]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[linux-imx.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113         /* required last entry */
114         {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143                                                  struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173                                int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176                                    bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178                                  struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                  "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223                      pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226
227 static const struct pci_error_handlers igb_err_handler = {
228         .error_detected = igb_io_error_detected,
229         .slot_reset = igb_io_slot_reset,
230         .resume = igb_io_resume,
231 };
232
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235 static struct pci_driver igb_driver = {
236         .name     = igb_driver_name,
237         .id_table = igb_pci_tbl,
238         .probe    = igb_probe,
239         .remove   = igb_remove,
240 #ifdef CONFIG_PM
241         .driver.pm = &igb_pm_ops,
242 #endif
243         .shutdown = igb_shutdown,
244         .sriov_configure = igb_pci_sriov_configure,
245         .err_handler = &igb_err_handler
246 };
247
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 struct igb_reg_info {
259         u32 ofs;
260         char *name;
261 };
262
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265         /* General Registers */
266         {E1000_CTRL, "CTRL"},
267         {E1000_STATUS, "STATUS"},
268         {E1000_CTRL_EXT, "CTRL_EXT"},
269
270         /* Interrupt Registers */
271         {E1000_ICR, "ICR"},
272
273         /* RX Registers */
274         {E1000_RCTL, "RCTL"},
275         {E1000_RDLEN(0), "RDLEN"},
276         {E1000_RDH(0), "RDH"},
277         {E1000_RDT(0), "RDT"},
278         {E1000_RXDCTL(0), "RXDCTL"},
279         {E1000_RDBAL(0), "RDBAL"},
280         {E1000_RDBAH(0), "RDBAH"},
281
282         /* TX Registers */
283         {E1000_TCTL, "TCTL"},
284         {E1000_TDBAL(0), "TDBAL"},
285         {E1000_TDBAH(0), "TDBAH"},
286         {E1000_TDLEN(0), "TDLEN"},
287         {E1000_TDH(0), "TDH"},
288         {E1000_TDT(0), "TDT"},
289         {E1000_TXDCTL(0), "TXDCTL"},
290         {E1000_TDFH, "TDFH"},
291         {E1000_TDFT, "TDFT"},
292         {E1000_TDFHS, "TDFHS"},
293         {E1000_TDFPC, "TDFPC"},
294
295         /* List Terminator */
296         {}
297 };
298
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302         int n = 0;
303         char rname[16];
304         u32 regs[8];
305
306         switch (reginfo->ofs) {
307         case E1000_RDLEN(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDLEN(n));
310                 break;
311         case E1000_RDH(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDH(n));
314                 break;
315         case E1000_RDT(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDT(n));
318                 break;
319         case E1000_RXDCTL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RXDCTL(n));
322                 break;
323         case E1000_RDBAL(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAL(n));
326                 break;
327         case E1000_RDBAH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAH(n));
330                 break;
331         case E1000_TDBAL(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_RDBAL(n));
334                 break;
335         case E1000_TDBAH(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDBAH(n));
338                 break;
339         case E1000_TDLEN(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDLEN(n));
342                 break;
343         case E1000_TDH(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDH(n));
346                 break;
347         case E1000_TDT(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TDT(n));
350                 break;
351         case E1000_TXDCTL(0):
352                 for (n = 0; n < 4; n++)
353                         regs[n] = rd32(E1000_TXDCTL(n));
354                 break;
355         default:
356                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357                 return;
358         }
359
360         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362                 regs[2], regs[3]);
363 }
364
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368         struct net_device *netdev = adapter->netdev;
369         struct e1000_hw *hw = &adapter->hw;
370         struct igb_reg_info *reginfo;
371         struct igb_ring *tx_ring;
372         union e1000_adv_tx_desc *tx_desc;
373         struct my_u0 { u64 a; u64 b; } *u0;
374         struct igb_ring *rx_ring;
375         union e1000_adv_rx_desc *rx_desc;
376         u32 staterr;
377         u16 i, n;
378
379         if (!netif_msg_hw(adapter))
380                 return;
381
382         /* Print netdevice Info */
383         if (netdev) {
384                 dev_info(&adapter->pdev->dev, "Net device Info\n");
385                 pr_info("Device Name     state            trans_start      "
386                         "last_rx\n");
387                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388                         netdev->state, netdev->trans_start, netdev->last_rx);
389         }
390
391         /* Print Registers */
392         dev_info(&adapter->pdev->dev, "Register Dump\n");
393         pr_info(" Register Name   Value\n");
394         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395              reginfo->name; reginfo++) {
396                 igb_regdump(hw, reginfo);
397         }
398
399         /* Print TX Ring Summary */
400         if (!netdev || !netif_running(netdev))
401                 goto exit;
402
403         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405         for (n = 0; n < adapter->num_tx_queues; n++) {
406                 struct igb_tx_buffer *buffer_info;
407                 tx_ring = adapter->tx_ring[n];
408                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
411                         (u64)dma_unmap_addr(buffer_info, dma),
412                         dma_unmap_len(buffer_info, len),
413                         buffer_info->next_to_watch,
414                         (u64)buffer_info->time_stamp);
415         }
416
417         /* Print TX Rings */
418         if (!netif_msg_tx_done(adapter))
419                 goto rx_ring_summary;
420
421         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423         /* Transmit Descriptor Formats
424          *
425          * Advanced Transmit Descriptor
426          *   +--------------------------------------------------------------+
427          * 0 |         Buffer Address [63:0]                                |
428          *   +--------------------------------------------------------------+
429          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430          *   +--------------------------------------------------------------+
431          *   63      46 45    40 39 38 36 35 32 31   24             15       0
432          */
433
434         for (n = 0; n < adapter->num_tx_queues; n++) {
435                 tx_ring = adapter->tx_ring[n];
436                 pr_info("------------------------------------\n");
437                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438                 pr_info("------------------------------------\n");
439                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440                         "[bi->dma       ] leng  ntw timestamp        "
441                         "bi->skb\n");
442
443                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444                         const char *next_desc;
445                         struct igb_tx_buffer *buffer_info;
446                         tx_desc = IGB_TX_DESC(tx_ring, i);
447                         buffer_info = &tx_ring->tx_buffer_info[i];
448                         u0 = (struct my_u0 *)tx_desc;
449                         if (i == tx_ring->next_to_use &&
450                             i == tx_ring->next_to_clean)
451                                 next_desc = " NTC/U";
452                         else if (i == tx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == tx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
460                                 " %04X  %p %016llX %p%s\n", i,
461                                 le64_to_cpu(u0->a),
462                                 le64_to_cpu(u0->b),
463                                 (u64)dma_unmap_addr(buffer_info, dma),
464                                 dma_unmap_len(buffer_info, len),
465                                 buffer_info->next_to_watch,
466                                 (u64)buffer_info->time_stamp,
467                                 buffer_info->skb, next_desc);
468
469                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
470                                 print_hex_dump(KERN_INFO, "",
471                                         DUMP_PREFIX_ADDRESS,
472                                         16, 1, buffer_info->skb->data,
473                                         dma_unmap_len(buffer_info, len),
474                                         true);
475                 }
476         }
477
478         /* Print RX Rings Summary */
479 rx_ring_summary:
480         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481         pr_info("Queue [NTU] [NTC]\n");
482         for (n = 0; n < adapter->num_rx_queues; n++) {
483                 rx_ring = adapter->rx_ring[n];
484                 pr_info(" %5d %5X %5X\n",
485                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
486         }
487
488         /* Print RX Rings */
489         if (!netif_msg_rx_status(adapter))
490                 goto exit;
491
492         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494         /* Advanced Receive Descriptor (Read) Format
495          *    63                                           1        0
496          *    +-----------------------------------------------------+
497          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498          *    +----------------------------------------------+------+
499          *  8 |       Header Buffer Address [63:1]           |  DD  |
500          *    +-----------------------------------------------------+
501          *
502          *
503          * Advanced Receive Descriptor (Write-Back) Format
504          *
505          *   63       48 47    32 31  30      21 20 17 16   4 3     0
506          *   +------------------------------------------------------+
507          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508          *   | Checksum   Ident  |   |           |    | Type | Type |
509          *   +------------------------------------------------------+
510          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511          *   +------------------------------------------------------+
512          *   63       48 47    32 31            20 19               0
513          */
514
515         for (n = 0; n < adapter->num_rx_queues; n++) {
516                 rx_ring = adapter->rx_ring[n];
517                 pr_info("------------------------------------\n");
518                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519                 pr_info("------------------------------------\n");
520                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525                 for (i = 0; i < rx_ring->count; i++) {
526                         const char *next_desc;
527                         struct igb_rx_buffer *buffer_info;
528                         buffer_info = &rx_ring->rx_buffer_info[i];
529                         rx_desc = IGB_RX_DESC(rx_ring, i);
530                         u0 = (struct my_u0 *)rx_desc;
531                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533                         if (i == rx_ring->next_to_use)
534                                 next_desc = " NTU";
535                         else if (i == rx_ring->next_to_clean)
536                                 next_desc = " NTC";
537                         else
538                                 next_desc = "";
539
540                         if (staterr & E1000_RXD_STAT_DD) {
541                                 /* Descriptor Done */
542                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543                                         "RWB", i,
544                                         le64_to_cpu(u0->a),
545                                         le64_to_cpu(u0->b),
546                                         next_desc);
547                         } else {
548                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549                                         "R  ", i,
550                                         le64_to_cpu(u0->a),
551                                         le64_to_cpu(u0->b),
552                                         (u64)buffer_info->dma,
553                                         next_desc);
554
555                                 if (netif_msg_pktdata(adapter) &&
556                                     buffer_info->dma && buffer_info->page) {
557                                         print_hex_dump(KERN_INFO, "",
558                                           DUMP_PREFIX_ADDRESS,
559                                           16, 1,
560                                           page_address(buffer_info->page) +
561                                                       buffer_info->page_offset,
562                                           IGB_RX_BUFSZ, true);
563                                 }
564                         }
565                 }
566         }
567
568 exit:
569         return;
570 }
571
572 /**
573  *  igb_get_i2c_data - Reads the I2C SDA data bit
574  *  @hw: pointer to hardware structure
575  *  @i2cctl: Current value of I2CCTL register
576  *
577  *  Returns the I2C data bit value
578  **/
579 static int igb_get_i2c_data(void *data)
580 {
581         struct igb_adapter *adapter = (struct igb_adapter *)data;
582         struct e1000_hw *hw = &adapter->hw;
583         s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587
588 /**
589  *  igb_set_i2c_data - Sets the I2C data bit
590  *  @data: pointer to hardware structure
591  *  @state: I2C data value (0 or 1) to set
592  *
593  *  Sets the I2C data bit
594  **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597         struct igb_adapter *adapter = (struct igb_adapter *)data;
598         struct e1000_hw *hw = &adapter->hw;
599         s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601         if (state)
602                 i2cctl |= E1000_I2C_DATA_OUT;
603         else
604                 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606         i2cctl &= ~E1000_I2C_DATA_OE_N;
607         i2cctl |= E1000_I2C_CLK_OE_N;
608         wr32(E1000_I2CPARAMS, i2cctl);
609         wrfl();
610
611 }
612
613 /**
614  *  igb_set_i2c_clk - Sets the I2C SCL clock
615  *  @data: pointer to hardware structure
616  *  @state: state to set clock
617  *
618  *  Sets the I2C clock line to state
619  **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622         struct igb_adapter *adapter = (struct igb_adapter *)data;
623         struct e1000_hw *hw = &adapter->hw;
624         s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626         if (state) {
627                 i2cctl |= E1000_I2C_CLK_OUT;
628                 i2cctl &= ~E1000_I2C_CLK_OE_N;
629         } else {
630                 i2cctl &= ~E1000_I2C_CLK_OUT;
631                 i2cctl &= ~E1000_I2C_CLK_OE_N;
632         }
633         wr32(E1000_I2CPARAMS, i2cctl);
634         wrfl();
635 }
636
637 /**
638  *  igb_get_i2c_clk - Gets the I2C SCL clock state
639  *  @data: pointer to hardware structure
640  *
641  *  Gets the I2C clock state
642  **/
643 static int igb_get_i2c_clk(void *data)
644 {
645         struct igb_adapter *adapter = (struct igb_adapter *)data;
646         struct e1000_hw *hw = &adapter->hw;
647         s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653         .setsda         = igb_set_i2c_data,
654         .setscl         = igb_set_i2c_clk,
655         .getsda         = igb_get_i2c_data,
656         .getscl         = igb_get_i2c_clk,
657         .udelay         = 5,
658         .timeout        = 20,
659 };
660
661 /**
662  *  igb_get_hw_dev - return device
663  *  @hw: pointer to hardware structure
664  *
665  *  used by hardware layer to print debugging information
666  **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669         struct igb_adapter *adapter = hw->back;
670         return adapter->netdev;
671 }
672
673 /**
674  *  igb_init_module - Driver Registration Routine
675  *
676  *  igb_init_module is the first routine called when the driver is
677  *  loaded. All it does is register with the PCI subsystem.
678  **/
679 static int __init igb_init_module(void)
680 {
681         int ret;
682         pr_info("%s - version %s\n",
683                igb_driver_string, igb_driver_version);
684
685         pr_info("%s\n", igb_copyright);
686
687 #ifdef CONFIG_IGB_DCA
688         dca_register_notify(&dca_notifier);
689 #endif
690         ret = pci_register_driver(&igb_driver);
691         return ret;
692 }
693
694 module_init(igb_init_module);
695
696 /**
697  *  igb_exit_module - Driver Exit Cleanup Routine
698  *
699  *  igb_exit_module is called just before the driver is removed
700  *  from memory.
701  **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705         dca_unregister_notify(&dca_notifier);
706 #endif
707         pci_unregister_driver(&igb_driver);
708 }
709
710 module_exit(igb_exit_module);
711
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714  *  igb_cache_ring_register - Descriptor ring to register mapping
715  *  @adapter: board private structure to initialize
716  *
717  *  Once we know the feature-set enabled for the device, we'll cache
718  *  the register offset the descriptor ring is assigned to.
719  **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722         int i = 0, j = 0;
723         u32 rbase_offset = adapter->vfs_allocated_count;
724
725         switch (adapter->hw.mac.type) {
726         case e1000_82576:
727                 /* The queues are allocated for virtualization such that VF 0
728                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729                  * In order to avoid collision we start at the first free queue
730                  * and continue consuming queues in the same sequence
731                  */
732                 if (adapter->vfs_allocated_count) {
733                         for (; i < adapter->rss_queues; i++)
734                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
735                                                                Q_IDX_82576(i);
736                 }
737         case e1000_82575:
738         case e1000_82580:
739         case e1000_i350:
740         case e1000_i354:
741         case e1000_i210:
742         case e1000_i211:
743         default:
744                 for (; i < adapter->num_rx_queues; i++)
745                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746                 for (; j < adapter->num_tx_queues; j++)
747                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748                 break;
749         }
750 }
751
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765                            int index, int offset)
766 {
767         u32 ivar = array_rd32(E1000_IVAR0, index);
768
769         /* clear any bits that are currently set */
770         ivar &= ~((u32)0xFF << offset);
771
772         /* write vector and valid bit */
773         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775         array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781         struct igb_adapter *adapter = q_vector->adapter;
782         struct e1000_hw *hw = &adapter->hw;
783         int rx_queue = IGB_N0_QUEUE;
784         int tx_queue = IGB_N0_QUEUE;
785         u32 msixbm = 0;
786
787         if (q_vector->rx.ring)
788                 rx_queue = q_vector->rx.ring->reg_idx;
789         if (q_vector->tx.ring)
790                 tx_queue = q_vector->tx.ring->reg_idx;
791
792         switch (hw->mac.type) {
793         case e1000_82575:
794                 /* The 82575 assigns vectors using a bitmask, which matches the
795                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796                  * or more queues to a vector, we write the appropriate bits
797                  * into the MSIXBM register for that vector.
798                  */
799                 if (rx_queue > IGB_N0_QUEUE)
800                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801                 if (tx_queue > IGB_N0_QUEUE)
802                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803                 if (!adapter->msix_entries && msix_vector == 0)
804                         msixbm |= E1000_EIMS_OTHER;
805                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806                 q_vector->eims_value = msixbm;
807                 break;
808         case e1000_82576:
809                 /* 82576 uses a table that essentially consists of 2 columns
810                  * with 8 rows.  The ordering is column-major so we use the
811                  * lower 3 bits as the row index, and the 4th bit as the
812                  * column offset.
813                  */
814                 if (rx_queue > IGB_N0_QUEUE)
815                         igb_write_ivar(hw, msix_vector,
816                                        rx_queue & 0x7,
817                                        (rx_queue & 0x8) << 1);
818                 if (tx_queue > IGB_N0_QUEUE)
819                         igb_write_ivar(hw, msix_vector,
820                                        tx_queue & 0x7,
821                                        ((tx_queue & 0x8) << 1) + 8);
822                 q_vector->eims_value = 1 << msix_vector;
823                 break;
824         case e1000_82580:
825         case e1000_i350:
826         case e1000_i354:
827         case e1000_i210:
828         case e1000_i211:
829                 /* On 82580 and newer adapters the scheme is similar to 82576
830                  * however instead of ordering column-major we have things
831                  * ordered row-major.  So we traverse the table by using
832                  * bit 0 as the column offset, and the remaining bits as the
833                  * row index.
834                  */
835                 if (rx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        rx_queue >> 1,
838                                        (rx_queue & 0x1) << 4);
839                 if (tx_queue > IGB_N0_QUEUE)
840                         igb_write_ivar(hw, msix_vector,
841                                        tx_queue >> 1,
842                                        ((tx_queue & 0x1) << 4) + 8);
843                 q_vector->eims_value = 1 << msix_vector;
844                 break;
845         default:
846                 BUG();
847                 break;
848         }
849
850         /* add q_vector eims value to global eims_enable_mask */
851         adapter->eims_enable_mask |= q_vector->eims_value;
852
853         /* configure q_vector to set itr on first interrupt */
854         q_vector->set_itr = 1;
855 }
856
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866         u32 tmp;
867         int i, vector = 0;
868         struct e1000_hw *hw = &adapter->hw;
869
870         adapter->eims_enable_mask = 0;
871
872         /* set vector for other causes, i.e. link changes */
873         switch (hw->mac.type) {
874         case e1000_82575:
875                 tmp = rd32(E1000_CTRL_EXT);
876                 /* enable MSI-X PBA support*/
877                 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879                 /* Auto-Mask interrupts upon ICR read. */
880                 tmp |= E1000_CTRL_EXT_EIAME;
881                 tmp |= E1000_CTRL_EXT_IRCA;
882
883                 wr32(E1000_CTRL_EXT, tmp);
884
885                 /* enable msix_other interrupt */
886                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887                 adapter->eims_other = E1000_EIMS_OTHER;
888
889                 break;
890
891         case e1000_82576:
892         case e1000_82580:
893         case e1000_i350:
894         case e1000_i354:
895         case e1000_i210:
896         case e1000_i211:
897                 /* Turn on MSI-X capability first, or our settings
898                  * won't stick.  And it will take days to debug.
899                  */
900                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
902                      E1000_GPIE_NSICR);
903
904                 /* enable msix_other interrupt */
905                 adapter->eims_other = 1 << vector;
906                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908                 wr32(E1000_IVAR_MISC, tmp);
909                 break;
910         default:
911                 /* do nothing, since nothing else supports MSI-X */
912                 break;
913         } /* switch (hw->mac.type) */
914
915         adapter->eims_enable_mask |= adapter->eims_other;
916
917         for (i = 0; i < adapter->num_q_vectors; i++)
918                 igb_assign_vector(adapter->q_vector[i], vector++);
919
920         wrfl();
921 }
922
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932         struct net_device *netdev = adapter->netdev;
933         struct e1000_hw *hw = &adapter->hw;
934         int i, err = 0, vector = 0, free_vector = 0;
935
936         err = request_irq(adapter->msix_entries[vector].vector,
937                           igb_msix_other, 0, netdev->name, adapter);
938         if (err)
939                 goto err_out;
940
941         for (i = 0; i < adapter->num_q_vectors; i++) {
942                 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944                 vector++;
945
946                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948                 if (q_vector->rx.ring && q_vector->tx.ring)
949                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950                                 q_vector->rx.ring->queue_index);
951                 else if (q_vector->tx.ring)
952                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953                                 q_vector->tx.ring->queue_index);
954                 else if (q_vector->rx.ring)
955                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956                                 q_vector->rx.ring->queue_index);
957                 else
958                         sprintf(q_vector->name, "%s-unused", netdev->name);
959
960                 err = request_irq(adapter->msix_entries[vector].vector,
961                                   igb_msix_ring, 0, q_vector->name,
962                                   q_vector);
963                 if (err)
964                         goto err_free;
965         }
966
967         igb_configure_msix(adapter);
968         return 0;
969
970 err_free:
971         /* free already assigned IRQs */
972         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974         vector--;
975         for (i = 0; i < vector; i++) {
976                 free_irq(adapter->msix_entries[free_vector++].vector,
977                          adapter->q_vector[i]);
978         }
979 err_out:
980         return err;
981 }
982
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985         if (adapter->msix_entries) {
986                 pci_disable_msix(adapter->pdev);
987                 kfree(adapter->msix_entries);
988                 adapter->msix_entries = NULL;
989         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990                 pci_disable_msi(adapter->pdev);
991         }
992 }
993
994 /**
995  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996  *  @adapter: board private structure to initialize
997  *  @v_idx: Index of vector to be freed
998  *
999  *  This function frees the memory allocated to the q_vector.  In addition if
1000  *  NAPI is enabled it will delete any references to the NAPI struct prior
1001  *  to freeing the q_vector.
1002  **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007         if (q_vector->tx.ring)
1008                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010         if (q_vector->rx.ring)
1011                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013         adapter->q_vector[v_idx] = NULL;
1014         netif_napi_del(&q_vector->napi);
1015
1016         /* ixgbe_get_stats64() might access the rings on this vector,
1017          * we must wait a grace period before freeing it.
1018          */
1019         kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024  *  @adapter: board private structure to initialize
1025  *
1026  *  This function frees the memory allocated to the q_vectors.  In addition if
1027  *  NAPI is enabled it will delete any references to the NAPI struct prior
1028  *  to freeing the q_vector.
1029  **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032         int v_idx = adapter->num_q_vectors;
1033
1034         adapter->num_tx_queues = 0;
1035         adapter->num_rx_queues = 0;
1036         adapter->num_q_vectors = 0;
1037
1038         while (v_idx--)
1039                 igb_free_q_vector(adapter, v_idx);
1040 }
1041
1042 /**
1043  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044  *  @adapter: board private structure to initialize
1045  *
1046  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047  *  MSI-X interrupts allocated.
1048  */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051         igb_free_q_vectors(adapter);
1052         igb_reset_interrupt_capability(adapter);
1053 }
1054
1055 /**
1056  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057  *  @adapter: board private structure to initialize
1058  *  @msix: boolean value of MSIX capability
1059  *
1060  *  Attempt to configure interrupts using the best available
1061  *  capabilities of the hardware and kernel.
1062  **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065         int err;
1066         int numvecs, i;
1067
1068         if (!msix)
1069                 goto msi_only;
1070
1071         /* Number of supported queues. */
1072         adapter->num_rx_queues = adapter->rss_queues;
1073         if (adapter->vfs_allocated_count)
1074                 adapter->num_tx_queues = 1;
1075         else
1076                 adapter->num_tx_queues = adapter->rss_queues;
1077
1078         /* start with one vector for every Rx queue */
1079         numvecs = adapter->num_rx_queues;
1080
1081         /* if Tx handler is separate add 1 for every Tx queue */
1082         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083                 numvecs += adapter->num_tx_queues;
1084
1085         /* store the number of vectors reserved for queues */
1086         adapter->num_q_vectors = numvecs;
1087
1088         /* add 1 vector for link status interrupts */
1089         numvecs++;
1090         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091                                         GFP_KERNEL);
1092
1093         if (!adapter->msix_entries)
1094                 goto msi_only;
1095
1096         for (i = 0; i < numvecs; i++)
1097                 adapter->msix_entries[i].entry = i;
1098
1099         err = pci_enable_msix(adapter->pdev,
1100                               adapter->msix_entries,
1101                               numvecs);
1102         if (err == 0)
1103                 return;
1104
1105         igb_reset_interrupt_capability(adapter);
1106
1107         /* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110         /* disable SR-IOV for non MSI-X configurations */
1111         if (adapter->vf_data) {
1112                 struct e1000_hw *hw = &adapter->hw;
1113                 /* disable iov and allow time for transactions to clear */
1114                 pci_disable_sriov(adapter->pdev);
1115                 msleep(500);
1116
1117                 kfree(adapter->vf_data);
1118                 adapter->vf_data = NULL;
1119                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120                 wrfl();
1121                 msleep(100);
1122                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123         }
1124 #endif
1125         adapter->vfs_allocated_count = 0;
1126         adapter->rss_queues = 1;
1127         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128         adapter->num_rx_queues = 1;
1129         adapter->num_tx_queues = 1;
1130         adapter->num_q_vectors = 1;
1131         if (!pci_enable_msi(adapter->pdev))
1132                 adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134
1135 static void igb_add_ring(struct igb_ring *ring,
1136                          struct igb_ring_container *head)
1137 {
1138         head->ring = ring;
1139         head->count++;
1140 }
1141
1142 /**
1143  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144  *  @adapter: board private structure to initialize
1145  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146  *  @v_idx: index of vector in adapter struct
1147  *  @txr_count: total number of Tx rings to allocate
1148  *  @txr_idx: index of first Tx ring to allocate
1149  *  @rxr_count: total number of Rx rings to allocate
1150  *  @rxr_idx: index of first Rx ring to allocate
1151  *
1152  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153  **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155                               int v_count, int v_idx,
1156                               int txr_count, int txr_idx,
1157                               int rxr_count, int rxr_idx)
1158 {
1159         struct igb_q_vector *q_vector;
1160         struct igb_ring *ring;
1161         int ring_count, size;
1162
1163         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164         if (txr_count > 1 || rxr_count > 1)
1165                 return -ENOMEM;
1166
1167         ring_count = txr_count + rxr_count;
1168         size = sizeof(struct igb_q_vector) +
1169                (sizeof(struct igb_ring) * ring_count);
1170
1171         /* allocate q_vector and rings */
1172         q_vector = kzalloc(size, GFP_KERNEL);
1173         if (!q_vector)
1174                 return -ENOMEM;
1175
1176         /* initialize NAPI */
1177         netif_napi_add(adapter->netdev, &q_vector->napi,
1178                        igb_poll, 64);
1179
1180         /* tie q_vector and adapter together */
1181         adapter->q_vector[v_idx] = q_vector;
1182         q_vector->adapter = adapter;
1183
1184         /* initialize work limits */
1185         q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187         /* initialize ITR configuration */
1188         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189         q_vector->itr_val = IGB_START_ITR;
1190
1191         /* initialize pointer to rings */
1192         ring = q_vector->ring;
1193
1194         /* intialize ITR */
1195         if (rxr_count) {
1196                 /* rx or rx/tx vector */
1197                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198                         q_vector->itr_val = adapter->rx_itr_setting;
1199         } else {
1200                 /* tx only vector */
1201                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202                         q_vector->itr_val = adapter->tx_itr_setting;
1203         }
1204
1205         if (txr_count) {
1206                 /* assign generic ring traits */
1207                 ring->dev = &adapter->pdev->dev;
1208                 ring->netdev = adapter->netdev;
1209
1210                 /* configure backlink on ring */
1211                 ring->q_vector = q_vector;
1212
1213                 /* update q_vector Tx values */
1214                 igb_add_ring(ring, &q_vector->tx);
1215
1216                 /* For 82575, context index must be unique per ring. */
1217                 if (adapter->hw.mac.type == e1000_82575)
1218                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220                 /* apply Tx specific ring traits */
1221                 ring->count = adapter->tx_ring_count;
1222                 ring->queue_index = txr_idx;
1223
1224                 /* assign ring to adapter */
1225                 adapter->tx_ring[txr_idx] = ring;
1226
1227                 /* push pointer to next ring */
1228                 ring++;
1229         }
1230
1231         if (rxr_count) {
1232                 /* assign generic ring traits */
1233                 ring->dev = &adapter->pdev->dev;
1234                 ring->netdev = adapter->netdev;
1235
1236                 /* configure backlink on ring */
1237                 ring->q_vector = q_vector;
1238
1239                 /* update q_vector Rx values */
1240                 igb_add_ring(ring, &q_vector->rx);
1241
1242                 /* set flag indicating ring supports SCTP checksum offload */
1243                 if (adapter->hw.mac.type >= e1000_82576)
1244                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246                 /*
1247                  * On i350, i354, i210, and i211, loopback VLAN packets
1248                  * have the tag byte-swapped.
