]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/ctree.c
Btrfs: optimize read_block_for_search
[linux-imx.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid,
278                             (unsigned long)btrfs_header_fsid(cow),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366         seq &= 0xffffffff00000000ull;
367         seq += 1ull << 32;
368         atomic64_set(&fs_info->tree_mod_seq, seq);
369         return seq;
370 }
371
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385         return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393         return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405                            struct seq_list *elem)
406 {
407         u64 seq;
408
409         tree_mod_log_write_lock(fs_info);
410         spin_lock(&fs_info->tree_mod_seq_lock);
411         if (!elem->seq) {
412                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414         }
415         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417         tree_mod_log_write_unlock(fs_info);
418
419         return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423                             struct seq_list *elem)
424 {
425         struct rb_root *tm_root;
426         struct rb_node *node;
427         struct rb_node *next;
428         struct seq_list *cur_elem;
429         struct tree_mod_elem *tm;
430         u64 min_seq = (u64)-1;
431         u64 seq_putting = elem->seq;
432
433         if (!seq_putting)
434                 return;
435
436         spin_lock(&fs_info->tree_mod_seq_lock);
437         list_del(&elem->list);
438         elem->seq = 0;
439
440         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441                 if (cur_elem->seq < min_seq) {
442                         if (seq_putting > cur_elem->seq) {
443                                 /*
444                                  * blocker with lower sequence number exists, we
445                                  * cannot remove anything from the log
446                                  */
447                                 spin_unlock(&fs_info->tree_mod_seq_lock);
448                                 return;
449                         }
450                         min_seq = cur_elem->seq;
451                 }
452         }
453         spin_unlock(&fs_info->tree_mod_seq_lock);
454
455         /*
456          * anything that's lower than the lowest existing (read: blocked)
457          * sequence number can be removed from the tree.
458          */
459         tree_mod_log_write_lock(fs_info);
460         tm_root = &fs_info->tree_mod_log;
461         for (node = rb_first(tm_root); node; node = next) {
462                 next = rb_next(node);
463                 tm = container_of(node, struct tree_mod_elem, node);
464                 if (tm->seq > min_seq)
465                         continue;
466                 rb_erase(node, tm_root);
467                 kfree(tm);
468         }
469         tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm || !tm->seq);
489
490         tm_root = &fs_info->tree_mod_log;
491         new = &tm_root->rb_node;
492         while (*new) {
493                 cur = container_of(*new, struct tree_mod_elem, node);
494                 parent = *new;
495                 if (cur->index < tm->index)
496                         new = &((*new)->rb_left);
497                 else if (cur->index > tm->index)
498                         new = &((*new)->rb_right);
499                 else if (cur->seq < tm->seq)
500                         new = &((*new)->rb_left);
501                 else if (cur->seq > tm->seq)
502                         new = &((*new)->rb_right);
503                 else {
504                         kfree(tm);
505                         return -EEXIST;
506                 }
507         }
508
509         rb_link_node(&tm->node, parent, new);
510         rb_insert_color(&tm->node, tm_root);
511         return 0;
512 }
513
514 /*
515  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516  * returns zero with the tree_mod_log_lock acquired. The caller must hold
517  * this until all tree mod log insertions are recorded in the rb tree and then
518  * call tree_mod_log_write_unlock() to release.
519  */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521                                     struct extent_buffer *eb) {
522         smp_mb();
523         if (list_empty(&(fs_info)->tree_mod_seq_list))
524                 return 1;
525         if (eb && btrfs_header_level(eb) == 0)
526                 return 1;
527
528         tree_mod_log_write_lock(fs_info);
529         if (list_empty(&fs_info->tree_mod_seq_list)) {
530                 /*
531                  * someone emptied the list while we were waiting for the lock.
532                  * we must not add to the list when no blocker exists.
533                  */
534                 tree_mod_log_write_unlock(fs_info);
535                 return 1;
536         }
537
538         return 0;
539 }
540
541 /*
542  * This allocates memory and gets a tree modification sequence number.
543  *
544  * Returns <0 on error.
545  * Returns >0 (the added sequence number) on success.
546  */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548                                  struct tree_mod_elem **tm_ret)
549 {
550         struct tree_mod_elem *tm;
551
552         /*
553          * once we switch from spin locks to something different, we should
554          * honor the flags parameter here.
555          */
556         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557         if (!tm)
558                 return -ENOMEM;
559
560         spin_lock(&fs_info->tree_mod_seq_lock);
561         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562         spin_unlock(&fs_info->tree_mod_seq_lock);
563
564         return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569                           struct extent_buffer *eb, int slot,
570                           enum mod_log_op op, gfp_t flags)
571 {
572         int ret;
573         struct tree_mod_elem *tm;
574
575         ret = tree_mod_alloc(fs_info, flags, &tm);
576         if (ret < 0)
577                 return ret;
578
579         tm->index = eb->start >> PAGE_CACHE_SHIFT;
580         if (op != MOD_LOG_KEY_ADD) {
581                 btrfs_node_key(eb, &tm->key, slot);
582                 tm->blockptr = btrfs_node_blockptr(eb, slot);
583         }
584         tm->op = op;
585         tm->slot = slot;
586         tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588         return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593                              struct extent_buffer *eb, int slot,
594                              enum mod_log_op op, gfp_t flags)
595 {
596         int ret;
597
598         if (tree_mod_dont_log(fs_info, eb))
599                 return 0;
600
601         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603         tree_mod_log_write_unlock(fs_info);
604         return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609                         int slot, enum mod_log_op op)
610 {
611         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616                              struct extent_buffer *eb, int slot,
617                              enum mod_log_op op)
618 {
619         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624                          struct extent_buffer *eb, int dst_slot, int src_slot,
625                          int nr_items, gfp_t flags)
626 {
627         struct tree_mod_elem *tm;
628         int ret;
629         int i;
630
631         if (tree_mod_dont_log(fs_info, eb))
632                 return 0;
633
634         /*
635          * When we override something during the move, we log these removals.
636          * This can only happen when we move towards the beginning of the
637          * buffer, i.e. dst_slot < src_slot.
638          */
639         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642                 BUG_ON(ret < 0);
643         }
644
645         ret = tree_mod_alloc(fs_info, flags, &tm);
646         if (ret < 0)
647                 goto out;
648
649         tm->index = eb->start >> PAGE_CACHE_SHIFT;
650         tm->slot = src_slot;
651         tm->move.dst_slot = dst_slot;
652         tm->move.nr_items = nr_items;
653         tm->op = MOD_LOG_MOVE_KEYS;
654
655         ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657         tree_mod_log_write_unlock(fs_info);
658         return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664         int i;
665         u32 nritems;
666         int ret;
667
668         if (btrfs_header_level(eb) == 0)
669                 return;
670
671         nritems = btrfs_header_nritems(eb);
672         for (i = nritems - 1; i >= 0; i--) {
673                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675                 BUG_ON(ret < 0);
676         }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681                          struct extent_buffer *old_root,
682                          struct extent_buffer *new_root, gfp_t flags,
683                          int log_removal)
684 {
685         struct tree_mod_elem *tm;
686         int ret;
687
688         if (tree_mod_dont_log(fs_info, NULL))
689                 return 0;
690
691         if (log_removal)
692                 __tree_mod_log_free_eb(fs_info, old_root);
693
694         ret = tree_mod_alloc(fs_info, flags, &tm);
695         if (ret < 0)
696                 goto out;
697
698         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699         tm->old_root.logical = old_root->start;
700         tm->old_root.level = btrfs_header_level(old_root);
701         tm->generation = btrfs_header_generation(old_root);
702         tm->op = MOD_LOG_ROOT_REPLACE;
703
704         ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706         tree_mod_log_write_unlock(fs_info);
707         return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712                       int smallest)
713 {
714         struct rb_root *tm_root;
715         struct rb_node *node;
716         struct tree_mod_elem *cur = NULL;
717         struct tree_mod_elem *found = NULL;
718         u64 index = start >> PAGE_CACHE_SHIFT;
719
720         tree_mod_log_read_lock(fs_info);
721         tm_root = &fs_info->tree_mod_log;
722         node = tm_root->rb_node;
723         while (node) {
724                 cur = container_of(node, struct tree_mod_elem, node);
725                 if (cur->index < index) {
726                         node = node->rb_left;
727                 } else if (cur->index > index) {
728                         node = node->rb_right;
729                 } else if (cur->seq < min_seq) {
730                         node = node->rb_left;
731                 } else if (!smallest) {
732                         /* we want the node with the highest seq */
733                         if (found)
734                                 BUG_ON(found->seq > cur->seq);
735                         found = cur;
736                         node = node->rb_left;
737                 } else if (cur->seq > min_seq) {
738                         /* we want the node with the smallest seq */
739                         if (found)
740                                 BUG_ON(found->seq < cur->seq);
741                         found = cur;
742                         node = node->rb_right;
743                 } else {
744                         found = cur;
745                         break;
746                 }
747         }
748         tree_mod_log_read_unlock(fs_info);
749
750         return found;
751 }
752
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760                            u64 min_seq)
761 {
762         return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773         return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778                      struct extent_buffer *src, unsigned long dst_offset,
779                      unsigned long src_offset, int nr_items)
780 {
781         int ret;
782         int i;
783
784         if (tree_mod_dont_log(fs_info, NULL))
785                 return;
786
787         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788                 tree_mod_log_write_unlock(fs_info);
789                 return;
790         }
791
792         for (i = 0; i < nr_items; i++) {
793                 ret = tree_mod_log_insert_key_locked(fs_info, src,
794                                                 i + src_offset,
795                                                 MOD_LOG_KEY_REMOVE);
796                 BUG_ON(ret < 0);
797                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798                                                      i + dst_offset,
799                                                      MOD_LOG_KEY_ADD);
800                 BUG_ON(ret < 0);
801         }
802
803         tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808                      int dst_offset, int src_offset, int nr_items)
809 {
810         int ret;
811         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812                                        nr_items, GFP_NOFS);
813         BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818                           struct extent_buffer *eb, int slot, int atomic)
819 {
820         int ret;
821
822         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823                                            MOD_LOG_KEY_REPLACE,
824                                            atomic ? GFP_ATOMIC : GFP_NOFS);
825         BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831         if (tree_mod_dont_log(fs_info, eb))
832                 return;
833
834         __tree_mod_log_free_eb(fs_info, eb);
835
836         tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841                               struct extent_buffer *new_root_node,
842                               int log_removal)
843 {
844         int ret;
845         ret = tree_mod_log_insert_root(root->fs_info, root->node,
846                                        new_root_node, GFP_NOFS, log_removal);
847         BUG_ON(ret < 0);
848 }
849
850 /*
851  * check if the tree block can be shared by multiple trees
852  */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854                               struct extent_buffer *buf)
855 {
856         /*
857          * Tree blocks not in refernece counted trees and tree roots
858          * are never shared. If a block was allocated after the last
859          * snapshot and the block was not allocated by tree relocation,
860          * we know the block is not shared.
861          */
862         if (root->ref_cows &&
863             buf != root->node && buf != root->commit_root &&
864             (btrfs_header_generation(buf) <=
865              btrfs_root_last_snapshot(&root->root_item) ||
866              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867                 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869         if (root->ref_cows &&
870             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871                 return 1;
872 #endif
873         return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877                                        struct btrfs_root *root,
878                                        struct extent_buffer *buf,
879                                        struct extent_buffer *cow,
880                                        int *last_ref)
881 {
882         u64 refs;
883         u64 owner;
884         u64 flags;
885         u64 new_flags = 0;
886         int ret;
887
888         /*
889          * Backrefs update rules:
890          *
891          * Always use full backrefs for extent pointers in tree block
892          * allocated by tree relocation.
893          *
894          * If a shared tree block is no longer referenced by its owner
895          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896          * use full backrefs for extent pointers in tree block.
897          *
898          * If a tree block is been relocating
899          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900          * use full backrefs for extent pointers in tree block.
901          * The reason for this is some operations (such as drop tree)
902          * are only allowed for blocks use full backrefs.
903          */
904
905         if (btrfs_block_can_be_shared(root, buf)) {
906                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907                                                btrfs_header_level(buf), 1,
908                                                &refs, &flags);
909                 if (ret)
910                         return ret;
911                 if (refs == 0) {
912                         ret = -EROFS;
913                         btrfs_std_error(root->fs_info, ret);
914                         return ret;
915                 }
916         } else {
917                 refs = 1;
918                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921                 else
922                         flags = 0;
923         }
924
925         owner = btrfs_header_owner(buf);
926         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929         if (refs > 1) {
930                 if ((owner == root->root_key.objectid ||
931                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934                         BUG_ON(ret); /* -ENOMEM */
935
936                         if (root->root_key.objectid ==
937                             BTRFS_TREE_RELOC_OBJECTID) {
938                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939                                 BUG_ON(ret); /* -ENOMEM */
940                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941                                 BUG_ON(ret); /* -ENOMEM */
942                         }
943                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944                 } else {
945
946                         if (root->root_key.objectid ==
947                             BTRFS_TREE_RELOC_OBJECTID)
948                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949                         else
950                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951                         BUG_ON(ret); /* -ENOMEM */
952                 }
953                 if (new_flags != 0) {
954                         int level = btrfs_header_level(buf);
955
956                         ret = btrfs_set_disk_extent_flags(trans, root,
957                                                           buf->start,
958                                                           buf->len,
959                                                           new_flags, level, 0);
960                         if (ret)
961                                 return ret;
962                 }
963         } else {
964                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965                         if (root->root_key.objectid ==
966                             BTRFS_TREE_RELOC_OBJECTID)
967                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968                         else
969                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970                         BUG_ON(ret); /* -ENOMEM */
971                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972                         BUG_ON(ret); /* -ENOMEM */
973                 }
974                 clean_tree_block(trans, root, buf);
975                 *last_ref = 1;
976         }
977         return 0;
978 }
979
980 /*
981  * does the dirty work in cow of a single block.  The parent block (if
982  * supplied) is updated to point to the new cow copy.  The new buffer is marked
983  * dirty and returned locked.  If you modify the block it needs to be marked
984  * dirty again.
985  *
986  * search_start -- an allocation hint for the new block
987  *
988  * empty_size -- a hint that you plan on doing more cow.  This is the size in
989  * bytes the allocator should try to find free next to the block it returns.
990  * This is just a hint and may be ignored by the allocator.
991  */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993                              struct btrfs_root *root,
994                              struct extent_buffer *buf,
995                              struct extent_buffer *parent, int parent_slot,
996                              struct extent_buffer **cow_ret,
997                              u64 search_start, u64 empty_size)
998 {
999         struct btrfs_disk_key disk_key;
1000         struct extent_buffer *cow;
1001         int level, ret;
1002         int last_ref = 0;
1003         int unlock_orig = 0;
1004         u64 parent_start;
1005
1006         if (*cow_ret == buf)
1007                 unlock_orig = 1;
1008
1009         btrfs_assert_tree_locked(buf);
1010
1011         WARN_ON(root->ref_cows && trans->transid !=
1012                 root->fs_info->running_transaction->transid);
1013         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015         level = btrfs_header_level(buf);
1016
1017         if (level == 0)
1018                 btrfs_item_key(buf, &disk_key, 0);
1019         else
1020                 btrfs_node_key(buf, &disk_key, 0);
1021
1022         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023                 if (parent)
1024                         parent_start = parent->start;
1025                 else
1026                         parent_start = 0;
1027         } else
1028                 parent_start = 0;
1029
1030         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031                                      root->root_key.objectid, &disk_key,
1032                                      level, search_start, empty_size);
1033         if (IS_ERR(cow))
1034                 return PTR_ERR(cow);
1035
1036         /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039         btrfs_set_header_bytenr(cow, cow->start);
1040         btrfs_set_header_generation(cow, trans->transid);
1041         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043                                      BTRFS_HEADER_FLAG_RELOC);
1044         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046         else
1047                 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049         write_extent_buffer(cow, root->fs_info->fsid,
1050                             (unsigned long)btrfs_header_fsid(cow),
1051                             BTRFS_FSID_SIZE);
1052
1053         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054         if (ret) {
1055                 btrfs_abort_transaction(trans, root, ret);
1056                 return ret;
1057         }
1058
1059         if (root->ref_cows)
1060                 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062         if (buf == root->node) {
1063                 WARN_ON(parent && parent != buf);
1064                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066                         parent_start = buf->start;
1067                 else
1068                         parent_start = 0;
1069
1070                 extent_buffer_get(cow);
1071                 tree_mod_log_set_root_pointer(root, cow, 1);
1072                 rcu_assign_pointer(root->node, cow);
1073
1074                 btrfs_free_tree_block(trans, root, buf, parent_start,
1075                                       last_ref);
1076                 free_extent_buffer(buf);
1077                 add_root_to_dirty_list(root);
1078         } else {
1079                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                         parent_start = parent->start;
1081                 else
1082                         parent_start = 0;
1083
1084                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086                                         MOD_LOG_KEY_REPLACE);
1087                 btrfs_set_node_blockptr(parent, parent_slot,
1088                                         cow->start);
1089                 btrfs_set_node_ptr_generation(parent, parent_slot,
1090                                               trans->transid);
1091                 btrfs_mark_buffer_dirty(parent);
1092                 tree_mod_log_free_eb(root->fs_info, buf);
1093                 btrfs_free_tree_block(trans, root, buf, parent_start,
1094                                       last_ref);
1095         }
1096         if (unlock_orig)
1097                 btrfs_tree_unlock(buf);
1098         free_extent_buffer_stale(buf);
1099         btrfs_mark_buffer_dirty(cow);
1100         *cow_ret = cow;
1101         return 0;
1102 }
1103
1104 /*
1105  * returns the logical address of the oldest predecessor of the given root.
1106  * entries older than time_seq are ignored.
1107  */
1108 static struct tree_mod_elem *
1109 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1110                            struct extent_buffer *eb_root, u64 time_seq)
1111 {
1112         struct tree_mod_elem *tm;
1113         struct tree_mod_elem *found = NULL;
1114         u64 root_logical = eb_root->start;
1115         int looped = 0;
1116
1117         if (!time_seq)
1118                 return 0;
1119
1120         /*
1121          * the very last operation that's logged for a root is the replacement
1122          * operation (if it is replaced at all). this has the index of the *new*
1123          * root, making it the very first operation that's logged for this root.
1124          */
1125         while (1) {
1126                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1127                                                 time_seq);
1128                 if (!looped && !tm)
1129                         return 0;
1130                 /*
1131                  * if there are no tree operation for the oldest root, we simply
1132                  * return it. this should only happen if that (old) root is at
1133                  * level 0.
1134                  */
1135                 if (!tm)
1136                         break;
1137
1138                 /*
1139                  * if there's an operation that's not a root replacement, we
1140                  * found the oldest version of our root. normally, we'll find a
1141                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1142                  */
1143                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1144                         break;
1145
1146                 found = tm;
1147                 root_logical = tm->old_root.logical;
1148                 looped = 1;
1149         }
1150
1151         /* if there's no old root to return, return what we found instead */
1152         if (!found)
1153                 found = tm;
1154
1155         return found;
1156 }
1157
1158 /*
1159  * tm is a pointer to the first operation to rewind within eb. then, all
1160  * previous operations will be rewinded (until we reach something older than
1161  * time_seq).
1162  */
1163 static void
1164 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1165                       struct tree_mod_elem *first_tm)
1166 {
1167         u32 n;
1168         struct rb_node *next;
1169         struct tree_mod_elem *tm = first_tm;
1170         unsigned long o_dst;
1171         unsigned long o_src;
1172         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1173
1174         n = btrfs_header_nritems(eb);
1175         while (tm && tm->seq >= time_seq) {
1176                 /*
1177                  * all the operations are recorded with the operator used for
1178                  * the modification. as we're going backwards, we do the
1179                  * opposite of each operation here.
1180                  */
1181                 switch (tm->op) {
1182                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1183                         BUG_ON(tm->slot < n);
1184                         /* Fallthrough */
1185                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1186                 case MOD_LOG_KEY_REMOVE:
1187                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1188                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1189                         btrfs_set_node_ptr_generation(eb, tm->slot,
1190                                                       tm->generation);
1191                         n++;
1192                         break;
1193                 case MOD_LOG_KEY_REPLACE:
1194                         BUG_ON(tm->slot >= n);
1195                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1196                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197                         btrfs_set_node_ptr_generation(eb, tm->slot,
1198                                                       tm->generation);
1199                         break;
1200                 case MOD_LOG_KEY_ADD:
1201                         /* if a move operation is needed it's in the log */
1202                         n--;
1203                         break;
1204                 case MOD_LOG_MOVE_KEYS:
1205                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1206                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1207                         memmove_extent_buffer(eb, o_dst, o_src,
1208                                               tm->move.nr_items * p_size);
1209                         break;
1210                 case MOD_LOG_ROOT_REPLACE:
1211                         /*
1212                          * this operation is special. for roots, this must be
1213                          * handled explicitly before rewinding.
