i_generation = BTRFS_I(inode)->generation;
3438         inode->i_rdev = 0;
3439         rdev = btrfs_inode_rdev(leaf, inode_item);
3440
3441         BTRFS_I(inode)->index_cnt = (u64)-1;
3442         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3443 cache_acl:
3444         /*
3445          * try to precache a NULL acl entry for files that don't have
3446          * any xattrs or acls
3447          */
3448         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3449                                            btrfs_ino(inode));
3450         if (!maybe_acls)
3451                 cache_no_acl(inode);
3452
3453         btrfs_free_path(path);
3454
3455         switch (inode->i_mode & S_IFMT) {
3456         case S_IFREG:
3457                 inode->i_mapping->a_ops = &btrfs_aops;
3458                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3459                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3460                 inode->i_fop = &btrfs_file_operations;
3461                 inode->i_op = &btrfs_file_inode_operations;
3462                 break;
3463         case S_IFDIR:
3464                 inode->i_fop = &btrfs_dir_file_operations;
3465                 if (root == root->fs_info->tree_root)
3466                         inode->i_op = &btrfs_dir_ro_inode_operations;
3467                 else
3468                         inode->i_op = &btrfs_dir_inode_operations;
3469                 break;
3470         case S_IFLNK:
3471                 inode->i_op = &btrfs_symlink_inode_operations;
3472                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3473                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3474                 break;
3475         default:
3476                 inode->i_op = &btrfs_special_inode_operations;
3477                 init_special_inode(inode, inode->i_mode, rdev);
3478                 break;
3479         }
3480
3481         btrfs_update_iflags(inode);
3482         return;
3483
3484 make_bad:
3485         btrfs_free_path(path);
3486         make_bad_inode(inode);
3487 }
3488
3489 /*
3490  * given a leaf and an inode, copy the inode fields into the leaf
3491  */
3492 static void fill_inode_item(struct btrfs_trans_handle *trans,
3493                             struct extent_buffer *leaf,
3494                             struct btrfs_inode_item *item,
3495                             struct inode *inode)
3496 {
3497         struct btrfs_map_token token;
3498
3499         btrfs_init_map_token(&token);
3500
3501         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3502         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3503         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3504                                    &token);
3505         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3506         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3507
3508         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3509                                      inode->i_atime.tv_sec, &token);
3510         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3511                                       inode->i_atime.tv_nsec, &token);
3512
3513         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3514                                      inode->i_mtime.tv_sec, &token);
3515         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3516                                       inode->i_mtime.tv_nsec, &token);
3517
3518         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3519                                      inode->i_ctime.tv_sec, &token);
3520         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3521                                       inode->i_ctime.tv_nsec, &token);
3522
3523         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3524                                      &token);
3525         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3526                                          &token);
3527         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3528         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3529         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3530         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3531         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3532 }
3533
3534 /*
3535  * copy everything in the in-memory inode into the btree.
3536  */
3537 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3538                                 struct btrfs_root *root, struct inode *inode)
3539 {
3540         struct btrfs_inode_item *inode_item;
3541         struct btrfs_path *path;
3542         struct extent_buffer *leaf;
3543         int ret;
3544
3545         path = btrfs_alloc_path();
3546         if (!path)
3547                 return -ENOMEM;
3548
3549         path->leave_spinning = 1;
3550         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3551                                  1);
3552         if (ret) {
3553                 if (ret > 0)
3554                         ret = -ENOENT;
3555                 goto failed;
3556         }
3557
3558         btrfs_unlock_up_safe(path, 1);
3559         leaf = path->nodes[0];
3560         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3561                                     struct btrfs_inode_item);
3562
3563         fill_inode_item(trans, leaf, inode_item, inode);
3564         btrfs_mark_buffer_dirty(leaf);
3565         btrfs_set_inode_last_trans(trans, inode);
3566         ret = 0;
3567 failed:
3568         btrfs_free_path(path);
3569         return ret;
3570 }
3571
3572 /*
3573  * copy everything in the in-memory inode into the btree.
3574  */
3575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3576                                 struct btrfs_root *root, struct inode *inode)
3577 {
3578         int ret;
3579
3580         /*
3581          * If the inode is a free space inode, we can deadlock during commit
3582          * if we put it into the delayed code.
3583          *
3584          * The data relocation inode should also be directly updated
3585          * without delay
3586          */
3587         if (!btrfs_is_free_space_inode(inode)
3588             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3589                 btrfs_update_root_times(trans, root);
3590
3591                 ret = btrfs_delayed_update_inode(trans, root, inode);
3592                 if (!ret)
3593                         btrfs_set_inode_last_trans(trans, inode);
3594                 return ret;
3595         }
3596
3597         return btrfs_update_inode_item(trans, root, inode);
3598 }
3599
3600 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3601                                          struct btrfs_root *root,
3602                                          struct inode *inode)
3603 {
3604         int ret;
3605
3606         ret = btrfs_update_inode(trans, root, inode);
3607         if (ret == -ENOSPC)
3608                 return btrfs_update_inode_item(trans, root, inode);
3609         return ret;
3610 }
3611
3612 /*
3613  * unlink helper that gets used here in inode.c and in the tree logging
3614  * recovery code.  It remove a link in a directory with a given name, and
3615  * also drops the back refs in the inode to the directory
3616  */
3617 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3618                                 struct btrfs_root *root,
3619                                 struct inode *dir, struct inode *inode,
3620                                 const char *name, int name_len)
3621 {
3622         struct btrfs_path *path;
3623         int ret = 0;
3624         struct extent_buffer *leaf;
3625         struct btrfs_dir_item *di;
3626         struct btrfs_key key;
3627         u64 index;
3628         u64 ino = btrfs_ino(inode);
3629         u64 dir_ino = btrfs_ino(dir);
3630
3631         path = btrfs_alloc_path();
3632         if (!path) {
3633                 ret = -ENOMEM;
3634                 goto out;
3635         }
3636
3637         path->leave_spinning = 1;
3638         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3639                                     name, name_len, -1);
3640         if (IS_ERR(di)) {
3641                 ret = PTR_ERR(di);
3642                 goto err;
3643         }
3644         if (!di) {
3645                 ret = -ENOENT;
3646                 goto err;
3647         }
3648         leaf = path->nodes[0];
3649         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3650         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3651         if (ret)
3652                 goto err;
3653         btrfs_release_path(path);
3654
3655         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3656                                   dir_ino, &index);
3657         if (ret) {
3658                 btrfs_info(root->fs_info,
3659                         "failed to delete reference to %.*s, inode %llu parent %llu",
3660                         name_len, name,
3661                         (unsigned long long)ino, (unsigned long long)dir_ino);
3662                 btrfs_abort_transaction(trans, root, ret);
3663                 goto err;
3664         }
3665
3666         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3667         if (ret) {
3668                 btrfs_abort_transaction(trans, root, ret);
3669                 goto err;
3670         }
3671
3672         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3673                                          inode, dir_ino);
3674         if (ret != 0 && ret != -ENOENT) {
3675                 btrfs_abort_transaction(trans, root, ret);
3676                 goto err;
3677         }
3678
3679         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3680                                            dir, index);
3681         if (ret == -ENOENT)
3682                 ret = 0;
3683         else if (ret)
3684                 btrfs_abort_transaction(trans, root, ret);
3685 err:
3686         btrfs_free_path(path);
3687         if (ret)
3688                 goto out;
3689
3690         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3691         inode_inc_iversion(inode);
3692         inode_inc_iversion(dir);
3693         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3694         ret = btrfs_update_inode(trans, root, dir);
3695 out:
3696         return ret;
3697 }
3698
3699 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3700                        struct btrfs_root *root,
3701                        struct inode *dir, struct inode *inode,
3702                        const char *name, int name_len)
3703 {
3704         int ret;
3705         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3706         if (!ret) {
3707                 btrfs_drop_nlink(inode);
3708                 ret = btrfs_update_inode(trans, root, inode);
3709         }
3710         return ret;
3711 }
3712
3713 /*
3714  * helper to start transaction for unlink and rmdir.
3715  *
3716  * unlink and rmdir are special in btrfs, they do not always free space, so
3717  * if we cannot make our reservations the normal way try and see if there is
3718  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3719  * allow the unlink to occur.
3720  */
3721 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3722 {
3723         struct btrfs_trans_handle *trans;
3724         struct btrfs_root *root = BTRFS_I(dir)->root;
3725         int ret;
3726
3727         /*
3728          * 1 for the possible orphan item
3729          * 1 for the dir item
3730          * 1 for the dir index
3731          * 1 for the inode ref
3732          * 1 for the inode
3733          */
3734         trans = btrfs_start_transaction(root, 5);
3735         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3736                 return trans;
3737
3738         if (PTR_ERR(trans) == -ENOSPC) {
3739                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3740
3741                 trans = btrfs_start_transaction(root, 0);
3742                 if (IS_ERR(trans))
3743                         return trans;
3744                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3745                                                &root->fs_info->trans_block_rsv,
3746                                                num_bytes, 5);
3747                 if (ret) {
3748                         btrfs_end_transaction(trans, root);
3749                         return ERR_PTR(ret);
3750                 }
3751                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3752                 trans->bytes_reserved = num_bytes;
3753         }
3754         return trans;
3755 }
3756
3757 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3758 {
3759         struct btrfs_root *root = BTRFS_I(dir)->root;
3760         struct btrfs_trans_handle *trans;
3761         struct inode *inode = dentry->d_inode;
3762         int ret;
3763
3764         trans = __unlink_start_trans(dir);
3765         if (IS_ERR(trans))
3766                 return PTR_ERR(trans);
3767
3768         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3769
3770         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3771                                  dentry->d_name.name, dentry->d_name.len);
3772         if (ret)
3773                 goto out;
3774
3775         if (inode->i_nlink == 0) {
3776                 ret = btrfs_orphan_add(trans, inode);
3777                 if (ret)
3778                         goto out;
3779         }
3780
3781 out:
3782         btrfs_end_transaction(trans, root);
3783         btrfs_btree_balance_dirty(root);
3784         return ret;
3785 }
3786
3787 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3788                         struct btrfs_root *root,
3789                         struct inode *dir, u64 objectid,
3790                         const char *name, int name_len)
3791 {
3792         struct btrfs_path *path;
3793         struct extent_buffer *leaf;
3794         struct btrfs_dir_item *di;
3795         struct btrfs_key key;
3796         u64 index;
3797         int ret;
3798         u64 dir_ino = btrfs_ino(dir);
3799
3800         path = btrfs_alloc_path();
3801         if (!path)
3802                 return -ENOMEM;
3803
3804         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3805                                    name, name_len, -1);
3806         if (IS_ERR_OR_NULL(di)) {
3807                 if (!di)
3808                         ret = -ENOENT;
3809                 else
3810                         ret = PTR_ERR(di);
3811                 goto out;
3812         }
3813
3814         leaf = path->nodes[0];
3815         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3816         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3817         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3818         if (ret) {
3819                 btrfs_abort_transaction(trans, root, ret);
3820                 goto out;
3821         }
3822         btrfs_release_path(path);
3823
3824         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3825                                  objectid, root->root_key.objectid,
3826                                  dir_ino, &index, name, name_len);
3827         if (ret < 0) {
3828                 if (ret != -ENOENT) {
3829                         btrfs_abort_transaction(trans, root, ret);
3830                         goto out;
3831                 }
3832                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3833                                                  name, name_len);
3834                 if (IS_ERR_OR_NULL(di)) {
3835                         if (!di)
3836                                 ret = -ENOENT;
3837                         else
3838                                 ret = PTR_ERR(di);
3839                         btrfs_abort_transaction(trans, root, ret);
3840                         goto out;
3841                 }
3842
3843                 leaf = path->nodes[0];
3844                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3845                 btrfs_release_path(path);
3846                 index = key.offset;
3847         }
3848         btrfs_release_path(path);
3849
3850         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3851         if (ret) {
3852                 btrfs_abort_transaction(trans, root, ret);
3853                 goto out;
3854         }
3855
3856         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3857         inode_inc_iversion(dir);
3858         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3859         ret = btrfs_update_inode_fallback(trans, root, dir);
3860         if (ret)
3861                 btrfs_abort_transaction(trans, root, ret);
3862 out:
3863         btrfs_free_path(path);
3864         return ret;
3865 }
3866
3867 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3868 {
3869         struct inode *inode = dentry->d_inode;
3870         int err = 0;
3871         struct btrfs_root *root = BTRFS_I(dir)->root;
3872         struct btrfs_trans_handle *trans;
3873
3874         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3875                 return -ENOTEMPTY;
3876         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3877                 return -EPERM;
3878
3879         trans = __unlink_start_trans(dir);
3880         if (IS_ERR(trans))
3881                 return PTR_ERR(trans);
3882
3883         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3884                 err = btrfs_unlink_subvol(trans, root, dir,
3885                                           BTRFS_I(inode)->location.objectid,
3886                                           dentry->d_name.name,
3887                                           dentry->d_name.len);
3888                 goto out;
3889         }
3890
3891         err = btrfs_orphan_add(trans, inode);
3892         if (err)
3893                 goto out;
3894
3895         /* now the directory is empty */
3896         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3897                                  dentry->d_name.name, dentry->d_name.len);
3898         if (!err)
3899                 btrfs_i_size_write(inode, 0);
3900 out:
3901         btrfs_end_transaction(trans, root);
3902         btrfs_btree_balance_dirty(root);
3903
3904         return err;
3905 }
3906
3907 /*
3908  * this can truncate away extent items, csum items and directory items.
3909  * It starts at a high offset and removes keys until it can't find
3910  * any higher than new_size
3911  *
3912  * csum items that cross the new i_size are truncated to the new size
3913  * as well.
3914  *
3915  * min_type is the minimum key type to truncate down to.  If set to 0, this
3916  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3917  */
3918 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3919                                struct btrfs_root *root,
3920                                struct inode *inode,
3921                                u64 new_size, u32 min_type)
3922 {
3923         struct btrfs_path *path;
3924         struct extent_buffer *leaf;
3925         struct btrfs_file_extent_item *fi;
3926         struct btrfs_key key;
3927         struct btrfs_key found_key;
3928         u64 extent_start = 0;
3929         u64 extent_num_bytes = 0;
3930         u64 extent_offset = 0;
3931         u64 item_end = 0;
3932         u32 found_type = (u8)-1;
3933         int found_extent;
3934         int del_item;
3935         int pending_del_nr = 0;
3936         int pending_del_slot = 0;
3937         int extent_type = -1;
3938         int ret;
3939         int err = 0;
3940         u64 ino = btrfs_ino(inode);
3941
3942         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3943
3944         path = btrfs_alloc_path();
3945         if (!path)
3946                 return -ENOMEM;
3947         path->reada = -1;
3948
3949         /*
3950          * We want to drop from the next block forward in case this new size is
3951          * not block aligned since we will be keeping the last block of the
3952          * extent just the way it is.
3953          */
3954         if (root->ref_cows || root == root->fs_info->tree_root)
3955                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3956                                         root->sectorsize), (u64)-1, 0);
3957
3958         /*
3959          * This function is also used to drop the items in the log tree before
3960          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3961          * it is used to drop the loged items. So we shouldn't kill the delayed
3962          * items.
3963          */
3964         if (min_type == 0 && root == BTRFS_I(inode)->root)
3965                 btrfs_kill_delayed_inode_items(inode);
3966
3967         key.objectid = ino;
3968         key.offset = (u64)-1;
3969         key.type = (u8)-1;
3970
3971 search_again:
3972         path->leave_spinning = 1;
3973         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3974         if (ret < 0) {
3975                 err = ret;
3976                 goto out;
3977         }
3978
3979         if (ret > 0) {
3980                 /* there are no items in the tree for us to truncate, we're
3981                  * done
3982                  */
3983                 if (path->slots[0] == 0)
3984                         goto out;
3985                 path->slots[0]--;
3986         }
3987
3988         while (1) {
3989                 fi = NULL;
3990                 leaf = path->nodes[0];
3991                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3992                 found_type = btrfs_key_type(&found_key);
3993
3994                 if (found_key.objectid != ino)
3995                         break;
3996
3997                 if (found_type < min_type)
3998                         break;
3999
4000                 item_end = found_key.offset;
4001                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4002                         fi = btrfs_item_ptr(leaf, path->slots[0],
4003                                             struct btrfs_file_extent_item);
4004                         extent_type = btrfs_file_extent_type(leaf, fi);
4005                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4006                                 item_end +=
4007                                     btrfs_file_extent_num_bytes(leaf, fi);
4008                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4009                                 item_end += btrfs_file_extent_inline_len(leaf,
4010                                                                          fi);
4011                         }
4012                         item_end--;
4013                 }
4014                 if (found_type > min_type) {
4015                         del_item = 1;
4016                 } else {
4017                         if (item_end < new_size)
4018                                 break;
4019                         if (found_key.offset >= new_size)
4020                                 del_item = 1;
4021                         else
4022                                 del_item = 0;
4023                 }
4024                 found_extent = 0;
4025                 /* FIXME, shrink the extent if the ref count is only 1 */
4026                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4027                         goto delete;
4028
4029                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4030                         u64 num_dec;
4031                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4032                         if (!del_item) {
4033                                 u64 orig_num_bytes =
4034                                         btrfs_file_extent_num_bytes(leaf, fi);
4035                                 extent_num_bytes = ALIGN(new_size -
4036                                                 found_key.offset,
4037                                                 root->sectorsize);
4038                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4039                                                          extent_num_bytes);
4040                                 num_dec = (orig_num_bytes -
4041                                            extent_num_bytes);
4042                                 if (root->ref_cows && extent_start != 0)
4043                                         inode_sub_bytes(inode, num_dec);
4044                                 btrfs_mark_buffer_dirty(leaf);
4045                         } else {
4046                                 extent_num_bytes =
4047                                         btrfs_file_extent_disk_num_bytes(leaf,
4048                                                                          fi);
4049                                 extent_offset = found_key.offset -
4050                                         btrfs_file_extent_offset(leaf, fi);
4051
4052                                 /* FIXME blocksize != 4096 */
4053                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4054                                 if (extent_start != 0) {
4055                                         found_extent = 1;
4056                                         if (root->ref_cows)
4057                                                 inode_sub_bytes(inode, num_dec);
4058                                 }
4059                         }
4060                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4061                         /*
4062                          * we can't truncate inline items that have had
4063                          * special encodings
4064                          */
4065                         if (!del_item &&
4066                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4067                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4068                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4069                                 u32 size = new_size - found_key.offset;
4070
4071                                 if (root->ref_cows) {
4072                                         inode_sub_bytes(inode, item_end + 1 -
4073                                                         new_size);
4074                                 }
4075                                 size =
4076                                     btrfs_file_extent_calc_inline_size(size);
4077                                 btrfs_truncate_item(root, path, size, 1);
4078                         } else if (root->ref_cows) {
4079                                 inode_sub_bytes(inode, item_end + 1 -
4080                                                 found_key.offset);
4081                         }
4082                 }
4083 delete:
4084                 if (del_item) {
4085                         if (!pending_del_nr) {
4086                                 /* no pending yet, add ourselves */
4087                                 pending_del_slot = path->slots[0];
4088                                 pending_del_nr = 1;
4089                         } else if (pending_del_nr &&
4090                                    path->slots[0] + 1 == pending_del_slot) {
4091                                 /* hop on the pending chunk */
4092                                 pending_del_nr++;
4093                                 pending_del_slot = path->slots[0];
4094                         } else {
4095                                 BUG();
4096                         }
4097                 } else {
4098                         break;
4099                 }
4100                 if (found_extent && (root->ref_cows ||
4101                                      root == root->fs_info->tree_root)) {
4102                         btrfs_set_path_blocking(path);
4103                         ret = btrfs_free_extent(trans, root, extent_start,
4104                                                 extent_num_bytes, 0,
4105                                                 btrfs_header_owner(leaf),
4106                                                 ino, extent_offset, 0);
4107                         BUG_ON(ret);
4108                 }
4109
4110                 if (found_type == BTRFS_INODE_ITEM_KEY)
4111                         break;
4112
4113                 if (path->slots[0] == 0 ||
4114                     path->slots[0] != pending_del_slot) {
4115                         if (pending_del_nr) {
4116                                 ret = btrfs_del_items(trans, root, path,
4117                                                 pending_del_slot,
4118                                                 pending_del_nr);
4119                                 if (ret) {
4120                                         btrfs_abort_transaction(trans,
4121                                                                 root, ret);
4122                                         goto error;
4123                                 }
4124                                 pending_del_nr = 0;
4125                         }
4126                         btrfs_release_path(path);
4127                         goto search_again;
4128                 } else {
4129                         path->slots[0]--;
4130                 }
4131         }
4132 out:
4133         if (pending_del_nr) {
4134                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4135                                       pending_del_nr);
4136                 if (ret)
4137                         btrfs_abort_transaction(trans, root, ret);
4138         }
4139 error:
4140         btrfs_free_path(path);
4141         return err;
4142 }
4143
4144 /*
4145  * btrfs_truncate_page - read, zero a chunk and write a page
4146  * @inode - inode that we're zeroing
4147  * @from - the offset to start zeroing
4148  * @len - the length to zero, 0 to zero the entire range respective to the
4149  *      offset
4150  * @front - zero up to the offset instead of from the offset on
4151  *
4152  * This will find the page for the "from" offset and cow the page and zero the
4153  * part we want to zero.  This is used with truncate and hole punching.
