]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Write the FDI RX TU size reg at the right time
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * intel_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1840         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 }
1842
1843 /**
1844  * intel_enable_plane - enable a display plane on a given pipe
1845  * @dev_priv: i915 private structure
1846  * @plane: plane to enable
1847  * @pipe: pipe being fed
1848  *
1849  * Enable @plane on @pipe, making sure that @pipe is running first.
1850  */
1851 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1852                                enum plane plane, enum pipe pipe)
1853 {
1854         int reg;
1855         u32 val;
1856
1857         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1858         assert_pipe_enabled(dev_priv, pipe);
1859
1860         reg = DSPCNTR(plane);
1861         val = I915_READ(reg);
1862         if (val & DISPLAY_PLANE_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866         intel_flush_display_plane(dev_priv, plane);
1867         intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871  * intel_disable_plane - disable a display plane
1872  * @dev_priv: i915 private structure
1873  * @plane: plane to disable
1874  * @pipe: pipe consuming the data
1875  *
1876  * Disable @plane; should be an independent operation.
1877  */
1878 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1879                                 enum plane plane, enum pipe pipe)
1880 {
1881         int reg;
1882         u32 val;
1883
1884         reg = DSPCNTR(plane);
1885         val = I915_READ(reg);
1886         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1887                 return;
1888
1889         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1890         intel_flush_display_plane(dev_priv, plane);
1891         intel_wait_for_vblank(dev_priv->dev, pipe);
1892 }
1893
1894 int
1895 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1896                            struct drm_i915_gem_object *obj,
1897                            struct intel_ring_buffer *pipelined)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         u32 alignment;
1901         int ret;
1902
1903         switch (obj->tiling_mode) {
1904         case I915_TILING_NONE:
1905                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1906                         alignment = 128 * 1024;
1907                 else if (INTEL_INFO(dev)->gen >= 4)
1908                         alignment = 4 * 1024;
1909                 else
1910                         alignment = 64 * 1024;
1911                 break;
1912         case I915_TILING_X:
1913                 /* pin() will align the object as required by fence */
1914                 alignment = 0;
1915                 break;
1916         case I915_TILING_Y:
1917                 /* FIXME: Is this true? */
1918                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1919                 return -EINVAL;
1920         default:
1921                 BUG();
1922         }
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1959                                                         unsigned int bpp,
1960                                                         unsigned int pitch)
1961 {
1962         int tile_rows, tiles;
1963
1964         tile_rows = *y / 8;
1965         *y %= 8;
1966         tiles = *x / (512/bpp);
1967         *x %= 512/bpp;
1968
1969         return tile_rows * pitch * 8 + tiles * 4096;
1970 }
1971
1972 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1973                              int x, int y)
1974 {
1975         struct drm_device *dev = crtc->dev;
1976         struct drm_i915_private *dev_priv = dev->dev_private;
1977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978         struct intel_framebuffer *intel_fb;
1979         struct drm_i915_gem_object *obj;
1980         int plane = intel_crtc->plane;
1981         unsigned long linear_offset;
1982         u32 dspcntr;
1983         u32 reg;
1984
1985         switch (plane) {
1986         case 0:
1987         case 1:
1988                 break;
1989         default:
1990                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1991                 return -EINVAL;
1992         }
1993
1994         intel_fb = to_intel_framebuffer(fb);
1995         obj = intel_fb->obj;
1996
1997         reg = DSPCNTR(plane);
1998         dspcntr = I915_READ(reg);
1999         /* Mask out pixel format bits in case we change it */
2000         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2001         switch (fb->bits_per_pixel) {
2002         case 8:
2003                 dspcntr |= DISPPLANE_8BPP;
2004                 break;
2005         case 16:
2006                 if (fb->depth == 15)
2007                         dspcntr |= DISPPLANE_15_16BPP;
2008                 else
2009                         dspcntr |= DISPPLANE_16BPP;
2010                 break;
2011         case 24:
2012         case 32:
2013                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2014                 break;
2015         default:
2016                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2017                 return -EINVAL;
2018         }
2019         if (INTEL_INFO(dev)->gen >= 4) {
2020                 if (obj->tiling_mode != I915_TILING_NONE)
2021                         dspcntr |= DISPPLANE_TILED;
2022                 else
2023                         dspcntr &= ~DISPPLANE_TILED;
2024         }
2025
2026         I915_WRITE(reg, dspcntr);
2027
2028         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2029
2030         if (INTEL_INFO(dev)->gen >= 4) {
2031                 intel_crtc->dspaddr_offset =
2032                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2033                                                            fb->bits_per_pixel / 8,
2034                                                            fb->pitches[0]);
2035                 linear_offset -= intel_crtc->dspaddr_offset;
2036         } else {
2037                 intel_crtc->dspaddr_offset = linear_offset;
2038         }
2039
2040         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2041                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2042         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2045                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2046                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2047                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2048         } else
2049                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2050         POSTING_READ(reg);
2051
2052         return 0;
2053 }
2054
2055 static int ironlake_update_plane(struct drm_crtc *crtc,
2056                                  struct drm_framebuffer *fb, int x, int y)
2057 {
2058         struct drm_device *dev = crtc->dev;
2059         struct drm_i915_private *dev_priv = dev->dev_private;
2060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061         struct intel_framebuffer *intel_fb;
2062         struct drm_i915_gem_object *obj;
2063         int plane = intel_crtc->plane;
2064         unsigned long linear_offset;
2065         u32 dspcntr;
2066         u32 reg;
2067
2068         switch (plane) {
2069         case 0:
2070         case 1:
2071         case 2:
2072                 break;
2073         default:
2074                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2075                 return -EINVAL;
2076         }
2077
2078         intel_fb = to_intel_framebuffer(fb);
2079         obj = intel_fb->obj;
2080
2081         reg = DSPCNTR(plane);
2082         dspcntr = I915_READ(reg);
2083         /* Mask out pixel format bits in case we change it */
2084         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2085         switch (fb->bits_per_pixel) {
2086         case 8:
2087                 dspcntr |= DISPPLANE_8BPP;
2088                 break;
2089         case 16:
2090                 if (fb->depth != 16)
2091                         return -EINVAL;
2092
2093                 dspcntr |= DISPPLANE_16BPP;
2094                 break;
2095         case 24:
2096         case 32:
2097                 if (fb->depth == 24)
2098                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2099                 else if (fb->depth == 30)
2100                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2101                 else
2102                         return -EINVAL;
2103                 break;
2104         default:
2105                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2106                 return -EINVAL;
2107         }
2108
2109         if (obj->tiling_mode != I915_TILING_NONE)
2110                 dspcntr |= DISPPLANE_TILED;
2111         else
2112                 dspcntr &= ~DISPPLANE_TILED;
2113
2114         /* must disable */
2115         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2116
2117         I915_WRITE(reg, dspcntr);
2118
2119         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2120         intel_crtc->dspaddr_offset =
2121                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2122                                                    fb->bits_per_pixel / 8,
2123                                                    fb->pitches[0]);
2124         linear_offset -= intel_crtc->dspaddr_offset;
2125
2126         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2127                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2128         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2129         I915_MODIFY_DISPBASE(DSPSURF(plane),
2130                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2131         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2132         I915_WRITE(DSPLINOFF(plane), linear_offset);
2133         POSTING_READ(reg);
2134
2135         return 0;
2136 }
2137
2138 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2139 static int
2140 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2141                            int x, int y, enum mode_set_atomic state)
2142 {
2143         struct drm_device *dev = crtc->dev;
2144         struct drm_i915_private *dev_priv = dev->dev_private;
2145
2146         if (dev_priv->display.disable_fbc)
2147                 dev_priv->display.disable_fbc(dev);
2148         intel_increase_pllclock(crtc);
2149
2150         return dev_priv->display.update_plane(crtc, fb, x, y);
2151 }
2152
2153 static int
2154 intel_finish_fb(struct drm_framebuffer *old_fb)
2155 {
2156         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2157         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158         bool was_interruptible = dev_priv->mm.interruptible;
2159         int ret;
2160
2161         wait_event(dev_priv->pending_flip_queue,
2162                    atomic_read(&dev_priv->mm.wedged) ||
2163                    atomic_read(&obj->pending_flip) == 0);
2164
2165         /* Big Hammer, we also need to ensure that any pending
2166          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2167          * current scanout is retired before unpinning the old
2168          * framebuffer.
2169          *
2170          * This should only fail upon a hung GPU, in which case we
2171          * can safely continue.
2172          */
2173         dev_priv->mm.interruptible = false;
2174         ret = i915_gem_object_finish_gpu(obj);
2175         dev_priv->mm.interruptible = was_interruptible;
2176
2177         return ret;
2178 }
2179
2180 static int
2181 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2182                     struct drm_framebuffer *fb)
2183 {
2184         struct drm_device *dev = crtc->dev;
2185         struct drm_i915_private *dev_priv = dev->dev_private;
2186         struct drm_i915_master_private *master_priv;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188         struct drm_framebuffer *old_fb;
2189         int ret;
2190
2191         /* no fb bound */
2192         if (!fb) {
2193                 DRM_ERROR("No FB bound\n");
2194                 return 0;
2195         }
2196
2197         if(intel_crtc->plane > dev_priv->num_pipe) {
2198                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2199                                 intel_crtc->plane,
2200                                 dev_priv->num_pipe);
2201                 return -EINVAL;
2202         }
2203
2204         mutex_lock(&dev->struct_mutex);
2205         ret = intel_pin_and_fence_fb_obj(dev,
2206                                          to_intel_framebuffer(fb)->obj,
2207                                          NULL);
2208         if (ret != 0) {
2209                 mutex_unlock(&dev->struct_mutex);
2210                 DRM_ERROR("pin & fence failed\n");
2211                 return ret;
2212         }
2213
2214         if (crtc->fb)
2215                 intel_finish_fb(crtc->fb);
2216
2217         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2218         if (ret) {
2219                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2220                 mutex_unlock(&dev->struct_mutex);
2221                 DRM_ERROR("failed to update base address\n");
2222                 return ret;
2223         }
2224
2225         old_fb = crtc->fb;
2226         crtc->fb = fb;
2227         crtc->x = x;
2228         crtc->y = y;
2229
2230         if (old_fb) {
2231                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2232                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2233         }
2234
2235         intel_update_fbc(dev);
2236         mutex_unlock(&dev->struct_mutex);
2237
2238         if (!dev->primary->master)
2239                 return 0;
2240
2241         master_priv = dev->primary->master->driver_priv;
2242         if (!master_priv->sarea_priv)
2243                 return 0;
2244
2245         if (intel_crtc->pipe) {
2246                 master_priv->sarea_priv->pipeB_x = x;
2247                 master_priv->sarea_priv->pipeB_y = y;
2248         } else {
2249                 master_priv->sarea_priv->pipeA_x = x;
2250                 master_priv->sarea_priv->pipeA_y = y;
2251         }
2252
2253         return 0;
2254 }
2255
2256 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2257 {
2258         struct drm_device *dev = crtc->dev;
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         u32 dpa_ctl;
2261
2262         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2263         dpa_ctl = I915_READ(DP_A);
2264         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266         if (clock < 200000) {
2267                 u32 temp;
2268                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269                 /* workaround for 160Mhz:
2270                    1) program 0x4600c bits 15:0 = 0x8124
2271                    2) program 0x46010 bit 0 = 1
2272                    3) program 0x46034 bit 24 = 1
2273                    4) program 0x64000 bit 14 = 1
2274                    */
2275                 temp = I915_READ(0x4600c);
2276                 temp &= 0xffff0000;
2277                 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279                 temp = I915_READ(0x46010);
2280                 I915_WRITE(0x46010, temp | 1);
2281
2282                 temp = I915_READ(0x46034);
2283                 I915_WRITE(0x46034, temp | (1 << 24));
2284         } else {
2285                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286         }
2287         I915_WRITE(DP_A, dpa_ctl);
2288
2289         POSTING_READ(DP_A);
2290         udelay(500);
2291 }
2292
2293 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         int pipe = intel_crtc->pipe;
2299         u32 reg, temp;
2300
2301         /* enable normal train */
2302         reg = FDI_TX_CTL(pipe);
2303         temp = I915_READ(reg);
2304         if (IS_IVYBRIDGE(dev)) {
2305                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2307         } else {
2308                 temp &= ~FDI_LINK_TRAIN_NONE;
2309                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2310         }
2311         I915_WRITE(reg, temp);
2312
2313         reg = FDI_RX_CTL(pipe);
2314         temp = I915_READ(reg);
2315         if (HAS_PCH_CPT(dev)) {
2316                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318         } else {
2319                 temp &= ~FDI_LINK_TRAIN_NONE;
2320                 temp |= FDI_LINK_TRAIN_NONE;
2321         }
2322         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324         /* wait one idle pattern time */
2325         POSTING_READ(reg);
2326         udelay(1000);
2327
2328         /* IVB wants error correction enabled */
2329         if (IS_IVYBRIDGE(dev))
2330                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331                            FDI_FE_ERRC_ENABLE);
2332 }
2333
2334 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339         flags |= FDI_PHASE_SYNC_OVR(pipe);
2340         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341         flags |= FDI_PHASE_SYNC_EN(pipe);
2342         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343         POSTING_READ(SOUTH_CHICKEN1);
2344 }
2345
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348 {
2349         struct drm_device *dev = crtc->dev;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352         int pipe = intel_crtc->pipe;
2353         int plane = intel_crtc->plane;
2354         u32 reg, temp, tries;
2355
2356         /* FDI needs bits from pipe & plane first */
2357         assert_pipe_enabled(dev_priv, pipe);
2358         assert_plane_enabled(dev_priv, plane);
2359
2360         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361            for train result */
2362         reg = FDI_RX_IMR(pipe);
2363         temp = I915_READ(reg);
2364         temp &= ~FDI_RX_SYMBOL_LOCK;
2365         temp &= ~FDI_RX_BIT_LOCK;
2366         I915_WRITE(reg, temp);
2367         I915_READ(reg);
2368         udelay(150);
2369
2370         /* enable CPU FDI TX and PCH FDI RX */
2371         reg = FDI_TX_CTL(pipe);
2372         temp = I915_READ(reg);
2373         temp &= ~(7 << 19);
2374         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2375         temp &= ~FDI_LINK_TRAIN_NONE;
2376         temp |= FDI_LINK_TRAIN_PATTERN_1;
2377         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2378
2379         reg = FDI_RX_CTL(pipe);
2380         temp = I915_READ(reg);
2381         temp &= ~FDI_LINK_TRAIN_NONE;
2382         temp |= FDI_LINK_TRAIN_PATTERN_1;
2383         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385         POSTING_READ(reg);
2386         udelay(150);
2387
2388         /* Ironlake workaround, enable clock pointer after FDI enable*/
2389         if (HAS_PCH_IBX(dev)) {
2390                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392                            FDI_RX_PHASE_SYNC_POINTER_EN);
2393         }
2394
2395         reg = FDI_RX_IIR(pipe);
2396         for (tries = 0; tries < 5; tries++) {
2397                 temp = I915_READ(reg);
2398                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400                 if ((temp & FDI_RX_BIT_LOCK)) {
2401                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2402                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2403                         break;
2404                 }
2405         }
2406         if (tries == 5)
2407                 DRM_ERROR("FDI train 1 fail!\n");
2408
2409         /* Train 2 */
2410         reg = FDI_TX_CTL(pipe);
2411         temp = I915_READ(reg);
2412         temp &= ~FDI_LINK_TRAIN_NONE;
2413         temp |= FDI_LINK_TRAIN_PATTERN_2;
2414         I915_WRITE(reg, temp);
2415
2416         reg = FDI_RX_CTL(pipe);
2417         temp = I915_READ(reg);
2418         temp &= ~FDI_LINK_TRAIN_NONE;
2419         temp |= FDI_LINK_TRAIN_PATTERN_2;
2420         I915_WRITE(reg, temp);
2421
2422         POSTING_READ(reg);
2423         udelay(150);
2424
2425         reg = FDI_RX_IIR(pipe);
2426         for (tries = 0; tries < 5; tries++) {
2427                 temp = I915_READ(reg);
2428                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430                 if (temp & FDI_RX_SYMBOL_LOCK) {
2431                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2432                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2433                         break;
2434                 }
2435         }
2436         if (tries == 5)
2437                 DRM_ERROR("FDI train 2 fail!\n");
2438
2439         DRM_DEBUG_KMS("FDI train done\n");
2440
2441 }
2442
2443 static const int snb_b_fdi_train_param[] = {
2444         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448 };
2449
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452 {
2453         struct drm_device *dev = crtc->dev;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456         int pipe = intel_crtc->pipe;
2457         u32 reg, temp, i, retry;
2458
2459         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460            for train result */
2461         reg = FDI_RX_IMR(pipe);
2462         temp = I915_READ(reg);
2463         temp &= ~FDI_RX_SYMBOL_LOCK;
2464         temp &= ~FDI_RX_BIT_LOCK;
2465         I915_WRITE(reg, temp);
2466
2467         POSTING_READ(reg);
2468         udelay(150);
2469
2470         /* enable CPU FDI TX and PCH FDI RX */
2471         reg = FDI_TX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~(7 << 19);
2474         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2475         temp &= ~FDI_LINK_TRAIN_NONE;
2476         temp |= FDI_LINK_TRAIN_PATTERN_1;
2477         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478         /* SNB-B */
2479         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2480         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2481
2482         reg = FDI_RX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         if (HAS_PCH_CPT(dev)) {
2485                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2486                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2487         } else {
2488                 temp &= ~FDI_LINK_TRAIN_NONE;
2489                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         }
2491         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         if (HAS_PCH_CPT(dev))
2497                 cpt_phase_pointer_enable(dev, pipe);
2498
2499         for (i = 0; i < 4; i++) {
2500                 reg = FDI_TX_CTL(pipe);
2501                 temp = I915_READ(reg);
2502                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503                 temp |= snb_b_fdi_train_param[i];
2504                 I915_WRITE(reg, temp);
2505
2506                 POSTING_READ(reg);
2507                 udelay(500);
2508
2509                 for (retry = 0; retry < 5; retry++) {
2510                         reg = FDI_RX_IIR(pipe);
2511                         temp = I915_READ(reg);
2512                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513                         if (temp & FDI_RX_BIT_LOCK) {
2514                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2516                                 break;
2517                         }
2518                         udelay(50);
2519                 }
2520                 if (retry < 5)
2521                         break;
2522         }
2523         if (i == 4)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         if (IS_GEN6(dev)) {
2532                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533                 /* SNB-B */
2534                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         }
2536         I915_WRITE(reg, temp);
2537
2538         reg = FDI_RX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         if (HAS_PCH_CPT(dev)) {
2541                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2542                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2543         } else {
2544                 temp &= ~FDI_LINK_TRAIN_NONE;
2545                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2546         }
2547         I915_WRITE(reg, temp);
2548
2549         POSTING_READ(reg);
2550         udelay(150);
2551
2552         for (i = 0; i < 4; i++) {
2553                 reg = FDI_TX_CTL(pipe);
2554                 temp = I915_READ(reg);
2555                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2556                 temp |= snb_b_fdi_train_param[i];
2557                 I915_WRITE(reg, temp);
2558
2559                 POSTING_READ(reg);
2560                 udelay(500);
2561
2562                 for (retry = 0; retry < 5; retry++) {
2563                         reg = FDI_RX_IIR(pipe);
2564                         temp = I915_READ(reg);
2565                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2566                         if (temp & FDI_RX_SYMBOL_LOCK) {
2567                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2568                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2569                                 break;
2570                         }
2571                         udelay(50);
2572                 }
2573                 if (retry < 5)
2574                         break;
2575         }
2576         if (i == 4)
2577                 DRM_ERROR("FDI train 2 fail!\n");
2578
2579         DRM_DEBUG_KMS("FDI train done.\n");
2580 }
2581
2582 /* Manual link training for Ivy Bridge A0 parts */
2583 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2584 {
2585         struct drm_device *dev = crtc->dev;
2586         struct drm_i915_private *dev_priv = dev->dev_private;
2587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2588         int pipe = intel_crtc->pipe;
2589         u32 reg, temp, i;
2590
2591         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2592            for train result */
2593         reg = FDI_RX_IMR(pipe);
2594         temp = I915_READ(reg);
2595         temp &= ~FDI_RX_SYMBOL_LOCK;
2596         temp &= ~FDI_RX_BIT_LOCK;
2597         I915_WRITE(reg, temp);
2598
2599         POSTING_READ(reg);
2600         udelay(150);
2601
2602         /* enable CPU FDI TX and PCH FDI RX */
2603         reg = FDI_TX_CTL(pipe);
2604         temp = I915_READ(reg);
2605         temp &= ~(7 << 19);
2606         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2607         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2608         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2609         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2611         temp |= FDI_COMPOSITE_SYNC;
2612         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2613
2614         reg = FDI_RX_CTL(pipe);
2615         temp = I915_READ(reg);
2616         temp &= ~FDI_LINK_TRAIN_AUTO;
2617         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2618         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2619         temp |= FDI_COMPOSITE_SYNC;
2620         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2621
2622         POSTING_READ(reg);
2623         udelay(150);
2624
2625         if (HAS_PCH_CPT(dev))
2626                 cpt_phase_pointer_enable(dev, pipe);
2627
2628         for (i = 0; i < 4; i++) {
2629                 reg = FDI_TX_CTL(pipe);
2630                 temp = I915_READ(reg);
2631                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2632                 temp |= snb_b_fdi_train_param[i];
2633                 I915_WRITE(reg, temp);
2634
2635                 POSTING_READ(reg);
2636                 udelay(500);
2637
2638                 reg = FDI_RX_IIR(pipe);
2639                 temp = I915_READ(reg);
2640                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2641
2642                 if (temp & FDI_RX_BIT_LOCK ||
2643                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2644                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2645                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2646                         break;
2647                 }
2648         }
2649         if (i == 4)
2650                 DRM_ERROR("FDI train 1 fail!\n");
2651
2652         /* Train 2 */
2653         reg = FDI_TX_CTL(pipe);
2654         temp = I915_READ(reg);
2655         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2656         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2657         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2658         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2659         I915_WRITE(reg, temp);
2660
2661         reg = FDI_RX_CTL(pipe);
2662         temp = I915_READ(reg);
2663         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2664         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2665         I915_WRITE(reg, temp);
2666
2667         POSTING_READ(reg);
2668         udelay(150);
2669
2670         for (i = 0; i < 4; i++) {
2671                 reg = FDI_TX_CTL(pipe);
2672                 temp = I915_READ(reg);
2673                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674                 temp |= snb_b_fdi_train_param[i];
2675                 I915_WRITE(reg, temp);
2676
2677                 POSTING_READ(reg);
2678                 udelay(500);
2679
2680                 reg = FDI_RX_IIR(pipe);
2681                 temp = I915_READ(reg);
2682                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2683
2684                 if (temp & FDI_RX_SYMBOL_LOCK) {
2685                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2686                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2687                         break;
2688                 }
2689         }
2690         if (i == 4)
2691                 DRM_ERROR("FDI train 2 fail!\n");
2692
2693         DRM_DEBUG_KMS("FDI train done.\n");
2694 }
2695
2696 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2697 {
2698         struct drm_device *dev = intel_crtc->base.dev;
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         int pipe = intel_crtc->pipe;
2701         u32 reg, temp;
2702
2703
2704         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2705         reg = FDI_RX_CTL(pipe);
2706         temp = I915_READ(reg);
2707         temp &= ~((0x7 << 19) | (0x7 << 16));
2708         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2709         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2710         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2711
2712         POSTING_READ(reg);
2713         udelay(200);
2714
2715         /* Switch from Rawclk to PCDclk */
2716         temp = I915_READ(reg);
2717         I915_WRITE(reg, temp | FDI_PCDCLK);
2718
2719         POSTING_READ(reg);
2720         udelay(200);
2721
2722         /* On Haswell, the PLL configuration for ports and pipes is handled
2723          * separately, as part of DDI setup */
2724         if (!IS_HASWELL(dev)) {
2725                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2726                 reg = FDI_TX_CTL(pipe);
2727                 temp = I915_READ(reg);
2728                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2729                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2730
2731                         POSTING_READ(reg);
2732                         udelay(100);
2733                 }
2734         }
2735 }
2736
2737 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2738 {
2739         struct drm_device *dev = intel_crtc->base.dev;
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741         int pipe = intel_crtc->pipe;
2742         u32 reg, temp;
2743
2744         /* Switch from PCDclk to Rawclk */
2745         reg = FDI_RX_CTL(pipe);
2746         temp = I915_READ(reg);
2747         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2748
2749         /* Disable CPU FDI TX PLL */
2750         reg = FDI_TX_CTL(pipe);
2751         temp = I915_READ(reg);
2752         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2753
2754         POSTING_READ(reg);
2755         udelay(100);
2756
2757         reg = FDI_RX_CTL(pipe);
2758         temp = I915_READ(reg);
2759         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2760
2761         /* Wait for the clocks to turn off. */
2762         POSTING_READ(reg);
2763         udelay(100);
2764 }
2765
2766 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         u32 flags = I915_READ(SOUTH_CHICKEN1);
2770
2771         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2772         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2773         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2774         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2775         POSTING_READ(SOUTH_CHICKEN1);
2776 }
2777 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2778 {
2779         struct drm_device *dev = crtc->dev;
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782         int pipe = intel_crtc->pipe;
2783         u32 reg, temp;
2784
2785         /* disable CPU FDI tx and PCH FDI rx */
2786         reg = FDI_TX_CTL(pipe);
2787         temp = I915_READ(reg);
2788         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2789         POSTING_READ(reg);
2790
2791         reg = FDI_RX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         temp &= ~(0x7 << 16);
2794         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2795         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2796
2797         POSTING_READ(reg);
2798         udelay(100);
2799
2800         /* Ironlake workaround, disable clock pointer after downing FDI */
2801         if (HAS_PCH_IBX(dev)) {
2802                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2803                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2804                            I915_READ(FDI_RX_CHICKEN(pipe) &
2805                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2806         } else if (HAS_PCH_CPT(dev)) {
2807                 cpt_phase_pointer_disable(dev, pipe);
2808         }
2809
2810         /* still set train pattern 1 */
2811         reg = FDI_TX_CTL(pipe);
2812         temp = I915_READ(reg);
2813         temp &= ~FDI_LINK_TRAIN_NONE;
2814         temp |= FDI_LINK_TRAIN_PATTERN_1;
2815         I915_WRITE(reg, temp);
2816
2817         reg = FDI_RX_CTL(pipe);
2818         temp = I915_READ(reg);
2819         if (HAS_PCH_CPT(dev)) {
2820                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2821                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2822         } else {
2823                 temp &= ~FDI_LINK_TRAIN_NONE;
2824                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2825         }
2826         /* BPC in FDI rx is consistent with that in PIPECONF */
2827         temp &= ~(0x07 << 16);
2828         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2829         I915_WRITE(reg, temp);
2830
2831         POSTING_READ(reg);
2832         udelay(100);
2833 }
2834
2835 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2836 {
2837         struct drm_device *dev = crtc->dev;
2838         struct drm_i915_private *dev_priv = dev->dev_private;
2839         unsigned long flags;
2840         bool pending;
2841
2842         if (atomic_read(&dev_priv->mm.wedged))
2843                 return false;
2844
2845         spin_lock_irqsave(&dev->event_lock, flags);
2846         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847         spin_unlock_irqrestore(&dev->event_lock, flags);
2848
2849         return pending;
2850 }
2851
2852 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856
2857         if (crtc->fb == NULL)
2858                 return;
2859
2860         wait_event(dev_priv->pending_flip_queue,
2861                    !intel_crtc_has_pending_flip(crtc));
2862
2863         mutex_lock(&dev->struct_mutex);
2864         intel_finish_fb(crtc->fb);
2865         mutex_unlock(&dev->struct_mutex);
2866 }
2867
2868 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2869 {
2870         struct drm_device *dev = crtc->dev;
2871         struct intel_encoder *intel_encoder;
2872
2873         /*
2874          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2875          * must be driven by its own crtc; no sharing is possible.