1214                          * for non-roots, this operation may exist if the node
1215                          * was a root: root A -> child B; then A gets empty and
1216                          * B is promoted to the new root. in the mod log, we'll
1217                          * have a root-replace operation for B, a tree block
1218                          * that is no root. we simply ignore that operation.
1219                          */
1220                         break;
1221                 }
1222                 next = rb_next(&tm->node);
1223                 if (!next)
1224                         break;
1225                 tm = container_of(next, struct tree_mod_elem, node);
1226                 if (tm->index != first_tm->index)
1227                         break;
1228         }
1229         btrfs_set_header_nritems(eb, n);
1230 }
1231
1232 /*
1233  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1234  * is returned. If rewind operations happen, a fresh buffer is returned. The
1235  * returned buffer is always read-locked. If the returned buffer is not the
1236  * input buffer, the lock on the input buffer is released and the input buffer
1237  * is freed (its refcount is decremented).
1238  */
1239 static struct extent_buffer *
1240 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1241                     u64 time_seq)
1242 {
1243         struct extent_buffer *eb_rewin;
1244         struct tree_mod_elem *tm;
1245
1246         if (!time_seq)
1247                 return eb;
1248
1249         if (btrfs_header_level(eb) == 0)
1250                 return eb;
1251
1252         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1253         if (!tm)
1254                 return eb;
1255
1256         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1257                 BUG_ON(tm->slot != 0);
1258                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1259                                                 fs_info->tree_root->nodesize);
1260                 BUG_ON(!eb_rewin);
1261                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1262                 btrfs_set_header_backref_rev(eb_rewin,
1263                                              btrfs_header_backref_rev(eb));
1264                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1265                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1266         } else {
1267                 eb_rewin = btrfs_clone_extent_buffer(eb);
1268                 BUG_ON(!eb_rewin);
1269         }
1270
1271         extent_buffer_get(eb_rewin);
1272         btrfs_tree_read_unlock(eb);
1273         free_extent_buffer(eb);
1274
1275         extent_buffer_get(eb_rewin);
1276         btrfs_tree_read_lock(eb_rewin);
1277         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1278         WARN_ON(btrfs_header_nritems(eb_rewin) >
1279                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1280
1281         return eb_rewin;
1282 }
1283
1284 /*
1285  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1286  * value. If there are no changes, the current root->root_node is returned. If
1287  * anything changed in between, there's a fresh buffer allocated on which the
1288  * rewind operations are done. In any case, the returned buffer is read locked.
1289  * Returns NULL on error (with no locks held).
1290  */
1291 static inline struct extent_buffer *
1292 get_old_root(struct btrfs_root *root, u64 time_seq)
1293 {
1294         struct tree_mod_elem *tm;
1295         struct extent_buffer *eb = NULL;
1296         struct extent_buffer *eb_root;
1297         struct extent_buffer *old;
1298         struct tree_mod_root *old_root = NULL;
1299         u64 old_generation = 0;
1300         u64 logical;
1301         u32 blocksize;
1302
1303         eb_root = btrfs_read_lock_root_node(root);
1304         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1305         if (!tm)
1306                 return eb_root;
1307
1308         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1309                 old_root = &tm->old_root;
1310                 old_generation = tm->generation;
1311                 logical = old_root->logical;
1312         } else {
1313                 logical = eb_root->start;
1314         }
1315
1316         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1317         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318                 btrfs_tree_read_unlock(eb_root);
1319                 free_extent_buffer(eb_root);
1320                 blocksize = btrfs_level_size(root, old_root->level);
1321                 old = read_tree_block(root, logical, blocksize, 0);
1322                 if (!old || !extent_buffer_uptodate(old)) {
1323                         free_extent_buffer(old);
1324                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1325                                 logical);
1326                         WARN_ON(1);
1327                 } else {
1328                         eb = btrfs_clone_extent_buffer(old);
1329                         free_extent_buffer(old);
1330                 }
1331         } else if (old_root) {
1332                 btrfs_tree_read_unlock(eb_root);
1333                 free_extent_buffer(eb_root);
1334                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1335         } else {
1336                 eb = btrfs_clone_extent_buffer(eb_root);
1337                 btrfs_tree_read_unlock(eb_root);
1338                 free_extent_buffer(eb_root);
1339         }
1340
1341         if (!eb)
1342                 return NULL;
1343         extent_buffer_get(eb);
1344         btrfs_tree_read_lock(eb);
1345         if (old_root) {
1346                 btrfs_set_header_bytenr(eb, eb->start);
1347                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1348                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1349                 btrfs_set_header_level(eb, old_root->level);
1350                 btrfs_set_header_generation(eb, old_generation);
1351         }
1352         if (tm)
1353                 __tree_mod_log_rewind(eb, time_seq, tm);
1354         else
1355                 WARN_ON(btrfs_header_level(eb) != 0);
1356         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1357
1358         return eb;
1359 }
1360
1361 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1362 {
1363         struct tree_mod_elem *tm;
1364         int level;
1365         struct extent_buffer *eb_root = btrfs_root_node(root);
1366
1367         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1368         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1369                 level = tm->old_root.level;
1370         } else {
1371                 level = btrfs_header_level(eb_root);
1372         }
1373         free_extent_buffer(eb_root);
1374
1375         return level;
1376 }
1377
1378 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1379                                    struct btrfs_root *root,
1380                                    struct extent_buffer *buf)
1381 {
1382         /* ensure we can see the force_cow */
1383         smp_rmb();
1384
1385         /*
1386          * We do not need to cow a block if
1387          * 1) this block is not created or changed in this transaction;
1388          * 2) this block does not belong to TREE_RELOC tree;
1389          * 3) the root is not forced COW.
1390          *
1391          * What is forced COW:
1392          *    when we create snapshot during commiting the transaction,
1393          *    after we've finished coping src root, we must COW the shared
1394          *    block to ensure the metadata consistency.
1395          */
1396         if (btrfs_header_generation(buf) == trans->transid &&
1397             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1398             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1400             !root->force_cow)
1401                 return 0;
1402         return 1;
1403 }
1404
1405 /*
1406  * cows a single block, see __btrfs_cow_block for the real work.
1407  * This version of it has extra checks so that a block isn't cow'd more than
1408  * once per transaction, as long as it hasn't been written yet
1409  */
1410 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1411                     struct btrfs_root *root, struct extent_buffer *buf,
1412                     struct extent_buffer *parent, int parent_slot,
1413                     struct extent_buffer **cow_ret)
1414 {
1415         u64 search_start;
1416         int ret;
1417
1418         if (trans->transaction != root->fs_info->running_transaction)
1419                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1420                        (unsigned long long)trans->transid,
1421                        (unsigned long long)
1422                        root->fs_info->running_transaction->transid);
1423
1424         if (trans->transid != root->fs_info->generation)
1425                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1426                        (unsigned long long)trans->transid,
1427                        (unsigned long long)root->fs_info->generation);
1428
1429         if (!should_cow_block(trans, root, buf)) {
1430                 *cow_ret = buf;
1431                 return 0;
1432         }
1433
1434         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1435
1436         if (parent)
1437                 btrfs_set_lock_blocking(parent);
1438         btrfs_set_lock_blocking(buf);
1439
1440         ret = __btrfs_cow_block(trans, root, buf, parent,
1441                                  parent_slot, cow_ret, search_start, 0);
1442
1443         trace_btrfs_cow_block(root, buf, *cow_ret);
1444
1445         return ret;
1446 }
1447
1448 /*
1449  * helper function for defrag to decide if two blocks pointed to by a
1450  * node are actually close by
1451  */
1452 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1453 {
1454         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1455                 return 1;
1456         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1457                 return 1;
1458         return 0;
1459 }
1460
1461 /*
1462  * compare two keys in a memcmp fashion
1463  */
1464 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1465 {
1466         struct btrfs_key k1;
1467
1468         btrfs_disk_key_to_cpu(&k1, disk);
1469
1470         return btrfs_comp_cpu_keys(&k1, k2);
1471 }
1472
1473 /*
1474  * same as comp_keys only with two btrfs_key's
1475  */
1476 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1477 {
1478         if (k1->objectid > k2->objectid)
1479                 return 1;
1480         if (k1->objectid < k2->objectid)
1481                 return -1;
1482         if (k1->type > k2->type)
1483                 return 1;
1484         if (k1->type < k2->type)
1485                 return -1;
1486         if (k1->offset > k2->offset)
1487                 return 1;
1488         if (k1->offset < k2->offset)
1489                 return -1;
1490         return 0;
1491 }
1492
1493 /*
1494  * this is used by the defrag code to go through all the
1495  * leaves pointed to by a node and reallocate them so that
1496  * disk order is close to key order
1497  */
1498 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1499                        struct btrfs_root *root, struct extent_buffer *parent,
1500                        int start_slot, u64 *last_ret,
1501                        struct btrfs_key *progress)
1502 {
1503         struct extent_buffer *cur;
1504         u64 blocknr;
1505         u64 gen;
1506         u64 search_start = *last_ret;
1507         u64 last_block = 0;
1508         u64 other;
1509         u32 parent_nritems;
1510         int end_slot;
1511         int i;
1512         int err = 0;
1513         int parent_level;
1514         int uptodate;
1515         u32 blocksize;
1516         int progress_passed = 0;
1517         struct btrfs_disk_key disk_key;
1518
1519         parent_level = btrfs_header_level(parent);
1520
1521         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1522         WARN_ON(trans->transid != root->fs_info->generation);
1523
1524         parent_nritems = btrfs_header_nritems(parent);
1525         blocksize = btrfs_level_size(root, parent_level - 1);
1526         end_slot = parent_nritems;
1527
1528         if (parent_nritems == 1)
1529                 return 0;
1530
1531         btrfs_set_lock_blocking(parent);
1532
1533         for (i = start_slot; i < end_slot; i++) {
1534                 int close = 1;
1535
1536                 btrfs_node_key(parent, &disk_key, i);
1537                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1538                         continue;
1539
1540                 progress_passed = 1;
1541                 blocknr = btrfs_node_blockptr(parent, i);
1542                 gen = btrfs_node_ptr_generation(parent, i);
1543                 if (last_block == 0)
1544                         last_block = blocknr;
1545
1546                 if (i > 0) {
1547                         other = btrfs_node_blockptr(parent, i - 1);
1548                         close = close_blocks(blocknr, other, blocksize);
1549                 }
1550                 if (!close && i < end_slot - 2) {
1551                         other = btrfs_node_blockptr(parent, i + 1);
1552                         close = close_blocks(blocknr, other, blocksize);
1553                 }
1554                 if (close) {
1555                         last_block = blocknr;
1556                         continue;
1557                 }
1558
1559                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1560                 if (cur)
1561                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1562                 else
1563                         uptodate = 0;
1564                 if (!cur || !uptodate) {
1565                         if (!cur) {
1566                                 cur = read_tree_block(root, blocknr,
1567                                                          blocksize, gen);
1568                                 if (!cur || !extent_buffer_uptodate(cur)) {
1569                                         free_extent_buffer(cur);
1570                                         return -EIO;
1571                                 }
1572                         } else if (!uptodate) {
1573                                 err = btrfs_read_buffer(cur, gen);
1574                                 if (err) {
1575                                         free_extent_buffer(cur);
1576                                         return err;
1577                                 }
1578                         }
1579                 }
1580                 if (search_start == 0)
1581                         search_start = last_block;
1582
1583                 btrfs_tree_lock(cur);
1584                 btrfs_set_lock_blocking(cur);
1585                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1586                                         &cur, search_start,
1587                                         min(16 * blocksize,
1588                                             (end_slot - i) * blocksize));
1589                 if (err) {
1590                         btrfs_tree_unlock(cur);
1591                         free_extent_buffer(cur);
1592                         break;
1593                 }
1594                 search_start = cur->start;
1595                 last_block = cur->start;
1596                 *last_ret = search_start;
1597                 btrfs_tree_unlock(cur);
1598                 free_extent_buffer(cur);
1599         }
1600         return err;
1601 }
1602
1603 /*
1604  * The leaf data grows from end-to-front in the node.
1605  * this returns the address of the start of the last item,
1606  * which is the stop of the leaf data stack
1607  */
1608 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1609                                          struct extent_buffer *leaf)
1610 {
1611         u32 nr = btrfs_header_nritems(leaf);
1612         if (nr == 0)
1613                 return BTRFS_LEAF_DATA_SIZE(root);
1614         return btrfs_item_offset_nr(leaf, nr - 1);
1615 }
1616
1617
1618 /*
1619  * search for key in the extent_buffer.  The items start at offset p,
1620  * and they are item_size apart.  There are 'max' items in p.
1621  *
1622  * the slot in the array is returned via slot, and it points to
1623  * the place where you would insert key if it is not found in
1624  * the array.
1625  *
1626  * slot may point to max if the key is bigger than all of the keys
1627  */
1628 static noinline int generic_bin_search(struct extent_buffer *eb,
1629                                        unsigned long p,
1630                                        int item_size, struct btrfs_key *key,
1631                                        int max, int *slot)
1632 {
1633         int low = 0;
1634         int high = max;
1635         int mid;
1636         int ret;
1637         struct btrfs_disk_key *tmp = NULL;
1638         struct btrfs_disk_key unaligned;
1639         unsigned long offset;
1640         char *kaddr = NULL;
1641         unsigned long map_start = 0;
1642         unsigned long map_len = 0;
1643         int err;
1644
1645         while (low < high) {
1646                 mid = (low + high) / 2;
1647                 offset = p + mid * item_size;
1648
1649                 if (!kaddr || offset < map_start ||
1650                     (offset + sizeof(struct btrfs_disk_key)) >
1651                     map_start + map_len) {
1652
1653                         err = map_private_extent_buffer(eb, offset,
1654                                                 sizeof(struct btrfs_disk_key),
1655                                                 &kaddr, &map_start, &map_len);
1656
1657                         if (!err) {
1658                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1659                                                         map_start);
1660                         } else {
1661                                 read_extent_buffer(eb, &unaligned,
1662                                                    offset, sizeof(unaligned));
1663                                 tmp = &unaligned;
1664                         }
1665
1666                 } else {
1667                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1668                                                         map_start);
1669                 }
1670                 ret = comp_keys(tmp, key);
1671
1672                 if (ret < 0)
1673                         low = mid + 1;
1674                 else if (ret > 0)
1675                         high = mid;
1676                 else {
1677                         *slot = mid;
1678                         return 0;
1679                 }
1680         }
1681         *slot = low;
1682         return 1;
1683 }
1684
1685 /*
1686  * simple bin_search frontend that does the right thing for
1687  * leaves vs nodes
1688  */
1689 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1690                       int level, int *slot)
1691 {
1692         if (level == 0)
1693                 return generic_bin_search(eb,
1694                                           offsetof(struct btrfs_leaf, items),
1695                                           sizeof(struct btrfs_item),
1696                                           key, btrfs_header_nritems(eb),
1697                                           slot);
1698         else
1699                 return generic_bin_search(eb,
1700                                           offsetof(struct btrfs_node, ptrs),
1701                                           sizeof(struct btrfs_key_ptr),
1702                                           key, btrfs_header_nritems(eb),
1703                                           slot);
1704 }
1705
1706 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1707                      int level, int *slot)
1708 {
1709         return bin_search(eb, key, level, slot);
1710 }
1711
1712 static void root_add_used(struct btrfs_root *root, u32 size)
1713 {
1714         spin_lock(&root->accounting_lock);
1715         btrfs_set_root_used(&root->root_item,
1716                             btrfs_root_used(&root->root_item) + size);
1717         spin_unlock(&root->accounting_lock);
1718 }
1719
1720 static void root_sub_used(struct btrfs_root *root, u32 size)
1721 {
1722         spin_lock(&root->accounting_lock);
1723         btrfs_set_root_used(&root->root_item,
1724                             btrfs_root_used(&root->root_item) - size);
1725         spin_unlock(&root->accounting_lock);
1726 }
1727
1728 /* given a node and slot number, this reads the blocks it points to.  The
1729  * extent buffer is returned with a reference taken (but unlocked).
1730  * NULL is returned on error.
1731  */
1732 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1733                                    struct extent_buffer *parent, int slot)
1734 {
1735         int level = btrfs_header_level(parent);
1736         struct extent_buffer *eb;
1737
1738         if (slot < 0)
1739                 return NULL;
1740         if (slot >= btrfs_header_nritems(parent))
1741                 return NULL;
1742
1743         BUG_ON(level == 0);
1744
1745         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1746                              btrfs_level_size(root, level - 1),
1747                              btrfs_node_ptr_generation(parent, slot));
1748         if (eb && !extent_buffer_uptodate(eb)) {
1749                 free_extent_buffer(eb);
1750                 eb = NULL;
1751         }
1752
1753         return eb;
1754 }
1755
1756 /*
1757  * node level balancing, used to make sure nodes are in proper order for
1758  * item deletion.  We balance from the top down, so we have to make sure
1759  * that a deletion won't leave an node completely empty later on.
1760  */
1761 static noinline int balance_level(struct btrfs_trans_handle *trans,
1762                          struct btrfs_root *root,
1763                          struct btrfs_path *path, int level)
1764 {
1765         struct extent_buffer *right = NULL;
1766         struct extent_buffer *mid;
1767         struct extent_buffer *left = NULL;
1768         struct extent_buffer *parent = NULL;
1769         int ret = 0;
1770         int wret;
1771         int pslot;
1772         int orig_slot = path->slots[level];
1773         u64 orig_ptr;
1774
1775         if (level == 0)
1776                 return 0;
1777
1778         mid = path->nodes[level];
1779
1780         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1781                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1782         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1783
1784         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1785
1786         if (level < BTRFS_MAX_LEVEL - 1) {
1787                 parent = path->nodes[level + 1];
1788                 pslot = path->slots[level + 1];
1789         }
1790
1791         /*
1792          * deal with the case where there is only one pointer in the root
1793          * by promoting the node below to a root
1794          */
1795         if (!parent) {
1796                 struct extent_buffer *child;
1797
1798                 if (btrfs_header_nritems(mid) != 1)
1799                         return 0;
1800
1801                 /* promote the child to a root */
1802                 child = read_node_slot(root, mid, 0);
1803                 if (!child) {
1804                         ret = -EROFS;
1805                         btrfs_std_error(root->fs_info, ret);
1806                         goto enospc;
1807                 }
1808
1809                 btrfs_tree_lock(child);
1810                 btrfs_set_lock_blocking(child);
1811                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1812                 if (ret) {
1813                         btrfs_tree_unlock(child);
1814                         free_extent_buffer(child);
1815                         goto enospc;
1816                 }
1817
1818                 tree_mod_log_set_root_pointer(root, child, 1);
1819                 rcu_assign_pointer(root->node, child);
1820
1821                 add_root_to_dirty_list(root);
1822                 btrfs_tree_unlock(child);
1823
1824                 path->locks[level] = 0;
1825                 path->nodes[level] = NULL;
1826                 clean_tree_block(trans, root, mid);
1827                 btrfs_tree_unlock(mid);
1828                 /* once for the path */
1829                 free_extent_buffer(mid);
1830
1831                 root_sub_used(root, mid->len);
1832                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1833                 /* once for the root ptr */
1834                 free_extent_buffer_stale(mid);
1835                 return 0;
1836         }
1837         if (btrfs_header_nritems(mid) >
1838             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1839                 return 0;
1840
1841         left = read_node_slot(root, parent, pslot - 1);
1842         if (left) {
1843                 btrfs_tree_lock(left);
1844                 btrfs_set_lock_blocking(left);
1845                 wret = btrfs_cow_block(trans, root, left,
1846                                        parent, pslot - 1, &left);
1847                 if (wret) {
1848                         ret = wret;
1849                         goto enospc;
1850                 }
1851         }
1852         right = read_node_slot(root, parent, pslot + 1);
1853         if (right) {
1854                 btrfs_tree_lock(right);
1855                 btrfs_set_lock_blocking(right);
1856                 wret = btrfs_cow_block(trans, root, right,
1857                                        parent, pslot + 1, &right);
1858                 if (wret) {
1859                         ret = wret;
1860                         goto enospc;
1861                 }
1862         }
1863
1864         /* first, try to make some room in the middle buffer */
1865         if (left) {
1866                 orig_slot += btrfs_header_nritems(left);
1867                 wret = push_node_left(trans, root, left, mid, 1);
1868                 if (wret < 0)
1869                         ret = wret;
1870         }
1871
1872         /*
1873          * then try to empty the right most buffer into the middle
1874          */
1875         if (right) {
1876                 wret = push_node_left(trans, root, mid, right, 1);
1877                 if (wret < 0 && wret != -ENOSPC)
1878                         ret = wret;
1879                 if (btrfs_header_nritems(right) == 0) {
1880                         clean_tree_block(trans, root, right);
1881                         btrfs_tree_unlock(right);
1882                         del_ptr(root, path, level + 1, pslot + 1);
1883                         root_sub_used(root, right->len);
1884                         btrfs_free_tree_block(trans, root, right, 0, 1);
1885                         free_extent_buffer_stale(right);
1886                         right = NULL;
1887                 } else {
1888                         struct btrfs_disk_key right_key;
1889                         btrfs_node_key(right, &right_key, 0);
1890                         tree_mod_log_set_node_key(root->fs_info, parent,
1891                                                   pslot + 1, 0);
1892                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1893                         btrfs_mark_buffer_dirty(parent);
1894                 }
1895         }
1896         if (btrfs_header_nritems(mid) == 1) {
1897                 /*
1898                  * we're not allowed to leave a node with one item in the
1899                  * tree during a delete.  A deletion from lower in the tree
1900                  * could try to delete the only pointer in this node.