4154  */
4155 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4156                         int front)
4157 {
4158         struct address_space *mapping = inode->i_mapping;
4159         struct btrfs_root *root = BTRFS_I(inode)->root;
4160         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4161         struct btrfs_ordered_extent *ordered;
4162         struct extent_state *cached_state = NULL;
4163         char *kaddr;
4164         u32 blocksize = root->sectorsize;
4165         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4166         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4167         struct page *page;
4168         gfp_t mask = btrfs_alloc_write_mask(mapping);
4169         int ret = 0;
4170         u64 page_start;
4171         u64 page_end;
4172
4173         if ((offset & (blocksize - 1)) == 0 &&
4174             (!len || ((len & (blocksize - 1)) == 0)))
4175                 goto out;
4176         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4177         if (ret)
4178                 goto out;
4179
4180 again:
4181         page = find_or_create_page(mapping, index, mask);
4182         if (!page) {
4183                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4184                 ret = -ENOMEM;
4185                 goto out;
4186         }
4187
4188         page_start = page_offset(page);
4189         page_end = page_start + PAGE_CACHE_SIZE - 1;
4190
4191         if (!PageUptodate(page)) {
4192                 ret = btrfs_readpage(NULL, page);
4193                 lock_page(page);
4194                 if (page->mapping != mapping) {
4195                         unlock_page(page);
4196                         page_cache_release(page);
4197                         goto again;
4198                 }
4199                 if (!PageUptodate(page)) {
4200                         ret = -EIO;
4201                         goto out_unlock;
4202                 }
4203         }
4204         wait_on_page_writeback(page);
4205
4206         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4207         set_page_extent_mapped(page);
4208
4209         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4210         if (ordered) {
4211                 unlock_extent_cached(io_tree, page_start, page_end,
4212                                      &cached_state, GFP_NOFS);
4213                 unlock_page(page);
4214                 page_cache_release(page);
4215                 btrfs_start_ordered_extent(inode, ordered, 1);
4216                 btrfs_put_ordered_extent(ordered);
4217                 goto again;
4218         }
4219
4220         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4221                           EXTENT_DIRTY | EXTENT_DELALLOC |
4222                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4223                           0, 0, &cached_state, GFP_NOFS);
4224
4225         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4226                                         &cached_state);
4227         if (ret) {
4228                 unlock_extent_cached(io_tree, page_start, page_end,
4229                                      &cached_state, GFP_NOFS);
4230                 goto out_unlock;
4231         }
4232
4233         if (offset != PAGE_CACHE_SIZE) {
4234                 if (!len)
4235                         len = PAGE_CACHE_SIZE - offset;
4236                 kaddr = kmap(page);
4237                 if (front)
4238                         memset(kaddr, 0, offset);
4239                 else
4240                         memset(kaddr + offset, 0, len);
4241                 flush_dcache_page(page);
4242                 kunmap(page);
4243         }
4244         ClearPageChecked(page);
4245         set_page_dirty(page);
4246         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4247                              GFP_NOFS);
4248
4249 out_unlock:
4250         if (ret)
4251                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4252         unlock_page(page);
4253         page_cache_release(page);
4254 out:
4255         return ret;
4256 }
4257
4258 /*
4259  * This function puts in dummy file extents for the area we're creating a hole
4260  * for.  So if we are truncating this file to a larger size we need to insert
4261  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4262  * the range between oldsize and size
4263  */
4264 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4265 {
4266         struct btrfs_trans_handle *trans;
4267         struct btrfs_root *root = BTRFS_I(inode)->root;
4268         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4269         struct extent_map *em = NULL;
4270         struct extent_state *cached_state = NULL;
4271         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4272         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4273         u64 block_end = ALIGN(size, root->sectorsize);
4274         u64 last_byte;
4275         u64 cur_offset;
4276         u64 hole_size;
4277         int err = 0;
4278
4279         /*
4280          * If our size started in the middle of a page we need to zero out the
4281          * rest of the page before we expand the i_size, otherwise we could
4282          * expose stale data.
4283          */
4284         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4285         if (err)
4286                 return err;
4287
4288         if (size <= hole_start)
4289                 return 0;
4290
4291         while (1) {
4292                 struct btrfs_ordered_extent *ordered;
4293                 btrfs_wait_ordered_range(inode, hole_start,
4294                                          block_end - hole_start);
4295                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4296                                  &cached_state);
4297                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4298                 if (!ordered)
4299                         break;
4300                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4301                                      &cached_state, GFP_NOFS);
4302                 btrfs_put_ordered_extent(ordered);
4303         }
4304
4305         cur_offset = hole_start;
4306         while (1) {
4307                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4308                                 block_end - cur_offset, 0);
4309                 if (IS_ERR(em)) {
4310                         err = PTR_ERR(em);
4311                         em = NULL;
4312                         break;
4313                 }
4314                 last_byte = min(extent_map_end(em), block_end);
4315                 last_byte = ALIGN(last_byte , root->sectorsize);
4316                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4317                         struct extent_map *hole_em;
4318                         hole_size = last_byte - cur_offset;
4319
4320                         trans = btrfs_start_transaction(root, 3);
4321                         if (IS_ERR(trans)) {
4322                                 err = PTR_ERR(trans);
4323                                 break;
4324                         }
4325
4326                         err = btrfs_drop_extents(trans, root, inode,
4327                                                  cur_offset,
4328                                                  cur_offset + hole_size, 1);
4329                         if (err) {
4330                                 btrfs_abort_transaction(trans, root, err);
4331                                 btrfs_end_transaction(trans, root);
4332                                 break;
4333                         }
4334
4335                         err = btrfs_insert_file_extent(trans, root,
4336                                         btrfs_ino(inode), cur_offset, 0,
4337                                         0, hole_size, 0, hole_size,
4338                                         0, 0, 0);
4339                         if (err) {
4340                                 btrfs_abort_transaction(trans, root, err);
4341                                 btrfs_end_transaction(trans, root);
4342                                 break;
4343                         }
4344
4345                         btrfs_drop_extent_cache(inode, cur_offset,
4346                                                 cur_offset + hole_size - 1, 0);
4347                         hole_em = alloc_extent_map();
4348                         if (!hole_em) {
4349                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4350                                         &BTRFS_I(inode)->runtime_flags);
4351                                 goto next;
4352                         }
4353                         hole_em->start = cur_offset;
4354                         hole_em->len = hole_size;
4355                         hole_em->orig_start = cur_offset;
4356
4357                         hole_em->block_start = EXTENT_MAP_HOLE;
4358                         hole_em->block_len = 0;
4359                         hole_em->orig_block_len = 0;
4360                         hole_em->ram_bytes = hole_size;
4361                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4362                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4363                         hole_em->generation = trans->transid;
4364
4365                         while (1) {
4366                                 write_lock(&em_tree->lock);
4367                                 err = add_extent_mapping(em_tree, hole_em, 1);
4368                                 write_unlock(&em_tree->lock);
4369                                 if (err != -EEXIST)
4370                                         break;
4371                                 btrfs_drop_extent_cache(inode, cur_offset,
4372                                                         cur_offset +
4373                                                         hole_size - 1, 0);
4374                         }
4375                         free_extent_map(hole_em);
4376 next:
4377                         btrfs_update_inode(trans, root, inode);
4378                         btrfs_end_transaction(trans, root);
4379                 }
4380                 free_extent_map(em);
4381                 em = NULL;
4382                 cur_offset = last_byte;
4383                 if (cur_offset >= block_end)
4384                         break;
4385         }
4386
4387         free_extent_map(em);
4388         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4389                              GFP_NOFS);
4390         return err;
4391 }
4392
4393 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4394 {
4395         struct btrfs_root *root = BTRFS_I(inode)->root;
4396         struct btrfs_trans_handle *trans;
4397         loff_t oldsize = i_size_read(inode);
4398         loff_t newsize = attr->ia_size;
4399         int mask = attr->ia_valid;
4400         int ret;
4401
4402         /*
4403          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4404          * special case where we need to update the times despite not having
4405          * these flags set.  For all other operations the VFS set these flags
4406          * explicitly if it wants a timestamp update.
4407          */
4408         if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4409                 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4410
4411         if (newsize > oldsize) {
4412                 truncate_pagecache(inode, oldsize, newsize);
4413                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4414                 if (ret)
4415                         return ret;
4416
4417                 trans = btrfs_start_transaction(root, 1);
4418                 if (IS_ERR(trans))
4419                         return PTR_ERR(trans);
4420
4421                 i_size_write(inode, newsize);
4422                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4423                 ret = btrfs_update_inode(trans, root, inode);
4424                 btrfs_end_transaction(trans, root);
4425         } else {
4426
4427                 /*
4428                  * We're truncating a file that used to have good data down to
4429                  * zero. Make sure it gets into the ordered flush list so that
4430                  * any new writes get down to disk quickly.
4431                  */
4432                 if (newsize == 0)
4433                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4434                                 &BTRFS_I(inode)->runtime_flags);
4435
4436                 /*
4437                  * 1 for the orphan item we're going to add
4438                  * 1 for the orphan item deletion.
4439                  */
4440                 trans = btrfs_start_transaction(root, 2);
4441                 if (IS_ERR(trans))
4442                         return PTR_ERR(trans);
4443
4444                 /*
4445                  * We need to do this in case we fail at _any_ point during the
4446                  * actual truncate.  Once we do the truncate_setsize we could
4447                  * invalidate pages which forces any outstanding ordered io to
4448                  * be instantly completed which will give us extents that need
4449                  * to be truncated.  If we fail to get an orphan inode down we
4450                  * could have left over extents that were never meant to live,
4451                  * so we need to garuntee from this point on that everything
4452                  * will be consistent.
4453                  */
4454                 ret = btrfs_orphan_add(trans, inode);
4455                 btrfs_end_transaction(trans, root);
4456                 if (ret)
4457                         return ret;
4458
4459                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4460                 truncate_setsize(inode, newsize);
4461
4462                 /* Disable nonlocked read DIO to avoid the end less truncate */
4463                 btrfs_inode_block_unlocked_dio(inode);
4464                 inode_dio_wait(inode);
4465                 btrfs_inode_resume_unlocked_dio(inode);
4466
4467                 ret = btrfs_truncate(inode);
4468                 if (ret && inode->i_nlink)
4469                         btrfs_orphan_del(NULL, inode);
4470         }
4471
4472         return ret;
4473 }
4474
4475 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4476 {
4477         struct inode *inode = dentry->d_inode;
4478         struct btrfs_root *root = BTRFS_I(inode)->root;
4479         int err;
4480
4481         if (btrfs_root_readonly(root))
4482                 return -EROFS;
4483
4484         err = inode_change_ok(inode, attr);
4485         if (err)
4486                 return err;
4487
4488         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4489                 err = btrfs_setsize(inode, attr);
4490                 if (err)
4491                         return err;
4492         }
4493
4494         if (attr->ia_valid) {
4495                 setattr_copy(inode, attr);
4496                 inode_inc_iversion(inode);
4497                 err = btrfs_dirty_inode(inode);
4498
4499                 if (!err && attr->ia_valid & ATTR_MODE)
4500                         err = btrfs_acl_chmod(inode);
4501         }
4502
4503         return err;
4504 }
4505
4506 void btrfs_evict_inode(struct inode *inode)
4507 {
4508         struct btrfs_trans_handle *trans;
4509         struct btrfs_root *root = BTRFS_I(inode)->root;
4510         struct btrfs_block_rsv *rsv, *global_rsv;
4511         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4512         int ret;
4513
4514         trace_btrfs_inode_evict(inode);
4515
4516         truncate_inode_pages(&inode->i_data, 0);
4517         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4518                                btrfs_is_free_space_inode(inode)))
4519                 goto no_delete;
4520
4521         if (is_bad_inode(inode)) {
4522                 btrfs_orphan_del(NULL, inode);
4523                 goto no_delete;
4524         }
4525         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4526         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4527
4528         if (root->fs_info->log_root_recovering) {
4529                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4530                                  &BTRFS_I(inode)->runtime_flags));
4531                 goto no_delete;
4532         }
4533
4534         if (inode->i_nlink > 0) {
4535                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4536                 goto no_delete;
4537         }
4538
4539         ret = btrfs_commit_inode_delayed_inode(inode);
4540         if (ret) {
4541                 btrfs_orphan_del(NULL, inode);
4542                 goto no_delete;
4543         }
4544
4545         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4546         if (!rsv) {
4547                 btrfs_orphan_del(NULL, inode);
4548                 goto no_delete;
4549         }
4550         rsv->size = min_size;
4551         rsv->failfast = 1;
4552         global_rsv = &root->fs_info->global_block_rsv;
4553
4554         btrfs_i_size_write(inode, 0);
4555
4556         /*
4557          * This is a bit simpler than btrfs_truncate since we've already
4558          * reserved our space for our orphan item in the unlink, so we just
4559          * need to reserve some slack space in case we add bytes and update
4560          * inode item when doing the truncate.
4561          */
4562         while (1) {
4563                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4564                                              BTRFS_RESERVE_FLUSH_LIMIT);
4565
4566                 /*
4567                  * Try and steal from the global reserve since we will
4568                  * likely not use this space anyway, we want to try as
4569                  * hard as possible to get this to work.
4570                  */
4571                 if (ret)
4572                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4573
4574                 if (ret) {
4575                         btrfs_warn(root->fs_info,
4576                                 "Could not get space for a delete, will truncate on mount %d",
4577                                 ret);
4578                         btrfs_orphan_del(NULL, inode);
4579                         btrfs_free_block_rsv(root, rsv);
4580                         goto no_delete;
4581                 }
4582
4583                 trans = btrfs_join_transaction(root);
4584                 if (IS_ERR(trans)) {
4585                         btrfs_orphan_del(NULL, inode);
4586                         btrfs_free_block_rsv(root, rsv);
4587                         goto no_delete;
4588                 }
4589
4590                 trans->block_rsv = rsv;
4591
4592                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4593                 if (ret != -ENOSPC)
4594                         break;
4595
4596                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4597                 btrfs_end_transaction(trans, root);
4598                 trans = NULL;
4599                 btrfs_btree_balance_dirty(root);
4600         }
4601
4602         btrfs_free_block_rsv(root, rsv);
4603
4604         if (ret == 0) {
4605                 trans->block_rsv = root->orphan_block_rsv;
4606                 ret = btrfs_orphan_del(trans, inode);
4607                 BUG_ON(ret);
4608         }
4609
4610         trans->block_rsv = &root->fs_info->trans_block_rsv;
4611         if (!(root == root->fs_info->tree_root ||
4612               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4613                 btrfs_return_ino(root, btrfs_ino(inode));
4614
4615         btrfs_end_transaction(trans, root);
4616         btrfs_btree_balance_dirty(root);
4617 no_delete:
4618         btrfs_remove_delayed_node(inode);
4619         clear_inode(inode);
4620         return;
4621 }
4622
4623 /*
4624  * this returns the key found in the dir entry in the location pointer.
4625  * If no dir entries were found, location->objectid is 0.
4626  */
4627 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4628                                struct btrfs_key *location)
4629 {
4630         const char *name = dentry->d_name.name;
4631         int namelen = dentry->d_name.len;
4632         struct btrfs_dir_item *di;
4633         struct btrfs_path *path;
4634         struct btrfs_root *root = BTRFS_I(dir)->root;
4635         int ret = 0;
4636
4637         path = btrfs_alloc_path();
4638         if (!path)
4639                 return -ENOMEM;
4640
4641         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4642                                     namelen, 0);
4643         if (IS_ERR(di))
4644                 ret = PTR_ERR(di);
4645
4646         if (IS_ERR_OR_NULL(di))
4647                 goto out_err;
4648
4649         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4650 out:
4651         btrfs_free_path(path);
4652         return ret;
4653 out_err:
4654         location->objectid = 0;
4655         goto out;
4656 }
4657
4658 /*
4659  * when we hit a tree root in a directory, the btrfs part of the inode
4660  * needs to be changed to reflect the root directory of the tree root.  This
4661  * is kind of like crossing a mount point.
4662  */
4663 static int fixup_tree_root_location(struct btrfs_root *root,
4664                                     struct inode *dir,
4665                                     struct dentry *dentry,
4666                                     struct btrfs_key *location,
4667                                     struct btrfs_root **sub_root)
4668 {
4669         struct btrfs_path *path;
4670         struct btrfs_root *new_root;
4671         struct btrfs_root_ref *ref;
4672         struct extent_buffer *leaf;
4673         int ret;
4674         int err = 0;
4675
4676         path = btrfs_alloc_path();
4677         if (!path) {
4678                 err = -ENOMEM;
4679                 goto out;
4680         }
4681
4682         err = -ENOENT;
4683         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4684                                   BTRFS_I(dir)->root->root_key.objectid,
4685                                   location->objectid);
4686         if (ret) {
4687                 if (ret < 0)
4688                         err = ret;
4689                 goto out;
4690         }
4691
4692         leaf = path->nodes[0];
4693         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4694         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4695             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4696                 goto out;
4697
4698         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4699                                    (unsigned long)(ref + 1),
4700                                    dentry->d_name.len);
4701         if (ret)
4702                 goto out;
4703
4704         btrfs_release_path(path);
4705
4706         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4707         if (IS_ERR(new_root)) {
4708                 err = PTR_ERR(new_root);
4709                 goto out;
4710         }
4711
4712         *sub_root = new_root;
4713         location->objectid = btrfs_root_dirid(&new_root->root_item);
4714         location->type = BTRFS_INODE_ITEM_KEY;
4715         location->offset = 0;
4716         err = 0;
4717 out:
4718         btrfs_free_path(path);
4719         return err;
4720 }
4721
4722 static void inode_tree_add(struct inode *inode)
4723 {
4724         struct btrfs_root *root = BTRFS_I(inode)->root;
4725         struct btrfs_inode *entry;
4726         struct rb_node **p;
4727         struct rb_node *parent;
4728         u64 ino = btrfs_ino(inode);
4729
4730         if (inode_unhashed(inode))
4731                 return;
4732 again:
4733         parent = NULL;
4734         spin_lock(&root->inode_lock);
4735         p = &root->inode_tree.rb_node;
4736         while (*p) {
4737                 parent = *p;
4738                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4739
4740                 if (ino < btrfs_ino(&entry->vfs_inode))
4741                         p = &parent->rb_left;
4742                 else if (ino > btrfs_ino(&entry->vfs_inode))
4743                         p = &parent->rb_right;
4744                 else {
4745                         WARN_ON(!(entry->vfs_inode.i_state &
4746                                   (I_WILL_FREE | I_FREEING)));
4747                         rb_erase(parent, &root->inode_tree);
4748                         RB_CLEAR_NODE(parent);
4749                         spin_unlock(&root->inode_lock);
4750                         goto again;
4751                 }
4752         }
4753         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4754         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4755         spin_unlock(&root->inode_lock);
4756 }
4757
4758 static void inode_tree_del(struct inode *inode)
4759 {
4760         struct btrfs_root *root = BTRFS_I(inode)->root;
4761         int empty = 0;
4762
4763         spin_lock(&root->inode_lock);
4764         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4765                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4766                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4767                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4768         }
4769         spin_unlock(&root->inode_lock);
4770
4771         /*
4772          * Free space cache has inodes in the tree root, but the tree root has a
4773          * root_refs of 0, so this could end up dropping the tree root as a
4774          * snapshot, so we need the extra !root->fs_info->tree_root check to
4775          * make sure we don't drop it.
4776          */
4777         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4778             root != root->fs_info->tree_root) {
4779                 synchronize_srcu(&root->fs_info->subvol_srcu);
4780                 spin_lock(&root->inode_lock);
4781                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4782                 spin_unlock(&root->inode_lock);
4783                 if (empty)
4784                         btrfs_add_dead_root(root);
4785         }
4786 }
4787
4788 void btrfs_invalidate_inodes(struct btrfs_root *root)
4789 {
4790         struct rb_node *node;
4791         struct rb_node *prev;
4792         struct btrfs_inode *entry;
4793         struct inode *inode;
4794         u64 objectid = 0;
4795
4796         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4797
4798         spin_lock(&root->inode_lock);
4799 again:
4800         node = root->inode_tree.rb_node;
4801         prev = NULL;
4802         while (node) {
4803                 prev = node;
4804                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4805
4806                 if (objectid < btrfs_ino(&entry->vfs_inode))
4807                         node = node->rb_left;
4808                 else if (objectid > btrfs_ino(&entry->vfs_inode))
4809                         node = node->rb_right;
4810                 else
4811                         break;
4812         }
4813         if (!node) {
4814                 while (prev) {
4815                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4816                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4817                                 node = prev;
4818                                 break;
4819                         }
4820                         prev = rb_next(prev);
4821                 }
4822         }
4823         while (node) {
4824                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4825                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4826                 inode = igrab(&entry->vfs_inode);
4827                 if (inode) {
4828                         spin_unlock(&root->inode_lock);
4829                         if (atomic_read(&inode->i_count) > 1)
4830                                 d_prune_aliases(inode);
4831                         /*
4832                          * btrfs_drop_inode will have it removed from
4833                          * the inode cache when its usage count
4834                          * hits zero.