1249                  */
1250                 if (adapter->hw.mac.type >= e1000_i350)
1251                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253                 /* apply Rx specific ring traits */
1254                 ring->count = adapter->rx_ring_count;
1255                 ring->queue_index = rxr_idx;
1256
1257                 /* assign ring to adapter */
1258                 adapter->rx_ring[rxr_idx] = ring;
1259         }
1260
1261         return 0;
1262 }
1263
1264
1265 /**
1266  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267  *  @adapter: board private structure to initialize
1268  *
1269  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270  *  return -ENOMEM.
1271  **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274         int q_vectors = adapter->num_q_vectors;
1275         int rxr_remaining = adapter->num_rx_queues;
1276         int txr_remaining = adapter->num_tx_queues;
1277         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278         int err;
1279
1280         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281                 for (; rxr_remaining; v_idx++) {
1282                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283                                                  0, 0, 1, rxr_idx);
1284
1285                         if (err)
1286                                 goto err_out;
1287
1288                         /* update counts and index */
1289                         rxr_remaining--;
1290                         rxr_idx++;
1291                 }
1292         }
1293
1294         for (; v_idx < q_vectors; v_idx++) {
1295                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298                                          tqpv, txr_idx, rqpv, rxr_idx);
1299
1300                 if (err)
1301                         goto err_out;
1302
1303                 /* update counts and index */
1304                 rxr_remaining -= rqpv;
1305                 txr_remaining -= tqpv;
1306                 rxr_idx++;
1307                 txr_idx++;
1308         }
1309
1310         return 0;
1311
1312 err_out:
1313         adapter->num_tx_queues = 0;
1314         adapter->num_rx_queues = 0;
1315         adapter->num_q_vectors = 0;
1316
1317         while (v_idx--)
1318                 igb_free_q_vector(adapter, v_idx);
1319
1320         return -ENOMEM;
1321 }
1322
1323 /**
1324  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325  *  @adapter: board private structure to initialize
1326  *  @msix: boolean value of MSIX capability
1327  *
1328  *  This function initializes the interrupts and allocates all of the queues.
1329  **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332         struct pci_dev *pdev = adapter->pdev;
1333         int err;
1334
1335         igb_set_interrupt_capability(adapter, msix);
1336
1337         err = igb_alloc_q_vectors(adapter);
1338         if (err) {
1339                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340                 goto err_alloc_q_vectors;
1341         }
1342
1343         igb_cache_ring_register(adapter);
1344
1345         return 0;
1346
1347 err_alloc_q_vectors:
1348         igb_reset_interrupt_capability(adapter);
1349         return err;
1350 }
1351
1352 /**
1353  *  igb_request_irq - initialize interrupts
1354  *  @adapter: board private structure to initialize
1355  *
1356  *  Attempts to configure interrupts using the best available
1357  *  capabilities of the hardware and kernel.
1358  **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361         struct net_device *netdev = adapter->netdev;
1362         struct pci_dev *pdev = adapter->pdev;
1363         int err = 0;
1364
1365         if (adapter->msix_entries) {
1366                 err = igb_request_msix(adapter);
1367                 if (!err)
1368                         goto request_done;
1369                 /* fall back to MSI */
1370                 igb_free_all_tx_resources(adapter);
1371                 igb_free_all_rx_resources(adapter);
1372
1373                 igb_clear_interrupt_scheme(adapter);
1374                 err = igb_init_interrupt_scheme(adapter, false);
1375                 if (err)
1376                         goto request_done;
1377
1378                 igb_setup_all_tx_resources(adapter);
1379                 igb_setup_all_rx_resources(adapter);
1380                 igb_configure(adapter);
1381         }
1382
1383         igb_assign_vector(adapter->q_vector[0], 0);
1384
1385         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1387                                   netdev->name, adapter);
1388                 if (!err)
1389                         goto request_done;
1390
1391                 /* fall back to legacy interrupts */
1392                 igb_reset_interrupt_capability(adapter);
1393                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394         }
1395
1396         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397                           netdev->name, adapter);
1398
1399         if (err)
1400                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401                         err);
1402
1403 request_done:
1404         return err;
1405 }
1406
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409         if (adapter->msix_entries) {
1410                 int vector = 0, i;
1411
1412                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414                 for (i = 0; i < adapter->num_q_vectors; i++)
1415                         free_irq(adapter->msix_entries[vector++].vector,
1416                                  adapter->q_vector[i]);
1417         } else {
1418                 free_irq(adapter->pdev->irq, adapter);
1419         }
1420 }
1421
1422 /**
1423  *  igb_irq_disable - Mask off interrupt generation on the NIC
1424  *  @adapter: board private structure
1425  **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428         struct e1000_hw *hw = &adapter->hw;
1429
1430         /* we need to be careful when disabling interrupts.  The VFs are also
1431          * mapped into these registers and so clearing the bits can cause
1432          * issues on the VF drivers so we only need to clear what we set
1433          */
1434         if (adapter->msix_entries) {
1435                 u32 regval = rd32(E1000_EIAM);
1436                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438                 regval = rd32(E1000_EIAC);
1439                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440         }
1441
1442         wr32(E1000_IAM, 0);
1443         wr32(E1000_IMC, ~0);
1444         wrfl();
1445         if (adapter->msix_entries) {
1446                 int i;
1447                 for (i = 0; i < adapter->num_q_vectors; i++)
1448                         synchronize_irq(adapter->msix_entries[i].vector);
1449         } else {
1450                 synchronize_irq(adapter->pdev->irq);
1451         }
1452 }
1453
1454 /**
1455  *  igb_irq_enable - Enable default interrupt generation settings
1456  *  @adapter: board private structure
1457  **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460         struct e1000_hw *hw = &adapter->hw;
1461
1462         if (adapter->msix_entries) {
1463                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464                 u32 regval = rd32(E1000_EIAC);
1465                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466                 regval = rd32(E1000_EIAM);
1467                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1469                 if (adapter->vfs_allocated_count) {
1470                         wr32(E1000_MBVFIMR, 0xFF);
1471                         ims |= E1000_IMS_VMMB;
1472                 }
1473                 wr32(E1000_IMS, ims);
1474         } else {
1475                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476                                 E1000_IMS_DRSTA);
1477                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478                                 E1000_IMS_DRSTA);
1479         }
1480 }
1481
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484         struct e1000_hw *hw = &adapter->hw;
1485         u16 vid = adapter->hw.mng_cookie.vlan_id;
1486         u16 old_vid = adapter->mng_vlan_id;
1487
1488         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489                 /* add VID to filter table */
1490                 igb_vfta_set(hw, vid, true);
1491                 adapter->mng_vlan_id = vid;
1492         } else {
1493                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494         }
1495
1496         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497             (vid != old_vid) &&
1498             !test_bit(old_vid, adapter->active_vlans)) {
1499                 /* remove VID from filter table */
1500                 igb_vfta_set(hw, old_vid, false);
1501         }
1502 }
1503
1504 /**
1505  *  igb_release_hw_control - release control of the h/w to f/w
1506  *  @adapter: address of board private structure
1507  *
1508  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509  *  For ASF and Pass Through versions of f/w this means that the
1510  *  driver is no longer loaded.
1511  **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514         struct e1000_hw *hw = &adapter->hw;
1515         u32 ctrl_ext;
1516
1517         /* Let firmware take over control of h/w */
1518         ctrl_ext = rd32(E1000_CTRL_EXT);
1519         wr32(E1000_CTRL_EXT,
1520                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522
1523 /**
1524  *  igb_get_hw_control - get control of the h/w from f/w
1525  *  @adapter: address of board private structure
1526  *
1527  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528  *  For ASF and Pass Through versions of f/w this means that
1529  *  the driver is loaded.
1530  **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533         struct e1000_hw *hw = &adapter->hw;
1534         u32 ctrl_ext;
1535
1536         /* Let firmware know the driver has taken over */
1537         ctrl_ext = rd32(E1000_CTRL_EXT);
1538         wr32(E1000_CTRL_EXT,
1539                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541
1542 /**
1543  *  igb_configure - configure the hardware for RX and TX
1544  *  @adapter: private board structure
1545  **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548         struct net_device *netdev = adapter->netdev;
1549         int i;
1550
1551         igb_get_hw_control(adapter);
1552         igb_set_rx_mode(netdev);
1553
1554         igb_restore_vlan(adapter);
1555
1556         igb_setup_tctl(adapter);
1557         igb_setup_mrqc(adapter);
1558         igb_setup_rctl(adapter);
1559
1560         igb_configure_tx(adapter);
1561         igb_configure_rx(adapter);
1562
1563         igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565         /* call igb_desc_unused which always leaves
1566          * at least 1 descriptor unused to make sure
1567          * next_to_use != next_to_clean
1568          */
1569         for (i = 0; i < adapter->num_rx_queues; i++) {
1570                 struct igb_ring *ring = adapter->rx_ring[i];
1571                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572         }
1573 }
1574
1575 /**
1576  *  igb_power_up_link - Power up the phy/serdes link
1577  *  @adapter: address of board private structure
1578  **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581         igb_reset_phy(&adapter->hw);
1582
1583         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584                 igb_power_up_phy_copper(&adapter->hw);
1585         else
1586                 igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588
1589 /**
1590  *  igb_power_down_link - Power down the phy/serdes link
1591  *  @adapter: address of board private structure
1592  */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596                 igb_power_down_phy_copper_82575(&adapter->hw);
1597         else
1598                 igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600
1601 /**
1602  *  igb_up - Open the interface and prepare it to handle traffic
1603  *  @adapter: board private structure
1604  **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607         struct e1000_hw *hw = &adapter->hw;
1608         int i;
1609
1610         /* hardware has been reset, we need to reload some things */
1611         igb_configure(adapter);
1612
1613         clear_bit(__IGB_DOWN, &adapter->state);
1614
1615         for (i = 0; i < adapter->num_q_vectors; i++)
1616                 napi_enable(&(adapter->q_vector[i]->napi));
1617
1618         if (adapter->msix_entries)
1619                 igb_configure_msix(adapter);
1620         else
1621                 igb_assign_vector(adapter->q_vector[0], 0);
1622
1623         /* Clear any pending interrupts. */
1624         rd32(E1000_ICR);
1625         igb_irq_enable(adapter);
1626
1627         /* notify VFs that reset has been completed */
1628         if (adapter->vfs_allocated_count) {
1629                 u32 reg_data = rd32(E1000_CTRL_EXT);
1630                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631                 wr32(E1000_CTRL_EXT, reg_data);
1632         }
1633
1634         netif_tx_start_all_queues(adapter->netdev);
1635
1636         /* start the watchdog. */
1637         hw->mac.get_link_status = 1;
1638         schedule_work(&adapter->watchdog_task);
1639
1640         return 0;
1641 }
1642
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645         struct net_device *netdev = adapter->netdev;
1646         struct e1000_hw *hw = &adapter->hw;
1647         u32 tctl, rctl;
1648         int i;
1649
1650         /* signal that we're down so the interrupt handler does not
1651          * reschedule our watchdog timer
1652          */
1653         set_bit(__IGB_DOWN, &adapter->state);
1654
1655         /* disable receives in the hardware */
1656         rctl = rd32(E1000_RCTL);
1657         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658         /* flush and sleep below */
1659
1660         netif_tx_stop_all_queues(netdev);
1661
1662         /* disable transmits in the hardware */
1663         tctl = rd32(E1000_TCTL);
1664         tctl &= ~E1000_TCTL_EN;
1665         wr32(E1000_TCTL, tctl);
1666         /* flush both disables and wait for them to finish */
1667         wrfl();
1668         msleep(10);
1669
1670         igb_irq_disable(adapter);
1671
1672         for (i = 0; i < adapter->num_q_vectors; i++) {
1673                 napi_synchronize(&(adapter->q_vector[i]->napi));
1674                 napi_disable(&(adapter->q_vector[i]->napi));
1675         }
1676
1677
1678         del_timer_sync(&adapter->watchdog_timer);
1679         del_timer_sync(&adapter->phy_info_timer);
1680
1681         netif_carrier_off(netdev);
1682
1683         /* record the stats before reset*/
1684         spin_lock(&adapter->stats64_lock);
1685         igb_update_stats(adapter, &adapter->stats64);
1686         spin_unlock(&adapter->stats64_lock);
1687
1688         adapter->link_speed = 0;
1689         adapter->link_duplex = 0;
1690
1691         if (!pci_channel_offline(adapter->pdev))
1692                 igb_reset(adapter);
1693         igb_clean_all_tx_rings(adapter);
1694         igb_clean_all_rx_rings(adapter);
1695 #ifdef CONFIG_IGB_DCA
1696
1697         /* since we reset the hardware DCA settings were cleared */
1698         igb_setup_dca(adapter);
1699 #endif
1700 }
1701
1702 void igb_reinit_locked(struct igb_adapter *adapter)
1703 {
1704         WARN_ON(in_interrupt());
1705         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706                 msleep(1);
1707         igb_down(adapter);
1708         igb_up(adapter);
1709         clear_bit(__IGB_RESETTING, &adapter->state);
1710 }
1711
1712 void igb_reset(struct igb_adapter *adapter)
1713 {
1714         struct pci_dev *pdev = adapter->pdev;
1715         struct e1000_hw *hw = &adapter->hw;
1716         struct e1000_mac_info *mac = &hw->mac;
1717         struct e1000_fc_info *fc = &hw->fc;
1718         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720         /* Repartition Pba for greater than 9k mtu
1721          * To take effect CTRL.RST is required.
1722          */
1723         switch (mac->type) {
1724         case e1000_i350:
1725         case e1000_i354:
1726         case e1000_82580:
1727                 pba = rd32(E1000_RXPBS);
1728                 pba = igb_rxpbs_adjust_82580(pba);
1729                 break;
1730         case e1000_82576:
1731                 pba = rd32(E1000_RXPBS);
1732                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1733                 break;
1734         case e1000_82575:
1735         case e1000_i210:
1736         case e1000_i211:
1737         default:
1738                 pba = E1000_PBA_34K;
1739                 break;
1740         }
1741
1742         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743             (mac->type < e1000_82576)) {
1744                 /* adjust PBA for jumbo frames */
1745                 wr32(E1000_PBA, pba);
1746
1747                 /* To maintain wire speed transmits, the Tx FIFO should be
1748                  * large enough to accommodate two full transmit packets,
1749                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1750                  * the Rx FIFO should be large enough to accommodate at least
1751                  * one full receive packet and is similarly rounded up and
1752                  * expressed in KB.
1753                  */
1754                 pba = rd32(E1000_PBA);
1755                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1756                 tx_space = pba >> 16;
1757                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1758                 pba &= 0xffff;
1759                 /* the Tx fifo also stores 16 bytes of information about the Tx
1760                  * but don't include ethernet FCS because hardware appends it
1761                  */
1762                 min_tx_space = (adapter->max_frame_size +
1763                                 sizeof(union e1000_adv_tx_desc) -
1764                                 ETH_FCS_LEN) * 2;
1765                 min_tx_space = ALIGN(min_tx_space, 1024);
1766                 min_tx_space >>= 10;
1767                 /* software strips receive CRC, so leave room for it */
1768                 min_rx_space = adapter->max_frame_size;
1769                 min_rx_space = ALIGN(min_rx_space, 1024);
1770                 min_rx_space >>= 10;
1771
1772                 /* If current Tx allocation is less than the min Tx FIFO size,
1773                  * and the min Tx FIFO size is less than the current Rx FIFO
1774                  * allocation, take space away from current Rx allocation
1775                  */
1776                 if (tx_space < min_tx_space &&
1777                     ((min_tx_space - tx_space) < pba)) {
1778                         pba = pba - (min_tx_space - tx_space);
1779
1780                         /* if short on Rx space, Rx wins and must trump Tx
1781                          * adjustment
1782                          */
1783                         if (pba < min_rx_space)
1784                                 pba = min_rx_space;
1785                 }
1786                 wr32(E1000_PBA, pba);
1787         }
1788
1789         /* flow control settings */
1790         /* The high water mark must be low enough to fit one full frame
1791          * (or the size used for early receive) above it in the Rx FIFO.
1792          * Set it to the lower of:
1793          * - 90% of the Rx FIFO size, or
1794          * - the full Rx FIFO size minus one full frame
1795          */
1796         hwm = min(((pba << 10) * 9 / 10),
1797                         ((pba << 10) - 2 * adapter->max_frame_size));
1798
1799         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1800         fc->low_water = fc->high_water - 16;
1801         fc->pause_time = 0xFFFF;
1802         fc->send_xon = 1;
1803         fc->current_mode = fc->requested_mode;
1804
1805         /* disable receive for all VFs and wait one second */
1806         if (adapter->vfs_allocated_count) {
1807                 int i;
1808                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811                 /* ping all the active vfs to let them know we are going down */
1812                 igb_ping_all_vfs(adapter);
1813
1814                 /* disable transmits and receives */
1815                 wr32(E1000_VFRE, 0);
1816                 wr32(E1000_VFTE, 0);
1817         }
1818
1819         /* Allow time for pending master requests to run */
1820         hw->mac.ops.reset_hw(hw);
1821         wr32(E1000_WUC, 0);
1822
1823         if (hw->mac.ops.init_hw(hw))
1824                 dev_err(&pdev->dev, "Hardware Error\n");
1825
1826         /* Flow control settings reset on hardware reset, so guarantee flow
1827          * control is off when forcing speed.
1828          */
1829         if (!hw->mac.autoneg)
1830                 igb_force_mac_fc(hw);
1831
1832         igb_init_dmac(adapter, pba);
1833 #ifdef CONFIG_IGB_HWMON
1834         /* Re-initialize the thermal sensor on i350 devices. */
1835         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837                         /* If present, re-initialize the external thermal sensor
1838                          * interface.
1839                          */
1840                         if (adapter->ets)
1841                                 mac->ops.init_thermal_sensor_thresh(hw);
1842                 }
1843         }
1844 #endif
1845         if (!netif_running(adapter->netdev))
1846                 igb_power_down_link(adapter);
1847
1848         igb_update_mng_vlan(adapter);
1849
1850         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853         /* Re-enable PTP, where applicable. */
1854         igb_ptp_reset(adapter);
1855
1856         igb_get_phy_info(hw);
1857 }
1858
1859 static netdev_features_t igb_fix_features(struct net_device *netdev,
1860         netdev_features_t features)
1861 {
1862         /* Since there is no support for separate Rx/Tx vlan accel
1863          * enable/disable make sure Tx flag is always in same state as Rx.
1864          */
1865         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866                 features |= NETIF_F_HW_VLAN_CTAG_TX;
1867         else
1868                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870         return features;
1871 }
1872
1873 static int igb_set_features(struct net_device *netdev,
1874         netdev_features_t features)
1875 {
1876         netdev_features_t changed = netdev->features ^ features;
1877         struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880                 igb_vlan_mode(netdev, features);
1881
1882         if (!(changed & NETIF_F_RXALL))
1883                 return 0;
1884
1885         netdev->features = features;
1886
1887         if (netif_running(netdev))
1888                 igb_reinit_locked(adapter);
1889         else
1890                 igb_reset(adapter);
1891
1892         return 0;
1893 }
1894
1895 static const struct net_device_ops igb_netdev_ops = {
1896         .ndo_open               = igb_open,
1897         .ndo_stop               = igb_close,
1898         .ndo_start_xmit         = igb_xmit_frame,
1899         .ndo_get_stats64        = igb_get_stats64,
1900         .ndo_set_rx_mode        = igb_set_rx_mode,
1901         .ndo_set_mac_address    = igb_set_mac,
1902         .ndo_change_mtu         = igb_change_mtu,
1903         .ndo_do_ioctl           = igb_ioctl,
1904         .ndo_tx_timeout         = igb_tx_timeout,
1905         .ndo_validate_addr      = eth_validate_addr,
1906         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1907         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1908         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1909         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1910         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1911         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
1912         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914         .ndo_poll_controller    = igb_netpoll,
1915 #endif
1916         .ndo_fix_features       = igb_fix_features,
1917         .ndo_set_features       = igb_set_features,
1918 };
1919
1920 /**
1921  * igb_set_fw_version - Configure version string for ethtool
1922  * @adapter: adapter struct
1923  **/
1924 void igb_set_fw_version(struct igb_adapter *adapter)
1925 {
1926         struct e1000_hw *hw = &adapter->hw;
1927         struct e1000_fw_version fw;
1928
1929         igb_get_fw_version(hw, &fw);
1930
1931         switch (hw->mac.type) {
1932         case e1000_i211:
1933                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934                          "%2d.%2d-%d",
1935                          fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936                 break;
1937
1938         default:
1939                 /* if option is rom valid, display its version too */
1940                 if (fw.or_valid) {
1941                         snprintf(adapter->fw_version,
1942                                  sizeof(adapter->fw_version),
1943                                  "%d.%d, 0x%08x, %d.%d.%d",
1944                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1945                                  fw.or_major, fw.or_build, fw.or_patch);
1946                 /* no option rom */
1947                 } else {
1948                         snprintf(adapter->fw_version,
1949                                  sizeof(adapter->fw_version),
1950                                  "%d.%d, 0x%08x",
1951                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
1952                 }
1953                 break;
1954         }
1955         return;
1956 }
1957
1958 /**
1959  *  igb_init_i2c - Init I2C interface
1960  *  @adapter: pointer to adapter structure
1961  **/
1962 static s32 igb_init_i2c(struct igb_adapter *adapter)
1963 {
1964         s32 status = E1000_SUCCESS;
1965
1966         /* I2C interface supported on i350 devices */
1967         if (adapter->hw.mac.type != e1000_i350)
1968                 return E1000_SUCCESS;
1969
1970         /* Initialize the i2c bus which is controlled by the registers.
1971          * This bus will use the i2c_algo_bit structue that implements
1972          * the protocol through toggling of the 4 bits in the register.
1973          */
1974         adapter->i2c_adap.owner = THIS_MODULE;
1975         adapter->i2c_algo = igb_i2c_algo;
1976         adapter->i2c_algo.data = adapter;
1977         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979         strlcpy(adapter->i2c_adap.name, "igb BB",
1980                 sizeof(adapter->i2c_adap.name));
1981         status = i2c_bit_add_bus(&adapter->i2c_adap);
1982         return status;
1983 }
1984
1985 /**
1986  *  igb_probe - Device Initialization Routine
1987  *  @pdev: PCI device information struct
1988  *  @ent: entry in igb_pci_tbl
1989  *
1990  *  Returns 0 on success, negative on failure
1991  *
1992  *  igb_probe initializes an adapter identified by a pci_dev structure.
1993  *  The OS initialization, configuring of the adapter private structure,
1994  *  and a hardware reset occur.
1995  **/
1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 {
1998         struct net_device *netdev;
1999         struct igb_adapter *adapter;
2000         struct e1000_hw *hw;
2001         u16 eeprom_data = 0;
2002         s32 ret_val;
2003         static int global_quad_port_a; /* global quad port a indication */
2004         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005         unsigned long mmio_start, mmio_len;
2006         int err, pci_using_dac;
2007         u8 part_str[E1000_PBANUM_LENGTH];
2008
2009         /* Catch broken hardware that put the wrong VF device ID in
2010          * the PCIe SR-IOV capability.
2011          */
2012         if (pdev->is_virtfn) {
2013                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014                         pci_name(pdev), pdev->vendor, pdev->device);
2015                 return -EINVAL;
2016         }
2017
2018         err = pci_enable_device_mem(pdev);
2019         if (err)
2020                 return err;
2021
2022         pci_using_dac = 0;
2023         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024         if (!err) {
2025                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026                 if (!err)
2027                         pci_using_dac = 1;
2028         } else {
2029                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030                 if (err) {
2031                         err = dma_set_coherent_mask(&pdev->dev,
2032                                                     DMA_BIT_MASK(32));
2033                         if (err) {
2034                                 dev_err(&pdev->dev,
2035                                         "No usable DMA configuration, aborting\n");
2036                                 goto err_dma;
2037                         }
2038                 }
2039         }
2040
2041         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042                                            IORESOURCE_MEM),
2043                                            igb_driver_name);
2044         if (err)
2045                 goto err_pci_reg;
2046
2047         pci_enable_pcie_error_reporting(pdev);
2048
2049         pci_set_master(pdev);
2050         pci_save_state(pdev);
2051
2052         err = -ENOMEM;
2053         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054                                    IGB_MAX_TX_QUEUES);
2055         if (!netdev)
2056                 goto err_alloc_etherdev;
2057
2058         SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060         pci_set_drvdata(pdev, netdev);
2061         adapter = netdev_priv(netdev);
2062         adapter->netdev = netdev;
2063         adapter->pdev = pdev;
2064         hw = &adapter->hw;
2065         hw->back = adapter;
2066         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068         mmio_start = pci_resource_start(pdev, 0);
2069         mmio_len = pci_resource_len(pdev, 0);
2070
2071         err = -EIO;
2072         hw->hw_addr = ioremap(mmio_start, mmio_len);
2073         if (!hw->hw_addr)
2074                 goto err_ioremap;
2075
2076         netdev->netdev_ops = &igb_netdev_ops;
2077         igb_set_ethtool_ops(netdev);
2078         netdev->watchdog_timeo = 5 * HZ;
2079
2080         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082         netdev->mem_start = mmio_start;
2083         netdev->mem_end = mmio_start + mmio_len;
2084
2085         /* PCI config space info */
2086         hw->vendor_id = pdev->vendor;
2087         hw->device_id = pdev->device;
2088         hw->revision_id = pdev->revision;
2089         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090         hw->subsystem_device_id = pdev->subsystem_device;
2091
2092         /* Copy the default MAC, PHY and NVM function pointers */
2093         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096         /* Initialize skew-specific constants */
2097         err = ei->get_invariants(hw);
2098         if (err)
2099                 goto err_sw_init;
2100
2101         /* setup the private structure */
2102         err = igb_sw_init(adapter);
2103         if (err)
2104                 goto err_sw_init;
2105
2106         igb_get_bus_info_pcie(hw);
2107
2108         hw->phy.autoneg_wait_to_complete = false;
2109
2110         /* Copper options */
2111         if (hw->phy.media_type == e1000_media_type_copper) {
2112                 hw->phy.mdix = AUTO_ALL_MODES;
2113                 hw->phy.disable_polarity_correction = false;
2114                 hw->phy.ms_type = e1000_ms_hw_default;
2115         }
2116
2117         if (igb_check_reset_block(hw))
2118                 dev_info(&pdev->dev,
2119                         "PHY reset is blocked due to SOL/IDER session.\n");
2120
2121         /* features is initialized to 0 in allocation, it might have bits
2122          * set by igb_sw_init so we should use an or instead of an
2123          * assignment.