1901                  * So, pull some keys from the left.
1902                  * There has to be a left pointer at this point because
1903                  * otherwise we would have pulled some pointers from the
1904                  * right
1905                  */
1906                 if (!left) {
1907                         ret = -EROFS;
1908                         btrfs_std_error(root->fs_info, ret);
1909                         goto enospc;
1910                 }
1911                 wret = balance_node_right(trans, root, mid, left);
1912                 if (wret < 0) {
1913                         ret = wret;
1914                         goto enospc;
1915                 }
1916                 if (wret == 1) {
1917                         wret = push_node_left(trans, root, left, mid, 1);
1918                         if (wret < 0)
1919                                 ret = wret;
1920                 }
1921                 BUG_ON(wret == 1);
1922         }
1923         if (btrfs_header_nritems(mid) == 0) {
1924                 clean_tree_block(trans, root, mid);
1925                 btrfs_tree_unlock(mid);
1926                 del_ptr(root, path, level + 1, pslot);
1927                 root_sub_used(root, mid->len);
1928                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1929                 free_extent_buffer_stale(mid);
1930                 mid = NULL;
1931         } else {
1932                 /* update the parent key to reflect our changes */
1933                 struct btrfs_disk_key mid_key;
1934                 btrfs_node_key(mid, &mid_key, 0);
1935                 tree_mod_log_set_node_key(root->fs_info, parent,
1936                                           pslot, 0);
1937                 btrfs_set_node_key(parent, &mid_key, pslot);
1938                 btrfs_mark_buffer_dirty(parent);
1939         }
1940
1941         /* update the path */
1942         if (left) {
1943                 if (btrfs_header_nritems(left) > orig_slot) {
1944                         extent_buffer_get(left);
1945                         /* left was locked after cow */
1946                         path->nodes[level] = left;
1947                         path->slots[level + 1] -= 1;
1948                         path->slots[level] = orig_slot;
1949                         if (mid) {
1950                                 btrfs_tree_unlock(mid);
1951                                 free_extent_buffer(mid);
1952                         }
1953                 } else {
1954                         orig_slot -= btrfs_header_nritems(left);
1955                         path->slots[level] = orig_slot;
1956                 }
1957         }
1958         /* double check we haven't messed things up */
1959         if (orig_ptr !=
1960             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1961                 BUG();
1962 enospc:
1963         if (right) {
1964                 btrfs_tree_unlock(right);
1965                 free_extent_buffer(right);
1966         }
1967         if (left) {
1968                 if (path->nodes[level] != left)
1969                         btrfs_tree_unlock(left);
1970                 free_extent_buffer(left);
1971         }
1972         return ret;
1973 }
1974
1975 /* Node balancing for insertion.  Here we only split or push nodes around
1976  * when they are completely full.  This is also done top down, so we
1977  * have to be pessimistic.
1978  */
1979 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1980                                           struct btrfs_root *root,
1981                                           struct btrfs_path *path, int level)
1982 {
1983         struct extent_buffer *right = NULL;
1984         struct extent_buffer *mid;
1985         struct extent_buffer *left = NULL;
1986         struct extent_buffer *parent = NULL;
1987         int ret = 0;
1988         int wret;
1989         int pslot;
1990         int orig_slot = path->slots[level];
1991
1992         if (level == 0)
1993                 return 1;
1994
1995         mid = path->nodes[level];
1996         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1997
1998         if (level < BTRFS_MAX_LEVEL - 1) {
1999                 parent = path->nodes[level + 1];
2000                 pslot = path->slots[level + 1];
2001         }
2002
2003         if (!parent)
2004                 return 1;
2005
2006         left = read_node_slot(root, parent, pslot - 1);
2007
2008         /* first, try to make some room in the middle buffer */
2009         if (left) {
2010                 u32 left_nr;
2011
2012                 btrfs_tree_lock(left);
2013                 btrfs_set_lock_blocking(left);
2014
2015                 left_nr = btrfs_header_nritems(left);
2016                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017                         wret = 1;
2018                 } else {
2019                         ret = btrfs_cow_block(trans, root, left, parent,
2020                                               pslot - 1, &left);
2021                         if (ret)
2022                                 wret = 1;
2023                         else {
2024                                 wret = push_node_left(trans, root,
2025                                                       left, mid, 0);
2026                         }
2027                 }
2028                 if (wret < 0)
2029                         ret = wret;
2030                 if (wret == 0) {
2031                         struct btrfs_disk_key disk_key;
2032                         orig_slot += left_nr;
2033                         btrfs_node_key(mid, &disk_key, 0);
2034                         tree_mod_log_set_node_key(root->fs_info, parent,
2035                                                   pslot, 0);
2036                         btrfs_set_node_key(parent, &disk_key, pslot);
2037                         btrfs_mark_buffer_dirty(parent);
2038                         if (btrfs_header_nritems(left) > orig_slot) {
2039                                 path->nodes[level] = left;
2040                                 path->slots[level + 1] -= 1;
2041                                 path->slots[level] = orig_slot;
2042                                 btrfs_tree_unlock(mid);
2043                                 free_extent_buffer(mid);
2044                         } else {
2045                                 orig_slot -=
2046                                         btrfs_header_nritems(left);
2047                                 path->slots[level] = orig_slot;
2048                                 btrfs_tree_unlock(left);
2049                                 free_extent_buffer(left);
2050                         }
2051                         return 0;
2052                 }
2053                 btrfs_tree_unlock(left);
2054                 free_extent_buffer(left);
2055         }
2056         right = read_node_slot(root, parent, pslot + 1);
2057
2058         /*
2059          * then try to empty the right most buffer into the middle
2060          */
2061         if (right) {
2062                 u32 right_nr;
2063
2064                 btrfs_tree_lock(right);
2065                 btrfs_set_lock_blocking(right);
2066
2067                 right_nr = btrfs_header_nritems(right);
2068                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2069                         wret = 1;
2070                 } else {
2071                         ret = btrfs_cow_block(trans, root, right,
2072                                               parent, pslot + 1,
2073                                               &right);
2074                         if (ret)
2075                                 wret = 1;
2076                         else {
2077                                 wret = balance_node_right(trans, root,
2078                                                           right, mid);
2079                         }
2080                 }
2081                 if (wret < 0)
2082                         ret = wret;
2083                 if (wret == 0) {
2084                         struct btrfs_disk_key disk_key;
2085
2086                         btrfs_node_key(right, &disk_key, 0);
2087                         tree_mod_log_set_node_key(root->fs_info, parent,
2088                                                   pslot + 1, 0);
2089                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2090                         btrfs_mark_buffer_dirty(parent);
2091
2092                         if (btrfs_header_nritems(mid) <= orig_slot) {
2093                                 path->nodes[level] = right;
2094                                 path->slots[level + 1] += 1;
2095                                 path->slots[level] = orig_slot -
2096                                         btrfs_header_nritems(mid);
2097                                 btrfs_tree_unlock(mid);
2098                                 free_extent_buffer(mid);
2099                         } else {
2100                                 btrfs_tree_unlock(right);
2101                                 free_extent_buffer(right);
2102                         }
2103                         return 0;
2104                 }
2105                 btrfs_tree_unlock(right);
2106                 free_extent_buffer(right);
2107         }
2108         return 1;
2109 }
2110
2111 /*
2112  * readahead one full node of leaves, finding things that are close
2113  * to the block in 'slot', and triggering ra on them.
2114  */
2115 static void reada_for_search(struct btrfs_root *root,
2116                              struct btrfs_path *path,
2117                              int level, int slot, u64 objectid)
2118 {
2119         struct extent_buffer *node;
2120         struct btrfs_disk_key disk_key;
2121         u32 nritems;
2122         u64 search;
2123         u64 target;
2124         u64 nread = 0;
2125         u64 gen;
2126         int direction = path->reada;
2127         struct extent_buffer *eb;
2128         u32 nr;
2129         u32 blocksize;
2130         u32 nscan = 0;
2131
2132         if (level != 1)
2133                 return;
2134
2135         if (!path->nodes[level])
2136                 return;
2137
2138         node = path->nodes[level];
2139
2140         search = btrfs_node_blockptr(node, slot);
2141         blocksize = btrfs_level_size(root, level - 1);
2142         eb = btrfs_find_tree_block(root, search, blocksize);
2143         if (eb) {
2144                 free_extent_buffer(eb);
2145                 return;
2146         }
2147
2148         target = search;
2149
2150         nritems = btrfs_header_nritems(node);
2151         nr = slot;
2152
2153         while (1) {
2154                 if (direction < 0) {
2155                         if (nr == 0)
2156                                 break;
2157                         nr--;
2158                 } else if (direction > 0) {
2159                         nr++;
2160                         if (nr >= nritems)
2161                                 break;
2162                 }
2163                 if (path->reada < 0 && objectid) {
2164                         btrfs_node_key(node, &disk_key, nr);
2165                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2166                                 break;
2167                 }
2168                 search = btrfs_node_blockptr(node, nr);
2169                 if ((search <= target && target - search <= 65536) ||
2170                     (search > target && search - target <= 65536)) {
2171                         gen = btrfs_node_ptr_generation(node, nr);
2172                         readahead_tree_block(root, search, blocksize, gen);
2173                         nread += blocksize;
2174                 }
2175                 nscan++;
2176                 if ((nread > 65536 || nscan > 32))
2177                         break;
2178         }
2179 }
2180
2181 /*
2182  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2183  * cache
2184  */
2185 static noinline int reada_for_balance(struct btrfs_root *root,
2186                                       struct btrfs_path *path, int level)
2187 {
2188         int slot;
2189         int nritems;
2190         struct extent_buffer *parent;
2191         struct extent_buffer *eb;
2192         u64 gen;
2193         u64 block1 = 0;
2194         u64 block2 = 0;
2195         int ret = 0;
2196         int blocksize;
2197
2198         parent = path->nodes[level + 1];
2199         if (!parent)
2200                 return 0;
2201
2202         nritems = btrfs_header_nritems(parent);
2203         slot = path->slots[level + 1];
2204         blocksize = btrfs_level_size(root, level);
2205
2206         if (slot > 0) {
2207                 block1 = btrfs_node_blockptr(parent, slot - 1);
2208                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2209                 eb = btrfs_find_tree_block(root, block1, blocksize);
2210                 /*
2211                  * if we get -eagain from btrfs_buffer_uptodate, we
2212                  * don't want to return eagain here.  That will loop
2213                  * forever
2214                  */
2215                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2216                         block1 = 0;
2217                 free_extent_buffer(eb);
2218         }
2219         if (slot + 1 < nritems) {
2220                 block2 = btrfs_node_blockptr(parent, slot + 1);
2221                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2222                 eb = btrfs_find_tree_block(root, block2, blocksize);
2223                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2224                         block2 = 0;
2225                 free_extent_buffer(eb);
2226         }
2227         if (block1 || block2) {
2228                 ret = -EAGAIN;
2229
2230                 /* release the whole path */
2231                 btrfs_release_path(path);
2232
2233                 /* read the blocks */
2234                 if (block1)
2235                         readahead_tree_block(root, block1, blocksize, 0);
2236                 if (block2)
2237                         readahead_tree_block(root, block2, blocksize, 0);
2238
2239                 if (block1) {
2240                         eb = read_tree_block(root, block1, blocksize, 0);
2241                         free_extent_buffer(eb);
2242                 }
2243                 if (block2) {
2244                         eb = read_tree_block(root, block2, blocksize, 0);
2245                         free_extent_buffer(eb);
2246                 }
2247         }
2248         return ret;
2249 }
2250
2251
2252 /*
2253  * when we walk down the tree, it is usually safe to unlock the higher layers
2254  * in the tree.  The exceptions are when our path goes through slot 0, because
2255  * operations on the tree might require changing key pointers higher up in the
2256  * tree.
2257  *
2258  * callers might also have set path->keep_locks, which tells this code to keep
2259  * the lock if the path points to the last slot in the block.  This is part of
2260  * walking through the tree, and selecting the next slot in the higher block.
2261  *
2262  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2263  * if lowest_unlock is 1, level 0 won't be unlocked
2264  */
2265 static noinline void unlock_up(struct btrfs_path *path, int level,
2266                                int lowest_unlock, int min_write_lock_level,
2267                                int *write_lock_level)
2268 {
2269         int i;
2270         int skip_level = level;
2271         int no_skips = 0;
2272         struct extent_buffer *t;
2273
2274         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2275                 if (!path->nodes[i])
2276                         break;
2277                 if (!path->locks[i])
2278                         break;
2279                 if (!no_skips && path->slots[i] == 0) {
2280                         skip_level = i + 1;
2281                         continue;
2282                 }
2283                 if (!no_skips && path->keep_locks) {
2284                         u32 nritems;
2285                         t = path->nodes[i];
2286                         nritems = btrfs_header_nritems(t);
2287                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2288                                 skip_level = i + 1;
2289                                 continue;
2290                         }
2291                 }
2292                 if (skip_level < i && i >= lowest_unlock)
2293                         no_skips = 1;
2294
2295                 t = path->nodes[i];
2296                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2297                         btrfs_tree_unlock_rw(t, path->locks[i]);
2298                         path->locks[i] = 0;
2299                         if (write_lock_level &&
2300                             i > min_write_lock_level &&
2301                             i <= *write_lock_level) {
2302                                 *write_lock_level = i - 1;
2303                         }
2304                 }
2305         }
2306 }
2307
2308 /*
2309  * This releases any locks held in the path starting at level and
2310  * going all the way up to the root.
2311  *
2312  * btrfs_search_slot will keep the lock held on higher nodes in a few
2313  * corner cases, such as COW of the block at slot zero in the node.  This
2314  * ignores those rules, and it should only be called when there are no
2315  * more updates to be done higher up in the tree.
2316  */
2317 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2318 {
2319         int i;
2320
2321         if (path->keep_locks)
2322                 return;
2323
2324         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2325                 if (!path->nodes[i])
2326                         continue;
2327                 if (!path->locks[i])
2328                         continue;
2329                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2330                 path->locks[i] = 0;
2331         }
2332 }
2333
2334 /*
2335  * helper function for btrfs_search_slot.  The goal is to find a block
2336  * in cache without setting the path to blocking.  If we find the block
2337  * we return zero and the path is unchanged.
2338  *
2339  * If we can't find the block, we set the path blocking and do some
2340  * reada.  -EAGAIN is returned and the search must be repeated.
2341  */
2342 static int
2343 read_block_for_search(struct btrfs_trans_handle *trans,
2344                        struct btrfs_root *root, struct btrfs_path *p,
2345                        struct extent_buffer **eb_ret, int level, int slot,
2346                        struct btrfs_key *key, u64 time_seq)
2347 {
2348         u64 blocknr;
2349         u64 gen;
2350         u32 blocksize;
2351         struct extent_buffer *b = *eb_ret;
2352         struct extent_buffer *tmp;
2353         int ret;
2354
2355         blocknr = btrfs_node_blockptr(b, slot);
2356         gen = btrfs_node_ptr_generation(b, slot);
2357         blocksize = btrfs_level_size(root, level - 1);
2358
2359         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2360         if (tmp) {
2361                 /* first we do an atomic uptodate check */
2362                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2363                         *eb_ret = tmp;
2364                         return 0;
2365                 }
2366
2367                 /* the pages were up to date, but we failed
2368                  * the generation number check.  Do a full
2369                  * read for the generation number that is correct.
2370                  * We must do this without dropping locks so
2371                  * we can trust our generation number
2372                  */
2373                 btrfs_set_path_blocking(p);
2374
2375                 /* now we're allowed to do a blocking uptodate check */
2376                 ret = btrfs_read_buffer(tmp, gen);
2377                 if (!ret) {
2378                         *eb_ret = tmp;
2379                         return 0;
2380                 }
2381                 free_extent_buffer(tmp);
2382                 btrfs_release_path(p);
2383                 return -EIO;
2384         }
2385
2386         /*
2387          * reduce lock contention at high levels
2388          * of the btree by dropping locks before
2389          * we read.  Don't release the lock on the current
2390          * level because we need to walk this node to figure
2391          * out which blocks to read.
2392          */
2393         btrfs_unlock_up_safe(p, level + 1);
2394         btrfs_set_path_blocking(p);
2395
2396         free_extent_buffer(tmp);
2397         if (p->reada)
2398                 reada_for_search(root, p, level, slot, key->objectid);
2399
2400         btrfs_release_path(p);
2401
2402         ret = -EAGAIN;
2403         tmp = read_tree_block(root, blocknr, blocksize, 0);
2404         if (tmp) {
2405                 /*
2406                  * If the read above didn't mark this buffer up to date,
2407                  * it will never end up being up to date.  Set ret to EIO now
2408                  * and give up so that our caller doesn't loop forever
2409                  * on our EAGAINs.
2410                  */
2411                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2412                         ret = -EIO;
2413                 free_extent_buffer(tmp);
2414         }
2415         return ret;
2416 }
2417
2418 /*
2419  * helper function for btrfs_search_slot.  This does all of the checks
2420  * for node-level blocks and does any balancing required based on
2421  * the ins_len.
2422  *
2423  * If no extra work was required, zero is returned.  If we had to
2424  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2425  * start over
2426  */
2427 static int
2428 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2429                        struct btrfs_root *root, struct btrfs_path *p,
2430                        struct extent_buffer *b, int level, int ins_len,
2431                        int *write_lock_level)
2432 {
2433         int ret;
2434         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2435             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2436                 int sret;
2437
2438                 if (*write_lock_level < level + 1) {
2439                         *write_lock_level = level + 1;
2440                         btrfs_release_path(p);
2441                         goto again;
2442                 }
2443
2444                 sret = reada_for_balance(root, p, level);
2445                 if (sret)
2446                         goto again;
2447
2448                 btrfs_set_path_blocking(p);
2449                 sret = split_node(trans, root, p, level);
2450                 btrfs_clear_path_blocking(p, NULL, 0);
2451
2452                 BUG_ON(sret > 0);
2453                 if (sret) {
2454                         ret = sret;
2455                         goto done;
2456                 }
2457                 b = p->nodes[level];
2458         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2459                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2460                 int sret;
2461
2462                 if (*write_lock_level < level + 1) {
2463                         *write_lock_level = level + 1;
2464                         btrfs_release_path(p);
2465                         goto again;
2466                 }
2467
2468                 sret = reada_for_balance(root, p, level);
2469                 if (sret)
2470                         goto again;
2471
2472                 btrfs_set_path_blocking(p);
2473                 sret = balance_level(trans, root, p, level);
2474                 btrfs_clear_path_blocking(p, NULL, 0);
2475
2476                 if (sret) {
2477                         ret = sret;
2478                         goto done;
2479                 }
2480                 b = p->nodes[level];
2481                 if (!b) {
2482                         btrfs_release_path(p);
2483                         goto again;
2484                 }
2485                 BUG_ON(btrfs_header_nritems(b) == 1);
2486         }
2487         return 0;
2488
2489 again:
2490         ret = -EAGAIN;
2491 done:
2492         return ret;
2493 }
2494
2495 /*
2496  * look for key in the tree.  path is filled in with nodes along the way
2497  * if key is found, we return zero and you can find the item in the leaf
2498  * level of the path (level 0)
2499  *
2500  * If the key isn't found, the path points to the slot where it should
2501  * be inserted, and 1 is returned.  If there are other errors during the
2502  * search a negative error number is returned.