4835                          */
4836                         iput(inode);
4837                         cond_resched();
4838                         spin_lock(&root->inode_lock);
4839                         goto again;
4840                 }
4841
4842                 if (cond_resched_lock(&root->inode_lock))
4843                         goto again;
4844
4845                 node = rb_next(node);
4846         }
4847         spin_unlock(&root->inode_lock);
4848 }
4849
4850 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4851 {
4852         struct btrfs_iget_args *args = p;
4853         inode->i_ino = args->ino;
4854         BTRFS_I(inode)->root = args->root;
4855         return 0;
4856 }
4857
4858 static int btrfs_find_actor(struct inode *inode, void *opaque)
4859 {
4860         struct btrfs_iget_args *args = opaque;
4861         return args->ino == btrfs_ino(inode) &&
4862                 args->root == BTRFS_I(inode)->root;
4863 }
4864
4865 static struct inode *btrfs_iget_locked(struct super_block *s,
4866                                        u64 objectid,
4867                                        struct btrfs_root *root)
4868 {
4869         struct inode *inode;
4870         struct btrfs_iget_args args;
4871         args.ino = objectid;
4872         args.root = root;
4873
4874         inode = iget5_locked(s, objectid, btrfs_find_actor,
4875                              btrfs_init_locked_inode,
4876                              (void *)&args);
4877         return inode;
4878 }
4879
4880 /* Get an inode object given its location and corresponding root.
4881  * Returns in *is_new if the inode was read from disk
4882  */
4883 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4884                          struct btrfs_root *root, int *new)
4885 {
4886         struct inode *inode;
4887
4888         inode = btrfs_iget_locked(s, location->objectid, root);
4889         if (!inode)
4890                 return ERR_PTR(-ENOMEM);
4891
4892         if (inode->i_state & I_NEW) {
4893                 BTRFS_I(inode)->root = root;
4894                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4895                 btrfs_read_locked_inode(inode);
4896                 if (!is_bad_inode(inode)) {
4897                         inode_tree_add(inode);
4898                         unlock_new_inode(inode);
4899                         if (new)
4900                                 *new = 1;
4901                 } else {
4902                         unlock_new_inode(inode);
4903                         iput(inode);
4904                         inode = ERR_PTR(-ESTALE);
4905                 }
4906         }
4907
4908         return inode;
4909 }
4910
4911 static struct inode *new_simple_dir(struct super_block *s,
4912                                     struct btrfs_key *key,
4913                                     struct btrfs_root *root)
4914 {
4915         struct inode *inode = new_inode(s);
4916
4917         if (!inode)
4918                 return ERR_PTR(-ENOMEM);
4919
4920         BTRFS_I(inode)->root = root;
4921         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4922         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4923
4924         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4925         inode->i_op = &btrfs_dir_ro_inode_operations;
4926         inode->i_fop = &simple_dir_operations;
4927         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4928         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4929
4930         return inode;
4931 }
4932
4933 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4934 {
4935         struct inode *inode;
4936         struct btrfs_root *root = BTRFS_I(dir)->root;
4937         struct btrfs_root *sub_root = root;
4938         struct btrfs_key location;
4939         int index;
4940         int ret = 0;
4941
4942         if (dentry->d_name.len > BTRFS_NAME_LEN)
4943                 return ERR_PTR(-ENAMETOOLONG);
4944
4945         ret = btrfs_inode_by_name(dir, dentry, &location);
4946         if (ret < 0)
4947                 return ERR_PTR(ret);
4948
4949         if (location.objectid == 0)
4950                 return NULL;
4951
4952         if (location.type == BTRFS_INODE_ITEM_KEY) {
4953                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4954                 return inode;
4955         }
4956
4957         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4958
4959         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4960         ret = fixup_tree_root_location(root, dir, dentry,
4961                                        &location, &sub_root);
4962         if (ret < 0) {
4963                 if (ret != -ENOENT)
4964                         inode = ERR_PTR(ret);
4965                 else
4966                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4967         } else {
4968                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4969         }
4970         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4971
4972         if (!IS_ERR(inode) && root != sub_root) {
4973                 down_read(&root->fs_info->cleanup_work_sem);
4974                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4975                         ret = btrfs_orphan_cleanup(sub_root);
4976                 up_read(&root->fs_info->cleanup_work_sem);
4977                 if (ret) {
4978                         iput(inode);
4979                         inode = ERR_PTR(ret);
4980                 }
4981         }
4982
4983         return inode;
4984 }
4985
4986 static int btrfs_dentry_delete(const struct dentry *dentry)
4987 {
4988         struct btrfs_root *root;
4989         struct inode *inode = dentry->d_inode;
4990
4991         if (!inode && !IS_ROOT(dentry))
4992                 inode = dentry->d_parent->d_inode;
4993
4994         if (inode) {
4995                 root = BTRFS_I(inode)->root;
4996                 if (btrfs_root_refs(&root->root_item) == 0)
4997                         return 1;
4998
4999                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5000                         return 1;
5001         }
5002         return 0;
5003 }
5004
5005 static void btrfs_dentry_release(struct dentry *dentry)
5006 {
5007         if (dentry->d_fsdata)
5008                 kfree(dentry->d_fsdata);
5009 }
5010
5011 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5012                                    unsigned int flags)
5013 {
5014         struct dentry *ret;
5015
5016         ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5017         return ret;
5018 }
5019
5020 unsigned char btrfs_filetype_table[] = {
5021         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5022 };
5023
5024 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5025 {
5026         struct inode *inode = file_inode(file);
5027         struct btrfs_root *root = BTRFS_I(inode)->root;
5028         struct btrfs_item *item;
5029         struct btrfs_dir_item *di;
5030         struct btrfs_key key;
5031         struct btrfs_key found_key;
5032         struct btrfs_path *path;
5033         struct list_head ins_list;
5034         struct list_head del_list;
5035         int ret;
5036         struct extent_buffer *leaf;
5037         int slot;
5038         unsigned char d_type;
5039         int over = 0;
5040         u32 di_cur;
5041         u32 di_total;
5042         u32 di_len;
5043         int key_type = BTRFS_DIR_INDEX_KEY;
5044         char tmp_name[32];
5045         char *name_ptr;
5046         int name_len;
5047         int is_curr = 0;        /* ctx->pos points to the current index? */
5048
5049         /* FIXME, use a real flag for deciding about the key type */
5050         if (root->fs_info->tree_root == root)
5051                 key_type = BTRFS_DIR_ITEM_KEY;
5052
5053         if (!dir_emit_dots(file, ctx))
5054                 return 0;
5055
5056         path = btrfs_alloc_path();
5057         if (!path)
5058                 return -ENOMEM;
5059
5060         path->reada = 1;
5061
5062         if (key_type == BTRFS_DIR_INDEX_KEY) {
5063                 INIT_LIST_HEAD(&ins_list);
5064                 INIT_LIST_HEAD(&del_list);
5065                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5066         }
5067
5068         btrfs_set_key_type(&key, key_type);
5069         key.offset = ctx->pos;
5070         key.objectid = btrfs_ino(inode);
5071
5072         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073         if (ret < 0)
5074                 goto err;
5075
5076         while (1) {
5077                 leaf = path->nodes[0];
5078                 slot = path->slots[0];
5079                 if (slot >= btrfs_header_nritems(leaf)) {
5080                         ret = btrfs_next_leaf(root, path);
5081                         if (ret < 0)
5082                                 goto err;
5083                         else if (ret > 0)
5084                                 break;
5085                         continue;
5086                 }
5087
5088                 item = btrfs_item_nr(leaf, slot);
5089                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5090
5091                 if (found_key.objectid != key.objectid)
5092                         break;
5093                 if (btrfs_key_type(&found_key) != key_type)
5094                         break;
5095                 if (found_key.offset < ctx->pos)
5096                         goto next;
5097                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5098                     btrfs_should_delete_dir_index(&del_list,
5099                                                   found_key.offset))
5100                         goto next;
5101
5102                 ctx->pos = found_key.offset;
5103                 is_curr = 1;
5104
5105                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5106                 di_cur = 0;
5107                 di_total = btrfs_item_size(leaf, item);
5108
5109                 while (di_cur < di_total) {
5110                         struct btrfs_key location;
5111
5112                         if (verify_dir_item(root, leaf, di))
5113                                 break;
5114
5115                         name_len = btrfs_dir_name_len(leaf, di);
5116                         if (name_len <= sizeof(tmp_name)) {
5117                                 name_ptr = tmp_name;
5118                         } else {
5119                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5120                                 if (!name_ptr) {
5121                                         ret = -ENOMEM;
5122                                         goto err;
5123                                 }
5124                         }
5125                         read_extent_buffer(leaf, name_ptr,
5126                                            (unsigned long)(di + 1), name_len);
5127
5128                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5129                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5130
5131
5132                         /* is this a reference to our own snapshot? If so
5133                          * skip it.
5134                          *
5135                          * In contrast to old kernels, we insert the snapshot's
5136                          * dir item and dir index after it has been created, so
5137                          * we won't find a reference to our own snapshot. We
5138                          * still keep the following code for backward
5139                          * compatibility.
5140                          */
5141                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5142                             location.objectid == root->root_key.objectid) {
5143                                 over = 0;
5144                                 goto skip;
5145                         }
5146                         over = !dir_emit(ctx, name_ptr, name_len,
5147                                        location.objectid, d_type);
5148
5149 skip:
5150                         if (name_ptr != tmp_name)
5151                                 kfree(name_ptr);
5152
5153                         if (over)
5154                                 goto nopos;
5155                         di_len = btrfs_dir_name_len(leaf, di) +
5156                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5157                         di_cur += di_len;
5158                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5159                 }
5160 next:
5161                 path->slots[0]++;
5162         }
5163
5164         if (key_type == BTRFS_DIR_INDEX_KEY) {
5165                 if (is_curr)
5166                         ctx->pos++;
5167                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5168                 if (ret)
5169                         goto nopos;
5170         }
5171
5172         /* Reached end of directory/root. Bump pos past the last item. */
5173         ctx->pos++;
5174
5175         /*
5176          * Stop new entries from being returned after we return the last
5177          * entry.
5178          *
5179          * New directory entries are assigned a strictly increasing
5180          * offset.  This means that new entries created during readdir
5181          * are *guaranteed* to be seen in the future by that readdir.
5182          * This has broken buggy programs which operate on names as
5183          * they're returned by readdir.  Until we re-use freed offsets
5184          * we have this hack to stop new entries from being returned
5185          * under the assumption that they'll never reach this huge
5186          * offset.
5187          *
5188          * This is being careful not to overflow 32bit loff_t unless the
5189          * last entry requires it because doing so has broken 32bit apps
5190          * in the past.
5191          */
5192         if (key_type == BTRFS_DIR_INDEX_KEY) {
5193                 if (ctx->pos >= INT_MAX)
5194                         ctx->pos = LLONG_MAX;
5195                 else
5196                         ctx->pos = INT_MAX;
5197         }
5198 nopos:
5199         ret = 0;
5200 err:
5201         if (key_type == BTRFS_DIR_INDEX_KEY)
5202                 btrfs_put_delayed_items(&ins_list, &del_list);
5203         btrfs_free_path(path);
5204         return ret;
5205 }
5206
5207 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5208 {
5209         struct btrfs_root *root = BTRFS_I(inode)->root;
5210         struct btrfs_trans_handle *trans;
5211         int ret = 0;
5212         bool nolock = false;
5213
5214         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5215                 return 0;
5216
5217         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5218                 nolock = true;
5219
5220         if (wbc->sync_mode == WB_SYNC_ALL) {
5221                 if (nolock)
5222                         trans = btrfs_join_transaction_nolock(root);
5223                 else
5224                         trans = btrfs_join_transaction(root);
5225                 if (IS_ERR(trans))
5226                         return PTR_ERR(trans);
5227                 ret = btrfs_commit_transaction(trans, root);
5228         }
5229         return ret;
5230 }
5231
5232 /*
5233  * This is somewhat expensive, updating the tree every time the
5234  * inode changes.  But, it is most likely to find the inode in cache.
5235  * FIXME, needs more benchmarking...there are no reasons other than performance
5236  * to keep or drop this code.
5237  */
5238 static int btrfs_dirty_inode(struct inode *inode)
5239 {
5240         struct btrfs_root *root = BTRFS_I(inode)->root;
5241         struct btrfs_trans_handle *trans;
5242         int ret;
5243
5244         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5245                 return 0;
5246
5247         trans = btrfs_join_transaction(root);
5248         if (IS_ERR(trans))
5249                 return PTR_ERR(trans);
5250
5251         ret = btrfs_update_inode(trans, root, inode);
5252         if (ret && ret == -ENOSPC) {
5253                 /* whoops, lets try again with the full transaction */
5254                 btrfs_end_transaction(trans, root);
5255                 trans = btrfs_start_transaction(root, 1);
5256                 if (IS_ERR(trans))
5257                         return PTR_ERR(trans);
5258
5259                 ret = btrfs_update_inode(trans, root, inode);
5260         }
5261         btrfs_end_transaction(trans, root);
5262         if (BTRFS_I(inode)->delayed_node)
5263                 btrfs_balance_delayed_items(root);
5264
5265         return ret;
5266 }
5267
5268 /*
5269  * This is a copy of file_update_time.  We need this so we can return error on
5270  * ENOSPC for updating the inode in the case of file write and mmap writes.
5271  */
5272 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5273                              int flags)
5274 {
5275         struct btrfs_root *root = BTRFS_I(inode)->root;
5276
5277         if (btrfs_root_readonly(root))
5278                 return -EROFS;
5279
5280         if (flags & S_VERSION)
5281                 inode_inc_iversion(inode);
5282         if (flags & S_CTIME)
5283                 inode->i_ctime = *now;
5284         if (flags & S_MTIME)
5285                 inode->i_mtime = *now;
5286         if (flags & S_ATIME)
5287                 inode->i_atime = *now;
5288         return btrfs_dirty_inode(inode);
5289 }
5290
5291 /*
5292  * find the highest existing sequence number in a directory
5293  * and then set the in-memory index_cnt variable to reflect
5294  * free sequence numbers
5295  */
5296 static int btrfs_set_inode_index_count(struct inode *inode)
5297 {
5298         struct btrfs_root *root = BTRFS_I(inode)->root;
5299         struct btrfs_key key, found_key;
5300         struct btrfs_path *path;
5301         struct extent_buffer *leaf;
5302         int ret;
5303
5304         key.objectid = btrfs_ino(inode);
5305         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5306         key.offset = (u64)-1;
5307
5308         path = btrfs_alloc_path();
5309         if (!path)
5310                 return -ENOMEM;
5311
5312         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5313         if (ret < 0)
5314                 goto out;
5315         /* FIXME: we should be able to handle this */
5316         if (ret == 0)
5317                 goto out;
5318         ret = 0;
5319
5320         /*
5321          * MAGIC NUMBER EXPLANATION:
5322          * since we search a directory based on f_pos we have to start at 2
5323          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5324          * else has to start at 2
5325          */
5326         if (path->slots[0] == 0) {
5327                 BTRFS_I(inode)->index_cnt = 2;
5328                 goto out;
5329         }
5330
5331         path->slots[0]--;
5332
5333         leaf = path->nodes[0];
5334         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5335
5336         if (found_key.objectid != btrfs_ino(inode) ||
5337             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5338                 BTRFS_I(inode)->index_cnt = 2;
5339                 goto out;
5340         }
5341
5342         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5343 out:
5344         btrfs_free_path(path);
5345         return ret;
5346 }
5347
5348 /*
5349  * helper to find a free sequence number in a given directory.  This current
5350  * code is very simple, later versions will do smarter things in the btree
5351  */
5352 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5353 {
5354         int ret = 0;
5355
5356         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5357                 ret = btrfs_inode_delayed_dir_index_count(dir);
5358                 if (ret) {
5359                         ret = btrfs_set_inode_index_count(dir);
5360                         if (ret)
5361                                 return ret;
5362                 }
5363         }
5364
5365         *index = BTRFS_I(dir)->index_cnt;
5366         BTRFS_I(dir)->index_cnt++;
5367
5368         return ret;
5369 }
5370
5371 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5372                                      struct btrfs_root *root,
5373                                      struct inode *dir,
5374                                      const char *name, int name_len,
5375                                      u64 ref_objectid, u64 objectid,
5376                                      umode_t mode, u64 *index)
5377 {
5378         struct inode *inode;
5379         struct btrfs_inode_item *inode_item;
5380         struct btrfs_key *location;
5381         struct btrfs_path *path;
5382         struct btrfs_inode_ref *ref;
5383         struct btrfs_key key[2];
5384         u32 sizes[2];
5385         unsigned long ptr;
5386         int ret;
5387         int owner;
5388
5389         path = btrfs_alloc_path();
5390         if (!path)
5391                 return ERR_PTR(-ENOMEM);
5392
5393         inode = new_inode(root->fs_info->sb);
5394         if (!inode) {
5395                 btrfs_free_path(path);
5396                 return ERR_PTR(-ENOMEM);
5397         }
5398
5399         /*
5400          * we have to initialize this early, so we can reclaim the inode
5401          * number if we fail afterwards in this function.
5402          */
5403         inode->i_ino = objectid;
5404
5405         if (dir) {
5406                 trace_btrfs_inode_request(dir);
5407
5408                 ret = btrfs_set_inode_index(dir, index);
5409                 if (ret) {
5410                         btrfs_free_path(path);
5411                         iput(inode);
5412                         return ERR_PTR(ret);
5413                 }
5414         }
5415         /*
5416          * index_cnt is ignored for everything but a dir,
5417          * btrfs_get_inode_index_count has an explanation for the magic
5418          * number
5419          */
5420         BTRFS_I(inode)->index_cnt = 2;
5421         BTRFS_I(inode)->root = root;
5422         BTRFS_I(inode)->generation = trans->transid;
5423         inode->i_generation = BTRFS_I(inode)->generation;
5424
5425         /*
5426          * We could have gotten an inode number from somebody who was fsynced
5427          * and then removed in this same transaction, so let's just set full
5428          * sync since it will be a full sync anyway and this will blow away the
5429          * old info in the log.
5430          */
5431         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5432
5433         if (S_ISDIR(mode))
5434                 owner = 0;
5435         else
5436                 owner = 1;
5437
5438         key[0].objectid = objectid;
5439         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5440         key[0].offset = 0;
5441
5442         /*
5443          * Start new inodes with an inode_ref. This is slightly more
5444          * efficient for small numbers of hard links since they will
5445          * be packed into one item. Extended refs will kick in if we
5446          * add more hard links than can fit in the ref item.
5447          */
5448         key[1].objectid = objectid;
5449         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5450         key[1].offset = ref_objectid;
5451
5452         sizes[0] = sizeof(struct btrfs_inode_item);
5453         sizes[1] = name_len + sizeof(*ref);
5454
5455         path->leave_spinning = 1;
5456         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5457         if (ret != 0)
5458                 goto fail;
5459
5460         inode_init_owner(inode, dir, mode);
5461         inode_set_bytes(inode, 0);
5462         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5463         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5464                                   struct btrfs_inode_item);
5465         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5466                              sizeof(*inode_item));
5467         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5468
5469         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5470                              struct btrfs_inode_ref);
5471         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5472         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5473         ptr = (unsigned long)(ref + 1);
5474         write_extent_buffer(path->nodes[0], name, ptr, name_len);
5475
5476         btrfs_mark_buffer_dirty(path->nodes[0]);
5477         btrfs_free_path(path);
5478
5479         location = &BTRFS_I(inode)->location;
5480         location->objectid = objectid;
5481         location->offset = 0;
5482         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5483
5484         btrfs_inherit_iflags(inode, dir);
5485
5486         if (S_ISREG(mode)) {
5487                 if (btrfs_test_opt(root, NODATASUM))
5488                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5489                 if (btrfs_test_opt(root, NODATACOW))
5490                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5491                                 BTRFS_INODE_NODATASUM;
5492         }
5493
5494         insert_inode_hash(inode);
5495         inode_tree_add(inode);
5496
5497         trace_btrfs_inode_new(inode);
5498         btrfs_set_inode_last_trans(trans, inode);
5499
5500         btrfs_update_root_times(trans, root);
5501
5502         return inode;
5503 fail:
5504         if (dir)
5505                 BTRFS_I(dir)->index_cnt--;
5506         btrfs_free_path(path);
5507         iput(inode);
5508         return ERR_PTR(ret);
5509 }
5510
5511 static inline u8 btrfs_inode_type(struct inode *inode)
5512 {
5513         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5514 }
5515
5516 /*
5517  * utility function to add 'inode' into 'parent_inode' with
5518  * a give name and a given sequence number.