2124          */
2125         netdev->features |= NETIF_F_SG |
2126                             NETIF_F_IP_CSUM |
2127                             NETIF_F_IPV6_CSUM |
2128                             NETIF_F_TSO |
2129                             NETIF_F_TSO6 |
2130                             NETIF_F_RXHASH |
2131                             NETIF_F_RXCSUM |
2132                             NETIF_F_HW_VLAN_CTAG_RX |
2133                             NETIF_F_HW_VLAN_CTAG_TX;
2134
2135         /* copy netdev features into list of user selectable features */
2136         netdev->hw_features |= netdev->features;
2137         netdev->hw_features |= NETIF_F_RXALL;
2138
2139         /* set this bit last since it cannot be part of hw_features */
2140         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142         netdev->vlan_features |= NETIF_F_TSO |
2143                                  NETIF_F_TSO6 |
2144                                  NETIF_F_IP_CSUM |
2145                                  NETIF_F_IPV6_CSUM |
2146                                  NETIF_F_SG;
2147
2148         netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150         if (pci_using_dac) {
2151                 netdev->features |= NETIF_F_HIGHDMA;
2152                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2153         }
2154
2155         if (hw->mac.type >= e1000_82576) {
2156                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157                 netdev->features |= NETIF_F_SCTP_CSUM;
2158         }
2159
2160         netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164         /* before reading the NVM, reset the controller to put the device in a
2165          * known good starting state
2166          */
2167         hw->mac.ops.reset_hw(hw);
2168
2169         /* make sure the NVM is good , i211 parts have special NVM that
2170          * doesn't contain a checksum
2171          */
2172         if (hw->mac.type != e1000_i211) {
2173                 if (hw->nvm.ops.validate(hw) < 0) {
2174                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175                         err = -EIO;
2176                         goto err_eeprom;
2177                 }
2178         }
2179
2180         /* copy the MAC address out of the NVM */
2181         if (hw->mac.ops.read_mac_addr(hw))
2182                 dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186         if (!is_valid_ether_addr(netdev->dev_addr)) {
2187                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2188                 err = -EIO;
2189                 goto err_eeprom;
2190         }
2191
2192         /* get firmware version for ethtool -i */
2193         igb_set_fw_version(adapter);
2194
2195         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196                     (unsigned long) adapter);
2197         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198                     (unsigned long) adapter);
2199
2200         INIT_WORK(&adapter->reset_task, igb_reset_task);
2201         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203         /* Initialize link properties that are user-changeable */
2204         adapter->fc_autoneg = true;
2205         hw->mac.autoneg = true;
2206         hw->phy.autoneg_advertised = 0x2f;
2207
2208         hw->fc.requested_mode = e1000_fc_default;
2209         hw->fc.current_mode = e1000_fc_default;
2210
2211         igb_validate_mdi_setting(hw);
2212
2213         /* By default, support wake on port A */
2214         if (hw->bus.func == 0)
2215                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217         /* Check the NVM for wake support on non-port A ports */
2218         if (hw->mac.type >= e1000_82580)
2219                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221                                  &eeprom_data);
2222         else if (hw->bus.func == 1)
2223                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225         if (eeprom_data & IGB_EEPROM_APME)
2226                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228         /* now that we have the eeprom settings, apply the special cases where
2229          * the eeprom may be wrong or the board simply won't support wake on
2230          * lan on a particular port
2231          */
2232         switch (pdev->device) {
2233         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235                 break;
2236         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237         case E1000_DEV_ID_82576_FIBER:
2238         case E1000_DEV_ID_82576_SERDES:
2239                 /* Wake events only supported on port A for dual fiber
2240                  * regardless of eeprom setting
2241                  */
2242                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244                 break;
2245         case E1000_DEV_ID_82576_QUAD_COPPER:
2246         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247                 /* if quad port adapter, disable WoL on all but port A */
2248                 if (global_quad_port_a != 0)
2249                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250                 else
2251                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252                 /* Reset for multiple quad port adapters */
2253                 if (++global_quad_port_a == 4)
2254                         global_quad_port_a = 0;
2255                 break;
2256         default:
2257                 /* If the device can't wake, don't set software support */
2258                 if (!device_can_wakeup(&adapter->pdev->dev))
2259                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260         }
2261
2262         /* initialize the wol settings based on the eeprom settings */
2263         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264                 adapter->wol |= E1000_WUFC_MAG;
2265
2266         /* Some vendors want WoL disabled by default, but still supported */
2267         if ((hw->mac.type == e1000_i350) &&
2268             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270                 adapter->wol = 0;
2271         }
2272
2273         device_set_wakeup_enable(&adapter->pdev->dev,
2274                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276         /* reset the hardware with the new settings */
2277         igb_reset(adapter);
2278
2279         /* Init the I2C interface */
2280         err = igb_init_i2c(adapter);
2281         if (err) {
2282                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2283                 goto err_eeprom;
2284         }
2285
2286         /* let the f/w know that the h/w is now under the control of the
2287          * driver. */
2288         igb_get_hw_control(adapter);
2289
2290         strcpy(netdev->name, "eth%d");
2291         err = register_netdev(netdev);
2292         if (err)
2293                 goto err_register;
2294
2295         /* carrier off reporting is important to ethtool even BEFORE open */
2296         netif_carrier_off(netdev);
2297
2298 #ifdef CONFIG_IGB_DCA
2299         if (dca_add_requester(&pdev->dev) == 0) {
2300                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301                 dev_info(&pdev->dev, "DCA enabled\n");
2302                 igb_setup_dca(adapter);
2303         }
2304
2305 #endif
2306 #ifdef CONFIG_IGB_HWMON
2307         /* Initialize the thermal sensor on i350 devices. */
2308         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309                 u16 ets_word;
2310
2311                 /* Read the NVM to determine if this i350 device supports an
2312                  * external thermal sensor.
2313                  */
2314                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316                         adapter->ets = true;
2317                 else
2318                         adapter->ets = false;
2319                 if (igb_sysfs_init(adapter))
2320                         dev_err(&pdev->dev,
2321                                 "failed to allocate sysfs resources\n");
2322         } else {
2323                 adapter->ets = false;
2324         }
2325 #endif
2326         /* do hw tstamp init after resetting */
2327         igb_ptp_init(adapter);
2328
2329         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330         /* print bus type/speed/width info, not applicable to i354 */
2331         if (hw->mac.type != e1000_i354) {
2332                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333                          netdev->name,
2334                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336                            "unknown"),
2337                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338                           "Width x4" :
2339                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340                           "Width x2" :
2341                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342                           "Width x1" : "unknown"), netdev->dev_addr);
2343         }
2344
2345         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346         if (ret_val)
2347                 strcpy(part_str, "Unknown");
2348         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349         dev_info(&pdev->dev,
2350                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351                 adapter->msix_entries ? "MSI-X" :
2352                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353                 adapter->num_rx_queues, adapter->num_tx_queues);
2354         switch (hw->mac.type) {
2355         case e1000_i350:
2356         case e1000_i210:
2357         case e1000_i211:
2358                 igb_set_eee_i350(hw);
2359                 break;
2360         case e1000_i354:
2361                 if (hw->phy.media_type == e1000_media_type_copper) {
2362                         if ((rd32(E1000_CTRL_EXT) &
2363                             E1000_CTRL_EXT_LINK_MODE_SGMII))
2364                                 igb_set_eee_i354(hw);
2365                 }
2366                 break;
2367         default:
2368                 break;
2369         }
2370
2371         pm_runtime_put_noidle(&pdev->dev);
2372         return 0;
2373
2374 err_register:
2375         igb_release_hw_control(adapter);
2376         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 err_eeprom:
2378         if (!igb_check_reset_block(hw))
2379                 igb_reset_phy(hw);
2380
2381         if (hw->flash_address)
2382                 iounmap(hw->flash_address);
2383 err_sw_init:
2384         igb_clear_interrupt_scheme(adapter);
2385         iounmap(hw->hw_addr);
2386 err_ioremap:
2387         free_netdev(netdev);
2388 err_alloc_etherdev:
2389         pci_release_selected_regions(pdev,
2390                                      pci_select_bars(pdev, IORESOURCE_MEM));
2391 err_pci_reg:
2392 err_dma:
2393         pci_disable_device(pdev);
2394         return err;
2395 }
2396
2397 #ifdef CONFIG_PCI_IOV
2398 static int  igb_disable_sriov(struct pci_dev *pdev)
2399 {
2400         struct net_device *netdev = pci_get_drvdata(pdev);
2401         struct igb_adapter *adapter = netdev_priv(netdev);
2402         struct e1000_hw *hw = &adapter->hw;
2403
2404         /* reclaim resources allocated to VFs */
2405         if (adapter->vf_data) {
2406                 /* disable iov and allow time for transactions to clear */
2407                 if (pci_vfs_assigned(pdev)) {
2408                         dev_warn(&pdev->dev,
2409                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410                         return -EPERM;
2411                 } else {
2412                         pci_disable_sriov(pdev);
2413                         msleep(500);
2414                 }
2415
2416                 kfree(adapter->vf_data);
2417                 adapter->vf_data = NULL;
2418                 adapter->vfs_allocated_count = 0;
2419                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420                 wrfl();
2421                 msleep(100);
2422                 dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2425                 adapter->flags |= IGB_FLAG_DMAC;
2426         }
2427
2428         return 0;
2429 }
2430
2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432 {
2433         struct net_device *netdev = pci_get_drvdata(pdev);
2434         struct igb_adapter *adapter = netdev_priv(netdev);
2435         int old_vfs = pci_num_vf(pdev);
2436         int err = 0;
2437         int i;
2438
2439         if (!num_vfs)
2440                 goto out;
2441         else if (old_vfs && old_vfs == num_vfs)
2442                 goto out;
2443         else if (old_vfs && old_vfs != num_vfs)
2444                 err = igb_disable_sriov(pdev);
2445
2446         if (err)
2447                 goto out;
2448
2449         if (num_vfs > 7) {
2450                 err = -EPERM;
2451                 goto out;
2452         }
2453
2454         adapter->vfs_allocated_count = num_vfs;
2455
2456         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459         /* if allocation failed then we do not support SR-IOV */
2460         if (!adapter->vf_data) {
2461                 adapter->vfs_allocated_count = 0;
2462                 dev_err(&pdev->dev,
2463                         "Unable to allocate memory for VF Data Storage\n");
2464                 err = -ENOMEM;
2465                 goto out;
2466         }
2467
2468         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469         if (err)
2470                 goto err_out;
2471
2472         dev_info(&pdev->dev, "%d VFs allocated\n",
2473                  adapter->vfs_allocated_count);
2474         for (i = 0; i < adapter->vfs_allocated_count; i++)
2475                 igb_vf_configure(adapter, i);
2476
2477         /* DMA Coalescing is not supported in IOV mode. */
2478         adapter->flags &= ~IGB_FLAG_DMAC;
2479         goto out;
2480
2481 err_out:
2482         kfree(adapter->vf_data);
2483         adapter->vf_data = NULL;
2484         adapter->vfs_allocated_count = 0;
2485 out:
2486         return err;
2487 }
2488
2489 #endif
2490 /**
2491  *  igb_remove_i2c - Cleanup  I2C interface
2492  *  @adapter: pointer to adapter structure
2493  **/
2494 static void igb_remove_i2c(struct igb_adapter *adapter)
2495 {
2496         /* free the adapter bus structure */
2497         i2c_del_adapter(&adapter->i2c_adap);
2498 }
2499
2500 /**
2501  *  igb_remove - Device Removal Routine
2502  *  @pdev: PCI device information struct
2503  *
2504  *  igb_remove is called by the PCI subsystem to alert the driver
2505  *  that it should release a PCI device.  The could be caused by a
2506  *  Hot-Plug event, or because the driver is going to be removed from
2507  *  memory.
2508  **/
2509 static void igb_remove(struct pci_dev *pdev)
2510 {
2511         struct net_device *netdev = pci_get_drvdata(pdev);
2512         struct igb_adapter *adapter = netdev_priv(netdev);
2513         struct e1000_hw *hw = &adapter->hw;
2514
2515         pm_runtime_get_noresume(&pdev->dev);
2516 #ifdef CONFIG_IGB_HWMON
2517         igb_sysfs_exit(adapter);
2518 #endif
2519         igb_remove_i2c(adapter);
2520         igb_ptp_stop(adapter);
2521         /* The watchdog timer may be rescheduled, so explicitly
2522          * disable watchdog from being rescheduled.
2523          */
2524         set_bit(__IGB_DOWN, &adapter->state);
2525         del_timer_sync(&adapter->watchdog_timer);
2526         del_timer_sync(&adapter->phy_info_timer);
2527
2528         cancel_work_sync(&adapter->reset_task);
2529         cancel_work_sync(&adapter->watchdog_task);
2530
2531 #ifdef CONFIG_IGB_DCA
2532         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533                 dev_info(&pdev->dev, "DCA disabled\n");
2534                 dca_remove_requester(&pdev->dev);
2535                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537         }
2538 #endif
2539
2540         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541          * would have already happened in close and is redundant.
2542          */
2543         igb_release_hw_control(adapter);
2544
2545         unregister_netdev(netdev);
2546
2547         igb_clear_interrupt_scheme(adapter);
2548
2549 #ifdef CONFIG_PCI_IOV
2550         igb_disable_sriov(pdev);
2551 #endif
2552
2553         iounmap(hw->hw_addr);
2554         if (hw->flash_address)
2555                 iounmap(hw->flash_address);
2556         pci_release_selected_regions(pdev,
2557                                      pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559         kfree(adapter->shadow_vfta);
2560         free_netdev(netdev);
2561
2562         pci_disable_pcie_error_reporting(pdev);
2563
2564         pci_disable_device(pdev);
2565 }
2566
2567 /**
2568  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569  *  @adapter: board private structure to initialize
2570  *
2571  *  This function initializes the vf specific data storage and then attempts to
2572  *  allocate the VFs.  The reason for ordering it this way is because it is much
2573  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2574  *  the memory for the VFs.
2575  **/
2576 static void igb_probe_vfs(struct igb_adapter *adapter)
2577 {
2578 #ifdef CONFIG_PCI_IOV
2579         struct pci_dev *pdev = adapter->pdev;
2580         struct e1000_hw *hw = &adapter->hw;
2581
2582         /* Virtualization features not supported on i210 family. */
2583         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584                 return;
2585
2586         pci_sriov_set_totalvfs(pdev, 7);
2587         igb_enable_sriov(pdev, max_vfs);
2588
2589 #endif /* CONFIG_PCI_IOV */
2590 }
2591
2592 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 {
2594         struct e1000_hw *hw = &adapter->hw;
2595         u32 max_rss_queues;
2596
2597         /* Determine the maximum number of RSS queues supported. */
2598         switch (hw->mac.type) {
2599         case e1000_i211:
2600                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601                 break;
2602         case e1000_82575:
2603         case e1000_i210:
2604                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605                 break;
2606         case e1000_i350:
2607                 /* I350 cannot do RSS and SR-IOV at the same time */
2608                 if (!!adapter->vfs_allocated_count) {
2609                         max_rss_queues = 1;
2610                         break;
2611                 }
2612                 /* fall through */
2613         case e1000_82576:
2614                 if (!!adapter->vfs_allocated_count) {
2615                         max_rss_queues = 2;
2616                         break;
2617                 }
2618                 /* fall through */
2619         case e1000_82580:
2620         case e1000_i354:
2621         default:
2622                 max_rss_queues = IGB_MAX_RX_QUEUES;
2623                 break;
2624         }
2625
2626         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628         /* Determine if we need to pair queues. */
2629         switch (hw->mac.type) {
2630         case e1000_82575:
2631         case e1000_i211:
2632                 /* Device supports enough interrupts without queue pairing. */
2633                 break;
2634         case e1000_82576:
2635                 /* If VFs are going to be allocated with RSS queues then we
2636                  * should pair the queues in order to conserve interrupts due
2637                  * to limited supply.
2638                  */
2639                 if ((adapter->rss_queues > 1) &&
2640                     (adapter->vfs_allocated_count > 6))
2641                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642                 /* fall through */
2643         case e1000_82580:
2644         case e1000_i350:
2645         case e1000_i354:
2646         case e1000_i210:
2647         default:
2648                 /* If rss_queues > half of max_rss_queues, pair the queues in
2649                  * order to conserve interrupts due to limited supply.
2650                  */
2651                 if (adapter->rss_queues > (max_rss_queues / 2))
2652                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653                 break;
2654         }
2655 }
2656
2657 /**
2658  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2659  *  @adapter: board private structure to initialize
2660  *
2661  *  igb_sw_init initializes the Adapter private data structure.
2662  *  Fields are initialized based on PCI device information and
2663  *  OS network device settings (MTU size).
2664  **/
2665 static int igb_sw_init(struct igb_adapter *adapter)
2666 {
2667         struct e1000_hw *hw = &adapter->hw;
2668         struct net_device *netdev = adapter->netdev;
2669         struct pci_dev *pdev = adapter->pdev;
2670
2671         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673         /* set default ring sizes */
2674         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677         /* set default ITR values */
2678         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681         /* set default work limits */
2682         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685                                   VLAN_HLEN;
2686         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688         spin_lock_init(&adapter->stats64_lock);
2689 #ifdef CONFIG_PCI_IOV
2690         switch (hw->mac.type) {
2691         case e1000_82576:
2692         case e1000_i350:
2693                 if (max_vfs > 7) {
2694                         dev_warn(&pdev->dev,
2695                                  "Maximum of 7 VFs per PF, using max\n");
2696                         max_vfs = adapter->vfs_allocated_count = 7;
2697                 } else
2698                         adapter->vfs_allocated_count = max_vfs;
2699                 if (adapter->vfs_allocated_count)
2700                         dev_warn(&pdev->dev,
2701                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702                 break;
2703         default:
2704                 break;
2705         }
2706 #endif /* CONFIG_PCI_IOV */
2707
2708         igb_init_queue_configuration(adapter);
2709
2710         /* Setup and initialize a copy of the hw vlan table array */
2711         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712                                        GFP_ATOMIC);
2713
2714         /* This call may decrease the number of queues */
2715         if (igb_init_interrupt_scheme(adapter, true)) {
2716                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717                 return -ENOMEM;
2718         }
2719
2720         igb_probe_vfs(adapter);
2721
2722         /* Explicitly disable IRQ since the NIC can be in any state. */
2723         igb_irq_disable(adapter);
2724
2725         if (hw->mac.type >= e1000_i350)
2726                 adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728         set_bit(__IGB_DOWN, &adapter->state);
2729         return 0;
2730 }
2731
2732 /**
2733  *  igb_open - Called when a network interface is made active
2734  *  @netdev: network interface device structure
2735  *
2736  *  Returns 0 on success, negative value on failure
2737  *
2738  *  The open entry point is called when a network interface is made
2739  *  active by the system (IFF_UP).  At this point all resources needed
2740  *  for transmit and receive operations are allocated, the interrupt
2741  *  handler is registered with the OS, the watchdog timer is started,
2742  *  and the stack is notified that the interface is ready.
2743  **/
2744 static int __igb_open(struct net_device *netdev, bool resuming)
2745 {
2746         struct igb_adapter *adapter = netdev_priv(netdev);
2747         struct e1000_hw *hw = &adapter->hw;
2748         struct pci_dev *pdev = adapter->pdev;
2749         int err;
2750         int i;
2751
2752         /* disallow open during test */
2753         if (test_bit(__IGB_TESTING, &adapter->state)) {
2754                 WARN_ON(resuming);
2755                 return -EBUSY;
2756         }
2757
2758         if (!resuming)
2759                 pm_runtime_get_sync(&pdev->dev);
2760
2761         netif_carrier_off(netdev);
2762
2763         /* allocate transmit descriptors */
2764         err = igb_setup_all_tx_resources(adapter);
2765         if (err)
2766                 goto err_setup_tx;
2767
2768         /* allocate receive descriptors */
2769         err = igb_setup_all_rx_resources(adapter);
2770         if (err)
2771                 goto err_setup_rx;
2772
2773         igb_power_up_link(adapter);
2774
2775         /* before we allocate an interrupt, we must be ready to handle it.
2776          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777          * as soon as we call pci_request_irq, so we have to setup our
2778          * clean_rx handler before we do so.
2779          */
2780         igb_configure(adapter);
2781
2782         err = igb_request_irq(adapter);
2783         if (err)
2784                 goto err_req_irq;
2785
2786         /* Notify the stack of the actual queue counts. */
2787         err = netif_set_real_num_tx_queues(adapter->netdev,
2788                                            adapter->num_tx_queues);
2789         if (err)
2790                 goto err_set_queues;
2791
2792         err = netif_set_real_num_rx_queues(adapter->netdev,
2793                                            adapter->num_rx_queues);
2794         if (err)
2795                 goto err_set_queues;
2796
2797         /* From here on the code is the same as igb_up() */
2798         clear_bit(__IGB_DOWN, &adapter->state);
2799
2800         for (i = 0; i < adapter->num_q_vectors; i++)
2801                 napi_enable(&(adapter->q_vector[i]->napi));
2802
2803         /* Clear any pending interrupts. */
2804         rd32(E1000_ICR);
2805
2806         igb_irq_enable(adapter);
2807
2808         /* notify VFs that reset has been completed */
2809         if (adapter->vfs_allocated_count) {
2810                 u32 reg_data = rd32(E1000_CTRL_EXT);
2811                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2812                 wr32(E1000_CTRL_EXT, reg_data);
2813         }
2814
2815         netif_tx_start_all_queues(netdev);
2816
2817         if (!resuming)
2818                 pm_runtime_put(&pdev->dev);
2819
2820         /* start the watchdog. */
2821         hw->mac.get_link_status = 1;
2822         schedule_work(&adapter->watchdog_task);
2823
2824         return 0;
2825
2826 err_set_queues:
2827         igb_free_irq(adapter);
2828 err_req_irq:
2829         igb_release_hw_control(adapter);
2830         igb_power_down_link(adapter);
2831         igb_free_all_rx_resources(adapter);
2832 err_setup_rx:
2833         igb_free_all_tx_resources(adapter);
2834 err_setup_tx:
2835         igb_reset(adapter);
2836         if (!resuming)
2837                 pm_runtime_put(&pdev->dev);
2838
2839         return err;
2840 }
2841
2842 static int igb_open(struct net_device *netdev)
2843 {
2844         return __igb_open(netdev, false);
2845 }
2846
2847 /**
2848  *  igb_close - Disables a network interface
2849  *  @netdev: network interface device structure
2850  *
2851  *  Returns 0, this is not allowed to fail
2852  *
2853  *  The close entry point is called when an interface is de-activated
2854  *  by the OS.  The hardware is still under the driver's control, but
2855  *  needs to be disabled.  A global MAC reset is issued to stop the
2856  *  hardware, and all transmit and receive resources are freed.
2857  **/
2858 static int __igb_close(struct net_device *netdev, bool suspending)
2859 {
2860         struct igb_adapter *adapter = netdev_priv(netdev);
2861         struct pci_dev *pdev = adapter->pdev;
2862
2863         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865         if (!suspending)
2866                 pm_runtime_get_sync(&pdev->dev);
2867
2868         igb_down(adapter);
2869         igb_free_irq(adapter);
2870
2871         igb_free_all_tx_resources(adapter);
2872         igb_free_all_rx_resources(adapter);
2873
2874         if (!suspending)
2875                 pm_runtime_put_sync(&pdev->dev);
2876         return 0;
2877 }
2878
2879 static int igb_close(struct net_device *netdev)
2880 {
2881         return __igb_close(netdev, false);
2882 }
2883
2884 /**
2885  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887  *
2888  *  Return 0 on success, negative on failure
2889  **/
2890 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891 {
2892         struct device *dev = tx_ring->dev;
2893         int size;
2894
2895         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897         tx_ring->tx_buffer_info = vzalloc(size);
2898         if (!tx_ring->tx_buffer_info)
2899                 goto err;
2900
2901         /* round up to nearest 4K */
2902         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903         tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906                                            &tx_ring->dma, GFP_KERNEL);
2907         if (!tx_ring->desc)
2908                 goto err;
2909
2910         tx_ring->next_to_use = 0;
2911         tx_ring->next_to_clean = 0;
2912
2913         return 0;
2914
2915 err:
2916         vfree(tx_ring->tx_buffer_info);
2917         tx_ring->tx_buffer_info = NULL;
2918         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919         return -ENOMEM;
2920 }
2921
2922 /**
2923  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924  *                               (Descriptors) for all queues
2925  *  @adapter: board private structure
2926  *
2927  *  Return 0 on success, negative on failure
2928  **/
2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930 {
2931         struct pci_dev *pdev = adapter->pdev;
2932         int i, err = 0;
2933
2934         for (i = 0; i < adapter->num_tx_queues; i++) {
2935                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936                 if (err) {
2937                         dev_err(&pdev->dev,
2938                                 "Allocation for Tx Queue %u failed\n", i);
2939                         for (i--; i >= 0; i--)
2940                                 igb_free_tx_resources(adapter->tx_ring[i]);
2941                         break;
2942                 }
2943         }
2944
2945         return err;
2946 }
2947
2948 /**
2949  *  igb_setup_tctl - configure the transmit control registers
2950  *  @adapter: Board private structure
2951  **/
2952 void igb_setup_tctl(struct igb_adapter *adapter)
2953 {
2954         struct e1000_hw *hw = &adapter->hw;
2955         u32 tctl;
2956
2957         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958         wr32(E1000_TXDCTL(0), 0);
2959
2960         /* Program the Transmit Control Register */
2961         tctl = rd32(E1000_TCTL);
2962         tctl &= ~E1000_TCTL_CT;
2963         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966         igb_config_collision_dist(hw);
2967
2968         /* Enable transmits */
2969         tctl |= E1000_TCTL_EN;
2970
2971         wr32(E1000_TCTL, tctl);
2972 }
2973
2974 /**
2975  *  igb_configure_tx_ring - Configure transmit ring after Reset
2976  *  @adapter: board private structure
2977  *  @ring: tx ring to configure
2978  *
2979  *  Configure a transmit ring after a reset.
2980  **/
2981 void igb_configure_tx_ring(struct igb_adapter *adapter,
2982                            struct igb_ring *ring)
2983 {
2984         struct e1000_hw *hw = &adapter->hw;
2985         u32 txdctl = 0;
2986         u64 tdba = ring->dma;
2987         int reg_idx = ring->reg_idx;
2988
2989         /* disable the queue */
2990         wr32(E1000_TXDCTL(reg_idx), 0);
2991         wrfl();
2992         mdelay(10);
2993
2994         wr32(E1000_TDLEN(reg_idx),
2995              ring->count * sizeof(union e1000_adv_tx_desc));
2996         wr32(E1000_TDBAL(reg_idx),
2997              tdba & 0x00000000ffffffffULL);
2998         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001         wr32(E1000_TDH(reg_idx), 0);
3002         writel(0, ring->tail);
3003
3004         txdctl |= IGB_TX_PTHRESH;
3005         txdctl |= IGB_TX_HTHRESH << 8;
3006         txdctl |= IGB_TX_WTHRESH << 16;
3007
3008         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009         wr32(E1000_TXDCTL(reg_idx), txdctl);
3010 }
3011
3012 /**
3013  *  igb_configure_tx - Configure transmit Unit after Reset
3014  *  @adapter: board private structure
3015  *
3016  *  Configure the Tx unit of the MAC after a reset.
3017  **/
3018 static void igb_configure_tx(struct igb_adapter *adapter)
3019 {
3020         int i;
3021
3022         for (i = 0; i < adapter->num_tx_queues; i++)
3023                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 }
3025
3026 /**
3027  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029  *
3030  *  Returns 0 on success, negative on failure
3031  **/
3032 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033 {
3034         struct device *dev = rx_ring->dev;
3035         int size;
3036
3037         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039         rx_ring->rx_buffer_info = vzalloc(size);
3040         if (!rx_ring->rx_buffer_info)
3041                 goto err;
3042
3043         /* Round up to nearest 4K */
3044         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045         rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048                                            &rx_ring->dma, GFP_KERNEL);
3049         if (!rx_ring->desc)
3050                 goto err;
3051
3052         rx_ring->next_to_alloc = 0;
3053         rx_ring->next_to_clean = 0;
3054         rx_ring->next_to_use = 0;
3055
3056         return 0;
3057
3058 err:
3059         vfree(rx_ring->rx_buffer_info);
3060         rx_ring->rx_buffer_info = NULL;
3061         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062         return -ENOMEM;
3063 }
3064
3065 /**
3066  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067  *                               (Descriptors) for all queues
3068  *  @adapter: board private structure
3069  *
3070  *  Return 0 on success, negative on failure
3071  **/
3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073 {
3074         struct pci_dev *pdev = adapter->pdev;
3075         int i, err = 0;
3076
3077         for (i = 0; i < adapter->num_rx_queues; i++) {
3078                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079                 if (err) {
3080                         dev_err(&pdev->dev,
3081                                 "Allocation for Rx Queue %u failed\n", i);
3082                         for (i--; i >= 0; i--)
3083                                 igb_free_rx_resources(adapter->rx_ring[i]);
3084                         break;
3085                 }
3086         }
3087
3088         return err;
3089 }
3090
3091 /**
3092  *  igb_setup_mrqc - configure the multiple receive queue control registers
3093  *  @adapter: Board private structure
3094  **/
3095 static void igb_setup_mrqc(struct igb_adapter *adapter)
3096 {
3097         struct e1000_hw *hw = &adapter->hw;
3098         u32 mrqc, rxcsum;
3099         u32 j, num_rx_queues, shift = 0;
3100         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103                                         0xFA01ACBE };
3104
3105         /* Fill out hash function seeds */
3106         for (j = 0; j < 10; j++)
3107                 wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109         num_rx_queues = adapter->rss_queues;
3110
3111         switch (hw->mac.type) {
3112         case e1000_82575:
3113                 shift = 6;
3114                 break;
3115         case e1000_82576:
3116                 /* 82576 supports 2 RSS queues for SR-IOV */
3117                 if (adapter->vfs_allocated_count) {
3118                         shift = 3;
3119                         num_rx_queues = 2;
3120                 }
3121                 break;
3122         default:
3123                 break;
3124         }
3125
3126         /* Populate the indirection table 4 entries at a time.  To do this
3127          * we are generating the results for n and n+2 and then interleaving
3128          * those with the results with n+1 and n+3.
3129          */
3130         for (j = 0; j < 32; j++) {
3131                 /* first pass generates n and n+2 */
3132                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133                 u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135                 /* second pass generates n+1 and n+3 */
3136                 base += 0x00010001 * num_rx_queues;
3137                 reta |= (base & 0x07800780) << (1 + shift);
3138
3139                 wr32(E1000_RETA(j), reta);
3140         }
3141
3142         /* Disable raw packet checksumming so that RSS hash is placed in
3143          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3144          * offloads as they are enabled by default
3145          */
3146         rxcsum = rd32(E1000_RXCSUM);
3147         rxcsum |= E1000_RXCSUM_PCSD;
3148
3149         if (adapter->hw.mac.type >= e1000_82576)
3150                 /* Enable Receive Checksum Offload for SCTP */
3151                 rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154         wr32(E1000_RXCSUM, rxcsum);
3155
3156         /* Generate RSS hash based on packet types, TCP/UDP
3157          * port numbers and/or IPv4/v6 src and dst addresses
3158          */
3159         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161                E1000_MRQC_RSS_FIELD_IPV6 |
3162                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170         /* If VMDq is enabled then we set the appropriate mode for that, else
3171          * we default to RSS so that an RSS hash is calculated per packet even
3172          * if we are only using one queue
3173          */
3174         if (adapter->vfs_allocated_count) {
3175                 if (hw->mac.type > e1000_82575) {
3176                         /* Set the default pool for the PF's first queue */
3177                         u32 vtctl = rd32(E1000_VT_CTL);
3178                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3180                         vtctl |= adapter->vfs_allocated_count <<
3181                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182                         wr32(E1000_VT_CTL, vtctl);
3183                 }
3184                 if (adapter->rss_queues > 1)
3185                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186                 else
3187                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188         } else {
3189                 if (hw->mac.type != e1000_i211)
3190                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191         }
3192         igb_vmm_control(adapter);
3193
3194         wr32(E1000_MRQC, mrqc);
3195 }
3196
3197 /**
3198  *  igb_setup_rctl - configure the receive control registers
3199  *  @adapter: Board private structure
3200  **/
3201 void igb_setup_rctl(struct igb_adapter *adapter)
3202 {
3203         struct e1000_hw *hw = &adapter->hw;
3204         u32 rctl;
3205
3206         rctl = rd32(E1000_RCTL);
3207
3208         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214         /* enable stripping of CRC. It's unlikely this will break BMC
3215          * redirection as it did with e1000. Newer features require
3216          * that the HW strips the CRC.