2503  *
2504  * if ins_len > 0, nodes and leaves will be split as we walk down the
2505  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2506  * possible)
2507  */
2508 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2509                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2510                       ins_len, int cow)
2511 {
2512         struct extent_buffer *b;
2513         int slot;
2514         int ret;
2515         int err;
2516         int level;
2517         int lowest_unlock = 1;
2518         int root_lock;
2519         /* everything at write_lock_level or lower must be write locked */
2520         int write_lock_level = 0;
2521         u8 lowest_level = 0;
2522         int min_write_lock_level;
2523
2524         lowest_level = p->lowest_level;
2525         WARN_ON(lowest_level && ins_len > 0);
2526         WARN_ON(p->nodes[0] != NULL);
2527
2528         if (ins_len < 0) {
2529                 lowest_unlock = 2;
2530
2531                 /* when we are removing items, we might have to go up to level
2532                  * two as we update tree pointers  Make sure we keep write
2533                  * for those levels as well
2534                  */
2535                 write_lock_level = 2;
2536         } else if (ins_len > 0) {
2537                 /*
2538                  * for inserting items, make sure we have a write lock on
2539                  * level 1 so we can update keys
2540                  */
2541                 write_lock_level = 1;
2542         }
2543
2544         if (!cow)
2545                 write_lock_level = -1;
2546
2547         if (cow && (p->keep_locks || p->lowest_level))
2548                 write_lock_level = BTRFS_MAX_LEVEL;
2549
2550         min_write_lock_level = write_lock_level;
2551
2552 again:
2553         /*
2554          * we try very hard to do read locks on the root
2555          */
2556         root_lock = BTRFS_READ_LOCK;
2557         level = 0;
2558         if (p->search_commit_root) {
2559                 /*
2560                  * the commit roots are read only
2561                  * so we always do read locks
2562                  */
2563                 b = root->commit_root;
2564                 extent_buffer_get(b);
2565                 level = btrfs_header_level(b);
2566                 if (!p->skip_locking)
2567                         btrfs_tree_read_lock(b);
2568         } else {
2569                 if (p->skip_locking) {
2570                         b = btrfs_root_node(root);
2571                         level = btrfs_header_level(b);
2572                 } else {
2573                         /* we don't know the level of the root node
2574                          * until we actually have it read locked
2575                          */
2576                         b = btrfs_read_lock_root_node(root);
2577                         level = btrfs_header_level(b);
2578                         if (level <= write_lock_level) {
2579                                 /* whoops, must trade for write lock */
2580                                 btrfs_tree_read_unlock(b);
2581                                 free_extent_buffer(b);
2582                                 b = btrfs_lock_root_node(root);
2583                                 root_lock = BTRFS_WRITE_LOCK;
2584
2585                                 /* the level might have changed, check again */
2586                                 level = btrfs_header_level(b);
2587                         }
2588                 }
2589         }
2590         p->nodes[level] = b;
2591         if (!p->skip_locking)
2592                 p->locks[level] = root_lock;
2593
2594         while (b) {
2595                 level = btrfs_header_level(b);
2596
2597                 /*
2598                  * setup the path here so we can release it under lock
2599                  * contention with the cow code
2600                  */
2601                 if (cow) {
2602                         /*
2603                          * if we don't really need to cow this block
2604                          * then we don't want to set the path blocking,
2605                          * so we test it here
2606                          */
2607                         if (!should_cow_block(trans, root, b))
2608                                 goto cow_done;
2609
2610                         btrfs_set_path_blocking(p);
2611
2612                         /*
2613                          * must have write locks on this node and the
2614                          * parent
2615                          */
2616                         if (level > write_lock_level ||
2617                             (level + 1 > write_lock_level &&
2618                             level + 1 < BTRFS_MAX_LEVEL &&
2619                             p->nodes[level + 1])) {
2620                                 write_lock_level = level + 1;
2621                                 btrfs_release_path(p);
2622                                 goto again;
2623                         }
2624
2625                         err = btrfs_cow_block(trans, root, b,
2626                                               p->nodes[level + 1],
2627                                               p->slots[level + 1], &b);
2628                         if (err) {
2629                                 ret = err;
2630                                 goto done;
2631                         }
2632                 }
2633 cow_done:
2634                 BUG_ON(!cow && ins_len);
2635
2636                 p->nodes[level] = b;
2637                 btrfs_clear_path_blocking(p, NULL, 0);
2638
2639                 /*
2640                  * we have a lock on b and as long as we aren't changing
2641                  * the tree, there is no way to for the items in b to change.
2642                  * It is safe to drop the lock on our parent before we
2643                  * go through the expensive btree search on b.
2644                  *
2645                  * If cow is true, then we might be changing slot zero,
2646                  * which may require changing the parent.  So, we can't
2647                  * drop the lock until after we know which slot we're
2648                  * operating on.
2649                  */
2650                 if (!cow)
2651                         btrfs_unlock_up_safe(p, level + 1);
2652
2653                 ret = bin_search(b, key, level, &slot);
2654
2655                 if (level != 0) {
2656                         int dec = 0;
2657                         if (ret && slot > 0) {
2658                                 dec = 1;
2659                                 slot -= 1;
2660                         }
2661                         p->slots[level] = slot;
2662                         err = setup_nodes_for_search(trans, root, p, b, level,
2663                                              ins_len, &write_lock_level);
2664                         if (err == -EAGAIN)
2665                                 goto again;
2666                         if (err) {
2667                                 ret = err;
2668                                 goto done;
2669                         }
2670                         b = p->nodes[level];
2671                         slot = p->slots[level];
2672
2673                         /*
2674                          * slot 0 is special, if we change the key
2675                          * we have to update the parent pointer
2676                          * which means we must have a write lock
2677                          * on the parent
2678                          */
2679                         if (slot == 0 && cow &&
2680                             write_lock_level < level + 1) {
2681                                 write_lock_level = level + 1;
2682                                 btrfs_release_path(p);
2683                                 goto again;
2684                         }
2685
2686                         unlock_up(p, level, lowest_unlock,
2687                                   min_write_lock_level, &write_lock_level);
2688
2689                         if (level == lowest_level) {
2690                                 if (dec)
2691                                         p->slots[level]++;
2692                                 goto done;
2693                         }
2694
2695                         err = read_block_for_search(trans, root, p,
2696                                                     &b, level, slot, key, 0);
2697                         if (err == -EAGAIN)
2698                                 goto again;
2699                         if (err) {
2700                                 ret = err;
2701                                 goto done;
2702                         }
2703
2704                         if (!p->skip_locking) {
2705                                 level = btrfs_header_level(b);
2706                                 if (level <= write_lock_level) {
2707                                         err = btrfs_try_tree_write_lock(b);
2708                                         if (!err) {
2709                                                 btrfs_set_path_blocking(p);
2710                                                 btrfs_tree_lock(b);
2711                                                 btrfs_clear_path_blocking(p, b,
2712                                                                   BTRFS_WRITE_LOCK);
2713                                         }
2714                                         p->locks[level] = BTRFS_WRITE_LOCK;
2715                                 } else {
2716                                         err = btrfs_try_tree_read_lock(b);
2717                                         if (!err) {
2718                                                 btrfs_set_path_blocking(p);
2719                                                 btrfs_tree_read_lock(b);
2720                                                 btrfs_clear_path_blocking(p, b,
2721                                                                   BTRFS_READ_LOCK);
2722                                         }
2723                                         p->locks[level] = BTRFS_READ_LOCK;
2724                                 }
2725                                 p->nodes[level] = b;
2726                         }
2727                 } else {
2728                         p->slots[level] = slot;
2729                         if (ins_len > 0 &&
2730                             btrfs_leaf_free_space(root, b) < ins_len) {
2731                                 if (write_lock_level < 1) {
2732                                         write_lock_level = 1;
2733                                         btrfs_release_path(p);
2734                                         goto again;
2735                                 }
2736
2737                                 btrfs_set_path_blocking(p);
2738                                 err = split_leaf(trans, root, key,
2739                                                  p, ins_len, ret == 0);
2740                                 btrfs_clear_path_blocking(p, NULL, 0);
2741
2742                                 BUG_ON(err > 0);
2743                                 if (err) {
2744                                         ret = err;
2745                                         goto done;
2746                                 }
2747                         }
2748                         if (!p->search_for_split)
2749                                 unlock_up(p, level, lowest_unlock,
2750                                           min_write_lock_level, &write_lock_level);
2751                         goto done;
2752                 }
2753         }
2754         ret = 1;
2755 done:
2756         /*
2757          * we don't really know what they plan on doing with the path
2758          * from here on, so for now just mark it as blocking
2759          */
2760         if (!p->leave_spinning)
2761                 btrfs_set_path_blocking(p);
2762         if (ret < 0)
2763                 btrfs_release_path(p);
2764         return ret;
2765 }
2766
2767 /*
2768  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2769  * current state of the tree together with the operations recorded in the tree
2770  * modification log to search for the key in a previous version of this tree, as
2771  * denoted by the time_seq parameter.
2772  *
2773  * Naturally, there is no support for insert, delete or cow operations.
2774  *
2775  * The resulting path and return value will be set up as if we called
2776  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2777  */
2778 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2779                           struct btrfs_path *p, u64 time_seq)
2780 {
2781         struct extent_buffer *b;
2782         int slot;
2783         int ret;
2784         int err;
2785         int level;
2786         int lowest_unlock = 1;
2787         u8 lowest_level = 0;
2788
2789         lowest_level = p->lowest_level;
2790         WARN_ON(p->nodes[0] != NULL);
2791
2792         if (p->search_commit_root) {
2793                 BUG_ON(time_seq);
2794                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2795         }
2796
2797 again:
2798         b = get_old_root(root, time_seq);
2799         level = btrfs_header_level(b);
2800         p->locks[level] = BTRFS_READ_LOCK;
2801
2802         while (b) {
2803                 level = btrfs_header_level(b);
2804                 p->nodes[level] = b;
2805                 btrfs_clear_path_blocking(p, NULL, 0);
2806
2807                 /*
2808                  * we have a lock on b and as long as we aren't changing
2809                  * the tree, there is no way to for the items in b to change.
2810                  * It is safe to drop the lock on our parent before we
2811                  * go through the expensive btree search on b.
2812                  */
2813                 btrfs_unlock_up_safe(p, level + 1);
2814
2815                 ret = bin_search(b, key, level, &slot);
2816
2817                 if (level != 0) {
2818                         int dec = 0;
2819                         if (ret && slot > 0) {
2820                                 dec = 1;
2821                                 slot -= 1;
2822                         }
2823                         p->slots[level] = slot;
2824                         unlock_up(p, level, lowest_unlock, 0, NULL);
2825
2826                         if (level == lowest_level) {
2827                                 if (dec)
2828                                         p->slots[level]++;
2829                                 goto done;
2830                         }
2831
2832                         err = read_block_for_search(NULL, root, p, &b, level,
2833                                                     slot, key, time_seq);
2834                         if (err == -EAGAIN)
2835                                 goto again;
2836                         if (err) {
2837                                 ret = err;
2838                                 goto done;
2839                         }
2840
2841                         level = btrfs_header_level(b);
2842                         err = btrfs_try_tree_read_lock(b);
2843                         if (!err) {
2844                                 btrfs_set_path_blocking(p);
2845                                 btrfs_tree_read_lock(b);
2846                                 btrfs_clear_path_blocking(p, b,
2847                                                           BTRFS_READ_LOCK);
2848                         }
2849                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2850                         p->locks[level] = BTRFS_READ_LOCK;
2851                         p->nodes[level] = b;
2852                 } else {
2853                         p->slots[level] = slot;
2854                         unlock_up(p, level, lowest_unlock, 0, NULL);
2855                         goto done;
2856                 }
2857         }
2858         ret = 1;
2859 done:
2860         if (!p->leave_spinning)
2861                 btrfs_set_path_blocking(p);
2862         if (ret < 0)
2863                 btrfs_release_path(p);
2864
2865         return ret;
2866 }
2867
2868 /*
2869  * helper to use instead of search slot if no exact match is needed but
2870  * instead the next or previous item should be returned.
2871  * When find_higher is true, the next higher item is returned, the next lower
2872  * otherwise.
2873  * When return_any and find_higher are both true, and no higher item is found,
2874  * return the next lower instead.
2875  * When return_any is true and find_higher is false, and no lower item is found,
2876  * return the next higher instead.
2877  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2878  * < 0 on error
2879  */
2880 int btrfs_search_slot_for_read(struct btrfs_root *root,
2881                                struct btrfs_key *key, struct btrfs_path *p,
2882                                int find_higher, int return_any)
2883 {
2884         int ret;
2885         struct extent_buffer *leaf;
2886
2887 again:
2888         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2889         if (ret <= 0)
2890                 return ret;
2891         /*
2892          * a return value of 1 means the path is at the position where the
2893          * item should be inserted. Normally this is the next bigger item,
2894          * but in case the previous item is the last in a leaf, path points
2895          * to the first free slot in the previous leaf, i.e. at an invalid
2896          * item.
2897          */
2898         leaf = p->nodes[0];
2899
2900         if (find_higher) {
2901                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2902                         ret = btrfs_next_leaf(root, p);
2903                         if (ret <= 0)
2904                                 return ret;
2905                         if (!return_any)
2906                                 return 1;
2907                         /*
2908                          * no higher item found, return the next
2909                          * lower instead
2910                          */
2911                         return_any = 0;
2912                         find_higher = 0;
2913                         btrfs_release_path(p);
2914                         goto again;
2915                 }
2916         } else {
2917                 if (p->slots[0] == 0) {
2918                         ret = btrfs_prev_leaf(root, p);
2919                         if (ret < 0)
2920                                 return ret;
2921                         if (!ret) {
2922                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2923                                 return 0;
2924                         }
2925                         if (!return_any)
2926                                 return 1;
2927                         /*
2928                          * no lower item found, return the next
2929                          * higher instead
2930                          */
2931                         return_any = 0;
2932                         find_higher = 1;
2933                         btrfs_release_path(p);
2934                         goto again;
2935                 } else {
2936                         --p->slots[0];
2937                 }
2938         }
2939         return 0;
2940 }
2941
2942 /*
2943  * adjust the pointers going up the tree, starting at level
2944  * making sure the right key of each node is points to 'key'.
2945  * This is used after shifting pointers to the left, so it stops
2946  * fixing up pointers when a given leaf/node is not in slot 0 of the
2947  * higher levels
2948  *
2949  */
2950 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2951                            struct btrfs_disk_key *key, int level)
2952 {
2953         int i;
2954         struct extent_buffer *t;
2955
2956         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2957                 int tslot = path->slots[i];
2958                 if (!path->nodes[i])
2959                         break;
2960                 t = path->nodes[i];
2961                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2962                 btrfs_set_node_key(t, key, tslot);
2963                 btrfs_mark_buffer_dirty(path->nodes[i]);
2964                 if (tslot != 0)
2965                         break;
2966         }
2967 }
2968
2969 /*
2970  * update item key.
2971  *
2972  * This function isn't completely safe. It's the caller's responsibility
2973  * that the new key won't break the order
2974  */
2975 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2976                              struct btrfs_key *new_key)
2977 {
2978         struct btrfs_disk_key disk_key;
2979         struct extent_buffer *eb;
2980         int slot;
2981
2982         eb = path->nodes[0];
2983         slot = path->slots[0];
2984         if (slot > 0) {
2985                 btrfs_item_key(eb, &disk_key, slot - 1);
2986                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2987         }
2988         if (slot < btrfs_header_nritems(eb) - 1) {
2989                 btrfs_item_key(eb, &disk_key, slot + 1);
2990                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2991         }
2992
2993         btrfs_cpu_key_to_disk(&disk_key, new_key);
2994         btrfs_set_item_key(eb, &disk_key, slot);
2995         btrfs_mark_buffer_dirty(eb);
2996         if (slot == 0)
2997                 fixup_low_keys(root, path, &disk_key, 1);
2998 }
2999
3000 /*
3001  * try to push data from one node into the next node left in the
3002  * tree.
3003  *
3004  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3005  * error, and > 0 if there was no room in the left hand block.
3006  */
3007 static int push_node_left(struct btrfs_trans_handle *trans,
3008                           struct btrfs_root *root, struct extent_buffer *dst,
3009                           struct extent_buffer *src, int empty)
3010 {
3011         int push_items = 0;
3012         int src_nritems;
3013         int dst_nritems;
3014         int ret = 0;
3015
3016         src_nritems = btrfs_header_nritems(src);
3017         dst_nritems = btrfs_header_nritems(dst);
3018         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3019         WARN_ON(btrfs_header_generation(src) != trans->transid);
3020         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3021
3022         if (!empty && src_nritems <= 8)
3023                 return 1;
3024
3025         if (push_items <= 0)
3026                 return 1;
3027
3028         if (empty) {
3029                 push_items = min(src_nritems, push_items);
3030                 if (push_items < src_nritems) {
3031                         /* leave at least 8 pointers in the node if
3032                          * we aren't going to empty it
3033                          */
3034                         if (src_nritems - push_items < 8) {
3035                                 if (push_items <= 8)
3036                                         return 1;
3037                                 push_items -= 8;
3038                         }
3039                 }
3040         } else
3041                 push_items = min(src_nritems - 8, push_items);
3042
3043         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3044                              push_items);
3045         copy_extent_buffer(dst, src,
3046                            btrfs_node_key_ptr_offset(dst_nritems),
3047                            btrfs_node_key_ptr_offset(0),
3048                            push_items * sizeof(struct btrfs_key_ptr));
3049
3050         if (push_items < src_nritems) {
3051                 /*
3052                  * don't call tree_mod_log_eb_move here, key removal was already
3053                  * fully logged by tree_mod_log_eb_copy above.
3054                  */
3055                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3056                                       btrfs_node_key_ptr_offset(push_items),
3057                                       (src_nritems - push_items) *
3058                                       sizeof(struct btrfs_key_ptr));
3059         }
3060         btrfs_set_header_nritems(src, src_nritems - push_items);
3061         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3062         btrfs_mark_buffer_dirty(src);
3063         btrfs_mark_buffer_dirty(dst);
3064
3065         return ret;
3066 }
3067
3068 /*
3069  * try to push data from one node into the next node right in the
3070  * tree.
3071  *
3072  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3073  * error, and > 0 if there was no room in the right hand block.
3074  *
3075  * this will  only push up to 1/2 the contents of the left node over
3076  */
3077 static int balance_node_right(struct btrfs_trans_handle *trans,
3078                               struct btrfs_root *root,
3079                               struct extent_buffer *dst,
3080                               struct extent_buffer *src)
3081 {
3082         int push_items = 0;
3083         int max_push;
3084         int src_nritems;
3085         int dst_nritems;
3086         int ret = 0;
3087
3088         WARN_ON(btrfs_header_generation(src) != trans->transid);
3089         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3090
3091         src_nritems = btrfs_header_nritems(src);
3092         dst_nritems = btrfs_header_nritems(dst);
3093         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3094         if (push_items <= 0)
3095                 return 1;
3096
3097         if (src_nritems < 4)
3098                 return 1;
3099
3100         max_push = src_nritems / 2 + 1;
3101         /* don't try to empty the node */
3102         if (max_push >= src_nritems)
3103                 return 1;
3104
3105         if (max_push < push_items)
3106                 push_items = max_push;
3107
3108         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3109         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3110                                       btrfs_node_key_ptr_offset(0),
3111                                       (dst_nritems) *
3112                                       sizeof(struct btrfs_key_ptr));
3113
3114         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3115                              src_nritems - push_items, push_items);
3116         copy_extent_buffer(dst, src,
3117                            btrfs_node_key_ptr_offset(0),
3118                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3119                            push_items * sizeof(struct btrfs_key_ptr));
3120
3121         btrfs_set_header_nritems(src, src_nritems - push_items);
3122         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3123
3124         btrfs_mark_buffer_dirty(src);
3125         btrfs_mark_buffer_dirty(dst);
3126
3127         return ret;
3128 }
3129
3130 /*
3131  * helper function to insert a new root level in the tree.
3132  * A new node is allocated, and a single item is inserted to
3133  * point to the existing root
3134  *
3135  * returns zero on success or < 0 on failure.