2876          */
2877         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2878                 switch (intel_encoder->type) {
2879                 case INTEL_OUTPUT_EDP:
2880                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2881                                 return false;
2882                         continue;
2883                 }
2884         }
2885
2886         return true;
2887 }
2888
2889 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2890 {
2891         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2892 }
2893
2894 /* Program iCLKIP clock to the desired frequency */
2895 static void lpt_program_iclkip(struct drm_crtc *crtc)
2896 {
2897         struct drm_device *dev = crtc->dev;
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2900         u32 temp;
2901
2902         /* It is necessary to ungate the pixclk gate prior to programming
2903          * the divisors, and gate it back when it is done.
2904          */
2905         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2906
2907         /* Disable SSCCTL */
2908         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2909                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2910                                         SBI_SSCCTL_DISABLE);
2911
2912         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2913         if (crtc->mode.clock == 20000) {
2914                 auxdiv = 1;
2915                 divsel = 0x41;
2916                 phaseinc = 0x20;
2917         } else {
2918                 /* The iCLK virtual clock root frequency is in MHz,
2919                  * but the crtc->mode.clock in in KHz. To get the divisors,
2920                  * it is necessary to divide one by another, so we
2921                  * convert the virtual clock precision to KHz here for higher
2922                  * precision.
2923                  */
2924                 u32 iclk_virtual_root_freq = 172800 * 1000;
2925                 u32 iclk_pi_range = 64;
2926                 u32 desired_divisor, msb_divisor_value, pi_value;
2927
2928                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2929                 msb_divisor_value = desired_divisor / iclk_pi_range;
2930                 pi_value = desired_divisor % iclk_pi_range;
2931
2932                 auxdiv = 0;
2933                 divsel = msb_divisor_value - 2;
2934                 phaseinc = pi_value;
2935         }
2936
2937         /* This should not happen with any sane values */
2938         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2939                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2940         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2941                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2942
2943         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2944                         crtc->mode.clock,
2945                         auxdiv,
2946                         divsel,
2947                         phasedir,
2948                         phaseinc);
2949
2950         /* Program SSCDIVINTPHASE6 */
2951         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2952         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2953         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2954         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2955         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2956         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2957         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2958
2959         intel_sbi_write(dev_priv,
2960                         SBI_SSCDIVINTPHASE6,
2961                         temp);
2962
2963         /* Program SSCAUXDIV */
2964         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2965         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2966         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2967         intel_sbi_write(dev_priv,
2968                         SBI_SSCAUXDIV6,
2969                         temp);
2970
2971
2972         /* Enable modulator and associated divider */
2973         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2974         temp &= ~SBI_SSCCTL_DISABLE;
2975         intel_sbi_write(dev_priv,
2976                         SBI_SSCCTL6,
2977                         temp);
2978
2979         /* Wait for initialization time */
2980         udelay(24);
2981
2982         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2983 }
2984
2985 /*
2986  * Enable PCH resources required for PCH ports:
2987  *   - PCH PLLs
2988  *   - FDI training & RX/TX
2989  *   - update transcoder timings
2990  *   - DP transcoding bits
2991  *   - transcoder
2992  */
2993 static void ironlake_pch_enable(struct drm_crtc *crtc)
2994 {
2995         struct drm_device *dev = crtc->dev;
2996         struct drm_i915_private *dev_priv = dev->dev_private;
2997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998         int pipe = intel_crtc->pipe;
2999         u32 reg, temp;
3000
3001         assert_transcoder_disabled(dev_priv, pipe);
3002
3003         /* Write the TU size bits before fdi link training, so that error
3004          * detection works. */
3005         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3006                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3007
3008         /* For PCH output, training FDI link */
3009         dev_priv->display.fdi_link_train(crtc);
3010
3011         intel_enable_pch_pll(intel_crtc);
3012
3013         if (HAS_PCH_LPT(dev)) {
3014                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3015                 lpt_program_iclkip(crtc);
3016         } else if (HAS_PCH_CPT(dev)) {
3017                 u32 sel;
3018
3019                 temp = I915_READ(PCH_DPLL_SEL);
3020                 switch (pipe) {
3021                 default:
3022                 case 0:
3023                         temp |= TRANSA_DPLL_ENABLE;
3024                         sel = TRANSA_DPLLB_SEL;
3025                         break;
3026                 case 1:
3027                         temp |= TRANSB_DPLL_ENABLE;
3028                         sel = TRANSB_DPLLB_SEL;
3029                         break;
3030                 case 2:
3031                         temp |= TRANSC_DPLL_ENABLE;
3032                         sel = TRANSC_DPLLB_SEL;
3033                         break;
3034                 }
3035                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3036                         temp |= sel;
3037                 else
3038                         temp &= ~sel;
3039                 I915_WRITE(PCH_DPLL_SEL, temp);
3040         }
3041
3042         /* set transcoder timing, panel must allow it */
3043         assert_panel_unlocked(dev_priv, pipe);
3044         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3045         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3046         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3047
3048         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3049         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3050         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3051         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3052
3053         if (!IS_HASWELL(dev))
3054                 intel_fdi_normal_train(crtc);
3055
3056         /* For PCH DP, enable TRANS_DP_CTL */
3057         if (HAS_PCH_CPT(dev) &&
3058             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3059              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3060                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3061                 reg = TRANS_DP_CTL(pipe);
3062                 temp = I915_READ(reg);
3063                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3064                           TRANS_DP_SYNC_MASK |
3065                           TRANS_DP_BPC_MASK);
3066                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3067                          TRANS_DP_ENH_FRAMING);
3068                 temp |= bpc << 9; /* same format but at 11:9 */
3069
3070                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3071                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3072                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3073                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3074
3075                 switch (intel_trans_dp_port_sel(crtc)) {
3076                 case PCH_DP_B:
3077                         temp |= TRANS_DP_PORT_SEL_B;
3078                         break;
3079                 case PCH_DP_C:
3080                         temp |= TRANS_DP_PORT_SEL_C;
3081                         break;
3082                 case PCH_DP_D:
3083                         temp |= TRANS_DP_PORT_SEL_D;
3084                         break;
3085                 default:
3086                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3087                         temp |= TRANS_DP_PORT_SEL_B;
3088                         break;
3089                 }
3090
3091                 I915_WRITE(reg, temp);
3092         }
3093
3094         intel_enable_transcoder(dev_priv, pipe);
3095 }
3096
3097 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3098 {
3099         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3100
3101         if (pll == NULL)
3102                 return;
3103
3104         if (pll->refcount == 0) {
3105                 WARN(1, "bad PCH PLL refcount\n");
3106                 return;
3107         }
3108
3109         --pll->refcount;
3110         intel_crtc->pch_pll = NULL;
3111 }
3112
3113 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3114 {
3115         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3116         struct intel_pch_pll *pll;
3117         int i;
3118
3119         pll = intel_crtc->pch_pll;
3120         if (pll) {
3121                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3122                               intel_crtc->base.base.id, pll->pll_reg);
3123                 goto prepare;
3124         }
3125
3126         if (HAS_PCH_IBX(dev_priv->dev)) {
3127                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3128                 i = intel_crtc->pipe;
3129                 pll = &dev_priv->pch_plls[i];
3130
3131                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3132                               intel_crtc->base.base.id, pll->pll_reg);
3133
3134                 goto found;
3135         }
3136
3137         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3138                 pll = &dev_priv->pch_plls[i];
3139
3140                 /* Only want to check enabled timings first */
3141                 if (pll->refcount == 0)
3142                         continue;
3143
3144                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3145                     fp == I915_READ(pll->fp0_reg)) {
3146                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3147                                       intel_crtc->base.base.id,
3148                                       pll->pll_reg, pll->refcount, pll->active);
3149
3150                         goto found;
3151                 }
3152         }
3153
3154         /* Ok no matching timings, maybe there's a free one? */
3155         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3156                 pll = &dev_priv->pch_plls[i];
3157                 if (pll->refcount == 0) {
3158                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3159                                       intel_crtc->base.base.id, pll->pll_reg);
3160                         goto found;
3161                 }
3162         }
3163
3164         return NULL;
3165
3166 found:
3167         intel_crtc->pch_pll = pll;
3168         pll->refcount++;
3169         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3170 prepare: /* separate function? */
3171         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3172
3173         /* Wait for the clocks to stabilize before rewriting the regs */
3174         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3175         POSTING_READ(pll->pll_reg);
3176         udelay(150);
3177
3178         I915_WRITE(pll->fp0_reg, fp);
3179         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3180         pll->on = false;
3181         return pll;
3182 }
3183
3184 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3185 {
3186         struct drm_i915_private *dev_priv = dev->dev_private;
3187         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3188         u32 temp;
3189
3190         temp = I915_READ(dslreg);
3191         udelay(500);
3192         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3193                 /* Without this, mode sets may fail silently on FDI */
3194                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3195                 udelay(250);
3196                 I915_WRITE(tc2reg, 0);
3197                 if (wait_for(I915_READ(dslreg) != temp, 5))
3198                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3199         }
3200 }
3201
3202 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3203 {
3204         struct drm_device *dev = crtc->dev;
3205         struct drm_i915_private *dev_priv = dev->dev_private;
3206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207         struct intel_encoder *encoder;
3208         int pipe = intel_crtc->pipe;
3209         int plane = intel_crtc->plane;
3210         u32 temp;
3211         bool is_pch_port;
3212
3213         WARN_ON(!crtc->enabled);
3214
3215         if (intel_crtc->active)
3216                 return;
3217
3218         intel_crtc->active = true;
3219         intel_update_watermarks(dev);
3220
3221         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3222                 temp = I915_READ(PCH_LVDS);
3223                 if ((temp & LVDS_PORT_EN) == 0)
3224                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3225         }
3226
3227         is_pch_port = ironlake_crtc_driving_pch(crtc);
3228
3229         if (is_pch_port) {
3230                 ironlake_fdi_pll_enable(intel_crtc);
3231         } else {
3232                 assert_fdi_tx_disabled(dev_priv, pipe);
3233                 assert_fdi_rx_disabled(dev_priv, pipe);
3234         }
3235
3236         for_each_encoder_on_crtc(dev, crtc, encoder)
3237                 if (encoder->pre_enable)
3238                         encoder->pre_enable(encoder);
3239
3240         /* Enable panel fitting for LVDS */
3241         if (dev_priv->pch_pf_size &&
3242             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3243                 /* Force use of hard-coded filter coefficients
3244                  * as some pre-programmed values are broken,
3245                  * e.g. x201.
3246                  */
3247                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3248                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3249                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3250         }
3251
3252         /*
3253          * On ILK+ LUT must be loaded before the pipe is running but with
3254          * clocks enabled
3255          */
3256         intel_crtc_load_lut(crtc);
3257
3258         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3259         intel_enable_plane(dev_priv, plane, pipe);
3260
3261         if (is_pch_port)
3262                 ironlake_pch_enable(crtc);
3263
3264         mutex_lock(&dev->struct_mutex);
3265         intel_update_fbc(dev);
3266         mutex_unlock(&dev->struct_mutex);
3267
3268         intel_crtc_update_cursor(crtc, true);
3269
3270         for_each_encoder_on_crtc(dev, crtc, encoder)
3271                 encoder->enable(encoder);
3272
3273         if (HAS_PCH_CPT(dev))
3274                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3275
3276         /*
3277          * There seems to be a race in PCH platform hw (at least on some
3278          * outputs) where an enabled pipe still completes any pageflip right
3279          * away (as if the pipe is off) instead of waiting for vblank. As soon
3280          * as the first vblank happend, everything works as expected. Hence just
3281          * wait for one vblank before returning to avoid strange things
3282          * happening.
3283          */
3284         intel_wait_for_vblank(dev, intel_crtc->pipe);
3285 }
3286
3287 static void haswell_crtc_enable(struct drm_crtc *crtc)
3288 {
3289         struct drm_device *dev = crtc->dev;
3290         struct drm_i915_private *dev_priv = dev->dev_private;
3291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3292         struct intel_encoder *encoder;
3293         int pipe = intel_crtc->pipe;
3294         int plane = intel_crtc->plane;
3295         bool is_pch_port;
3296
3297         WARN_ON(!crtc->enabled);
3298
3299         if (intel_crtc->active)
3300                 return;
3301
3302         intel_crtc->active = true;
3303         intel_update_watermarks(dev);
3304
3305         is_pch_port = haswell_crtc_driving_pch(crtc);
3306
3307         if (is_pch_port)
3308                 ironlake_fdi_pll_enable(intel_crtc);
3309
3310         for_each_encoder_on_crtc(dev, crtc, encoder)
3311                 if (encoder->pre_enable)
3312                         encoder->pre_enable(encoder);
3313
3314         intel_ddi_enable_pipe_clock(intel_crtc);
3315
3316         /* Enable panel fitting for eDP */
3317         if (dev_priv->pch_pf_size && HAS_eDP) {
3318                 /* Force use of hard-coded filter coefficients
3319                  * as some pre-programmed values are broken,
3320                  * e.g. x201.
3321                  */
3322                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3323                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3324                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3325         }
3326
3327         /*
3328          * On ILK+ LUT must be loaded before the pipe is running but with
3329          * clocks enabled
3330          */
3331         intel_crtc_load_lut(crtc);
3332
3333         intel_ddi_set_pipe_settings(crtc);
3334         intel_ddi_enable_pipe_func(crtc);
3335
3336         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3337         intel_enable_plane(dev_priv, plane, pipe);
3338
3339         if (is_pch_port)
3340                 ironlake_pch_enable(crtc);
3341
3342         mutex_lock(&dev->struct_mutex);
3343         intel_update_fbc(dev);
3344         mutex_unlock(&dev->struct_mutex);
3345
3346         intel_crtc_update_cursor(crtc, true);
3347
3348         for_each_encoder_on_crtc(dev, crtc, encoder)
3349                 encoder->enable(encoder);
3350
3351         /*
3352          * There seems to be a race in PCH platform hw (at least on some
3353          * outputs) where an enabled pipe still completes any pageflip right
3354          * away (as if the pipe is off) instead of waiting for vblank. As soon
3355          * as the first vblank happend, everything works as expected. Hence just
3356          * wait for one vblank before returning to avoid strange things
3357          * happening.
3358          */
3359         intel_wait_for_vblank(dev, intel_crtc->pipe);
3360 }
3361
3362 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3367         struct intel_encoder *encoder;
3368         int pipe = intel_crtc->pipe;
3369         int plane = intel_crtc->plane;
3370         u32 reg, temp;
3371
3372
3373         if (!intel_crtc->active)
3374                 return;
3375
3376         for_each_encoder_on_crtc(dev, crtc, encoder)
3377                 encoder->disable(encoder);
3378
3379         intel_crtc_wait_for_pending_flips(crtc);
3380         drm_vblank_off(dev, pipe);
3381         intel_crtc_update_cursor(crtc, false);
3382
3383         intel_disable_plane(dev_priv, plane, pipe);
3384
3385         if (dev_priv->cfb_plane == plane)
3386                 intel_disable_fbc(dev);
3387
3388         intel_disable_pipe(dev_priv, pipe);
3389
3390         /* Disable PF */
3391         I915_WRITE(PF_CTL(pipe), 0);
3392         I915_WRITE(PF_WIN_SZ(pipe), 0);
3393
3394         for_each_encoder_on_crtc(dev, crtc, encoder)
3395                 if (encoder->post_disable)
3396                         encoder->post_disable(encoder);
3397
3398         ironlake_fdi_disable(crtc);
3399
3400         intel_disable_transcoder(dev_priv, pipe);
3401
3402         if (HAS_PCH_CPT(dev)) {
3403                 /* disable TRANS_DP_CTL */
3404                 reg = TRANS_DP_CTL(pipe);
3405                 temp = I915_READ(reg);
3406                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3407                 temp |= TRANS_DP_PORT_SEL_NONE;
3408                 I915_WRITE(reg, temp);
3409
3410                 /* disable DPLL_SEL */
3411                 temp = I915_READ(PCH_DPLL_SEL);
3412                 switch (pipe) {
3413                 case 0:
3414                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3415                         break;
3416                 case 1:
3417                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3418                         break;
3419                 case 2:
3420                         /* C shares PLL A or B */
3421                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3422                         break;
3423                 default:
3424                         BUG(); /* wtf */
3425                 }
3426                 I915_WRITE(PCH_DPLL_SEL, temp);
3427         }
3428
3429         /* disable PCH DPLL */
3430         intel_disable_pch_pll(intel_crtc);
3431
3432         ironlake_fdi_pll_disable(intel_crtc);
3433
3434         intel_crtc->active = false;
3435         intel_update_watermarks(dev);
3436
3437         mutex_lock(&dev->struct_mutex);
3438         intel_update_fbc(dev);
3439         mutex_unlock(&dev->struct_mutex);
3440 }
3441
3442 static void haswell_crtc_disable(struct drm_crtc *crtc)
3443 {
3444         struct drm_device *dev = crtc->dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447         struct intel_encoder *encoder;
3448         int pipe = intel_crtc->pipe;
3449         int plane = intel_crtc->plane;
3450         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3451         bool is_pch_port;
3452
3453         if (!intel_crtc->active)
3454                 return;
3455
3456         is_pch_port = haswell_crtc_driving_pch(crtc);
3457
3458         for_each_encoder_on_crtc(dev, crtc, encoder)
3459                 encoder->disable(encoder);
3460
3461         intel_crtc_wait_for_pending_flips(crtc);
3462         drm_vblank_off(dev, pipe);
3463         intel_crtc_update_cursor(crtc, false);
3464
3465         intel_disable_plane(dev_priv, plane, pipe);
3466
3467         if (dev_priv->cfb_plane == plane)
3468                 intel_disable_fbc(dev);
3469
3470         intel_disable_pipe(dev_priv, pipe);
3471
3472         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3473
3474         /* Disable PF */
3475         I915_WRITE(PF_CTL(pipe), 0);
3476         I915_WRITE(PF_WIN_SZ(pipe), 0);
3477
3478         intel_ddi_disable_pipe_clock(intel_crtc);
3479
3480         for_each_encoder_on_crtc(dev, crtc, encoder)
3481                 if (encoder->post_disable)
3482                         encoder->post_disable(encoder);
3483
3484         if (is_pch_port) {
3485                 ironlake_fdi_disable(crtc);
3486                 intel_disable_transcoder(dev_priv, pipe);
3487                 intel_disable_pch_pll(intel_crtc);
3488                 ironlake_fdi_pll_disable(intel_crtc);
3489         }
3490
3491         intel_crtc->active = false;
3492         intel_update_watermarks(dev);
3493
3494         mutex_lock(&dev->struct_mutex);
3495         intel_update_fbc(dev);
3496         mutex_unlock(&dev->struct_mutex);
3497 }
3498
3499 static void ironlake_crtc_off(struct drm_crtc *crtc)
3500 {
3501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502         intel_put_pch_pll(intel_crtc);
3503 }
3504
3505 static void haswell_crtc_off(struct drm_crtc *crtc)
3506 {
3507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3508
3509         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3510          * start using it. */
3511         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3512
3513         intel_ddi_put_crtc_pll(crtc);
3514 }
3515
3516 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3517 {
3518         if (!enable && intel_crtc->overlay) {
3519                 struct drm_device *dev = intel_crtc->base.dev;
3520                 struct drm_i915_private *dev_priv = dev->dev_private;
3521
3522                 mutex_lock(&dev->struct_mutex);
3523                 dev_priv->mm.interruptible = false;
3524                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3525                 dev_priv->mm.interruptible = true;
3526                 mutex_unlock(&dev->struct_mutex);
3527         }
3528
3529         /* Let userspace switch the overlay on again. In most cases userspace
3530          * has to recompute where to put it anyway.
3531          */
3532 }
3533
3534 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3535 {
3536         struct drm_device *dev = crtc->dev;
3537         struct drm_i915_private *dev_priv = dev->dev_private;
3538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3539         struct intel_encoder *encoder;
3540         int pipe = intel_crtc->pipe;
3541         int plane = intel_crtc->plane;
3542
3543         WARN_ON(!crtc->enabled);
3544
3545         if (intel_crtc->active)
3546                 return;
3547
3548         intel_crtc->active = true;
3549         intel_update_watermarks(dev);
3550
3551         intel_enable_pll(dev_priv, pipe);
3552         intel_enable_pipe(dev_priv, pipe, false);
3553         intel_enable_plane(dev_priv, plane, pipe);
3554
3555         intel_crtc_load_lut(crtc);
3556         intel_update_fbc(dev);
3557
3558         /* Give the overlay scaler a chance to enable if it's on this pipe */
3559         intel_crtc_dpms_overlay(intel_crtc, true);
3560         intel_crtc_update_cursor(crtc, true);
3561
3562         for_each_encoder_on_crtc(dev, crtc, encoder)
3563                 encoder->enable(encoder);
3564 }
3565
3566 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3567 {
3568         struct drm_device *dev = crtc->dev;
3569         struct drm_i915_private *dev_priv = dev->dev_private;
3570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571         struct intel_encoder *encoder;
3572         int pipe = intel_crtc->pipe;
3573         int plane = intel_crtc->plane;
3574
3575
3576         if (!intel_crtc->active)
3577                 return;
3578
3579         for_each_encoder_on_crtc(dev, crtc, encoder)
3580                 encoder->disable(encoder);
3581
3582         /* Give the overlay scaler a chance to disable if it's on this pipe */
3583         intel_crtc_wait_for_pending_flips(crtc);
3584         drm_vblank_off(dev, pipe);
3585         intel_crtc_dpms_overlay(intel_crtc, false);
3586         intel_crtc_update_cursor(crtc, false);
3587
3588         if (dev_priv->cfb_plane == plane)
3589                 intel_disable_fbc(dev);
3590
3591         intel_disable_plane(dev_priv, plane, pipe);
3592         intel_disable_pipe(dev_priv, pipe);
3593         intel_disable_pll(dev_priv, pipe);
3594
3595         intel_crtc->active = false;
3596         intel_update_fbc(dev);
3597         intel_update_watermarks(dev);
3598 }
3599
3600 static void i9xx_crtc_off(struct drm_crtc *crtc)
3601 {
3602 }
3603
3604 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3605                                     bool enabled)
3606 {
3607         struct drm_device *dev = crtc->dev;
3608         struct drm_i915_master_private *master_priv;
3609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3610         int pipe = intel_crtc->pipe;
3611
3612         if (!dev->primary->master)
3613                 return;
3614
3615         master_priv = dev->primary->master->driver_priv;
3616         if (!master_priv->sarea_priv)
3617                 return;
3618
3619         switch (pipe) {
3620         case 0:
3621                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3622                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3623                 break;
3624         case 1:
3625                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3626                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3627                 break;
3628         default:
3629                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3630                 break;
3631         }
3632 }
3633
3634 /**
3635  * Sets the power management mode of the pipe and plane.