3217          */
3218         rctl |= E1000_RCTL_SECRC;
3219
3220         /* disable store bad packets and clear size bits. */
3221         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223         /* enable LPE to prevent packets larger than max_frame_size */
3224         rctl |= E1000_RCTL_LPE;
3225
3226         /* disable queue 0 to prevent tail write w/o re-config */
3227         wr32(E1000_RXDCTL(0), 0);
3228
3229         /* Attention!!!  For SR-IOV PF driver operations you must enable
3230          * queue drop for all VF and PF queues to prevent head of line blocking
3231          * if an un-trusted VF does not provide descriptors to hardware.
3232          */
3233         if (adapter->vfs_allocated_count) {
3234                 /* set all queue drop enable bits */
3235                 wr32(E1000_QDE, ALL_QUEUES);
3236         }
3237
3238         /* This is useful for sniffing bad packets. */
3239         if (adapter->netdev->features & NETIF_F_RXALL) {
3240                 /* UPE and MPE will be handled by normal PROMISC logic
3241                  * in e1000e_set_rx_mode
3242                  */
3243                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248                           E1000_RCTL_DPF | /* Allow filtered pause */
3249                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251                  * and that breaks VLANs.
3252                  */
3253         }
3254
3255         wr32(E1000_RCTL, rctl);
3256 }
3257
3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259                                    int vfn)
3260 {
3261         struct e1000_hw *hw = &adapter->hw;
3262         u32 vmolr;
3263
3264         /* if it isn't the PF check to see if VFs are enabled and
3265          * increase the size to support vlan tags
3266          */
3267         if (vfn < adapter->vfs_allocated_count &&
3268             adapter->vf_data[vfn].vlans_enabled)
3269                 size += VLAN_TAG_SIZE;
3270
3271         vmolr = rd32(E1000_VMOLR(vfn));
3272         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273         vmolr |= size | E1000_VMOLR_LPE;
3274         wr32(E1000_VMOLR(vfn), vmolr);
3275
3276         return 0;
3277 }
3278
3279 /**
3280  *  igb_rlpml_set - set maximum receive packet size
3281  *  @adapter: board private structure
3282  *
3283  *  Configure maximum receivable packet size.
3284  **/
3285 static void igb_rlpml_set(struct igb_adapter *adapter)
3286 {
3287         u32 max_frame_size = adapter->max_frame_size;
3288         struct e1000_hw *hw = &adapter->hw;
3289         u16 pf_id = adapter->vfs_allocated_count;
3290
3291         if (pf_id) {
3292                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294                  * to our max jumbo frame size, in case we need to enable
3295                  * jumbo frames on one of the rings later.
3296                  * This will not pass over-length frames into the default
3297                  * queue because it's gated by the VMOLR.RLPML.
3298                  */
3299                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300         }
3301
3302         wr32(E1000_RLPML, max_frame_size);
3303 }
3304
3305 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306                                  int vfn, bool aupe)
3307 {
3308         struct e1000_hw *hw = &adapter->hw;
3309         u32 vmolr;
3310
3311         /* This register exists only on 82576 and newer so if we are older then
3312          * we should exit and do nothing
3313          */
3314         if (hw->mac.type < e1000_82576)
3315                 return;
3316
3317         vmolr = rd32(E1000_VMOLR(vfn));
3318         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319         if (aupe)
3320                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321         else
3322                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324         /* clear all bits that might not be set */
3325         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330          * multicast packets
3331          */
3332         if (vfn <= adapter->vfs_allocated_count)
3333                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335         wr32(E1000_VMOLR(vfn), vmolr);
3336 }
3337
3338 /**
3339  *  igb_configure_rx_ring - Configure a receive ring after Reset
3340  *  @adapter: board private structure
3341  *  @ring: receive ring to be configured
3342  *
3343  *  Configure the Rx unit of the MAC after a reset.
3344  **/
3345 void igb_configure_rx_ring(struct igb_adapter *adapter,
3346                            struct igb_ring *ring)
3347 {
3348         struct e1000_hw *hw = &adapter->hw;
3349         u64 rdba = ring->dma;
3350         int reg_idx = ring->reg_idx;
3351         u32 srrctl = 0, rxdctl = 0;
3352
3353         /* disable the queue */
3354         wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356         /* Set DMA base address registers */
3357         wr32(E1000_RDBAL(reg_idx),
3358              rdba & 0x00000000ffffffffULL);
3359         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360         wr32(E1000_RDLEN(reg_idx),
3361              ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363         /* initialize head and tail */
3364         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365         wr32(E1000_RDH(reg_idx), 0);
3366         writel(0, ring->tail);
3367
3368         /* set descriptor configuration */
3369         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372         if (hw->mac.type >= e1000_82580)
3373                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3374         /* Only set Drop Enable if we are supporting multiple queues */
3375         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376                 srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378         wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380         /* set filtering for VMDQ pools */
3381         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383         rxdctl |= IGB_RX_PTHRESH;
3384         rxdctl |= IGB_RX_HTHRESH << 8;
3385         rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387         /* enable receive descriptor fetching */
3388         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390 }
3391
3392 /**
3393  *  igb_configure_rx - Configure receive Unit after Reset
3394  *  @adapter: board private structure
3395  *
3396  *  Configure the Rx unit of the MAC after a reset.
3397  **/
3398 static void igb_configure_rx(struct igb_adapter *adapter)
3399 {
3400         int i;
3401
3402         /* set UTA to appropriate mode */
3403         igb_set_uta(adapter);
3404
3405         /* set the correct pool for the PF default MAC address in entry 0 */
3406         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407                          adapter->vfs_allocated_count);
3408
3409         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3410          * the Base and Length of the Rx Descriptor Ring
3411          */
3412         for (i = 0; i < adapter->num_rx_queues; i++)
3413                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 }
3415
3416 /**
3417  *  igb_free_tx_resources - Free Tx Resources per Queue
3418  *  @tx_ring: Tx descriptor ring for a specific queue
3419  *
3420  *  Free all transmit software resources
3421  **/
3422 void igb_free_tx_resources(struct igb_ring *tx_ring)
3423 {
3424         igb_clean_tx_ring(tx_ring);
3425
3426         vfree(tx_ring->tx_buffer_info);
3427         tx_ring->tx_buffer_info = NULL;
3428
3429         /* if not set, then don't free */
3430         if (!tx_ring->desc)
3431                 return;
3432
3433         dma_free_coherent(tx_ring->dev, tx_ring->size,
3434                           tx_ring->desc, tx_ring->dma);
3435
3436         tx_ring->desc = NULL;
3437 }
3438
3439 /**
3440  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3441  *  @adapter: board private structure
3442  *
3443  *  Free all transmit software resources
3444  **/
3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446 {
3447         int i;
3448
3449         for (i = 0; i < adapter->num_tx_queues; i++)
3450                 igb_free_tx_resources(adapter->tx_ring[i]);
3451 }
3452
3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454                                     struct igb_tx_buffer *tx_buffer)
3455 {
3456         if (tx_buffer->skb) {
3457                 dev_kfree_skb_any(tx_buffer->skb);
3458                 if (dma_unmap_len(tx_buffer, len))
3459                         dma_unmap_single(ring->dev,
3460                                          dma_unmap_addr(tx_buffer, dma),
3461                                          dma_unmap_len(tx_buffer, len),
3462                                          DMA_TO_DEVICE);
3463         } else if (dma_unmap_len(tx_buffer, len)) {
3464                 dma_unmap_page(ring->dev,
3465                                dma_unmap_addr(tx_buffer, dma),
3466                                dma_unmap_len(tx_buffer, len),
3467                                DMA_TO_DEVICE);
3468         }
3469         tx_buffer->next_to_watch = NULL;
3470         tx_buffer->skb = NULL;
3471         dma_unmap_len_set(tx_buffer, len, 0);
3472         /* buffer_info must be completely set up in the transmit path */
3473 }
3474
3475 /**
3476  *  igb_clean_tx_ring - Free Tx Buffers
3477  *  @tx_ring: ring to be cleaned
3478  **/
3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480 {
3481         struct igb_tx_buffer *buffer_info;
3482         unsigned long size;
3483         u16 i;
3484
3485         if (!tx_ring->tx_buffer_info)
3486                 return;
3487         /* Free all the Tx ring sk_buffs */
3488
3489         for (i = 0; i < tx_ring->count; i++) {
3490                 buffer_info = &tx_ring->tx_buffer_info[i];
3491                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492         }
3493
3494         netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497         memset(tx_ring->tx_buffer_info, 0, size);
3498
3499         /* Zero out the descriptor ring */
3500         memset(tx_ring->desc, 0, tx_ring->size);
3501
3502         tx_ring->next_to_use = 0;
3503         tx_ring->next_to_clean = 0;
3504 }
3505
3506 /**
3507  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508  *  @adapter: board private structure
3509  **/
3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511 {
3512         int i;
3513
3514         for (i = 0; i < adapter->num_tx_queues; i++)
3515                 igb_clean_tx_ring(adapter->tx_ring[i]);
3516 }
3517
3518 /**
3519  *  igb_free_rx_resources - Free Rx Resources
3520  *  @rx_ring: ring to clean the resources from
3521  *
3522  *  Free all receive software resources
3523  **/
3524 void igb_free_rx_resources(struct igb_ring *rx_ring)
3525 {
3526         igb_clean_rx_ring(rx_ring);
3527
3528         vfree(rx_ring->rx_buffer_info);
3529         rx_ring->rx_buffer_info = NULL;
3530
3531         /* if not set, then don't free */
3532         if (!rx_ring->desc)
3533                 return;
3534
3535         dma_free_coherent(rx_ring->dev, rx_ring->size,
3536                           rx_ring->desc, rx_ring->dma);
3537
3538         rx_ring->desc = NULL;
3539 }
3540
3541 /**
3542  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3543  *  @adapter: board private structure
3544  *
3545  *  Free all receive software resources
3546  **/
3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548 {
3549         int i;
3550
3551         for (i = 0; i < adapter->num_rx_queues; i++)
3552                 igb_free_rx_resources(adapter->rx_ring[i]);
3553 }
3554
3555 /**
3556  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3557  *  @rx_ring: ring to free buffers from
3558  **/
3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 {
3561         unsigned long size;
3562         u16 i;
3563
3564         if (rx_ring->skb)
3565                 dev_kfree_skb(rx_ring->skb);
3566         rx_ring->skb = NULL;
3567
3568         if (!rx_ring->rx_buffer_info)
3569                 return;
3570
3571         /* Free all the Rx ring sk_buffs */
3572         for (i = 0; i < rx_ring->count; i++) {
3573                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575                 if (!buffer_info->page)
3576                         continue;
3577
3578                 dma_unmap_page(rx_ring->dev,
3579                                buffer_info->dma,
3580                                PAGE_SIZE,
3581                                DMA_FROM_DEVICE);
3582                 __free_page(buffer_info->page);
3583
3584                 buffer_info->page = NULL;
3585         }
3586
3587         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588         memset(rx_ring->rx_buffer_info, 0, size);
3589
3590         /* Zero out the descriptor ring */
3591         memset(rx_ring->desc, 0, rx_ring->size);
3592
3593         rx_ring->next_to_alloc = 0;
3594         rx_ring->next_to_clean = 0;
3595         rx_ring->next_to_use = 0;
3596 }
3597
3598 /**
3599  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600  *  @adapter: board private structure
3601  **/
3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603 {
3604         int i;
3605
3606         for (i = 0; i < adapter->num_rx_queues; i++)
3607                 igb_clean_rx_ring(adapter->rx_ring[i]);
3608 }
3609
3610 /**
3611  *  igb_set_mac - Change the Ethernet Address of the NIC
3612  *  @netdev: network interface device structure
3613  *  @p: pointer to an address structure
3614  *
3615  *  Returns 0 on success, negative on failure
3616  **/
3617 static int igb_set_mac(struct net_device *netdev, void *p)
3618 {
3619         struct igb_adapter *adapter = netdev_priv(netdev);
3620         struct e1000_hw *hw = &adapter->hw;
3621         struct sockaddr *addr = p;
3622
3623         if (!is_valid_ether_addr(addr->sa_data))
3624                 return -EADDRNOTAVAIL;
3625
3626         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629         /* set the correct pool for the new PF MAC address in entry 0 */
3630         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631                          adapter->vfs_allocated_count);
3632
3633         return 0;
3634 }
3635
3636 /**
3637  *  igb_write_mc_addr_list - write multicast addresses to MTA
3638  *  @netdev: network interface device structure
3639  *
3640  *  Writes multicast address list to the MTA hash table.
3641  *  Returns: -ENOMEM on failure
3642  *           0 on no addresses written
3643  *           X on writing X addresses to MTA
3644  **/
3645 static int igb_write_mc_addr_list(struct net_device *netdev)
3646 {
3647         struct igb_adapter *adapter = netdev_priv(netdev);
3648         struct e1000_hw *hw = &adapter->hw;
3649         struct netdev_hw_addr *ha;
3650         u8  *mta_list;
3651         int i;
3652
3653         if (netdev_mc_empty(netdev)) {
3654                 /* nothing to program, so clear mc list */
3655                 igb_update_mc_addr_list(hw, NULL, 0);
3656                 igb_restore_vf_multicasts(adapter);
3657                 return 0;
3658         }
3659
3660         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661         if (!mta_list)
3662                 return -ENOMEM;
3663
3664         /* The shared function expects a packed array of only addresses. */
3665         i = 0;
3666         netdev_for_each_mc_addr(ha, netdev)
3667                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669         igb_update_mc_addr_list(hw, mta_list, i);
3670         kfree(mta_list);
3671
3672         return netdev_mc_count(netdev);
3673 }
3674
3675 /**
3676  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3677  *  @netdev: network interface device structure
3678  *
3679  *  Writes unicast address list to the RAR table.
3680  *  Returns: -ENOMEM on failure/insufficient address space
3681  *           0 on no addresses written
3682  *           X on writing X addresses to the RAR table
3683  **/
3684 static int igb_write_uc_addr_list(struct net_device *netdev)
3685 {
3686         struct igb_adapter *adapter = netdev_priv(netdev);
3687         struct e1000_hw *hw = &adapter->hw;
3688         unsigned int vfn = adapter->vfs_allocated_count;
3689         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690         int count = 0;
3691
3692         /* return ENOMEM indicating insufficient memory for addresses */
3693         if (netdev_uc_count(netdev) > rar_entries)
3694                 return -ENOMEM;
3695
3696         if (!netdev_uc_empty(netdev) && rar_entries) {
3697                 struct netdev_hw_addr *ha;
3698
3699                 netdev_for_each_uc_addr(ha, netdev) {
3700                         if (!rar_entries)
3701                                 break;
3702                         igb_rar_set_qsel(adapter, ha->addr,
3703                                          rar_entries--,
3704                                          vfn);
3705                         count++;
3706                 }
3707         }
3708         /* write the addresses in reverse order to avoid write combining */
3709         for (; rar_entries > 0 ; rar_entries--) {
3710                 wr32(E1000_RAH(rar_entries), 0);
3711                 wr32(E1000_RAL(rar_entries), 0);
3712         }
3713         wrfl();
3714
3715         return count;
3716 }
3717
3718 /**
3719  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720  *  @netdev: network interface device structure
3721  *
3722  *  The set_rx_mode entry point is called whenever the unicast or multicast
3723  *  address lists or the network interface flags are updated.  This routine is
3724  *  responsible for configuring the hardware for proper unicast, multicast,
3725  *  promiscuous mode, and all-multi behavior.
3726  **/
3727 static void igb_set_rx_mode(struct net_device *netdev)
3728 {
3729         struct igb_adapter *adapter = netdev_priv(netdev);
3730         struct e1000_hw *hw = &adapter->hw;
3731         unsigned int vfn = adapter->vfs_allocated_count;
3732         u32 rctl, vmolr = 0;
3733         int count;
3734
3735         /* Check for Promiscuous and All Multicast modes */
3736         rctl = rd32(E1000_RCTL);
3737
3738         /* clear the effected bits */
3739         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741         if (netdev->flags & IFF_PROMISC) {
3742                 /* retain VLAN HW filtering if in VT mode */
3743                 if (adapter->vfs_allocated_count)
3744                         rctl |= E1000_RCTL_VFE;
3745                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3746                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3747         } else {
3748                 if (netdev->flags & IFF_ALLMULTI) {
3749                         rctl |= E1000_RCTL_MPE;
3750                         vmolr |= E1000_VMOLR_MPME;
3751                 } else {
3752                         /* Write addresses to the MTA, if the attempt fails
3753                          * then we should just turn on promiscuous mode so
3754                          * that we can at least receive multicast traffic
3755                          */
3756                         count = igb_write_mc_addr_list(netdev);
3757                         if (count < 0) {
3758                                 rctl |= E1000_RCTL_MPE;
3759                                 vmolr |= E1000_VMOLR_MPME;
3760                         } else if (count) {
3761                                 vmolr |= E1000_VMOLR_ROMPE;
3762                         }
3763                 }
3764                 /* Write addresses to available RAR registers, if there is not
3765                  * sufficient space to store all the addresses then enable
3766                  * unicast promiscuous mode
3767                  */
3768                 count = igb_write_uc_addr_list(netdev);
3769                 if (count < 0) {
3770                         rctl |= E1000_RCTL_UPE;
3771                         vmolr |= E1000_VMOLR_ROPE;
3772                 }
3773                 rctl |= E1000_RCTL_VFE;
3774         }
3775         wr32(E1000_RCTL, rctl);
3776
3777         /* In order to support SR-IOV and eventually VMDq it is necessary to set
3778          * the VMOLR to enable the appropriate modes.  Without this workaround
3779          * we will have issues with VLAN tag stripping not being done for frames
3780          * that are only arriving because we are the default pool
3781          */
3782         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3783                 return;
3784
3785         vmolr |= rd32(E1000_VMOLR(vfn)) &
3786                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3787         wr32(E1000_VMOLR(vfn), vmolr);
3788         igb_restore_vf_multicasts(adapter);
3789 }
3790
3791 static void igb_check_wvbr(struct igb_adapter *adapter)
3792 {
3793         struct e1000_hw *hw = &adapter->hw;
3794         u32 wvbr = 0;
3795
3796         switch (hw->mac.type) {
3797         case e1000_82576:
3798         case e1000_i350:
3799                 if (!(wvbr = rd32(E1000_WVBR)))
3800                         return;
3801                 break;
3802         default:
3803                 break;
3804         }
3805
3806         adapter->wvbr |= wvbr;
3807 }
3808
3809 #define IGB_STAGGERED_QUEUE_OFFSET 8
3810
3811 static void igb_spoof_check(struct igb_adapter *adapter)
3812 {
3813         int j;
3814
3815         if (!adapter->wvbr)
3816                 return;
3817
3818         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3819                 if (adapter->wvbr & (1 << j) ||
3820                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3821                         dev_warn(&adapter->pdev->dev,
3822                                 "Spoof event(s) detected on VF %d\n", j);
3823                         adapter->wvbr &=
3824                                 ~((1 << j) |
3825                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3826                 }
3827         }
3828 }
3829
3830 /* Need to wait a few seconds after link up to get diagnostic information from
3831  * the phy
3832  */
3833 static void igb_update_phy_info(unsigned long data)
3834 {
3835         struct igb_adapter *adapter = (struct igb_adapter *) data;
3836         igb_get_phy_info(&adapter->hw);
3837 }
3838
3839 /**
3840  *  igb_has_link - check shared code for link and determine up/down
3841  *  @adapter: pointer to driver private info
3842  **/
3843 bool igb_has_link(struct igb_adapter *adapter)
3844 {
3845         struct e1000_hw *hw = &adapter->hw;
3846         bool link_active = false;
3847         s32 ret_val = 0;
3848
3849         /* get_link_status is set on LSC (link status) interrupt or
3850          * rx sequence error interrupt.  get_link_status will stay
3851          * false until the e1000_check_for_link establishes link
3852          * for copper adapters ONLY
3853          */
3854         switch (hw->phy.media_type) {
3855         case e1000_media_type_copper:
3856                 if (hw->mac.get_link_status) {
3857                         ret_val = hw->mac.ops.check_for_link(hw);
3858                         link_active = !hw->mac.get_link_status;
3859                 } else {
3860                         link_active = true;
3861                 }
3862                 break;
3863         case e1000_media_type_internal_serdes:
3864                 ret_val = hw->mac.ops.check_for_link(hw);
3865                 link_active = hw->mac.serdes_has_link;
3866                 break;
3867         default:
3868         case e1000_media_type_unknown:
3869                 break;
3870         }
3871
3872         return link_active;
3873 }
3874
3875 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3876 {
3877         bool ret = false;
3878         u32 ctrl_ext, thstat;
3879
3880         /* check for thermal sensor event on i350 copper only */
3881         if (hw->mac.type == e1000_i350) {
3882                 thstat = rd32(E1000_THSTAT);
3883                 ctrl_ext = rd32(E1000_CTRL_EXT);
3884
3885                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3886                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3887                         ret = !!(thstat & event);
3888         }
3889
3890         return ret;
3891 }
3892
3893 /**
3894  *  igb_watchdog - Timer Call-back
3895  *  @data: pointer to adapter cast into an unsigned long
3896  **/
3897 static void igb_watchdog(unsigned long data)
3898 {
3899         struct igb_adapter *adapter = (struct igb_adapter *)data;
3900         /* Do the rest outside of interrupt context */
3901         schedule_work(&adapter->watchdog_task);
3902 }
3903
3904 static void igb_watchdog_task(struct work_struct *work)
3905 {
3906         struct igb_adapter *adapter = container_of(work,
3907                                                    struct igb_adapter,
3908                                                    watchdog_task);
3909         struct e1000_hw *hw = &adapter->hw;
3910         struct e1000_phy_info *phy = &hw->phy;
3911         struct net_device *netdev = adapter->netdev;
3912         u32 link;
3913         int i;
3914
3915         link = igb_has_link(adapter);
3916         if (link) {
3917                 /* Cancel scheduled suspend requests. */
3918                 pm_runtime_resume(netdev->dev.parent);
3919
3920                 if (!netif_carrier_ok(netdev)) {
3921                         u32 ctrl;
3922                         hw->mac.ops.get_speed_and_duplex(hw,
3923                                                          &adapter->link_speed,
3924                                                          &adapter->link_duplex);
3925
3926                         ctrl = rd32(E1000_CTRL);
3927                         /* Links status message must follow this format */
3928                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3929                                "Duplex, Flow Control: %s\n",
3930                                netdev->name,
3931                                adapter->link_speed,
3932                                adapter->link_duplex == FULL_DUPLEX ?
3933                                "Full" : "Half",
3934                                (ctrl & E1000_CTRL_TFCE) &&
3935                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3936                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3937                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3938
3939                         /* check if SmartSpeed worked */
3940                         igb_check_downshift(hw);
3941                         if (phy->speed_downgraded)
3942                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3943
3944                         /* check for thermal sensor event */
3945                         if (igb_thermal_sensor_event(hw,
3946                             E1000_THSTAT_LINK_THROTTLE)) {
3947                                 netdev_info(netdev, "The network adapter link "
3948                                             "speed was downshifted because it "
3949                                             "overheated\n");
3950                         }
3951
3952                         /* adjust timeout factor according to speed/duplex */
3953                         adapter->tx_timeout_factor = 1;
3954                         switch (adapter->link_speed) {
3955                         case SPEED_10:
3956                                 adapter->tx_timeout_factor = 14;
3957                                 break;
3958                         case SPEED_100:
3959                                 /* maybe add some timeout factor ? */
3960                                 break;
3961                         }
3962
3963                         netif_carrier_on(netdev);
3964
3965                         igb_ping_all_vfs(adapter);
3966                         igb_check_vf_rate_limit(adapter);
3967
3968                         /* link state has changed, schedule phy info update */
3969                         if (!test_bit(__IGB_DOWN, &adapter->state))
3970                                 mod_timer(&adapter->phy_info_timer,
3971                                           round_jiffies(jiffies + 2 * HZ));
3972                 }
3973         } else {
3974                 if (netif_carrier_ok(netdev)) {
3975                         adapter->link_speed = 0;
3976                         adapter->link_duplex = 0;
3977
3978                         /* check for thermal sensor event */
3979                         if (igb_thermal_sensor_event(hw,
3980                             E1000_THSTAT_PWR_DOWN)) {
3981                                 netdev_err(netdev, "The network adapter was "
3982                                            "stopped because it overheated\n");
3983                         }
3984
3985                         /* Links status message must follow this format */
3986                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3987                                netdev->name);
3988                         netif_carrier_off(netdev);
3989
3990                         igb_ping_all_vfs(adapter);
3991
3992                         /* link state has changed, schedule phy info update */
3993                         if (!test_bit(__IGB_DOWN, &adapter->state))
3994                                 mod_timer(&adapter->phy_info_timer,
3995                                           round_jiffies(jiffies + 2 * HZ));
3996
3997                         pm_schedule_suspend(netdev->dev.parent,
3998                                             MSEC_PER_SEC * 5);
3999                 }
4000         }
4001
4002         spin_lock(&adapter->stats64_lock);
4003         igb_update_stats(adapter, &adapter->stats64);
4004         spin_unlock(&adapter->stats64_lock);
4005
4006         for (i = 0; i < adapter->num_tx_queues; i++) {
4007                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4008                 if (!netif_carrier_ok(netdev)) {
4009                         /* We've lost link, so the controller stops DMA,
4010                          * but we've got queued Tx work that's never going
4011                          * to get done, so reset controller to flush Tx.
4012                          * (Do the reset outside of interrupt context).
4013                          */
4014                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4015                                 adapter->tx_timeout_count++;
4016                                 schedule_work(&adapter->reset_task);
4017                                 /* return immediately since reset is imminent */
4018                                 return;
4019                         }
4020                 }
4021
4022                 /* Force detection of hung controller every watchdog period */
4023                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4024         }
4025
4026         /* Cause software interrupt to ensure Rx ring is cleaned */
4027         if (adapter->msix_entries) {
4028                 u32 eics = 0;
4029                 for (i = 0; i < adapter->num_q_vectors; i++)
4030                         eics |= adapter->q_vector[i]->eims_value;
4031                 wr32(E1000_EICS, eics);
4032         } else {
4033                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4034         }
4035
4036         igb_spoof_check(adapter);
4037         igb_ptp_rx_hang(adapter);
4038
4039         /* Reset the timer */
4040         if (!test_bit(__IGB_DOWN, &adapter->state))
4041                 mod_timer(&adapter->watchdog_timer,
4042                           round_jiffies(jiffies + 2 * HZ));
4043 }
4044
4045 enum latency_range {
4046         lowest_latency = 0,
4047         low_latency = 1,
4048         bulk_latency = 2,
4049         latency_invalid = 255
4050 };
4051
4052 /**
4053  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4054  *  @q_vector: pointer to q_vector
4055  *
4056  *  Stores a new ITR value based on strictly on packet size.  This
4057  *  algorithm is less sophisticated than that used in igb_update_itr,
4058  *  due to the difficulty of synchronizing statistics across multiple
4059  *  receive rings.  The divisors and thresholds used by this function
4060  *  were determined based on theoretical maximum wire speed and testing
4061  *  data, in order to minimize response time while increasing bulk
4062  *  throughput.
4063  *  This functionality is controlled by the InterruptThrottleRate module
4064  *  parameter (see igb_param.c)
4065  *  NOTE:  This function is called only when operating in a multiqueue
4066  *         receive environment.
4067  **/
4068 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4069 {
4070         int new_val = q_vector->itr_val;
4071         int avg_wire_size = 0;
4072         struct igb_adapter *adapter = q_vector->adapter;
4073         unsigned int packets;
4074
4075         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4076          * ints/sec - ITR timer value of 120 ticks.