3136  */
3137 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3138                            struct btrfs_root *root,
3139                            struct btrfs_path *path, int level)
3140 {
3141         u64 lower_gen;
3142         struct extent_buffer *lower;
3143         struct extent_buffer *c;
3144         struct extent_buffer *old;
3145         struct btrfs_disk_key lower_key;
3146
3147         BUG_ON(path->nodes[level]);
3148         BUG_ON(path->nodes[level-1] != root->node);
3149
3150         lower = path->nodes[level-1];
3151         if (level == 1)
3152                 btrfs_item_key(lower, &lower_key, 0);
3153         else
3154                 btrfs_node_key(lower, &lower_key, 0);
3155
3156         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3157                                    root->root_key.objectid, &lower_key,
3158                                    level, root->node->start, 0);
3159         if (IS_ERR(c))
3160                 return PTR_ERR(c);
3161
3162         root_add_used(root, root->nodesize);
3163
3164         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3165         btrfs_set_header_nritems(c, 1);
3166         btrfs_set_header_level(c, level);
3167         btrfs_set_header_bytenr(c, c->start);
3168         btrfs_set_header_generation(c, trans->transid);
3169         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3170         btrfs_set_header_owner(c, root->root_key.objectid);
3171
3172         write_extent_buffer(c, root->fs_info->fsid,
3173                             (unsigned long)btrfs_header_fsid(c),
3174                             BTRFS_FSID_SIZE);
3175
3176         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3177                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3178                             BTRFS_UUID_SIZE);
3179
3180         btrfs_set_node_key(c, &lower_key, 0);
3181         btrfs_set_node_blockptr(c, 0, lower->start);
3182         lower_gen = btrfs_header_generation(lower);
3183         WARN_ON(lower_gen != trans->transid);
3184
3185         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3186
3187         btrfs_mark_buffer_dirty(c);
3188
3189         old = root->node;
3190         tree_mod_log_set_root_pointer(root, c, 0);
3191         rcu_assign_pointer(root->node, c);
3192
3193         /* the super has an extra ref to root->node */
3194         free_extent_buffer(old);
3195
3196         add_root_to_dirty_list(root);
3197         extent_buffer_get(c);
3198         path->nodes[level] = c;
3199         path->locks[level] = BTRFS_WRITE_LOCK;
3200         path->slots[level] = 0;
3201         return 0;
3202 }
3203
3204 /*
3205  * worker function to insert a single pointer in a node.
3206  * the node should have enough room for the pointer already
3207  *
3208  * slot and level indicate where you want the key to go, and
3209  * blocknr is the block the key points to.
3210  */
3211 static void insert_ptr(struct btrfs_trans_handle *trans,
3212                        struct btrfs_root *root, struct btrfs_path *path,
3213                        struct btrfs_disk_key *key, u64 bytenr,
3214                        int slot, int level)
3215 {
3216         struct extent_buffer *lower;
3217         int nritems;
3218         int ret;
3219
3220         BUG_ON(!path->nodes[level]);
3221         btrfs_assert_tree_locked(path->nodes[level]);
3222         lower = path->nodes[level];
3223         nritems = btrfs_header_nritems(lower);
3224         BUG_ON(slot > nritems);
3225         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3226         if (slot != nritems) {
3227                 if (level)
3228                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3229                                              slot, nritems - slot);
3230                 memmove_extent_buffer(lower,
3231                               btrfs_node_key_ptr_offset(slot + 1),
3232                               btrfs_node_key_ptr_offset(slot),
3233                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3234         }
3235         if (level) {
3236                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3237                                               MOD_LOG_KEY_ADD);
3238                 BUG_ON(ret < 0);
3239         }
3240         btrfs_set_node_key(lower, key, slot);
3241         btrfs_set_node_blockptr(lower, slot, bytenr);
3242         WARN_ON(trans->transid == 0);
3243         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3244         btrfs_set_header_nritems(lower, nritems + 1);
3245         btrfs_mark_buffer_dirty(lower);
3246 }
3247
3248 /*
3249  * split the node at the specified level in path in two.
3250  * The path is corrected to point to the appropriate node after the split
3251  *
3252  * Before splitting this tries to make some room in the node by pushing
3253  * left and right, if either one works, it returns right away.
3254  *
3255  * returns 0 on success and < 0 on failure
3256  */
3257 static noinline int split_node(struct btrfs_trans_handle *trans,
3258                                struct btrfs_root *root,
3259                                struct btrfs_path *path, int level)
3260 {
3261         struct extent_buffer *c;
3262         struct extent_buffer *split;
3263         struct btrfs_disk_key disk_key;
3264         int mid;
3265         int ret;
3266         u32 c_nritems;
3267
3268         c = path->nodes[level];
3269         WARN_ON(btrfs_header_generation(c) != trans->transid);
3270         if (c == root->node) {
3271                 /*
3272                  * trying to split the root, lets make a new one
3273                  *
3274                  * tree mod log: We don't log_removal old root in
3275                  * insert_new_root, because that root buffer will be kept as a
3276                  * normal node. We are going to log removal of half of the
3277                  * elements below with tree_mod_log_eb_copy. We're holding a
3278                  * tree lock on the buffer, which is why we cannot race with
3279                  * other tree_mod_log users.
3280                  */
3281                 ret = insert_new_root(trans, root, path, level + 1);
3282                 if (ret)
3283                         return ret;
3284         } else {
3285                 ret = push_nodes_for_insert(trans, root, path, level);
3286                 c = path->nodes[level];
3287                 if (!ret && btrfs_header_nritems(c) <
3288                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3289                         return 0;
3290                 if (ret < 0)
3291                         return ret;
3292         }
3293
3294         c_nritems = btrfs_header_nritems(c);
3295         mid = (c_nritems + 1) / 2;
3296         btrfs_node_key(c, &disk_key, mid);
3297
3298         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3299                                         root->root_key.objectid,
3300                                         &disk_key, level, c->start, 0);
3301         if (IS_ERR(split))
3302                 return PTR_ERR(split);
3303
3304         root_add_used(root, root->nodesize);
3305
3306         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3307         btrfs_set_header_level(split, btrfs_header_level(c));
3308         btrfs_set_header_bytenr(split, split->start);
3309         btrfs_set_header_generation(split, trans->transid);
3310         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3311         btrfs_set_header_owner(split, root->root_key.objectid);
3312         write_extent_buffer(split, root->fs_info->fsid,
3313                             (unsigned long)btrfs_header_fsid(split),
3314                             BTRFS_FSID_SIZE);
3315         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3316                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3317                             BTRFS_UUID_SIZE);
3318
3319         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3320         copy_extent_buffer(split, c,
3321                            btrfs_node_key_ptr_offset(0),
3322                            btrfs_node_key_ptr_offset(mid),
3323                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3324         btrfs_set_header_nritems(split, c_nritems - mid);
3325         btrfs_set_header_nritems(c, mid);
3326         ret = 0;
3327
3328         btrfs_mark_buffer_dirty(c);
3329         btrfs_mark_buffer_dirty(split);
3330
3331         insert_ptr(trans, root, path, &disk_key, split->start,
3332                    path->slots[level + 1] + 1, level + 1);
3333
3334         if (path->slots[level] >= mid) {
3335                 path->slots[level] -= mid;
3336                 btrfs_tree_unlock(c);
3337                 free_extent_buffer(c);
3338                 path->nodes[level] = split;
3339                 path->slots[level + 1] += 1;
3340         } else {
3341                 btrfs_tree_unlock(split);
3342                 free_extent_buffer(split);
3343         }
3344         return ret;
3345 }
3346
3347 /*
3348  * how many bytes are required to store the items in a leaf.  start
3349  * and nr indicate which items in the leaf to check.  This totals up the
3350  * space used both by the item structs and the item data
3351  */
3352 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3353 {
3354         struct btrfs_item *start_item;
3355         struct btrfs_item *end_item;
3356         struct btrfs_map_token token;
3357         int data_len;
3358         int nritems = btrfs_header_nritems(l);
3359         int end = min(nritems, start + nr) - 1;
3360
3361         if (!nr)
3362                 return 0;
3363         btrfs_init_map_token(&token);
3364         start_item = btrfs_item_nr(l, start);
3365         end_item = btrfs_item_nr(l, end);
3366         data_len = btrfs_token_item_offset(l, start_item, &token) +
3367                 btrfs_token_item_size(l, start_item, &token);
3368         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3369         data_len += sizeof(struct btrfs_item) * nr;
3370         WARN_ON(data_len < 0);
3371         return data_len;
3372 }
3373
3374 /*
3375  * The space between the end of the leaf items and
3376  * the start of the leaf data.  IOW, how much room
3377  * the leaf has left for both items and data
3378  */
3379 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3380                                    struct extent_buffer *leaf)
3381 {
3382         int nritems = btrfs_header_nritems(leaf);
3383         int ret;
3384         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3385         if (ret < 0) {
3386                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3387                        "used %d nritems %d\n",
3388                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3389                        leaf_space_used(leaf, 0, nritems), nritems);
3390         }
3391         return ret;
3392 }
3393
3394 /*
3395  * min slot controls the lowest index we're willing to push to the
3396  * right.  We'll push up to and including min_slot, but no lower
3397  */
3398 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3399                                       struct btrfs_root *root,
3400                                       struct btrfs_path *path,
3401                                       int data_size, int empty,
3402                                       struct extent_buffer *right,
3403                                       int free_space, u32 left_nritems,
3404                                       u32 min_slot)
3405 {
3406         struct extent_buffer *left = path->nodes[0];
3407         struct extent_buffer *upper = path->nodes[1];
3408         struct btrfs_map_token token;
3409         struct btrfs_disk_key disk_key;
3410         int slot;
3411         u32 i;
3412         int push_space = 0;
3413         int push_items = 0;
3414         struct btrfs_item *item;
3415         u32 nr;
3416         u32 right_nritems;
3417         u32 data_end;
3418         u32 this_item_size;
3419
3420         btrfs_init_map_token(&token);
3421
3422         if (empty)
3423                 nr = 0;
3424         else
3425                 nr = max_t(u32, 1, min_slot);
3426
3427         if (path->slots[0] >= left_nritems)
3428                 push_space += data_size;
3429
3430         slot = path->slots[1];
3431         i = left_nritems - 1;
3432         while (i >= nr) {
3433                 item = btrfs_item_nr(left, i);
3434
3435                 if (!empty && push_items > 0) {
3436                         if (path->slots[0] > i)
3437                                 break;
3438                         if (path->slots[0] == i) {
3439                                 int space = btrfs_leaf_free_space(root, left);
3440                                 if (space + push_space * 2 > free_space)
3441                                         break;
3442                         }
3443                 }
3444
3445                 if (path->slots[0] == i)
3446                         push_space += data_size;
3447
3448                 this_item_size = btrfs_item_size(left, item);
3449                 if (this_item_size + sizeof(*item) + push_space > free_space)
3450                         break;
3451
3452                 push_items++;
3453                 push_space += this_item_size + sizeof(*item);
3454                 if (i == 0)
3455                         break;
3456                 i--;
3457         }
3458
3459         if (push_items == 0)
3460                 goto out_unlock;
3461
3462         WARN_ON(!empty && push_items == left_nritems);
3463
3464         /* push left to right */
3465         right_nritems = btrfs_header_nritems(right);
3466
3467         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3468         push_space -= leaf_data_end(root, left);
3469
3470         /* make room in the right data area */
3471         data_end = leaf_data_end(root, right);
3472         memmove_extent_buffer(right,
3473                               btrfs_leaf_data(right) + data_end - push_space,
3474                               btrfs_leaf_data(right) + data_end,
3475                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3476
3477         /* copy from the left data area */
3478         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3479                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3480                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3481                      push_space);
3482
3483         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3484                               btrfs_item_nr_offset(0),
3485                               right_nritems * sizeof(struct btrfs_item));
3486
3487         /* copy the items from left to right */
3488         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3489                    btrfs_item_nr_offset(left_nritems - push_items),
3490                    push_items * sizeof(struct btrfs_item));
3491
3492         /* update the item pointers */
3493         right_nritems += push_items;
3494         btrfs_set_header_nritems(right, right_nritems);
3495         push_space = BTRFS_LEAF_DATA_SIZE(root);
3496         for (i = 0; i < right_nritems; i++) {
3497                 item = btrfs_item_nr(right, i);
3498                 push_space -= btrfs_token_item_size(right, item, &token);
3499                 btrfs_set_token_item_offset(right, item, push_space, &token);
3500         }
3501
3502         left_nritems -= push_items;
3503         btrfs_set_header_nritems(left, left_nritems);
3504
3505         if (left_nritems)
3506                 btrfs_mark_buffer_dirty(left);
3507         else
3508                 clean_tree_block(trans, root, left);
3509
3510         btrfs_mark_buffer_dirty(right);
3511
3512         btrfs_item_key(right, &disk_key, 0);
3513         btrfs_set_node_key(upper, &disk_key, slot + 1);
3514         btrfs_mark_buffer_dirty(upper);
3515
3516         /* then fixup the leaf pointer in the path */
3517         if (path->slots[0] >= left_nritems) {
3518                 path->slots[0] -= left_nritems;
3519                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3520                         clean_tree_block(trans, root, path->nodes[0]);
3521                 btrfs_tree_unlock(path->nodes[0]);
3522                 free_extent_buffer(path->nodes[0]);
3523                 path->nodes[0] = right;
3524                 path->slots[1] += 1;
3525         } else {
3526                 btrfs_tree_unlock(right);
3527                 free_extent_buffer(right);
3528         }
3529         return 0;
3530
3531 out_unlock:
3532         btrfs_tree_unlock(right);
3533         free_extent_buffer(right);
3534         return 1;
3535 }
3536
3537 /*
3538  * push some data in the path leaf to the right, trying to free up at
3539  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3540  *
3541  * returns 1 if the push failed because the other node didn't have enough
3542  * room, 0 if everything worked out and < 0 if there were major errors.
3543  *
3544  * this will push starting from min_slot to the end of the leaf.  It won't
3545  * push any slot lower than min_slot
3546  */
3547 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3548                            *root, struct btrfs_path *path,
3549                            int min_data_size, int data_size,
3550                            int empty, u32 min_slot)
3551 {
3552         struct extent_buffer *left = path->nodes[0];
3553         struct extent_buffer *right;
3554         struct extent_buffer *upper;
3555         int slot;
3556         int free_space;
3557         u32 left_nritems;
3558         int ret;
3559
3560         if (!path->nodes[1])
3561                 return 1;
3562
3563         slot = path->slots[1];
3564         upper = path->nodes[1];
3565         if (slot >= btrfs_header_nritems(upper) - 1)
3566                 return 1;
3567
3568         btrfs_assert_tree_locked(path->nodes[1]);
3569
3570         right = read_node_slot(root, upper, slot + 1);
3571         if (right == NULL)
3572                 return 1;
3573
3574         btrfs_tree_lock(right);
3575         btrfs_set_lock_blocking(right);
3576
3577         free_space = btrfs_leaf_free_space(root, right);
3578         if (free_space < data_size)
3579                 goto out_unlock;
3580
3581         /* cow and double check */
3582         ret = btrfs_cow_block(trans, root, right, upper,
3583                               slot + 1, &right);
3584         if (ret)
3585                 goto out_unlock;
3586
3587         free_space = btrfs_leaf_free_space(root, right);
3588         if (free_space < data_size)
3589                 goto out_unlock;
3590
3591         left_nritems = btrfs_header_nritems(left);
3592         if (left_nritems == 0)
3593                 goto out_unlock;
3594
3595         return __push_leaf_right(trans, root, path, min_data_size, empty,
3596                                 right, free_space, left_nritems, min_slot);
3597 out_unlock:
3598         btrfs_tree_unlock(right);
3599         free_extent_buffer(right);
3600         return 1;
3601 }
3602
3603 /*
3604  * push some data in the path leaf to the left, trying to free up at
3605  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3606  *
3607  * max_slot can put a limit on how far into the leaf we'll push items.  The
3608  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3609  * items
3610  */
3611 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3612                                      struct btrfs_root *root,
3613                                      struct btrfs_path *path, int data_size,
3614                                      int empty, struct extent_buffer *left,
3615                                      int free_space, u32 right_nritems,
3616                                      u32 max_slot)
3617 {
3618         struct btrfs_disk_key disk_key;
3619         struct extent_buffer *right = path->nodes[0];
3620         int i;
3621         int push_space = 0;
3622         int push_items = 0;
3623         struct btrfs_item *item;
3624         u32 old_left_nritems;
3625         u32 nr;
3626         int ret = 0;
3627         u32 this_item_size;
3628         u32 old_left_item_size;
3629         struct btrfs_map_token token;
3630
3631         btrfs_init_map_token(&token);
3632
3633         if (empty)
3634                 nr = min(right_nritems, max_slot);
3635         else
3636                 nr = min(right_nritems - 1, max_slot);
3637
3638         for (i = 0; i < nr; i++) {
3639                 item = btrfs_item_nr(right, i);
3640
3641                 if (!empty && push_items > 0) {
3642                         if (path->slots[0] < i)
3643                                 break;
3644                         if (path->slots[0] == i) {
3645                                 int space = btrfs_leaf_free_space(root, right);
3646                                 if (space + push_space * 2 > free_space)
3647                                         break;
3648                         }
3649                 }
3650
3651                 if (path->slots[0] == i)
3652                         push_space += data_size;
3653
3654                 this_item_size = btrfs_item_size(right, item);
3655                 if (this_item_size + sizeof(*item) + push_space > free_space)
3656                         break;
3657
3658                 push_items++;
3659                 push_space += this_item_size + sizeof(*item);
3660         }
3661
3662         if (push_items == 0) {
3663                 ret = 1;
3664                 goto out;
3665         }
3666         if (!empty && push_items == btrfs_header_nritems(right))
3667                 WARN_ON(1);
3668
3669         /* push data from right to left */
3670         copy_extent_buffer(left, right,
3671                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3672                            btrfs_item_nr_offset(0),
3673                            push_items * sizeof(struct btrfs_item));
3674
3675         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3676                      btrfs_item_offset_nr(right, push_items - 1);
3677
3678         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3679                      leaf_data_end(root, left) - push_space,
3680                      btrfs_leaf_data(right) +
3681                      btrfs_item_offset_nr(right, push_items - 1),
3682                      push_space);
3683         old_left_nritems = btrfs_header_nritems(left);
3684         BUG_ON(old_left_nritems <= 0);
3685
3686         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3687         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3688                 u32 ioff;
3689
3690                 item = btrfs_item_nr(left, i);
3691
3692                 ioff = btrfs_token_item_offset(left, item, &token);
3693                 btrfs_set_token_item_offset(left, item,
3694                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3695                       &token);
3696         }
3697         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3698
3699         /* fixup right node */
3700         if (push_items > right_nritems)
3701                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3702                        right_nritems);
3703
3704         if (push_items < right_nritems) {
3705                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3706                                                   leaf_data_end(root, right);
3707                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3708                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3709                                       btrfs_leaf_data(right) +
3710                                       leaf_data_end(root, right), push_space);
3711
3712                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3713                               btrfs_item_nr_offset(push_items),
3714                              (btrfs_header_nritems(right) - push_items) *
3715                              sizeof(struct btrfs_item));
3716         }
3717         right_nritems -= push_items;
3718         btrfs_set_header_nritems(right, right_nritems);
3719         push_space = BTRFS_LEAF_DATA_SIZE(root);
3720         for (i = 0; i < right_nritems; i++) {
3721                 item = btrfs_item_nr(right, i);
3722
3723                 push_space = push_space - btrfs_token_item_size(right,
3724                                                                 item, &token);
3725                 btrfs_set_token_item_offset(right, item, push_space, &token);
3726         }
3727
3728         btrfs_mark_buffer_dirty(left);
3729         if (right_nritems)
3730                 btrfs_mark_buffer_dirty(right);
3731         else
3732                 clean_tree_block(trans, root, right);
3733
3734         btrfs_item_key(right, &disk_key, 0);
3735         fixup_low_keys(root, path, &disk_key, 1);
3736
3737         /* then fixup the leaf pointer in the path */
3738         if (path->slots[0] < push_items) {
3739                 path->slots[0] += old_left_nritems;
3740                 btrfs_tree_unlock(path->nodes[0]);
3741                 free_extent_buffer(path->nodes[0]);
3742                 path->nodes[0] = left;
3743                 path->slots[1] -= 1;
3744         } else {
3745                 btrfs_tree_unlock(left);
3746                 free_extent_buffer(left);
3747                 path->slots[0] -= push_items;
3748         }
3749         BUG_ON(path->slots[0] < 0);
3750         return ret;
3751 out:
3752         btrfs_tree_unlock(left);
3753         free_extent_buffer(left);
3754         return ret;
3755 }
3756
3757 /*
3758  * push some data in the path leaf to the left, trying to free up at
3759  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3760  *
3761  * max_slot can put a limit on how far into the leaf we'll push items.  The
3762  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3763  * items
3764  */
3765 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3766                           *root, struct btrfs_path *path, int min_data_size,
3767                           int data_size, int empty, u32 max_slot)
3768 {
3769         struct extent_buffer *right = path->nodes[0];
3770         struct extent_buffer *left;
3771         int slot;
3772         int free_space;
3773         u32 right_nritems;
3774         int ret = 0;
3775
3776         slot = path->slots[1];
3777         if (slot == 0)
3778                 return 1;
3779         if (!path->nodes[1])
3780                 return 1;
3781
3782         right_nritems = btrfs_header_nritems(right);
3783         if (right_nritems == 0)
3784                 return 1;
3785
3786         btrfs_assert_tree_locked(path->nodes[1]);
3787
3788         left = read_node_slot(root, path->nodes[1], slot - 1);
3789         if (left == NULL)
3790                 return 1;
3791
3792         btrfs_tree_lock(left);
3793         btrfs_set_lock_blocking(left);
3794
3795         free_space = btrfs_leaf_free_space(root, left);
3796         if (free_space < data_size) {
3797                 ret = 1;
3798                 goto out;
3799         }
3800
3801         /* cow and double check */
3802         ret = btrfs_cow_block(trans, root, left,
3803                               path->nodes[1], slot - 1, &left);
3804         if (ret) {
3805                 /* we hit -ENOSPC, but it isn't fatal here */
3806                 if (ret == -ENOSPC)
3807                         ret = 1;
3808                 goto out;
3809         }
3810
3811         free_space = btrfs_leaf_free_space(root, left);
3812         if (free_space < data_size) {
3813                 ret = 1;
3814                 goto out;
3815         }
3816
3817         return __push_leaf_left(trans, root, path, min_data_size,
3818                                empty, left, free_space, right_nritems,
3819                                max_slot);
3820 out:
3821         btrfs_tree_unlock(left);
3822         free_extent_buffer(left);
3823         return ret;
3824 }
3825
3826 /*
3827  * split the path's leaf in two, making sure there is at least data_size
3828  * available for the resulting leaf level of the path.