5519  * if 'add_backref' is true, also insert a backref from the
5520  * inode to the parent directory.
5521  */
5522 int btrfs_add_link(struct btrfs_trans_handle *trans,
5523                    struct inode *parent_inode, struct inode *inode,
5524                    const char *name, int name_len, int add_backref, u64 index)
5525 {
5526         int ret = 0;
5527         struct btrfs_key key;
5528         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5529         u64 ino = btrfs_ino(inode);
5530         u64 parent_ino = btrfs_ino(parent_inode);
5531
5532         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5533                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5534         } else {
5535                 key.objectid = ino;
5536                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5537                 key.offset = 0;
5538         }
5539
5540         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5541                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5542                                          key.objectid, root->root_key.objectid,
5543                                          parent_ino, index, name, name_len);
5544         } else if (add_backref) {
5545                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5546                                              parent_ino, index);
5547         }
5548
5549         /* Nothing to clean up yet */
5550         if (ret)
5551                 return ret;
5552
5553         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5554                                     parent_inode, &key,
5555                                     btrfs_inode_type(inode), index);
5556         if (ret == -EEXIST || ret == -EOVERFLOW)
5557                 goto fail_dir_item;
5558         else if (ret) {
5559                 btrfs_abort_transaction(trans, root, ret);
5560                 return ret;
5561         }
5562
5563         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5564                            name_len * 2);
5565         inode_inc_iversion(parent_inode);
5566         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5567         ret = btrfs_update_inode(trans, root, parent_inode);
5568         if (ret)
5569                 btrfs_abort_transaction(trans, root, ret);
5570         return ret;
5571
5572 fail_dir_item:
5573         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5574                 u64 local_index;
5575                 int err;
5576                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5577                                  key.objectid, root->root_key.objectid,
5578                                  parent_ino, &local_index, name, name_len);
5579
5580         } else if (add_backref) {
5581                 u64 local_index;
5582                 int err;
5583
5584                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5585                                           ino, parent_ino, &local_index);
5586         }
5587         return ret;
5588 }
5589
5590 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5591                             struct inode *dir, struct dentry *dentry,
5592                             struct inode *inode, int backref, u64 index)
5593 {
5594         int err = btrfs_add_link(trans, dir, inode,
5595                                  dentry->d_name.name, dentry->d_name.len,
5596                                  backref, index);
5597         if (err > 0)
5598                 err = -EEXIST;
5599         return err;
5600 }
5601
5602 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5603                         umode_t mode, dev_t rdev)
5604 {
5605         struct btrfs_trans_handle *trans;
5606         struct btrfs_root *root = BTRFS_I(dir)->root;
5607         struct inode *inode = NULL;
5608         int err;
5609         int drop_inode = 0;
5610         u64 objectid;
5611         u64 index = 0;
5612
5613         if (!new_valid_dev(rdev))
5614                 return -EINVAL;
5615
5616         /*
5617          * 2 for inode item and ref
5618          * 2 for dir items
5619          * 1 for xattr if selinux is on
5620          */
5621         trans = btrfs_start_transaction(root, 5);
5622         if (IS_ERR(trans))
5623                 return PTR_ERR(trans);
5624
5625         err = btrfs_find_free_ino(root, &objectid);
5626         if (err)
5627                 goto out_unlock;
5628
5629         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5630                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5631                                 mode, &index);
5632         if (IS_ERR(inode)) {
5633                 err = PTR_ERR(inode);
5634                 goto out_unlock;
5635         }
5636
5637         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5638         if (err) {
5639                 drop_inode = 1;
5640                 goto out_unlock;
5641         }
5642
5643         /*
5644         * If the active LSM wants to access the inode during
5645         * d_instantiate it needs these. Smack checks to see
5646         * if the filesystem supports xattrs by looking at the
5647         * ops vector.
5648         */
5649
5650         inode->i_op = &btrfs_special_inode_operations;
5651         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5652         if (err)
5653                 drop_inode = 1;
5654         else {
5655                 init_special_inode(inode, inode->i_mode, rdev);
5656                 btrfs_update_inode(trans, root, inode);
5657                 d_instantiate(dentry, inode);
5658         }
5659 out_unlock:
5660         btrfs_end_transaction(trans, root);
5661         btrfs_btree_balance_dirty(root);
5662         if (drop_inode) {
5663                 inode_dec_link_count(inode);
5664                 iput(inode);
5665         }
5666         return err;
5667 }
5668
5669 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5670                         umode_t mode, bool excl)
5671 {
5672         struct btrfs_trans_handle *trans;
5673         struct btrfs_root *root = BTRFS_I(dir)->root;
5674         struct inode *inode = NULL;
5675         int drop_inode_on_err = 0;
5676         int err;
5677         u64 objectid;
5678         u64 index = 0;
5679
5680         /*
5681          * 2 for inode item and ref
5682          * 2 for dir items
5683          * 1 for xattr if selinux is on
5684          */
5685         trans = btrfs_start_transaction(root, 5);
5686         if (IS_ERR(trans))
5687                 return PTR_ERR(trans);
5688
5689         err = btrfs_find_free_ino(root, &objectid);
5690         if (err)
5691                 goto out_unlock;
5692
5693         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5694                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5695                                 mode, &index);
5696         if (IS_ERR(inode)) {
5697                 err = PTR_ERR(inode);
5698                 goto out_unlock;
5699         }
5700         drop_inode_on_err = 1;
5701
5702         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5703         if (err)
5704                 goto out_unlock;
5705
5706         err = btrfs_update_inode(trans, root, inode);
5707         if (err)
5708                 goto out_unlock;
5709
5710         /*
5711         * If the active LSM wants to access the inode during
5712         * d_instantiate it needs these. Smack checks to see
5713         * if the filesystem supports xattrs by looking at the
5714         * ops vector.
5715         */
5716         inode->i_fop = &btrfs_file_operations;
5717         inode->i_op = &btrfs_file_inode_operations;
5718
5719         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5720         if (err)
5721                 goto out_unlock;
5722
5723         inode->i_mapping->a_ops = &btrfs_aops;
5724         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5725         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5726         d_instantiate(dentry, inode);
5727
5728 out_unlock:
5729         btrfs_end_transaction(trans, root);
5730         if (err && drop_inode_on_err) {
5731                 inode_dec_link_count(inode);
5732                 iput(inode);
5733         }
5734         btrfs_btree_balance_dirty(root);
5735         return err;
5736 }
5737
5738 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5739                       struct dentry *dentry)
5740 {
5741         struct btrfs_trans_handle *trans;
5742         struct btrfs_root *root = BTRFS_I(dir)->root;
5743         struct inode *inode = old_dentry->d_inode;
5744         u64 index;
5745         int err;
5746         int drop_inode = 0;
5747
5748         /* do not allow sys_link's with other subvols of the same device */
5749         if (root->objectid != BTRFS_I(inode)->root->objectid)
5750                 return -EXDEV;
5751
5752         if (inode->i_nlink >= BTRFS_LINK_MAX)
5753                 return -EMLINK;
5754
5755         err = btrfs_set_inode_index(dir, &index);
5756         if (err)
5757                 goto fail;
5758
5759         /*
5760          * 2 items for inode and inode ref
5761          * 2 items for dir items
5762          * 1 item for parent inode
5763          */
5764         trans = btrfs_start_transaction(root, 5);
5765         if (IS_ERR(trans)) {
5766                 err = PTR_ERR(trans);
5767                 goto fail;
5768         }
5769
5770         btrfs_inc_nlink(inode);
5771         inode_inc_iversion(inode);
5772         inode->i_ctime = CURRENT_TIME;
5773         ihold(inode);
5774         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5775
5776         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5777
5778         if (err) {
5779                 drop_inode = 1;
5780         } else {
5781                 struct dentry *parent = dentry->d_parent;
5782                 err = btrfs_update_inode(trans, root, inode);
5783                 if (err)
5784                         goto fail;
5785                 d_instantiate(dentry, inode);
5786                 btrfs_log_new_name(trans, inode, NULL, parent);
5787         }
5788
5789         btrfs_end_transaction(trans, root);
5790 fail:
5791         if (drop_inode) {
5792                 inode_dec_link_count(inode);
5793                 iput(inode);
5794         }
5795         btrfs_btree_balance_dirty(root);
5796         return err;
5797 }
5798
5799 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5800 {
5801         struct inode *inode = NULL;
5802         struct btrfs_trans_handle *trans;
5803         struct btrfs_root *root = BTRFS_I(dir)->root;
5804         int err = 0;
5805         int drop_on_err = 0;
5806         u64 objectid = 0;
5807         u64 index = 0;
5808
5809         /*
5810          * 2 items for inode and ref
5811          * 2 items for dir items
5812          * 1 for xattr if selinux is on
5813          */
5814         trans = btrfs_start_transaction(root, 5);
5815         if (IS_ERR(trans))
5816                 return PTR_ERR(trans);
5817
5818         err = btrfs_find_free_ino(root, &objectid);
5819         if (err)
5820                 goto out_fail;
5821
5822         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5823                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5824                                 S_IFDIR | mode, &index);
5825         if (IS_ERR(inode)) {
5826                 err = PTR_ERR(inode);
5827                 goto out_fail;
5828         }
5829
5830         drop_on_err = 1;
5831
5832         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5833         if (err)
5834                 goto out_fail;
5835
5836         inode->i_op = &btrfs_dir_inode_operations;
5837         inode->i_fop = &btrfs_dir_file_operations;
5838
5839         btrfs_i_size_write(inode, 0);
5840         err = btrfs_update_inode(trans, root, inode);
5841         if (err)
5842                 goto out_fail;
5843
5844         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5845                              dentry->d_name.len, 0, index);
5846         if (err)
5847                 goto out_fail;
5848
5849         d_instantiate(dentry, inode);
5850         drop_on_err = 0;
5851
5852 out_fail:
5853         btrfs_end_transaction(trans, root);
5854         if (drop_on_err)
5855                 iput(inode);
5856         btrfs_btree_balance_dirty(root);
5857         return err;
5858 }
5859
5860 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5861  * and an extent that you want to insert, deal with overlap and insert
5862  * the new extent into the tree.
5863  */
5864 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5865                                 struct extent_map *existing,
5866                                 struct extent_map *em,
5867                                 u64 map_start, u64 map_len)
5868 {
5869         u64 start_diff;
5870
5871         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5872         start_diff = map_start - em->start;
5873         em->start = map_start;
5874         em->len = map_len;
5875         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5876             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5877                 em->block_start += start_diff;
5878                 em->block_len -= start_diff;
5879         }
5880         return add_extent_mapping(em_tree, em, 0);
5881 }
5882
5883 static noinline int uncompress_inline(struct btrfs_path *path,
5884                                       struct inode *inode, struct page *page,
5885                                       size_t pg_offset, u64 extent_offset,
5886                                       struct btrfs_file_extent_item *item)
5887 {
5888         int ret;
5889         struct extent_buffer *leaf = path->nodes[0];
5890         char *tmp;
5891         size_t max_size;
5892         unsigned long inline_size;
5893         unsigned long ptr;
5894         int compress_type;
5895
5896         WARN_ON(pg_offset != 0);
5897         compress_type = btrfs_file_extent_compression(leaf, item);
5898         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5899         inline_size = btrfs_file_extent_inline_item_len(leaf,
5900                                         btrfs_item_nr(leaf, path->slots[0]));
5901         tmp = kmalloc(inline_size, GFP_NOFS);
5902         if (!tmp)
5903                 return -ENOMEM;
5904         ptr = btrfs_file_extent_inline_start(item);
5905
5906         read_extent_buffer(leaf, tmp, ptr, inline_size);
5907
5908         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5909         ret = btrfs_decompress(compress_type, tmp, page,
5910                                extent_offset, inline_size, max_size);
5911         if (ret) {
5912                 char *kaddr = kmap_atomic(page);
5913                 unsigned long copy_size = min_t(u64,
5914                                   PAGE_CACHE_SIZE - pg_offset,
5915                                   max_size - extent_offset);
5916                 memset(kaddr + pg_offset, 0, copy_size);
5917                 kunmap_atomic(kaddr);
5918         }
5919         kfree(tmp);
5920         return 0;
5921 }
5922
5923 /*
5924  * a bit scary, this does extent mapping from logical file offset to the disk.
5925  * the ugly parts come from merging extents from the disk with the in-ram
5926  * representation.  This gets more complex because of the data=ordered code,
5927  * where the in-ram extents might be locked pending data=ordered completion.
5928  *
5929  * This also copies inline extents directly into the page.
5930  */
5931
5932 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5933                                     size_t pg_offset, u64 start, u64 len,
5934                                     int create)
5935 {
5936         int ret;
5937         int err = 0;
5938         u64 bytenr;
5939         u64 extent_start = 0;
5940         u64 extent_end = 0;
5941         u64 objectid = btrfs_ino(inode);
5942         u32 found_type;
5943         struct btrfs_path *path = NULL;
5944         struct btrfs_root *root = BTRFS_I(inode)->root;
5945         struct btrfs_file_extent_item *item;
5946         struct extent_buffer *leaf;
5947         struct btrfs_key found_key;
5948         struct extent_map *em = NULL;
5949         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5950         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5951         struct btrfs_trans_handle *trans = NULL;
5952         int compress_type;
5953
5954 again:
5955         read_lock(&em_tree->lock);
5956         em = lookup_extent_mapping(em_tree, start, len);
5957         if (em)
5958                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5959         read_unlock(&em_tree->lock);
5960
5961         if (em) {
5962                 if (em->start > start || em->start + em->len <= start)
5963                         free_extent_map(em);
5964                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5965                         free_extent_map(em);
5966                 else
5967                         goto out;
5968         }
5969         em = alloc_extent_map();
5970         if (!em) {
5971                 err = -ENOMEM;
5972                 goto out;
5973         }
5974         em->bdev = root->fs_info->fs_devices->latest_bdev;
5975         em->start = EXTENT_MAP_HOLE;
5976         em->orig_start = EXTENT_MAP_HOLE;
5977         em->len = (u64)-1;
5978         em->block_len = (u64)-1;
5979
5980         if (!path) {
5981                 path = btrfs_alloc_path();
5982                 if (!path) {
5983                         err = -ENOMEM;
5984                         goto out;
5985                 }
5986                 /*
5987                  * Chances are we'll be called again, so go ahead and do
5988                  * readahead
5989                  */
5990                 path->reada = 1;
5991         }
5992
5993         ret = btrfs_lookup_file_extent(trans, root, path,
5994                                        objectid, start, trans != NULL);
5995         if (ret < 0) {
5996                 err = ret;
5997                 goto out;
5998         }
5999
6000         if (ret != 0) {
6001                 if (path->slots[0] == 0)
6002                         goto not_found;
6003                 path->slots[0]--;
6004         }
6005
6006         leaf = path->nodes[0];
6007         item = btrfs_item_ptr(leaf, path->slots[0],
6008                               struct btrfs_file_extent_item);
6009         /* are we inside the extent that was found? */
6010         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6011         found_type = btrfs_key_type(&found_key);
6012         if (found_key.objectid != objectid ||
6013             found_type != BTRFS_EXTENT_DATA_KEY) {
6014                 goto not_found;
6015         }
6016
6017         found_type = btrfs_file_extent_type(leaf, item);
6018         extent_start = found_key.offset;
6019         compress_type = btrfs_file_extent_compression(leaf, item);
6020         if (found_type == BTRFS_FILE_EXTENT_REG ||
6021             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6022                 extent_end = extent_start +
6023                        btrfs_file_extent_num_bytes(leaf, item);
6024         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6025                 size_t size;
6026                 size = btrfs_file_extent_inline_len(leaf, item);
6027                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6028         }
6029
6030         if (start >= extent_end) {
6031                 path->slots[0]++;
6032                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6033                         ret = btrfs_next_leaf(root, path);
6034                         if (ret < 0) {
6035                                 err = ret;
6036                                 goto out;
6037                         }
6038                         if (ret > 0)
6039                                 goto not_found;
6040                         leaf = path->nodes[0];
6041                 }
6042                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6043                 if (found_key.objectid != objectid ||
6044                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6045                         goto not_found;
6046                 if (start + len <= found_key.offset)
6047                         goto not_found;
6048                 em->start = start;
6049                 em->orig_start = start;
6050                 em->len = found_key.offset - start;
6051                 goto not_found_em;
6052         }
6053
6054         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6055         if (found_type == BTRFS_FILE_EXTENT_REG ||
6056             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6057                 em->start = extent_start;
6058                 em->len = extent_end - extent_start;
6059                 em->orig_start = extent_start -
6060                                  btrfs_file_extent_offset(leaf, item);
6061                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6062                                                                       item);
6063                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6064                 if (bytenr == 0) {
6065                         em->block_start = EXTENT_MAP_HOLE;
6066                         goto insert;
6067                 }
6068                 if (compress_type != BTRFS_COMPRESS_NONE) {
6069                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6070                         em->compress_type = compress_type;
6071                         em->block_start = bytenr;
6072                         em->block_len = em->orig_block_len;
6073                 } else {
6074                         bytenr += btrfs_file_extent_offset(leaf, item);
6075                         em->block_start = bytenr;
6076                         em->block_len = em->len;
6077                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6078                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6079                 }
6080                 goto insert;
6081         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6082                 unsigned long ptr;
6083                 char *map;
6084                 size_t size;
6085                 size_t extent_offset;
6086                 size_t copy_size;
6087
6088                 em->block_start = EXTENT_MAP_INLINE;
6089                 if (!page || create) {
6090                         em->start = extent_start;
6091                         em->len = extent_end - extent_start;
6092                         goto out;
6093                 }
6094
6095                 size = btrfs_file_extent_inline_len(leaf, item);
6096                 extent_offset = page_offset(page) + pg_offset - extent_start;
6097                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6098                                 size - extent_offset);
6099                 em->start = extent_start + extent_offset;
6100                 em->len = ALIGN(copy_size, root->sectorsize);
6101                 em->orig_block_len = em->len;
6102                 em->orig_start = em->start;
6103                 if (compress_type) {
6104                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6105                         em->compress_type = compress_type;
6106                 }
6107                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6108                 if (create == 0 && !PageUptodate(page)) {
6109                         if (btrfs_file_extent_compression(leaf, item) !=
6110                             BTRFS_COMPRESS_NONE) {
6111                                 ret = uncompress_inline(path, inode, page,
6112                                                         pg_offset,
6113                                                         extent_offset, item);
6114                                 BUG_ON(ret); /* -ENOMEM */
6115                         } else {
6116                                 map = kmap(page);
6117                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6118                                                    copy_size);
6119                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6120                                         memset(map + pg_offset + copy_size, 0,
6121                                                PAGE_CACHE_SIZE - pg_offset -
6122                                                copy_size);
6123                                 }
6124                                 kunmap(page);
6125                         }
6126                         flush_dcache_page(page);
6127                 } else if (create && PageUptodate(page)) {
6128                         BUG();
6129                         if (!trans) {
6130                                 kunmap(page);
6131                                 free_extent_map(em);
6132                                 em = NULL;
6133
6134                                 btrfs_release_path(path);
6135                                 trans = btrfs_join_transaction(root);
6136
6137                                 if (IS_ERR(trans))
6138                                         return ERR_CAST(trans);
6139                                 goto again;
6140                         }
6141                         map = kmap(page);
6142                         write_extent_buffer(leaf, map + pg_offset, ptr,
6143                                             copy_size);
6144                         kunmap(page);
6145                         btrfs_mark_buffer_dirty(leaf);
6146                 }
6147                 set_extent_uptodate(io_tree, em->start,
6148                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6149                 goto insert;
6150         } else {
6151                 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6152         }
6153 not_found:
6154         em->start = start;
6155         em->orig_start = start;
6156         em->len = len;
6157 not_found_em:
6158         em->block_start = EXTENT_MAP_HOLE;
6159         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6160 insert:
6161         btrfs_release_path(path);
6162         if (em->start > start || extent_map_end(em) <= start) {
6163                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6164                         (unsigned long long)em->start,
6165                         (unsigned long long)em->len,
6166                         (unsigned long long)start,
6167                         (unsigned long long)len);
6168                 err = -EIO;
6169                 goto out;
6170         }
6171
6172         err = 0;
6173         write_lock(&em_tree->lock);
6174         ret = add_extent_mapping(em_tree, em, 0);
6175         /* it is possible that someone inserted the extent into the tree
6176          * while we had the lock dropped.  It is also possible that
6177          * an overlapping map exists in the tree
6178          */
6179         if (ret == -EEXIST) {
6180                 struct extent_map *existing;
6181
6182                 ret = 0;
6183
6184                 existing = lookup_extent_mapping(em_tree, start, len);
6185                 if (existing && (existing->start > start ||
6186                     existing->start + existing->len <= start)) {
6187                         free_extent_map(existing);
6188                         existing = NULL;
6189                 }
6190                 if (!existing) {
6191                         existing = lookup_extent_mapping(em_tree, em->start,
6192                                                          em->len);
6193                         if (existing) {
6194                                 err = merge_extent_mapping(em_tree, existing,
6195                                                            em, start,
6196                                                            root->sectorsize);
6197                                 free_extent_map(existing);
6198                                 if (err) {
6199                                         free_extent_map(em);
6200                                         em = NULL;
6201                                 }
6202                         } else {
6203                                 err = -EIO;
6204                                 free_extent_map(em);
6205                                 em = NULL;
6206                         }
6207                 } else {
6208                         free_extent_map(em);
6209                         em = existing;
6210                         err = 0;
6211                 }
6212         }
6213         write_unlock(&em_tree->lock);
6214 out:
6215
6216         if (em)
6217                 trace_btrfs_get_extent(root, em);
6218
6219         if (path)
6220                 btrfs_free_path(path);
6221         if (trans) {
6222                 ret = btrfs_end_transaction(trans, root);
6223                 if (!err)
6224                         err = ret;
6225         }
6226         if (err) {
6227                 free_extent_map(em);
6228                 return ERR_PTR(err);
6229         }
6230         BUG_ON(!em); /* Error is always set */
6231         return em;
6232 }
6233
6234 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6235                                            size_t pg_offset, u64 start, u64 len,
6236                                            int create)
6237 {
6238         struct extent_map *em;
6239         struct extent_map *hole_em = NULL;
6240         u64 range_start = start;
6241         u64 end;
6242         u64 found;
6243         u64 found_end;
6244         int err = 0;
6245
6246         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6247         if (IS_ERR(em))
6248                 return em;
6249         if (em) {
6250                 /*
6251                  * if our em maps to
6252                  * -  a hole or
6253                  * -  a pre-alloc extent,
6254                  * there might actually be delalloc bytes behind it.