3636  */
3637 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3638 {
3639         struct drm_device *dev = crtc->dev;
3640         struct drm_i915_private *dev_priv = dev->dev_private;
3641         struct intel_encoder *intel_encoder;
3642         bool enable = false;
3643
3644         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3645                 enable |= intel_encoder->connectors_active;
3646
3647         if (enable)
3648                 dev_priv->display.crtc_enable(crtc);
3649         else
3650                 dev_priv->display.crtc_disable(crtc);
3651
3652         intel_crtc_update_sarea(crtc, enable);
3653 }
3654
3655 static void intel_crtc_noop(struct drm_crtc *crtc)
3656 {
3657 }
3658
3659 static void intel_crtc_disable(struct drm_crtc *crtc)
3660 {
3661         struct drm_device *dev = crtc->dev;
3662         struct drm_connector *connector;
3663         struct drm_i915_private *dev_priv = dev->dev_private;
3664
3665         /* crtc should still be enabled when we disable it. */
3666         WARN_ON(!crtc->enabled);
3667
3668         dev_priv->display.crtc_disable(crtc);
3669         intel_crtc_update_sarea(crtc, false);
3670         dev_priv->display.off(crtc);
3671
3672         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3673         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3674
3675         if (crtc->fb) {
3676                 mutex_lock(&dev->struct_mutex);
3677                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3678                 mutex_unlock(&dev->struct_mutex);
3679                 crtc->fb = NULL;
3680         }
3681
3682         /* Update computed state. */
3683         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3684                 if (!connector->encoder || !connector->encoder->crtc)
3685                         continue;
3686
3687                 if (connector->encoder->crtc != crtc)
3688                         continue;
3689
3690                 connector->dpms = DRM_MODE_DPMS_OFF;
3691                 to_intel_encoder(connector->encoder)->connectors_active = false;
3692         }
3693 }
3694
3695 void intel_modeset_disable(struct drm_device *dev)
3696 {
3697         struct drm_crtc *crtc;
3698
3699         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3700                 if (crtc->enabled)
3701                         intel_crtc_disable(crtc);
3702         }
3703 }
3704
3705 void intel_encoder_noop(struct drm_encoder *encoder)
3706 {
3707 }
3708
3709 void intel_encoder_destroy(struct drm_encoder *encoder)
3710 {
3711         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3712
3713         drm_encoder_cleanup(encoder);
3714         kfree(intel_encoder);
3715 }
3716
3717 /* Simple dpms helper for encodres with just one connector, no cloning and only
3718  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3719  * state of the entire output pipe. */
3720 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3721 {
3722         if (mode == DRM_MODE_DPMS_ON) {
3723                 encoder->connectors_active = true;
3724
3725                 intel_crtc_update_dpms(encoder->base.crtc);
3726         } else {
3727                 encoder->connectors_active = false;
3728
3729                 intel_crtc_update_dpms(encoder->base.crtc);
3730         }
3731 }
3732
3733 /* Cross check the actual hw state with our own modeset state tracking (and it's
3734  * internal consistency). */
3735 static void intel_connector_check_state(struct intel_connector *connector)
3736 {
3737         if (connector->get_hw_state(connector)) {
3738                 struct intel_encoder *encoder = connector->encoder;
3739                 struct drm_crtc *crtc;
3740                 bool encoder_enabled;
3741                 enum pipe pipe;
3742
3743                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3744                               connector->base.base.id,
3745                               drm_get_connector_name(&connector->base));
3746
3747                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3748                      "wrong connector dpms state\n");
3749                 WARN(connector->base.encoder != &encoder->base,
3750                      "active connector not linked to encoder\n");
3751                 WARN(!encoder->connectors_active,
3752                      "encoder->connectors_active not set\n");
3753
3754                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3755                 WARN(!encoder_enabled, "encoder not enabled\n");
3756                 if (WARN_ON(!encoder->base.crtc))
3757                         return;
3758
3759                 crtc = encoder->base.crtc;
3760
3761                 WARN(!crtc->enabled, "crtc not enabled\n");
3762                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3763                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3764                      "encoder active on the wrong pipe\n");
3765         }
3766 }
3767
3768 /* Even simpler default implementation, if there's really no special case to
3769  * consider. */
3770 void intel_connector_dpms(struct drm_connector *connector, int mode)
3771 {
3772         struct intel_encoder *encoder = intel_attached_encoder(connector);
3773
3774         /* All the simple cases only support two dpms states. */
3775         if (mode != DRM_MODE_DPMS_ON)
3776                 mode = DRM_MODE_DPMS_OFF;
3777
3778         if (mode == connector->dpms)
3779                 return;
3780
3781         connector->dpms = mode;
3782
3783         /* Only need to change hw state when actually enabled */
3784         if (encoder->base.crtc)
3785                 intel_encoder_dpms(encoder, mode);
3786         else
3787                 WARN_ON(encoder->connectors_active != false);
3788
3789         intel_modeset_check_state(connector->dev);
3790 }
3791
3792 /* Simple connector->get_hw_state implementation for encoders that support only
3793  * one connector and no cloning and hence the encoder state determines the state
3794  * of the connector. */
3795 bool intel_connector_get_hw_state(struct intel_connector *connector)
3796 {
3797         enum pipe pipe = 0;
3798         struct intel_encoder *encoder = connector->encoder;
3799
3800         return encoder->get_hw_state(encoder, &pipe);
3801 }
3802
3803 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3804                                   const struct drm_display_mode *mode,
3805                                   struct drm_display_mode *adjusted_mode)
3806 {
3807         struct drm_device *dev = crtc->dev;
3808
3809         if (HAS_PCH_SPLIT(dev)) {
3810                 /* FDI link clock is fixed at 2.7G */
3811                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3812                         return false;
3813         }
3814
3815         /* All interlaced capable intel hw wants timings in frames. Note though
3816          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3817          * timings, so we need to be careful not to clobber these.*/
3818         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3819                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3820
3821         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3822          * with a hsync front porch of 0.
3823          */
3824         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3825                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3826                 return false;
3827
3828         return true;
3829 }
3830
3831 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3832 {
3833         return 400000; /* FIXME */
3834 }
3835
3836 static int i945_get_display_clock_speed(struct drm_device *dev)
3837 {
3838         return 400000;
3839 }
3840
3841 static int i915_get_display_clock_speed(struct drm_device *dev)
3842 {
3843         return 333000;
3844 }
3845
3846 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3847 {
3848         return 200000;
3849 }
3850
3851 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3852 {
3853         u16 gcfgc = 0;
3854
3855         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3856
3857         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3858                 return 133000;
3859         else {
3860                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3861                 case GC_DISPLAY_CLOCK_333_MHZ:
3862                         return 333000;
3863                 default:
3864                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3865                         return 190000;
3866                 }
3867         }
3868 }
3869
3870 static int i865_get_display_clock_speed(struct drm_device *dev)
3871 {
3872         return 266000;
3873 }
3874
3875 static int i855_get_display_clock_speed(struct drm_device *dev)
3876 {
3877         u16 hpllcc = 0;
3878         /* Assume that the hardware is in the high speed state.  This
3879          * should be the default.
3880          */
3881         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3882         case GC_CLOCK_133_200:
3883         case GC_CLOCK_100_200:
3884                 return 200000;
3885         case GC_CLOCK_166_250:
3886                 return 250000;
3887         case GC_CLOCK_100_133:
3888                 return 133000;
3889         }
3890
3891         /* Shouldn't happen */
3892         return 0;
3893 }
3894
3895 static int i830_get_display_clock_speed(struct drm_device *dev)
3896 {
3897         return 133000;
3898 }
3899
3900 struct fdi_m_n {
3901         u32        tu;
3902         u32        gmch_m;
3903         u32        gmch_n;
3904         u32        link_m;
3905         u32        link_n;
3906 };
3907
3908 static void
3909 fdi_reduce_ratio(u32 *num, u32 *den)
3910 {
3911         while (*num > 0xffffff || *den > 0xffffff) {
3912                 *num >>= 1;
3913                 *den >>= 1;
3914         }
3915 }
3916
3917 static void
3918 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3919                      int link_clock, struct fdi_m_n *m_n)
3920 {
3921         m_n->tu = 64; /* default size */
3922
3923         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3924         m_n->gmch_m = bits_per_pixel * pixel_clock;
3925         m_n->gmch_n = link_clock * nlanes * 8;
3926         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3927
3928         m_n->link_m = pixel_clock;
3929         m_n->link_n = link_clock;
3930         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3931 }
3932
3933 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3934 {
3935         if (i915_panel_use_ssc >= 0)
3936                 return i915_panel_use_ssc != 0;
3937         return dev_priv->lvds_use_ssc
3938                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3939 }
3940
3941 /**
3942  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3943  * @crtc: CRTC structure
3944  * @mode: requested mode
3945  *
3946  * A pipe may be connected to one or more outputs.  Based on the depth of the
3947  * attached framebuffer, choose a good color depth to use on the pipe.
3948  *
3949  * If possible, match the pipe depth to the fb depth.  In some cases, this
3950  * isn't ideal, because the connected output supports a lesser or restricted
3951  * set of depths.  Resolve that here:
3952  *    LVDS typically supports only 6bpc, so clamp down in that case
3953  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3954  *    Displays may support a restricted set as well, check EDID and clamp as
3955  *      appropriate.
3956  *    DP may want to dither down to 6bpc to fit larger modes
3957  *
3958  * RETURNS:
3959  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3960  * true if they don't match).
3961  */
3962 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3963                                          struct drm_framebuffer *fb,
3964                                          unsigned int *pipe_bpp,
3965                                          struct drm_display_mode *mode)
3966 {
3967         struct drm_device *dev = crtc->dev;
3968         struct drm_i915_private *dev_priv = dev->dev_private;
3969         struct drm_connector *connector;
3970         struct intel_encoder *intel_encoder;
3971         unsigned int display_bpc = UINT_MAX, bpc;
3972
3973         /* Walk the encoders & connectors on this crtc, get min bpc */
3974         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3975
3976                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3977                         unsigned int lvds_bpc;
3978
3979                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3980                             LVDS_A3_POWER_UP)
3981                                 lvds_bpc = 8;
3982                         else
3983                                 lvds_bpc = 6;
3984
3985                         if (lvds_bpc < display_bpc) {
3986                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3987                                 display_bpc = lvds_bpc;
3988                         }
3989                         continue;
3990                 }
3991
3992                 /* Not one of the known troublemakers, check the EDID */
3993                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3994                                     head) {
3995                         if (connector->encoder != &intel_encoder->base)
3996                                 continue;
3997
3998                         /* Don't use an invalid EDID bpc value */
3999                         if (connector->display_info.bpc &&
4000                             connector->display_info.bpc < display_bpc) {
4001                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4002                                 display_bpc = connector->display_info.bpc;
4003                         }
4004                 }
4005
4006                 /*
4007                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4008                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4009                  */
4010                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4011                         if (display_bpc > 8 && display_bpc < 12) {
4012                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4013                                 display_bpc = 12;
4014                         } else {
4015                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4016                                 display_bpc = 8;
4017                         }
4018                 }
4019         }
4020
4021         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4022                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4023                 display_bpc = 6;
4024         }
4025
4026         /*
4027          * We could just drive the pipe at the highest bpc all the time and
4028          * enable dithering as needed, but that costs bandwidth.  So choose
4029          * the minimum value that expresses the full color range of the fb but
4030          * also stays within the max display bpc discovered above.
4031          */
4032
4033         switch (fb->depth) {
4034         case 8:
4035                 bpc = 8; /* since we go through a colormap */
4036                 break;
4037         case 15:
4038         case 16:
4039                 bpc = 6; /* min is 18bpp */
4040                 break;
4041         case 24:
4042                 bpc = 8;
4043                 break;
4044         case 30:
4045                 bpc = 10;
4046                 break;
4047         case 48:
4048                 bpc = 12;
4049                 break;
4050         default:
4051                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4052                 bpc = min((unsigned int)8, display_bpc);
4053                 break;
4054         }
4055
4056         display_bpc = min(display_bpc, bpc);
4057
4058         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4059                       bpc, display_bpc);
4060
4061         *pipe_bpp = display_bpc * 3;
4062
4063         return display_bpc != bpc;
4064 }
4065
4066 static int vlv_get_refclk(struct drm_crtc *crtc)
4067 {
4068         struct drm_device *dev = crtc->dev;
4069         struct drm_i915_private *dev_priv = dev->dev_private;
4070         int refclk = 27000; /* for DP & HDMI */
4071
4072         return 100000; /* only one validated so far */
4073
4074         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4075                 refclk = 96000;
4076         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4077                 if (intel_panel_use_ssc(dev_priv))
4078                         refclk = 100000;
4079                 else
4080                         refclk = 96000;
4081         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4082                 refclk = 100000;
4083         }
4084
4085         return refclk;
4086 }
4087
4088 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4089 {
4090         struct drm_device *dev = crtc->dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         int refclk;
4093
4094         if (IS_VALLEYVIEW(dev)) {
4095                 refclk = vlv_get_refclk(crtc);
4096         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4097             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4098                 refclk = dev_priv->lvds_ssc_freq * 1000;
4099                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4100                               refclk / 1000);
4101         } else if (!IS_GEN2(dev)) {
4102                 refclk = 96000;
4103         } else {
4104                 refclk = 48000;
4105         }
4106
4107         return refclk;
4108 }
4109
4110 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4111                                       intel_clock_t *clock)
4112 {
4113         /* SDVO TV has fixed PLL values depend on its clock range,
4114            this mirrors vbios setting. */
4115         if (adjusted_mode->clock >= 100000
4116             && adjusted_mode->clock < 140500) {
4117                 clock->p1 = 2;
4118                 clock->p2 = 10;
4119                 clock->n = 3;
4120                 clock->m1 = 16;
4121                 clock->m2 = 8;
4122         } else if (adjusted_mode->clock >= 140500
4123                    && adjusted_mode->clock <= 200000) {
4124                 clock->p1 = 1;
4125                 clock->p2 = 10;
4126                 clock->n = 6;
4127                 clock->m1 = 12;
4128                 clock->m2 = 8;
4129         }
4130 }
4131
4132 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4133                                      intel_clock_t *clock,
4134                                      intel_clock_t *reduced_clock)
4135 {
4136         struct drm_device *dev = crtc->dev;
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4139         int pipe = intel_crtc->pipe;
4140         u32 fp, fp2 = 0;
4141
4142         if (IS_PINEVIEW(dev)) {
4143                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4144                 if (reduced_clock)
4145                         fp2 = (1 << reduced_clock->n) << 16 |
4146                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4147         } else {
4148                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4149                 if (reduced_clock)
4150                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4151                                 reduced_clock->m2;
4152         }
4153
4154         I915_WRITE(FP0(pipe), fp);
4155
4156         intel_crtc->lowfreq_avail = false;
4157         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4158             reduced_clock && i915_powersave) {
4159                 I915_WRITE(FP1(pipe), fp2);
4160                 intel_crtc->lowfreq_avail = true;
4161         } else {
4162                 I915_WRITE(FP1(pipe), fp);
4163         }
4164 }
4165
4166 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4167                               struct drm_display_mode *adjusted_mode)
4168 {
4169         struct drm_device *dev = crtc->dev;
4170         struct drm_i915_private *dev_priv = dev->dev_private;
4171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172         int pipe = intel_crtc->pipe;
4173         u32 temp;
4174
4175         temp = I915_READ(LVDS);
4176         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4177         if (pipe == 1) {
4178                 temp |= LVDS_PIPEB_SELECT;
4179         } else {
4180                 temp &= ~LVDS_PIPEB_SELECT;
4181         }
4182         /* set the corresponsding LVDS_BORDER bit */
4183         temp |= dev_priv->lvds_border_bits;
4184         /* Set the B0-B3 data pairs corresponding to whether we're going to
4185          * set the DPLLs for dual-channel mode or not.
4186          */
4187         if (clock->p2 == 7)
4188                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4189         else
4190                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4191
4192         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4193          * appropriately here, but we need to look more thoroughly into how
4194          * panels behave in the two modes.
4195          */
4196         /* set the dithering flag on LVDS as needed */
4197         if (INTEL_INFO(dev)->gen >= 4) {
4198                 if (dev_priv->lvds_dither)
4199                         temp |= LVDS_ENABLE_DITHER;
4200                 else
4201                         temp &= ~LVDS_ENABLE_DITHER;
4202         }
4203         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4204         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4205                 temp |= LVDS_HSYNC_POLARITY;
4206         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4207                 temp |= LVDS_VSYNC_POLARITY;
4208         I915_WRITE(LVDS, temp);
4209 }
4210
4211 static void vlv_update_pll(struct drm_crtc *crtc,
4212                            struct drm_display_mode *mode,
4213                            struct drm_display_mode *adjusted_mode,
4214                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4215                            int num_connectors)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220         int pipe = intel_crtc->pipe;
4221         u32 dpll, mdiv, pdiv;
4222         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4223         bool is_sdvo;
4224         u32 temp;
4225
4226         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4227                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4228
4229         dpll = DPLL_VGA_MODE_DIS;
4230         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4231         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4232         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4233
4234         I915_WRITE(DPLL(pipe), dpll);
4235         POSTING_READ(DPLL(pipe));
4236
4237         bestn = clock->n;
4238         bestm1 = clock->m1;
4239         bestm2 = clock->m2;
4240         bestp1 = clock->p1;
4241         bestp2 = clock->p2;
4242
4243         /*
4244          * In Valleyview PLL and program lane counter registers are exposed
4245          * through DPIO interface
4246          */
4247         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4248         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4249         mdiv |= ((bestn << DPIO_N_SHIFT));
4250         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4251         mdiv |= (1 << DPIO_K_SHIFT);
4252         mdiv |= DPIO_ENABLE_CALIBRATION;
4253         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4254
4255         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4256
4257         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4258                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4259                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4260                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4261         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4262
4263         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4264
4265         dpll |= DPLL_VCO_ENABLE;
4266         I915_WRITE(DPLL(pipe), dpll);
4267         POSTING_READ(DPLL(pipe));
4268         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4269                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4270
4271         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4272
4273         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4274                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4275
4276         I915_WRITE(DPLL(pipe), dpll);
4277
4278         /* Wait for the clocks to stabilize. */
4279         POSTING_READ(DPLL(pipe));
4280         udelay(150);
4281
4282         temp = 0;
4283         if (is_sdvo) {
4284                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4285                 if (temp > 1)
4286                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4287                 else
4288                         temp = 0;
4289         }
4290         I915_WRITE(DPLL_MD(pipe), temp);
4291         POSTING_READ(DPLL_MD(pipe));
4292
4293         /* Now program lane control registers */
4294         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4295                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4296         {
4297                 temp = 0x1000C4;
4298                 if(pipe == 1)
4299                         temp |= (1 << 21);
4300                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4301         }
4302         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4303         {
4304                 temp = 0x1000C4;
4305                 if(pipe == 1)
4306                         temp |= (1 << 21);
4307                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4308         }
4309 }
4310
4311 static void i9xx_update_pll(struct drm_crtc *crtc,
4312                             struct drm_display_mode *mode,
4313                             struct drm_display_mode *adjusted_mode,
4314                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4315                             int num_connectors)
4316 {
4317         struct drm_device *dev = crtc->dev;
4318         struct drm_i915_private *dev_priv = dev->dev_private;
4319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4320         int pipe = intel_crtc->pipe;
4321         u32 dpll;
4322         bool is_sdvo;
4323
4324         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4325
4326         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4327                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4328
4329         dpll = DPLL_VGA_MODE_DIS;
4330
4331         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4332                 dpll |= DPLLB_MODE_LVDS;
4333         else
4334                 dpll |= DPLLB_MODE_DAC_SERIAL;
4335         if (is_sdvo) {
4336                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4337                 if (pixel_multiplier > 1) {
4338                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4339                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4340                 }
4341                 dpll |= DPLL_DVO_HIGH_SPEED;
4342         }
4343         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4344                 dpll |= DPLL_DVO_HIGH_SPEED;
4345
4346         /* compute bitmask from p1 value */
4347         if (IS_PINEVIEW(dev))
4348                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4349         else {
4350                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4351                 if (IS_G4X(dev) && reduced_clock)
4352                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4353         }
4354         switch (clock->p2) {
4355         case 5:
4356                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4357                 break;
4358         case 7:
4359                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4360                 break;
4361         case 10:
4362                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4363                 break;
4364         case 14:
4365                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4366                 break;
4367         }
4368         if (INTEL_INFO(dev)->gen >= 4)
4369                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4370
4371         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4372                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4373         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4374                 /* XXX: just matching BIOS for now */
4375                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4376                 dpll |= 3;
4377         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4378                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4379                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4380         else
4381                 dpll |= PLL_REF_INPUT_DREFCLK;
4382
4383         dpll |= DPLL_VCO_ENABLE;
4384         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4385         POSTING_READ(DPLL(pipe));
4386         udelay(150);
4387
4388         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4389          * This is an exception to the general rule that mode_set doesn't turn
4390          * things on.
4391          */
4392         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4393                 intel_update_lvds(crtc, clock, adjusted_mode);
4394
4395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4396                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4397
4398         I915_WRITE(DPLL(pipe), dpll);
4399
4400         /* Wait for the clocks to stabilize. */
4401         POSTING_READ(DPLL(pipe));
4402         udelay(150);
4403
4404         if (INTEL_INFO(dev)->gen >= 4) {
4405                 u32 temp = 0;
4406                 if (is_sdvo) {
4407                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4408                         if (temp > 1)
4409                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4410                         else
4411                                 temp = 0;
4412                 }
4413                 I915_WRITE(DPLL_MD(pipe), temp);
4414         } else {
4415                 /* The pixel multiplier can only be updated once the
4416                  * DPLL is enabled and the clocks are stable.
4417                  *
4418                  * So write it again.
4419                  */
4420                 I915_WRITE(DPLL(pipe), dpll);
4421         }
4422 }
4423
4424 static void i8xx_update_pll(struct drm_crtc *crtc,
4425                             struct drm_display_mode *adjusted_mode,
4426                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4427                             int num_connectors)
4428 {
4429         struct drm_device *dev = crtc->dev;
4430         struct drm_i915_private *dev_priv = dev->dev_private;
4431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4432         int pipe = intel_crtc->pipe;
4433         u32 dpll;
4434
4435         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4436
4437         dpll = DPLL_VGA_MODE_DIS;
4438
4439         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4440                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4441         } else {
4442                 if (clock->p1 == 2)
4443                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4444                 else
4445                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4446                 if (clock->p2 == 4)
4447                         dpll |= PLL_P2_DIVIDE_BY_4;
4448         }
4449
4450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4451                 /* XXX: just matching BIOS for now */
4452                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4453                 dpll |= 3;
4454         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4455                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4456                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4457         else
4458                 dpll |= PLL_REF_INPUT_DREFCLK;
4459
4460         dpll |= DPLL_VCO_ENABLE;
4461         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4462         POSTING_READ(DPLL(pipe));
4463         udelay(150);
4464
4465         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4466          * This is an exception to the general rule that mode_set doesn't turn
4467          * things on.
4468          */
4469         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4470                 intel_update_lvds(crtc, clock, adjusted_mode);
4471
4472         I915_WRITE(DPLL(pipe), dpll);
4473
4474         /* Wait for the clocks to stabilize. */
4475         POSTING_READ(DPLL(pipe));
4476         udelay(150);
4477
4478         /* The pixel multiplier can only be updated once the
4479          * DPLL is enabled and the clocks are stable.
4480          *
4481          * So write it again.
4482          */
4483         I915_WRITE(DPLL(pipe), dpll);
4484 }
4485
4486 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4487                                    struct drm_display_mode *mode,
4488                                    struct drm_display_mode *adjusted_mode)
4489 {
4490         struct drm_device *dev = intel_crtc->base.dev;
4491         struct drm_i915_private *dev_priv = dev->dev_private;
4492         enum pipe pipe = intel_crtc->pipe;
4493         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4494         uint32_t vsyncshift;
4495
4496         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4497                 /* the chip adds 2 halflines automatically */
4498                 adjusted_mode->crtc_vtotal -= 1;
4499                 adjusted_mode->crtc_vblank_end -= 1;
4500                 vsyncshift = adjusted_mode->crtc_hsync_start
4501                              - adjusted_mode->crtc_htotal / 2;
4502         } else {
4503                 vsyncshift = 0;
4504         }
4505
4506         if (INTEL_INFO(dev)->gen > 3)
4507                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4508
4509         I915_WRITE(HTOTAL(cpu_transcoder),
4510                    (adjusted_mode->crtc_hdisplay - 1) |
4511                    ((adjusted_mode->crtc_htotal - 1) << 16));
4512         I915_WRITE(HBLANK(cpu_transcoder),
4513                    (adjusted_mode->crtc_hblank_start - 1) |
4514                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4515         I915_WRITE(HSYNC(cpu_transcoder),
4516                    (adjusted_mode->crtc_hsync_start - 1) |
4517                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4518
4519         I915_WRITE(VTOTAL(cpu_transcoder),
4520                    (adjusted_mode->crtc_vdisplay - 1) |
4521                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4522         I915_WRITE(VBLANK(cpu_transcoder),
4523                    (adjusted_mode->crtc_vblank_start - 1) |
4524                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4525         I915_WRITE(VSYNC(cpu_transcoder),
4526                    (adjusted_mode->crtc_vsync_start - 1) |
4527                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4528
4529         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4530          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4531          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4532          * bits. */
4533         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4534             (pipe == PIPE_B || pipe == PIPE_C))
4535                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4536
4537         /* pipesrc controls the size that is scaled from, which should
4538          * always be the user's requested size.
4539          */
4540         I915_WRITE(PIPESRC(pipe),
4541                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4542 }
4543
4544 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4545                               struct drm_display_mode *mode,
4546                               struct drm_display_mode *adjusted_mode,
4547                               int x, int y,
4548                               struct drm_framebuffer *fb)
4549 {
4550         struct drm_device *dev = crtc->dev;
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4553         int pipe = intel_crtc->pipe;
4554         int plane = intel_crtc->plane;
4555         int refclk, num_connectors = 0;
4556         intel_clock_t clock, reduced_clock;
4557         u32 dspcntr, pipeconf;
4558         bool ok, has_reduced_clock = false, is_sdvo = false;
4559         bool is_lvds = false, is_tv = false, is_dp = false;
4560         struct intel_encoder *encoder;
4561         const intel_limit_t *limit;
4562         int ret;
4563
4564         for_each_encoder_on_crtc(dev, crtc, encoder) {
4565                 switch (encoder->type) {
4566                 case INTEL_OUTPUT_LVDS:
4567                         is_lvds = true;
4568                         break;
4569                 case INTEL_OUTPUT_SDVO:
4570                 case INTEL_OUTPUT_HDMI:
4571                         is_sdvo = true;
4572                         if (encoder->needs_tv_clock)
4573                                 is_tv = true;
4574                         break;
4575                 case INTEL_OUTPUT_TVOUT:
4576                         is_tv = true;
4577                         break;
4578                 case INTEL_OUTPUT_DISPLAYPORT:
4579                         is_dp = true;
4580                         break;
4581                 }
4582
4583                 num_connectors++;
4584         }
4585
4586         refclk = i9xx_get_refclk(crtc, num_connectors);
4587
4588         /*
4589          * Returns a set of divisors for the desired target clock with the given
4590          * refclk, or FALSE.  The returned values represent the clock equation:
4591          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4592          */
4593         limit = intel_limit(crtc, refclk);
4594         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4595                              &clock);
4596         if (!ok) {
4597                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4598                 return -EINVAL;
4599         }
4600
4601         /* Ensure that the cursor is valid for the new mode before changing... */
4602         intel_crtc_update_cursor(crtc, true);
4603
4604         if (is_lvds && dev_priv->lvds_downclock_avail) {
4605                 /*
4606                  * Ensure we match the reduced clock's P to the target clock.
4607                  * If the clocks don't match, we can't switch the display clock
4608                  * by using the FP0/FP1. In such case we will disable the LVDS
4609                  * downclock feature.