3829  */
3830 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3831                                     struct btrfs_root *root,
3832                                     struct btrfs_path *path,
3833                                     struct extent_buffer *l,
3834                                     struct extent_buffer *right,
3835                                     int slot, int mid, int nritems)
3836 {
3837         int data_copy_size;
3838         int rt_data_off;
3839         int i;
3840         struct btrfs_disk_key disk_key;
3841         struct btrfs_map_token token;
3842
3843         btrfs_init_map_token(&token);
3844
3845         nritems = nritems - mid;
3846         btrfs_set_header_nritems(right, nritems);
3847         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3848
3849         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3850                            btrfs_item_nr_offset(mid),
3851                            nritems * sizeof(struct btrfs_item));
3852
3853         copy_extent_buffer(right, l,
3854                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3855                      data_copy_size, btrfs_leaf_data(l) +
3856                      leaf_data_end(root, l), data_copy_size);
3857
3858         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3859                       btrfs_item_end_nr(l, mid);
3860
3861         for (i = 0; i < nritems; i++) {
3862                 struct btrfs_item *item = btrfs_item_nr(right, i);
3863                 u32 ioff;
3864
3865                 ioff = btrfs_token_item_offset(right, item, &token);
3866                 btrfs_set_token_item_offset(right, item,
3867                                             ioff + rt_data_off, &token);
3868         }
3869
3870         btrfs_set_header_nritems(l, mid);
3871         btrfs_item_key(right, &disk_key, 0);
3872         insert_ptr(trans, root, path, &disk_key, right->start,
3873                    path->slots[1] + 1, 1);
3874
3875         btrfs_mark_buffer_dirty(right);
3876         btrfs_mark_buffer_dirty(l);
3877         BUG_ON(path->slots[0] != slot);
3878
3879         if (mid <= slot) {
3880                 btrfs_tree_unlock(path->nodes[0]);
3881                 free_extent_buffer(path->nodes[0]);
3882                 path->nodes[0] = right;
3883                 path->slots[0] -= mid;
3884                 path->slots[1] += 1;
3885         } else {
3886                 btrfs_tree_unlock(right);
3887                 free_extent_buffer(right);
3888         }
3889
3890         BUG_ON(path->slots[0] < 0);
3891 }
3892
3893 /*
3894  * double splits happen when we need to insert a big item in the middle
3895  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3896  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3897  *          A                 B                 C
3898  *
3899  * We avoid this by trying to push the items on either side of our target
3900  * into the adjacent leaves.  If all goes well we can avoid the double split
3901  * completely.
3902  */
3903 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3904                                           struct btrfs_root *root,
3905                                           struct btrfs_path *path,
3906                                           int data_size)
3907 {
3908         int ret;
3909         int progress = 0;
3910         int slot;
3911         u32 nritems;
3912
3913         slot = path->slots[0];
3914
3915         /*
3916          * try to push all the items after our slot into the
3917          * right leaf
3918          */
3919         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3920         if (ret < 0)
3921                 return ret;
3922
3923         if (ret == 0)
3924                 progress++;
3925
3926         nritems = btrfs_header_nritems(path->nodes[0]);
3927         /*
3928          * our goal is to get our slot at the start or end of a leaf.  If
3929          * we've done so we're done
3930          */
3931         if (path->slots[0] == 0 || path->slots[0] == nritems)
3932                 return 0;
3933
3934         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3935                 return 0;
3936
3937         /* try to push all the items before our slot into the next leaf */
3938         slot = path->slots[0];
3939         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3940         if (ret < 0)
3941                 return ret;
3942
3943         if (ret == 0)
3944                 progress++;
3945
3946         if (progress)
3947                 return 0;
3948         return 1;
3949 }
3950
3951 /*
3952  * split the path's leaf in two, making sure there is at least data_size
3953  * available for the resulting leaf level of the path.
3954  *
3955  * returns 0 if all went well and < 0 on failure.
3956  */
3957 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3958                                struct btrfs_root *root,
3959                                struct btrfs_key *ins_key,
3960                                struct btrfs_path *path, int data_size,
3961                                int extend)
3962 {
3963         struct btrfs_disk_key disk_key;
3964         struct extent_buffer *l;
3965         u32 nritems;
3966         int mid;
3967         int slot;
3968         struct extent_buffer *right;
3969         int ret = 0;
3970         int wret;
3971         int split;
3972         int num_doubles = 0;
3973         int tried_avoid_double = 0;
3974
3975         l = path->nodes[0];
3976         slot = path->slots[0];
3977         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3978             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3979                 return -EOVERFLOW;
3980
3981         /* first try to make some room by pushing left and right */
3982         if (data_size && path->nodes[1]) {
3983                 wret = push_leaf_right(trans, root, path, data_size,
3984                                        data_size, 0, 0);
3985                 if (wret < 0)
3986                         return wret;
3987                 if (wret) {
3988                         wret = push_leaf_left(trans, root, path, data_size,
3989                                               data_size, 0, (u32)-1);
3990                         if (wret < 0)
3991                                 return wret;
3992                 }
3993                 l = path->nodes[0];
3994
3995                 /* did the pushes work? */
3996                 if (btrfs_leaf_free_space(root, l) >= data_size)
3997                         return 0;
3998         }
3999
4000         if (!path->nodes[1]) {
4001                 ret = insert_new_root(trans, root, path, 1);
4002                 if (ret)
4003                         return ret;
4004         }
4005 again:
4006         split = 1;
4007         l = path->nodes[0];
4008         slot = path->slots[0];
4009         nritems = btrfs_header_nritems(l);
4010         mid = (nritems + 1) / 2;
4011
4012         if (mid <= slot) {
4013                 if (nritems == 1 ||
4014                     leaf_space_used(l, mid, nritems - mid) + data_size >
4015                         BTRFS_LEAF_DATA_SIZE(root)) {
4016                         if (slot >= nritems) {
4017                                 split = 0;
4018                         } else {
4019                                 mid = slot;
4020                                 if (mid != nritems &&
4021                                     leaf_space_used(l, mid, nritems - mid) +
4022                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4023                                         if (data_size && !tried_avoid_double)
4024                                                 goto push_for_double;
4025                                         split = 2;
4026                                 }
4027                         }
4028                 }
4029         } else {
4030                 if (leaf_space_used(l, 0, mid) + data_size >
4031                         BTRFS_LEAF_DATA_SIZE(root)) {
4032                         if (!extend && data_size && slot == 0) {
4033                                 split = 0;
4034                         } else if ((extend || !data_size) && slot == 0) {
4035                                 mid = 1;
4036                         } else {
4037                                 mid = slot;
4038                                 if (mid != nritems &&
4039                                     leaf_space_used(l, mid, nritems - mid) +
4040                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4041                                         if (data_size && !tried_avoid_double)
4042                                                 goto push_for_double;
4043                                         split = 2 ;
4044                                 }
4045                         }
4046                 }
4047         }
4048
4049         if (split == 0)
4050                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4051         else
4052                 btrfs_item_key(l, &disk_key, mid);
4053
4054         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4055                                         root->root_key.objectid,
4056                                         &disk_key, 0, l->start, 0);
4057         if (IS_ERR(right))
4058                 return PTR_ERR(right);
4059
4060         root_add_used(root, root->leafsize);
4061
4062         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4063         btrfs_set_header_bytenr(right, right->start);
4064         btrfs_set_header_generation(right, trans->transid);
4065         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4066         btrfs_set_header_owner(right, root->root_key.objectid);
4067         btrfs_set_header_level(right, 0);
4068         write_extent_buffer(right, root->fs_info->fsid,
4069                             (unsigned long)btrfs_header_fsid(right),
4070                             BTRFS_FSID_SIZE);
4071
4072         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4073                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4074                             BTRFS_UUID_SIZE);
4075
4076         if (split == 0) {
4077                 if (mid <= slot) {
4078                         btrfs_set_header_nritems(right, 0);
4079                         insert_ptr(trans, root, path, &disk_key, right->start,
4080                                    path->slots[1] + 1, 1);
4081                         btrfs_tree_unlock(path->nodes[0]);
4082                         free_extent_buffer(path->nodes[0]);
4083                         path->nodes[0] = right;
4084                         path->slots[0] = 0;
4085                         path->slots[1] += 1;
4086                 } else {
4087                         btrfs_set_header_nritems(right, 0);
4088                         insert_ptr(trans, root, path, &disk_key, right->start,
4089                                           path->slots[1], 1);
4090                         btrfs_tree_unlock(path->nodes[0]);
4091                         free_extent_buffer(path->nodes[0]);
4092                         path->nodes[0] = right;
4093                         path->slots[0] = 0;
4094                         if (path->slots[1] == 0)
4095                                 fixup_low_keys(root, path, &disk_key, 1);
4096                 }
4097                 btrfs_mark_buffer_dirty(right);
4098                 return ret;
4099         }
4100
4101         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4102
4103         if (split == 2) {
4104                 BUG_ON(num_doubles != 0);
4105                 num_doubles++;
4106                 goto again;
4107         }
4108
4109         return 0;
4110
4111 push_for_double:
4112         push_for_double_split(trans, root, path, data_size);
4113         tried_avoid_double = 1;
4114         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4115                 return 0;
4116         goto again;
4117 }
4118
4119 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4120                                          struct btrfs_root *root,
4121                                          struct btrfs_path *path, int ins_len)
4122 {
4123         struct btrfs_key key;
4124         struct extent_buffer *leaf;
4125         struct btrfs_file_extent_item *fi;
4126         u64 extent_len = 0;
4127         u32 item_size;
4128         int ret;
4129
4130         leaf = path->nodes[0];
4131         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4132
4133         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4134                key.type != BTRFS_EXTENT_CSUM_KEY);
4135
4136         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4137                 return 0;
4138
4139         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4140         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4141                 fi = btrfs_item_ptr(leaf, path->slots[0],
4142                                     struct btrfs_file_extent_item);
4143                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4144         }
4145         btrfs_release_path(path);
4146
4147         path->keep_locks = 1;
4148         path->search_for_split = 1;
4149         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4150         path->search_for_split = 0;
4151         if (ret < 0)
4152                 goto err;
4153
4154         ret = -EAGAIN;
4155         leaf = path->nodes[0];
4156         /* if our item isn't there or got smaller, return now */
4157         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4158                 goto err;
4159
4160         /* the leaf has  changed, it now has room.  return now */
4161         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4162                 goto err;
4163
4164         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4165                 fi = btrfs_item_ptr(leaf, path->slots[0],
4166                                     struct btrfs_file_extent_item);
4167                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4168                         goto err;
4169         }
4170
4171         btrfs_set_path_blocking(path);
4172         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4173         if (ret)
4174                 goto err;
4175
4176         path->keep_locks = 0;
4177         btrfs_unlock_up_safe(path, 1);
4178         return 0;
4179 err:
4180         path->keep_locks = 0;
4181         return ret;
4182 }
4183
4184 static noinline int split_item(struct btrfs_trans_handle *trans,
4185                                struct btrfs_root *root,
4186                                struct btrfs_path *path,
4187                                struct btrfs_key *new_key,
4188                                unsigned long split_offset)
4189 {
4190         struct extent_buffer *leaf;
4191         struct btrfs_item *item;
4192         struct btrfs_item *new_item;
4193         int slot;
4194         char *buf;
4195         u32 nritems;
4196         u32 item_size;
4197         u32 orig_offset;
4198         struct btrfs_disk_key disk_key;
4199
4200         leaf = path->nodes[0];
4201         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4202
4203         btrfs_set_path_blocking(path);
4204
4205         item = btrfs_item_nr(leaf, path->slots[0]);
4206         orig_offset = btrfs_item_offset(leaf, item);
4207         item_size = btrfs_item_size(leaf, item);
4208
4209         buf = kmalloc(item_size, GFP_NOFS);
4210         if (!buf)
4211                 return -ENOMEM;
4212
4213         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4214                             path->slots[0]), item_size);
4215
4216         slot = path->slots[0] + 1;
4217         nritems = btrfs_header_nritems(leaf);
4218         if (slot != nritems) {
4219                 /* shift the items */
4220                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4221                                 btrfs_item_nr_offset(slot),
4222                                 (nritems - slot) * sizeof(struct btrfs_item));
4223         }
4224
4225         btrfs_cpu_key_to_disk(&disk_key, new_key);
4226         btrfs_set_item_key(leaf, &disk_key, slot);
4227
4228         new_item = btrfs_item_nr(leaf, slot);
4229
4230         btrfs_set_item_offset(leaf, new_item, orig_offset);
4231         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4232
4233         btrfs_set_item_offset(leaf, item,
4234                               orig_offset + item_size - split_offset);
4235         btrfs_set_item_size(leaf, item, split_offset);
4236
4237         btrfs_set_header_nritems(leaf, nritems + 1);
4238
4239         /* write the data for the start of the original item */
4240         write_extent_buffer(leaf, buf,
4241                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4242                             split_offset);
4243
4244         /* write the data for the new item */
4245         write_extent_buffer(leaf, buf + split_offset,
4246                             btrfs_item_ptr_offset(leaf, slot),
4247                             item_size - split_offset);
4248         btrfs_mark_buffer_dirty(leaf);
4249
4250         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4251         kfree(buf);
4252         return 0;
4253 }
4254
4255 /*
4256  * This function splits a single item into two items,
4257  * giving 'new_key' to the new item and splitting the
4258  * old one at split_offset (from the start of the item).
4259  *
4260  * The path may be released by this operation.  After
4261  * the split, the path is pointing to the old item.  The
4262  * new item is going to be in the same node as the old one.
4263  *
4264  * Note, the item being split must be smaller enough to live alone on
4265  * a tree block with room for one extra struct btrfs_item
4266  *
4267  * This allows us to split the item in place, keeping a lock on the
4268  * leaf the entire time.
4269  */
4270 int btrfs_split_item(struct btrfs_trans_handle *trans,
4271                      struct btrfs_root *root,
4272                      struct btrfs_path *path,
4273                      struct btrfs_key *new_key,
4274                      unsigned long split_offset)
4275 {
4276         int ret;
4277         ret = setup_leaf_for_split(trans, root, path,
4278                                    sizeof(struct btrfs_item));
4279         if (ret)
4280                 return ret;
4281
4282         ret = split_item(trans, root, path, new_key, split_offset);
4283         return ret;
4284 }
4285
4286 /*
4287  * This function duplicate a item, giving 'new_key' to the new item.
4288  * It guarantees both items live in the same tree leaf and the new item
4289  * is contiguous with the original item.
4290  *
4291  * This allows us to split file extent in place, keeping a lock on the
4292  * leaf the entire time.
4293  */
4294 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4295                          struct btrfs_root *root,
4296                          struct btrfs_path *path,
4297                          struct btrfs_key *new_key)
4298 {
4299         struct extent_buffer *leaf;
4300         int ret;
4301         u32 item_size;
4302
4303         leaf = path->nodes[0];
4304         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4305         ret = setup_leaf_for_split(trans, root, path,
4306                                    item_size + sizeof(struct btrfs_item));
4307         if (ret)
4308                 return ret;
4309
4310         path->slots[0]++;
4311         setup_items_for_insert(root, path, new_key, &item_size,
4312                                item_size, item_size +
4313                                sizeof(struct btrfs_item), 1);
4314         leaf = path->nodes[0];
4315         memcpy_extent_buffer(leaf,
4316                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4317                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4318                              item_size);
4319         return 0;
4320 }
4321
4322 /*
4323  * make the item pointed to by the path smaller.  new_size indicates
4324  * how small to make it, and from_end tells us if we just chop bytes
4325  * off the end of the item or if we shift the item to chop bytes off
4326  * the front.
4327  */
4328 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4329                          u32 new_size, int from_end)
4330 {
4331         int slot;
4332         struct extent_buffer *leaf;
4333         struct btrfs_item *item;
4334         u32 nritems;
4335         unsigned int data_end;
4336         unsigned int old_data_start;
4337         unsigned int old_size;
4338         unsigned int size_diff;
4339         int i;
4340         struct btrfs_map_token token;
4341
4342         btrfs_init_map_token(&token);
4343
4344         leaf = path->nodes[0];
4345         slot = path->slots[0];
4346
4347         old_size = btrfs_item_size_nr(leaf, slot);
4348         if (old_size == new_size)
4349                 return;
4350
4351         nritems = btrfs_header_nritems(leaf);
4352         data_end = leaf_data_end(root, leaf);
4353
4354         old_data_start = btrfs_item_offset_nr(leaf, slot);
4355
4356         size_diff = old_size - new_size;
4357
4358         BUG_ON(slot < 0);
4359         BUG_ON(slot >= nritems);
4360
4361         /*
4362          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4363          */
4364         /* first correct the data pointers */
4365         for (i = slot; i < nritems; i++) {
4366                 u32 ioff;
4367                 item = btrfs_item_nr(leaf, i);
4368
4369                 ioff = btrfs_token_item_offset(leaf, item, &token);
4370                 btrfs_set_token_item_offset(leaf, item,
4371                                             ioff + size_diff, &token);
4372         }
4373
4374         /* shift the data */
4375         if (from_end) {
4376                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4377                               data_end + size_diff, btrfs_leaf_data(leaf) +
4378                               data_end, old_data_start + new_size - data_end);
4379         } else {
4380                 struct btrfs_disk_key disk_key;
4381                 u64 offset;
4382
4383                 btrfs_item_key(leaf, &disk_key, slot);
4384
4385                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4386                         unsigned long ptr;
4387                         struct btrfs_file_extent_item *fi;
4388
4389                         fi = btrfs_item_ptr(leaf, slot,
4390                                             struct btrfs_file_extent_item);
4391                         fi = (struct btrfs_file_extent_item *)(
4392                              (unsigned long)fi - size_diff);
4393
4394                         if (btrfs_file_extent_type(leaf, fi) ==
4395                             BTRFS_FILE_EXTENT_INLINE) {
4396                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4397                                 memmove_extent_buffer(leaf, ptr,
4398                                       (unsigned long)fi,
4399                                       offsetof(struct btrfs_file_extent_item,
4400                                                  disk_bytenr));
4401                         }
4402                 }
4403
4404                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4405                               data_end + size_diff, btrfs_leaf_data(leaf) +
4406                               data_end, old_data_start - data_end);
4407
4408                 offset = btrfs_disk_key_offset(&disk_key);
4409                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4410                 btrfs_set_item_key(leaf, &disk_key, slot);
4411                 if (slot == 0)
4412                         fixup_low_keys(root, path, &disk_key, 1);
4413         }
4414
4415         item = btrfs_item_nr(leaf, slot);
4416         btrfs_set_item_size(leaf, item, new_size);
4417         btrfs_mark_buffer_dirty(leaf);
4418
4419         if (btrfs_leaf_free_space(root, leaf) < 0) {
4420                 btrfs_print_leaf(root, leaf);
4421                 BUG();
4422         }
4423 }
4424
4425 /*
4426  * make the item pointed to by the path bigger, data_size is the added size.