6255                  */
6256                 if (em->block_start != EXTENT_MAP_HOLE &&
6257                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6258                         return em;
6259                 else
6260                         hole_em = em;
6261         }
6262
6263         /* check to see if we've wrapped (len == -1 or similar) */
6264         end = start + len;
6265         if (end < start)
6266                 end = (u64)-1;
6267         else
6268                 end -= 1;
6269
6270         em = NULL;
6271
6272         /* ok, we didn't find anything, lets look for delalloc */
6273         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6274                                  end, len, EXTENT_DELALLOC, 1);
6275         found_end = range_start + found;
6276         if (found_end < range_start)
6277                 found_end = (u64)-1;
6278
6279         /*
6280          * we didn't find anything useful, return
6281          * the original results from get_extent()
6282          */
6283         if (range_start > end || found_end <= start) {
6284                 em = hole_em;
6285                 hole_em = NULL;
6286                 goto out;
6287         }
6288
6289         /* adjust the range_start to make sure it doesn't
6290          * go backwards from the start they passed in
6291          */
6292         range_start = max(start,range_start);
6293         found = found_end - range_start;
6294
6295         if (found > 0) {
6296                 u64 hole_start = start;
6297                 u64 hole_len = len;
6298
6299                 em = alloc_extent_map();
6300                 if (!em) {
6301                         err = -ENOMEM;
6302                         goto out;
6303                 }
6304                 /*
6305                  * when btrfs_get_extent can't find anything it
6306                  * returns one huge hole
6307                  *
6308                  * make sure what it found really fits our range, and
6309                  * adjust to make sure it is based on the start from
6310                  * the caller
6311                  */
6312                 if (hole_em) {
6313                         u64 calc_end = extent_map_end(hole_em);
6314
6315                         if (calc_end <= start || (hole_em->start > end)) {
6316                                 free_extent_map(hole_em);
6317                                 hole_em = NULL;
6318                         } else {
6319                                 hole_start = max(hole_em->start, start);
6320                                 hole_len = calc_end - hole_start;
6321                         }
6322                 }
6323                 em->bdev = NULL;
6324                 if (hole_em && range_start > hole_start) {
6325                         /* our hole starts before our delalloc, so we
6326                          * have to return just the parts of the hole
6327                          * that go until  the delalloc starts
6328                          */
6329                         em->len = min(hole_len,
6330                                       range_start - hole_start);
6331                         em->start = hole_start;
6332                         em->orig_start = hole_start;
6333                         /*
6334                          * don't adjust block start at all,
6335                          * it is fixed at EXTENT_MAP_HOLE
6336                          */
6337                         em->block_start = hole_em->block_start;
6338                         em->block_len = hole_len;
6339                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6340                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6341                 } else {
6342                         em->start = range_start;
6343                         em->len = found;
6344                         em->orig_start = range_start;
6345                         em->block_start = EXTENT_MAP_DELALLOC;
6346                         em->block_len = found;
6347                 }
6348         } else if (hole_em) {
6349                 return hole_em;
6350         }
6351 out:
6352
6353         free_extent_map(hole_em);
6354         if (err) {
6355                 free_extent_map(em);
6356                 return ERR_PTR(err);
6357         }
6358         return em;
6359 }
6360
6361 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6362                                                   u64 start, u64 len)
6363 {
6364         struct btrfs_root *root = BTRFS_I(inode)->root;
6365         struct btrfs_trans_handle *trans;
6366         struct extent_map *em;
6367         struct btrfs_key ins;
6368         u64 alloc_hint;
6369         int ret;
6370
6371         trans = btrfs_join_transaction(root);
6372         if (IS_ERR(trans))
6373                 return ERR_CAST(trans);
6374
6375         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6376
6377         alloc_hint = get_extent_allocation_hint(inode, start, len);
6378         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6379                                    alloc_hint, &ins, 1);
6380         if (ret) {
6381                 em = ERR_PTR(ret);
6382                 goto out;
6383         }
6384
6385         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6386                               ins.offset, ins.offset, ins.offset, 0);
6387         if (IS_ERR(em))
6388                 goto out;
6389
6390         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6391                                            ins.offset, ins.offset, 0);
6392         if (ret) {
6393                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6394                 em = ERR_PTR(ret);
6395         }
6396 out:
6397         btrfs_end_transaction(trans, root);
6398         return em;
6399 }
6400
6401 /*
6402  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6403  * block must be cow'd
6404  */
6405 noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6406                               struct inode *inode, u64 offset, u64 *len,
6407                               u64 *orig_start, u64 *orig_block_len,
6408                               u64 *ram_bytes)
6409 {
6410         struct btrfs_path *path;
6411         int ret;
6412         struct extent_buffer *leaf;
6413         struct btrfs_root *root = BTRFS_I(inode)->root;
6414         struct btrfs_file_extent_item *fi;
6415         struct btrfs_key key;
6416         u64 disk_bytenr;
6417         u64 backref_offset;
6418         u64 extent_end;
6419         u64 num_bytes;
6420         int slot;
6421         int found_type;
6422         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6423         path = btrfs_alloc_path();
6424         if (!path)
6425                 return -ENOMEM;
6426
6427         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6428                                        offset, 0);
6429         if (ret < 0)
6430                 goto out;
6431
6432         slot = path->slots[0];
6433         if (ret == 1) {
6434                 if (slot == 0) {
6435                         /* can't find the item, must cow */
6436                         ret = 0;
6437                         goto out;
6438                 }
6439                 slot--;
6440         }
6441         ret = 0;
6442         leaf = path->nodes[0];
6443         btrfs_item_key_to_cpu(leaf, &key, slot);
6444         if (key.objectid != btrfs_ino(inode) ||
6445             key.type != BTRFS_EXTENT_DATA_KEY) {
6446                 /* not our file or wrong item type, must cow */
6447                 goto out;
6448         }
6449
6450         if (key.offset > offset) {
6451                 /* Wrong offset, must cow */
6452                 goto out;
6453         }
6454
6455         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6456         found_type = btrfs_file_extent_type(leaf, fi);
6457         if (found_type != BTRFS_FILE_EXTENT_REG &&
6458             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6459                 /* not a regular extent, must cow */
6460                 goto out;
6461         }
6462
6463         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6464                 goto out;
6465
6466         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6467         if (disk_bytenr == 0)
6468                 goto out;
6469
6470         if (btrfs_file_extent_compression(leaf, fi) ||
6471             btrfs_file_extent_encryption(leaf, fi) ||
6472             btrfs_file_extent_other_encoding(leaf, fi))
6473                 goto out;
6474
6475         backref_offset = btrfs_file_extent_offset(leaf, fi);
6476
6477         if (orig_start) {
6478                 *orig_start = key.offset - backref_offset;
6479                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6480                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6481         }
6482
6483         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6484
6485         if (btrfs_extent_readonly(root, disk_bytenr))
6486                 goto out;
6487
6488         /*
6489          * look for other files referencing this extent, if we
6490          * find any we must cow
6491          */
6492         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6493                                   key.offset - backref_offset, disk_bytenr))
6494                 goto out;
6495
6496         /*
6497          * adjust disk_bytenr and num_bytes to cover just the bytes
6498          * in this extent we are about to write.  If there
6499          * are any csums in that range we have to cow in order
6500          * to keep the csums correct
6501          */
6502         disk_bytenr += backref_offset;
6503         disk_bytenr += offset - key.offset;
6504         num_bytes = min(offset + *len, extent_end) - offset;
6505         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6506                                 goto out;
6507         /*
6508          * all of the above have passed, it is safe to overwrite this extent
6509          * without cow
6510          */
6511         *len = num_bytes;
6512         ret = 1;
6513 out:
6514         btrfs_free_path(path);
6515         return ret;
6516 }
6517
6518 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6519                               struct extent_state **cached_state, int writing)
6520 {
6521         struct btrfs_ordered_extent *ordered;
6522         int ret = 0;
6523
6524         while (1) {
6525                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6526                                  0, cached_state);
6527                 /*
6528                  * We're concerned with the entire range that we're going to be
6529                  * doing DIO to, so we need to make sure theres no ordered
6530                  * extents in this range.
6531                  */
6532                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6533                                                      lockend - lockstart + 1);
6534
6535                 /*
6536                  * We need to make sure there are no buffered pages in this
6537                  * range either, we could have raced between the invalidate in
6538                  * generic_file_direct_write and locking the extent.  The
6539                  * invalidate needs to happen so that reads after a write do not
6540                  * get stale data.
6541                  */
6542                 if (!ordered && (!writing ||
6543                     !test_range_bit(&BTRFS_I(inode)->io_tree,
6544                                     lockstart, lockend, EXTENT_UPTODATE, 0,
6545                                     *cached_state)))
6546                         break;
6547
6548                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6549                                      cached_state, GFP_NOFS);
6550
6551                 if (ordered) {
6552                         btrfs_start_ordered_extent(inode, ordered, 1);
6553                         btrfs_put_ordered_extent(ordered);
6554                 } else {
6555                         /* Screw you mmap */
6556                         ret = filemap_write_and_wait_range(inode->i_mapping,
6557                                                            lockstart,
6558                                                            lockend);
6559                         if (ret)
6560                                 break;
6561
6562                         /*
6563                          * If we found a page that couldn't be invalidated just
6564                          * fall back to buffered.
6565                          */
6566                         ret = invalidate_inode_pages2_range(inode->i_mapping,
6567                                         lockstart >> PAGE_CACHE_SHIFT,
6568                                         lockend >> PAGE_CACHE_SHIFT);
6569                         if (ret)
6570                                 break;
6571                 }
6572
6573                 cond_resched();
6574         }
6575
6576         return ret;
6577 }
6578
6579 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6580                                            u64 len, u64 orig_start,
6581                                            u64 block_start, u64 block_len,
6582                                            u64 orig_block_len, u64 ram_bytes,
6583                                            int type)
6584 {
6585         struct extent_map_tree *em_tree;
6586         struct extent_map *em;
6587         struct btrfs_root *root = BTRFS_I(inode)->root;
6588         int ret;
6589
6590         em_tree = &BTRFS_I(inode)->extent_tree;
6591         em = alloc_extent_map();
6592         if (!em)
6593                 return ERR_PTR(-ENOMEM);
6594
6595         em->start = start;
6596         em->orig_start = orig_start;
6597         em->mod_start = start;
6598         em->mod_len = len;
6599         em->len = len;
6600         em->block_len = block_len;
6601         em->block_start = block_start;
6602         em->bdev = root->fs_info->fs_devices->latest_bdev;
6603         em->orig_block_len = orig_block_len;
6604         em->ram_bytes = ram_bytes;
6605         em->generation = -1;
6606         set_bit(EXTENT_FLAG_PINNED, &em->flags);
6607         if (type == BTRFS_ORDERED_PREALLOC)
6608                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6609
6610         do {
6611                 btrfs_drop_extent_cache(inode, em->start,
6612                                 em->start + em->len - 1, 0);
6613                 write_lock(&em_tree->lock);
6614                 ret = add_extent_mapping(em_tree, em, 1);
6615                 write_unlock(&em_tree->lock);
6616         } while (ret == -EEXIST);
6617
6618         if (ret) {
6619                 free_extent_map(em);
6620                 return ERR_PTR(ret);
6621         }
6622
6623         return em;
6624 }
6625
6626
6627 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6628                                    struct buffer_head *bh_result, int create)
6629 {
6630         struct extent_map *em;
6631         struct btrfs_root *root = BTRFS_I(inode)->root;
6632         struct extent_state *cached_state = NULL;
6633         u64 start = iblock << inode->i_blkbits;
6634         u64 lockstart, lockend;
6635         u64 len = bh_result->b_size;
6636         struct btrfs_trans_handle *trans;
6637         int unlock_bits = EXTENT_LOCKED;
6638         int ret = 0;
6639
6640         if (create)
6641                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6642         else
6643                 len = min_t(u64, len, root->sectorsize);
6644
6645         lockstart = start;
6646         lockend = start + len - 1;
6647
6648         /*
6649          * If this errors out it's because we couldn't invalidate pagecache for
6650          * this range and we need to fallback to buffered.
6651          */
6652         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6653                 return -ENOTBLK;
6654
6655         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6656         if (IS_ERR(em)) {
6657                 ret = PTR_ERR(em);
6658                 goto unlock_err;
6659         }
6660
6661         /*
6662          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6663          * io.  INLINE is special, and we could probably kludge it in here, but
6664          * it's still buffered so for safety lets just fall back to the generic
6665          * buffered path.
6666          *
6667          * For COMPRESSED we _have_ to read the entire extent in so we can
6668          * decompress it, so there will be buffering required no matter what we
6669          * do, so go ahead and fallback to buffered.
6670          *
6671          * We return -ENOTBLK because thats what makes DIO go ahead and go back
6672          * to buffered IO.  Don't blame me, this is the price we pay for using
6673          * the generic code.
6674          */
6675         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6676             em->block_start == EXTENT_MAP_INLINE) {
6677                 free_extent_map(em);
6678                 ret = -ENOTBLK;
6679                 goto unlock_err;
6680         }
6681
6682         /* Just a good old fashioned hole, return */
6683         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6684                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6685                 free_extent_map(em);
6686                 goto unlock_err;
6687         }
6688
6689         /*
6690          * We don't allocate a new extent in the following cases
6691          *
6692          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6693          * existing extent.
6694          * 2) The extent is marked as PREALLOC.  We're good to go here and can
6695          * just use the extent.
6696          *
6697          */
6698         if (!create) {
6699                 len = min(len, em->len - (start - em->start));
6700                 lockstart = start + len;
6701                 goto unlock;
6702         }
6703
6704         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6705             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6706              em->block_start != EXTENT_MAP_HOLE)) {
6707                 int type;
6708                 int ret;
6709                 u64 block_start, orig_start, orig_block_len, ram_bytes;
6710
6711                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6712                         type = BTRFS_ORDERED_PREALLOC;
6713                 else
6714                         type = BTRFS_ORDERED_NOCOW;
6715                 len = min(len, em->len - (start - em->start));
6716                 block_start = em->block_start + (start - em->start);
6717
6718                 /*
6719                  * we're not going to log anything, but we do need
6720                  * to make sure the current transaction stays open
6721                  * while we look for nocow cross refs
6722                  */
6723                 trans = btrfs_join_transaction(root);
6724                 if (IS_ERR(trans))
6725                         goto must_cow;
6726
6727                 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6728                                      &orig_block_len, &ram_bytes) == 1) {
6729                         if (type == BTRFS_ORDERED_PREALLOC) {
6730                                 free_extent_map(em);
6731                                 em = create_pinned_em(inode, start, len,
6732                                                        orig_start,
6733                                                        block_start, len,
6734                                                        orig_block_len,
6735                                                        ram_bytes, type);
6736                                 if (IS_ERR(em)) {
6737                                         btrfs_end_transaction(trans, root);
6738                                         goto unlock_err;
6739                                 }
6740                         }
6741
6742                         ret = btrfs_add_ordered_extent_dio(inode, start,
6743                                            block_start, len, len, type);
6744                         btrfs_end_transaction(trans, root);
6745                         if (ret) {
6746                                 free_extent_map(em);
6747                                 goto unlock_err;
6748                         }
6749                         goto unlock;
6750                 }
6751                 btrfs_end_transaction(trans, root);
6752         }
6753 must_cow:
6754         /*
6755          * this will cow the extent, reset the len in case we changed
6756          * it above
6757          */
6758         len = bh_result->b_size;
6759         free_extent_map(em);
6760         em = btrfs_new_extent_direct(inode, start, len);
6761         if (IS_ERR(em)) {
6762                 ret = PTR_ERR(em);
6763                 goto unlock_err;
6764         }
6765         len = min(len, em->len - (start - em->start));
6766 unlock:
6767         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6768                 inode->i_blkbits;
6769         bh_result->b_size = len;
6770         bh_result->b_bdev = em->bdev;
6771         set_buffer_mapped(bh_result);
6772         if (create) {
6773                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6774                         set_buffer_new(bh_result);
6775
6776                 /*
6777                  * Need to update the i_size under the extent lock so buffered
6778                  * readers will get the updated i_size when we unlock.
6779                  */
6780                 if (start + len > i_size_read(inode))
6781                         i_size_write(inode, start + len);
6782
6783                 spin_lock(&BTRFS_I(inode)->lock);
6784                 BTRFS_I(inode)->outstanding_extents++;
6785                 spin_unlock(&BTRFS_I(inode)->lock);
6786
6787                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6788                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
6789                                      &cached_state, GFP_NOFS);
6790                 BUG_ON(ret);
6791         }
6792
6793         /*
6794          * In the case of write we need to clear and unlock the entire range,
6795          * in the case of read we need to unlock only the end area that we
6796          * aren't using if there is any left over space.