4610                 */
4611                 has_reduced_clock = limit->find_pll(limit, crtc,
4612                                                     dev_priv->lvds_downclock,
4613                                                     refclk,
4614                                                     &clock,
4615                                                     &reduced_clock);
4616         }
4617
4618         if (is_sdvo && is_tv)
4619                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4620
4621         if (IS_GEN2(dev))
4622                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4623                                 has_reduced_clock ? &reduced_clock : NULL,
4624                                 num_connectors);
4625         else if (IS_VALLEYVIEW(dev))
4626                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4627                                 has_reduced_clock ? &reduced_clock : NULL,
4628                                 num_connectors);
4629         else
4630                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4631                                 has_reduced_clock ? &reduced_clock : NULL,
4632                                 num_connectors);
4633
4634         /* setup pipeconf */
4635         pipeconf = I915_READ(PIPECONF(pipe));
4636
4637         /* Set up the display plane register */
4638         dspcntr = DISPPLANE_GAMMA_ENABLE;
4639
4640         if (pipe == 0)
4641                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4642         else
4643                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4644
4645         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4646                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4647                  * core speed.
4648                  *
4649                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4650                  * pipe == 0 check?
4651                  */
4652                 if (mode->clock >
4653                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4654                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4655                 else
4656                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4657         }
4658
4659         /* default to 8bpc */
4660         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4661         if (is_dp) {
4662                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4663                         pipeconf |= PIPECONF_BPP_6 |
4664                                     PIPECONF_DITHER_EN |
4665                                     PIPECONF_DITHER_TYPE_SP;
4666                 }
4667         }
4668
4669         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4670                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4671                         pipeconf |= PIPECONF_BPP_6 |
4672                                         PIPECONF_ENABLE |
4673                                         I965_PIPECONF_ACTIVE;
4674                 }
4675         }
4676
4677         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4678         drm_mode_debug_printmodeline(mode);
4679
4680         if (HAS_PIPE_CXSR(dev)) {
4681                 if (intel_crtc->lowfreq_avail) {
4682                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4683                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4684                 } else {
4685                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4686                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4687                 }
4688         }
4689
4690         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4691         if (!IS_GEN2(dev) &&
4692             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4693                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4694         else
4695                 pipeconf |= PIPECONF_PROGRESSIVE;
4696
4697         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4698
4699         /* pipesrc and dspsize control the size that is scaled from,
4700          * which should always be the user's requested size.
4701          */
4702         I915_WRITE(DSPSIZE(plane),
4703                    ((mode->vdisplay - 1) << 16) |
4704                    (mode->hdisplay - 1));
4705         I915_WRITE(DSPPOS(plane), 0);
4706
4707         I915_WRITE(PIPECONF(pipe), pipeconf);
4708         POSTING_READ(PIPECONF(pipe));
4709         intel_enable_pipe(dev_priv, pipe, false);
4710
4711         intel_wait_for_vblank(dev, pipe);
4712
4713         I915_WRITE(DSPCNTR(plane), dspcntr);
4714         POSTING_READ(DSPCNTR(plane));
4715
4716         ret = intel_pipe_set_base(crtc, x, y, fb);
4717
4718         intel_update_watermarks(dev);
4719
4720         return ret;
4721 }
4722
4723 /*
4724  * Initialize reference clocks when the driver loads
4725  */
4726 void ironlake_init_pch_refclk(struct drm_device *dev)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         struct drm_mode_config *mode_config = &dev->mode_config;
4730         struct intel_encoder *encoder;
4731         u32 temp;
4732         bool has_lvds = false;
4733         bool has_cpu_edp = false;
4734         bool has_pch_edp = false;
4735         bool has_panel = false;
4736         bool has_ck505 = false;
4737         bool can_ssc = false;
4738
4739         /* We need to take the global config into account */
4740         list_for_each_entry(encoder, &mode_config->encoder_list,
4741                             base.head) {
4742                 switch (encoder->type) {
4743                 case INTEL_OUTPUT_LVDS:
4744                         has_panel = true;
4745                         has_lvds = true;
4746                         break;
4747                 case INTEL_OUTPUT_EDP:
4748                         has_panel = true;
4749                         if (intel_encoder_is_pch_edp(&encoder->base))
4750                                 has_pch_edp = true;
4751                         else
4752                                 has_cpu_edp = true;
4753                         break;
4754                 }
4755         }
4756
4757         if (HAS_PCH_IBX(dev)) {
4758                 has_ck505 = dev_priv->display_clock_mode;
4759                 can_ssc = has_ck505;
4760         } else {
4761                 has_ck505 = false;
4762                 can_ssc = true;
4763         }
4764
4765         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4766                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4767                       has_ck505);
4768
4769         /* Ironlake: try to setup display ref clock before DPLL
4770          * enabling. This is only under driver's control after
4771          * PCH B stepping, previous chipset stepping should be
4772          * ignoring this setting.
4773          */
4774         temp = I915_READ(PCH_DREF_CONTROL);
4775         /* Always enable nonspread source */
4776         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4777
4778         if (has_ck505)
4779                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4780         else
4781                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4782
4783         if (has_panel) {
4784                 temp &= ~DREF_SSC_SOURCE_MASK;
4785                 temp |= DREF_SSC_SOURCE_ENABLE;
4786
4787                 /* SSC must be turned on before enabling the CPU output  */
4788                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4789                         DRM_DEBUG_KMS("Using SSC on panel\n");
4790                         temp |= DREF_SSC1_ENABLE;
4791                 } else
4792                         temp &= ~DREF_SSC1_ENABLE;
4793
4794                 /* Get SSC going before enabling the outputs */
4795                 I915_WRITE(PCH_DREF_CONTROL, temp);
4796                 POSTING_READ(PCH_DREF_CONTROL);
4797                 udelay(200);
4798
4799                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4800
4801                 /* Enable CPU source on CPU attached eDP */
4802                 if (has_cpu_edp) {
4803                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4804                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4805                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4806                         }
4807                         else
4808                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4809                 } else
4810                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4811
4812                 I915_WRITE(PCH_DREF_CONTROL, temp);
4813                 POSTING_READ(PCH_DREF_CONTROL);
4814                 udelay(200);
4815         } else {
4816                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4817
4818                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4819
4820                 /* Turn off CPU output */
4821                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4822
4823                 I915_WRITE(PCH_DREF_CONTROL, temp);
4824                 POSTING_READ(PCH_DREF_CONTROL);
4825                 udelay(200);
4826
4827                 /* Turn off the SSC source */
4828                 temp &= ~DREF_SSC_SOURCE_MASK;
4829                 temp |= DREF_SSC_SOURCE_DISABLE;
4830
4831                 /* Turn off SSC1 */
4832                 temp &= ~ DREF_SSC1_ENABLE;
4833
4834                 I915_WRITE(PCH_DREF_CONTROL, temp);
4835                 POSTING_READ(PCH_DREF_CONTROL);
4836                 udelay(200);
4837         }
4838 }
4839
4840 static int ironlake_get_refclk(struct drm_crtc *crtc)
4841 {
4842         struct drm_device *dev = crtc->dev;
4843         struct drm_i915_private *dev_priv = dev->dev_private;
4844         struct intel_encoder *encoder;
4845         struct intel_encoder *edp_encoder = NULL;
4846         int num_connectors = 0;
4847         bool is_lvds = false;
4848
4849         for_each_encoder_on_crtc(dev, crtc, encoder) {
4850                 switch (encoder->type) {
4851                 case INTEL_OUTPUT_LVDS:
4852                         is_lvds = true;
4853                         break;
4854                 case INTEL_OUTPUT_EDP:
4855                         edp_encoder = encoder;
4856                         break;
4857                 }
4858                 num_connectors++;
4859         }
4860
4861         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4862                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4863                               dev_priv->lvds_ssc_freq);
4864                 return dev_priv->lvds_ssc_freq * 1000;
4865         }
4866
4867         return 120000;
4868 }
4869
4870 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4871                                   struct drm_display_mode *adjusted_mode,
4872                                   bool dither)
4873 {
4874         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4876         int pipe = intel_crtc->pipe;
4877         uint32_t val;
4878
4879         val = I915_READ(PIPECONF(pipe));
4880
4881         val &= ~PIPE_BPC_MASK;
4882         switch (intel_crtc->bpp) {
4883         case 18:
4884                 val |= PIPE_6BPC;
4885                 break;
4886         case 24:
4887                 val |= PIPE_8BPC;
4888                 break;
4889         case 30:
4890                 val |= PIPE_10BPC;
4891                 break;
4892         case 36:
4893                 val |= PIPE_12BPC;
4894                 break;
4895         default:
4896                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4897                 BUG();
4898         }
4899
4900         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4901         if (dither)
4902                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4903
4904         val &= ~PIPECONF_INTERLACE_MASK;
4905         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4906                 val |= PIPECONF_INTERLACED_ILK;
4907         else
4908                 val |= PIPECONF_PROGRESSIVE;
4909
4910         I915_WRITE(PIPECONF(pipe), val);
4911         POSTING_READ(PIPECONF(pipe));
4912 }
4913
4914 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4915                                  struct drm_display_mode *adjusted_mode,
4916                                  bool dither)
4917 {
4918         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4920         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4921         uint32_t val;
4922
4923         val = I915_READ(PIPECONF(cpu_transcoder));
4924
4925         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4926         if (dither)
4927                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4928
4929         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4930         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4931                 val |= PIPECONF_INTERLACED_ILK;
4932         else
4933                 val |= PIPECONF_PROGRESSIVE;
4934
4935         I915_WRITE(PIPECONF(cpu_transcoder), val);
4936         POSTING_READ(PIPECONF(cpu_transcoder));
4937 }
4938
4939 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4940                                     struct drm_display_mode *adjusted_mode,
4941                                     intel_clock_t *clock,
4942                                     bool *has_reduced_clock,
4943                                     intel_clock_t *reduced_clock)
4944 {
4945         struct drm_device *dev = crtc->dev;
4946         struct drm_i915_private *dev_priv = dev->dev_private;
4947         struct intel_encoder *intel_encoder;
4948         int refclk;
4949         const intel_limit_t *limit;
4950         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4951
4952         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4953                 switch (intel_encoder->type) {
4954                 case INTEL_OUTPUT_LVDS:
4955                         is_lvds = true;
4956                         break;
4957                 case INTEL_OUTPUT_SDVO:
4958                 case INTEL_OUTPUT_HDMI:
4959                         is_sdvo = true;
4960                         if (intel_encoder->needs_tv_clock)
4961                                 is_tv = true;
4962                         break;
4963                 case INTEL_OUTPUT_TVOUT:
4964                         is_tv = true;
4965                         break;
4966                 }
4967         }
4968
4969         refclk = ironlake_get_refclk(crtc);
4970
4971         /*
4972          * Returns a set of divisors for the desired target clock with the given
4973          * refclk, or FALSE.  The returned values represent the clock equation:
4974          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4975          */
4976         limit = intel_limit(crtc, refclk);
4977         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4978                               clock);
4979         if (!ret)
4980                 return false;
4981
4982         if (is_lvds && dev_priv->lvds_downclock_avail) {
4983                 /*
4984                  * Ensure we match the reduced clock's P to the target clock.
4985                  * If the clocks don't match, we can't switch the display clock
4986                  * by using the FP0/FP1. In such case we will disable the LVDS
4987                  * downclock feature.
4988                 */
4989                 *has_reduced_clock = limit->find_pll(limit, crtc,
4990                                                      dev_priv->lvds_downclock,
4991                                                      refclk,
4992                                                      clock,
4993                                                      reduced_clock);
4994         }
4995
4996         if (is_sdvo && is_tv)
4997                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4998
4999         return true;
5000 }
5001
5002 static void ironlake_set_m_n(struct drm_crtc *crtc,
5003                              struct drm_display_mode *mode,
5004                              struct drm_display_mode *adjusted_mode)
5005 {
5006         struct drm_device *dev = crtc->dev;
5007         struct drm_i915_private *dev_priv = dev->dev_private;
5008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5009         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5010         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5011         struct fdi_m_n m_n = {0};
5012         int target_clock, pixel_multiplier, lane, link_bw;
5013         bool is_dp = false, is_cpu_edp = false;
5014
5015         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5016                 switch (intel_encoder->type) {
5017                 case INTEL_OUTPUT_DISPLAYPORT:
5018                         is_dp = true;
5019                         break;
5020                 case INTEL_OUTPUT_EDP:
5021                         is_dp = true;
5022                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5023                                 is_cpu_edp = true;
5024                         edp_encoder = intel_encoder;
5025                         break;
5026                 }
5027         }
5028
5029         /* FDI link */
5030         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5031         lane = 0;
5032         /* CPU eDP doesn't require FDI link, so just set DP M/N
5033            according to current link config */
5034         if (is_cpu_edp) {
5035                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5036         } else {
5037                 /* FDI is a binary signal running at ~2.7GHz, encoding
5038                  * each output octet as 10 bits. The actual frequency
5039                  * is stored as a divider into a 100MHz clock, and the
5040                  * mode pixel clock is stored in units of 1KHz.
5041                  * Hence the bw of each lane in terms of the mode signal
5042                  * is:
5043                  */
5044                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5045         }
5046
5047         /* [e]DP over FDI requires target mode clock instead of link clock. */
5048         if (edp_encoder)
5049                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5050         else if (is_dp)
5051                 target_clock = mode->clock;
5052         else
5053                 target_clock = adjusted_mode->clock;
5054
5055         if (!lane) {
5056                 /*
5057                  * Account for spread spectrum to avoid
5058                  * oversubscribing the link. Max center spread
5059                  * is 2.5%; use 5% for safety's sake.
5060                  */
5061                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5062                 lane = bps / (link_bw * 8) + 1;
5063         }
5064
5065         intel_crtc->fdi_lanes = lane;
5066
5067         if (pixel_multiplier > 1)
5068                 link_bw *= pixel_multiplier;
5069         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5070                              &m_n);
5071
5072         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5073         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5074         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5075         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5076 }
5077
5078 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5079                                       struct drm_display_mode *adjusted_mode,
5080                                       intel_clock_t *clock, u32 fp)
5081 {
5082         struct drm_crtc *crtc = &intel_crtc->base;
5083         struct drm_device *dev = crtc->dev;
5084         struct drm_i915_private *dev_priv = dev->dev_private;
5085         struct intel_encoder *intel_encoder;
5086         uint32_t dpll;
5087         int factor, pixel_multiplier, num_connectors = 0;
5088         bool is_lvds = false, is_sdvo = false, is_tv = false;
5089         bool is_dp = false, is_cpu_edp = false;
5090
5091         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5092                 switch (intel_encoder->type) {
5093                 case INTEL_OUTPUT_LVDS:
5094                         is_lvds = true;
5095                         break;
5096                 case INTEL_OUTPUT_SDVO:
5097                 case INTEL_OUTPUT_HDMI:
5098                         is_sdvo = true;
5099                         if (intel_encoder->needs_tv_clock)
5100                                 is_tv = true;
5101                         break;
5102                 case INTEL_OUTPUT_TVOUT:
5103                         is_tv = true;
5104                         break;
5105                 case INTEL_OUTPUT_DISPLAYPORT:
5106                         is_dp = true;
5107                         break;
5108                 case INTEL_OUTPUT_EDP:
5109                         is_dp = true;
5110                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5111                                 is_cpu_edp = true;
5112                         break;
5113                 }
5114
5115                 num_connectors++;
5116         }
5117
5118         /* Enable autotuning of the PLL clock (if permissible) */
5119         factor = 21;
5120         if (is_lvds) {
5121                 if ((intel_panel_use_ssc(dev_priv) &&
5122                      dev_priv->lvds_ssc_freq == 100) ||
5123                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5124                         factor = 25;
5125         } else if (is_sdvo && is_tv)
5126                 factor = 20;
5127
5128         if (clock->m < factor * clock->n)
5129                 fp |= FP_CB_TUNE;
5130
5131         dpll = 0;
5132
5133         if (is_lvds)
5134                 dpll |= DPLLB_MODE_LVDS;
5135         else
5136                 dpll |= DPLLB_MODE_DAC_SERIAL;
5137         if (is_sdvo) {
5138                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5139                 if (pixel_multiplier > 1) {
5140                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5141                 }
5142                 dpll |= DPLL_DVO_HIGH_SPEED;
5143         }
5144         if (is_dp && !is_cpu_edp)
5145                 dpll |= DPLL_DVO_HIGH_SPEED;
5146
5147         /* compute bitmask from p1 value */
5148         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5149         /* also FPA1 */
5150         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5151
5152         switch (clock->p2) {
5153         case 5:
5154                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5155                 break;
5156         case 7:
5157                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5158                 break;
5159         case 10:
5160                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5161                 break;
5162         case 14:
5163                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5164                 break;
5165         }
5166
5167         if (is_sdvo && is_tv)
5168                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5169         else if (is_tv)
5170                 /* XXX: just matching BIOS for now */
5171                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5172                 dpll |= 3;
5173         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5174                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5175         else
5176                 dpll |= PLL_REF_INPUT_DREFCLK;
5177
5178         return dpll;
5179 }
5180
5181 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5182                                   struct drm_display_mode *mode,
5183                                   struct drm_display_mode *adjusted_mode,
5184                                   int x, int y,
5185                                   struct drm_framebuffer *fb)
5186 {
5187         struct drm_device *dev = crtc->dev;
5188         struct drm_i915_private *dev_priv = dev->dev_private;
5189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5190         int pipe = intel_crtc->pipe;
5191         int plane = intel_crtc->plane;
5192         int num_connectors = 0;
5193         intel_clock_t clock, reduced_clock;
5194         u32 dpll, fp = 0, fp2 = 0;
5195         bool ok, has_reduced_clock = false;
5196         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5197         struct intel_encoder *encoder;
5198         u32 temp;
5199         int ret;
5200         bool dither;
5201
5202         for_each_encoder_on_crtc(dev, crtc, encoder) {
5203                 switch (encoder->type) {
5204                 case INTEL_OUTPUT_LVDS:
5205                         is_lvds = true;
5206                         break;
5207                 case INTEL_OUTPUT_DISPLAYPORT:
5208                         is_dp = true;
5209                         break;
5210                 case INTEL_OUTPUT_EDP:
5211                         is_dp = true;
5212                         if (!intel_encoder_is_pch_edp(&encoder->base))
5213                                 is_cpu_edp = true;
5214                         break;
5215                 }
5216
5217                 num_connectors++;
5218         }
5219
5220         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5221              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5222
5223         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5224                                      &has_reduced_clock, &reduced_clock);
5225         if (!ok) {
5226                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5227                 return -EINVAL;
5228         }
5229
5230         /* Ensure that the cursor is valid for the new mode before changing... */
5231         intel_crtc_update_cursor(crtc, true);
5232
5233         /* determine panel color depth */
5234         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5235                                               adjusted_mode);
5236         if (is_lvds && dev_priv->lvds_dither)
5237                 dither = true;
5238
5239         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5240         if (has_reduced_clock)
5241                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5242                         reduced_clock.m2;
5243
5244         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5245
5246         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5247         drm_mode_debug_printmodeline(mode);
5248
5249         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5250         if (!is_cpu_edp) {
5251                 struct intel_pch_pll *pll;
5252
5253                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5254                 if (pll == NULL) {
5255                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5256                                          pipe);
5257                         return -EINVAL;
5258                 }
5259         } else
5260                 intel_put_pch_pll(intel_crtc);
5261
5262         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5263          * This is an exception to the general rule that mode_set doesn't turn
5264          * things on.
5265          */
5266         if (is_lvds) {
5267                 temp = I915_READ(PCH_LVDS);
5268                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5269                 if (HAS_PCH_CPT(dev)) {
5270                         temp &= ~PORT_TRANS_SEL_MASK;
5271                         temp |= PORT_TRANS_SEL_CPT(pipe);
5272                 } else {
5273                         if (pipe == 1)
5274                                 temp |= LVDS_PIPEB_SELECT;
5275                         else
5276                                 temp &= ~LVDS_PIPEB_SELECT;
5277                 }
5278
5279                 /* set the corresponsding LVDS_BORDER bit */
5280                 temp |= dev_priv->lvds_border_bits;
5281                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5282                  * set the DPLLs for dual-channel mode or not.
5283                  */
5284                 if (clock.p2 == 7)
5285                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5286                 else
5287                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5288
5289                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5290                  * appropriately here, but we need to look more thoroughly into how
5291                  * panels behave in the two modes.
5292                  */
5293                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5294                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5295                         temp |= LVDS_HSYNC_POLARITY;
5296                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5297                         temp |= LVDS_VSYNC_POLARITY;
5298                 I915_WRITE(PCH_LVDS, temp);
5299         }
5300
5301         if (is_dp && !is_cpu_edp) {
5302                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5303         } else {
5304                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5305                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5306                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5307                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5308                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5309         }
5310
5311         if (intel_crtc->pch_pll) {
5312                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5313
5314                 /* Wait for the clocks to stabilize. */
5315                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5316                 udelay(150);
5317
5318                 /* The pixel multiplier can only be updated once the
5319                  * DPLL is enabled and the clocks are stable.
5320                  *
5321                  * So write it again.
5322                  */
5323                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5324         }
5325
5326         intel_crtc->lowfreq_avail = false;
5327         if (intel_crtc->pch_pll) {
5328                 if (is_lvds && has_reduced_clock && i915_powersave) {
5329                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5330                         intel_crtc->lowfreq_avail = true;
5331                 } else {
5332                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5333                 }
5334         }
5335
5336         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5337
5338         ironlake_set_m_n(crtc, mode, adjusted_mode);
5339
5340         if (is_cpu_edp)
5341                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5342
5343         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5344
5345         intel_wait_for_vblank(dev, pipe);
5346
5347         /* Set up the display plane register */
5348         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5349         POSTING_READ(DSPCNTR(plane));
5350
5351         ret = intel_pipe_set_base(crtc, x, y, fb);
5352
5353         intel_update_watermarks(dev);
5354
5355         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5356
5357         return ret;
5358 }
5359
5360 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5361                                  struct drm_display_mode *mode,
5362                                  struct drm_display_mode *adjusted_mode,
5363                                  int x, int y,
5364                                  struct drm_framebuffer *fb)
5365 {
5366         struct drm_device *dev = crtc->dev;
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5369         int pipe = intel_crtc->pipe;
5370         int plane = intel_crtc->plane;
5371         int num_connectors = 0;
5372         intel_clock_t clock, reduced_clock;
5373         u32 dpll = 0, fp = 0, fp2 = 0;
5374         bool ok, has_reduced_clock = false;
5375         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5376         struct intel_encoder *encoder;
5377         u32 temp;
5378         int ret;
5379         bool dither;
5380
5381         for_each_encoder_on_crtc(dev, crtc, encoder) {
5382                 switch (encoder->type) {
5383                 case INTEL_OUTPUT_LVDS:
5384                         is_lvds = true;
5385                         break;
5386                 case INTEL_OUTPUT_DISPLAYPORT:
5387                         is_dp = true;
5388                         break;
5389                 case INTEL_OUTPUT_EDP:
5390                         is_dp = true;
5391                         if (!intel_encoder_is_pch_edp(&encoder->base))
5392                                 is_cpu_edp = true;
5393                         break;
5394                 }
5395
5396                 num_connectors++;
5397         }
5398
5399         if (is_cpu_edp)
5400                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5401         else
5402                 intel_crtc->cpu_transcoder = pipe;
5403
5404         /* We are not sure yet this won't happen. */
5405         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5406              INTEL_PCH_TYPE(dev));
5407
5408         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5409              num_connectors, pipe_name(pipe));
5410
5411         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5412                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5413
5414         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5415
5416         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5417                 return -EINVAL;
5418
5419         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5420                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5421                                              &has_reduced_clock,
5422                                              &reduced_clock);
5423                 if (!ok) {
5424                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5425                         return -EINVAL;
5426                 }
5427         }
5428
5429         /* Ensure that the cursor is valid for the new mode before changing... */
5430         intel_crtc_update_cursor(crtc, true);
5431
5432         /* determine panel color depth */
5433         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5434                                               adjusted_mode);
5435         if (is_lvds && dev_priv->lvds_dither)
5436                 dither = true;
5437
5438         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5439         drm_mode_debug_printmodeline(mode);
5440
5441         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5442                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5443                 if (has_reduced_clock)
5444                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5445                               reduced_clock.m2;
5446
5447                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5448                                              fp);
5449
5450                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5451                  * own on pre-Haswell/LPT generation */
5452                 if (!is_cpu_edp) {
5453                         struct intel_pch_pll *pll;
5454
5455                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5456                         if (pll == NULL) {
5457                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5458                                                  pipe);
5459                                 return -EINVAL;
5460                         }
5461                 } else
5462                         intel_put_pch_pll(intel_crtc);
5463
5464                 /* The LVDS pin pair needs to be on before the DPLLs are
5465                  * enabled.  This is an exception to the general rule that
5466                  * mode_set doesn't turn things on.
5467                  */
5468                 if (is_lvds) {
5469                         temp = I915_READ(PCH_LVDS);
5470                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5471                         if (HAS_PCH_CPT(dev)) {
5472                                 temp &= ~PORT_TRANS_SEL_MASK;
5473                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5474                         } else {
5475                                 if (pipe == 1)
5476                                         temp |= LVDS_PIPEB_SELECT;
5477                                 else
5478                                         temp &= ~LVDS_PIPEB_SELECT;
5479                         }
5480
5481                         /* set the corresponsding LVDS_BORDER bit */
5482                         temp |= dev_priv->lvds_border_bits;
5483                         /* Set the B0-B3 data pairs corresponding to whether
5484                          * we're going to set the DPLLs for dual-channel mode or
5485                          * not.
5486                          */
5487                         if (clock.p2 == 7)
5488                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5489                         else
5490                                 temp &= ~(LVDS_B0B3_POWER_UP |
5491                                           LVDS_CLKB_POWER_UP);
5492
5493                         /* It would be nice to set 24 vs 18-bit mode
5494                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5495                          * look more thoroughly into how panels behave in the
5496                          * two modes.