4427  */
4428 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4429                        u32 data_size)
4430 {
4431         int slot;
4432         struct extent_buffer *leaf;
4433         struct btrfs_item *item;
4434         u32 nritems;
4435         unsigned int data_end;
4436         unsigned int old_data;
4437         unsigned int old_size;
4438         int i;
4439         struct btrfs_map_token token;
4440
4441         btrfs_init_map_token(&token);
4442
4443         leaf = path->nodes[0];
4444
4445         nritems = btrfs_header_nritems(leaf);
4446         data_end = leaf_data_end(root, leaf);
4447
4448         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4449                 btrfs_print_leaf(root, leaf);
4450                 BUG();
4451         }
4452         slot = path->slots[0];
4453         old_data = btrfs_item_end_nr(leaf, slot);
4454
4455         BUG_ON(slot < 0);
4456         if (slot >= nritems) {
4457                 btrfs_print_leaf(root, leaf);
4458                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4459                        slot, nritems);
4460                 BUG_ON(1);
4461         }
4462
4463         /*
4464          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4465          */
4466         /* first correct the data pointers */
4467         for (i = slot; i < nritems; i++) {
4468                 u32 ioff;
4469                 item = btrfs_item_nr(leaf, i);
4470
4471                 ioff = btrfs_token_item_offset(leaf, item, &token);
4472                 btrfs_set_token_item_offset(leaf, item,
4473                                             ioff - data_size, &token);
4474         }
4475
4476         /* shift the data */
4477         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4478                       data_end - data_size, btrfs_leaf_data(leaf) +
4479                       data_end, old_data - data_end);
4480
4481         data_end = old_data;
4482         old_size = btrfs_item_size_nr(leaf, slot);
4483         item = btrfs_item_nr(leaf, slot);
4484         btrfs_set_item_size(leaf, item, old_size + data_size);
4485         btrfs_mark_buffer_dirty(leaf);
4486
4487         if (btrfs_leaf_free_space(root, leaf) < 0) {
4488                 btrfs_print_leaf(root, leaf);
4489                 BUG();
4490         }
4491 }
4492
4493 /*
4494  * this is a helper for btrfs_insert_empty_items, the main goal here is
4495  * to save stack depth by doing the bulk of the work in a function
4496  * that doesn't call btrfs_search_slot
4497  */
4498 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4499                             struct btrfs_key *cpu_key, u32 *data_size,
4500                             u32 total_data, u32 total_size, int nr)
4501 {
4502         struct btrfs_item *item;
4503         int i;
4504         u32 nritems;
4505         unsigned int data_end;
4506         struct btrfs_disk_key disk_key;
4507         struct extent_buffer *leaf;
4508         int slot;
4509         struct btrfs_map_token token;
4510
4511         btrfs_init_map_token(&token);
4512
4513         leaf = path->nodes[0];
4514         slot = path->slots[0];
4515
4516         nritems = btrfs_header_nritems(leaf);
4517         data_end = leaf_data_end(root, leaf);
4518
4519         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4520                 btrfs_print_leaf(root, leaf);
4521                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4522                        total_size, btrfs_leaf_free_space(root, leaf));
4523                 BUG();
4524         }
4525
4526         if (slot != nritems) {
4527                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4528
4529                 if (old_data < data_end) {
4530                         btrfs_print_leaf(root, leaf);
4531                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4532                                slot, old_data, data_end);
4533                         BUG_ON(1);
4534                 }
4535                 /*
4536                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4537                  */
4538                 /* first correct the data pointers */
4539                 for (i = slot; i < nritems; i++) {
4540                         u32 ioff;
4541
4542                         item = btrfs_item_nr(leaf, i);
4543                         ioff = btrfs_token_item_offset(leaf, item, &token);
4544                         btrfs_set_token_item_offset(leaf, item,
4545                                                     ioff - total_data, &token);
4546                 }
4547                 /* shift the items */
4548                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4549                               btrfs_item_nr_offset(slot),
4550                               (nritems - slot) * sizeof(struct btrfs_item));
4551
4552                 /* shift the data */
4553                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4554                               data_end - total_data, btrfs_leaf_data(leaf) +
4555                               data_end, old_data - data_end);
4556                 data_end = old_data;
4557         }
4558
4559         /* setup the item for the new data */
4560         for (i = 0; i < nr; i++) {
4561                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4562                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4563                 item = btrfs_item_nr(leaf, slot + i);
4564                 btrfs_set_token_item_offset(leaf, item,
4565                                             data_end - data_size[i], &token);
4566                 data_end -= data_size[i];
4567                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4568         }
4569
4570         btrfs_set_header_nritems(leaf, nritems + nr);
4571
4572         if (slot == 0) {
4573                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4574                 fixup_low_keys(root, path, &disk_key, 1);
4575         }
4576         btrfs_unlock_up_safe(path, 1);
4577         btrfs_mark_buffer_dirty(leaf);
4578
4579         if (btrfs_leaf_free_space(root, leaf) < 0) {
4580                 btrfs_print_leaf(root, leaf);
4581                 BUG();
4582         }
4583 }
4584
4585 /*
4586  * Given a key and some data, insert items into the tree.
4587  * This does all the path init required, making room in the tree if needed.
4588  */
4589 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4590                             struct btrfs_root *root,
4591                             struct btrfs_path *path,
4592                             struct btrfs_key *cpu_key, u32 *data_size,
4593                             int nr)
4594 {
4595         int ret = 0;
4596         int slot;
4597         int i;
4598         u32 total_size = 0;
4599         u32 total_data = 0;
4600
4601         for (i = 0; i < nr; i++)
4602                 total_data += data_size[i];
4603
4604         total_size = total_data + (nr * sizeof(struct btrfs_item));
4605         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4606         if (ret == 0)
4607                 return -EEXIST;
4608         if (ret < 0)
4609                 return ret;
4610
4611         slot = path->slots[0];
4612         BUG_ON(slot < 0);
4613
4614         setup_items_for_insert(root, path, cpu_key, data_size,
4615                                total_data, total_size, nr);
4616         return 0;
4617 }
4618
4619 /*
4620  * Given a key and some data, insert an item into the tree.
4621  * This does all the path init required, making room in the tree if needed.
4622  */
4623 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4624                       *root, struct btrfs_key *cpu_key, void *data, u32
4625                       data_size)
4626 {
4627         int ret = 0;
4628         struct btrfs_path *path;
4629         struct extent_buffer *leaf;
4630         unsigned long ptr;
4631
4632         path = btrfs_alloc_path();
4633         if (!path)
4634                 return -ENOMEM;
4635         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4636         if (!ret) {
4637                 leaf = path->nodes[0];
4638                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4639                 write_extent_buffer(leaf, data, ptr, data_size);
4640                 btrfs_mark_buffer_dirty(leaf);
4641         }
4642         btrfs_free_path(path);
4643         return ret;
4644 }
4645
4646 /*
4647  * delete the pointer from a given node.
4648  *
4649  * the tree should have been previously balanced so the deletion does not
4650  * empty a node.
4651  */
4652 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4653                     int level, int slot)
4654 {
4655         struct extent_buffer *parent = path->nodes[level];
4656         u32 nritems;
4657         int ret;
4658
4659         nritems = btrfs_header_nritems(parent);
4660         if (slot != nritems - 1) {
4661                 if (level)
4662                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4663                                              slot + 1, nritems - slot - 1);
4664                 memmove_extent_buffer(parent,
4665                               btrfs_node_key_ptr_offset(slot),
4666                               btrfs_node_key_ptr_offset(slot + 1),
4667                               sizeof(struct btrfs_key_ptr) *
4668                               (nritems - slot - 1));
4669         } else if (level) {
4670                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4671                                               MOD_LOG_KEY_REMOVE);
4672                 BUG_ON(ret < 0);
4673         }
4674
4675         nritems--;
4676         btrfs_set_header_nritems(parent, nritems);
4677         if (nritems == 0 && parent == root->node) {
4678                 BUG_ON(btrfs_header_level(root->node) != 1);
4679                 /* just turn the root into a leaf and break */
4680                 btrfs_set_header_level(root->node, 0);
4681         } else if (slot == 0) {
4682                 struct btrfs_disk_key disk_key;
4683
4684                 btrfs_node_key(parent, &disk_key, 0);
4685                 fixup_low_keys(root, path, &disk_key, level + 1);
4686         }
4687         btrfs_mark_buffer_dirty(parent);
4688 }
4689
4690 /*
4691  * a helper function to delete the leaf pointed to by path->slots[1] and
4692  * path->nodes[1].
4693  *
4694  * This deletes the pointer in path->nodes[1] and frees the leaf
4695  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4696  *
4697  * The path must have already been setup for deleting the leaf, including
4698  * all the proper balancing.  path->nodes[1] must be locked.
4699  */
4700 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4701                                     struct btrfs_root *root,
4702                                     struct btrfs_path *path,
4703                                     struct extent_buffer *leaf)
4704 {
4705         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4706         del_ptr(root, path, 1, path->slots[1]);
4707
4708         /*
4709          * btrfs_free_extent is expensive, we want to make sure we
4710          * aren't holding any locks when we call it
4711          */
4712         btrfs_unlock_up_safe(path, 0);
4713
4714         root_sub_used(root, leaf->len);
4715
4716         extent_buffer_get(leaf);
4717         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4718         free_extent_buffer_stale(leaf);
4719 }
4720 /*
4721  * delete the item at the leaf level in path.  If that empties
4722  * the leaf, remove it from the tree
4723  */
4724 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4725                     struct btrfs_path *path, int slot, int nr)
4726 {
4727         struct extent_buffer *leaf;
4728         struct btrfs_item *item;
4729         int last_off;
4730         int dsize = 0;
4731         int ret = 0;
4732         int wret;
4733         int i;
4734         u32 nritems;
4735         struct btrfs_map_token token;
4736
4737         btrfs_init_map_token(&token);
4738
4739         leaf = path->nodes[0];
4740         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4741
4742         for (i = 0; i < nr; i++)
4743                 dsize += btrfs_item_size_nr(leaf, slot + i);
4744
4745         nritems = btrfs_header_nritems(leaf);
4746
4747         if (slot + nr != nritems) {
4748                 int data_end = leaf_data_end(root, leaf);
4749
4750                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4751                               data_end + dsize,
4752                               btrfs_leaf_data(leaf) + data_end,
4753                               last_off - data_end);
4754
4755                 for (i = slot + nr; i < nritems; i++) {
4756                         u32 ioff;
4757
4758                         item = btrfs_item_nr(leaf, i);
4759                         ioff = btrfs_token_item_offset(leaf, item, &token);
4760                         btrfs_set_token_item_offset(leaf, item,
4761                                                     ioff + dsize, &token);
4762                 }
4763
4764                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4765                               btrfs_item_nr_offset(slot + nr),
4766                               sizeof(struct btrfs_item) *
4767                               (nritems - slot - nr));
4768         }
4769         btrfs_set_header_nritems(leaf, nritems - nr);
4770         nritems -= nr;
4771
4772         /* delete the leaf if we've emptied it */
4773         if (nritems == 0) {
4774                 if (leaf == root->node) {
4775                         btrfs_set_header_level(leaf, 0);
4776                 } else {
4777                         btrfs_set_path_blocking(path);
4778                         clean_tree_block(trans, root, leaf);
4779                         btrfs_del_leaf(trans, root, path, leaf);
4780                 }
4781         } else {
4782                 int used = leaf_space_used(leaf, 0, nritems);
4783                 if (slot == 0) {
4784                         struct btrfs_disk_key disk_key;
4785
4786                         btrfs_item_key(leaf, &disk_key, 0);
4787                         fixup_low_keys(root, path, &disk_key, 1);
4788                 }
4789
4790                 /* delete the leaf if it is mostly empty */
4791                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4792                         /* push_leaf_left fixes the path.
4793                          * make sure the path still points to our leaf
4794                          * for possible call to del_ptr below
4795                          */
4796                         slot = path->slots[1];
4797                         extent_buffer_get(leaf);
4798
4799                         btrfs_set_path_blocking(path);
4800                         wret = push_leaf_left(trans, root, path, 1, 1,
4801                                               1, (u32)-1);
4802                         if (wret < 0 && wret != -ENOSPC)
4803                                 ret = wret;
4804
4805                         if (path->nodes[0] == leaf &&
4806                             btrfs_header_nritems(leaf)) {
4807                                 wret = push_leaf_right(trans, root, path, 1,
4808                                                        1, 1, 0);
4809                                 if (wret < 0 && wret != -ENOSPC)
4810                                         ret = wret;
4811                         }
4812
4813                         if (btrfs_header_nritems(leaf) == 0) {
4814                                 path->slots[1] = slot;
4815                                 btrfs_del_leaf(trans, root, path, leaf);
4816                                 free_extent_buffer(leaf);
4817                                 ret = 0;
4818                         } else {
4819                                 /* if we're still in the path, make sure
4820                                  * we're dirty.  Otherwise, one of the
4821                                  * push_leaf functions must have already
4822                                  * dirtied this buffer
4823                                  */
4824                                 if (path->nodes[0] == leaf)
4825                                         btrfs_mark_buffer_dirty(leaf);
4826                                 free_extent_buffer(leaf);
4827                         }
4828                 } else {
4829                         btrfs_mark_buffer_dirty(leaf);
4830                 }
4831         }
4832         return ret;
4833 }
4834
4835 /*
4836  * search the tree again to find a leaf with lesser keys
4837  * returns 0 if it found something or 1 if there are no lesser leaves.
4838  * returns < 0 on io errors.
4839  *
4840  * This may release the path, and so you may lose any locks held at the
4841  * time you call it.
4842  */
4843 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4844 {
4845         struct btrfs_key key;
4846         struct btrfs_disk_key found_key;
4847         int ret;
4848
4849         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4850
4851         if (key.offset > 0)
4852                 key.offset--;
4853         else if (key.type > 0)
4854                 key.type--;
4855         else if (key.objectid > 0)
4856                 key.objectid--;
4857         else
4858                 return 1;
4859
4860         btrfs_release_path(path);
4861         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4862         if (ret < 0)
4863                 return ret;
4864         btrfs_item_key(path->nodes[0], &found_key, 0);
4865         ret = comp_keys(&found_key, &key);
4866         if (ret < 0)
4867                 return 0;
4868         return 1;
4869 }
4870
4871 /*
4872  * A helper function to walk down the tree starting at min_key, and looking
4873  * for nodes or leaves that are have a minimum transaction id.
4874  * This is used by the btree defrag code, and tree logging
4875  *
4876  * This does not cow, but it does stuff the starting key it finds back
4877  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4878  * key and get a writable path.
4879  *
4880  * This does lock as it descends, and path->keep_locks should be set
4881  * to 1 by the caller.
4882  *
4883  * This honors path->lowest_level to prevent descent past a given level
4884  * of the tree.
4885  *
4886  * min_trans indicates the oldest transaction that you are interested
4887  * in walking through.  Any nodes or leaves older than min_trans are
4888  * skipped over (without reading them).
4889  *
4890  * returns zero if something useful was found, < 0 on error and 1 if there
4891  * was nothing in the tree that matched the search criteria.
4892  */
4893 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4894                          struct btrfs_key *max_key,
4895                          struct btrfs_path *path,
4896                          u64 min_trans)
4897 {
4898         struct extent_buffer *cur;
4899         struct btrfs_key found_key;
4900         int slot;
4901         int sret;
4902         u32 nritems;
4903         int level;
4904         int ret = 1;
4905
4906         WARN_ON(!path->keep_locks);
4907 again:
4908         cur = btrfs_read_lock_root_node(root);
4909         level = btrfs_header_level(cur);
4910         WARN_ON(path->nodes[level]);
4911         path->nodes[level] = cur;
4912         path->locks[level] = BTRFS_READ_LOCK;
4913
4914         if (btrfs_header_generation(cur) < min_trans) {
4915                 ret = 1;
4916                 goto out;
4917         }
4918         while (1) {
4919                 nritems = btrfs_header_nritems(cur);
4920                 level = btrfs_header_level(cur);
4921                 sret = bin_search(cur, min_key, level, &slot);
4922
4923                 /* at the lowest level, we're done, setup the path and exit */
4924                 if (level == path->lowest_level) {
4925                         if (slot >= nritems)
4926                                 goto find_next_key;
4927                         ret = 0;
4928                         path->slots[level] = slot;
4929                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4930                         goto out;
4931                 }
4932                 if (sret && slot > 0)
4933                         slot--;
4934                 /*
4935                  * check this node pointer against the min_trans parameters.
4936                  * If it is too old, old, skip to the next one.
4937                  */
4938                 while (slot < nritems) {
4939                         u64 blockptr;
4940                         u64 gen;
4941
4942                         blockptr = btrfs_node_blockptr(cur, slot);
4943                         gen = btrfs_node_ptr_generation(cur, slot);
4944                         if (gen < min_trans) {
4945                                 slot++;
4946                                 continue;
4947                         }
4948                         break;
4949                 }
4950 find_next_key:
4951                 /*
4952                  * we didn't find a candidate key in this node, walk forward
4953                  * and find another one
4954                  */
4955                 if (slot >= nritems) {
4956                         path->slots[level] = slot;
4957                         btrfs_set_path_blocking(path);
4958                         sret = btrfs_find_next_key(root, path, min_key, level,
4959                                                   min_trans);
4960                         if (sret == 0) {
4961                                 btrfs_release_path(path);
4962                                 goto again;
4963                         } else {
4964                                 goto out;
4965                         }
4966                 }
4967                 /* save our key for returning back */
4968                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4969                 path->slots[level] = slot;
4970                 if (level == path->lowest_level) {
4971                         ret = 0;
4972                         unlock_up(path, level, 1, 0, NULL);
4973                         goto out;
4974                 }
4975                 btrfs_set_path_blocking(path);
4976                 cur = read_node_slot(root, cur, slot);
4977                 BUG_ON(!cur); /* -ENOMEM */
4978
4979                 btrfs_tree_read_lock(cur);
4980
4981                 path->locks[level - 1] = BTRFS_READ_LOCK;
4982                 path->nodes[level - 1] = cur;
4983                 unlock_up(path, level, 1, 0, NULL);
4984                 btrfs_clear_path_blocking(path, NULL, 0);
4985         }
4986 out:
4987         if (ret == 0)
4988                 memcpy(min_key, &found_key, sizeof(found_key));
4989         btrfs_set_path_blocking(path);
4990         return ret;
4991 }
4992
4993 static void tree_move_down(struct btrfs_root *root,
4994                            struct btrfs_path *path,
4995                            int *level, int root_level)
4996 {
4997         BUG_ON(*level == 0);
4998         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4999                                         path->slots[*level]);
5000         path->slots[*level - 1] = 0;
5001         (*level)--;
5002 }
5003
5004 static int tree_move_next_or_upnext(struct btrfs_root *root,
5005                                     struct btrfs_path *path,
5006                                     int *level, int root_level)
5007 {
5008         int ret = 0;
5009         int nritems;
5010         nritems = btrfs_header_nritems(path->nodes[*level]);
5011
5012         path->slots[*level]++;
5013
5014         while (path->slots[*level] >= nritems) {
5015                 if (*level == root_level)
5016                         return -1;
5017
5018                 /* move upnext */
5019                 path->slots[*level] = 0;
5020                 free_extent_buffer(path->nodes[*level]);
5021                 path->nodes[*level] = NULL;
5022                 (*level)++;
5023                 path->slots[*level]++;
5024
5025                 nritems = btrfs_header_nritems(path->nodes[*level]);
5026                 ret = 1;
5027         }
5028         return ret;
5029 }
5030
5031 /*
5032  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5033  * or down.
5034  */
5035 static int tree_advance(struct btrfs_root *root,
5036                         struct btrfs_path *path,
5037                         int *level, int root_level,
5038                         int allow_down,
5039                         struct btrfs_key *key)
5040 {
5041         int ret;
5042
5043         if (*level == 0 || !allow_down) {
5044                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5045         } else {
5046                 tree_move_down(root, path, level, root_level);
5047                 ret = 0;
5048         }
5049         if (ret >= 0) {
5050                 if (*level == 0)
5051                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5052                                         path->slots[*level]);
5053                 else
5054                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5055                                         path->slots[*level]);
5056         }
5057         return ret;
5058 }
5059
5060 static int tree_compare_item(struct btrfs_root *left_root,
5061                              struct btrfs_path *left_path,
5062                              struct btrfs_path *right_path,
5063                              char *tmp_buf)
5064 {
5065         int cmp;
5066         int len1, len2;
5067         unsigned long off1, off2;
5068
5069         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5070         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5071         if (len1 != len2)
5072                 return 1;
5073
5074         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5075         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5076                                 right_path->slots[0]);
5077
5078         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5079
5080         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5081         if (cmp)
5082                 return 1;
5083         return 0;
5084 }
5085
5086 #define ADVANCE 1
5087 #define ADVANCE_ONLY_NEXT -1
5088
5089 /*
5090  * This function compares two trees and calls the provided callback for
5091  * every changed/new/deleted item it finds.