4077          */
4078         if (adapter->link_speed != SPEED_1000) {
4079                 new_val = IGB_4K_ITR;
4080                 goto set_itr_val;
4081         }
4082
4083         packets = q_vector->rx.total_packets;
4084         if (packets)
4085                 avg_wire_size = q_vector->rx.total_bytes / packets;
4086
4087         packets = q_vector->tx.total_packets;
4088         if (packets)
4089                 avg_wire_size = max_t(u32, avg_wire_size,
4090                                       q_vector->tx.total_bytes / packets);
4091
4092         /* if avg_wire_size isn't set no work was done */
4093         if (!avg_wire_size)
4094                 goto clear_counts;
4095
4096         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4097         avg_wire_size += 24;
4098
4099         /* Don't starve jumbo frames */
4100         avg_wire_size = min(avg_wire_size, 3000);
4101
4102         /* Give a little boost to mid-size frames */
4103         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4104                 new_val = avg_wire_size / 3;
4105         else
4106                 new_val = avg_wire_size / 2;
4107
4108         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4109         if (new_val < IGB_20K_ITR &&
4110             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4111              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4112                 new_val = IGB_20K_ITR;
4113
4114 set_itr_val:
4115         if (new_val != q_vector->itr_val) {
4116                 q_vector->itr_val = new_val;
4117                 q_vector->set_itr = 1;
4118         }
4119 clear_counts:
4120         q_vector->rx.total_bytes = 0;
4121         q_vector->rx.total_packets = 0;
4122         q_vector->tx.total_bytes = 0;
4123         q_vector->tx.total_packets = 0;
4124 }
4125
4126 /**
4127  *  igb_update_itr - update the dynamic ITR value based on statistics
4128  *  @q_vector: pointer to q_vector
4129  *  @ring_container: ring info to update the itr for
4130  *
4131  *  Stores a new ITR value based on packets and byte
4132  *  counts during the last interrupt.  The advantage of per interrupt
4133  *  computation is faster updates and more accurate ITR for the current
4134  *  traffic pattern.  Constants in this function were computed
4135  *  based on theoretical maximum wire speed and thresholds were set based
4136  *  on testing data as well as attempting to minimize response time
4137  *  while increasing bulk throughput.
4138  *  this functionality is controlled by the InterruptThrottleRate module
4139  *  parameter (see igb_param.c)
4140  *  NOTE:  These calculations are only valid when operating in a single-
4141  *         queue environment.
4142  **/
4143 static void igb_update_itr(struct igb_q_vector *q_vector,
4144                            struct igb_ring_container *ring_container)
4145 {
4146         unsigned int packets = ring_container->total_packets;
4147         unsigned int bytes = ring_container->total_bytes;
4148         u8 itrval = ring_container->itr;
4149
4150         /* no packets, exit with status unchanged */
4151         if (packets == 0)
4152                 return;
4153
4154         switch (itrval) {
4155         case lowest_latency:
4156                 /* handle TSO and jumbo frames */
4157                 if (bytes/packets > 8000)
4158                         itrval = bulk_latency;
4159                 else if ((packets < 5) && (bytes > 512))
4160                         itrval = low_latency;
4161                 break;
4162         case low_latency:  /* 50 usec aka 20000 ints/s */
4163                 if (bytes > 10000) {
4164                         /* this if handles the TSO accounting */
4165                         if (bytes/packets > 8000) {
4166                                 itrval = bulk_latency;
4167                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4168                                 itrval = bulk_latency;
4169                         } else if ((packets > 35)) {
4170                                 itrval = lowest_latency;
4171                         }
4172                 } else if (bytes/packets > 2000) {
4173                         itrval = bulk_latency;
4174                 } else if (packets <= 2 && bytes < 512) {
4175                         itrval = lowest_latency;
4176                 }
4177                 break;
4178         case bulk_latency: /* 250 usec aka 4000 ints/s */
4179                 if (bytes > 25000) {
4180                         if (packets > 35)
4181                                 itrval = low_latency;
4182                 } else if (bytes < 1500) {
4183                         itrval = low_latency;
4184                 }
4185                 break;
4186         }
4187
4188         /* clear work counters since we have the values we need */
4189         ring_container->total_bytes = 0;
4190         ring_container->total_packets = 0;
4191
4192         /* write updated itr to ring container */
4193         ring_container->itr = itrval;
4194 }
4195
4196 static void igb_set_itr(struct igb_q_vector *q_vector)
4197 {
4198         struct igb_adapter *adapter = q_vector->adapter;
4199         u32 new_itr = q_vector->itr_val;
4200         u8 current_itr = 0;
4201
4202         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4203         if (adapter->link_speed != SPEED_1000) {
4204                 current_itr = 0;
4205                 new_itr = IGB_4K_ITR;
4206                 goto set_itr_now;
4207         }
4208
4209         igb_update_itr(q_vector, &q_vector->tx);
4210         igb_update_itr(q_vector, &q_vector->rx);
4211
4212         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4213
4214         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4215         if (current_itr == lowest_latency &&
4216             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4217              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4218                 current_itr = low_latency;
4219
4220         switch (current_itr) {
4221         /* counts and packets in update_itr are dependent on these numbers */
4222         case lowest_latency:
4223                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4224                 break;
4225         case low_latency:
4226                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4227                 break;
4228         case bulk_latency:
4229                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4230                 break;
4231         default:
4232                 break;
4233         }
4234
4235 set_itr_now:
4236         if (new_itr != q_vector->itr_val) {
4237                 /* this attempts to bias the interrupt rate towards Bulk
4238                  * by adding intermediate steps when interrupt rate is
4239                  * increasing
4240                  */
4241                 new_itr = new_itr > q_vector->itr_val ?
4242                           max((new_itr * q_vector->itr_val) /
4243                           (new_itr + (q_vector->itr_val >> 2)),
4244                           new_itr) : new_itr;
4245                 /* Don't write the value here; it resets the adapter's
4246                  * internal timer, and causes us to delay far longer than
4247                  * we should between interrupts.  Instead, we write the ITR
4248                  * value at the beginning of the next interrupt so the timing
4249                  * ends up being correct.
4250                  */
4251                 q_vector->itr_val = new_itr;
4252                 q_vector->set_itr = 1;
4253         }
4254 }
4255
4256 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4257                             u32 type_tucmd, u32 mss_l4len_idx)
4258 {
4259         struct e1000_adv_tx_context_desc *context_desc;
4260         u16 i = tx_ring->next_to_use;
4261
4262         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4263
4264         i++;
4265         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4266
4267         /* set bits to identify this as an advanced context descriptor */
4268         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4269
4270         /* For 82575, context index must be unique per ring. */
4271         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4272                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4273
4274         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4275         context_desc->seqnum_seed       = 0;
4276         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4277         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4278 }
4279
4280 static int igb_tso(struct igb_ring *tx_ring,
4281                    struct igb_tx_buffer *first,
4282                    u8 *hdr_len)
4283 {
4284         struct sk_buff *skb = first->skb;
4285         u32 vlan_macip_lens, type_tucmd;
4286         u32 mss_l4len_idx, l4len;
4287
4288         if (skb->ip_summed != CHECKSUM_PARTIAL)
4289                 return 0;
4290
4291         if (!skb_is_gso(skb))
4292                 return 0;
4293
4294         if (skb_header_cloned(skb)) {
4295                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4296                 if (err)
4297                         return err;
4298         }
4299
4300         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4301         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4302
4303         if (first->protocol == __constant_htons(ETH_P_IP)) {
4304                 struct iphdr *iph = ip_hdr(skb);
4305                 iph->tot_len = 0;
4306                 iph->check = 0;
4307                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4308                                                          iph->daddr, 0,
4309                                                          IPPROTO_TCP,
4310                                                          0);
4311                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4312                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4313                                    IGB_TX_FLAGS_CSUM |
4314                                    IGB_TX_FLAGS_IPV4;
4315         } else if (skb_is_gso_v6(skb)) {
4316                 ipv6_hdr(skb)->payload_len = 0;
4317                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4318                                                        &ipv6_hdr(skb)->daddr,
4319                                                        0, IPPROTO_TCP, 0);
4320                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4321                                    IGB_TX_FLAGS_CSUM;
4322         }
4323
4324         /* compute header lengths */
4325         l4len = tcp_hdrlen(skb);
4326         *hdr_len = skb_transport_offset(skb) + l4len;
4327
4328         /* update gso size and bytecount with header size */
4329         first->gso_segs = skb_shinfo(skb)->gso_segs;
4330         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4331
4332         /* MSS L4LEN IDX */
4333         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4334         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4335
4336         /* VLAN MACLEN IPLEN */
4337         vlan_macip_lens = skb_network_header_len(skb);
4338         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4339         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4340
4341         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4342
4343         return 1;
4344 }
4345
4346 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4347 {
4348         struct sk_buff *skb = first->skb;
4349         u32 vlan_macip_lens = 0;
4350         u32 mss_l4len_idx = 0;
4351         u32 type_tucmd = 0;
4352
4353         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4354                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4355                         return;
4356         } else {
4357                 u8 l4_hdr = 0;
4358                 switch (first->protocol) {
4359                 case __constant_htons(ETH_P_IP):
4360                         vlan_macip_lens |= skb_network_header_len(skb);
4361                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4362                         l4_hdr = ip_hdr(skb)->protocol;
4363                         break;
4364                 case __constant_htons(ETH_P_IPV6):
4365                         vlan_macip_lens |= skb_network_header_len(skb);
4366                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4367                         break;
4368                 default:
4369                         if (unlikely(net_ratelimit())) {
4370                                 dev_warn(tx_ring->dev,
4371                                          "partial checksum but proto=%x!\n",
4372                                          first->protocol);
4373                         }
4374                         break;
4375                 }
4376
4377                 switch (l4_hdr) {
4378                 case IPPROTO_TCP:
4379                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4380                         mss_l4len_idx = tcp_hdrlen(skb) <<
4381                                         E1000_ADVTXD_L4LEN_SHIFT;
4382                         break;
4383                 case IPPROTO_SCTP:
4384                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4385                         mss_l4len_idx = sizeof(struct sctphdr) <<
4386                                         E1000_ADVTXD_L4LEN_SHIFT;
4387                         break;
4388                 case IPPROTO_UDP:
4389                         mss_l4len_idx = sizeof(struct udphdr) <<
4390                                         E1000_ADVTXD_L4LEN_SHIFT;
4391                         break;
4392                 default:
4393                         if (unlikely(net_ratelimit())) {
4394                                 dev_warn(tx_ring->dev,
4395                                          "partial checksum but l4 proto=%x!\n",
4396                                          l4_hdr);
4397                         }
4398                         break;
4399                 }
4400
4401                 /* update TX checksum flag */
4402                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4403         }
4404
4405         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4406         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4407
4408         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4409 }
4410
4411 #define IGB_SET_FLAG(_input, _flag, _result) \
4412         ((_flag <= _result) ? \
4413          ((u32)(_input & _flag) * (_result / _flag)) : \
4414          ((u32)(_input & _flag) / (_flag / _result)))
4415
4416 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4417 {
4418         /* set type for advanced descriptor with frame checksum insertion */
4419         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4420                        E1000_ADVTXD_DCMD_DEXT |
4421                        E1000_ADVTXD_DCMD_IFCS;
4422
4423         /* set HW vlan bit if vlan is present */
4424         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4425                                  (E1000_ADVTXD_DCMD_VLE));
4426
4427         /* set segmentation bits for TSO */
4428         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4429                                  (E1000_ADVTXD_DCMD_TSE));
4430
4431         /* set timestamp bit if present */
4432         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4433                                  (E1000_ADVTXD_MAC_TSTAMP));
4434
4435         /* insert frame checksum */
4436         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4437
4438         return cmd_type;
4439 }
4440
4441 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4442                                  union e1000_adv_tx_desc *tx_desc,
4443                                  u32 tx_flags, unsigned int paylen)
4444 {
4445         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4446
4447         /* 82575 requires a unique index per ring */
4448         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4449                 olinfo_status |= tx_ring->reg_idx << 4;
4450
4451         /* insert L4 checksum */
4452         olinfo_status |= IGB_SET_FLAG(tx_flags,
4453                                       IGB_TX_FLAGS_CSUM,
4454                                       (E1000_TXD_POPTS_TXSM << 8));
4455
4456         /* insert IPv4 checksum */
4457         olinfo_status |= IGB_SET_FLAG(tx_flags,
4458                                       IGB_TX_FLAGS_IPV4,
4459                                       (E1000_TXD_POPTS_IXSM << 8));
4460
4461         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4462 }
4463
4464 static void igb_tx_map(struct igb_ring *tx_ring,
4465                        struct igb_tx_buffer *first,
4466                        const u8 hdr_len)
4467 {
4468         struct sk_buff *skb = first->skb;
4469         struct igb_tx_buffer *tx_buffer;
4470         union e1000_adv_tx_desc *tx_desc;
4471         struct skb_frag_struct *frag;
4472         dma_addr_t dma;
4473         unsigned int data_len, size;
4474         u32 tx_flags = first->tx_flags;
4475         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4476         u16 i = tx_ring->next_to_use;
4477
4478         tx_desc = IGB_TX_DESC(tx_ring, i);
4479
4480         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4481
4482         size = skb_headlen(skb);
4483         data_len = skb->data_len;
4484
4485         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4486
4487         tx_buffer = first;
4488
4489         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4490                 if (dma_mapping_error(tx_ring->dev, dma))
4491                         goto dma_error;
4492
4493                 /* record length, and DMA address */
4494                 dma_unmap_len_set(tx_buffer, len, size);
4495                 dma_unmap_addr_set(tx_buffer, dma, dma);
4496
4497                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4498
4499                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4500                         tx_desc->read.cmd_type_len =
4501                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4502
4503                         i++;
4504                         tx_desc++;
4505                         if (i == tx_ring->count) {
4506                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4507                                 i = 0;
4508                         }
4509                         tx_desc->read.olinfo_status = 0;
4510
4511                         dma += IGB_MAX_DATA_PER_TXD;
4512                         size -= IGB_MAX_DATA_PER_TXD;
4513
4514                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4515                 }
4516
4517                 if (likely(!data_len))
4518                         break;
4519
4520                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4521
4522                 i++;
4523                 tx_desc++;
4524                 if (i == tx_ring->count) {
4525                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4526                         i = 0;
4527                 }
4528                 tx_desc->read.olinfo_status = 0;
4529
4530                 size = skb_frag_size(frag);
4531                 data_len -= size;
4532
4533                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4534                                        size, DMA_TO_DEVICE);
4535
4536                 tx_buffer = &tx_ring->tx_buffer_info[i];
4537         }
4538
4539         /* write last descriptor with RS and EOP bits */
4540         cmd_type |= size | IGB_TXD_DCMD;
4541         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4542
4543         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4544
4545         /* set the timestamp */
4546         first->time_stamp = jiffies;
4547
4548         /* Force memory writes to complete before letting h/w know there
4549          * are new descriptors to fetch.  (Only applicable for weak-ordered
4550          * memory model archs, such as IA-64).
4551          *
4552          * We also need this memory barrier to make certain all of the
4553          * status bits have been updated before next_to_watch is written.
4554          */
4555         wmb();
4556
4557         /* set next_to_watch value indicating a packet is present */
4558         first->next_to_watch = tx_desc;
4559
4560         i++;
4561         if (i == tx_ring->count)
4562                 i = 0;
4563
4564         tx_ring->next_to_use = i;
4565
4566         writel(i, tx_ring->tail);
4567
4568         /* we need this if more than one processor can write to our tail
4569          * at a time, it synchronizes IO on IA64/Altix systems
4570          */
4571         mmiowb();
4572
4573         return;
4574
4575 dma_error:
4576         dev_err(tx_ring->dev, "TX DMA map failed\n");
4577
4578         /* clear dma mappings for failed tx_buffer_info map */
4579         for (;;) {
4580                 tx_buffer = &tx_ring->tx_buffer_info[i];
4581                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4582                 if (tx_buffer == first)
4583                         break;
4584                 if (i == 0)
4585                         i = tx_ring->count;
4586                 i--;
4587         }
4588
4589         tx_ring->next_to_use = i;
4590 }
4591
4592 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4593 {
4594         struct net_device *netdev = tx_ring->netdev;
4595
4596         netif_stop_subqueue(netdev, tx_ring->queue_index);
4597
4598         /* Herbert's original patch had:
4599          *  smp_mb__after_netif_stop_queue();
4600          * but since that doesn't exist yet, just open code it.
4601          */
4602         smp_mb();
4603
4604         /* We need to check again in a case another CPU has just
4605          * made room available.
4606          */
4607         if (igb_desc_unused(tx_ring) < size)
4608                 return -EBUSY;
4609
4610         /* A reprieve! */
4611         netif_wake_subqueue(netdev, tx_ring->queue_index);
4612
4613         u64_stats_update_begin(&tx_ring->tx_syncp2);
4614         tx_ring->tx_stats.restart_queue2++;
4615         u64_stats_update_end(&tx_ring->tx_syncp2);
4616
4617         return 0;
4618 }
4619
4620 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4621 {
4622         if (igb_desc_unused(tx_ring) >= size)
4623                 return 0;
4624         return __igb_maybe_stop_tx(tx_ring, size);
4625 }
4626
4627 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4628                                 struct igb_ring *tx_ring)
4629 {
4630         struct igb_tx_buffer *first;
4631         int tso;
4632         u32 tx_flags = 0;
4633         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4634         __be16 protocol = vlan_get_protocol(skb);
4635         u8 hdr_len = 0;
4636
4637         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4638          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4639          *       + 2 desc gap to keep tail from touching head,
4640          *       + 1 desc for context descriptor,
4641          * otherwise try next time
4642          */
4643         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4644                 unsigned short f;
4645                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4646                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4647         } else {
4648                 count += skb_shinfo(skb)->nr_frags;
4649         }
4650
4651         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4652                 /* this is a hard error */
4653                 return NETDEV_TX_BUSY;
4654         }
4655
4656         /* record the location of the first descriptor for this packet */
4657         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4658         first->skb = skb;
4659         first->bytecount = skb->len;
4660         first->gso_segs = 1;
4661
4662         skb_tx_timestamp(skb);
4663
4664         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4665                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4666
4667                 if (!(adapter->ptp_tx_skb)) {
4668                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4669                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4670
4671                         adapter->ptp_tx_skb = skb_get(skb);
4672                         adapter->ptp_tx_start = jiffies;
4673                         if (adapter->hw.mac.type == e1000_82576)
4674                                 schedule_work(&adapter->ptp_tx_work);
4675                 }
4676         }
4677
4678         if (vlan_tx_tag_present(skb)) {
4679                 tx_flags |= IGB_TX_FLAGS_VLAN;
4680                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4681         }
4682
4683         /* record initial flags and protocol */
4684         first->tx_flags = tx_flags;
4685         first->protocol = protocol;
4686
4687         tso = igb_tso(tx_ring, first, &hdr_len);
4688         if (tso < 0)
4689                 goto out_drop;
4690         else if (!tso)
4691                 igb_tx_csum(tx_ring, first);
4692
4693         igb_tx_map(tx_ring, first, hdr_len);
4694
4695         /* Make sure there is space in the ring for the next send. */
4696         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4697
4698         return NETDEV_TX_OK;
4699
4700 out_drop:
4701         igb_unmap_and_free_tx_resource(tx_ring, first);
4702
4703         return NETDEV_TX_OK;
4704 }
4705
4706 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4707                                                     struct sk_buff *skb)
4708 {
4709         unsigned int r_idx = skb->queue_mapping;
4710
4711         if (r_idx >= adapter->num_tx_queues)
4712                 r_idx = r_idx % adapter->num_tx_queues;
4713
4714         return adapter->tx_ring[r_idx];
4715 }
4716
4717 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4718                                   struct net_device *netdev)
4719 {
4720         struct igb_adapter *adapter = netdev_priv(netdev);
4721
4722         if (test_bit(__IGB_DOWN, &adapter->state)) {
4723                 dev_kfree_skb_any(skb);
4724                 return NETDEV_TX_OK;
4725         }
4726
4727         if (skb->len <= 0) {
4728                 dev_kfree_skb_any(skb);
4729                 return NETDEV_TX_OK;
4730         }
4731
4732         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4733          * in order to meet this minimum size requirement.
4734          */
4735         if (unlikely(skb->len < 17)) {
4736                 if (skb_pad(skb, 17 - skb->len))
4737                         return NETDEV_TX_OK;
4738                 skb->len = 17;
4739                 skb_set_tail_pointer(skb, 17);
4740         }
4741
4742         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4743 }
4744
4745 /**
4746  *  igb_tx_timeout - Respond to a Tx Hang
4747  *  @netdev: network interface device structure
4748  **/
4749 static void igb_tx_timeout(struct net_device *netdev)
4750 {
4751         struct igb_adapter *adapter = netdev_priv(netdev);
4752         struct e1000_hw *hw = &adapter->hw;
4753
4754         /* Do the reset outside of interrupt context */
4755         adapter->tx_timeout_count++;
4756
4757         if (hw->mac.type >= e1000_82580)
4758                 hw->dev_spec._82575.global_device_reset = true;
4759
4760         schedule_work(&adapter->reset_task);
4761         wr32(E1000_EICS,
4762              (adapter->eims_enable_mask & ~adapter->eims_other));
4763 }
4764
4765 static void igb_reset_task(struct work_struct *work)
4766 {
4767         struct igb_adapter *adapter;
4768         adapter = container_of(work, struct igb_adapter, reset_task);
4769
4770         igb_dump(adapter);
4771         netdev_err(adapter->netdev, "Reset adapter\n");
4772         igb_reinit_locked(adapter);
4773 }
4774
4775 /**
4776  *  igb_get_stats64 - Get System Network Statistics
4777  *  @netdev: network interface device structure
4778  *  @stats: rtnl_link_stats64 pointer
4779  **/
4780 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4781                                                 struct rtnl_link_stats64 *stats)
4782 {
4783         struct igb_adapter *adapter = netdev_priv(netdev);
4784
4785         spin_lock(&adapter->stats64_lock);
4786         igb_update_stats(adapter, &adapter->stats64);
4787         memcpy(stats, &adapter->stats64, sizeof(*stats));
4788         spin_unlock(&adapter->stats64_lock);
4789
4790         return stats;
4791 }
4792
4793 /**
4794  *  igb_change_mtu - Change the Maximum Transfer Unit
4795  *  @netdev: network interface device structure
4796  *  @new_mtu: new value for maximum frame size
4797  *
4798  *  Returns 0 on success, negative on failure
4799  **/
4800 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4801 {
4802         struct igb_adapter *adapter = netdev_priv(netdev);
4803         struct pci_dev *pdev = adapter->pdev;
4804         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4805
4806         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4807                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4808                 return -EINVAL;
4809         }
4810
4811 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4812         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4813                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4814                 return -EINVAL;
4815         }
4816
4817         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4818                 msleep(1);
4819
4820         /* igb_down has a dependency on max_frame_size */
4821         adapter->max_frame_size = max_frame;
4822
4823         if (netif_running(netdev))
4824                 igb_down(adapter);
4825
4826         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4827                  netdev->mtu, new_mtu);
4828         netdev->mtu = new_mtu;
4829
4830         if (netif_running(netdev))
4831                 igb_up(adapter);
4832         else
4833                 igb_reset(adapter);
4834
4835         clear_bit(__IGB_RESETTING, &adapter->state);
4836
4837         return 0;
4838 }
4839
4840 /**
4841  *  igb_update_stats - Update the board statistics counters
4842  *  @adapter: board private structure
4843  **/
4844 void igb_update_stats(struct igb_adapter *adapter,
4845                       struct rtnl_link_stats64 *net_stats)
4846 {
4847         struct e1000_hw *hw = &adapter->hw;
4848         struct pci_dev *pdev = adapter->pdev;
4849         u32 reg, mpc;
4850         u16 phy_tmp;
4851         int i;
4852         u64 bytes, packets;
4853         unsigned int start;
4854         u64 _bytes, _packets;
4855
4856 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4857
4858         /* Prevent stats update while adapter is being reset, or if the pci
4859          * connection is down.
4860          */
4861         if (adapter->link_speed == 0)
4862                 return;
4863         if (pci_channel_offline(pdev))
4864                 return;
4865
4866         bytes = 0;
4867         packets = 0;
4868         for (i = 0; i < adapter->num_rx_queues; i++) {
4869                 u32 rqdpc = rd32(E1000_RQDPC(i));
4870                 struct igb_ring *ring = adapter->rx_ring[i];
4871
4872                 if (rqdpc) {
4873                         ring->rx_stats.drops += rqdpc;
4874                         net_stats->rx_fifo_errors += rqdpc;
4875                 }
4876
4877                 do {
4878                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4879                         _bytes = ring->rx_stats.bytes;
4880                         _packets = ring->rx_stats.packets;
4881                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4882                 bytes += _bytes;
4883                 packets += _packets;
4884         }
4885
4886         net_stats->rx_bytes = bytes;
4887         net_stats->rx_packets = packets;
4888
4889         bytes = 0;
4890         packets = 0;
4891         for (i = 0; i < adapter->num_tx_queues; i++) {
4892                 struct igb_ring *ring = adapter->tx_ring[i];
4893                 do {
4894                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4895                         _bytes = ring->tx_stats.bytes;
4896                         _packets = ring->tx_stats.packets;
4897                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4898                 bytes += _bytes;
4899                 packets += _packets;
4900         }
4901         net_stats->tx_bytes = bytes;
4902         net_stats->tx_packets = packets;
4903
4904         /* read stats registers */
4905         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4906         adapter->stats.gprc += rd32(E1000_GPRC);
4907         adapter->stats.gorc += rd32(E1000_GORCL);
4908         rd32(E1000_GORCH); /* clear GORCL */
4909         adapter->stats.bprc += rd32(E1000_BPRC);
4910         adapter->stats.mprc += rd32(E1000_MPRC);
4911         adapter->stats.roc += rd32(E1000_ROC);
4912
4913         adapter->stats.prc64 += rd32(E1000_PRC64);
4914         adapter->stats.prc127 += rd32(E1000_PRC127);
4915         adapter->stats.prc255 += rd32(E1000_PRC255);
4916         adapter->stats.prc511 += rd32(E1000_PRC511);
4917         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4918         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4919         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4920         adapter->stats.sec += rd32(E1000_SEC);
4921
4922         mpc = rd32(E1000_MPC);
4923         adapter->stats.mpc += mpc;
4924         net_stats->rx_fifo_errors += mpc;
4925         adapter->stats.scc += rd32(E1000_SCC);
4926         adapter->stats.ecol += rd32(E1000_ECOL);
4927         adapter->stats.mcc += rd32(E1000_MCC);
4928         adapter->stats.latecol += rd32(E1000_LATECOL);
4929         adapter->stats.dc += rd32(E1000_DC);
4930         adapter->stats.rlec += rd32(E1000_RLEC);
4931         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4932         adapter->stats.xontxc += rd32(E1000_XONTXC);
4933         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4934         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4935         adapter->stats.fcruc += rd32(E1000_FCRUC);
4936         adapter->stats.gptc += rd32(E1000_GPTC);
4937         adapter->stats.gotc += rd32(E1000_GOTCL);
4938         rd32(E1000_GOTCH); /* clear GOTCL */
4939         adapter->stats.rnbc += rd32(E1000_RNBC);
4940         adapter->stats.ruc += rd32(E1000_RUC);
4941         adapter->stats.rfc += rd32(E1000_RFC);
4942         adapter->stats.rjc += rd32(E1000_RJC);
4943         adapter->stats.tor += rd32(E1000_TORH);
4944         adapter->stats.tot += rd32(E1000_TOTH);
4945         adapter->stats.tpr += rd32(E1000_TPR);
4946
4947         adapter->stats.ptc64 += rd32(E1000_PTC64);
4948         adapter->stats.ptc127 += rd32(E1000_PTC127);
4949         adapter->stats.ptc255 += rd32(E1000_PTC255);
4950         adapter->stats.ptc511 += rd32(E1000_PTC511);
4951         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4952         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4953
4954         adapter->stats.mptc += rd32(E1000_MPTC);
4955         adapter->stats.bptc += rd32(E1000_BPTC);
4956
4957         adapter->stats.tpt += rd32(E1000_TPT);
4958         adapter->stats.colc += rd32(E1000_COLC);
4959
4960         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4961         /* read internal phy specific stats */
4962         reg = rd32(E1000_CTRL_EXT);
4963         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4964                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4965
4966                 /* this stat has invalid values on i210/i211 */
4967                 if ((hw->mac.type != e1000_i210) &&
4968                     (hw->mac.type != e1000_i211))
4969                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4970         }
4971
4972         adapter->stats.tsctc += rd32(E1000_TSCTC);
4973         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4974
4975         adapter->stats.iac += rd32(E1000_IAC);
4976         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4977         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4978         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4979         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4980         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4981         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4982         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4983         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4984
4985         /* Fill out the OS statistics structure */
4986         net_stats->multicast = adapter->stats.mprc;
4987         net_stats->collisions = adapter->stats.colc;
4988
4989         /* Rx Errors */
4990
4991         /* RLEC on some newer hardware can be incorrect so build
4992          * our own version based on RUC and ROC
4993          */
4994         net_stats->rx_errors = adapter->stats.rxerrc +
4995                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4996                 adapter->stats.ruc + adapter->stats.roc +
4997                 adapter->stats.cexterr;
4998         net_stats->rx_length_errors = adapter->stats.ruc +
4999                                       adapter->stats.roc;
5000         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5001         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5002         net_stats->rx_missed_errors = adapter->stats.mpc;
5003
5004         /* Tx Errors */
5005         net_stats->tx_errors = adapter->stats.ecol +
5006                                adapter->stats.latecol;
5007         net_stats->tx_aborted_errors = adapter->stats.ecol;
5008         net_stats->tx_window_errors = adapter->stats.latecol;
5009         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5010
5011         /* Tx Dropped needs to be maintained elsewhere */
5012
5013         /* Phy Stats */
5014         if (hw->phy.media_type == e1000_media_type_copper) {
5015                 if ((adapter->link_speed == SPEED_1000) &&
5016                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5017                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5018                         adapter->phy_stats.idle_errors += phy_tmp;
5019                 }
5020         }
5021
5022         /* Management Stats */
5023         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5024         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5025         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5026
5027         /* OS2BMC Stats */
5028         reg = rd32(E1000_MANC);
5029         if (reg & E1000_MANC_EN_BMC2OS) {
5030                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5031                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5032                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5033                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5034         }
5035 }
5036
5037 static irqreturn_t igb_msix_other(int irq, void *data)
5038 {
5039         struct igb_adapter *adapter = data;
5040         struct e1000_hw *hw = &adapter->hw;
5041         u32 icr = rd32(E1000_ICR);
5042         /* reading ICR causes bit 31 of EICR to be cleared */
5043
5044         if (icr & E1000_ICR_DRSTA)
5045                 schedule_work(&adapter->reset_task);
5046
5047         if (icr & E1000_ICR_DOUTSYNC) {
5048                 /* HW is reporting DMA is out of sync */
5049                 adapter->stats.doosync++;
5050                 /* The DMA Out of Sync is also indication of a spoof event
5051                  * in IOV mode. Check the Wrong VM Behavior register to
5052                  * see if it is really a spoof event.