5497                          */
5498                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5499                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5500                                 temp |= LVDS_HSYNC_POLARITY;
5501                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5502                                 temp |= LVDS_VSYNC_POLARITY;
5503                         I915_WRITE(PCH_LVDS, temp);
5504                 }
5505         }
5506
5507         if (is_dp && !is_cpu_edp) {
5508                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5509         } else {
5510                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5511                         /* For non-DP output, clear any trans DP clock recovery
5512                          * setting.*/
5513                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5514                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5515                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5516                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5517                 }
5518         }
5519
5520         intel_crtc->lowfreq_avail = false;
5521         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5522                 if (intel_crtc->pch_pll) {
5523                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5524
5525                         /* Wait for the clocks to stabilize. */
5526                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5527                         udelay(150);
5528
5529                         /* The pixel multiplier can only be updated once the
5530                          * DPLL is enabled and the clocks are stable.
5531                          *
5532                          * So write it again.
5533                          */
5534                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5535                 }
5536
5537                 if (intel_crtc->pch_pll) {
5538                         if (is_lvds && has_reduced_clock && i915_powersave) {
5539                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5540                                 intel_crtc->lowfreq_avail = true;
5541                         } else {
5542                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5543                         }
5544                 }
5545         }
5546
5547         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5548
5549         if (!is_dp || is_cpu_edp)
5550                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5551
5552         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5553                 if (is_cpu_edp)
5554                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5555
5556         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5557
5558         /* Set up the display plane register */
5559         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5560         POSTING_READ(DSPCNTR(plane));
5561
5562         ret = intel_pipe_set_base(crtc, x, y, fb);
5563
5564         intel_update_watermarks(dev);
5565
5566         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5567
5568         return ret;
5569 }
5570
5571 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5572                                struct drm_display_mode *mode,
5573                                struct drm_display_mode *adjusted_mode,
5574                                int x, int y,
5575                                struct drm_framebuffer *fb)
5576 {
5577         struct drm_device *dev = crtc->dev;
5578         struct drm_i915_private *dev_priv = dev->dev_private;
5579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5580         int pipe = intel_crtc->pipe;
5581         int ret;
5582
5583         drm_vblank_pre_modeset(dev, pipe);
5584
5585         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5586                                               x, y, fb);
5587         drm_vblank_post_modeset(dev, pipe);
5588
5589         return ret;
5590 }
5591
5592 static bool intel_eld_uptodate(struct drm_connector *connector,
5593                                int reg_eldv, uint32_t bits_eldv,
5594                                int reg_elda, uint32_t bits_elda,
5595                                int reg_edid)
5596 {
5597         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5598         uint8_t *eld = connector->eld;
5599         uint32_t i;
5600
5601         i = I915_READ(reg_eldv);
5602         i &= bits_eldv;
5603
5604         if (!eld[0])
5605                 return !i;
5606
5607         if (!i)
5608                 return false;
5609
5610         i = I915_READ(reg_elda);
5611         i &= ~bits_elda;
5612         I915_WRITE(reg_elda, i);
5613
5614         for (i = 0; i < eld[2]; i++)
5615                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5616                         return false;
5617
5618         return true;
5619 }
5620
5621 static void g4x_write_eld(struct drm_connector *connector,
5622                           struct drm_crtc *crtc)
5623 {
5624         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5625         uint8_t *eld = connector->eld;
5626         uint32_t eldv;
5627         uint32_t len;
5628         uint32_t i;
5629
5630         i = I915_READ(G4X_AUD_VID_DID);
5631
5632         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5633                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5634         else
5635                 eldv = G4X_ELDV_DEVCTG;
5636
5637         if (intel_eld_uptodate(connector,
5638                                G4X_AUD_CNTL_ST, eldv,
5639                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5640                                G4X_HDMIW_HDMIEDID))
5641                 return;
5642
5643         i = I915_READ(G4X_AUD_CNTL_ST);
5644         i &= ~(eldv | G4X_ELD_ADDR);
5645         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5646         I915_WRITE(G4X_AUD_CNTL_ST, i);
5647
5648         if (!eld[0])
5649                 return;
5650
5651         len = min_t(uint8_t, eld[2], len);
5652         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5653         for (i = 0; i < len; i++)
5654                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5655
5656         i = I915_READ(G4X_AUD_CNTL_ST);
5657         i |= eldv;
5658         I915_WRITE(G4X_AUD_CNTL_ST, i);
5659 }
5660
5661 static void haswell_write_eld(struct drm_connector *connector,
5662                                      struct drm_crtc *crtc)
5663 {
5664         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5665         uint8_t *eld = connector->eld;
5666         struct drm_device *dev = crtc->dev;
5667         uint32_t eldv;
5668         uint32_t i;
5669         int len;
5670         int pipe = to_intel_crtc(crtc)->pipe;
5671         int tmp;
5672
5673         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5674         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5675         int aud_config = HSW_AUD_CFG(pipe);
5676         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5677
5678
5679         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5680
5681         /* Audio output enable */
5682         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5683         tmp = I915_READ(aud_cntrl_st2);
5684         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5685         I915_WRITE(aud_cntrl_st2, tmp);
5686
5687         /* Wait for 1 vertical blank */
5688         intel_wait_for_vblank(dev, pipe);
5689
5690         /* Set ELD valid state */
5691         tmp = I915_READ(aud_cntrl_st2);
5692         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5693         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5694         I915_WRITE(aud_cntrl_st2, tmp);
5695         tmp = I915_READ(aud_cntrl_st2);
5696         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5697
5698         /* Enable HDMI mode */
5699         tmp = I915_READ(aud_config);
5700         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5701         /* clear N_programing_enable and N_value_index */
5702         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5703         I915_WRITE(aud_config, tmp);
5704
5705         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5706
5707         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5708
5709         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5710                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5711                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5712                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5713         } else
5714                 I915_WRITE(aud_config, 0);
5715
5716         if (intel_eld_uptodate(connector,
5717                                aud_cntrl_st2, eldv,
5718                                aud_cntl_st, IBX_ELD_ADDRESS,
5719                                hdmiw_hdmiedid))
5720                 return;
5721
5722         i = I915_READ(aud_cntrl_st2);
5723         i &= ~eldv;
5724         I915_WRITE(aud_cntrl_st2, i);
5725
5726         if (!eld[0])
5727                 return;
5728
5729         i = I915_READ(aud_cntl_st);
5730         i &= ~IBX_ELD_ADDRESS;
5731         I915_WRITE(aud_cntl_st, i);
5732         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5733         DRM_DEBUG_DRIVER("port num:%d\n", i);
5734
5735         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5736         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5737         for (i = 0; i < len; i++)
5738                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5739
5740         i = I915_READ(aud_cntrl_st2);
5741         i |= eldv;
5742         I915_WRITE(aud_cntrl_st2, i);
5743
5744 }
5745
5746 static void ironlake_write_eld(struct drm_connector *connector,
5747                                      struct drm_crtc *crtc)
5748 {
5749         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5750         uint8_t *eld = connector->eld;
5751         uint32_t eldv;
5752         uint32_t i;
5753         int len;
5754         int hdmiw_hdmiedid;
5755         int aud_config;
5756         int aud_cntl_st;
5757         int aud_cntrl_st2;
5758         int pipe = to_intel_crtc(crtc)->pipe;
5759
5760         if (HAS_PCH_IBX(connector->dev)) {
5761                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5762                 aud_config = IBX_AUD_CFG(pipe);
5763                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5764                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5765         } else {
5766                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5767                 aud_config = CPT_AUD_CFG(pipe);
5768                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5769                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5770         }
5771
5772         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5773
5774         i = I915_READ(aud_cntl_st);
5775         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5776         if (!i) {
5777                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5778                 /* operate blindly on all ports */
5779                 eldv = IBX_ELD_VALIDB;
5780                 eldv |= IBX_ELD_VALIDB << 4;
5781                 eldv |= IBX_ELD_VALIDB << 8;
5782         } else {
5783                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5784                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5785         }
5786
5787         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5788                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5789                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5790                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5791         } else
5792                 I915_WRITE(aud_config, 0);
5793
5794         if (intel_eld_uptodate(connector,
5795                                aud_cntrl_st2, eldv,
5796                                aud_cntl_st, IBX_ELD_ADDRESS,
5797                                hdmiw_hdmiedid))
5798                 return;
5799
5800         i = I915_READ(aud_cntrl_st2);
5801         i &= ~eldv;
5802         I915_WRITE(aud_cntrl_st2, i);
5803
5804         if (!eld[0])
5805                 return;
5806
5807         i = I915_READ(aud_cntl_st);
5808         i &= ~IBX_ELD_ADDRESS;
5809         I915_WRITE(aud_cntl_st, i);
5810
5811         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5812         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5813         for (i = 0; i < len; i++)
5814                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5815
5816         i = I915_READ(aud_cntrl_st2);
5817         i |= eldv;
5818         I915_WRITE(aud_cntrl_st2, i);
5819 }
5820
5821 void intel_write_eld(struct drm_encoder *encoder,
5822                      struct drm_display_mode *mode)
5823 {
5824         struct drm_crtc *crtc = encoder->crtc;
5825         struct drm_connector *connector;
5826         struct drm_device *dev = encoder->dev;
5827         struct drm_i915_private *dev_priv = dev->dev_private;
5828
5829         connector = drm_select_eld(encoder, mode);
5830         if (!connector)
5831                 return;
5832
5833         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5834                          connector->base.id,
5835                          drm_get_connector_name(connector),
5836                          connector->encoder->base.id,
5837                          drm_get_encoder_name(connector->encoder));
5838
5839         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5840
5841         if (dev_priv->display.write_eld)
5842                 dev_priv->display.write_eld(connector, crtc);
5843 }
5844
5845 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5846 void intel_crtc_load_lut(struct drm_crtc *crtc)
5847 {
5848         struct drm_device *dev = crtc->dev;
5849         struct drm_i915_private *dev_priv = dev->dev_private;
5850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5851         int palreg = PALETTE(intel_crtc->pipe);
5852         int i;
5853
5854         /* The clocks have to be on to load the palette. */
5855         if (!crtc->enabled || !intel_crtc->active)
5856                 return;
5857
5858         /* use legacy palette for Ironlake */
5859         if (HAS_PCH_SPLIT(dev))
5860                 palreg = LGC_PALETTE(intel_crtc->pipe);
5861
5862         for (i = 0; i < 256; i++) {
5863                 I915_WRITE(palreg + 4 * i,
5864                            (intel_crtc->lut_r[i] << 16) |
5865                            (intel_crtc->lut_g[i] << 8) |
5866                            intel_crtc->lut_b[i]);
5867         }
5868 }
5869
5870 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5871 {
5872         struct drm_device *dev = crtc->dev;
5873         struct drm_i915_private *dev_priv = dev->dev_private;
5874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5875         bool visible = base != 0;
5876         u32 cntl;
5877
5878         if (intel_crtc->cursor_visible == visible)
5879                 return;
5880
5881         cntl = I915_READ(_CURACNTR);
5882         if (visible) {
5883                 /* On these chipsets we can only modify the base whilst
5884                  * the cursor is disabled.
5885                  */
5886                 I915_WRITE(_CURABASE, base);
5887
5888                 cntl &= ~(CURSOR_FORMAT_MASK);
5889                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5890                 cntl |= CURSOR_ENABLE |
5891                         CURSOR_GAMMA_ENABLE |
5892                         CURSOR_FORMAT_ARGB;
5893         } else
5894                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5895         I915_WRITE(_CURACNTR, cntl);
5896
5897         intel_crtc->cursor_visible = visible;
5898 }
5899
5900 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5901 {
5902         struct drm_device *dev = crtc->dev;
5903         struct drm_i915_private *dev_priv = dev->dev_private;
5904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5905         int pipe = intel_crtc->pipe;
5906         bool visible = base != 0;
5907
5908         if (intel_crtc->cursor_visible != visible) {
5909                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5910                 if (base) {
5911                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5912                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5913                         cntl |= pipe << 28; /* Connect to correct pipe */
5914                 } else {
5915                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5916                         cntl |= CURSOR_MODE_DISABLE;
5917                 }
5918                 I915_WRITE(CURCNTR(pipe), cntl);
5919
5920                 intel_crtc->cursor_visible = visible;
5921         }
5922         /* and commit changes on next vblank */
5923         I915_WRITE(CURBASE(pipe), base);
5924 }
5925
5926 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5927 {
5928         struct drm_device *dev = crtc->dev;
5929         struct drm_i915_private *dev_priv = dev->dev_private;
5930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5931         int pipe = intel_crtc->pipe;
5932         bool visible = base != 0;
5933
5934         if (intel_crtc->cursor_visible != visible) {
5935                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5936                 if (base) {
5937                         cntl &= ~CURSOR_MODE;
5938                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5939                 } else {
5940                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5941                         cntl |= CURSOR_MODE_DISABLE;
5942                 }
5943                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5944
5945                 intel_crtc->cursor_visible = visible;
5946         }
5947         /* and commit changes on next vblank */
5948         I915_WRITE(CURBASE_IVB(pipe), base);
5949 }
5950
5951 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5952 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5953                                      bool on)
5954 {
5955         struct drm_device *dev = crtc->dev;
5956         struct drm_i915_private *dev_priv = dev->dev_private;
5957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5958         int pipe = intel_crtc->pipe;
5959         int x = intel_crtc->cursor_x;
5960         int y = intel_crtc->cursor_y;
5961         u32 base, pos;
5962         bool visible;
5963
5964         pos = 0;
5965
5966         if (on && crtc->enabled && crtc->fb) {
5967                 base = intel_crtc->cursor_addr;
5968                 if (x > (int) crtc->fb->width)
5969                         base = 0;
5970
5971                 if (y > (int) crtc->fb->height)
5972                         base = 0;
5973         } else
5974                 base = 0;
5975
5976         if (x < 0) {
5977                 if (x + intel_crtc->cursor_width < 0)
5978                         base = 0;
5979
5980                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5981                 x = -x;
5982         }
5983         pos |= x << CURSOR_X_SHIFT;
5984
5985         if (y < 0) {
5986                 if (y + intel_crtc->cursor_height < 0)
5987                         base = 0;
5988
5989                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5990                 y = -y;
5991         }
5992         pos |= y << CURSOR_Y_SHIFT;
5993
5994         visible = base != 0;
5995         if (!visible && !intel_crtc->cursor_visible)
5996                 return;
5997
5998         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5999                 I915_WRITE(CURPOS_IVB(pipe), pos);
6000                 ivb_update_cursor(crtc, base);
6001         } else {
6002                 I915_WRITE(CURPOS(pipe), pos);
6003                 if (IS_845G(dev) || IS_I865G(dev))
6004                         i845_update_cursor(crtc, base);
6005                 else
6006                         i9xx_update_cursor(crtc, base);
6007         }
6008 }
6009
6010 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6011                                  struct drm_file *file,
6012                                  uint32_t handle,
6013                                  uint32_t width, uint32_t height)
6014 {
6015         struct drm_device *dev = crtc->dev;
6016         struct drm_i915_private *dev_priv = dev->dev_private;
6017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6018         struct drm_i915_gem_object *obj;
6019         uint32_t addr;
6020         int ret;
6021
6022         /* if we want to turn off the cursor ignore width and height */
6023         if (!handle) {
6024                 DRM_DEBUG_KMS("cursor off\n");
6025                 addr = 0;
6026                 obj = NULL;
6027                 mutex_lock(&dev->struct_mutex);
6028                 goto finish;
6029         }
6030
6031         /* Currently we only support 64x64 cursors */
6032         if (width != 64 || height != 64) {
6033                 DRM_ERROR("we currently only support 64x64 cursors\n");
6034                 return -EINVAL;
6035         }
6036
6037         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6038         if (&obj->base == NULL)
6039                 return -ENOENT;
6040
6041         if (obj->base.size < width * height * 4) {
6042                 DRM_ERROR("buffer is to small\n");
6043                 ret = -ENOMEM;
6044                 goto fail;
6045         }
6046
6047         /* we only need to pin inside GTT if cursor is non-phy */
6048         mutex_lock(&dev->struct_mutex);
6049         if (!dev_priv->info->cursor_needs_physical) {
6050                 if (obj->tiling_mode) {
6051                         DRM_ERROR("cursor cannot be tiled\n");
6052                         ret = -EINVAL;
6053                         goto fail_locked;
6054                 }
6055
6056                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6057                 if (ret) {
6058                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6059                         goto fail_locked;
6060                 }
6061
6062                 ret = i915_gem_object_put_fence(obj);
6063                 if (ret) {
6064                         DRM_ERROR("failed to release fence for cursor");
6065                         goto fail_unpin;
6066                 }
6067
6068                 addr = obj->gtt_offset;
6069         } else {
6070                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6071                 ret = i915_gem_attach_phys_object(dev, obj,
6072                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6073                                                   align);
6074                 if (ret) {
6075                         DRM_ERROR("failed to attach phys object\n");
6076                         goto fail_locked;
6077                 }
6078                 addr = obj->phys_obj->handle->busaddr;
6079         }
6080
6081         if (IS_GEN2(dev))
6082                 I915_WRITE(CURSIZE, (height << 12) | width);
6083
6084  finish:
6085         if (intel_crtc->cursor_bo) {
6086                 if (dev_priv->info->cursor_needs_physical) {
6087                         if (intel_crtc->cursor_bo != obj)
6088                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6089                 } else
6090                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6091                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6092         }
6093
6094         mutex_unlock(&dev->struct_mutex);
6095
6096         intel_crtc->cursor_addr = addr;
6097         intel_crtc->cursor_bo = obj;
6098         intel_crtc->cursor_width = width;
6099         intel_crtc->cursor_height = height;
6100
6101         intel_crtc_update_cursor(crtc, true);
6102
6103         return 0;
6104 fail_unpin:
6105         i915_gem_object_unpin(obj);
6106 fail_locked:
6107         mutex_unlock(&dev->struct_mutex);
6108 fail:
6109         drm_gem_object_unreference_unlocked(&obj->base);
6110         return ret;
6111 }
6112
6113 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6114 {
6115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116
6117         intel_crtc->cursor_x = x;
6118         intel_crtc->cursor_y = y;
6119
6120         intel_crtc_update_cursor(crtc, true);
6121
6122         return 0;
6123 }
6124
6125 /** Sets the color ramps on behalf of RandR */
6126 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6127                                  u16 blue, int regno)
6128 {
6129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6130
6131         intel_crtc->lut_r[regno] = red >> 8;
6132         intel_crtc->lut_g[regno] = green >> 8;
6133         intel_crtc->lut_b[regno] = blue >> 8;
6134 }
6135
6136 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6137                              u16 *blue, int regno)
6138 {
6139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140
6141         *red = intel_crtc->lut_r[regno] << 8;
6142         *green = intel_crtc->lut_g[regno] << 8;
6143         *blue = intel_crtc->lut_b[regno] << 8;
6144 }
6145
6146 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6147                                  u16 *blue, uint32_t start, uint32_t size)
6148 {
6149         int end = (start + size > 256) ? 256 : start + size, i;
6150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6151
6152         for (i = start; i < end; i++) {
6153                 intel_crtc->lut_r[i] = red[i] >> 8;
6154                 intel_crtc->lut_g[i] = green[i] >> 8;
6155                 intel_crtc->lut_b[i] = blue[i] >> 8;
6156         }
6157
6158         intel_crtc_load_lut(crtc);
6159 }
6160
6161 /**
6162  * Get a pipe with a simple mode set on it for doing load-based monitor
6163  * detection.
6164  *
6165  * It will be up to the load-detect code to adjust the pipe as appropriate for
6166  * its requirements.  The pipe will be connected to no other encoders.
6167  *
6168  * Currently this code will only succeed if there is a pipe with no encoders
6169  * configured for it.  In the future, it could choose to temporarily disable
6170  * some outputs to free up a pipe for its use.
6171  *
6172  * \return crtc, or NULL if no pipes are available.
6173  */
6174
6175 /* VESA 640x480x72Hz mode to set on the pipe */
6176 static struct drm_display_mode load_detect_mode = {
6177         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6178                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6179 };
6180
6181 static struct drm_framebuffer *
6182 intel_framebuffer_create(struct drm_device *dev,
6183                          struct drm_mode_fb_cmd2 *mode_cmd,
6184                          struct drm_i915_gem_object *obj)
6185 {
6186         struct intel_framebuffer *intel_fb;
6187         int ret;
6188
6189         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6190         if (!intel_fb) {
6191                 drm_gem_object_unreference_unlocked(&obj->base);
6192                 return ERR_PTR(-ENOMEM);
6193         }
6194
6195         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6196         if (ret) {
6197                 drm_gem_object_unreference_unlocked(&obj->base);
6198                 kfree(intel_fb);
6199                 return ERR_PTR(ret);
6200         }
6201
6202         return &intel_fb->base;
6203 }
6204
6205 static u32
6206 intel_framebuffer_pitch_for_width(int width, int bpp)
6207 {
6208         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6209         return ALIGN(pitch, 64);
6210 }
6211
6212 static u32
6213 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6214 {
6215         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6216         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6217 }
6218
6219 static struct drm_framebuffer *
6220 intel_framebuffer_create_for_mode(struct drm_device *dev,
6221                                   struct drm_display_mode *mode,
6222                                   int depth, int bpp)
6223 {
6224         struct drm_i915_gem_object *obj;
6225         struct drm_mode_fb_cmd2 mode_cmd;
6226
6227         obj = i915_gem_alloc_object(dev,
6228                                     intel_framebuffer_size_for_mode(mode, bpp));
6229         if (obj == NULL)
6230                 return ERR_PTR(-ENOMEM);
6231
6232         mode_cmd.width = mode->hdisplay;
6233         mode_cmd.height = mode->vdisplay;
6234         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6235                                                                 bpp);
6236         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6237
6238         return intel_framebuffer_create(dev, &mode_cmd, obj);
6239 }
6240
6241 static struct drm_framebuffer *
6242 mode_fits_in_fbdev(struct drm_device *dev,
6243                    struct drm_display_mode *mode)
6244 {
6245         struct drm_i915_private *dev_priv = dev->dev_private;
6246         struct drm_i915_gem_object *obj;
6247         struct drm_framebuffer *fb;
6248
6249         if (dev_priv->fbdev == NULL)
6250                 return NULL;
6251
6252         obj = dev_priv->fbdev->ifb.obj;
6253         if (obj == NULL)
6254                 return NULL;
6255
6256         fb = &dev_priv->fbdev->ifb.base;
6257         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6258                                                                fb->bits_per_pixel))
6259                 return NULL;
6260
6261         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6262                 return NULL;
6263
6264         return fb;
6265 }
6266
6267 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6268                                 struct drm_display_mode *mode,
6269                                 struct intel_load_detect_pipe *old)
6270 {
6271         struct intel_crtc *intel_crtc;
6272         struct intel_encoder *intel_encoder =
6273                 intel_attached_encoder(connector);
6274         struct drm_crtc *possible_crtc;
6275         struct drm_encoder *encoder = &intel_encoder->base;
6276         struct drm_crtc *crtc = NULL;
6277         struct drm_device *dev = encoder->dev;
6278         struct drm_framebuffer *fb;
6279         int i = -1;
6280
6281         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6282                       connector->base.id, drm_get_connector_name(connector),
6283                       encoder->base.id, drm_get_encoder_name(encoder));
6284
6285         /*
6286          * Algorithm gets a little messy:
6287          *
6288          *   - if the connector already has an assigned crtc, use it (but make
6289          *     sure it's on first)
6290          *
6291          *   - try to find the first unused crtc that can drive this connector,
6292          *     and use that if we find one
6293          */
6294
6295         /* See if we already have a CRTC for this connector */
6296         if (encoder->crtc) {
6297                 crtc = encoder->crtc;
6298
6299                 old->dpms_mode = connector->dpms;
6300                 old->load_detect_temp = false;
6301
6302                 /* Make sure the crtc and connector are running */
6303                 if (connector->dpms != DRM_MODE_DPMS_ON)
6304                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6305
6306                 return true;
6307         }
6308
6309         /* Find an unused one (if possible) */
6310         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6311                 i++;
6312                 if (!(encoder->possible_crtcs & (1 << i)))
6313                         continue;
6314                 if (!possible_crtc->enabled) {
6315                         crtc = possible_crtc;
6316                         break;
6317                 }
6318         }
6319
6320         /*
6321          * If we didn't find an unused CRTC, don't use any.
6322          */
6323         if (!crtc) {
6324                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6325                 return false;
6326         }
6327
6328         intel_encoder->new_crtc = to_intel_crtc(crtc);
6329         to_intel_connector(connector)->new_encoder = intel_encoder;
6330
6331         intel_crtc = to_intel_crtc(crtc);
6332         old->dpms_mode = connector->dpms;
6333         old->load_detect_temp = true;
6334         old->release_fb = NULL;
6335
6336         if (!mode)
6337                 mode = &load_detect_mode;
6338
6339         /* We need a framebuffer large enough to accommodate all accesses
6340          * that the plane may generate whilst we perform load detection.
6341          * We can not rely on the fbcon either being present (we get called
6342          * during its initialisation to detect all boot displays, or it may
6343          * not even exist) or that it is large enough to satisfy the
6344          * requested mode.