6797          */
6798         if (lockstart < lockend) {
6799                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6800                                  lockend, unlock_bits, 1, 0,
6801                                  &cached_state, GFP_NOFS);
6802         } else {
6803                 free_extent_state(cached_state);
6804         }
6805
6806         free_extent_map(em);
6807
6808         return 0;
6809
6810 unlock_err:
6811         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6812                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6813         return ret;
6814 }
6815
6816 struct btrfs_dio_private {
6817         struct inode *inode;
6818         u64 logical_offset;
6819         u64 disk_bytenr;
6820         u64 bytes;
6821         void *private;
6822
6823         /* number of bios pending for this dio */
6824         atomic_t pending_bios;
6825
6826         /* IO errors */
6827         int errors;
6828
6829         /* orig_bio is our btrfs_io_bio */
6830         struct bio *orig_bio;
6831
6832         /* dio_bio came from fs/direct-io.c */
6833         struct bio *dio_bio;
6834 };
6835
6836 static void btrfs_endio_direct_read(struct bio *bio, int err)
6837 {
6838         struct btrfs_dio_private *dip = bio->bi_private;
6839         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6840         struct bio_vec *bvec = bio->bi_io_vec;
6841         struct inode *inode = dip->inode;
6842         struct btrfs_root *root = BTRFS_I(inode)->root;
6843         struct bio *dio_bio;
6844         u64 start;
6845
6846         start = dip->logical_offset;
6847         do {
6848                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6849                         struct page *page = bvec->bv_page;
6850                         char *kaddr;
6851                         u32 csum = ~(u32)0;
6852                         u64 private = ~(u32)0;
6853                         unsigned long flags;
6854
6855                         if (get_state_private(&BTRFS_I(inode)->io_tree,
6856                                               start, &private))
6857                                 goto failed;
6858                         local_irq_save(flags);
6859                         kaddr = kmap_atomic(page);
6860                         csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6861                                                csum, bvec->bv_len);
6862                         btrfs_csum_final(csum, (char *)&csum);
6863                         kunmap_atomic(kaddr);
6864                         local_irq_restore(flags);
6865
6866                         flush_dcache_page(bvec->bv_page);
6867                         if (csum != private) {
6868 failed:
6869                                 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6870                                         (unsigned long long)btrfs_ino(inode),
6871                                         (unsigned long long)start,
6872                                         csum, (unsigned)private);
6873                                 err = -EIO;
6874                         }
6875                 }
6876
6877                 start += bvec->bv_len;
6878                 bvec++;
6879         } while (bvec <= bvec_end);
6880
6881         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6882                       dip->logical_offset + dip->bytes - 1);
6883         dio_bio = dip->dio_bio;
6884
6885         kfree(dip);
6886
6887         /* If we had a csum failure make sure to clear the uptodate flag */
6888         if (err)
6889                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6890         dio_end_io(dio_bio, err);
6891         bio_put(bio);
6892 }
6893
6894 static void btrfs_endio_direct_write(struct bio *bio, int err)
6895 {
6896         struct btrfs_dio_private *dip = bio->bi_private;
6897         struct inode *inode = dip->inode;
6898         struct btrfs_root *root = BTRFS_I(inode)->root;
6899         struct btrfs_ordered_extent *ordered = NULL;
6900         u64 ordered_offset = dip->logical_offset;
6901         u64 ordered_bytes = dip->bytes;
6902         struct bio *dio_bio;
6903         int ret;
6904
6905         if (err)
6906                 goto out_done;
6907 again:
6908         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6909                                                    &ordered_offset,
6910                                                    ordered_bytes, !err);
6911         if (!ret)
6912                 goto out_test;
6913
6914         ordered->work.func = finish_ordered_fn;
6915         ordered->work.flags = 0;
6916         btrfs_queue_worker(&root->fs_info->endio_write_workers,
6917                            &ordered->work);
6918 out_test:
6919         /*
6920          * our bio might span multiple ordered extents.  If we haven't
6921          * completed the accounting for the whole dio, go back and try again
6922          */
6923         if (ordered_offset < dip->logical_offset + dip->bytes) {
6924                 ordered_bytes = dip->logical_offset + dip->bytes -
6925                         ordered_offset;
6926                 ordered = NULL;
6927                 goto again;
6928         }
6929 out_done:
6930         dio_bio = dip->dio_bio;
6931
6932         kfree(dip);
6933
6934         /* If we had an error make sure to clear the uptodate flag */
6935         if (err)
6936                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6937         dio_end_io(dio_bio, err);
6938         bio_put(bio);
6939 }
6940
6941 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6942                                     struct bio *bio, int mirror_num,
6943                                     unsigned long bio_flags, u64 offset)
6944 {
6945         int ret;
6946         struct btrfs_root *root = BTRFS_I(inode)->root;
6947         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6948         BUG_ON(ret); /* -ENOMEM */
6949         return 0;
6950 }
6951
6952 static void btrfs_end_dio_bio(struct bio *bio, int err)
6953 {
6954         struct btrfs_dio_private *dip = bio->bi_private;
6955
6956         if (err) {
6957                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6958                       "sector %#Lx len %u err no %d\n",
6959                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6960                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
6961                 dip->errors = 1;
6962
6963                 /*
6964                  * before atomic variable goto zero, we must make sure
6965                  * dip->errors is perceived to be set.
6966                  */
6967                 smp_mb__before_atomic_dec();
6968         }
6969
6970         /* if there are more bios still pending for this dio, just exit */
6971         if (!atomic_dec_and_test(&dip->pending_bios))
6972                 goto out;
6973
6974         if (dip->errors) {
6975                 bio_io_error(dip->orig_bio);
6976         } else {
6977                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6978                 bio_endio(dip->orig_bio, 0);
6979         }
6980 out:
6981         bio_put(bio);
6982 }
6983
6984 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6985                                        u64 first_sector, gfp_t gfp_flags)
6986 {
6987         int nr_vecs = bio_get_nr_vecs(bdev);
6988         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6989 }
6990
6991 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6992                                          int rw, u64 file_offset, int skip_sum,
6993                                          int async_submit)
6994 {
6995         int write = rw & REQ_WRITE;
6996         struct btrfs_root *root = BTRFS_I(inode)->root;
6997         int ret;
6998
6999         if (async_submit)
7000                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7001
7002         bio_get(bio);
7003
7004         if (!write) {
7005                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7006                 if (ret)
7007                         goto err;
7008         }
7009
7010         if (skip_sum)
7011                 goto map;
7012
7013         if (write && async_submit) {
7014                 ret = btrfs_wq_submit_bio(root->fs_info,
7015                                    inode, rw, bio, 0, 0,
7016                                    file_offset,
7017                                    __btrfs_submit_bio_start_direct_io,
7018                                    __btrfs_submit_bio_done);
7019                 goto err;
7020         } else if (write) {
7021                 /*
7022                  * If we aren't doing async submit, calculate the csum of the
7023                  * bio now.
7024                  */
7025                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7026                 if (ret)
7027                         goto err;
7028         } else if (!skip_sum) {
7029                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7030                 if (ret)
7031                         goto err;
7032         }
7033
7034 map:
7035         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7036 err:
7037         bio_put(bio);
7038         return ret;
7039 }
7040
7041 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7042                                     int skip_sum)
7043 {
7044         struct inode *inode = dip->inode;
7045         struct btrfs_root *root = BTRFS_I(inode)->root;
7046         struct bio *bio;
7047         struct bio *orig_bio = dip->orig_bio;
7048         struct bio_vec *bvec = orig_bio->bi_io_vec;
7049         u64 start_sector = orig_bio->bi_sector;
7050         u64 file_offset = dip->logical_offset;
7051         u64 submit_len = 0;
7052         u64 map_length;
7053         int nr_pages = 0;
7054         int ret = 0;
7055         int async_submit = 0;
7056
7057         map_length = orig_bio->bi_size;
7058         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7059                               &map_length, NULL, 0);
7060         if (ret) {
7061                 bio_put(orig_bio);
7062                 return -EIO;
7063         }
7064         if (map_length >= orig_bio->bi_size) {
7065                 bio = orig_bio;
7066                 goto submit;
7067         }
7068
7069         /* async crcs make it difficult to collect full stripe writes. */
7070         if (btrfs_get_alloc_profile(root, 1) &
7071             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7072                 async_submit = 0;
7073         else
7074                 async_submit = 1;
7075
7076         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7077         if (!bio)
7078                 return -ENOMEM;
7079         bio->bi_private = dip;
7080         bio->bi_end_io = btrfs_end_dio_bio;
7081         atomic_inc(&dip->pending_bios);
7082
7083         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7084                 if (unlikely(map_length < submit_len + bvec->bv_len ||
7085                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7086                                  bvec->bv_offset) < bvec->bv_len)) {
7087                         /*
7088                          * inc the count before we submit the bio so
7089                          * we know the end IO handler won't happen before
7090                          * we inc the count. Otherwise, the dip might get freed
7091                          * before we're done setting it up
7092                          */
7093                         atomic_inc(&dip->pending_bios);
7094                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7095                                                      file_offset, skip_sum,
7096                                                      async_submit);
7097                         if (ret) {
7098                                 bio_put(bio);
7099                                 atomic_dec(&dip->pending_bios);
7100                                 goto out_err;
7101                         }
7102
7103                         start_sector += submit_len >> 9;
7104                         file_offset += submit_len;
7105
7106                         submit_len = 0;
7107                         nr_pages = 0;
7108
7109                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7110                                                   start_sector, GFP_NOFS);
7111                         if (!bio)
7112                                 goto out_err;
7113                         bio->bi_private = dip;
7114                         bio->bi_end_io = btrfs_end_dio_bio;
7115
7116                         map_length = orig_bio->bi_size;
7117                         ret = btrfs_map_block(root->fs_info, rw,
7118                                               start_sector << 9,
7119                                               &map_length, NULL, 0);
7120                         if (ret) {
7121                                 bio_put(bio);
7122                                 goto out_err;
7123                         }
7124                 } else {
7125                         submit_len += bvec->bv_len;
7126                         nr_pages ++;
7127                         bvec++;
7128                 }
7129         }
7130
7131 submit:
7132         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7133                                      async_submit);
7134         if (!ret)
7135                 return 0;
7136
7137         bio_put(bio);
7138 out_err:
7139         dip->errors = 1;
7140         /*
7141          * before atomic variable goto zero, we must
7142          * make sure dip->errors is perceived to be set.
7143          */
7144         smp_mb__before_atomic_dec();
7145         if (atomic_dec_and_test(&dip->pending_bios))
7146                 bio_io_error(dip->orig_bio);
7147
7148         /* bio_end_io() will handle error, so we needn't return it */
7149         return 0;
7150 }
7151
7152 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7153                                 struct inode *inode, loff_t file_offset)
7154 {
7155         struct btrfs_root *root = BTRFS_I(inode)->root;
7156         struct btrfs_dio_private *dip;
7157         struct bio *io_bio;
7158         int skip_sum;
7159         int write = rw & REQ_WRITE;
7160         int ret = 0;
7161
7162         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7163
7164         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7165
7166         if (!io_bio) {
7167                 ret = -ENOMEM;
7168                 goto free_ordered;
7169         }
7170
7171         dip = kmalloc(sizeof(*dip), GFP_NOFS);
7172         if (!dip) {
7173                 ret = -ENOMEM;
7174                 goto free_io_bio;
7175         }
7176
7177         dip->private = dio_bio->bi_private;
7178         dip->inode = inode;
7179         dip->logical_offset = file_offset;
7180         dip->bytes = dio_bio->bi_size;
7181         dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7182         io_bio->bi_private = dip;
7183         dip->errors = 0;
7184         dip->orig_bio = io_bio;
7185         dip->dio_bio = dio_bio;
7186         atomic_set(&dip->pending_bios, 0);
7187
7188         if (write)
7189                 io_bio->bi_end_io = btrfs_endio_direct_write;
7190         else
7191                 io_bio->bi_end_io = btrfs_endio_direct_read;
7192
7193         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7194         if (!ret)
7195                 return;
7196
7197 free_io_bio:
7198         bio_put(io_bio);
7199
7200 free_ordered:
7201         /*
7202          * If this is a write, we need to clean up the reserved space and kill
7203          * the ordered extent.
7204          */
7205         if (write) {
7206                 struct btrfs_ordered_extent *ordered;
7207                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7208                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7209                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7210                         btrfs_free_reserved_extent(root, ordered->start,
7211                                                    ordered->disk_len);
7212                 btrfs_put_ordered_extent(ordered);
7213                 btrfs_put_ordered_extent(ordered);
7214         }
7215         bio_endio(dio_bio, ret);
7216 }
7217
7218 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7219                         const struct iovec *iov, loff_t offset,
7220                         unsigned long nr_segs)
7221 {
7222         int seg;
7223         int i;
7224         size_t size;
7225         unsigned long addr;
7226         unsigned blocksize_mask = root->sectorsize - 1;
7227         ssize_t retval = -EINVAL;
7228         loff_t end = offset;
7229
7230         if (offset & blocksize_mask)
7231                 goto out;
7232
7233         /* Check the memory alignment.  Blocks cannot straddle pages */
7234         for (seg = 0; seg < nr_segs; seg++) {
7235                 addr = (unsigned long)iov[seg].iov_base;
7236                 size = iov[seg].iov_len;
7237                 end += size;
7238                 if ((addr & blocksize_mask) || (size & blocksize_mask))
7239                         goto out;
7240
7241                 /* If this is a write we don't need to check anymore */
7242                 if (rw & WRITE)
7243                         continue;
7244
7245                 /*
7246                  * Check to make sure we don't have duplicate iov_base's in this
7247                  * iovec, if so return EINVAL, otherwise we'll get csum errors
7248                  * when reading back.
7249                  */
7250                 for (i = seg + 1; i < nr_segs; i++) {
7251                         if (iov[seg].iov_base == iov[i].iov_base)
7252                                 goto out;
7253                 }
7254         }
7255         retval = 0;
7256 out:
7257         return retval;
7258 }
7259
7260 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7261                         const struct iovec *iov, loff_t offset,
7262                         unsigned long nr_segs)
7263 {
7264         struct file *file = iocb->ki_filp;
7265         struct inode *inode = file->f_mapping->host;
7266         size_t count = 0;
7267         int flags = 0;
7268         bool wakeup = true;
7269         bool relock = false;
7270         ssize_t ret;
7271
7272         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7273                             offset, nr_segs))
7274                 return 0;
7275
7276         atomic_inc(&inode->i_dio_count);
7277         smp_mb__after_atomic_inc();
7278
7279         /*
7280          * The generic stuff only does filemap_write_and_wait_range, which isn't
7281          * enough if we've written compressed pages to this area, so we need to
7282          * call btrfs_wait_ordered_range to make absolutely sure that any
7283          * outstanding dirty pages are on disk.
7284          */
7285         count = iov_length(iov, nr_segs);
7286         btrfs_wait_ordered_range(inode, offset, count);
7287
7288         if (rw & WRITE) {
7289                 /*
7290                  * If the write DIO is beyond the EOF, we need update
7291                  * the isize, but it is protected by i_mutex. So we can
7292                  * not unlock the i_mutex at this case.
7293                  */
7294                 if (offset + count <= inode->i_size) {
7295                         mutex_unlock(&inode->i_mutex);
7296                         relock = true;
7297                 }
7298                 ret = btrfs_delalloc_reserve_space(inode, count);
7299                 if (ret)
7300                         goto out;
7301         } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7302                                      &BTRFS_I(inode)->runtime_flags))) {
7303                 inode_dio_done(inode);
7304                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7305                 wakeup = false;
7306         }
7307
7308         ret = __blockdev_direct_IO(rw, iocb, inode,
7309                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7310                         iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7311                         btrfs_submit_direct, flags);
7312         if (rw & WRITE) {
7313                 if (ret < 0 && ret != -EIOCBQUEUED)
7314                         btrfs_delalloc_release_space(inode, count);
7315                 else if (ret >= 0 && (size_t)ret < count)
7316                         btrfs_delalloc_release_space(inode,
7317                                                      count - (size_t)ret);
7318                 else
7319                         btrfs_delalloc_release_metadata(inode, 0);
7320         }
7321 out:
7322         if (wakeup)
7323                 inode_dio_done(inode);
7324         if (relock)
7325                 mutex_lock(&inode->i_mutex);
7326
7327         return ret;
7328 }
7329
7330 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7331
7332 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7333                 __u64 start, __u64 len)
7334 {
7335         int     ret;
7336
7337         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7338         if (ret)
7339                 return ret;
7340
7341         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7342 }
7343
7344 int btrfs_readpage(struct file *file, struct page *page)
7345 {
7346         struct extent_io_tree *tree;
7347         tree = &BTRFS_I(page->mapping->host)->io_tree;
7348         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7349 }
7350
7351 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7352 {
7353         struct extent_io_tree *tree;
7354
7355
7356         if (current->flags & PF_MEMALLOC) {
7357                 redirty_page_for_writepage(wbc, page);
7358                 unlock_page(page);
7359                 return 0;
7360         }
7361         tree = &BTRFS_I(page->mapping->host)->io_tree;
7362         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7363 }
7364
7365 static int btrfs_writepages(struct address_space *mapping,
7366                             struct writeback_control *wbc)
7367 {
7368         struct extent_io_tree *tree;
7369
7370         tree = &BTRFS_I(mapping->host)->io_tree;
7371         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7372 }
7373
7374 static int
7375 btrfs_readpages(struct file *file, struct address_space *mapping,
7376                 struct list_head *pages, unsigned nr_pages)
7377 {
7378         struct extent_io_tree *tree;
7379         tree = &BTRFS_I(mapping->host)->io_tree;
7380         return extent_readpages(tree, mapping, pages, nr_pages,
7381                                 btrfs_get_extent);
7382 }
7383 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7384 {
7385         struct extent_io_tree *tree;
7386         struct extent_map_tree *map;
7387         int ret;
7388
7389         tree = &BTRFS_I(page->mapping->host)->io_tree;
7390         map = &BTRFS_I(page->mapping->host)->extent_tree;
7391         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7392         if (ret == 1) {
7393                 ClearPagePrivate(page);
7394                 set_page_private(page, 0);
7395                 page_cache_release(page);
7396         }
7397         return ret;
7398 }
7399
7400 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7401 {
7402         if (PageWriteback(page) || PageDirty(page))
7403                 return 0;
7404         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7405 }
7406
7407 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7408                                  unsigned int length)
7409 {
7410         struct inode *inode = page->mapping->host;
7411         struct extent_io_tree *tree;
7412         struct btrfs_ordered_extent *ordered;
7413         struct extent_state *cached_state = NULL;
7414         u64 page_start = page_offset(page);
7415         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7416
7417         /*
7418          * we have the page locked, so new writeback can't start,
7419          * and the dirty bit won't be cleared while we are here.
7420          *
7421          * Wait for IO on this page so that we can safely clear
7422          * the PagePrivate2 bit and do ordered accounting
7423          */
7424         wait_on_page_writeback(page);
7425
7426         tree = &BTRFS_I(inode)->io_tree;
7427         if (offset) {
7428                 btrfs_releasepage(page, GFP_NOFS);
7429                 return;
7430         }
7431         lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7432         ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7433         if (ordered) {
7434                 /*
7435                  * IO on this page will never be started, so we need
7436                  * to account for any ordered extents now
7437                  */
7438                 clear_extent_bit(tree, page_start, page_end,
7439                                  EXTENT_DIRTY | EXTENT_DELALLOC |
7440                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7441                                  EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7442                 /*
7443                  * whoever cleared the private bit is responsible
7444                  * for the finish_ordered_io
7445                  */
7446                 if (TestClearPagePrivate2(page) &&
7447                     btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7448                                                    PAGE_CACHE_SIZE, 1)) {
7449                         btrfs_finish_ordered_io(ordered);
7450                 }
7451                 btrfs_put_ordered_extent(ordered);
7452                 cached_state = NULL;
7453                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7454         }
7455         clear_extent_bit(tree, page_start, page_end,
7456                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7457                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7458                  &cached_state, GFP_NOFS);
7459         __btrfs_releasepage(page, GFP_NOFS);
7460
7461         ClearPageChecked(page);
7462         if (PagePrivate(page)) {
7463                 ClearPagePrivate(page);
7464                 set_page_private(page, 0);
7465                 page_cache_release(page);
7466         }
7467 }
7468
7469 /*
7470  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7471  * called from a page fault handler when a page is first dirtied. Hence we must
7472  * be careful to check for EOF conditions here. We set the page up correctly
7473  * for a written page which means we get ENOSPC checking when writing into
7474  * holes and correct delalloc and unwritten extent mapping on filesystems that
7475  * support these features.
7476  *
7477  * We are not allowed to take the i_mutex here so we have to play games to
7478  * protect against truncate races as the page could now be beyond EOF.  Because
7479  * vmtruncate() writes the inode size before removing pages, once we have the
7480  * page lock we can determine safely if the page is beyond EOF. If it is not
7481  * beyond EOF, then the page is guaranteed safe against truncation until we
7482  * unlock the page.
7483  */
7484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7485 {
7486         struct page *page = vmf->page;
7487         struct inode *inode = file_inode(vma->vm_file);
7488         struct btrfs_root *root = BTRFS_I(inode)->root;
7489         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7490         struct btrfs_ordered_extent *ordered;
7491         struct extent_state *cached_state = NULL;
7492         char *kaddr;
7493         unsigned long zero_start;
7494         loff_t size;
7495         int ret;
7496         int reserved = 0;
7497         u64 page_start;
7498         u64 page_end;
7499
7500         sb_start_pagefault(inode->i_sb);
7501         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7502         if (!ret) {
7503                 ret = file_update_time(vma->vm_file);
7504                 reserved = 1;
7505         }
7506         if (ret) {
7507                 if (ret == -ENOMEM)
7508                         ret = VM_FAULT_OOM;
7509                 else /* -ENOSPC, -EIO, etc */
7510                         ret = VM_FAULT_SIGBUS;
7511                 if (reserved)
7512                         goto out;
7513                 goto out_noreserve;
7514         }
7515
7516         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7517 again:
7518         lock_page(page);
7519         size = i_size_read(inode);
7520         page_start = page_offset(page);
7521         page_end = page_start + PAGE_CACHE_SIZE - 1;
7522
7523         if ((page->mapping != inode->i_mapping) ||
7524             (page_start >= size)) {
7525                 /* page got truncated out from underneath us */
7526                 goto out_unlock;
7527         }
7528         wait_on_page_writeback(page);
7529
7530         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7531         set_page_extent_mapped(page);
7532
7533         /*
7534          * we can't set the delalloc bits if there are pending ordered
7535          * extents.  Drop our locks and wait for them to finish
7536          */
7537         ordered = btrfs_lookup_ordered_extent(inode, page_start);
7538         if (ordered) {
7539                 unlock_extent_cached(io_tree, page_start, page_end,
7540                                      &cached_state, GFP_NOFS);
7541                 unlock_page(page);
7542                 btrfs_start_ordered_extent(inode, ordered, 1);
7543                 btrfs_put_ordered_extent(ordered);
7544                 goto again;
7545         }
7546
7547         /*
7548          * XXX - page_mkwrite gets called every time the page is dirtied, even
7549          * if it was already dirty, so for space accounting reasons we need to
7550          * clear any delalloc bits for the range we are fixing to save.  There
7551          * is probably a better way to do this, but for now keep consistent with
7552          * prepare_pages in the normal write path.