5053                  */
5054                 igb_check_wvbr(adapter);
5055         }
5056
5057         /* Check for a mailbox event */
5058         if (icr & E1000_ICR_VMMB)
5059                 igb_msg_task(adapter);
5060
5061         if (icr & E1000_ICR_LSC) {
5062                 hw->mac.get_link_status = 1;
5063                 /* guard against interrupt when we're going down */
5064                 if (!test_bit(__IGB_DOWN, &adapter->state))
5065                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5066         }
5067
5068         if (icr & E1000_ICR_TS) {
5069                 u32 tsicr = rd32(E1000_TSICR);
5070
5071                 if (tsicr & E1000_TSICR_TXTS) {
5072                         /* acknowledge the interrupt */
5073                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5074                         /* retrieve hardware timestamp */
5075                         schedule_work(&adapter->ptp_tx_work);
5076                 }
5077         }
5078
5079         wr32(E1000_EIMS, adapter->eims_other);
5080
5081         return IRQ_HANDLED;
5082 }
5083
5084 static void igb_write_itr(struct igb_q_vector *q_vector)
5085 {
5086         struct igb_adapter *adapter = q_vector->adapter;
5087         u32 itr_val = q_vector->itr_val & 0x7FFC;
5088
5089         if (!q_vector->set_itr)
5090                 return;
5091
5092         if (!itr_val)
5093                 itr_val = 0x4;
5094
5095         if (adapter->hw.mac.type == e1000_82575)
5096                 itr_val |= itr_val << 16;
5097         else
5098                 itr_val |= E1000_EITR_CNT_IGNR;
5099
5100         writel(itr_val, q_vector->itr_register);
5101         q_vector->set_itr = 0;
5102 }
5103
5104 static irqreturn_t igb_msix_ring(int irq, void *data)
5105 {
5106         struct igb_q_vector *q_vector = data;
5107
5108         /* Write the ITR value calculated from the previous interrupt. */
5109         igb_write_itr(q_vector);
5110
5111         napi_schedule(&q_vector->napi);
5112
5113         return IRQ_HANDLED;
5114 }
5115
5116 #ifdef CONFIG_IGB_DCA
5117 static void igb_update_tx_dca(struct igb_adapter *adapter,
5118                               struct igb_ring *tx_ring,
5119                               int cpu)
5120 {
5121         struct e1000_hw *hw = &adapter->hw;
5122         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5123
5124         if (hw->mac.type != e1000_82575)
5125                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5126
5127         /* We can enable relaxed ordering for reads, but not writes when
5128          * DCA is enabled.  This is due to a known issue in some chipsets
5129          * which will cause the DCA tag to be cleared.
5130          */
5131         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5132                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5133                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5134
5135         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5136 }
5137
5138 static void igb_update_rx_dca(struct igb_adapter *adapter,
5139                               struct igb_ring *rx_ring,
5140                               int cpu)
5141 {
5142         struct e1000_hw *hw = &adapter->hw;
5143         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5144
5145         if (hw->mac.type != e1000_82575)
5146                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5147
5148         /* We can enable relaxed ordering for reads, but not writes when
5149          * DCA is enabled.  This is due to a known issue in some chipsets
5150          * which will cause the DCA tag to be cleared.
5151          */
5152         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5153                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5154
5155         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5156 }
5157
5158 static void igb_update_dca(struct igb_q_vector *q_vector)
5159 {
5160         struct igb_adapter *adapter = q_vector->adapter;
5161         int cpu = get_cpu();
5162
5163         if (q_vector->cpu == cpu)
5164                 goto out_no_update;
5165
5166         if (q_vector->tx.ring)
5167                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5168
5169         if (q_vector->rx.ring)
5170                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5171
5172         q_vector->cpu = cpu;
5173 out_no_update:
5174         put_cpu();
5175 }
5176
5177 static void igb_setup_dca(struct igb_adapter *adapter)
5178 {
5179         struct e1000_hw *hw = &adapter->hw;
5180         int i;
5181
5182         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5183                 return;
5184
5185         /* Always use CB2 mode, difference is masked in the CB driver. */
5186         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5187
5188         for (i = 0; i < adapter->num_q_vectors; i++) {
5189                 adapter->q_vector[i]->cpu = -1;
5190                 igb_update_dca(adapter->q_vector[i]);
5191         }
5192 }
5193
5194 static int __igb_notify_dca(struct device *dev, void *data)
5195 {
5196         struct net_device *netdev = dev_get_drvdata(dev);
5197         struct igb_adapter *adapter = netdev_priv(netdev);
5198         struct pci_dev *pdev = adapter->pdev;
5199         struct e1000_hw *hw = &adapter->hw;
5200         unsigned long event = *(unsigned long *)data;
5201
5202         switch (event) {
5203         case DCA_PROVIDER_ADD:
5204                 /* if already enabled, don't do it again */
5205                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5206                         break;
5207                 if (dca_add_requester(dev) == 0) {
5208                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5209                         dev_info(&pdev->dev, "DCA enabled\n");
5210                         igb_setup_dca(adapter);
5211                         break;
5212                 }
5213                 /* Fall Through since DCA is disabled. */
5214         case DCA_PROVIDER_REMOVE:
5215                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5216                         /* without this a class_device is left
5217                          * hanging around in the sysfs model
5218                          */
5219                         dca_remove_requester(dev);
5220                         dev_info(&pdev->dev, "DCA disabled\n");
5221                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5222                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5223                 }
5224                 break;
5225         }
5226
5227         return 0;
5228 }
5229
5230 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5231                           void *p)
5232 {
5233         int ret_val;
5234
5235         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5236                                          __igb_notify_dca);
5237
5238         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5239 }
5240 #endif /* CONFIG_IGB_DCA */
5241
5242 #ifdef CONFIG_PCI_IOV
5243 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5244 {
5245         unsigned char mac_addr[ETH_ALEN];
5246
5247         eth_zero_addr(mac_addr);
5248         igb_set_vf_mac(adapter, vf, mac_addr);
5249
5250         /* By default spoof check is enabled for all VFs */
5251         adapter->vf_data[vf].spoofchk_enabled = true;
5252
5253         return 0;
5254 }
5255
5256 #endif
5257 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5258 {
5259         struct e1000_hw *hw = &adapter->hw;
5260         u32 ping;
5261         int i;
5262
5263         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5264                 ping = E1000_PF_CONTROL_MSG;
5265                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5266                         ping |= E1000_VT_MSGTYPE_CTS;
5267                 igb_write_mbx(hw, &ping, 1, i);
5268         }
5269 }
5270
5271 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5272 {
5273         struct e1000_hw *hw = &adapter->hw;
5274         u32 vmolr = rd32(E1000_VMOLR(vf));
5275         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5276
5277         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5278                             IGB_VF_FLAG_MULTI_PROMISC);
5279         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5280
5281         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5282                 vmolr |= E1000_VMOLR_MPME;
5283                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5284                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5285         } else {
5286                 /* if we have hashes and we are clearing a multicast promisc
5287                  * flag we need to write the hashes to the MTA as this step
5288                  * was previously skipped
5289                  */
5290                 if (vf_data->num_vf_mc_hashes > 30) {
5291                         vmolr |= E1000_VMOLR_MPME;
5292                 } else if (vf_data->num_vf_mc_hashes) {
5293                         int j;
5294                         vmolr |= E1000_VMOLR_ROMPE;
5295                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5296                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5297                 }
5298         }
5299
5300         wr32(E1000_VMOLR(vf), vmolr);
5301
5302         /* there are flags left unprocessed, likely not supported */
5303         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5304                 return -EINVAL;
5305
5306         return 0;
5307 }
5308
5309 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310                                   u32 *msgbuf, u32 vf)
5311 {
5312         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313         u16 *hash_list = (u16 *)&msgbuf[1];
5314         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315         int i;
5316
5317         /* salt away the number of multicast addresses assigned
5318          * to this VF for later use to restore when the PF multi cast
5319          * list changes
5320          */
5321         vf_data->num_vf_mc_hashes = n;
5322
5323         /* only up to 30 hash values supported */
5324         if (n > 30)
5325                 n = 30;
5326
5327         /* store the hashes for later use */
5328         for (i = 0; i < n; i++)
5329                 vf_data->vf_mc_hashes[i] = hash_list[i];
5330
5331         /* Flush and reset the mta with the new values */
5332         igb_set_rx_mode(adapter->netdev);
5333
5334         return 0;
5335 }
5336
5337 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338 {
5339         struct e1000_hw *hw = &adapter->hw;
5340         struct vf_data_storage *vf_data;
5341         int i, j;
5342
5343         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344                 u32 vmolr = rd32(E1000_VMOLR(i));
5345                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346
5347                 vf_data = &adapter->vf_data[i];
5348
5349                 if ((vf_data->num_vf_mc_hashes > 30) ||
5350                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351                         vmolr |= E1000_VMOLR_MPME;
5352                 } else if (vf_data->num_vf_mc_hashes) {
5353                         vmolr |= E1000_VMOLR_ROMPE;
5354                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356                 }
5357                 wr32(E1000_VMOLR(i), vmolr);
5358         }
5359 }
5360
5361 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362 {
5363         struct e1000_hw *hw = &adapter->hw;
5364         u32 pool_mask, reg, vid;
5365         int i;
5366
5367         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368
5369         /* Find the vlan filter for this id */
5370         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371                 reg = rd32(E1000_VLVF(i));
5372
5373                 /* remove the vf from the pool */
5374                 reg &= ~pool_mask;
5375
5376                 /* if pool is empty then remove entry from vfta */
5377                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5379                         reg = 0;
5380                         vid = reg & E1000_VLVF_VLANID_MASK;
5381                         igb_vfta_set(hw, vid, false);
5382                 }
5383
5384                 wr32(E1000_VLVF(i), reg);
5385         }
5386
5387         adapter->vf_data[vf].vlans_enabled = 0;
5388 }
5389
5390 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391 {
5392         struct e1000_hw *hw = &adapter->hw;
5393         u32 reg, i;
5394
5395         /* The vlvf table only exists on 82576 hardware and newer */
5396         if (hw->mac.type < e1000_82576)
5397                 return -1;
5398
5399         /* we only need to do this if VMDq is enabled */
5400         if (!adapter->vfs_allocated_count)
5401                 return -1;
5402
5403         /* Find the vlan filter for this id */
5404         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405                 reg = rd32(E1000_VLVF(i));
5406                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407                     vid == (reg & E1000_VLVF_VLANID_MASK))
5408                         break;
5409         }
5410
5411         if (add) {
5412                 if (i == E1000_VLVF_ARRAY_SIZE) {
5413                         /* Did not find a matching VLAN ID entry that was
5414                          * enabled.  Search for a free filter entry, i.e.
5415                          * one without the enable bit set
5416                          */
5417                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418                                 reg = rd32(E1000_VLVF(i));
5419                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420                                         break;
5421                         }
5422                 }
5423                 if (i < E1000_VLVF_ARRAY_SIZE) {
5424                         /* Found an enabled/available entry */
5425                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426
5427                         /* if !enabled we need to set this up in vfta */
5428                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429                                 /* add VID to filter table */
5430                                 igb_vfta_set(hw, vid, true);
5431                                 reg |= E1000_VLVF_VLANID_ENABLE;
5432                         }
5433                         reg &= ~E1000_VLVF_VLANID_MASK;
5434                         reg |= vid;
5435                         wr32(E1000_VLVF(i), reg);
5436
5437                         /* do not modify RLPML for PF devices */
5438                         if (vf >= adapter->vfs_allocated_count)
5439                                 return 0;
5440
5441                         if (!adapter->vf_data[vf].vlans_enabled) {
5442                                 u32 size;
5443                                 reg = rd32(E1000_VMOLR(vf));
5444                                 size = reg & E1000_VMOLR_RLPML_MASK;
5445                                 size += 4;
5446                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5447                                 reg |= size;
5448                                 wr32(E1000_VMOLR(vf), reg);
5449                         }
5450
5451                         adapter->vf_data[vf].vlans_enabled++;
5452                 }
5453         } else {
5454                 if (i < E1000_VLVF_ARRAY_SIZE) {
5455                         /* remove vf from the pool */
5456                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457                         /* if pool is empty then remove entry from vfta */
5458                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459                                 reg = 0;
5460                                 igb_vfta_set(hw, vid, false);
5461                         }
5462                         wr32(E1000_VLVF(i), reg);
5463
5464                         /* do not modify RLPML for PF devices */
5465                         if (vf >= adapter->vfs_allocated_count)
5466                                 return 0;
5467
5468                         adapter->vf_data[vf].vlans_enabled--;
5469                         if (!adapter->vf_data[vf].vlans_enabled) {
5470                                 u32 size;
5471                                 reg = rd32(E1000_VMOLR(vf));
5472                                 size = reg & E1000_VMOLR_RLPML_MASK;
5473                                 size -= 4;
5474                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5475                                 reg |= size;
5476                                 wr32(E1000_VMOLR(vf), reg);
5477                         }
5478                 }
5479         }
5480         return 0;
5481 }
5482
5483 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484 {
5485         struct e1000_hw *hw = &adapter->hw;
5486
5487         if (vid)
5488                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489         else
5490                 wr32(E1000_VMVIR(vf), 0);
5491 }
5492
5493 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494                                int vf, u16 vlan, u8 qos)
5495 {
5496         int err = 0;
5497         struct igb_adapter *adapter = netdev_priv(netdev);
5498
5499         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500                 return -EINVAL;
5501         if (vlan || qos) {
5502                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503                 if (err)
5504                         goto out;
5505                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506                 igb_set_vmolr(adapter, vf, !vlan);
5507                 adapter->vf_data[vf].pf_vlan = vlan;
5508                 adapter->vf_data[vf].pf_qos = qos;
5509                 dev_info(&adapter->pdev->dev,
5510                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5512                         dev_warn(&adapter->pdev->dev,
5513                                  "The VF VLAN has been set, but the PF device is not up.\n");
5514                         dev_warn(&adapter->pdev->dev,
5515                                  "Bring the PF device up before attempting to use the VF device.\n");
5516                 }
5517         } else {
5518                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5519                              false, vf);
5520                 igb_set_vmvir(adapter, vlan, vf);
5521                 igb_set_vmolr(adapter, vf, true);
5522                 adapter->vf_data[vf].pf_vlan = 0;
5523                 adapter->vf_data[vf].pf_qos = 0;
5524         }
5525 out:
5526         return err;
5527 }
5528
5529 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5530 {
5531         struct e1000_hw *hw = &adapter->hw;
5532         int i;
5533         u32 reg;
5534
5535         /* Find the vlan filter for this id */
5536         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5537                 reg = rd32(E1000_VLVF(i));
5538                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5539                     vid == (reg & E1000_VLVF_VLANID_MASK))
5540                         break;
5541         }
5542
5543         if (i >= E1000_VLVF_ARRAY_SIZE)
5544                 i = -1;
5545
5546         return i;
5547 }
5548
5549 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5550 {
5551         struct e1000_hw *hw = &adapter->hw;
5552         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5553         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5554         int err = 0;
5555
5556         /* If in promiscuous mode we need to make sure the PF also has
5557          * the VLAN filter set.
5558          */
5559         if (add && (adapter->netdev->flags & IFF_PROMISC))
5560                 err = igb_vlvf_set(adapter, vid, add,
5561                                    adapter->vfs_allocated_count);
5562         if (err)
5563                 goto out;
5564
5565         err = igb_vlvf_set(adapter, vid, add, vf);
5566
5567         if (err)
5568                 goto out;
5569
5570         /* Go through all the checks to see if the VLAN filter should
5571          * be wiped completely.
5572          */
5573         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5574                 u32 vlvf, bits;
5575
5576                 int regndx = igb_find_vlvf_entry(adapter, vid);
5577                 if (regndx < 0)
5578                         goto out;
5579                 /* See if any other pools are set for this VLAN filter
5580                  * entry other than the PF.
5581                  */
5582                 vlvf = bits = rd32(E1000_VLVF(regndx));
5583                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5584                               adapter->vfs_allocated_count);
5585                 /* If the filter was removed then ensure PF pool bit
5586                  * is cleared if the PF only added itself to the pool
5587                  * because the PF is in promiscuous mode.
5588                  */
5589                 if ((vlvf & VLAN_VID_MASK) == vid &&
5590                     !test_bit(vid, adapter->active_vlans) &&
5591                     !bits)
5592                         igb_vlvf_set(adapter, vid, add,
5593                                      adapter->vfs_allocated_count);
5594         }
5595
5596 out:
5597         return err;
5598 }
5599
5600 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5601 {
5602         /* clear flags - except flag that indicates PF has set the MAC */
5603         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5604         adapter->vf_data[vf].last_nack = jiffies;
5605
5606         /* reset offloads to defaults */
5607         igb_set_vmolr(adapter, vf, true);
5608
5609         /* reset vlans for device */
5610         igb_clear_vf_vfta(adapter, vf);
5611         if (adapter->vf_data[vf].pf_vlan)
5612                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5613                                     adapter->vf_data[vf].pf_vlan,
5614                                     adapter->vf_data[vf].pf_qos);
5615         else
5616                 igb_clear_vf_vfta(adapter, vf);
5617
5618         /* reset multicast table array for vf */
5619         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5620
5621         /* Flush and reset the mta with the new values */
5622         igb_set_rx_mode(adapter->netdev);
5623 }
5624
5625 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5626 {
5627         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5628
5629         /* clear mac address as we were hotplug removed/added */
5630         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5631                 eth_zero_addr(vf_mac);
5632
5633         /* process remaining reset events */
5634         igb_vf_reset(adapter, vf);
5635 }
5636
5637 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5638 {
5639         struct e1000_hw *hw = &adapter->hw;
5640         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5641         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5642         u32 reg, msgbuf[3];
5643         u8 *addr = (u8 *)(&msgbuf[1]);
5644
5645         /* process all the same items cleared in a function level reset */
5646         igb_vf_reset(adapter, vf);
5647
5648         /* set vf mac address */
5649         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5650
5651         /* enable transmit and receive for vf */
5652         reg = rd32(E1000_VFTE);
5653         wr32(E1000_VFTE, reg | (1 << vf));
5654         reg = rd32(E1000_VFRE);
5655         wr32(E1000_VFRE, reg | (1 << vf));
5656
5657         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5658
5659         /* reply to reset with ack and vf mac address */
5660         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5661         memcpy(addr, vf_mac, 6);
5662         igb_write_mbx(hw, msgbuf, 3, vf);
5663 }
5664
5665 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5666 {
5667         /* The VF MAC Address is stored in a packed array of bytes
5668          * starting at the second 32 bit word of the msg array
5669          */
5670         unsigned char *addr = (char *)&msg[1];
5671         int err = -1;
5672
5673         if (is_valid_ether_addr(addr))
5674                 err = igb_set_vf_mac(adapter, vf, addr);
5675
5676         return err;
5677 }
5678
5679 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5680 {
5681         struct e1000_hw *hw = &adapter->hw;
5682         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5683         u32 msg = E1000_VT_MSGTYPE_NACK;
5684
5685         /* if device isn't clear to send it shouldn't be reading either */
5686         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5687             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5688                 igb_write_mbx(hw, &msg, 1, vf);
5689                 vf_data->last_nack = jiffies;
5690         }
5691 }
5692
5693 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5694 {
5695         struct pci_dev *pdev = adapter->pdev;
5696         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5697         struct e1000_hw *hw = &adapter->hw;
5698         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5699         s32 retval;
5700
5701         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5702
5703         if (retval) {
5704                 /* if receive failed revoke VF CTS stats and restart init */
5705                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5706                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5707                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5708                         return;
5709                 goto out;
5710         }
5711
5712         /* this is a message we already processed, do nothing */
5713         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5714                 return;
5715
5716         /* until the vf completes a reset it should not be
5717          * allowed to start any configuration.
5718          */
5719         if (msgbuf[0] == E1000_VF_RESET) {
5720                 igb_vf_reset_msg(adapter, vf);
5721                 return;
5722         }
5723
5724         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5725                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5726                         return;
5727                 retval = -1;
5728                 goto out;
5729         }
5730
5731         switch ((msgbuf[0] & 0xFFFF)) {
5732         case E1000_VF_SET_MAC_ADDR:
5733                 retval = -EINVAL;
5734                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5735                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5736                 else
5737                         dev_warn(&pdev->dev,
5738                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5739                                  vf);
5740                 break;
5741         case E1000_VF_SET_PROMISC:
5742                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5743                 break;
5744         case E1000_VF_SET_MULTICAST:
5745                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5746                 break;
5747         case E1000_VF_SET_LPE:
5748                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5749                 break;
5750         case E1000_VF_SET_VLAN:
5751                 retval = -1;
5752                 if (vf_data->pf_vlan)
5753                         dev_warn(&pdev->dev,
5754                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5755                                  vf);
5756                 else
5757                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5758                 break;
5759         default:
5760                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5761                 retval = -1;
5762                 break;
5763         }
5764
5765         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5766 out:
5767         /* notify the VF of the results of what it sent us */
5768         if (retval)
5769                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5770         else
5771                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5772
5773         igb_write_mbx(hw, msgbuf, 1, vf);
5774 }
5775
5776 static void igb_msg_task(struct igb_adapter *adapter)
5777 {
5778         struct e1000_hw *hw = &adapter->hw;
5779         u32 vf;
5780
5781         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5782                 /* process any reset requests */
5783                 if (!igb_check_for_rst(hw, vf))
5784                         igb_vf_reset_event(adapter, vf);
5785
5786                 /* process any messages pending */
5787                 if (!igb_check_for_msg(hw, vf))
5788                         igb_rcv_msg_from_vf(adapter, vf);
5789
5790                 /* process any acks */
5791                 if (!igb_check_for_ack(hw, vf))
5792                         igb_rcv_ack_from_vf(adapter, vf);
5793         }
5794 }
5795
5796 /**
5797  *  igb_set_uta - Set unicast filter table address
5798  *  @adapter: board private structure
5799  *
5800  *  The unicast table address is a register array of 32-bit registers.