6345          */
6346         fb = mode_fits_in_fbdev(dev, mode);
6347         if (fb == NULL) {
6348                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6349                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6350                 old->release_fb = fb;
6351         } else
6352                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6353         if (IS_ERR(fb)) {
6354                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6355                 goto fail;
6356         }
6357
6358         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6359                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6360                 if (old->release_fb)
6361                         old->release_fb->funcs->destroy(old->release_fb);
6362                 goto fail;
6363         }
6364
6365         /* let the connector get through one full cycle before testing */
6366         intel_wait_for_vblank(dev, intel_crtc->pipe);
6367
6368         return true;
6369 fail:
6370         connector->encoder = NULL;
6371         encoder->crtc = NULL;
6372         return false;
6373 }
6374
6375 void intel_release_load_detect_pipe(struct drm_connector *connector,
6376                                     struct intel_load_detect_pipe *old)
6377 {
6378         struct intel_encoder *intel_encoder =
6379                 intel_attached_encoder(connector);
6380         struct drm_encoder *encoder = &intel_encoder->base;
6381
6382         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6383                       connector->base.id, drm_get_connector_name(connector),
6384                       encoder->base.id, drm_get_encoder_name(encoder));
6385
6386         if (old->load_detect_temp) {
6387                 struct drm_crtc *crtc = encoder->crtc;
6388
6389                 to_intel_connector(connector)->new_encoder = NULL;
6390                 intel_encoder->new_crtc = NULL;
6391                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6392
6393                 if (old->release_fb)
6394                         old->release_fb->funcs->destroy(old->release_fb);
6395
6396                 return;
6397         }
6398
6399         /* Switch crtc and encoder back off if necessary */
6400         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6401                 connector->funcs->dpms(connector, old->dpms_mode);
6402 }
6403
6404 /* Returns the clock of the currently programmed mode of the given pipe. */
6405 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6406 {
6407         struct drm_i915_private *dev_priv = dev->dev_private;
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409         int pipe = intel_crtc->pipe;
6410         u32 dpll = I915_READ(DPLL(pipe));
6411         u32 fp;
6412         intel_clock_t clock;
6413
6414         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6415                 fp = I915_READ(FP0(pipe));
6416         else
6417                 fp = I915_READ(FP1(pipe));
6418
6419         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6420         if (IS_PINEVIEW(dev)) {
6421                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6422                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6423         } else {
6424                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6425                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6426         }
6427
6428         if (!IS_GEN2(dev)) {
6429                 if (IS_PINEVIEW(dev))
6430                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6431                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6432                 else
6433                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6434                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6435
6436                 switch (dpll & DPLL_MODE_MASK) {
6437                 case DPLLB_MODE_DAC_SERIAL:
6438                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6439                                 5 : 10;
6440                         break;
6441                 case DPLLB_MODE_LVDS:
6442                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6443                                 7 : 14;
6444                         break;
6445                 default:
6446                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6447                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6448                         return 0;
6449                 }
6450
6451                 /* XXX: Handle the 100Mhz refclk */
6452                 intel_clock(dev, 96000, &clock);
6453         } else {
6454                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6455
6456                 if (is_lvds) {
6457                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6458                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6459                         clock.p2 = 14;
6460
6461                         if ((dpll & PLL_REF_INPUT_MASK) ==
6462                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6463                                 /* XXX: might not be 66MHz */
6464                                 intel_clock(dev, 66000, &clock);
6465                         } else
6466                                 intel_clock(dev, 48000, &clock);
6467                 } else {
6468                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6469                                 clock.p1 = 2;
6470                         else {
6471                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6472                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6473                         }
6474                         if (dpll & PLL_P2_DIVIDE_BY_4)
6475                                 clock.p2 = 4;
6476                         else
6477                                 clock.p2 = 2;
6478
6479                         intel_clock(dev, 48000, &clock);
6480                 }
6481         }
6482
6483         /* XXX: It would be nice to validate the clocks, but we can't reuse
6484          * i830PllIsValid() because it relies on the xf86_config connector
6485          * configuration being accurate, which it isn't necessarily.
6486          */
6487
6488         return clock.dot;
6489 }
6490
6491 /** Returns the currently programmed mode of the given pipe. */
6492 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6493                                              struct drm_crtc *crtc)
6494 {
6495         struct drm_i915_private *dev_priv = dev->dev_private;
6496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6497         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6498         struct drm_display_mode *mode;
6499         int htot = I915_READ(HTOTAL(cpu_transcoder));
6500         int hsync = I915_READ(HSYNC(cpu_transcoder));
6501         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6502         int vsync = I915_READ(VSYNC(cpu_transcoder));
6503
6504         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6505         if (!mode)
6506                 return NULL;
6507
6508         mode->clock = intel_crtc_clock_get(dev, crtc);
6509         mode->hdisplay = (htot & 0xffff) + 1;
6510         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6511         mode->hsync_start = (hsync & 0xffff) + 1;
6512         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6513         mode->vdisplay = (vtot & 0xffff) + 1;
6514         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6515         mode->vsync_start = (vsync & 0xffff) + 1;
6516         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6517
6518         drm_mode_set_name(mode);
6519
6520         return mode;
6521 }
6522
6523 static void intel_increase_pllclock(struct drm_crtc *crtc)
6524 {
6525         struct drm_device *dev = crtc->dev;
6526         drm_i915_private_t *dev_priv = dev->dev_private;
6527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6528         int pipe = intel_crtc->pipe;
6529         int dpll_reg = DPLL(pipe);
6530         int dpll;
6531
6532         if (HAS_PCH_SPLIT(dev))
6533                 return;
6534
6535         if (!dev_priv->lvds_downclock_avail)
6536                 return;
6537
6538         dpll = I915_READ(dpll_reg);
6539         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6540                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6541
6542                 assert_panel_unlocked(dev_priv, pipe);
6543
6544                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6545                 I915_WRITE(dpll_reg, dpll);
6546                 intel_wait_for_vblank(dev, pipe);
6547
6548                 dpll = I915_READ(dpll_reg);
6549                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6550                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6551         }
6552 }
6553
6554 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6555 {
6556         struct drm_device *dev = crtc->dev;
6557         drm_i915_private_t *dev_priv = dev->dev_private;
6558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6559
6560         if (HAS_PCH_SPLIT(dev))
6561                 return;
6562
6563         if (!dev_priv->lvds_downclock_avail)
6564                 return;
6565
6566         /*
6567          * Since this is called by a timer, we should never get here in
6568          * the manual case.
6569          */
6570         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6571                 int pipe = intel_crtc->pipe;
6572                 int dpll_reg = DPLL(pipe);
6573                 int dpll;
6574
6575                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6576
6577                 assert_panel_unlocked(dev_priv, pipe);
6578
6579                 dpll = I915_READ(dpll_reg);
6580                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6581                 I915_WRITE(dpll_reg, dpll);
6582                 intel_wait_for_vblank(dev, pipe);
6583                 dpll = I915_READ(dpll_reg);
6584                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6585                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6586         }
6587
6588 }
6589
6590 void intel_mark_busy(struct drm_device *dev)
6591 {
6592         i915_update_gfx_val(dev->dev_private);
6593 }
6594
6595 void intel_mark_idle(struct drm_device *dev)
6596 {
6597 }
6598
6599 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6600 {
6601         struct drm_device *dev = obj->base.dev;
6602         struct drm_crtc *crtc;
6603
6604         if (!i915_powersave)
6605                 return;
6606
6607         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6608                 if (!crtc->fb)
6609                         continue;
6610
6611                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6612                         intel_increase_pllclock(crtc);
6613         }
6614 }
6615
6616 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6617 {
6618         struct drm_device *dev = obj->base.dev;
6619         struct drm_crtc *crtc;
6620
6621         if (!i915_powersave)
6622                 return;
6623
6624         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6625                 if (!crtc->fb)
6626                         continue;
6627
6628                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6629                         intel_decrease_pllclock(crtc);
6630         }
6631 }
6632
6633 static void intel_crtc_destroy(struct drm_crtc *crtc)
6634 {
6635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6636         struct drm_device *dev = crtc->dev;
6637         struct intel_unpin_work *work;
6638         unsigned long flags;
6639
6640         spin_lock_irqsave(&dev->event_lock, flags);
6641         work = intel_crtc->unpin_work;
6642         intel_crtc->unpin_work = NULL;
6643         spin_unlock_irqrestore(&dev->event_lock, flags);
6644
6645         if (work) {
6646                 cancel_work_sync(&work->work);
6647                 kfree(work);
6648         }
6649
6650         drm_crtc_cleanup(crtc);
6651
6652         kfree(intel_crtc);
6653 }
6654
6655 static void intel_unpin_work_fn(struct work_struct *__work)
6656 {
6657         struct intel_unpin_work *work =
6658                 container_of(__work, struct intel_unpin_work, work);
6659
6660         mutex_lock(&work->dev->struct_mutex);
6661         intel_unpin_fb_obj(work->old_fb_obj);
6662         drm_gem_object_unreference(&work->pending_flip_obj->base);
6663         drm_gem_object_unreference(&work->old_fb_obj->base);
6664
6665         intel_update_fbc(work->dev);
6666         mutex_unlock(&work->dev->struct_mutex);
6667         kfree(work);
6668 }
6669
6670 static void do_intel_finish_page_flip(struct drm_device *dev,
6671                                       struct drm_crtc *crtc)
6672 {
6673         drm_i915_private_t *dev_priv = dev->dev_private;
6674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6675         struct intel_unpin_work *work;
6676         struct drm_i915_gem_object *obj;
6677         struct drm_pending_vblank_event *e;
6678         struct timeval tvbl;
6679         unsigned long flags;
6680
6681         /* Ignore early vblank irqs */
6682         if (intel_crtc == NULL)
6683                 return;
6684
6685         spin_lock_irqsave(&dev->event_lock, flags);
6686         work = intel_crtc->unpin_work;
6687         if (work == NULL || !work->pending) {
6688                 spin_unlock_irqrestore(&dev->event_lock, flags);
6689                 return;
6690         }
6691
6692         intel_crtc->unpin_work = NULL;
6693
6694         if (work->event) {
6695                 e = work->event;
6696                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6697
6698                 e->event.tv_sec = tvbl.tv_sec;
6699                 e->event.tv_usec = tvbl.tv_usec;
6700
6701                 list_add_tail(&e->base.link,
6702                               &e->base.file_priv->event_list);
6703                 wake_up_interruptible(&e->base.file_priv->event_wait);
6704         }
6705
6706         drm_vblank_put(dev, intel_crtc->pipe);
6707
6708         spin_unlock_irqrestore(&dev->event_lock, flags);
6709
6710         obj = work->old_fb_obj;
6711
6712         atomic_clear_mask(1 << intel_crtc->plane,
6713                           &obj->pending_flip.counter);
6714
6715         wake_up(&dev_priv->pending_flip_queue);
6716         schedule_work(&work->work);
6717
6718         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6719 }
6720
6721 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6722 {
6723         drm_i915_private_t *dev_priv = dev->dev_private;
6724         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6725
6726         do_intel_finish_page_flip(dev, crtc);
6727 }
6728
6729 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6730 {
6731         drm_i915_private_t *dev_priv = dev->dev_private;
6732         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6733
6734         do_intel_finish_page_flip(dev, crtc);
6735 }
6736
6737 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6738 {
6739         drm_i915_private_t *dev_priv = dev->dev_private;
6740         struct intel_crtc *intel_crtc =
6741                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6742         unsigned long flags;
6743
6744         spin_lock_irqsave(&dev->event_lock, flags);
6745         if (intel_crtc->unpin_work) {
6746                 if ((++intel_crtc->unpin_work->pending) > 1)
6747                         DRM_ERROR("Prepared flip multiple times\n");
6748         } else {
6749                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6750         }
6751         spin_unlock_irqrestore(&dev->event_lock, flags);
6752 }
6753
6754 static int intel_gen2_queue_flip(struct drm_device *dev,
6755                                  struct drm_crtc *crtc,
6756                                  struct drm_framebuffer *fb,
6757                                  struct drm_i915_gem_object *obj)
6758 {
6759         struct drm_i915_private *dev_priv = dev->dev_private;
6760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6761         u32 flip_mask;
6762         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6763         int ret;
6764
6765         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6766         if (ret)
6767                 goto err;
6768
6769         ret = intel_ring_begin(ring, 6);
6770         if (ret)
6771                 goto err_unpin;
6772
6773         /* Can't queue multiple flips, so wait for the previous
6774          * one to finish before executing the next.
6775          */
6776         if (intel_crtc->plane)
6777                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6778         else
6779                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6780         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6781         intel_ring_emit(ring, MI_NOOP);
6782         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6783                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6784         intel_ring_emit(ring, fb->pitches[0]);
6785         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6786         intel_ring_emit(ring, 0); /* aux display base address, unused */
6787         intel_ring_advance(ring);
6788         return 0;
6789
6790 err_unpin:
6791         intel_unpin_fb_obj(obj);
6792 err:
6793         return ret;
6794 }
6795
6796 static int intel_gen3_queue_flip(struct drm_device *dev,
6797                                  struct drm_crtc *crtc,
6798                                  struct drm_framebuffer *fb,
6799                                  struct drm_i915_gem_object *obj)
6800 {
6801         struct drm_i915_private *dev_priv = dev->dev_private;
6802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6803         u32 flip_mask;
6804         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6805         int ret;
6806
6807         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6808         if (ret)
6809                 goto err;
6810
6811         ret = intel_ring_begin(ring, 6);
6812         if (ret)
6813                 goto err_unpin;
6814
6815         if (intel_crtc->plane)
6816                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6817         else
6818                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6819         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6820         intel_ring_emit(ring, MI_NOOP);
6821         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6822                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6823         intel_ring_emit(ring, fb->pitches[0]);
6824         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6825         intel_ring_emit(ring, MI_NOOP);
6826
6827         intel_ring_advance(ring);
6828         return 0;
6829
6830 err_unpin:
6831         intel_unpin_fb_obj(obj);
6832 err:
6833         return ret;
6834 }
6835
6836 static int intel_gen4_queue_flip(struct drm_device *dev,
6837                                  struct drm_crtc *crtc,
6838                                  struct drm_framebuffer *fb,
6839                                  struct drm_i915_gem_object *obj)
6840 {
6841         struct drm_i915_private *dev_priv = dev->dev_private;
6842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6843         uint32_t pf, pipesrc;
6844         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6845         int ret;
6846
6847         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6848         if (ret)
6849                 goto err;
6850
6851         ret = intel_ring_begin(ring, 4);
6852         if (ret)
6853                 goto err_unpin;
6854
6855         /* i965+ uses the linear or tiled offsets from the
6856          * Display Registers (which do not change across a page-flip)
6857          * so we need only reprogram the base address.
6858          */
6859         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6860                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6861         intel_ring_emit(ring, fb->pitches[0]);
6862         intel_ring_emit(ring,
6863                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6864                         obj->tiling_mode);
6865
6866         /* XXX Enabling the panel-fitter across page-flip is so far
6867          * untested on non-native modes, so ignore it for now.
6868          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6869          */
6870         pf = 0;
6871         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6872         intel_ring_emit(ring, pf | pipesrc);
6873         intel_ring_advance(ring);
6874         return 0;
6875
6876 err_unpin:
6877         intel_unpin_fb_obj(obj);
6878 err:
6879         return ret;
6880 }
6881
6882 static int intel_gen6_queue_flip(struct drm_device *dev,
6883                                  struct drm_crtc *crtc,
6884                                  struct drm_framebuffer *fb,
6885                                  struct drm_i915_gem_object *obj)
6886 {
6887         struct drm_i915_private *dev_priv = dev->dev_private;
6888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6889         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6890         uint32_t pf, pipesrc;
6891         int ret;
6892
6893         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6894         if (ret)
6895                 goto err;
6896
6897         ret = intel_ring_begin(ring, 4);
6898         if (ret)
6899                 goto err_unpin;
6900
6901         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6902                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6903         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6904         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6905
6906         /* Contrary to the suggestions in the documentation,
6907          * "Enable Panel Fitter" does not seem to be required when page
6908          * flipping with a non-native mode, and worse causes a normal
6909          * modeset to fail.
6910          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6911          */
6912         pf = 0;
6913         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6914         intel_ring_emit(ring, pf | pipesrc);
6915         intel_ring_advance(ring);
6916         return 0;
6917
6918 err_unpin:
6919         intel_unpin_fb_obj(obj);
6920 err:
6921         return ret;
6922 }
6923
6924 /*
6925  * On gen7 we currently use the blit ring because (in early silicon at least)
6926  * the render ring doesn't give us interrpts for page flip completion, which
6927  * means clients will hang after the first flip is queued.  Fortunately the
6928  * blit ring generates interrupts properly, so use it instead.
6929  */
6930 static int intel_gen7_queue_flip(struct drm_device *dev,
6931                                  struct drm_crtc *crtc,
6932                                  struct drm_framebuffer *fb,
6933                                  struct drm_i915_gem_object *obj)
6934 {
6935         struct drm_i915_private *dev_priv = dev->dev_private;
6936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6938         uint32_t plane_bit = 0;
6939         int ret;
6940
6941         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6942         if (ret)
6943                 goto err;
6944
6945         switch(intel_crtc->plane) {
6946         case PLANE_A:
6947                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6948                 break;
6949         case PLANE_B:
6950                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6951                 break;
6952         case PLANE_C:
6953                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6954                 break;
6955         default:
6956                 WARN_ONCE(1, "unknown plane in flip command\n");
6957                 ret = -ENODEV;
6958                 goto err_unpin;
6959         }
6960
6961         ret = intel_ring_begin(ring, 4);
6962         if (ret)
6963                 goto err_unpin;
6964
6965         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6966         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6967         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6968         intel_ring_emit(ring, (MI_NOOP));
6969         intel_ring_advance(ring);
6970         return 0;
6971
6972 err_unpin:
6973         intel_unpin_fb_obj(obj);
6974 err:
6975         return ret;
6976 }
6977
6978 static int intel_default_queue_flip(struct drm_device *dev,
6979                                     struct drm_crtc *crtc,
6980                                     struct drm_framebuffer *fb,
6981                                     struct drm_i915_gem_object *obj)
6982 {
6983         return -ENODEV;
6984 }
6985
6986 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6987                                 struct drm_framebuffer *fb,
6988                                 struct drm_pending_vblank_event *event)
6989 {
6990         struct drm_device *dev = crtc->dev;
6991         struct drm_i915_private *dev_priv = dev->dev_private;
6992         struct intel_framebuffer *intel_fb;
6993         struct drm_i915_gem_object *obj;
6994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6995         struct intel_unpin_work *work;
6996         unsigned long flags;
6997         int ret;
6998
6999         /* Can't change pixel format via MI display flips. */
7000         if (fb->pixel_format != crtc->fb->pixel_format)
7001                 return -EINVAL;
7002
7003         /*
7004          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7005          * Note that pitch changes could also affect these register.
7006          */
7007         if (INTEL_INFO(dev)->gen > 3 &&
7008             (fb->offsets[0] != crtc->fb->offsets[0] ||
7009              fb->pitches[0] != crtc->fb->pitches[0]))
7010                 return -EINVAL;
7011
7012         work = kzalloc(sizeof *work, GFP_KERNEL);
7013         if (work == NULL)
7014                 return -ENOMEM;
7015
7016         work->event = event;
7017         work->dev = crtc->dev;
7018         intel_fb = to_intel_framebuffer(crtc->fb);
7019         work->old_fb_obj = intel_fb->obj;
7020         INIT_WORK(&work->work, intel_unpin_work_fn);
7021
7022         ret = drm_vblank_get(dev, intel_crtc->pipe);
7023         if (ret)
7024                 goto free_work;
7025
7026         /* We borrow the event spin lock for protecting unpin_work */
7027         spin_lock_irqsave(&dev->event_lock, flags);
7028         if (intel_crtc->unpin_work) {
7029                 spin_unlock_irqrestore(&dev->event_lock, flags);
7030                 kfree(work);
7031                 drm_vblank_put(dev, intel_crtc->pipe);
7032
7033                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7034                 return -EBUSY;
7035         }
7036         intel_crtc->unpin_work = work;
7037         spin_unlock_irqrestore(&dev->event_lock, flags);
7038
7039         intel_fb = to_intel_framebuffer(fb);
7040         obj = intel_fb->obj;
7041
7042         ret = i915_mutex_lock_interruptible(dev);
7043         if (ret)
7044                 goto cleanup;
7045
7046         /* Reference the objects for the scheduled work. */
7047         drm_gem_object_reference(&work->old_fb_obj->base);
7048         drm_gem_object_reference(&obj->base);
7049
7050         crtc->fb = fb;
7051
7052         work->pending_flip_obj = obj;
7053
7054         work->enable_stall_check = true;
7055
7056         /* Block clients from rendering to the new back buffer until
7057          * the flip occurs and the object is no longer visible.
7058          */
7059         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7060
7061         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7062         if (ret)
7063                 goto cleanup_pending;
7064
7065         intel_disable_fbc(dev);
7066         intel_mark_fb_busy(obj);
7067         mutex_unlock(&dev->struct_mutex);
7068
7069         trace_i915_flip_request(intel_crtc->plane, obj);
7070
7071         return 0;
7072
7073 cleanup_pending:
7074         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7075         drm_gem_object_unreference(&work->old_fb_obj->base);
7076         drm_gem_object_unreference(&obj->base);
7077         mutex_unlock(&dev->struct_mutex);
7078
7079 cleanup:
7080         spin_lock_irqsave(&dev->event_lock, flags);
7081         intel_crtc->unpin_work = NULL;
7082         spin_unlock_irqrestore(&dev->event_lock, flags);
7083
7084         drm_vblank_put(dev, intel_crtc->pipe);
7085 free_work:
7086         kfree(work);
7087
7088         return ret;
7089 }
7090
7091 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7092         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7093         .load_lut = intel_crtc_load_lut,
7094         .disable = intel_crtc_noop,
7095 };
7096
7097 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7098 {
7099         struct intel_encoder *other_encoder;
7100         struct drm_crtc *crtc = &encoder->new_crtc->base;
7101
7102         if (WARN_ON(!crtc))
7103                 return false;
7104
7105         list_for_each_entry(other_encoder,
7106                             &crtc->dev->mode_config.encoder_list,
7107                             base.head) {
7108
7109                 if (&other_encoder->new_crtc->base != crtc ||
7110                     encoder == other_encoder)
7111                         continue;
7112                 else
7113                         return true;
7114         }
7115
7116         return false;
7117 }
7118
7119 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7120                                   struct drm_crtc *crtc)
7121 {
7122         struct drm_device *dev;
7123         struct drm_crtc *tmp;
7124         int crtc_mask = 1;
7125
7126         WARN(!crtc, "checking null crtc?\n");
7127
7128         dev = crtc->dev;
7129
7130         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7131                 if (tmp == crtc)
7132                         break;
7133                 crtc_mask <<= 1;
7134         }
7135
7136         if (encoder->possible_crtcs & crtc_mask)
7137                 return true;
7138         return false;
7139 }
7140
7141 /**
7142  * intel_modeset_update_staged_output_state
7143  *
7144  * Updates the staged output configuration state, e.g. after we've read out the
7145  * current hw state.
7146  */
7147 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7148 {
7149         struct intel_encoder *encoder;
7150         struct intel_connector *connector;
7151
7152         list_for_each_entry(connector, &dev->mode_config.connector_list,
7153                             base.head) {
7154                 connector->new_encoder =
7155                         to_intel_encoder(connector->base.encoder);
7156         }
7157
7158         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7159                             base.head) {
7160                 encoder->new_crtc =
7161                         to_intel_crtc(encoder->base.crtc);
7162         }
7163 }
7164
7165 /**
7166  * intel_modeset_commit_output_state
7167  *
7168  * This function copies the stage display pipe configuration to the real one.
7169  */
7170 static void intel_modeset_commit_output_state(struct drm_device *dev)
7171 {
7172         struct intel_encoder *encoder;
7173         struct intel_connector *connector;
7174
7175         list_for_each_entry(connector, &dev->mode_config.connector_list,
7176                             base.head) {
7177                 connector->base.encoder = &connector->new_encoder->base;
7178         }
7179
7180         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7181                             base.head) {
7182                 encoder->base.crtc = &encoder->new_crtc->base;
7183         }
7184 }
7185
7186 static struct drm_display_mode *
7187 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7188                             struct drm_display_mode *mode)
7189 {
7190         struct drm_device *dev = crtc->dev;
7191         struct drm_display_mode *adjusted_mode;
7192         struct drm_encoder_helper_funcs *encoder_funcs;
7193         struct intel_encoder *encoder;
7194
7195         adjusted_mode = drm_mode_duplicate(dev, mode);
7196         if (!adjusted_mode)
7197                 return ERR_PTR(-ENOMEM);
7198
7199         /* Pass our mode to the connectors and the CRTC to give them a chance to
7200          * adjust it according to limitations or connector properties, and also
7201          * a chance to reject the mode entirely.
7202          */
7203         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7204                             base.head) {
7205
7206                 if (&encoder->new_crtc->base != crtc)
7207                         continue;
7208                 encoder_funcs = encoder->base.helper_private;
7209                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7210                                                 adjusted_mode))) {
7211                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7212                         goto fail;
7213                 }
7214         }
7215
7216         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7217                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7218                 goto fail;
7219         }
7220         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7221
7222         return adjusted_mode;
7223 fail:
7224         drm_mode_destroy(dev, adjusted_mode);
7225         return ERR_PTR(-EINVAL);
7226 }
7227
7228 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7229  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7230 static void
7231 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7232                              unsigned *prepare_pipes, unsigned *disable_pipes)
7233 {
7234         struct intel_crtc *intel_crtc;
7235         struct drm_device *dev = crtc->dev;
7236         struct intel_encoder *encoder;
7237         struct intel_connector *connector;
7238         struct drm_crtc *tmp_crtc;
7239
7240         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7241
7242         /* Check which crtcs have changed outputs connected to them, these need
7243          * to be part of the prepare_pipes mask. We don't (yet) support global
7244          * modeset across multiple crtcs, so modeset_pipes will only have one
7245          * bit set at most. */
7246         list_for_each_entry(connector, &dev->mode_config.connector_list,
7247                             base.head) {
7248                 if (connector->base.encoder == &connector->new_encoder->base)
7249                         continue;
7250
7251                 if (connector->base.encoder) {
7252                         tmp_crtc = connector->base.encoder->crtc;
7253
7254                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7255                 }
7256
7257                 if (connector->new_encoder)
7258                         *prepare_pipes |=
7259                                 1 << connector->new_encoder->new_crtc->pipe;
7260         }
7261
7262         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7263                             base.head) {
7264                 if (encoder->base.crtc == &encoder->new_crtc->base)
7265                         continue;
7266
7267                 if (encoder->base.crtc) {
7268                         tmp_crtc = encoder->base.crtc;
7269
7270                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7271                 }
7272
7273                 if (encoder->new_crtc)
7274                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7275         }
7276
7277         /* Check for any pipes that will be fully disabled ... */
7278         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7279                             base.head) {
7280                 bool used = false;
7281
7282                 /* Don't try to disable disabled crtcs. */
7283                 if (!intel_crtc->base.enabled)
7284                         continue;
7285
7286                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7287                                     base.head) {
7288                         if (encoder->new_crtc == intel_crtc)
7289                                 used = true;
7290                 }
7291
7292                 if (!used)
7293                         *disable_pipes |= 1 << intel_crtc->pipe;
7294         }
7295
7296
7297         /* set_mode is also used to update properties on life display pipes. */
7298         intel_crtc = to_intel_crtc(crtc);
7299         if (crtc->enabled)
7300                 *prepare_pipes |= 1 << intel_crtc->pipe;
7301
7302         /* We only support modeset on one single crtc, hence we need to do that
7303          * only for the passed in crtc iff we change anything else than just
7304          * disable crtcs.