5092  * If shared tree blocks are encountered, whole subtrees are skipped, making
5093  * the compare pretty fast on snapshotted subvolumes.
5094  *
5095  * This currently works on commit roots only. As commit roots are read only,
5096  * we don't do any locking. The commit roots are protected with transactions.
5097  * Transactions are ended and rejoined when a commit is tried in between.
5098  *
5099  * This function checks for modifications done to the trees while comparing.
5100  * If it detects a change, it aborts immediately.
5101  */
5102 int btrfs_compare_trees(struct btrfs_root *left_root,
5103                         struct btrfs_root *right_root,
5104                         btrfs_changed_cb_t changed_cb, void *ctx)
5105 {
5106         int ret;
5107         int cmp;
5108         struct btrfs_trans_handle *trans = NULL;
5109         struct btrfs_path *left_path = NULL;
5110         struct btrfs_path *right_path = NULL;
5111         struct btrfs_key left_key;
5112         struct btrfs_key right_key;
5113         char *tmp_buf = NULL;
5114         int left_root_level;
5115         int right_root_level;
5116         int left_level;
5117         int right_level;
5118         int left_end_reached;
5119         int right_end_reached;
5120         int advance_left;
5121         int advance_right;
5122         u64 left_blockptr;
5123         u64 right_blockptr;
5124         u64 left_start_ctransid;
5125         u64 right_start_ctransid;
5126         u64 ctransid;
5127
5128         left_path = btrfs_alloc_path();
5129         if (!left_path) {
5130                 ret = -ENOMEM;
5131                 goto out;
5132         }
5133         right_path = btrfs_alloc_path();
5134         if (!right_path) {
5135                 ret = -ENOMEM;
5136                 goto out;
5137         }
5138
5139         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5140         if (!tmp_buf) {
5141                 ret = -ENOMEM;
5142                 goto out;
5143         }
5144
5145         left_path->search_commit_root = 1;
5146         left_path->skip_locking = 1;
5147         right_path->search_commit_root = 1;
5148         right_path->skip_locking = 1;
5149
5150         spin_lock(&left_root->root_item_lock);
5151         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5152         spin_unlock(&left_root->root_item_lock);
5153
5154         spin_lock(&right_root->root_item_lock);
5155         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5156         spin_unlock(&right_root->root_item_lock);
5157
5158         trans = btrfs_join_transaction(left_root);
5159         if (IS_ERR(trans)) {
5160                 ret = PTR_ERR(trans);
5161                 trans = NULL;
5162                 goto out;
5163         }
5164
5165         /*
5166          * Strategy: Go to the first items of both trees. Then do
5167          *
5168          * If both trees are at level 0
5169          *   Compare keys of current items
5170          *     If left < right treat left item as new, advance left tree
5171          *       and repeat
5172          *     If left > right treat right item as deleted, advance right tree
5173          *       and repeat
5174          *     If left == right do deep compare of items, treat as changed if
5175          *       needed, advance both trees and repeat
5176          * If both trees are at the same level but not at level 0
5177          *   Compare keys of current nodes/leafs
5178          *     If left < right advance left tree and repeat
5179          *     If left > right advance right tree and repeat
5180          *     If left == right compare blockptrs of the next nodes/leafs
5181          *       If they match advance both trees but stay at the same level
5182          *         and repeat
5183          *       If they don't match advance both trees while allowing to go
5184          *         deeper and repeat
5185          * If tree levels are different
5186          *   Advance the tree that needs it and repeat
5187          *
5188          * Advancing a tree means:
5189          *   If we are at level 0, try to go to the next slot. If that's not
5190          *   possible, go one level up and repeat. Stop when we found a level
5191          *   where we could go to the next slot. We may at this point be on a
5192          *   node or a leaf.
5193          *
5194          *   If we are not at level 0 and not on shared tree blocks, go one
5195          *   level deeper.
5196          *
5197          *   If we are not at level 0 and on shared tree blocks, go one slot to
5198          *   the right if possible or go up and right.
5199          */
5200
5201         left_level = btrfs_header_level(left_root->commit_root);
5202         left_root_level = left_level;
5203         left_path->nodes[left_level] = left_root->commit_root;
5204         extent_buffer_get(left_path->nodes[left_level]);
5205
5206         right_level = btrfs_header_level(right_root->commit_root);
5207         right_root_level = right_level;
5208         right_path->nodes[right_level] = right_root->commit_root;
5209         extent_buffer_get(right_path->nodes[right_level]);
5210
5211         if (left_level == 0)
5212                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5213                                 &left_key, left_path->slots[left_level]);
5214         else
5215                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5216                                 &left_key, left_path->slots[left_level]);
5217         if (right_level == 0)
5218                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5219                                 &right_key, right_path->slots[right_level]);
5220         else
5221                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5222                                 &right_key, right_path->slots[right_level]);
5223
5224         left_end_reached = right_end_reached = 0;
5225         advance_left = advance_right = 0;
5226
5227         while (1) {
5228                 /*
5229                  * We need to make sure the transaction does not get committed
5230                  * while we do anything on commit roots. This means, we need to
5231                  * join and leave transactions for every item that we process.
5232                  */
5233                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5234                         btrfs_release_path(left_path);
5235                         btrfs_release_path(right_path);
5236
5237                         ret = btrfs_end_transaction(trans, left_root);
5238                         trans = NULL;
5239                         if (ret < 0)
5240                                 goto out;
5241                 }
5242                 /* now rejoin the transaction */
5243                 if (!trans) {
5244                         trans = btrfs_join_transaction(left_root);
5245                         if (IS_ERR(trans)) {
5246                                 ret = PTR_ERR(trans);
5247                                 trans = NULL;
5248                                 goto out;
5249                         }
5250
5251                         spin_lock(&left_root->root_item_lock);
5252                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5253                         spin_unlock(&left_root->root_item_lock);
5254                         if (ctransid != left_start_ctransid)
5255                                 left_start_ctransid = 0;
5256
5257                         spin_lock(&right_root->root_item_lock);
5258                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5259                         spin_unlock(&right_root->root_item_lock);
5260                         if (ctransid != right_start_ctransid)
5261                                 right_start_ctransid = 0;
5262
5263                         if (!left_start_ctransid || !right_start_ctransid) {
5264                                 WARN(1, KERN_WARNING
5265                                         "btrfs: btrfs_compare_tree detected "
5266                                         "a change in one of the trees while "
5267                                         "iterating. This is probably a "
5268                                         "bug.\n");
5269                                 ret = -EIO;
5270                                 goto out;
5271                         }
5272
5273                         /*
5274                          * the commit root may have changed, so start again
5275                          * where we stopped
5276                          */
5277                         left_path->lowest_level = left_level;
5278                         right_path->lowest_level = right_level;
5279                         ret = btrfs_search_slot(NULL, left_root,
5280                                         &left_key, left_path, 0, 0);
5281                         if (ret < 0)
5282                                 goto out;
5283                         ret = btrfs_search_slot(NULL, right_root,
5284                                         &right_key, right_path, 0, 0);
5285                         if (ret < 0)
5286                                 goto out;
5287                 }
5288
5289                 if (advance_left && !left_end_reached) {
5290                         ret = tree_advance(left_root, left_path, &left_level,
5291                                         left_root_level,
5292                                         advance_left != ADVANCE_ONLY_NEXT,
5293                                         &left_key);
5294                         if (ret < 0)
5295                                 left_end_reached = ADVANCE;
5296                         advance_left = 0;
5297                 }
5298                 if (advance_right && !right_end_reached) {
5299                         ret = tree_advance(right_root, right_path, &right_level,
5300                                         right_root_level,
5301                                         advance_right != ADVANCE_ONLY_NEXT,
5302                                         &right_key);
5303                         if (ret < 0)
5304                                 right_end_reached = ADVANCE;
5305                         advance_right = 0;
5306                 }
5307
5308                 if (left_end_reached && right_end_reached) {
5309                         ret = 0;
5310                         goto out;
5311                 } else if (left_end_reached) {
5312                         if (right_level == 0) {
5313                                 ret = changed_cb(left_root, right_root,
5314                                                 left_path, right_path,
5315                                                 &right_key,
5316                                                 BTRFS_COMPARE_TREE_DELETED,
5317                                                 ctx);
5318                                 if (ret < 0)
5319                                         goto out;
5320                         }
5321                         advance_right = ADVANCE;
5322                         continue;
5323                 } else if (right_end_reached) {
5324                         if (left_level == 0) {
5325                                 ret = changed_cb(left_root, right_root,
5326                                                 left_path, right_path,
5327                                                 &left_key,
5328                                                 BTRFS_COMPARE_TREE_NEW,
5329                                                 ctx);
5330                                 if (ret < 0)
5331                                         goto out;
5332                         }
5333                         advance_left = ADVANCE;
5334                         continue;
5335                 }
5336
5337                 if (left_level == 0 && right_level == 0) {
5338                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5339                         if (cmp < 0) {
5340                                 ret = changed_cb(left_root, right_root,
5341                                                 left_path, right_path,
5342                                                 &left_key,
5343                                                 BTRFS_COMPARE_TREE_NEW,
5344                                                 ctx);
5345                                 if (ret < 0)
5346                                         goto out;
5347                                 advance_left = ADVANCE;
5348                         } else if (cmp > 0) {
5349                                 ret = changed_cb(left_root, right_root,
5350                                                 left_path, right_path,
5351                                                 &right_key,
5352                                                 BTRFS_COMPARE_TREE_DELETED,
5353                                                 ctx);
5354                                 if (ret < 0)
5355                                         goto out;
5356                                 advance_right = ADVANCE;
5357                         } else {
5358                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5359                                 ret = tree_compare_item(left_root, left_path,
5360                                                 right_path, tmp_buf);
5361                                 if (ret) {
5362                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5363                                         ret = changed_cb(left_root, right_root,
5364                                                 left_path, right_path,
5365                                                 &left_key,
5366                                                 BTRFS_COMPARE_TREE_CHANGED,
5367                                                 ctx);
5368                                         if (ret < 0)
5369                                                 goto out;
5370                                 }
5371                                 advance_left = ADVANCE;
5372                                 advance_right = ADVANCE;
5373                         }
5374                 } else if (left_level == right_level) {
5375                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5376                         if (cmp < 0) {
5377                                 advance_left = ADVANCE;
5378                         } else if (cmp > 0) {
5379                                 advance_right = ADVANCE;
5380                         } else {
5381                                 left_blockptr = btrfs_node_blockptr(
5382                                                 left_path->nodes[left_level],
5383                                                 left_path->slots[left_level]);
5384                                 right_blockptr = btrfs_node_blockptr(
5385                                                 right_path->nodes[right_level],
5386                                                 right_path->slots[right_level]);
5387                                 if (left_blockptr == right_blockptr) {
5388                                         /*
5389                                          * As we're on a shared block, don't
5390                                          * allow to go deeper.
5391                                          */
5392                                         advance_left = ADVANCE_ONLY_NEXT;
5393                                         advance_right = ADVANCE_ONLY_NEXT;
5394                                 } else {
5395                                         advance_left = ADVANCE;
5396                                         advance_right = ADVANCE;
5397                                 }
5398                         }
5399                 } else if (left_level < right_level) {
5400                         advance_right = ADVANCE;
5401                 } else {
5402                         advance_left = ADVANCE;
5403                 }
5404         }
5405
5406 out:
5407         btrfs_free_path(left_path);
5408         btrfs_free_path(right_path);
5409         kfree(tmp_buf);
5410
5411         if (trans) {
5412                 if (!ret)
5413                         ret = btrfs_end_transaction(trans, left_root);
5414                 else
5415                         btrfs_end_transaction(trans, left_root);
5416         }
5417
5418         return ret;
5419 }
5420
5421 /*
5422  * this is similar to btrfs_next_leaf, but does not try to preserve
5423  * and fixup the path.  It looks for and returns the next key in the
5424  * tree based on the current path and the min_trans parameters.
5425  *
5426  * 0 is returned if another key is found, < 0 if there are any errors
5427  * and 1 is returned if there are no higher keys in the tree
5428  *
5429  * path->keep_locks should be set to 1 on the search made before
5430  * calling this function.
5431  */
5432 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5433                         struct btrfs_key *key, int level, u64 min_trans)
5434 {
5435         int slot;
5436         struct extent_buffer *c;
5437
5438         WARN_ON(!path->keep_locks);
5439         while (level < BTRFS_MAX_LEVEL) {
5440                 if (!path->nodes[level])
5441                         return 1;
5442
5443                 slot = path->slots[level] + 1;
5444                 c = path->nodes[level];
5445 next:
5446                 if (slot >= btrfs_header_nritems(c)) {
5447                         int ret;
5448                         int orig_lowest;
5449                         struct btrfs_key cur_key;
5450                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5451                             !path->nodes[level + 1])
5452                                 return 1;
5453
5454                         if (path->locks[level + 1]) {
5455                                 level++;
5456                                 continue;
5457                         }
5458
5459                         slot = btrfs_header_nritems(c) - 1;
5460                         if (level == 0)
5461                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5462                         else
5463                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5464
5465                         orig_lowest = path->lowest_level;
5466                         btrfs_release_path(path);
5467                         path->lowest_level = level;
5468                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5469                                                 0, 0);
5470                         path->lowest_level = orig_lowest;
5471                         if (ret < 0)
5472                                 return ret;
5473
5474                         c = path->nodes[level];
5475                         slot = path->slots[level];
5476                         if (ret == 0)
5477                                 slot++;
5478                         goto next;
5479                 }
5480
5481                 if (level == 0)
5482                         btrfs_item_key_to_cpu(c, key, slot);
5483                 else {
5484                         u64 gen = btrfs_node_ptr_generation(c, slot);
5485
5486                         if (gen < min_trans) {
5487                                 slot++;
5488                                 goto next;
5489                         }
5490                         btrfs_node_key_to_cpu(c, key, slot);
5491                 }
5492                 return 0;
5493         }
5494         return 1;
5495 }
5496
5497 /*
5498  * search the tree again to find a leaf with greater keys
5499  * returns 0 if it found something or 1 if there are no greater leaves.
5500  * returns < 0 on io errors.
5501  */
5502 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5503 {
5504         return btrfs_next_old_leaf(root, path, 0);
5505 }
5506
5507 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5508                         u64 time_seq)
5509 {
5510         int slot;
5511         int level;
5512         struct extent_buffer *c;
5513         struct extent_buffer *next;
5514         struct btrfs_key key;
5515         u32 nritems;
5516         int ret;
5517         int old_spinning = path->leave_spinning;
5518         int next_rw_lock = 0;
5519
5520         nritems = btrfs_header_nritems(path->nodes[0]);
5521         if (nritems == 0)
5522                 return 1;
5523
5524         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5525 again:
5526         level = 1;
5527         next = NULL;
5528         next_rw_lock = 0;
5529         btrfs_release_path(path);
5530
5531         path->keep_locks = 1;
5532         path->leave_spinning = 1;
5533
5534         if (time_seq)
5535                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5536         else
5537                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5538         path->keep_locks = 0;
5539
5540         if (ret < 0)
5541                 return ret;
5542
5543         nritems = btrfs_header_nritems(path->nodes[0]);
5544         /*
5545          * by releasing the path above we dropped all our locks.  A balance
5546          * could have added more items next to the key that used to be
5547          * at the very end of the block.  So, check again here and
5548          * advance the path if there are now more items available.
5549          */
5550         if (nritems > 0 && path->slots[0] < nritems - 1) {
5551                 if (ret == 0)
5552                         path->slots[0]++;
5553                 ret = 0;
5554                 goto done;
5555         }
5556
5557         while (level < BTRFS_MAX_LEVEL) {
5558                 if (!path->nodes[level]) {
5559                         ret = 1;
5560                         goto done;
5561                 }
5562
5563                 slot = path->slots[level] + 1;
5564                 c = path->nodes[level];
5565                 if (slot >= btrfs_header_nritems(c)) {
5566                         level++;
5567                         if (level == BTRFS_MAX_LEVEL) {
5568                                 ret = 1;
5569                                 goto done;
5570                         }
5571                         continue;
5572                 }
5573
5574                 if (next) {
5575                         btrfs_tree_unlock_rw(next, next_rw_lock);
5576                         free_extent_buffer(next);
5577                 }
5578
5579                 next = c;
5580                 next_rw_lock = path->locks[level];
5581                 ret = read_block_for_search(NULL, root, path, &next, level,
5582                                             slot, &key, 0);
5583                 if (ret == -EAGAIN)
5584                         goto again;
5585
5586                 if (ret < 0) {
5587                         btrfs_release_path(path);
5588                         goto done;
5589                 }
5590
5591                 if (!path->skip_locking) {
5592                         ret = btrfs_try_tree_read_lock(next);
5593                         if (!ret && time_seq) {
5594                                 /*
5595                                  * If we don't get the lock, we may be racing
5596                                  * with push_leaf_left, holding that lock while
5597                                  * itself waiting for the leaf we've currently
5598                                  * locked. To solve this situation, we give up
5599                                  * on our lock and cycle.
5600                                  */
5601                                 free_extent_buffer(next);
5602                                 btrfs_release_path(path);
5603                                 cond_resched();
5604                                 goto again;
5605                         }
5606                         if (!ret) {
5607                                 btrfs_set_path_blocking(path);
5608                                 btrfs_tree_read_lock(next);
5609                                 btrfs_clear_path_blocking(path, next,
5610                                                           BTRFS_READ_LOCK);
5611                         }
5612                         next_rw_lock = BTRFS_READ_LOCK;
5613                 }
5614                 break;
5615         }
5616         path->slots[level] = slot;
5617         while (1) {
5618                 level--;
5619                 c = path->nodes[level];
5620                 if (path->locks[level])
5621                         btrfs_tree_unlock_rw(c, path->locks[level]);
5622
5623                 free_extent_buffer(c);
5624                 path->nodes[level] = next;
5625                 path->slots[level] = 0;
5626                 if (!path->skip_locking)
5627                         path->locks[level] = next_rw_lock;
5628                 if (!level)
5629                         break;
5630
5631                 ret = read_block_for_search(NULL, root, path, &next, level,
5632                                             0, &key, 0);
5633                 if (ret == -EAGAIN)
5634                         goto again;
5635
5636                 if (ret < 0) {
5637                         btrfs_release_path(path);
5638                         goto done;
5639                 }
5640
5641                 if (!path->skip_locking) {
5642                         ret = btrfs_try_tree_read_lock(next);
5643                         if (!ret) {
5644                                 btrfs_set_path_blocking(path);
5645                                 btrfs_tree_read_lock(next);
5646                                 btrfs_clear_path_blocking(path, next,
5647                                                           BTRFS_READ_LOCK);
5648                         }
5649                         next_rw_lock = BTRFS_READ_LOCK;
5650                 }
5651         }
5652         ret = 0;
5653 done:
5654         unlock_up(path, 0, 1, 0, NULL);
5655         path->leave_spinning = old_spinning;
5656         if (!old_spinning)
5657                 btrfs_set_path_blocking(path);
5658
5659         return ret;
5660 }
5661
5662 /*
5663  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5664  * searching until it gets past min_objectid or finds an item of 'type'
5665  *
5666  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5667  */
5668 int btrfs_previous_item(struct btrfs_root *root,
5669                         struct btrfs_path *path, u64 min_objectid,
5670                         int type)
5671 {
5672         struct btrfs_key found_key;
5673         struct extent_buffer *leaf;
5674         u32 nritems;
5675         int ret;
5676
5677         while (1) {
5678                 if (path->slots[0] == 0) {
5679                         btrfs_set_path_blocking(path);
5680                         ret = btrfs_prev_leaf(root, path);
5681                         if (ret != 0)
5682                                 return ret;
5683                 } else {
5684                         path->slots[0]--;
5685                 }
5686                 leaf = path->nodes[0];
5687                 nritems = btrfs_header_nritems(leaf);
5688                 if (nritems == 0)
5689                         return 1;
5690                 if (path->slots[0] == nritems)
5691                         path->slots[0]--;
5692
5693                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5694                 if (found_key.objectid < min_objectid)
5695                         break;
5696                 if (found_key.type == type)
5697                         return 0;
5698                 if (found_key.objectid == min_objectid &&
5699                     found_key.type < type)
5700                         break;
5701         }
5702         return 1;
5703 }