5801  *  The table is meant to be used in a way similar to how the MTA is used
5802  *  however due to certain limitations in the hardware it is necessary to
5803  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5804  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5805  **/
5806 static void igb_set_uta(struct igb_adapter *adapter)
5807 {
5808         struct e1000_hw *hw = &adapter->hw;
5809         int i;
5810
5811         /* The UTA table only exists on 82576 hardware and newer */
5812         if (hw->mac.type < e1000_82576)
5813                 return;
5814
5815         /* we only need to do this if VMDq is enabled */
5816         if (!adapter->vfs_allocated_count)
5817                 return;
5818
5819         for (i = 0; i < hw->mac.uta_reg_count; i++)
5820                 array_wr32(E1000_UTA, i, ~0);
5821 }
5822
5823 /**
5824  *  igb_intr_msi - Interrupt Handler
5825  *  @irq: interrupt number
5826  *  @data: pointer to a network interface device structure
5827  **/
5828 static irqreturn_t igb_intr_msi(int irq, void *data)
5829 {
5830         struct igb_adapter *adapter = data;
5831         struct igb_q_vector *q_vector = adapter->q_vector[0];
5832         struct e1000_hw *hw = &adapter->hw;
5833         /* read ICR disables interrupts using IAM */
5834         u32 icr = rd32(E1000_ICR);
5835
5836         igb_write_itr(q_vector);
5837
5838         if (icr & E1000_ICR_DRSTA)
5839                 schedule_work(&adapter->reset_task);
5840
5841         if (icr & E1000_ICR_DOUTSYNC) {
5842                 /* HW is reporting DMA is out of sync */
5843                 adapter->stats.doosync++;
5844         }
5845
5846         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5847                 hw->mac.get_link_status = 1;
5848                 if (!test_bit(__IGB_DOWN, &adapter->state))
5849                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850         }
5851
5852         if (icr & E1000_ICR_TS) {
5853                 u32 tsicr = rd32(E1000_TSICR);
5854
5855                 if (tsicr & E1000_TSICR_TXTS) {
5856                         /* acknowledge the interrupt */
5857                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858                         /* retrieve hardware timestamp */
5859                         schedule_work(&adapter->ptp_tx_work);
5860                 }
5861         }
5862
5863         napi_schedule(&q_vector->napi);
5864
5865         return IRQ_HANDLED;
5866 }
5867
5868 /**
5869  *  igb_intr - Legacy Interrupt Handler
5870  *  @irq: interrupt number
5871  *  @data: pointer to a network interface device structure
5872  **/
5873 static irqreturn_t igb_intr(int irq, void *data)
5874 {
5875         struct igb_adapter *adapter = data;
5876         struct igb_q_vector *q_vector = adapter->q_vector[0];
5877         struct e1000_hw *hw = &adapter->hw;
5878         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5879          * need for the IMC write
5880          */
5881         u32 icr = rd32(E1000_ICR);
5882
5883         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5884          * not set, then the adapter didn't send an interrupt
5885          */
5886         if (!(icr & E1000_ICR_INT_ASSERTED))
5887                 return IRQ_NONE;
5888
5889         igb_write_itr(q_vector);
5890
5891         if (icr & E1000_ICR_DRSTA)
5892                 schedule_work(&adapter->reset_task);
5893
5894         if (icr & E1000_ICR_DOUTSYNC) {
5895                 /* HW is reporting DMA is out of sync */
5896                 adapter->stats.doosync++;
5897         }
5898
5899         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5900                 hw->mac.get_link_status = 1;
5901                 /* guard against interrupt when we're going down */
5902                 if (!test_bit(__IGB_DOWN, &adapter->state))
5903                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5904         }
5905
5906         if (icr & E1000_ICR_TS) {
5907                 u32 tsicr = rd32(E1000_TSICR);
5908
5909                 if (tsicr & E1000_TSICR_TXTS) {
5910                         /* acknowledge the interrupt */
5911                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5912                         /* retrieve hardware timestamp */
5913                         schedule_work(&adapter->ptp_tx_work);
5914                 }
5915         }
5916
5917         napi_schedule(&q_vector->napi);
5918
5919         return IRQ_HANDLED;
5920 }
5921
5922 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5923 {
5924         struct igb_adapter *adapter = q_vector->adapter;
5925         struct e1000_hw *hw = &adapter->hw;
5926
5927         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5928             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5929                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5930                         igb_set_itr(q_vector);
5931                 else
5932                         igb_update_ring_itr(q_vector);
5933         }
5934
5935         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5936                 if (adapter->msix_entries)
5937                         wr32(E1000_EIMS, q_vector->eims_value);
5938                 else
5939                         igb_irq_enable(adapter);
5940         }
5941 }
5942
5943 /**
5944  *  igb_poll - NAPI Rx polling callback
5945  *  @napi: napi polling structure
5946  *  @budget: count of how many packets we should handle
5947  **/
5948 static int igb_poll(struct napi_struct *napi, int budget)
5949 {
5950         struct igb_q_vector *q_vector = container_of(napi,
5951                                                      struct igb_q_vector,
5952                                                      napi);
5953         bool clean_complete = true;
5954
5955 #ifdef CONFIG_IGB_DCA
5956         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5957                 igb_update_dca(q_vector);
5958 #endif
5959         if (q_vector->tx.ring)
5960                 clean_complete = igb_clean_tx_irq(q_vector);
5961
5962         if (q_vector->rx.ring)
5963                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5964
5965         /* If all work not completed, return budget and keep polling */
5966         if (!clean_complete)
5967                 return budget;
5968
5969         /* If not enough Rx work done, exit the polling mode */
5970         napi_complete(napi);
5971         igb_ring_irq_enable(q_vector);
5972
5973         return 0;
5974 }
5975
5976 /**
5977  *  igb_clean_tx_irq - Reclaim resources after transmit completes
5978  *  @q_vector: pointer to q_vector containing needed info
5979  *
5980  *  returns true if ring is completely cleaned
5981  **/
5982 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5983 {
5984         struct igb_adapter *adapter = q_vector->adapter;
5985         struct igb_ring *tx_ring = q_vector->tx.ring;
5986         struct igb_tx_buffer *tx_buffer;
5987         union e1000_adv_tx_desc *tx_desc;
5988         unsigned int total_bytes = 0, total_packets = 0;
5989         unsigned int budget = q_vector->tx.work_limit;
5990         unsigned int i = tx_ring->next_to_clean;
5991
5992         if (test_bit(__IGB_DOWN, &adapter->state))
5993                 return true;
5994
5995         tx_buffer = &tx_ring->tx_buffer_info[i];
5996         tx_desc = IGB_TX_DESC(tx_ring, i);
5997         i -= tx_ring->count;
5998
5999         do {
6000                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6001
6002                 /* if next_to_watch is not set then there is no work pending */
6003                 if (!eop_desc)
6004                         break;
6005
6006                 /* prevent any other reads prior to eop_desc */
6007                 read_barrier_depends();
6008
6009                 /* if DD is not set pending work has not been completed */
6010                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6011                         break;
6012
6013                 /* clear next_to_watch to prevent false hangs */
6014                 tx_buffer->next_to_watch = NULL;
6015
6016                 /* update the statistics for this packet */
6017                 total_bytes += tx_buffer->bytecount;
6018                 total_packets += tx_buffer->gso_segs;
6019
6020                 /* free the skb */
6021                 dev_kfree_skb_any(tx_buffer->skb);
6022
6023                 /* unmap skb header data */
6024                 dma_unmap_single(tx_ring->dev,
6025                                  dma_unmap_addr(tx_buffer, dma),
6026                                  dma_unmap_len(tx_buffer, len),
6027                                  DMA_TO_DEVICE);
6028
6029                 /* clear tx_buffer data */
6030                 tx_buffer->skb = NULL;
6031                 dma_unmap_len_set(tx_buffer, len, 0);
6032
6033                 /* clear last DMA location and unmap remaining buffers */
6034                 while (tx_desc != eop_desc) {
6035                         tx_buffer++;
6036                         tx_desc++;
6037                         i++;
6038                         if (unlikely(!i)) {
6039                                 i -= tx_ring->count;
6040                                 tx_buffer = tx_ring->tx_buffer_info;
6041                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6042                         }
6043
6044                         /* unmap any remaining paged data */
6045                         if (dma_unmap_len(tx_buffer, len)) {
6046                                 dma_unmap_page(tx_ring->dev,
6047                                                dma_unmap_addr(tx_buffer, dma),
6048                                                dma_unmap_len(tx_buffer, len),
6049                                                DMA_TO_DEVICE);
6050                                 dma_unmap_len_set(tx_buffer, len, 0);
6051                         }
6052                 }
6053
6054                 /* move us one more past the eop_desc for start of next pkt */
6055                 tx_buffer++;
6056                 tx_desc++;
6057                 i++;
6058                 if (unlikely(!i)) {
6059                         i -= tx_ring->count;
6060                         tx_buffer = tx_ring->tx_buffer_info;
6061                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6062                 }
6063
6064                 /* issue prefetch for next Tx descriptor */
6065                 prefetch(tx_desc);
6066
6067                 /* update budget accounting */
6068                 budget--;
6069         } while (likely(budget));
6070
6071         netdev_tx_completed_queue(txring_txq(tx_ring),
6072                                   total_packets, total_bytes);
6073         i += tx_ring->count;
6074         tx_ring->next_to_clean = i;
6075         u64_stats_update_begin(&tx_ring->tx_syncp);
6076         tx_ring->tx_stats.bytes += total_bytes;
6077         tx_ring->tx_stats.packets += total_packets;
6078         u64_stats_update_end(&tx_ring->tx_syncp);
6079         q_vector->tx.total_bytes += total_bytes;
6080         q_vector->tx.total_packets += total_packets;
6081
6082         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6083                 struct e1000_hw *hw = &adapter->hw;
6084
6085                 /* Detect a transmit hang in hardware, this serializes the
6086                  * check with the clearing of time_stamp and movement of i
6087                  */
6088                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6089                 if (tx_buffer->next_to_watch &&
6090                     time_after(jiffies, tx_buffer->time_stamp +
6091                                (adapter->tx_timeout_factor * HZ)) &&
6092                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6093
6094                         /* detected Tx unit hang */
6095                         dev_err(tx_ring->dev,
6096                                 "Detected Tx Unit Hang\n"
6097                                 "  Tx Queue             <%d>\n"
6098                                 "  TDH                  <%x>\n"
6099                                 "  TDT                  <%x>\n"
6100                                 "  next_to_use          <%x>\n"
6101                                 "  next_to_clean        <%x>\n"
6102                                 "buffer_info[next_to_clean]\n"
6103                                 "  time_stamp           <%lx>\n"
6104                                 "  next_to_watch        <%p>\n"
6105                                 "  jiffies              <%lx>\n"
6106                                 "  desc.status          <%x>\n",
6107                                 tx_ring->queue_index,
6108                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6109                                 readl(tx_ring->tail),
6110                                 tx_ring->next_to_use,
6111                                 tx_ring->next_to_clean,
6112                                 tx_buffer->time_stamp,
6113                                 tx_buffer->next_to_watch,
6114                                 jiffies,
6115                                 tx_buffer->next_to_watch->wb.status);
6116                         netif_stop_subqueue(tx_ring->netdev,
6117                                             tx_ring->queue_index);
6118
6119                         /* we are about to reset, no point in enabling stuff */
6120                         return true;
6121                 }
6122         }
6123
6124 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6125         if (unlikely(total_packets &&
6126             netif_carrier_ok(tx_ring->netdev) &&
6127             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6128                 /* Make sure that anybody stopping the queue after this
6129                  * sees the new next_to_clean.
6130                  */
6131                 smp_mb();
6132                 if (__netif_subqueue_stopped(tx_ring->netdev,
6133                                              tx_ring->queue_index) &&
6134                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6135                         netif_wake_subqueue(tx_ring->netdev,
6136                                             tx_ring->queue_index);
6137
6138                         u64_stats_update_begin(&tx_ring->tx_syncp);
6139                         tx_ring->tx_stats.restart_queue++;
6140                         u64_stats_update_end(&tx_ring->tx_syncp);
6141                 }
6142         }
6143
6144         return !!budget;
6145 }
6146
6147 /**
6148  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6149  *  @rx_ring: rx descriptor ring to store buffers on
6150  *  @old_buff: donor buffer to have page reused
6151  *
6152  *  Synchronizes page for reuse by the adapter
6153  **/
6154 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6155                               struct igb_rx_buffer *old_buff)
6156 {
6157         struct igb_rx_buffer *new_buff;
6158         u16 nta = rx_ring->next_to_alloc;
6159
6160         new_buff = &rx_ring->rx_buffer_info[nta];
6161
6162         /* update, and store next to alloc */
6163         nta++;
6164         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6165
6166         /* transfer page from old buffer to new buffer */
6167         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6168
6169         /* sync the buffer for use by the device */
6170         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6171                                          old_buff->page_offset,
6172                                          IGB_RX_BUFSZ,
6173                                          DMA_FROM_DEVICE);
6174 }
6175
6176 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6177                                   struct page *page,
6178                                   unsigned int truesize)
6179 {
6180         /* avoid re-using remote pages */
6181         if (unlikely(page_to_nid(page) != numa_node_id()))
6182                 return false;
6183
6184 #if (PAGE_SIZE < 8192)
6185         /* if we are only owner of page we can reuse it */
6186         if (unlikely(page_count(page) != 1))
6187                 return false;
6188
6189         /* flip page offset to other buffer */
6190         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6191
6192         /* since we are the only owner of the page and we need to
6193          * increment it, just set the value to 2 in order to avoid
6194          * an unnecessary locked operation
6195          */
6196         atomic_set(&page->_count, 2);
6197 #else
6198         /* move offset up to the next cache line */
6199         rx_buffer->page_offset += truesize;
6200
6201         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6202                 return false;
6203
6204         /* bump ref count on page before it is given to the stack */
6205         get_page(page);
6206 #endif
6207
6208         return true;
6209 }
6210
6211 /**
6212  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6213  *  @rx_ring: rx descriptor ring to transact packets on
6214  *  @rx_buffer: buffer containing page to add
6215  *  @rx_desc: descriptor containing length of buffer written by hardware
6216  *  @skb: sk_buff to place the data into
6217  *
6218  *  This function will add the data contained in rx_buffer->page to the skb.
6219  *  This is done either through a direct copy if the data in the buffer is
6220  *  less than the skb header size, otherwise it will just attach the page as
6221  *  a frag to the skb.
6222  *
6223  *  The function will then update the page offset if necessary and return
6224  *  true if the buffer can be reused by the adapter.
6225  **/
6226 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6227                             struct igb_rx_buffer *rx_buffer,
6228                             union e1000_adv_rx_desc *rx_desc,
6229                             struct sk_buff *skb)
6230 {
6231         struct page *page = rx_buffer->page;
6232         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6233 #if (PAGE_SIZE < 8192)
6234         unsigned int truesize = IGB_RX_BUFSZ;
6235 #else
6236         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6237 #endif
6238
6239         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6240                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6241
6242                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6243                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6244                         va += IGB_TS_HDR_LEN;
6245                         size -= IGB_TS_HDR_LEN;
6246                 }
6247
6248                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6249
6250                 /* we can reuse buffer as-is, just make sure it is local */
6251                 if (likely(page_to_nid(page) == numa_node_id()))
6252                         return true;
6253
6254                 /* this page cannot be reused so discard it */
6255                 put_page(page);
6256                 return false;
6257         }
6258
6259         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6260                         rx_buffer->page_offset, size, truesize);
6261
6262         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6263 }
6264
6265 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6266                                            union e1000_adv_rx_desc *rx_desc,
6267                                            struct sk_buff *skb)
6268 {
6269         struct igb_rx_buffer *rx_buffer;
6270         struct page *page;
6271
6272         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6273
6274         page = rx_buffer->page;
6275         prefetchw(page);
6276
6277         if (likely(!skb)) {
6278                 void *page_addr = page_address(page) +
6279                                   rx_buffer->page_offset;
6280
6281                 /* prefetch first cache line of first page */
6282                 prefetch(page_addr);
6283 #if L1_CACHE_BYTES < 128
6284                 prefetch(page_addr + L1_CACHE_BYTES);
6285 #endif
6286
6287                 /* allocate a skb to store the frags */
6288                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6289                                                 IGB_RX_HDR_LEN);
6290                 if (unlikely(!skb)) {
6291                         rx_ring->rx_stats.alloc_failed++;
6292                         return NULL;
6293                 }
6294
6295                 /* we will be copying header into skb->data in
6296                  * pskb_may_pull so it is in our interest to prefetch
6297                  * it now to avoid a possible cache miss
6298                  */
6299                 prefetchw(skb->data);
6300         }
6301
6302         /* we are reusing so sync this buffer for CPU use */
6303         dma_sync_single_range_for_cpu(rx_ring->dev,
6304                                       rx_buffer->dma,
6305                                       rx_buffer->page_offset,
6306                                       IGB_RX_BUFSZ,
6307                                       DMA_FROM_DEVICE);
6308
6309         /* pull page into skb */
6310         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6311                 /* hand second half of page back to the ring */
6312                 igb_reuse_rx_page(rx_ring, rx_buffer);
6313         } else {
6314                 /* we are not reusing the buffer so unmap it */
6315                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6316                                PAGE_SIZE, DMA_FROM_DEVICE);
6317         }
6318
6319         /* clear contents of rx_buffer */
6320         rx_buffer->page = NULL;
6321
6322         return skb;
6323 }
6324
6325 static inline void igb_rx_checksum(struct igb_ring *ring,
6326                                    union e1000_adv_rx_desc *rx_desc,
6327                                    struct sk_buff *skb)
6328 {
6329         skb_checksum_none_assert(skb);
6330
6331         /* Ignore Checksum bit is set */
6332         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6333                 return;
6334
6335         /* Rx checksum disabled via ethtool */
6336         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6337                 return;
6338
6339         /* TCP/UDP checksum error bit is set */
6340         if (igb_test_staterr(rx_desc,
6341                              E1000_RXDEXT_STATERR_TCPE |
6342                              E1000_RXDEXT_STATERR_IPE)) {
6343                 /* work around errata with sctp packets where the TCPE aka
6344                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6345                  * packets, (aka let the stack check the crc32c)
6346                  */
6347                 if (!((skb->len == 60) &&
6348                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6349                         u64_stats_update_begin(&ring->rx_syncp);
6350                         ring->rx_stats.csum_err++;
6351                         u64_stats_update_end(&ring->rx_syncp);
6352                 }
6353                 /* let the stack verify checksum errors */
6354                 return;
6355         }
6356         /* It must be a TCP or UDP packet with a valid checksum */
6357         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6358                                       E1000_RXD_STAT_UDPCS))
6359                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6360
6361         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6362                 le32_to_cpu(rx_desc->wb.upper.status_error));
6363 }
6364
6365 static inline void igb_rx_hash(struct igb_ring *ring,
6366                                union e1000_adv_rx_desc *rx_desc,
6367                                struct sk_buff *skb)
6368 {
6369         if (ring->netdev->features & NETIF_F_RXHASH)
6370                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6371 }
6372
6373 /**
6374  *  igb_is_non_eop - process handling of non-EOP buffers
6375  *  @rx_ring: Rx ring being processed
6376  *  @rx_desc: Rx descriptor for current buffer
6377  *  @skb: current socket buffer containing buffer in progress
6378  *
6379  *  This function updates next to clean.  If the buffer is an EOP buffer
6380  *  this function exits returning false, otherwise it will place the
6381  *  sk_buff in the next buffer to be chained and return true indicating
6382  *  that this is in fact a non-EOP buffer.
6383  **/
6384 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6385                            union e1000_adv_rx_desc *rx_desc)
6386 {
6387         u32 ntc = rx_ring->next_to_clean + 1;
6388
6389         /* fetch, update, and store next to clean */
6390         ntc = (ntc < rx_ring->count) ? ntc : 0;
6391         rx_ring->next_to_clean = ntc;
6392
6393         prefetch(IGB_RX_DESC(rx_ring, ntc));
6394
6395         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6396                 return false;
6397
6398         return true;
6399 }
6400
6401 /**
6402  *  igb_get_headlen - determine size of header for LRO/GRO
6403  *  @data: pointer to the start of the headers
6404  *  @max_len: total length of section to find headers in
6405  *
6406  *  This function is meant to determine the length of headers that will
6407  *  be recognized by hardware for LRO, and GRO offloads.  The main
6408  *  motivation of doing this is to only perform one pull for IPv4 TCP
6409  *  packets so that we can do basic things like calculating the gso_size
6410  *  based on the average data per packet.
6411  **/
6412 static unsigned int igb_get_headlen(unsigned char *data,
6413                                     unsigned int max_len)
6414 {
6415         union {
6416                 unsigned char *network;
6417                 /* l2 headers */
6418                 struct ethhdr *eth;
6419                 struct vlan_hdr *vlan;
6420                 /* l3 headers */
6421                 struct iphdr *ipv4;
6422                 struct ipv6hdr *ipv6;
6423         } hdr;
6424         __be16 protocol;
6425         u8 nexthdr = 0; /* default to not TCP */
6426         u8 hlen;
6427
6428         /* this should never happen, but better safe than sorry */
6429         if (max_len < ETH_HLEN)
6430                 return max_len;
6431
6432         /* initialize network frame pointer */
6433         hdr.network = data;
6434
6435         /* set first protocol and move network header forward */
6436         protocol = hdr.eth->h_proto;
6437         hdr.network += ETH_HLEN;
6438
6439         /* handle any vlan tag if present */
6440         if (protocol == __constant_htons(ETH_P_8021Q)) {
6441                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6442                         return max_len;
6443
6444                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6445                 hdr.network += VLAN_HLEN;
6446         }
6447
6448         /* handle L3 protocols */
6449         if (protocol == __constant_htons(ETH_P_IP)) {
6450                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6451                         return max_len;
6452
6453                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6454                 hlen = (hdr.network[0] & 0x0F) << 2;
6455
6456                 /* verify hlen meets minimum size requirements */
6457                 if (hlen < sizeof(struct iphdr))
6458                         return hdr.network - data;
6459
6460                 /* record next protocol if header is present */
6461                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6462                         nexthdr = hdr.ipv4->protocol;
6463         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6464                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6465                         return max_len;
6466
6467                 /* record next protocol */
6468                 nexthdr = hdr.ipv6->nexthdr;
6469                 hlen = sizeof(struct ipv6hdr);
6470         } else {
6471                 return hdr.network - data;
6472         }
6473
6474         /* relocate pointer to start of L4 header */
6475         hdr.network += hlen;
6476
6477         /* finally sort out TCP */
6478         if (nexthdr == IPPROTO_TCP) {
6479                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6480                         return max_len;
6481
6482                 /* access doff as a u8 to avoid unaligned access on ia64 */
6483                 hlen = (hdr.network[12] & 0xF0) >> 2;
6484
6485                 /* verify hlen meets minimum size requirements */
6486                 if (hlen < sizeof(struct tcphdr))
6487                         return hdr.network - data;
6488
6489                 hdr.network += hlen;
6490         } else if (nexthdr == IPPROTO_UDP) {
6491                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6492                         return max_len;
6493
6494                 hdr.network += sizeof(struct udphdr);
6495         }
6496
6497         /* If everything has gone correctly hdr.network should be the
6498          * data section of the packet and will be the end of the header.
6499          * If not then it probably represents the end of the last recognized
6500          * header.
6501          */
6502         if ((hdr.network - data) < max_len)
6503                 return hdr.network - data;
6504         else
6505                 return max_len;
6506 }
6507
6508 /**
6509  *  igb_pull_tail - igb specific version of skb_pull_tail
6510  *  @rx_ring: rx descriptor ring packet is being transacted on
6511  *  @rx_desc: pointer to the EOP Rx descriptor
6512  *  @skb: pointer to current skb being adjusted
6513  *
6514  *  This function is an igb specific version of __pskb_pull_tail.  The
6515  *  main difference between this version and the original function is that
6516  *  this function can make several assumptions about the state of things
6517  *  that allow for significant optimizations versus the standard function.
6518  *  As a result we can do things like drop a frag and maintain an accurate
6519  *  truesize for the skb.
6520  */
6521 static void igb_pull_tail(struct igb_ring *rx_ring,
6522                           union e1000_adv_rx_desc *rx_desc,
6523                           struct sk_buff *skb)
6524 {
6525         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6526         unsigned char *va;
6527         unsigned int pull_len;
6528
6529         /* it is valid to use page_address instead of kmap since we are
6530          * working with pages allocated out of the lomem pool per
6531          * alloc_page(GFP_ATOMIC)
6532          */
6533         va = skb_frag_address(frag);
6534
6535         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6536                 /* retrieve timestamp from buffer */
6537                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538
6539                 /* update pointers to remove timestamp header */
6540                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6541                 frag->page_offset += IGB_TS_HDR_LEN;
6542                 skb->data_len -= IGB_TS_HDR_LEN;
6543                 skb->len -= IGB_TS_HDR_LEN;
6544
6545                 /* move va to start of packet data */
6546                 va += IGB_TS_HDR_LEN;
6547         }
6548
6549         /* we need the header to contain the greater of either ETH_HLEN or
6550          * 60 bytes if the skb->len is less than 60 for skb_pad.
6551          */
6552         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6553
6554         /* align pull length to size of long to optimize memcpy performance */
6555         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6556
6557         /* update all of the pointers */
6558         skb_frag_size_sub(frag, pull_len);
6559         frag->page_offset += pull_len;
6560         skb->data_len -= pull_len;
6561         skb->tail += pull_len;
6562 }
6563
6564 /**
6565  *  igb_cleanup_headers - Correct corrupted or empty headers
6566  *  @rx_ring: rx descriptor ring packet is being transacted on
6567  *  @rx_desc: pointer to the EOP Rx descriptor
6568  *  @skb: pointer to current skb being fixed
6569  *
6570  *  Address the case where we are pulling data in on pages only
6571  *  and as such no data is present in the skb header.
6572  *
6573  *  In addition if skb is not at least 60 bytes we need to pad it so that
6574  *  it is large enough to qualify as a valid Ethernet frame.
6575  *
6576  *  Returns true if an error was encountered and skb was freed.
6577  **/
6578 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6579                                 union e1000_adv_rx_desc *rx_desc,
6580                                 struct sk_buff *skb)
6581 {
6582         if (unlikely((igb_test_staterr(rx_desc,
6583                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6584                 struct net_device *netdev = rx_ring->netdev;
6585                 if (!(netdev->features & NETIF_F_RXALL)) {
6586                         dev_kfree_skb_any(skb);
6587                         return true;
6588                 }
6589         }
6590
6591         /* place header in linear portion of buffer */
6592         if (skb_is_nonlinear(skb))
6593                 igb_pull_tail(rx_ring, rx_desc, skb);
6594
6595         /* if skb_pad returns an error the skb was freed */
6596         if (unlikely(skb->len < 60)) {
6597                 int pad_len = 60 - skb->len;
6598
6599                 if (skb_pad(skb, pad_len))
6600                         return true;
6601                 __skb_put(skb, pad_len);
6602         }
6603
6604         return false;
6605 }
6606
6607 /**
6608  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6609  *  @rx_ring: rx descriptor ring packet is being transacted on
6610  *  @rx_desc: pointer to the EOP Rx descriptor
6611  *  @skb: pointer to current skb being populated
6612  *
6613  *  This function checks the ring, descriptor, and packet information in
6614  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6615  *  other fields within the skb.
6616  **/
6617 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6618                                    union e1000_adv_rx_desc *rx_desc,
6619                                    struct sk_buff *skb)
6620 {
6621         struct net_device *dev = rx_ring->netdev;
6622
6623         igb_rx_hash(rx_ring, rx_desc, skb);
6624
6625         igb_rx_checksum(rx_ring, rx_desc, skb);
6626
6627         igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6628
6629         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6630             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6631                 u16 vid;
6632                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6633                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6634                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6635                 else
6636                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6637
6638                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6639         }
6640
6641         skb_record_rx_queue(skb, rx_ring->queue_index);
6642
6643         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6644 }
6645
6646 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6647 {
6648         struct igb_ring *rx_ring = q_vector->rx.ring;
6649         struct sk_buff *skb = rx_ring->skb;
6650         unsigned int total_bytes = 0, total_packets = 0;
6651         u16 cleaned_count = igb_desc_unused(rx_ring);
6652
6653         do {
6654                 union e1000_adv_rx_desc *rx_desc;
6655
6656                 /* return some buffers to hardware, one at a time is too slow */
6657                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6658                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6659                         cleaned_count = 0;
6660                 }
6661
6662                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6663
6664                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6665                         break;
6666
6667                 /* This memory barrier is needed to keep us from reading
6668                  * any other fields out of the rx_desc until we know the
6669                  * RXD_STAT_DD bit is set
6670                  */
6671                 rmb();
6672
6673                 /* retrieve a buffer from the ring */
6674                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6675
6676                 /* exit if we failed to retrieve a buffer */
6677                 if (!skb)
6678                         break;
6679
6680                 cleaned_count++;
6681
6682                 /* fetch next buffer in frame if non-eop */
6683                 if (igb_is_non_eop(rx_ring, rx_desc))
6684                         continue;
6685
6686                 /* verify the packet layout is correct */
6687                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6688                         skb = NULL;
6689                         continue;
6690                 }
6691
6692                 /* probably a little skewed due to removing CRC */
6693                 total_bytes += skb->len;
6694
6695                 /* populate checksum, timestamp, VLAN, and protocol */
6696                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6697
6698                 napi_gro_receive(&q_vector->napi, skb);
6699
6700                 /* reset skb pointer */
6701                 skb = NULL;
6702
6703                 /* update budget accounting */
6704                 total_packets++;
6705         } while (likely(total_packets < budget));
6706
6707         /* place incomplete frames back on ring for completion */
6708         rx_ring->skb = skb;
6709
6710         u64_stats_update_begin(&rx_ring->rx_syncp);
6711         rx_ring->rx_stats.packets += total_packets;
6712         rx_ring->rx_stats.bytes += total_bytes;
6713         u64_stats_update_end(&rx_ring->rx_syncp);
6714         q_vector->rx.total_packets += total_packets;
6715         q_vector->rx.total_bytes += total_bytes;
6716
6717         if (cleaned_count)
6718                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6719
6720         return (total_packets < budget);
6721 }
6722
6723 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6724                                   struct igb_rx_buffer *bi)
6725 {
6726         struct page *page = bi->page;
6727         dma_addr_t dma;
6728
6729         /* since we are recycling buffers we should seldom need to alloc */
6730         if (likely(page))
6731                 return true;
6732
6733         /* alloc new page for storage */
6734         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6735         if (unlikely(!page)) {
6736                 rx_ring->rx_stats.alloc_failed++;
6737                 return false;
6738         }
6739
6740         /* map page for use */
6741         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6742
6743         /* if mapping failed free memory back to system since
6744          * there isn't much point in holding memory we can't use
6745          */
6746         if (dma_mapping_error(rx_ring->dev, dma)) {
6747                 __free_page(page);
6748
6749                 rx_ring->rx_stats.alloc_failed++;
6750                 return false;
6751         }
6752
6753         bi->dma = dma;
6754         bi->page = page;
6755         bi->page_offset = 0;
6756
6757         return true;
6758 }
6759
6760 /**
6761  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6762  *  @adapter: address of board private structure
6763  **/
6764 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6765 {
6766         union e1000_adv_rx_desc *rx_desc;
6767         struct igb_rx_buffer *bi;
6768         u16 i = rx_ring->next_to_use;
6769
6770         /* nothing to do */
6771         if (!cleaned_count)
6772                 return;
6773
6774         rx_desc = IGB_RX_DESC(rx_ring, i);
6775         bi = &rx_ring->rx_buffer_info[i];
6776         i -= rx_ring->count;
6777
6778         do {
6779                 if (!igb_alloc_mapped_page(rx_ring, bi))
6780                         break;
6781
6782                 /* Refresh the desc even if buffer_addrs didn't change
6783                  * because each write-back erases this info.
6784                  */
6785                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6786
6787                 rx_desc++;
6788                 bi++;
6789                 i++;
6790                 if (unlikely(!i)) {
6791                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6792                         bi = rx_ring->rx_buffer_info;
6793                         i -= rx_ring->count;
6794                 }
6795
6796                 /* clear the hdr_addr for the next_to_use descriptor */
6797                 rx_desc->read.hdr_addr = 0;
6798
6799                 cleaned_count--;
6800         } while (cleaned_count);
6801
6802         i += rx_ring->count;
6803
6804         if (rx_ring->next_to_use != i) {
6805                 /* record the next descriptor to use */
6806                 rx_ring->next_to_use = i;
6807
6808                 /* update next to alloc since we have filled the ring */
6809                 rx_ring->next_to_alloc = i;
6810
6811                 /* Force memory writes to complete before letting h/w
6812                  * know there are new descriptors to fetch.  (Only
6813                  * applicable for weak-ordered memory model archs,
6814                  * such as IA-64).