7305          *
7306          * This is actually not true, to be fully compatible with the old crtc
7307          * helper we automatically disable _any_ output (i.e. doesn't need to be
7308          * connected to the crtc we're modesetting on) if it's disconnected.
7309          * Which is a rather nutty api (since changed the output configuration
7310          * without userspace's explicit request can lead to confusion), but
7311          * alas. Hence we currently need to modeset on all pipes we prepare. */
7312         if (*prepare_pipes)
7313                 *modeset_pipes = *prepare_pipes;
7314
7315         /* ... and mask these out. */
7316         *modeset_pipes &= ~(*disable_pipes);
7317         *prepare_pipes &= ~(*disable_pipes);
7318 }
7319
7320 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7321 {
7322         struct drm_encoder *encoder;
7323         struct drm_device *dev = crtc->dev;
7324
7325         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7326                 if (encoder->crtc == crtc)
7327                         return true;
7328
7329         return false;
7330 }
7331
7332 static void
7333 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7334 {
7335         struct intel_encoder *intel_encoder;
7336         struct intel_crtc *intel_crtc;
7337         struct drm_connector *connector;
7338
7339         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7340                             base.head) {
7341                 if (!intel_encoder->base.crtc)
7342                         continue;
7343
7344                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7345
7346                 if (prepare_pipes & (1 << intel_crtc->pipe))
7347                         intel_encoder->connectors_active = false;
7348         }
7349
7350         intel_modeset_commit_output_state(dev);
7351
7352         /* Update computed state. */
7353         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7354                             base.head) {
7355                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7356         }
7357
7358         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7359                 if (!connector->encoder || !connector->encoder->crtc)
7360                         continue;
7361
7362                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7363
7364                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7365                         struct drm_property *dpms_property =
7366                                 dev->mode_config.dpms_property;
7367
7368                         connector->dpms = DRM_MODE_DPMS_ON;
7369                         drm_connector_property_set_value(connector,
7370                                                          dpms_property,
7371                                                          DRM_MODE_DPMS_ON);
7372
7373                         intel_encoder = to_intel_encoder(connector->encoder);
7374                         intel_encoder->connectors_active = true;
7375                 }
7376         }
7377
7378 }
7379
7380 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7381         list_for_each_entry((intel_crtc), \
7382                             &(dev)->mode_config.crtc_list, \
7383                             base.head) \
7384                 if (mask & (1 <<(intel_crtc)->pipe)) \
7385
7386 void
7387 intel_modeset_check_state(struct drm_device *dev)
7388 {
7389         struct intel_crtc *crtc;
7390         struct intel_encoder *encoder;
7391         struct intel_connector *connector;
7392
7393         list_for_each_entry(connector, &dev->mode_config.connector_list,
7394                             base.head) {
7395                 /* This also checks the encoder/connector hw state with the
7396                  * ->get_hw_state callbacks. */
7397                 intel_connector_check_state(connector);
7398
7399                 WARN(&connector->new_encoder->base != connector->base.encoder,
7400                      "connector's staged encoder doesn't match current encoder\n");
7401         }
7402
7403         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7404                             base.head) {
7405                 bool enabled = false;
7406                 bool active = false;
7407                 enum pipe pipe, tracked_pipe;
7408
7409                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7410                               encoder->base.base.id,
7411                               drm_get_encoder_name(&encoder->base));
7412
7413                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7414                      "encoder's stage crtc doesn't match current crtc\n");
7415                 WARN(encoder->connectors_active && !encoder->base.crtc,
7416                      "encoder's active_connectors set, but no crtc\n");
7417
7418                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7419                                     base.head) {
7420                         if (connector->base.encoder != &encoder->base)
7421                                 continue;
7422                         enabled = true;
7423                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7424                                 active = true;
7425                 }
7426                 WARN(!!encoder->base.crtc != enabled,
7427                      "encoder's enabled state mismatch "
7428                      "(expected %i, found %i)\n",
7429                      !!encoder->base.crtc, enabled);
7430                 WARN(active && !encoder->base.crtc,
7431                      "active encoder with no crtc\n");
7432
7433                 WARN(encoder->connectors_active != active,
7434                      "encoder's computed active state doesn't match tracked active state "
7435                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7436
7437                 active = encoder->get_hw_state(encoder, &pipe);
7438                 WARN(active != encoder->connectors_active,
7439                      "encoder's hw state doesn't match sw tracking "
7440                      "(expected %i, found %i)\n",
7441                      encoder->connectors_active, active);
7442
7443                 if (!encoder->base.crtc)
7444                         continue;
7445
7446                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7447                 WARN(active && pipe != tracked_pipe,
7448                      "active encoder's pipe doesn't match"
7449                      "(expected %i, found %i)\n",
7450                      tracked_pipe, pipe);
7451
7452         }
7453
7454         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7455                             base.head) {
7456                 bool enabled = false;
7457                 bool active = false;
7458
7459                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7460                               crtc->base.base.id);
7461
7462                 WARN(crtc->active && !crtc->base.enabled,
7463                      "active crtc, but not enabled in sw tracking\n");
7464
7465                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7466                                     base.head) {
7467                         if (encoder->base.crtc != &crtc->base)
7468                                 continue;
7469                         enabled = true;
7470                         if (encoder->connectors_active)
7471                                 active = true;
7472                 }
7473                 WARN(active != crtc->active,
7474                      "crtc's computed active state doesn't match tracked active state "
7475                      "(expected %i, found %i)\n", active, crtc->active);
7476                 WARN(enabled != crtc->base.enabled,
7477                      "crtc's computed enabled state doesn't match tracked enabled state "
7478                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7479
7480                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7481         }
7482 }
7483
7484 bool intel_set_mode(struct drm_crtc *crtc,
7485                     struct drm_display_mode *mode,
7486                     int x, int y, struct drm_framebuffer *fb)
7487 {
7488         struct drm_device *dev = crtc->dev;
7489         drm_i915_private_t *dev_priv = dev->dev_private;
7490         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7491         struct drm_encoder_helper_funcs *encoder_funcs;
7492         struct drm_encoder *encoder;
7493         struct intel_crtc *intel_crtc;
7494         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7495         bool ret = true;
7496
7497         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7498                                      &prepare_pipes, &disable_pipes);
7499
7500         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7501                       modeset_pipes, prepare_pipes, disable_pipes);
7502
7503         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7504                 intel_crtc_disable(&intel_crtc->base);
7505
7506         saved_hwmode = crtc->hwmode;
7507         saved_mode = crtc->mode;
7508
7509         /* Hack: Because we don't (yet) support global modeset on multiple
7510          * crtcs, we don't keep track of the new mode for more than one crtc.
7511          * Hence simply check whether any bit is set in modeset_pipes in all the
7512          * pieces of code that are not yet converted to deal with mutliple crtcs
7513          * changing their mode at the same time. */
7514         adjusted_mode = NULL;
7515         if (modeset_pipes) {
7516                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7517                 if (IS_ERR(adjusted_mode)) {
7518                         return false;
7519                 }
7520         }
7521
7522         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7523                 if (intel_crtc->base.enabled)
7524                         dev_priv->display.crtc_disable(&intel_crtc->base);
7525         }
7526
7527         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7528          * to set it here already despite that we pass it down the callchain.
7529          */
7530         if (modeset_pipes)
7531                 crtc->mode = *mode;
7532
7533         /* Only after disabling all output pipelines that will be changed can we
7534          * update the the output configuration. */
7535         intel_modeset_update_state(dev, prepare_pipes);
7536
7537         /* Set up the DPLL and any encoders state that needs to adjust or depend
7538          * on the DPLL.
7539          */
7540         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7541                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7542                                            mode, adjusted_mode,
7543                                            x, y, fb);
7544                 if (!ret)
7545                     goto done;
7546
7547                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7548
7549                         if (encoder->crtc != &intel_crtc->base)
7550                                 continue;
7551
7552                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7553                                 encoder->base.id, drm_get_encoder_name(encoder),
7554                                 mode->base.id, mode->name);
7555                         encoder_funcs = encoder->helper_private;
7556                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7557                 }
7558         }
7559
7560         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7561         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7562                 dev_priv->display.crtc_enable(&intel_crtc->base);
7563
7564         if (modeset_pipes) {
7565                 /* Store real post-adjustment hardware mode. */
7566                 crtc->hwmode = *adjusted_mode;
7567
7568                 /* Calculate and store various constants which
7569                  * are later needed by vblank and swap-completion
7570                  * timestamping. They are derived from true hwmode.
7571                  */
7572                 drm_calc_timestamping_constants(crtc);
7573         }
7574
7575         /* FIXME: add subpixel order */
7576 done:
7577         drm_mode_destroy(dev, adjusted_mode);
7578         if (!ret && crtc->enabled) {
7579                 crtc->hwmode = saved_hwmode;
7580                 crtc->mode = saved_mode;
7581         } else {
7582                 intel_modeset_check_state(dev);
7583         }
7584
7585         return ret;
7586 }
7587
7588 #undef for_each_intel_crtc_masked
7589
7590 static void intel_set_config_free(struct intel_set_config *config)
7591 {
7592         if (!config)
7593                 return;
7594
7595         kfree(config->save_connector_encoders);
7596         kfree(config->save_encoder_crtcs);
7597         kfree(config);
7598 }
7599
7600 static int intel_set_config_save_state(struct drm_device *dev,
7601                                        struct intel_set_config *config)
7602 {
7603         struct drm_encoder *encoder;
7604         struct drm_connector *connector;
7605         int count;
7606
7607         config->save_encoder_crtcs =
7608                 kcalloc(dev->mode_config.num_encoder,
7609                         sizeof(struct drm_crtc *), GFP_KERNEL);
7610         if (!config->save_encoder_crtcs)
7611                 return -ENOMEM;
7612
7613         config->save_connector_encoders =
7614                 kcalloc(dev->mode_config.num_connector,
7615                         sizeof(struct drm_encoder *), GFP_KERNEL);
7616         if (!config->save_connector_encoders)
7617                 return -ENOMEM;
7618
7619         /* Copy data. Note that driver private data is not affected.
7620          * Should anything bad happen only the expected state is
7621          * restored, not the drivers personal bookkeeping.
7622          */
7623         count = 0;
7624         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7625                 config->save_encoder_crtcs[count++] = encoder->crtc;
7626         }
7627
7628         count = 0;
7629         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7630                 config->save_connector_encoders[count++] = connector->encoder;
7631         }
7632
7633         return 0;
7634 }
7635
7636 static void intel_set_config_restore_state(struct drm_device *dev,
7637                                            struct intel_set_config *config)
7638 {
7639         struct intel_encoder *encoder;
7640         struct intel_connector *connector;
7641         int count;
7642
7643         count = 0;
7644         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7645                 encoder->new_crtc =
7646                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7647         }
7648
7649         count = 0;
7650         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7651                 connector->new_encoder =
7652                         to_intel_encoder(config->save_connector_encoders[count++]);
7653         }
7654 }
7655
7656 static void
7657 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7658                                       struct intel_set_config *config)
7659 {
7660
7661         /* We should be able to check here if the fb has the same properties
7662          * and then just flip_or_move it */
7663         if (set->crtc->fb != set->fb) {
7664                 /* If we have no fb then treat it as a full mode set */
7665                 if (set->crtc->fb == NULL) {
7666                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7667                         config->mode_changed = true;
7668                 } else if (set->fb == NULL) {
7669                         config->mode_changed = true;
7670                 } else if (set->fb->depth != set->crtc->fb->depth) {
7671                         config->mode_changed = true;
7672                 } else if (set->fb->bits_per_pixel !=
7673                            set->crtc->fb->bits_per_pixel) {
7674                         config->mode_changed = true;
7675                 } else
7676                         config->fb_changed = true;
7677         }
7678
7679         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7680                 config->fb_changed = true;
7681
7682         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7683                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7684                 drm_mode_debug_printmodeline(&set->crtc->mode);
7685                 drm_mode_debug_printmodeline(set->mode);
7686                 config->mode_changed = true;
7687         }
7688 }
7689
7690 static int
7691 intel_modeset_stage_output_state(struct drm_device *dev,
7692                                  struct drm_mode_set *set,
7693                                  struct intel_set_config *config)
7694 {
7695         struct drm_crtc *new_crtc;
7696         struct intel_connector *connector;
7697         struct intel_encoder *encoder;
7698         int count, ro;
7699
7700         /* The upper layers ensure that we either disabl a crtc or have a list
7701          * of connectors. For paranoia, double-check this. */
7702         WARN_ON(!set->fb && (set->num_connectors != 0));
7703         WARN_ON(set->fb && (set->num_connectors == 0));
7704
7705         count = 0;
7706         list_for_each_entry(connector, &dev->mode_config.connector_list,
7707                             base.head) {
7708                 /* Otherwise traverse passed in connector list and get encoders
7709                  * for them. */
7710                 for (ro = 0; ro < set->num_connectors; ro++) {
7711                         if (set->connectors[ro] == &connector->base) {
7712                                 connector->new_encoder = connector->encoder;
7713                                 break;
7714                         }
7715                 }
7716
7717                 /* If we disable the crtc, disable all its connectors. Also, if
7718                  * the connector is on the changing crtc but not on the new
7719                  * connector list, disable it. */
7720                 if ((!set->fb || ro == set->num_connectors) &&
7721                     connector->base.encoder &&
7722                     connector->base.encoder->crtc == set->crtc) {
7723                         connector->new_encoder = NULL;
7724
7725                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7726                                 connector->base.base.id,
7727                                 drm_get_connector_name(&connector->base));
7728                 }
7729
7730
7731                 if (&connector->new_encoder->base != connector->base.encoder) {
7732                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7733                         config->mode_changed = true;
7734                 }
7735
7736                 /* Disable all disconnected encoders. */
7737                 if (connector->base.status == connector_status_disconnected)
7738                         connector->new_encoder = NULL;
7739         }
7740         /* connector->new_encoder is now updated for all connectors. */
7741
7742         /* Update crtc of enabled connectors. */
7743         count = 0;
7744         list_for_each_entry(connector, &dev->mode_config.connector_list,
7745                             base.head) {
7746                 if (!connector->new_encoder)
7747                         continue;
7748
7749                 new_crtc = connector->new_encoder->base.crtc;
7750
7751                 for (ro = 0; ro < set->num_connectors; ro++) {
7752                         if (set->connectors[ro] == &connector->base)
7753                                 new_crtc = set->crtc;
7754                 }
7755
7756                 /* Make sure the new CRTC will work with the encoder */
7757                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7758                                            new_crtc)) {
7759                         return -EINVAL;
7760                 }
7761                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7762
7763                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7764                         connector->base.base.id,
7765                         drm_get_connector_name(&connector->base),
7766                         new_crtc->base.id);
7767         }
7768
7769         /* Check for any encoders that needs to be disabled. */
7770         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7771                             base.head) {
7772                 list_for_each_entry(connector,
7773                                     &dev->mode_config.connector_list,
7774                                     base.head) {
7775                         if (connector->new_encoder == encoder) {
7776                                 WARN_ON(!connector->new_encoder->new_crtc);
7777
7778                                 goto next_encoder;
7779                         }
7780                 }
7781                 encoder->new_crtc = NULL;
7782 next_encoder:
7783                 /* Only now check for crtc changes so we don't miss encoders
7784                  * that will be disabled. */
7785                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7786                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7787                         config->mode_changed = true;
7788                 }
7789         }
7790         /* Now we've also updated encoder->new_crtc for all encoders. */
7791
7792         return 0;
7793 }
7794
7795 static int intel_crtc_set_config(struct drm_mode_set *set)
7796 {
7797         struct drm_device *dev;
7798         struct drm_mode_set save_set;
7799         struct intel_set_config *config;
7800         int ret;
7801
7802         BUG_ON(!set);
7803         BUG_ON(!set->crtc);
7804         BUG_ON(!set->crtc->helper_private);
7805
7806         if (!set->mode)
7807                 set->fb = NULL;
7808
7809         /* The fb helper likes to play gross jokes with ->mode_set_config.
7810          * Unfortunately the crtc helper doesn't do much at all for this case,
7811          * so we have to cope with this madness until the fb helper is fixed up. */
7812         if (set->fb && set->num_connectors == 0)
7813                 return 0;
7814
7815         if (set->fb) {
7816                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7817                                 set->crtc->base.id, set->fb->base.id,
7818                                 (int)set->num_connectors, set->x, set->y);
7819         } else {
7820                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7821         }
7822
7823         dev = set->crtc->dev;
7824
7825         ret = -ENOMEM;
7826         config = kzalloc(sizeof(*config), GFP_KERNEL);
7827         if (!config)
7828                 goto out_config;
7829
7830         ret = intel_set_config_save_state(dev, config);
7831         if (ret)
7832                 goto out_config;
7833
7834         save_set.crtc = set->crtc;
7835         save_set.mode = &set->crtc->mode;
7836         save_set.x = set->crtc->x;
7837         save_set.y = set->crtc->y;
7838         save_set.fb = set->crtc->fb;
7839
7840         /* Compute whether we need a full modeset, only an fb base update or no
7841          * change at all. In the future we might also check whether only the
7842          * mode changed, e.g. for LVDS where we only change the panel fitter in
7843          * such cases. */
7844         intel_set_config_compute_mode_changes(set, config);
7845
7846         ret = intel_modeset_stage_output_state(dev, set, config);
7847         if (ret)
7848                 goto fail;
7849
7850         if (config->mode_changed) {
7851                 if (set->mode) {
7852                         DRM_DEBUG_KMS("attempting to set mode from"
7853                                         " userspace\n");
7854                         drm_mode_debug_printmodeline(set->mode);
7855                 }
7856
7857                 if (!intel_set_mode(set->crtc, set->mode,
7858                                     set->x, set->y, set->fb)) {
7859                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7860                                   set->crtc->base.id);
7861                         ret = -EINVAL;
7862                         goto fail;
7863                 }
7864         } else if (config->fb_changed) {
7865                 ret = intel_pipe_set_base(set->crtc,
7866                                           set->x, set->y, set->fb);
7867         }
7868
7869         intel_set_config_free(config);
7870
7871         return 0;
7872
7873 fail:
7874         intel_set_config_restore_state(dev, config);
7875
7876         /* Try to restore the config */
7877         if (config->mode_changed &&
7878             !intel_set_mode(save_set.crtc, save_set.mode,
7879                             save_set.x, save_set.y, save_set.fb))
7880                 DRM_ERROR("failed to restore config after modeset failure\n");
7881
7882 out_config:
7883         intel_set_config_free(config);
7884         return ret;
7885 }
7886
7887 static const struct drm_crtc_funcs intel_crtc_funcs = {
7888         .cursor_set = intel_crtc_cursor_set,
7889         .cursor_move = intel_crtc_cursor_move,
7890         .gamma_set = intel_crtc_gamma_set,
7891         .set_config = intel_crtc_set_config,
7892         .destroy = intel_crtc_destroy,
7893         .page_flip = intel_crtc_page_flip,
7894 };
7895
7896 static void intel_cpu_pll_init(struct drm_device *dev)
7897 {
7898         if (IS_HASWELL(dev))
7899                 intel_ddi_pll_init(dev);
7900 }
7901
7902 static void intel_pch_pll_init(struct drm_device *dev)
7903 {
7904         drm_i915_private_t *dev_priv = dev->dev_private;
7905         int i;
7906
7907         if (dev_priv->num_pch_pll == 0) {
7908                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7909                 return;
7910         }
7911
7912         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7913                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7914                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7915                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7916         }
7917 }
7918
7919 static void intel_crtc_init(struct drm_device *dev, int pipe)
7920 {
7921         drm_i915_private_t *dev_priv = dev->dev_private;
7922         struct intel_crtc *intel_crtc;
7923         int i;
7924
7925         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7926         if (intel_crtc == NULL)
7927                 return;
7928
7929         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7930
7931         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7932         for (i = 0; i < 256; i++) {
7933                 intel_crtc->lut_r[i] = i;
7934                 intel_crtc->lut_g[i] = i;
7935                 intel_crtc->lut_b[i] = i;
7936         }
7937
7938         /* Swap pipes & planes for FBC on pre-965 */
7939         intel_crtc->pipe = pipe;
7940         intel_crtc->plane = pipe;
7941         intel_crtc->cpu_transcoder = pipe;
7942         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7943                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7944                 intel_crtc->plane = !pipe;
7945         }
7946
7947         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7948                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7949         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7950         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7951
7952         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7953
7954         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7955 }
7956
7957 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7958                                 struct drm_file *file)
7959 {
7960         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7961         struct drm_mode_object *drmmode_obj;
7962         struct intel_crtc *crtc;
7963
7964         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7965                 return -ENODEV;
7966
7967         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7968                         DRM_MODE_OBJECT_CRTC);
7969
7970         if (!drmmode_obj) {
7971                 DRM_ERROR("no such CRTC id\n");
7972                 return -EINVAL;
7973         }
7974
7975         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7976         pipe_from_crtc_id->pipe = crtc->pipe;
7977
7978         return 0;
7979 }
7980
7981 static int intel_encoder_clones(struct intel_encoder *encoder)
7982 {
7983         struct drm_device *dev = encoder->base.dev;
7984         struct intel_encoder *source_encoder;
7985         int index_mask = 0;
7986         int entry = 0;
7987
7988         list_for_each_entry(source_encoder,
7989                             &dev->mode_config.encoder_list, base.head) {
7990
7991                 if (encoder == source_encoder)
7992                         index_mask |= (1 << entry);
7993
7994                 /* Intel hw has only one MUX where enocoders could be cloned. */
7995                 if (encoder->cloneable && source_encoder->cloneable)
7996                         index_mask |= (1 << entry);
7997
7998                 entry++;
7999         }
8000
8001         return index_mask;
8002 }
8003
8004 static bool has_edp_a(struct drm_device *dev)
8005 {
8006         struct drm_i915_private *dev_priv = dev->dev_private;
8007
8008         if (!IS_MOBILE(dev))
8009                 return false;
8010
8011         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8012                 return false;
8013
8014         if (IS_GEN5(dev) &&
8015             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8016                 return false;
8017
8018         return true;
8019 }
8020
8021 static void intel_setup_outputs(struct drm_device *dev)
8022 {
8023         struct drm_i915_private *dev_priv = dev->dev_private;
8024         struct intel_encoder *encoder;
8025         bool dpd_is_edp = false;
8026         bool has_lvds;
8027
8028         has_lvds = intel_lvds_init(dev);
8029         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8030                 /* disable the panel fitter on everything but LVDS */
8031                 I915_WRITE(PFIT_CONTROL, 0);
8032         }
8033
8034         if (HAS_PCH_SPLIT(dev)) {
8035                 dpd_is_edp = intel_dpd_is_edp(dev);
8036
8037                 if (has_edp_a(dev))
8038                         intel_dp_init(dev, DP_A, PORT_A);
8039
8040                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8041                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8042         }
8043
8044         intel_crt_init(dev);
8045
8046         if (IS_HASWELL(dev)) {
8047                 int found;
8048
8049                 /* Haswell uses DDI functions to detect digital outputs */
8050                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8051                 /* DDI A only supports eDP */
8052                 if (found)
8053                         intel_ddi_init(dev, PORT_A);
8054
8055                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8056                  * register */
8057                 found = I915_READ(SFUSE_STRAP);
8058
8059                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8060                         intel_ddi_init(dev, PORT_B);
8061                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8062                         intel_ddi_init(dev, PORT_C);
8063                 if (found & SFUSE_STRAP_DDID_DETECTED)
8064                         intel_ddi_init(dev, PORT_D);
8065         } else if (HAS_PCH_SPLIT(dev)) {
8066                 int found;
8067
8068                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8069                         /* PCH SDVOB multiplex with HDMIB */
8070                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8071                         if (!found)
8072                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8073                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8074                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8075                 }
8076
8077                 if (I915_READ(HDMIC) & PORT_DETECTED)
8078                         intel_hdmi_init(dev, HDMIC, PORT_C);
8079
8080                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8081                         intel_hdmi_init(dev, HDMID, PORT_D);
8082
8083                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8084                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8085
8086                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8087                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8088         } else if (IS_VALLEYVIEW(dev)) {
8089                 int found;
8090
8091                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8092                 if (I915_READ(DP_C) & DP_DETECTED)
8093                         intel_dp_init(dev, DP_C, PORT_C);
8094
8095                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8096                         /* SDVOB multiplex with HDMIB */
8097                         found = intel_sdvo_init(dev, SDVOB, true);
8098                         if (!found)
8099                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8100                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8101                                 intel_dp_init(dev, DP_B, PORT_B);
8102                 }
8103
8104                 if (I915_READ(SDVOC) & PORT_DETECTED)
8105                         intel_hdmi_init(dev, SDVOC, PORT_C);
8106
8107         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8108                 bool found = false;
8109
8110                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8111                         DRM_DEBUG_KMS("probing SDVOB\n");
8112                         found = intel_sdvo_init(dev, SDVOB, true);
8113                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8114                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8115                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8116                         }
8117
8118                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8119                                 DRM_DEBUG_KMS("probing DP_B\n");
8120                                 intel_dp_init(dev, DP_B, PORT_B);
8121                         }
8122                 }
8123
8124                 /* Before G4X SDVOC doesn't have its own detect register */
8125
8126                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8127                         DRM_DEBUG_KMS("probing SDVOC\n");
8128                         found = intel_sdvo_init(dev, SDVOC, false);
8129                 }
8130
8131                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8132
8133                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8134                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8135                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8136                         }
8137                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8138                                 DRM_DEBUG_KMS("probing DP_C\n");
8139                                 intel_dp_init(dev, DP_C, PORT_C);
8140                         }
8141                 }
8142
8143                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8144                     (I915_READ(DP_D) & DP_DETECTED)) {
8145                         DRM_DEBUG_KMS("probing DP_D\n");
8146                         intel_dp_init(dev, DP_D, PORT_D);
8147                 }
8148         } else if (IS_GEN2(dev))
8149                 intel_dvo_init(dev);
8150
8151         if (SUPPORTS_TV(dev))
8152                 intel_tv_init(dev);
8153
8154         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8155                 encoder->base.possible_crtcs = encoder->crtc_mask;
8156                 encoder->base.possible_clones =
8157                         intel_encoder_clones(encoder);
8158         }
8159
8160         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8161                 ironlake_init_pch_refclk(dev);
8162 }
8163
8164 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8165 {
8166         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8167
8168         drm_framebuffer_cleanup(fb);
8169         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8170
8171         kfree(intel_fb);
8172 }
8173
8174 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8175                                                 struct drm_file *file,
8176                                                 unsigned int *handle)
8177 {
8178         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8179         struct drm_i915_gem_object *obj = intel_fb->obj;
8180
8181         return drm_gem_handle_create(file, &obj->base, handle);
8182 }
8183
8184 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8185         .destroy = intel_user_framebuffer_destroy,
8186         .create_handle = intel_user_framebuffer_create_handle,
8187 };
8188
8189 int intel_framebuffer_init(struct drm_device *dev,
8190                            struct intel_framebuffer *intel_fb,
8191                            struct drm_mode_fb_cmd2 *mode_cmd,
8192                            struct drm_i915_gem_object *obj)
8193 {
8194         int ret;
8195
8196         if (obj->tiling_mode == I915_TILING_Y)
8197                 return -EINVAL;
8198
8199         if (mode_cmd->pitches[0] & 63)
8200                 return -EINVAL;
8201
8202         switch (mode_cmd->pixel_format) {
8203         case DRM_FORMAT_RGB332:
8204         case DRM_FORMAT_RGB565:
8205         case DRM_FORMAT_XRGB8888:
8206         case DRM_FORMAT_XBGR8888:
8207         case DRM_FORMAT_ARGB8888:
8208         case DRM_FORMAT_XRGB2101010:
8209         case DRM_FORMAT_ARGB2101010:
8210                 /* RGB formats are common across chipsets */
8211                 break;
8212         case DRM_FORMAT_YUYV:
8213         case DRM_FORMAT_UYVY:
8214         case DRM_FORMAT_YVYU:
8215         case DRM_FORMAT_VYUY:
8216                 break;
8217         default:
8218                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8219                                 mode_cmd->pixel_format);
8220                 return -EINVAL;
8221         }
8222
8223         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8224         if (ret) {
8225                 DRM_ERROR("framebuffer init failed %d\n", ret);
8226                 return ret;
8227         }
8228
8229         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8230         intel_fb->obj = obj;
8231         return 0;
8232 }
8233
8234 static struct drm_framebuffer *
8235 intel_user_framebuffer_create(struct drm_device *dev,
8236                               struct drm_file *filp,
8237                               struct drm_mode_fb_cmd2 *mode_cmd)
8238 {
8239         struct drm_i915_gem_object *obj;
8240
8241         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8242                                                 mode_cmd->handles[0]));
8243         if (&obj->base == NULL)
8244                 return ERR_PTR(-ENOENT);
8245
8246         return intel_framebuffer_create(dev, mode_cmd, obj);
8247 }
8248
8249 static const struct drm_mode_config_funcs intel_mode_funcs = {
8250         .fb_create = intel_user_framebuffer_create,
8251         .output_poll_changed = intel_fb_output_poll_changed,
8252 };
8253
8254 /* Set up chip specific display functions */
8255 static void intel_init_display(struct drm_device *dev)
8256 {
8257         struct drm_i915_private *dev_priv = dev->dev_private;
8258
8259         /* We always want a DPMS function */
8260         if (IS_HASWELL(dev)) {
8261                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8262                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8263                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8264                 dev_priv->display.off = haswell_crtc_off;
8265                 dev_priv->display.update_plane = ironlake_update_plane;
8266         } else if (HAS_PCH_SPLIT(dev)) {
8267                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8268                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8269                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8270                 dev_priv->display.off = ironlake_crtc_off;
8271                 dev_priv->display.update_plane = ironlake_update_plane;
8272         } else {
8273                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8274                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8275                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8276                 dev_priv->display.off = i9xx_crtc_off;
8277                 dev_priv->display.update_plane = i9xx_update_plane;
8278         }
8279
8280         /* Returns the core display clock speed */
8281         if (IS_VALLEYVIEW(dev))
8282                 dev_priv->display.get_display_clock_speed =
8283                         valleyview_get_display_clock_speed;
8284         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8285                 dev_priv->display.get_display_clock_speed =
8286                         i945_get_display_clock_speed;
8287         else if (IS_I915G(dev))
8288                 dev_priv->display.get_display_clock_speed =
8289                         i915_get_display_clock_speed;
8290         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8291                 dev_priv->display.get_display_clock_speed =
8292                         i9xx_misc_get_display_clock_speed;
8293         else if (IS_I915GM(dev))
8294                 dev_priv->display.get_display_clock_speed =
8295                         i915gm_get_display_clock_speed;
8296         else if (IS_I865G(dev))
8297                 dev_priv->display.get_display_clock_speed =
8298                         i865_get_display_clock_speed;
8299         else if (IS_I85X(dev))
8300                 dev_priv->display.get_display_clock_speed =
8301                         i855_get_display_clock_speed;
8302         else /* 852, 830 */
8303                 dev_priv->display.get_display_clock_speed =
8304                         i830_get_display_clock_speed;
8305
8306         if (HAS_PCH_SPLIT(dev)) {
8307                 if (IS_GEN5(dev)) {
8308                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8309                         dev_priv->display.write_eld = ironlake_write_eld;
8310                 } else if (IS_GEN6(dev)) {
8311                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8312                         dev_priv->display.write_eld = ironlake_write_eld;
8313                 } else if (IS_IVYBRIDGE(dev)) {
8314                         /* FIXME: detect B0+ stepping and use auto training */
8315                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8316                         dev_priv->display.write_eld = ironlake_write_eld;
8317                 } else if (IS_HASWELL(dev)) {
8318                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8319                         dev_priv->display.write_eld = haswell_write_eld;
8320                 } else
8321                         dev_priv->display.update_wm = NULL;
8322         } else if (IS_G4X(dev)) {
8323                 dev_priv->display.write_eld = g4x_write_eld;
8324         }
8325
8326         /* Default just returns -ENODEV to indicate unsupported */
8327         dev_priv->display.queue_flip = intel_default_queue_flip;
8328
8329         switch (INTEL_INFO(dev)->gen) {
8330         case 2:
8331                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8332                 break;
8333
8334         case 3:
8335                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8336                 break;
8337
8338         case 4:
8339         case 5:
8340                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8341                 break;
8342
8343         case 6:
8344                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8345                 break;
8346         case 7:
8347                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8348                 break;
8349         }
8350 }
8351
8352 /*
8353  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8354  * resume, or other times.  This quirk makes sure that's the case for
8355  * affected systems.