7553          */
7554         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7555                           EXTENT_DIRTY | EXTENT_DELALLOC |
7556                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7557                           0, 0, &cached_state, GFP_NOFS);
7558
7559         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7560                                         &cached_state);
7561         if (ret) {
7562                 unlock_extent_cached(io_tree, page_start, page_end,
7563                                      &cached_state, GFP_NOFS);
7564                 ret = VM_FAULT_SIGBUS;
7565                 goto out_unlock;
7566         }
7567         ret = 0;
7568
7569         /* page is wholly or partially inside EOF */
7570         if (page_start + PAGE_CACHE_SIZE > size)
7571                 zero_start = size & ~PAGE_CACHE_MASK;
7572         else
7573                 zero_start = PAGE_CACHE_SIZE;
7574
7575         if (zero_start != PAGE_CACHE_SIZE) {
7576                 kaddr = kmap(page);
7577                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7578                 flush_dcache_page(page);
7579                 kunmap(page);
7580         }
7581         ClearPageChecked(page);
7582         set_page_dirty(page);
7583         SetPageUptodate(page);
7584
7585         BTRFS_I(inode)->last_trans = root->fs_info->generation;
7586         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7587         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7588
7589         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7590
7591 out_unlock:
7592         if (!ret) {
7593                 sb_end_pagefault(inode->i_sb);
7594                 return VM_FAULT_LOCKED;
7595         }
7596         unlock_page(page);
7597 out:
7598         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7599 out_noreserve:
7600         sb_end_pagefault(inode->i_sb);
7601         return ret;
7602 }
7603
7604 static int btrfs_truncate(struct inode *inode)
7605 {
7606         struct btrfs_root *root = BTRFS_I(inode)->root;
7607         struct btrfs_block_rsv *rsv;
7608         int ret = 0;
7609         int err = 0;
7610         struct btrfs_trans_handle *trans;
7611         u64 mask = root->sectorsize - 1;
7612         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7613
7614         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7615         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7616
7617         /*
7618          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7619          * 3 things going on here
7620          *
7621          * 1) We need to reserve space for our orphan item and the space to
7622          * delete our orphan item.  Lord knows we don't want to have a dangling
7623          * orphan item because we didn't reserve space to remove it.
7624          *
7625          * 2) We need to reserve space to update our inode.
7626          *
7627          * 3) We need to have something to cache all the space that is going to
7628          * be free'd up by the truncate operation, but also have some slack
7629          * space reserved in case it uses space during the truncate (thank you
7630          * very much snapshotting).
7631          *
7632          * And we need these to all be seperate.  The fact is we can use alot of
7633          * space doing the truncate, and we have no earthly idea how much space
7634          * we will use, so we need the truncate reservation to be seperate so it
7635          * doesn't end up using space reserved for updating the inode or
7636          * removing the orphan item.  We also need to be able to stop the
7637          * transaction and start a new one, which means we need to be able to
7638          * update the inode several times, and we have no idea of knowing how
7639          * many times that will be, so we can't just reserve 1 item for the
7640          * entirety of the opration, so that has to be done seperately as well.
7641          * Then there is the orphan item, which does indeed need to be held on
7642          * to for the whole operation, and we need nobody to touch this reserved
7643          * space except the orphan code.
7644          *
7645          * So that leaves us with
7646          *
7647          * 1) root->orphan_block_rsv - for the orphan deletion.
7648          * 2) rsv - for the truncate reservation, which we will steal from the
7649          * transaction reservation.
7650          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7651          * updating the inode.
7652          */
7653         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7654         if (!rsv)
7655                 return -ENOMEM;
7656         rsv->size = min_size;
7657         rsv->failfast = 1;
7658
7659         /*
7660          * 1 for the truncate slack space
7661          * 1 for updating the inode.
7662          */
7663         trans = btrfs_start_transaction(root, 2);
7664         if (IS_ERR(trans)) {
7665                 err = PTR_ERR(trans);
7666                 goto out;
7667         }
7668
7669         /* Migrate the slack space for the truncate to our reserve */
7670         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7671                                       min_size);
7672         BUG_ON(ret);
7673
7674         /*
7675          * setattr is responsible for setting the ordered_data_close flag,
7676          * but that is only tested during the last file release.  That
7677          * could happen well after the next commit, leaving a great big
7678          * window where new writes may get lost if someone chooses to write
7679          * to this file after truncating to zero
7680          *
7681          * The inode doesn't have any dirty data here, and so if we commit
7682          * this is a noop.  If someone immediately starts writing to the inode
7683          * it is very likely we'll catch some of their writes in this
7684          * transaction, and the commit will find this file on the ordered
7685          * data list with good things to send down.
7686          *
7687          * This is a best effort solution, there is still a window where
7688          * using truncate to replace the contents of the file will
7689          * end up with a zero length file after a crash.
7690          */
7691         if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7692                                            &BTRFS_I(inode)->runtime_flags))
7693                 btrfs_add_ordered_operation(trans, root, inode);
7694
7695         /*
7696          * So if we truncate and then write and fsync we normally would just
7697          * write the extents that changed, which is a problem if we need to
7698          * first truncate that entire inode.  So set this flag so we write out
7699          * all of the extents in the inode to the sync log so we're completely
7700          * safe.
7701          */
7702         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7703         trans->block_rsv = rsv;
7704
7705         while (1) {
7706                 ret = btrfs_truncate_inode_items(trans, root, inode,
7707                                                  inode->i_size,
7708                                                  BTRFS_EXTENT_DATA_KEY);
7709                 if (ret != -ENOSPC) {
7710                         err = ret;
7711                         break;
7712                 }
7713
7714                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7715                 ret = btrfs_update_inode(trans, root, inode);
7716                 if (ret) {
7717                         err = ret;
7718                         break;
7719                 }
7720
7721                 btrfs_end_transaction(trans, root);
7722                 btrfs_btree_balance_dirty(root);
7723
7724                 trans = btrfs_start_transaction(root, 2);
7725                 if (IS_ERR(trans)) {
7726                         ret = err = PTR_ERR(trans);
7727                         trans = NULL;
7728                         break;
7729                 }
7730
7731                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7732                                               rsv, min_size);
7733                 BUG_ON(ret);    /* shouldn't happen */
7734                 trans->block_rsv = rsv;
7735         }
7736
7737         if (ret == 0 && inode->i_nlink > 0) {
7738                 trans->block_rsv = root->orphan_block_rsv;
7739                 ret = btrfs_orphan_del(trans, inode);
7740                 if (ret)
7741                         err = ret;
7742         }
7743
7744         if (trans) {
7745                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7746                 ret = btrfs_update_inode(trans, root, inode);
7747                 if (ret && !err)
7748                         err = ret;
7749
7750                 ret = btrfs_end_transaction(trans, root);
7751                 btrfs_btree_balance_dirty(root);
7752         }
7753
7754 out:
7755         btrfs_free_block_rsv(root, rsv);
7756
7757         if (ret && !err)
7758                 err = ret;
7759
7760         return err;
7761 }
7762
7763 /*
7764  * create a new subvolume directory/inode (helper for the ioctl).
7765  */
7766 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7767                              struct btrfs_root *new_root, u64 new_dirid)
7768 {
7769         struct inode *inode;
7770         int err;
7771         u64 index = 0;
7772
7773         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7774                                 new_dirid, new_dirid,
7775                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
7776                                 &index);
7777         if (IS_ERR(inode))
7778                 return PTR_ERR(inode);
7779         inode->i_op = &btrfs_dir_inode_operations;
7780         inode->i_fop = &btrfs_dir_file_operations;
7781
7782         set_nlink(inode, 1);
7783         btrfs_i_size_write(inode, 0);
7784
7785         err = btrfs_update_inode(trans, new_root, inode);
7786
7787         iput(inode);
7788         return err;
7789 }
7790
7791 struct inode *btrfs_alloc_inode(struct super_block *sb)
7792 {
7793         struct btrfs_inode *ei;
7794         struct inode *inode;
7795
7796         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7797         if (!ei)
7798                 return NULL;
7799
7800         ei->root = NULL;
7801         ei->generation = 0;
7802         ei->last_trans = 0;
7803         ei->last_sub_trans = 0;
7804         ei->logged_trans = 0;
7805         ei->delalloc_bytes = 0;
7806         ei->disk_i_size = 0;
7807         ei->flags = 0;
7808         ei->csum_bytes = 0;
7809         ei->index_cnt = (u64)-1;
7810         ei->last_unlink_trans = 0;
7811         ei->last_log_commit = 0;
7812
7813         spin_lock_init(&ei->lock);
7814         ei->outstanding_extents = 0;
7815         ei->reserved_extents = 0;
7816
7817         ei->runtime_flags = 0;
7818         ei->force_compress = BTRFS_COMPRESS_NONE;
7819
7820         ei->delayed_node = NULL;
7821
7822         inode = &ei->vfs_inode;
7823         extent_map_tree_init(&ei->extent_tree);
7824         extent_io_tree_init(&ei->io_tree, &inode->i_data);
7825         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7826         ei->io_tree.track_uptodate = 1;
7827         ei->io_failure_tree.track_uptodate = 1;
7828         atomic_set(&ei->sync_writers, 0);
7829         mutex_init(&ei->log_mutex);
7830         mutex_init(&ei->delalloc_mutex);
7831         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7832         INIT_LIST_HEAD(&ei->delalloc_inodes);
7833         INIT_LIST_HEAD(&ei->ordered_operations);
7834         RB_CLEAR_NODE(&ei->rb_node);
7835
7836         return inode;
7837 }
7838
7839 static void btrfs_i_callback(struct rcu_head *head)
7840 {
7841         struct inode *inode = container_of(head, struct inode, i_rcu);
7842         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7843 }
7844
7845 void btrfs_destroy_inode(struct inode *inode)
7846 {
7847         struct btrfs_ordered_extent *ordered;
7848         struct btrfs_root *root = BTRFS_I(inode)->root;
7849
7850         WARN_ON(!hlist_empty(&inode->i_dentry));
7851         WARN_ON(inode->i_data.nrpages);
7852         WARN_ON(BTRFS_I(inode)->outstanding_extents);
7853         WARN_ON(BTRFS_I(inode)->reserved_extents);
7854         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7855         WARN_ON(BTRFS_I(inode)->csum_bytes);
7856
7857         /*
7858          * This can happen where we create an inode, but somebody else also
7859          * created the same inode and we need to destroy the one we already
7860          * created.
7861          */
7862         if (!root)
7863                 goto free;
7864
7865         /*
7866          * Make sure we're properly removed from the ordered operation
7867          * lists.
7868          */
7869         smp_mb();
7870         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7871                 spin_lock(&root->fs_info->ordered_root_lock);
7872                 list_del_init(&BTRFS_I(inode)->ordered_operations);
7873                 spin_unlock(&root->fs_info->ordered_root_lock);
7874         }
7875
7876         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7877                      &BTRFS_I(inode)->runtime_flags)) {
7878                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7879                         (unsigned long long)btrfs_ino(inode));
7880                 atomic_dec(&root->orphan_inodes);
7881         }
7882
7883         while (1) {
7884                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7885                 if (!ordered)
7886                         break;
7887                 else {
7888                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7889                                 (unsigned long long)ordered->file_offset,
7890                                 (unsigned long long)ordered->len);
7891                         btrfs_remove_ordered_extent(inode, ordered);
7892                         btrfs_put_ordered_extent(ordered);
7893                         btrfs_put_ordered_extent(ordered);
7894                 }
7895         }
7896         inode_tree_del(inode);
7897         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7898 free:
7899         call_rcu(&inode->i_rcu, btrfs_i_callback);
7900 }
7901
7902 int btrfs_drop_inode(struct inode *inode)
7903 {
7904         struct btrfs_root *root = BTRFS_I(inode)->root;
7905
7906         if (root == NULL)
7907                 return 1;
7908
7909         /* the snap/subvol tree is on deleting */
7910         if (btrfs_root_refs(&root->root_item) == 0 &&
7911             root != root->fs_info->tree_root)
7912                 return 1;
7913         else
7914                 return generic_drop_inode(inode);
7915 }
7916
7917 static void init_once(void *foo)
7918 {
7919         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7920
7921         inode_init_once(&ei->vfs_inode);
7922 }
7923
7924 void btrfs_destroy_cachep(void)
7925 {
7926         /*
7927          * Make sure all delayed rcu free inodes are flushed before we
7928          * destroy cache.
7929          */
7930         rcu_barrier();
7931         if (btrfs_inode_cachep)
7932                 kmem_cache_destroy(btrfs_inode_cachep);
7933         if (btrfs_trans_handle_cachep)
7934                 kmem_cache_destroy(btrfs_trans_handle_cachep);
7935         if (btrfs_transaction_cachep)
7936                 kmem_cache_destroy(btrfs_transaction_cachep);
7937         if (btrfs_path_cachep)
7938                 kmem_cache_destroy(btrfs_path_cachep);
7939         if (btrfs_free_space_cachep)
7940                 kmem_cache_destroy(btrfs_free_space_cachep);
7941         if (btrfs_delalloc_work_cachep)
7942                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7943 }
7944
7945 int btrfs_init_cachep(void)
7946 {
7947         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7948                         sizeof(struct btrfs_inode), 0,
7949                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7950         if (!btrfs_inode_cachep)
7951                 goto fail;
7952
7953         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7954                         sizeof(struct btrfs_trans_handle), 0,
7955                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7956         if (!btrfs_trans_handle_cachep)
7957                 goto fail;
7958
7959         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7960                         sizeof(struct btrfs_transaction), 0,
7961                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7962         if (!btrfs_transaction_cachep)
7963                 goto fail;
7964
7965         btrfs_path_cachep = kmem_cache_create("btrfs_path",
7966                         sizeof(struct btrfs_path), 0,
7967                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7968         if (!btrfs_path_cachep)
7969                 goto fail;
7970
7971         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7972                         sizeof(struct btrfs_free_space), 0,
7973                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7974         if (!btrfs_free_space_cachep)
7975                 goto fail;
7976
7977         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7978                         sizeof(struct btrfs_delalloc_work), 0,
7979                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7980                         NULL);
7981         if (!btrfs_delalloc_work_cachep)
7982                 goto fail;
7983
7984         return 0;
7985 fail:
7986         btrfs_destroy_cachep();
7987         return -ENOMEM;
7988 }
7989
7990 static int btrfs_getattr(struct vfsmount *mnt,
7991                          struct dentry *dentry, struct kstat *stat)
7992 {
7993         u64 delalloc_bytes;
7994         struct inode *inode = dentry->d_inode;
7995         u32 blocksize = inode->i_sb->s_blocksize;
7996
7997         generic_fillattr(inode, stat);
7998         stat->dev = BTRFS_I(inode)->root->anon_dev;
7999         stat->blksize = PAGE_CACHE_SIZE;
8000
8001         spin_lock(&BTRFS_I(inode)->lock);
8002         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8003         spin_unlock(&BTRFS_I(inode)->lock);
8004         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8005                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8006         return 0;
8007 }
8008
8009 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8010                            struct inode *new_dir, struct dentry *new_dentry)
8011 {
8012         struct btrfs_trans_handle *trans;
8013         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8014         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8015         struct inode *new_inode = new_dentry->d_inode;
8016         struct inode *old_inode = old_dentry->d_inode;
8017         struct timespec ctime = CURRENT_TIME;
8018         u64 index = 0;
8019         u64 root_objectid;
8020         int ret;
8021         u64 old_ino = btrfs_ino(old_inode);
8022
8023         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8024                 return -EPERM;
8025
8026         /* we only allow rename subvolume link between subvolumes */
8027         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8028                 return -EXDEV;
8029
8030         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8031             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8032                 return -ENOTEMPTY;
8033
8034         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8035             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8036                 return -ENOTEMPTY;
8037
8038
8039         /* check for collisions, even if the  name isn't there */
8040         ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8041                              new_dentry->d_name.name,
8042                              new_dentry->d_name.len);
8043
8044         if (ret) {
8045                 if (ret == -EEXIST) {
8046                         /* we shouldn't get
8047                          * eexist without a new_inode */
8048                         if (!new_inode) {
8049                                 WARN_ON(1);
8050                                 return ret;
8051                         }
8052                 } else {
8053                         /* maybe -EOVERFLOW */
8054                         return ret;
8055                 }
8056         }
8057         ret = 0;
8058
8059         /*
8060          * we're using rename to replace one file with another.
8061          * and the replacement file is large.  Start IO on it now so
8062          * we don't add too much work to the end of the transaction
8063          */
8064         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8065             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8066                 filemap_flush(old_inode->i_mapping);
8067
8068         /* close the racy window with snapshot create/destroy ioctl */
8069         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8070                 down_read(&root->fs_info->subvol_sem);
8071         /*
8072          * We want to reserve the absolute worst case amount of items.  So if
8073          * both inodes are subvols and we need to unlink them then that would
8074          * require 4 item modifications, but if they are both normal inodes it
8075          * would require 5 item modifications, so we'll assume their normal
8076          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8077          * should cover the worst case number of items we'll modify.
8078          */
8079         trans = btrfs_start_transaction(root, 11);
8080         if (IS_ERR(trans)) {
8081                 ret = PTR_ERR(trans);
8082                 goto out_notrans;
8083         }
8084
8085         if (dest != root)
8086                 btrfs_record_root_in_trans(trans, dest);
8087
8088         ret = btrfs_set_inode_index(new_dir, &index);
8089         if (ret)
8090                 goto out_fail;
8091
8092         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8093                 /* force full log commit if subvolume involved. */
8094                 root->fs_info->last_trans_log_full_commit = trans->transid;
8095         } else {
8096                 ret = btrfs_insert_inode_ref(trans, dest,
8097                                              new_dentry->d_name.name,
8098                                              new_dentry->d_name.len,
8099                                              old_ino,
8100                                              btrfs_ino(new_dir), index);
8101                 if (ret)
8102                         goto out_fail;
8103                 /*
8104                  * this is an ugly little race, but the rename is required
8105                  * to make sure that if we crash, the inode is either at the
8106                  * old name or the new one.  pinning the log transaction lets
8107                  * us make sure we don't allow a log commit to come in after
8108                  * we unlink the name but before we add the new name back in.
8109                  */
8110                 btrfs_pin_log_trans(root);
8111         }
8112         /*
8113          * make sure the inode gets flushed if it is replacing
8114          * something.
8115          */
8116         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8117                 btrfs_add_ordered_operation(trans, root, old_inode);
8118
8119         inode_inc_iversion(old_dir);
8120         inode_inc_iversion(new_dir);
8121         inode_inc_iversion(old_inode);
8122         old_dir->i_ctime = old_dir->i_mtime = ctime;
8123         new_dir->i_ctime = new_dir->i_mtime = ctime;
8124         old_inode->i_ctime = ctime;
8125
8126         if (old_dentry->d_parent != new_dentry->d_parent)
8127                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8128
8129         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8130                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8131                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8132                                         old_dentry->d_name.name,
8133                                         old_dentry->d_name.len);
8134         } else {
8135                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8136                                         old_dentry->d_inode,
8137                                         old_dentry->d_name.name,
8138                                         old_dentry->d_name.len);
8139                 if (!ret)
8140                         ret = btrfs_update_inode(trans, root, old_inode);
8141         }
8142         if (ret) {
8143                 btrfs_abort_transaction(trans, root, ret);
8144                 goto out_fail;
8145         }
8146
8147         if (new_inode) {
8148                 inode_inc_iversion(new_inode);
8149                 new_inode->i_ctime = CURRENT_TIME;
8150                 if (unlikely(btrfs_ino(new_inode) ==
8151                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8152                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8153                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8154                                                 root_objectid,
8155                                                 new_dentry->d_name.name,
8156                                                 new_dentry->d_name.len);
8157                         BUG_ON(new_inode->i_nlink == 0);
8158                 } else {
8159                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8160                                                  new_dentry->d_inode,
8161                                                  new_dentry->d_name.name,
8162                                                  new_dentry->d_name.len);
8163                 }
8164                 if (!ret && new_inode->i_nlink == 0) {
8165                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8166                         BUG_ON(ret);
8167                 }
8168                 if (ret) {
8169                         btrfs_abort_transaction(trans, root, ret);
8170                         goto out_fail;
8171                 }
8172         }
8173
8174         ret = btrfs_add_link(trans, new_dir, old_inode,
8175                              new_dentry->d_name.name,
8176                              new_dentry->d_name.len, 0, index);
8177         if (ret) {
8178                 btrfs_abort_transaction(trans, root, ret);
8179                 goto out_fail;
8180         }
8181
8182         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8183                 struct dentry *parent = new_dentry->d_parent;
8184                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8185                 btrfs_end_log_trans(root);
8186         }
8187 out_fail:
8188         btrfs_end_transaction(trans, root);
8189 out_notrans:
8190         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8191                 up_read(&root->fs_info->subvol_sem);
8192
8193         return ret;
8194 }
8195
8196 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8197 {
8198         struct btrfs_delalloc_work *delalloc_work;
8199
8200         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8201                                      work);
8202         if (delalloc_work->wait)
8203                 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8204         else
8205                 filemap_flush(delalloc_work->inode->i_mapping);
8206
8207         if (delalloc_work->delay_iput)
8208                 btrfs_add_delayed_iput(delalloc_work->inode);
8209         else
8210                 iput(delalloc_work->inode);
8211         complete(&delalloc_work->completion);
8212 }
8213
8214 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8215                                                     int wait, int delay_iput)
8216 {
8217         struct btrfs_delalloc_work *work;
8218
8219         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8220         if (!work)
8221                 return NULL;
8222
8223         init_completion(&work->completion);
8224         INIT_LIST_HEAD(&work->list);
8225         work->inode = inode;
8226         work->wait = wait;
8227         work->delay_iput = delay_iput;
8228         work->work.func = btrfs_run_delalloc_work;
8229
8230         return work;
8231 }
8232
8233 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8234 {
8235         wait_for_completion(&work->completion);
8236         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8237 }
8238
8239 /*
8240  * some fairly slow code that needs optimization. This walks the list
8241  * of all the inodes with pending delalloc and forces them to disk.