6815                  */
6816                 wmb();
6817                 writel(i, rx_ring->tail);
6818         }
6819 }
6820
6821 /**
6822  * igb_mii_ioctl -
6823  * @netdev:
6824  * @ifreq:
6825  * @cmd:
6826  **/
6827 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6828 {
6829         struct igb_adapter *adapter = netdev_priv(netdev);
6830         struct mii_ioctl_data *data = if_mii(ifr);
6831
6832         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6833                 return -EOPNOTSUPP;
6834
6835         switch (cmd) {
6836         case SIOCGMIIPHY:
6837                 data->phy_id = adapter->hw.phy.addr;
6838                 break;
6839         case SIOCGMIIREG:
6840                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6841                                      &data->val_out))
6842                         return -EIO;
6843                 break;
6844         case SIOCSMIIREG:
6845         default:
6846                 return -EOPNOTSUPP;
6847         }
6848         return 0;
6849 }
6850
6851 /**
6852  * igb_ioctl -
6853  * @netdev:
6854  * @ifreq:
6855  * @cmd:
6856  **/
6857 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6858 {
6859         switch (cmd) {
6860         case SIOCGMIIPHY:
6861         case SIOCGMIIREG:
6862         case SIOCSMIIREG:
6863                 return igb_mii_ioctl(netdev, ifr, cmd);
6864         case SIOCSHWTSTAMP:
6865                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6866         default:
6867                 return -EOPNOTSUPP;
6868         }
6869 }
6870
6871 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6872 {
6873         struct igb_adapter *adapter = hw->back;
6874
6875         if (pcie_capability_read_word(adapter->pdev, reg, value))
6876                 return -E1000_ERR_CONFIG;
6877
6878         return 0;
6879 }
6880
6881 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6882 {
6883         struct igb_adapter *adapter = hw->back;
6884
6885         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6886                 return -E1000_ERR_CONFIG;
6887
6888         return 0;
6889 }
6890
6891 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6892 {
6893         struct igb_adapter *adapter = netdev_priv(netdev);
6894         struct e1000_hw *hw = &adapter->hw;
6895         u32 ctrl, rctl;
6896         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6897
6898         if (enable) {
6899                 /* enable VLAN tag insert/strip */
6900                 ctrl = rd32(E1000_CTRL);
6901                 ctrl |= E1000_CTRL_VME;
6902                 wr32(E1000_CTRL, ctrl);
6903
6904                 /* Disable CFI check */
6905                 rctl = rd32(E1000_RCTL);
6906                 rctl &= ~E1000_RCTL_CFIEN;
6907                 wr32(E1000_RCTL, rctl);
6908         } else {
6909                 /* disable VLAN tag insert/strip */
6910                 ctrl = rd32(E1000_CTRL);
6911                 ctrl &= ~E1000_CTRL_VME;
6912                 wr32(E1000_CTRL, ctrl);
6913         }
6914
6915         igb_rlpml_set(adapter);
6916 }
6917
6918 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6919                                __be16 proto, u16 vid)
6920 {
6921         struct igb_adapter *adapter = netdev_priv(netdev);
6922         struct e1000_hw *hw = &adapter->hw;
6923         int pf_id = adapter->vfs_allocated_count;
6924
6925         /* attempt to add filter to vlvf array */
6926         igb_vlvf_set(adapter, vid, true, pf_id);
6927
6928         /* add the filter since PF can receive vlans w/o entry in vlvf */
6929         igb_vfta_set(hw, vid, true);
6930
6931         set_bit(vid, adapter->active_vlans);
6932
6933         return 0;
6934 }
6935
6936 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6937                                 __be16 proto, u16 vid)
6938 {
6939         struct igb_adapter *adapter = netdev_priv(netdev);
6940         struct e1000_hw *hw = &adapter->hw;
6941         int pf_id = adapter->vfs_allocated_count;
6942         s32 err;
6943
6944         /* remove vlan from VLVF table array */
6945         err = igb_vlvf_set(adapter, vid, false, pf_id);
6946
6947         /* if vid was not present in VLVF just remove it from table */
6948         if (err)
6949                 igb_vfta_set(hw, vid, false);
6950
6951         clear_bit(vid, adapter->active_vlans);
6952
6953         return 0;
6954 }
6955
6956 static void igb_restore_vlan(struct igb_adapter *adapter)
6957 {
6958         u16 vid;
6959
6960         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6961
6962         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6963                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6964 }
6965
6966 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6967 {
6968         struct pci_dev *pdev = adapter->pdev;
6969         struct e1000_mac_info *mac = &adapter->hw.mac;
6970
6971         mac->autoneg = 0;
6972
6973         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6974          * for the switch() below to work
6975          */
6976         if ((spd & 1) || (dplx & ~1))
6977                 goto err_inval;
6978
6979         /* Fiber NIC's only allow 1000 gbps Full duplex
6980          * and 100Mbps Full duplex for 100baseFx sfp
6981          */
6982         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6983                 switch (spd + dplx) {
6984                 case SPEED_10 + DUPLEX_HALF:
6985                 case SPEED_10 + DUPLEX_FULL:
6986                 case SPEED_100 + DUPLEX_HALF:
6987                         goto err_inval;
6988                 default:
6989                         break;
6990                 }
6991         }
6992
6993         switch (spd + dplx) {
6994         case SPEED_10 + DUPLEX_HALF:
6995                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6996                 break;
6997         case SPEED_10 + DUPLEX_FULL:
6998                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6999                 break;
7000         case SPEED_100 + DUPLEX_HALF:
7001                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7002                 break;
7003         case SPEED_100 + DUPLEX_FULL:
7004                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7005                 break;
7006         case SPEED_1000 + DUPLEX_FULL:
7007                 mac->autoneg = 1;
7008                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7009                 break;
7010         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7011         default:
7012                 goto err_inval;
7013         }
7014
7015         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7016         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7017
7018         return 0;
7019
7020 err_inval:
7021         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7022         return -EINVAL;
7023 }
7024
7025 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7026                           bool runtime)
7027 {
7028         struct net_device *netdev = pci_get_drvdata(pdev);
7029         struct igb_adapter *adapter = netdev_priv(netdev);
7030         struct e1000_hw *hw = &adapter->hw;
7031         u32 ctrl, rctl, status;
7032         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7033 #ifdef CONFIG_PM
7034         int retval = 0;
7035 #endif
7036
7037         netif_device_detach(netdev);
7038
7039         if (netif_running(netdev))
7040                 __igb_close(netdev, true);
7041
7042         igb_clear_interrupt_scheme(adapter);
7043
7044 #ifdef CONFIG_PM
7045         retval = pci_save_state(pdev);
7046         if (retval)
7047                 return retval;
7048 #endif
7049
7050         status = rd32(E1000_STATUS);
7051         if (status & E1000_STATUS_LU)
7052                 wufc &= ~E1000_WUFC_LNKC;
7053
7054         if (wufc) {
7055                 igb_setup_rctl(adapter);
7056                 igb_set_rx_mode(netdev);
7057
7058                 /* turn on all-multi mode if wake on multicast is enabled */
7059                 if (wufc & E1000_WUFC_MC) {
7060                         rctl = rd32(E1000_RCTL);
7061                         rctl |= E1000_RCTL_MPE;
7062                         wr32(E1000_RCTL, rctl);
7063                 }
7064
7065                 ctrl = rd32(E1000_CTRL);
7066                 /* advertise wake from D3Cold */
7067                 #define E1000_CTRL_ADVD3WUC 0x00100000
7068                 /* phy power management enable */
7069                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7070                 ctrl |= E1000_CTRL_ADVD3WUC;
7071                 wr32(E1000_CTRL, ctrl);
7072
7073                 /* Allow time for pending master requests to run */
7074                 igb_disable_pcie_master(hw);
7075
7076                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7077                 wr32(E1000_WUFC, wufc);
7078         } else {
7079                 wr32(E1000_WUC, 0);
7080                 wr32(E1000_WUFC, 0);
7081         }
7082
7083         *enable_wake = wufc || adapter->en_mng_pt;
7084         if (!*enable_wake)
7085                 igb_power_down_link(adapter);
7086         else
7087                 igb_power_up_link(adapter);
7088
7089         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7090          * would have already happened in close and is redundant.
7091          */
7092         igb_release_hw_control(adapter);
7093
7094         pci_disable_device(pdev);
7095
7096         return 0;
7097 }
7098
7099 #ifdef CONFIG_PM
7100 #ifdef CONFIG_PM_SLEEP
7101 static int igb_suspend(struct device *dev)
7102 {
7103         int retval;
7104         bool wake;
7105         struct pci_dev *pdev = to_pci_dev(dev);
7106
7107         retval = __igb_shutdown(pdev, &wake, 0);
7108         if (retval)
7109                 return retval;
7110
7111         if (wake) {
7112                 pci_prepare_to_sleep(pdev);
7113         } else {
7114                 pci_wake_from_d3(pdev, false);
7115                 pci_set_power_state(pdev, PCI_D3hot);
7116         }
7117
7118         return 0;
7119 }
7120 #endif /* CONFIG_PM_SLEEP */
7121
7122 static int igb_resume(struct device *dev)
7123 {
7124         struct pci_dev *pdev = to_pci_dev(dev);
7125         struct net_device *netdev = pci_get_drvdata(pdev);
7126         struct igb_adapter *adapter = netdev_priv(netdev);
7127         struct e1000_hw *hw = &adapter->hw;
7128         u32 err;
7129
7130         pci_set_power_state(pdev, PCI_D0);
7131         pci_restore_state(pdev);
7132         pci_save_state(pdev);
7133
7134         err = pci_enable_device_mem(pdev);
7135         if (err) {
7136                 dev_err(&pdev->dev,
7137                         "igb: Cannot enable PCI device from suspend\n");
7138                 return err;
7139         }
7140         pci_set_master(pdev);
7141
7142         pci_enable_wake(pdev, PCI_D3hot, 0);
7143         pci_enable_wake(pdev, PCI_D3cold, 0);
7144
7145         if (igb_init_interrupt_scheme(adapter, true)) {
7146                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7147                 return -ENOMEM;
7148         }
7149
7150         igb_reset(adapter);
7151
7152         /* let the f/w know that the h/w is now under the control of the
7153          * driver.
7154          */
7155         igb_get_hw_control(adapter);
7156
7157         wr32(E1000_WUS, ~0);
7158
7159         if (netdev->flags & IFF_UP) {
7160                 rtnl_lock();
7161                 err = __igb_open(netdev, true);
7162                 rtnl_unlock();
7163                 if (err)
7164                         return err;
7165         }
7166
7167         netif_device_attach(netdev);
7168         return 0;
7169 }
7170
7171 #ifdef CONFIG_PM_RUNTIME
7172 static int igb_runtime_idle(struct device *dev)
7173 {
7174         struct pci_dev *pdev = to_pci_dev(dev);
7175         struct net_device *netdev = pci_get_drvdata(pdev);
7176         struct igb_adapter *adapter = netdev_priv(netdev);
7177
7178         if (!igb_has_link(adapter))
7179                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7180
7181         return -EBUSY;
7182 }
7183
7184 static int igb_runtime_suspend(struct device *dev)
7185 {
7186         struct pci_dev *pdev = to_pci_dev(dev);
7187         int retval;
7188         bool wake;
7189
7190         retval = __igb_shutdown(pdev, &wake, 1);
7191         if (retval)
7192                 return retval;
7193
7194         if (wake) {
7195                 pci_prepare_to_sleep(pdev);
7196         } else {
7197                 pci_wake_from_d3(pdev, false);
7198                 pci_set_power_state(pdev, PCI_D3hot);
7199         }
7200
7201         return 0;
7202 }
7203
7204 static int igb_runtime_resume(struct device *dev)
7205 {
7206         return igb_resume(dev);
7207 }
7208 #endif /* CONFIG_PM_RUNTIME */
7209 #endif
7210
7211 static void igb_shutdown(struct pci_dev *pdev)
7212 {
7213         bool wake;
7214
7215         __igb_shutdown(pdev, &wake, 0);
7216
7217         if (system_state == SYSTEM_POWER_OFF) {
7218                 pci_wake_from_d3(pdev, wake);
7219                 pci_set_power_state(pdev, PCI_D3hot);
7220         }
7221 }
7222
7223 #ifdef CONFIG_PCI_IOV
7224 static int igb_sriov_reinit(struct pci_dev *dev)
7225 {
7226         struct net_device *netdev = pci_get_drvdata(dev);
7227         struct igb_adapter *adapter = netdev_priv(netdev);
7228         struct pci_dev *pdev = adapter->pdev;
7229
7230         rtnl_lock();
7231
7232         if (netif_running(netdev))
7233                 igb_close(netdev);
7234
7235         igb_clear_interrupt_scheme(adapter);
7236
7237         igb_init_queue_configuration(adapter);
7238
7239         if (igb_init_interrupt_scheme(adapter, true)) {
7240                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7241                 return -ENOMEM;
7242         }
7243
7244         if (netif_running(netdev))
7245                 igb_open(netdev);
7246
7247         rtnl_unlock();
7248
7249         return 0;
7250 }
7251
7252 static int igb_pci_disable_sriov(struct pci_dev *dev)
7253 {
7254         int err = igb_disable_sriov(dev);
7255
7256         if (!err)
7257                 err = igb_sriov_reinit(dev);
7258
7259         return err;
7260 }
7261
7262 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7263 {
7264         int err = igb_enable_sriov(dev, num_vfs);
7265
7266         if (err)
7267                 goto out;
7268
7269         err = igb_sriov_reinit(dev);
7270         if (!err)
7271                 return num_vfs;
7272
7273 out:
7274         return err;
7275 }
7276
7277 #endif
7278 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7279 {
7280 #ifdef CONFIG_PCI_IOV
7281         if (num_vfs == 0)
7282                 return igb_pci_disable_sriov(dev);
7283         else
7284                 return igb_pci_enable_sriov(dev, num_vfs);
7285 #endif
7286         return 0;
7287 }
7288
7289 #ifdef CONFIG_NET_POLL_CONTROLLER
7290 /* Polling 'interrupt' - used by things like netconsole to send skbs
7291  * without having to re-enable interrupts. It's not called while
7292  * the interrupt routine is executing.
7293  */
7294 static void igb_netpoll(struct net_device *netdev)
7295 {
7296         struct igb_adapter *adapter = netdev_priv(netdev);
7297         struct e1000_hw *hw = &adapter->hw;
7298         struct igb_q_vector *q_vector;
7299         int i;
7300
7301         for (i = 0; i < adapter->num_q_vectors; i++) {
7302                 q_vector = adapter->q_vector[i];
7303                 if (adapter->msix_entries)
7304                         wr32(E1000_EIMC, q_vector->eims_value);
7305                 else
7306                         igb_irq_disable(adapter);
7307                 napi_schedule(&q_vector->napi);
7308         }
7309 }
7310 #endif /* CONFIG_NET_POLL_CONTROLLER */
7311
7312 /**
7313  *  igb_io_error_detected - called when PCI error is detected
7314  *  @pdev: Pointer to PCI device
7315  *  @state: The current pci connection state
7316  *
7317  *  This function is called after a PCI bus error affecting
7318  *  this device has been detected.
7319  **/
7320 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7321                                               pci_channel_state_t state)
7322 {
7323         struct net_device *netdev = pci_get_drvdata(pdev);
7324         struct igb_adapter *adapter = netdev_priv(netdev);
7325
7326         netif_device_detach(netdev);
7327
7328         if (state == pci_channel_io_perm_failure)
7329                 return PCI_ERS_RESULT_DISCONNECT;
7330
7331         if (netif_running(netdev))
7332                 igb_down(adapter);
7333         pci_disable_device(pdev);
7334
7335         /* Request a slot slot reset. */
7336         return PCI_ERS_RESULT_NEED_RESET;
7337 }
7338
7339 /**
7340  *  igb_io_slot_reset - called after the pci bus has been reset.
7341  *  @pdev: Pointer to PCI device
7342  *
7343  *  Restart the card from scratch, as if from a cold-boot. Implementation
7344  *  resembles the first-half of the igb_resume routine.
7345  **/
7346 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7347 {
7348         struct net_device *netdev = pci_get_drvdata(pdev);
7349         struct igb_adapter *adapter = netdev_priv(netdev);
7350         struct e1000_hw *hw = &adapter->hw;
7351         pci_ers_result_t result;
7352         int err;
7353
7354         if (pci_enable_device_mem(pdev)) {
7355                 dev_err(&pdev->dev,
7356                         "Cannot re-enable PCI device after reset.\n");
7357                 result = PCI_ERS_RESULT_DISCONNECT;
7358         } else {
7359                 pci_set_master(pdev);
7360                 pci_restore_state(pdev);
7361                 pci_save_state(pdev);
7362
7363                 pci_enable_wake(pdev, PCI_D3hot, 0);
7364                 pci_enable_wake(pdev, PCI_D3cold, 0);
7365
7366                 igb_reset(adapter);
7367                 wr32(E1000_WUS, ~0);
7368                 result = PCI_ERS_RESULT_RECOVERED;
7369         }
7370
7371         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7372         if (err) {
7373                 dev_err(&pdev->dev,
7374                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7375                         err);
7376                 /* non-fatal, continue */
7377         }
7378
7379         return result;
7380 }
7381
7382 /**
7383  *  igb_io_resume - called when traffic can start flowing again.
7384  *  @pdev: Pointer to PCI device
7385  *
7386  *  This callback is called when the error recovery driver tells us that
7387  *  its OK to resume normal operation. Implementation resembles the
7388  *  second-half of the igb_resume routine.
7389  */
7390 static void igb_io_resume(struct pci_dev *pdev)
7391 {
7392         struct net_device *netdev = pci_get_drvdata(pdev);
7393         struct igb_adapter *adapter = netdev_priv(netdev);
7394
7395         if (netif_running(netdev)) {
7396                 if (igb_up(adapter)) {
7397                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7398                         return;
7399                 }
7400         }
7401
7402         netif_device_attach(netdev);
7403
7404         /* let the f/w know that the h/w is now under the control of the
7405          * driver.
7406          */
7407         igb_get_hw_control(adapter);
7408 }
7409
7410 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7411                              u8 qsel)
7412 {
7413         u32 rar_low, rar_high;
7414         struct e1000_hw *hw = &adapter->hw;
7415
7416         /* HW expects these in little endian so we reverse the byte order
7417          * from network order (big endian) to little endian
7418          */
7419         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7420                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7421         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7422
7423         /* Indicate to hardware the Address is Valid. */
7424         rar_high |= E1000_RAH_AV;
7425
7426         if (hw->mac.type == e1000_82575)
7427                 rar_high |= E1000_RAH_POOL_1 * qsel;
7428         else
7429                 rar_high |= E1000_RAH_POOL_1 << qsel;
7430
7431         wr32(E1000_RAL(index), rar_low);
7432         wrfl();
7433         wr32(E1000_RAH(index), rar_high);
7434         wrfl();
7435 }
7436
7437 static int igb_set_vf_mac(struct igb_adapter *adapter,
7438                           int vf, unsigned char *mac_addr)
7439 {
7440         struct e1000_hw *hw = &adapter->hw;
7441         /* VF MAC addresses start at end of receive addresses and moves
7442          * towards the first, as a result a collision should not be possible
7443          */
7444         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7445
7446         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7447
7448         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7449
7450         return 0;
7451 }
7452
7453 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7454 {
7455         struct igb_adapter *adapter = netdev_priv(netdev);
7456         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7457                 return -EINVAL;
7458         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7459         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7460         dev_info(&adapter->pdev->dev,
7461                  "Reload the VF driver to make this change effective.");
7462         if (test_bit(__IGB_DOWN, &adapter->state)) {
7463                 dev_warn(&adapter->pdev->dev,
7464                          "The VF MAC address has been set, but the PF device is not up.\n");
7465                 dev_warn(&adapter->pdev->dev,
7466                          "Bring the PF device up before attempting to use the VF device.\n");
7467         }
7468         return igb_set_vf_mac(adapter, vf, mac);
7469 }
7470
7471 static int igb_link_mbps(int internal_link_speed)
7472 {
7473         switch (internal_link_speed) {
7474         case SPEED_100:
7475                 return 100;
7476         case SPEED_1000:
7477                 return 1000;
7478         default:
7479                 return 0;
7480         }
7481 }
7482
7483 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7484                                   int link_speed)
7485 {
7486         int rf_dec, rf_int;
7487         u32 bcnrc_val;
7488
7489         if (tx_rate != 0) {
7490                 /* Calculate the rate factor values to set */
7491                 rf_int = link_speed / tx_rate;
7492                 rf_dec = (link_speed - (rf_int * tx_rate));
7493                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7494                          tx_rate;
7495
7496                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7497                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7498                               E1000_RTTBCNRC_RF_INT_MASK);
7499                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7500         } else {
7501                 bcnrc_val = 0;
7502         }
7503
7504         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7505         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7506          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7507          */
7508         wr32(E1000_RTTBCNRM, 0x14);
7509         wr32(E1000_RTTBCNRC, bcnrc_val);
7510 }
7511
7512 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7513 {
7514         int actual_link_speed, i;
7515         bool reset_rate = false;
7516
7517         /* VF TX rate limit was not set or not supported */
7518         if ((adapter->vf_rate_link_speed == 0) ||
7519             (adapter->hw.mac.type != e1000_82576))
7520                 return;
7521
7522         actual_link_speed = igb_link_mbps(adapter->link_speed);
7523         if (actual_link_speed != adapter->vf_rate_link_speed) {
7524                 reset_rate = true;
7525                 adapter->vf_rate_link_speed = 0;
7526                 dev_info(&adapter->pdev->dev,
7527                          "Link speed has been changed. VF Transmit rate is disabled\n");
7528         }
7529
7530         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7531                 if (reset_rate)
7532                         adapter->vf_data[i].tx_rate = 0;
7533
7534                 igb_set_vf_rate_limit(&adapter->hw, i,
7535                                       adapter->vf_data[i].tx_rate,
7536                                       actual_link_speed);
7537         }
7538 }
7539
7540 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7541 {
7542         struct igb_adapter *adapter = netdev_priv(netdev);
7543         struct e1000_hw *hw = &adapter->hw;
7544         int actual_link_speed;
7545
7546         if (hw->mac.type != e1000_82576)
7547                 return -EOPNOTSUPP;
7548
7549         actual_link_speed = igb_link_mbps(adapter->link_speed);
7550         if ((vf >= adapter->vfs_allocated_count) ||
7551             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7552             (tx_rate < 0) || (tx_rate > actual_link_speed))
7553                 return -EINVAL;
7554
7555         adapter->vf_rate_link_speed = actual_link_speed;
7556         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7557         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7558
7559         return 0;
7560 }
7561
7562 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7563                                    bool setting)
7564 {
7565         struct igb_adapter *adapter = netdev_priv(netdev);
7566         struct e1000_hw *hw = &adapter->hw;
7567         u32 reg_val, reg_offset;
7568
7569         if (!adapter->vfs_allocated_count)
7570                 return -EOPNOTSUPP;
7571
7572         if (vf >= adapter->vfs_allocated_count)
7573                 return -EINVAL;
7574
7575         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7576         reg_val = rd32(reg_offset);
7577         if (setting)
7578                 reg_val |= ((1 << vf) |
7579                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7580         else
7581                 reg_val &= ~((1 << vf) |
7582                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7583         wr32(reg_offset, reg_val);
7584
7585         adapter->vf_data[vf].spoofchk_enabled = setting;
7586         return E1000_SUCCESS;
7587 }
7588
7589 static int igb_ndo_get_vf_config(struct net_device *netdev,
7590                                  int vf, struct ifla_vf_info *ivi)
7591 {
7592         struct igb_adapter *adapter = netdev_priv(netdev);
7593         if (vf >= adapter->vfs_allocated_count)
7594                 return -EINVAL;
7595         ivi->vf = vf;
7596         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7597         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7598         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7599         ivi->qos = adapter->vf_data[vf].pf_qos;
7600         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7601         return 0;
7602 }
7603
7604 static void igb_vmm_control(struct igb_adapter *adapter)
7605 {
7606         struct e1000_hw *hw = &adapter->hw;
7607         u32 reg;
7608
7609         switch (hw->mac.type) {
7610         case e1000_82575:
7611         case e1000_i210:
7612         case e1000_i211:
7613         case e1000_i354:
7614         default:
7615                 /* replication is not supported for 82575 */
7616                 return;
7617         case e1000_82576:
7618                 /* notify HW that the MAC is adding vlan tags */
7619                 reg = rd32(E1000_DTXCTL);
7620                 reg |= E1000_DTXCTL_VLAN_ADDED;
7621                 wr32(E1000_DTXCTL, reg);
7622         case e1000_82580:
7623                 /* enable replication vlan tag stripping */
7624                 reg = rd32(E1000_RPLOLR);
7625                 reg |= E1000_RPLOLR_STRVLAN;
7626                 wr32(E1000_RPLOLR, reg);
7627         case e1000_i350:
7628                 /* none of the above registers are supported by i350 */
7629                 break;
7630         }
7631
7632         if (adapter->vfs_allocated_count) {
7633                 igb_vmdq_set_loopback_pf(hw, true);
7634                 igb_vmdq_set_replication_pf(hw, true);
7635                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7636                                               adapter->vfs_allocated_count);
7637         } else {
7638                 igb_vmdq_set_loopback_pf(hw, false);
7639                 igb_vmdq_set_replication_pf(hw, false);
7640         }
7641 }
7642
7643 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7644 {
7645         struct e1000_hw *hw = &adapter->hw;
7646         u32 dmac_thr;
7647         u16 hwm;
7648
7649         if (hw->mac.type > e1000_82580) {
7650                 if (adapter->flags & IGB_FLAG_DMAC) {
7651                         u32 reg;
7652
7653                         /* force threshold to 0. */
7654                         wr32(E1000_DMCTXTH, 0);
7655
7656                         /* DMA Coalescing high water mark needs to be greater
7657                          * than the Rx threshold. Set hwm to PBA - max frame
7658                          * size in 16B units, capping it at PBA - 6KB.
7659                          */
7660                         hwm = 64 * pba - adapter->max_frame_size / 16;
7661                         if (hwm < 64 * (pba - 6))
7662                                 hwm = 64 * (pba - 6);
7663                         reg = rd32(E1000_FCRTC);
7664                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7665                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7666                                 & E1000_FCRTC_RTH_COAL_MASK);
7667                         wr32(E1000_FCRTC, reg);
7668
7669                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7670                          * frame size, capping it at PBA - 10KB.
7671                          */
7672                         dmac_thr = pba - adapter->max_frame_size / 512;
7673                         if (dmac_thr < pba - 10)
7674                                 dmac_thr = pba - 10;
7675                         reg = rd32(E1000_DMACR);
7676                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7677                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7678                                 & E1000_DMACR_DMACTHR_MASK);
7679
7680                         /* transition to L0x or L1 if available..*/
7681                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7682
7683                         /* watchdog timer= +-1000 usec in 32usec intervals */
7684                         reg |= (1000 >> 5);
7685
7686                         /* Disable BMC-to-OS Watchdog Enable */
7687                         if (hw->mac.type != e1000_i354)
7688                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7689
7690                         wr32(E1000_DMACR, reg);
7691
7692                         /* no lower threshold to disable
7693                          * coalescing(smart fifb)-UTRESH=0
7694                          */
7695                         wr32(E1000_DMCRTRH, 0);
7696
7697                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7698
7699                         wr32(E1000_DMCTLX, reg);
7700
7701                         /* free space in tx packet buffer to wake from
7702                          * DMA coal
7703                          */
7704                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7705                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7706
7707                         /* make low power state decision controlled
7708                          * by DMA coal
7709                          */
7710                         reg = rd32(E1000_PCIEMISC);
7711                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7712                         wr32(E1000_PCIEMISC, reg);
7713                 } /* endif adapter->dmac is not disabled */
7714         } else if (hw->mac.type == e1000_82580) {
7715                 u32 reg = rd32(E1000_PCIEMISC);
7716                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7717                 wr32(E1000_DMACR, 0);
7718         }
7719 }
7720
7721 /**
7722  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7723  *  @hw: pointer to hardware structure
7724  *  @byte_offset: byte offset to read
7725  *  @dev_addr: device address
7726  *  @data: value read
7727  *
7728  *  Performs byte read operation over I2C interface at
7729  *  a specified device address.
7730  **/
7731 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7732                       u8 dev_addr, u8 *data)
7733 {
7734         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7735         struct i2c_client *this_client = adapter->i2c_client;
7736         s32 status;
7737         u16 swfw_mask = 0;
7738
7739         if (!this_client)
7740                 return E1000_ERR_I2C;
7741
7742         swfw_mask = E1000_SWFW_PHY0_SM;
7743
7744         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7745             != E1000_SUCCESS)
7746                 return E1000_ERR_SWFW_SYNC;
7747
7748         status = i2c_smbus_read_byte_data(this_client, byte_offset);
7749         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7750
7751         if (status < 0)
7752                 return E1000_ERR_I2C;
7753         else {
7754                 *data = status;
7755                 return E1000_SUCCESS;
7756         }
7757 }
7758
7759 /**
7760  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7761  *  @hw: pointer to hardware structure
7762  *  @byte_offset: byte offset to write
7763  *  @dev_addr: device address
7764  *  @data: value to write
7765  *
7766  *  Performs byte write operation over I2C interface at
7767  *  a specified device address.
7768  **/
7769 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7770                        u8 dev_addr, u8 data)
7771 {
7772         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7773         struct i2c_client *this_client = adapter->i2c_client;
7774         s32 status;
7775         u16 swfw_mask = E1000_SWFW_PHY0_SM;
7776
7777         if (!this_client)
7778                 return E1000_ERR_I2C;
7779
7780         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7781                 return E1000_ERR_SWFW_SYNC;
7782         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7783         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7784
7785         if (status)
7786                 return E1000_ERR_I2C;
7787         else
7788                 return E1000_SUCCESS;
7789
7790 }
7791 /* igb_main.c */