8356  */
8357 static void quirk_pipea_force(struct drm_device *dev)
8358 {
8359         struct drm_i915_private *dev_priv = dev->dev_private;
8360
8361         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8362         DRM_INFO("applying pipe a force quirk\n");
8363 }
8364
8365 /*
8366  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8367  */
8368 static void quirk_ssc_force_disable(struct drm_device *dev)
8369 {
8370         struct drm_i915_private *dev_priv = dev->dev_private;
8371         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8372         DRM_INFO("applying lvds SSC disable quirk\n");
8373 }
8374
8375 /*
8376  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8377  * brightness value
8378  */
8379 static void quirk_invert_brightness(struct drm_device *dev)
8380 {
8381         struct drm_i915_private *dev_priv = dev->dev_private;
8382         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8383         DRM_INFO("applying inverted panel brightness quirk\n");
8384 }
8385
8386 struct intel_quirk {
8387         int device;
8388         int subsystem_vendor;
8389         int subsystem_device;
8390         void (*hook)(struct drm_device *dev);
8391 };
8392
8393 static struct intel_quirk intel_quirks[] = {
8394         /* HP Mini needs pipe A force quirk (LP: #322104) */
8395         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8396
8397         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8398         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8399
8400         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8401         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8402
8403         /* 830/845 need to leave pipe A & dpll A up */
8404         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8405         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8406
8407         /* Lenovo U160 cannot use SSC on LVDS */
8408         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8409
8410         /* Sony Vaio Y cannot use SSC on LVDS */
8411         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8412
8413         /* Acer Aspire 5734Z must invert backlight brightness */
8414         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8415 };
8416
8417 static void intel_init_quirks(struct drm_device *dev)
8418 {
8419         struct pci_dev *d = dev->pdev;
8420         int i;
8421
8422         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8423                 struct intel_quirk *q = &intel_quirks[i];
8424
8425                 if (d->device == q->device &&
8426                     (d->subsystem_vendor == q->subsystem_vendor ||
8427                      q->subsystem_vendor == PCI_ANY_ID) &&
8428                     (d->subsystem_device == q->subsystem_device ||
8429                      q->subsystem_device == PCI_ANY_ID))
8430                         q->hook(dev);
8431         }
8432 }
8433
8434 /* Disable the VGA plane that we never use */
8435 static void i915_disable_vga(struct drm_device *dev)
8436 {
8437         struct drm_i915_private *dev_priv = dev->dev_private;
8438         u8 sr1;
8439         u32 vga_reg;
8440
8441         if (HAS_PCH_SPLIT(dev))
8442                 vga_reg = CPU_VGACNTRL;
8443         else
8444                 vga_reg = VGACNTRL;
8445
8446         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8447         outb(SR01, VGA_SR_INDEX);
8448         sr1 = inb(VGA_SR_DATA);
8449         outb(sr1 | 1<<5, VGA_SR_DATA);
8450         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8451         udelay(300);
8452
8453         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8454         POSTING_READ(vga_reg);
8455 }
8456
8457 void intel_modeset_init_hw(struct drm_device *dev)
8458 {
8459         /* We attempt to init the necessary power wells early in the initialization
8460          * time, so the subsystems that expect power to be enabled can work.
8461          */
8462         intel_init_power_wells(dev);
8463
8464         intel_prepare_ddi(dev);
8465
8466         intel_init_clock_gating(dev);
8467
8468         mutex_lock(&dev->struct_mutex);
8469         intel_enable_gt_powersave(dev);
8470         mutex_unlock(&dev->struct_mutex);
8471 }
8472
8473 void intel_modeset_init(struct drm_device *dev)
8474 {
8475         struct drm_i915_private *dev_priv = dev->dev_private;
8476         int i, ret;
8477
8478         drm_mode_config_init(dev);
8479
8480         dev->mode_config.min_width = 0;
8481         dev->mode_config.min_height = 0;
8482
8483         dev->mode_config.preferred_depth = 24;
8484         dev->mode_config.prefer_shadow = 1;
8485
8486         dev->mode_config.funcs = &intel_mode_funcs;
8487
8488         intel_init_quirks(dev);
8489
8490         intel_init_pm(dev);
8491
8492         intel_init_display(dev);
8493
8494         if (IS_GEN2(dev)) {
8495                 dev->mode_config.max_width = 2048;
8496                 dev->mode_config.max_height = 2048;
8497         } else if (IS_GEN3(dev)) {
8498                 dev->mode_config.max_width = 4096;
8499                 dev->mode_config.max_height = 4096;
8500         } else {
8501                 dev->mode_config.max_width = 8192;
8502                 dev->mode_config.max_height = 8192;
8503         }
8504         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8505
8506         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8507                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8508
8509         for (i = 0; i < dev_priv->num_pipe; i++) {
8510                 intel_crtc_init(dev, i);
8511                 ret = intel_plane_init(dev, i);
8512                 if (ret)
8513                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8514         }
8515
8516         intel_cpu_pll_init(dev);
8517         intel_pch_pll_init(dev);
8518
8519         /* Just disable it once at startup */
8520         i915_disable_vga(dev);
8521         intel_setup_outputs(dev);
8522 }
8523
8524 static void
8525 intel_connector_break_all_links(struct intel_connector *connector)
8526 {
8527         connector->base.dpms = DRM_MODE_DPMS_OFF;
8528         connector->base.encoder = NULL;
8529         connector->encoder->connectors_active = false;
8530         connector->encoder->base.crtc = NULL;
8531 }
8532
8533 static void intel_enable_pipe_a(struct drm_device *dev)
8534 {
8535         struct intel_connector *connector;
8536         struct drm_connector *crt = NULL;
8537         struct intel_load_detect_pipe load_detect_temp;
8538
8539         /* We can't just switch on the pipe A, we need to set things up with a
8540          * proper mode and output configuration. As a gross hack, enable pipe A
8541          * by enabling the load detect pipe once. */
8542         list_for_each_entry(connector,
8543                             &dev->mode_config.connector_list,
8544                             base.head) {
8545                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8546                         crt = &connector->base;
8547                         break;
8548                 }
8549         }
8550
8551         if (!crt)
8552                 return;
8553
8554         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8555                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8556
8557
8558 }
8559
8560 static bool
8561 intel_check_plane_mapping(struct intel_crtc *crtc)
8562 {
8563         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8564         u32 reg, val;
8565
8566         if (dev_priv->num_pipe == 1)
8567                 return true;
8568
8569         reg = DSPCNTR(!crtc->plane);
8570         val = I915_READ(reg);
8571
8572         if ((val & DISPLAY_PLANE_ENABLE) &&
8573             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8574                 return false;
8575
8576         return true;
8577 }
8578
8579 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8580 {
8581         struct drm_device *dev = crtc->base.dev;
8582         struct drm_i915_private *dev_priv = dev->dev_private;
8583         u32 reg;
8584
8585         /* Clear any frame start delays used for debugging left by the BIOS */
8586         reg = PIPECONF(crtc->cpu_transcoder);
8587         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8588
8589         /* We need to sanitize the plane -> pipe mapping first because this will
8590          * disable the crtc (and hence change the state) if it is wrong. Note
8591          * that gen4+ has a fixed plane -> pipe mapping.  */
8592         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8593                 struct intel_connector *connector;
8594                 bool plane;
8595
8596                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8597                               crtc->base.base.id);
8598
8599                 /* Pipe has the wrong plane attached and the plane is active.
8600                  * Temporarily change the plane mapping and disable everything
8601                  * ...  */
8602                 plane = crtc->plane;
8603                 crtc->plane = !plane;
8604                 dev_priv->display.crtc_disable(&crtc->base);
8605                 crtc->plane = plane;
8606
8607                 /* ... and break all links. */
8608                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8609                                     base.head) {
8610                         if (connector->encoder->base.crtc != &crtc->base)
8611                                 continue;
8612
8613                         intel_connector_break_all_links(connector);
8614                 }
8615
8616                 WARN_ON(crtc->active);
8617                 crtc->base.enabled = false;
8618         }
8619
8620         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8621             crtc->pipe == PIPE_A && !crtc->active) {
8622                 /* BIOS forgot to enable pipe A, this mostly happens after
8623                  * resume. Force-enable the pipe to fix this, the update_dpms
8624                  * call below we restore the pipe to the right state, but leave
8625                  * the required bits on. */
8626                 intel_enable_pipe_a(dev);
8627         }
8628
8629         /* Adjust the state of the output pipe according to whether we
8630          * have active connectors/encoders. */
8631         intel_crtc_update_dpms(&crtc->base);
8632
8633         if (crtc->active != crtc->base.enabled) {
8634                 struct intel_encoder *encoder;
8635
8636                 /* This can happen either due to bugs in the get_hw_state
8637                  * functions or because the pipe is force-enabled due to the
8638                  * pipe A quirk. */
8639                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8640                               crtc->base.base.id,
8641                               crtc->base.enabled ? "enabled" : "disabled",
8642                               crtc->active ? "enabled" : "disabled");
8643
8644                 crtc->base.enabled = crtc->active;
8645
8646                 /* Because we only establish the connector -> encoder ->
8647                  * crtc links if something is active, this means the
8648                  * crtc is now deactivated. Break the links. connector
8649                  * -> encoder links are only establish when things are
8650                  *  actually up, hence no need to break them. */
8651                 WARN_ON(crtc->active);
8652
8653                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8654                         WARN_ON(encoder->connectors_active);
8655                         encoder->base.crtc = NULL;
8656                 }
8657         }
8658 }
8659
8660 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8661 {
8662         struct intel_connector *connector;
8663         struct drm_device *dev = encoder->base.dev;
8664
8665         /* We need to check both for a crtc link (meaning that the
8666          * encoder is active and trying to read from a pipe) and the
8667          * pipe itself being active. */
8668         bool has_active_crtc = encoder->base.crtc &&
8669                 to_intel_crtc(encoder->base.crtc)->active;
8670
8671         if (encoder->connectors_active && !has_active_crtc) {
8672                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8673                               encoder->base.base.id,
8674                               drm_get_encoder_name(&encoder->base));
8675
8676                 /* Connector is active, but has no active pipe. This is
8677                  * fallout from our resume register restoring. Disable
8678                  * the encoder manually again. */
8679                 if (encoder->base.crtc) {
8680                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8681                                       encoder->base.base.id,
8682                                       drm_get_encoder_name(&encoder->base));
8683                         encoder->disable(encoder);
8684                 }
8685
8686                 /* Inconsistent output/port/pipe state happens presumably due to
8687                  * a bug in one of the get_hw_state functions. Or someplace else
8688                  * in our code, like the register restore mess on resume. Clamp
8689                  * things to off as a safer default. */
8690                 list_for_each_entry(connector,
8691                                     &dev->mode_config.connector_list,
8692                                     base.head) {
8693                         if (connector->encoder != encoder)
8694                                 continue;
8695
8696                         intel_connector_break_all_links(connector);
8697                 }
8698         }
8699         /* Enabled encoders without active connectors will be fixed in
8700          * the crtc fixup. */
8701 }
8702
8703 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8704  * and i915 state tracking structures. */
8705 void intel_modeset_setup_hw_state(struct drm_device *dev)
8706 {
8707         struct drm_i915_private *dev_priv = dev->dev_private;
8708         enum pipe pipe;
8709         u32 tmp;
8710         struct intel_crtc *crtc;
8711         struct intel_encoder *encoder;
8712         struct intel_connector *connector;
8713
8714         if (IS_HASWELL(dev)) {
8715                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8716
8717                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8718                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8719                         case TRANS_DDI_EDP_INPUT_A_ON:
8720                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8721                                 pipe = PIPE_A;
8722                                 break;
8723                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8724                                 pipe = PIPE_B;
8725                                 break;
8726                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8727                                 pipe = PIPE_C;
8728                                 break;
8729                         }
8730
8731                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8732                         crtc->cpu_transcoder = TRANSCODER_EDP;
8733
8734                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8735                                       pipe_name(pipe));
8736                 }
8737         }
8738
8739         for_each_pipe(pipe) {
8740                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8741
8742                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8743                 if (tmp & PIPECONF_ENABLE)
8744                         crtc->active = true;
8745                 else
8746                         crtc->active = false;
8747
8748                 crtc->base.enabled = crtc->active;
8749
8750                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8751                               crtc->base.base.id,
8752                               crtc->active ? "enabled" : "disabled");
8753         }
8754
8755         if (IS_HASWELL(dev))
8756                 intel_ddi_setup_hw_pll_state(dev);
8757
8758         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8759                             base.head) {
8760                 pipe = 0;
8761
8762                 if (encoder->get_hw_state(encoder, &pipe)) {
8763                         encoder->base.crtc =
8764                                 dev_priv->pipe_to_crtc_mapping[pipe];
8765                 } else {
8766                         encoder->base.crtc = NULL;
8767                 }
8768
8769                 encoder->connectors_active = false;
8770                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8771                               encoder->base.base.id,
8772                               drm_get_encoder_name(&encoder->base),
8773                               encoder->base.crtc ? "enabled" : "disabled",
8774                               pipe);
8775         }
8776
8777         list_for_each_entry(connector, &dev->mode_config.connector_list,
8778                             base.head) {
8779                 if (connector->get_hw_state(connector)) {
8780                         connector->base.dpms = DRM_MODE_DPMS_ON;
8781                         connector->encoder->connectors_active = true;
8782                         connector->base.encoder = &connector->encoder->base;
8783                 } else {
8784                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8785                         connector->base.encoder = NULL;
8786                 }
8787                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8788                               connector->base.base.id,
8789                               drm_get_connector_name(&connector->base),
8790                               connector->base.encoder ? "enabled" : "disabled");
8791         }
8792
8793         /* HW state is read out, now we need to sanitize this mess. */
8794         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8795                             base.head) {
8796                 intel_sanitize_encoder(encoder);
8797         }
8798
8799         for_each_pipe(pipe) {
8800                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8801                 intel_sanitize_crtc(crtc);
8802         }
8803
8804         intel_modeset_update_staged_output_state(dev);
8805
8806         intel_modeset_check_state(dev);
8807
8808         drm_mode_config_reset(dev);
8809 }
8810
8811 void intel_modeset_gem_init(struct drm_device *dev)
8812 {
8813         intel_modeset_init_hw(dev);
8814
8815         intel_setup_overlay(dev);
8816
8817         intel_modeset_setup_hw_state(dev);
8818 }
8819
8820 void intel_modeset_cleanup(struct drm_device *dev)
8821 {
8822         struct drm_i915_private *dev_priv = dev->dev_private;
8823         struct drm_crtc *crtc;
8824         struct intel_crtc *intel_crtc;
8825
8826         drm_kms_helper_poll_fini(dev);
8827         mutex_lock(&dev->struct_mutex);
8828
8829         intel_unregister_dsm_handler();
8830
8831
8832         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8833                 /* Skip inactive CRTCs */
8834                 if (!crtc->fb)
8835                         continue;
8836
8837                 intel_crtc = to_intel_crtc(crtc);
8838                 intel_increase_pllclock(crtc);
8839         }
8840
8841         intel_disable_fbc(dev);
8842
8843         intel_disable_gt_powersave(dev);
8844
8845         ironlake_teardown_rc6(dev);
8846
8847         if (IS_VALLEYVIEW(dev))
8848                 vlv_init_dpio(dev);
8849
8850         mutex_unlock(&dev->struct_mutex);
8851
8852         /* Disable the irq before mode object teardown, for the irq might
8853          * enqueue unpin/hotplug work. */
8854         drm_irq_uninstall(dev);
8855         cancel_work_sync(&dev_priv->hotplug_work);
8856         cancel_work_sync(&dev_priv->rps.work);
8857
8858         /* flush any delayed tasks or pending work */
8859         flush_scheduled_work();
8860
8861         drm_mode_config_cleanup(dev);
8862 }
8863
8864 /*
8865  * Return which encoder is currently attached for connector.
8866  */
8867 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8868 {
8869         return &intel_attached_encoder(connector)->base;
8870 }
8871
8872 void intel_connector_attach_encoder(struct intel_connector *connector,
8873                                     struct intel_encoder *encoder)
8874 {
8875         connector->encoder = encoder;
8876         drm_mode_connector_attach_encoder(&connector->base,
8877                                           &encoder->base);
8878 }
8879
8880 /*
8881  * set vga decode state - true == enable VGA decode
8882  */
8883 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8884 {
8885         struct drm_i915_private *dev_priv = dev->dev_private;
8886         u16 gmch_ctrl;
8887
8888         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8889         if (state)
8890                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8891         else
8892                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8893         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8894         return 0;
8895 }
8896
8897 #ifdef CONFIG_DEBUG_FS
8898 #include <linux/seq_file.h>
8899
8900 struct intel_display_error_state {
8901         struct intel_cursor_error_state {
8902                 u32 control;
8903                 u32 position;
8904                 u32 base;
8905                 u32 size;
8906         } cursor[I915_MAX_PIPES];
8907
8908         struct intel_pipe_error_state {
8909                 u32 conf;
8910                 u32 source;
8911
8912                 u32 htotal;
8913                 u32 hblank;
8914                 u32 hsync;
8915                 u32 vtotal;
8916                 u32 vblank;
8917                 u32 vsync;
8918         } pipe[I915_MAX_PIPES];
8919
8920         struct intel_plane_error_state {
8921                 u32 control;
8922                 u32 stride;
8923                 u32 size;
8924                 u32 pos;
8925                 u32 addr;
8926                 u32 surface;
8927                 u32 tile_offset;
8928         } plane[I915_MAX_PIPES];
8929 };
8930
8931 struct intel_display_error_state *
8932 intel_display_capture_error_state(struct drm_device *dev)
8933 {
8934         drm_i915_private_t *dev_priv = dev->dev_private;
8935         struct intel_display_error_state *error;
8936         enum transcoder cpu_transcoder;
8937         int i;
8938
8939         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8940         if (error == NULL)
8941                 return NULL;
8942
8943         for_each_pipe(i) {
8944                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
8945
8946                 error->cursor[i].control = I915_READ(CURCNTR(i));
8947                 error->cursor[i].position = I915_READ(CURPOS(i));
8948                 error->cursor[i].base = I915_READ(CURBASE(i));
8949
8950                 error->plane[i].control = I915_READ(DSPCNTR(i));
8951                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8952                 error->plane[i].size = I915_READ(DSPSIZE(i));
8953                 error->plane[i].pos = I915_READ(DSPPOS(i));
8954                 error->plane[i].addr = I915_READ(DSPADDR(i));
8955                 if (INTEL_INFO(dev)->gen >= 4) {
8956                         error->plane[i].surface = I915_READ(DSPSURF(i));
8957                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8958                 }
8959
8960                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
8961                 error->pipe[i].source = I915_READ(PIPESRC(i));
8962                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
8963                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
8964                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
8965                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
8966                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
8967                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
8968         }
8969
8970         return error;
8971 }
8972
8973 void
8974 intel_display_print_error_state(struct seq_file *m,
8975                                 struct drm_device *dev,
8976                                 struct intel_display_error_state *error)
8977 {
8978         drm_i915_private_t *dev_priv = dev->dev_private;
8979         int i;
8980
8981         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8982         for_each_pipe(i) {
8983                 seq_printf(m, "Pipe [%d]:\n", i);
8984                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8985                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8986                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8987                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8988                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8989                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8990                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8991                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8992
8993                 seq_printf(m, "Plane [%d]:\n", i);
8994                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8995                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8996                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8997                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8998                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8999                 if (INTEL_INFO(dev)->gen >= 4) {
9000                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9001                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9002                 }
9003
9004                 seq_printf(m, "Cursor [%d]:\n", i);
9005                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9006                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9007                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9008         }
9009 }
9010 #endif