8242  */
8243 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8244 {
8245         struct btrfs_inode *binode;
8246         struct inode *inode;
8247         struct btrfs_delalloc_work *work, *next;
8248         struct list_head works;
8249         struct list_head splice;
8250         int ret = 0;
8251
8252         INIT_LIST_HEAD(&works);
8253         INIT_LIST_HEAD(&splice);
8254
8255         spin_lock(&root->delalloc_lock);
8256         list_splice_init(&root->delalloc_inodes, &splice);
8257         while (!list_empty(&splice)) {
8258                 binode = list_entry(splice.next, struct btrfs_inode,
8259                                     delalloc_inodes);
8260
8261                 list_move_tail(&binode->delalloc_inodes,
8262                                &root->delalloc_inodes);
8263                 inode = igrab(&binode->vfs_inode);
8264                 if (!inode) {
8265                         cond_resched_lock(&root->delalloc_lock);
8266                         continue;
8267                 }
8268                 spin_unlock(&root->delalloc_lock);
8269
8270                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8271                 if (unlikely(!work)) {
8272                         ret = -ENOMEM;
8273                         goto out;
8274                 }
8275                 list_add_tail(&work->list, &works);
8276                 btrfs_queue_worker(&root->fs_info->flush_workers,
8277                                    &work->work);
8278
8279                 cond_resched();
8280                 spin_lock(&root->delalloc_lock);
8281         }
8282         spin_unlock(&root->delalloc_lock);
8283
8284         list_for_each_entry_safe(work, next, &works, list) {
8285                 list_del_init(&work->list);
8286                 btrfs_wait_and_free_delalloc_work(work);
8287         }
8288         return 0;
8289 out:
8290         list_for_each_entry_safe(work, next, &works, list) {
8291                 list_del_init(&work->list);
8292                 btrfs_wait_and_free_delalloc_work(work);
8293         }
8294
8295         if (!list_empty_careful(&splice)) {
8296                 spin_lock(&root->delalloc_lock);
8297                 list_splice_tail(&splice, &root->delalloc_inodes);
8298                 spin_unlock(&root->delalloc_lock);
8299         }
8300         return ret;
8301 }
8302
8303 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8304 {
8305         int ret;
8306
8307         if (root->fs_info->sb->s_flags & MS_RDONLY)
8308                 return -EROFS;
8309
8310         ret = __start_delalloc_inodes(root, delay_iput);
8311         /*
8312          * the filemap_flush will queue IO into the worker threads, but
8313          * we have to make sure the IO is actually started and that
8314          * ordered extents get created before we return
8315          */
8316         atomic_inc(&root->fs_info->async_submit_draining);
8317         while (atomic_read(&root->fs_info->nr_async_submits) ||
8318               atomic_read(&root->fs_info->async_delalloc_pages)) {
8319                 wait_event(root->fs_info->async_submit_wait,
8320                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8321                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8322         }
8323         atomic_dec(&root->fs_info->async_submit_draining);
8324         return ret;
8325 }
8326
8327 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8328                                     int delay_iput)
8329 {
8330         struct btrfs_root *root;
8331         struct list_head splice;
8332         int ret;
8333
8334         if (fs_info->sb->s_flags & MS_RDONLY)
8335                 return -EROFS;
8336
8337         INIT_LIST_HEAD(&splice);
8338
8339         spin_lock(&fs_info->delalloc_root_lock);
8340         list_splice_init(&fs_info->delalloc_roots, &splice);
8341         while (!list_empty(&splice)) {
8342                 root = list_first_entry(&splice, struct btrfs_root,
8343                                         delalloc_root);
8344                 root = btrfs_grab_fs_root(root);
8345                 BUG_ON(!root);
8346                 list_move_tail(&root->delalloc_root,
8347                                &fs_info->delalloc_roots);
8348                 spin_unlock(&fs_info->delalloc_root_lock);
8349
8350                 ret = __start_delalloc_inodes(root, delay_iput);
8351                 btrfs_put_fs_root(root);
8352                 if (ret)
8353                         goto out;
8354
8355                 spin_lock(&fs_info->delalloc_root_lock);
8356         }
8357         spin_unlock(&fs_info->delalloc_root_lock);
8358
8359         atomic_inc(&fs_info->async_submit_draining);
8360         while (atomic_read(&fs_info->nr_async_submits) ||
8361               atomic_read(&fs_info->async_delalloc_pages)) {
8362                 wait_event(fs_info->async_submit_wait,
8363                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
8364                     atomic_read(&fs_info->async_delalloc_pages) == 0));
8365         }
8366         atomic_dec(&fs_info->async_submit_draining);
8367         return 0;
8368 out:
8369         if (!list_empty_careful(&splice)) {
8370                 spin_lock(&fs_info->delalloc_root_lock);
8371                 list_splice_tail(&splice, &fs_info->delalloc_roots);
8372                 spin_unlock(&fs_info->delalloc_root_lock);
8373         }
8374         return ret;
8375 }
8376
8377 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8378                          const char *symname)
8379 {
8380         struct btrfs_trans_handle *trans;
8381         struct btrfs_root *root = BTRFS_I(dir)->root;
8382         struct btrfs_path *path;
8383         struct btrfs_key key;
8384         struct inode *inode = NULL;
8385         int err;
8386         int drop_inode = 0;
8387         u64 objectid;
8388         u64 index = 0 ;
8389         int name_len;
8390         int datasize;
8391         unsigned long ptr;
8392         struct btrfs_file_extent_item *ei;
8393         struct extent_buffer *leaf;
8394
8395         name_len = strlen(symname) + 1;
8396         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8397                 return -ENAMETOOLONG;
8398
8399         /*
8400          * 2 items for inode item and ref
8401          * 2 items for dir items
8402          * 1 item for xattr if selinux is on
8403          */
8404         trans = btrfs_start_transaction(root, 5);
8405         if (IS_ERR(trans))
8406                 return PTR_ERR(trans);
8407
8408         err = btrfs_find_free_ino(root, &objectid);
8409         if (err)
8410                 goto out_unlock;
8411
8412         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8413                                 dentry->d_name.len, btrfs_ino(dir), objectid,
8414                                 S_IFLNK|S_IRWXUGO, &index);
8415         if (IS_ERR(inode)) {
8416                 err = PTR_ERR(inode);
8417                 goto out_unlock;
8418         }
8419
8420         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8421         if (err) {
8422                 drop_inode = 1;
8423                 goto out_unlock;
8424         }
8425
8426         /*
8427         * If the active LSM wants to access the inode during
8428         * d_instantiate it needs these. Smack checks to see
8429         * if the filesystem supports xattrs by looking at the
8430         * ops vector.
8431         */
8432         inode->i_fop = &btrfs_file_operations;
8433         inode->i_op = &btrfs_file_inode_operations;
8434
8435         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8436         if (err)
8437                 drop_inode = 1;
8438         else {
8439                 inode->i_mapping->a_ops = &btrfs_aops;
8440                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8441                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8442         }
8443         if (drop_inode)
8444                 goto out_unlock;
8445
8446         path = btrfs_alloc_path();
8447         if (!path) {
8448                 err = -ENOMEM;
8449                 drop_inode = 1;
8450                 goto out_unlock;
8451         }
8452         key.objectid = btrfs_ino(inode);
8453         key.offset = 0;
8454         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8455         datasize = btrfs_file_extent_calc_inline_size(name_len);
8456         err = btrfs_insert_empty_item(trans, root, path, &key,
8457                                       datasize);
8458         if (err) {
8459                 drop_inode = 1;
8460                 btrfs_free_path(path);
8461                 goto out_unlock;
8462         }
8463         leaf = path->nodes[0];
8464         ei = btrfs_item_ptr(leaf, path->slots[0],
8465                             struct btrfs_file_extent_item);
8466         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8467         btrfs_set_file_extent_type(leaf, ei,
8468                                    BTRFS_FILE_EXTENT_INLINE);
8469         btrfs_set_file_extent_encryption(leaf, ei, 0);
8470         btrfs_set_file_extent_compression(leaf, ei, 0);
8471         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8472         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8473
8474         ptr = btrfs_file_extent_inline_start(ei);
8475         write_extent_buffer(leaf, symname, ptr, name_len);
8476         btrfs_mark_buffer_dirty(leaf);
8477         btrfs_free_path(path);
8478
8479         inode->i_op = &btrfs_symlink_inode_operations;
8480         inode->i_mapping->a_ops = &btrfs_symlink_aops;
8481         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8482         inode_set_bytes(inode, name_len);
8483         btrfs_i_size_write(inode, name_len - 1);
8484         err = btrfs_update_inode(trans, root, inode);
8485         if (err)
8486                 drop_inode = 1;
8487
8488 out_unlock:
8489         if (!err)
8490                 d_instantiate(dentry, inode);
8491         btrfs_end_transaction(trans, root);
8492         if (drop_inode) {
8493                 inode_dec_link_count(inode);
8494                 iput(inode);
8495         }
8496         btrfs_btree_balance_dirty(root);
8497         return err;
8498 }
8499
8500 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8501                                        u64 start, u64 num_bytes, u64 min_size,
8502                                        loff_t actual_len, u64 *alloc_hint,
8503                                        struct btrfs_trans_handle *trans)
8504 {
8505         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8506         struct extent_map *em;
8507         struct btrfs_root *root = BTRFS_I(inode)->root;
8508         struct btrfs_key ins;
8509         u64 cur_offset = start;
8510         u64 i_size;
8511         u64 cur_bytes;
8512         int ret = 0;
8513         bool own_trans = true;
8514
8515         if (trans)
8516                 own_trans = false;
8517         while (num_bytes > 0) {
8518                 if (own_trans) {
8519                         trans = btrfs_start_transaction(root, 3);
8520                         if (IS_ERR(trans)) {
8521                                 ret = PTR_ERR(trans);
8522                                 break;
8523                         }
8524                 }
8525
8526                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8527                 cur_bytes = max(cur_bytes, min_size);
8528                 ret = btrfs_reserve_extent(trans, root, cur_bytes,
8529                                            min_size, 0, *alloc_hint, &ins, 1);
8530                 if (ret) {
8531                         if (own_trans)
8532                                 btrfs_end_transaction(trans, root);
8533                         break;
8534                 }
8535
8536                 ret = insert_reserved_file_extent(trans, inode,
8537                                                   cur_offset, ins.objectid,
8538                                                   ins.offset, ins.offset,
8539                                                   ins.offset, 0, 0, 0,
8540                                                   BTRFS_FILE_EXTENT_PREALLOC);
8541                 if (ret) {
8542                         btrfs_abort_transaction(trans, root, ret);
8543                         if (own_trans)
8544                                 btrfs_end_transaction(trans, root);
8545                         break;
8546                 }
8547                 btrfs_drop_extent_cache(inode, cur_offset,
8548                                         cur_offset + ins.offset -1, 0);
8549
8550                 em = alloc_extent_map();
8551                 if (!em) {
8552                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8553                                 &BTRFS_I(inode)->runtime_flags);
8554                         goto next;
8555                 }
8556
8557                 em->start = cur_offset;
8558                 em->orig_start = cur_offset;
8559                 em->len = ins.offset;
8560                 em->block_start = ins.objectid;
8561                 em->block_len = ins.offset;
8562                 em->orig_block_len = ins.offset;
8563                 em->ram_bytes = ins.offset;
8564                 em->bdev = root->fs_info->fs_devices->latest_bdev;
8565                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8566                 em->generation = trans->transid;
8567
8568                 while (1) {
8569                         write_lock(&em_tree->lock);
8570                         ret = add_extent_mapping(em_tree, em, 1);
8571                         write_unlock(&em_tree->lock);
8572                         if (ret != -EEXIST)
8573                                 break;
8574                         btrfs_drop_extent_cache(inode, cur_offset,
8575                                                 cur_offset + ins.offset - 1,
8576                                                 0);
8577                 }
8578                 free_extent_map(em);
8579 next:
8580                 num_bytes -= ins.offset;
8581                 cur_offset += ins.offset;
8582                 *alloc_hint = ins.objectid + ins.offset;
8583
8584                 inode_inc_iversion(inode);
8585                 inode->i_ctime = CURRENT_TIME;
8586                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8587                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8588                     (actual_len > inode->i_size) &&
8589                     (cur_offset > inode->i_size)) {
8590                         if (cur_offset > actual_len)
8591                                 i_size = actual_len;
8592                         else
8593                                 i_size = cur_offset;
8594                         i_size_write(inode, i_size);
8595                         btrfs_ordered_update_i_size(inode, i_size, NULL);
8596                 }
8597
8598                 ret = btrfs_update_inode(trans, root, inode);
8599
8600                 if (ret) {
8601                         btrfs_abort_transaction(trans, root, ret);
8602                         if (own_trans)
8603                                 btrfs_end_transaction(trans, root);
8604                         break;
8605                 }
8606
8607                 if (own_trans)
8608                         btrfs_end_transaction(trans, root);
8609         }
8610         return ret;
8611 }
8612
8613 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8614                               u64 start, u64 num_bytes, u64 min_size,
8615                               loff_t actual_len, u64 *alloc_hint)
8616 {
8617         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8618                                            min_size, actual_len, alloc_hint,
8619                                            NULL);
8620 }
8621
8622 int btrfs_prealloc_file_range_trans(struct inode *inode,
8623                                     struct btrfs_trans_handle *trans, int mode,
8624                                     u64 start, u64 num_bytes, u64 min_size,
8625                                     loff_t actual_len, u64 *alloc_hint)
8626 {
8627         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8628                                            min_size, actual_len, alloc_hint, trans);
8629 }
8630
8631 static int btrfs_set_page_dirty(struct page *page)
8632 {
8633         return __set_page_dirty_nobuffers(page);
8634 }
8635
8636 static int btrfs_permission(struct inode *inode, int mask)
8637 {
8638         struct btrfs_root *root = BTRFS_I(inode)->root;
8639         umode_t mode = inode->i_mode;
8640
8641         if (mask & MAY_WRITE &&
8642             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8643                 if (btrfs_root_readonly(root))
8644                         return -EROFS;
8645                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8646                         return -EACCES;
8647         }
8648         return generic_permission(inode, mask);
8649 }
8650
8651 static const struct inode_operations btrfs_dir_inode_operations = {
8652         .getattr        = btrfs_getattr,
8653         .lookup         = btrfs_lookup,
8654         .create         = btrfs_create,
8655         .unlink         = btrfs_unlink,
8656         .link           = btrfs_link,
8657         .mkdir          = btrfs_mkdir,
8658         .rmdir          = btrfs_rmdir,
8659         .rename         = btrfs_rename,
8660         .symlink        = btrfs_symlink,
8661         .setattr        = btrfs_setattr,
8662         .mknod          = btrfs_mknod,
8663         .setxattr       = btrfs_setxattr,
8664         .getxattr       = btrfs_getxattr,
8665         .listxattr      = btrfs_listxattr,
8666         .removexattr    = btrfs_removexattr,
8667         .permission     = btrfs_permission,
8668         .get_acl        = btrfs_get_acl,
8669 };
8670 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8671         .lookup         = btrfs_lookup,
8672         .permission     = btrfs_permission,
8673         .get_acl        = btrfs_get_acl,
8674 };
8675
8676 static const struct file_operations btrfs_dir_file_operations = {
8677         .llseek         = generic_file_llseek,
8678         .read           = generic_read_dir,
8679         .iterate        = btrfs_real_readdir,
8680         .unlocked_ioctl = btrfs_ioctl,
8681 #ifdef CONFIG_COMPAT
8682         .compat_ioctl   = btrfs_ioctl,
8683 #endif
8684         .release        = btrfs_release_file,
8685         .fsync          = btrfs_sync_file,
8686 };
8687
8688 static struct extent_io_ops btrfs_extent_io_ops = {
8689         .fill_delalloc = run_delalloc_range,
8690         .submit_bio_hook = btrfs_submit_bio_hook,
8691         .merge_bio_hook = btrfs_merge_bio_hook,
8692         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8693         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8694         .writepage_start_hook = btrfs_writepage_start_hook,
8695         .set_bit_hook = btrfs_set_bit_hook,
8696         .clear_bit_hook = btrfs_clear_bit_hook,
8697         .merge_extent_hook = btrfs_merge_extent_hook,
8698         .split_extent_hook = btrfs_split_extent_hook,
8699 };
8700
8701 /*
8702  * btrfs doesn't support the bmap operation because swapfiles
8703  * use bmap to make a mapping of extents in the file.  They assume
8704  * these extents won't change over the life of the file and they
8705  * use the bmap result to do IO directly to the drive.
8706  *
8707  * the btrfs bmap call would return logical addresses that aren't
8708  * suitable for IO and they also will change frequently as COW
8709  * operations happen.  So, swapfile + btrfs == corruption.
8710  *
8711  * For now we're avoiding this by dropping bmap.
8712  */
8713 static const struct address_space_operations btrfs_aops = {
8714         .readpage       = btrfs_readpage,
8715         .writepage      = btrfs_writepage,
8716         .writepages     = btrfs_writepages,
8717         .readpages      = btrfs_readpages,
8718         .direct_IO      = btrfs_direct_IO,
8719         .invalidatepage = btrfs_invalidatepage,
8720         .releasepage    = btrfs_releasepage,
8721         .set_page_dirty = btrfs_set_page_dirty,
8722         .error_remove_page = generic_error_remove_page,
8723 };
8724
8725 static const struct address_space_operations btrfs_symlink_aops = {
8726         .readpage       = btrfs_readpage,
8727         .writepage      = btrfs_writepage,
8728         .invalidatepage = btrfs_invalidatepage,
8729         .releasepage    = btrfs_releasepage,
8730 };
8731
8732 static const struct inode_operations btrfs_file_inode_operations = {
8733         .getattr        = btrfs_getattr,
8734         .setattr        = btrfs_setattr,
8735         .setxattr       = btrfs_setxattr,
8736         .getxattr       = btrfs_getxattr,
8737         .listxattr      = btrfs_listxattr,
8738         .removexattr    = btrfs_removexattr,
8739         .permission     = btrfs_permission,
8740         .fiemap         = btrfs_fiemap,
8741         .get_acl        = btrfs_get_acl,
8742         .update_time    = btrfs_update_time,
8743 };
8744 static const struct inode_operations btrfs_special_inode_operations = {
8745         .getattr        = btrfs_getattr,
8746         .setattr        = btrfs_setattr,
8747         .permission     = btrfs_permission,
8748         .setxattr       = btrfs_setxattr,
8749         .getxattr       = btrfs_getxattr,
8750         .listxattr      = btrfs_listxattr,
8751         .removexattr    = btrfs_removexattr,
8752         .get_acl        = btrfs_get_acl,
8753         .update_time    = btrfs_update_time,
8754 };
8755 static const struct inode_operations btrfs_symlink_inode_operations = {
8756         .readlink       = generic_readlink,
8757         .follow_link    = page_follow_link_light,
8758         .put_link       = page_put_link,
8759         .getattr        = btrfs_getattr,
8760         .setattr        = btrfs_setattr,
8761         .permission     = btrfs_permission,
8762         .setxattr       = btrfs_setxattr,
8763         .getxattr       = btrfs_getxattr,
8764         .listxattr      = btrfs_listxattr,
8765         .removexattr    = btrfs_removexattr,
8766         .get_acl        = btrfs_get_acl,
8767         .update_time    = btrfs_update_time,
8768 };
8769
8770 const struct dentry_operations btrfs_dentry_operations = {
8771         .d_delete       = btrfs_dentry_delete,
8772         .d_release      = btrfs_dentry_release,
8773 };