]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/extent_io.c
Btrfs: do not offset physical if we're compressed
[linux-imx.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        (unsigned long long)state->start,
65                        (unsigned long long)state->end,
66                        state->state, state->tree, atomic_read(&state->refs));
67                 list_del(&state->leak_list);
68                 kmem_cache_free(extent_state_cache, state);
69         }
70
71         while (!list_empty(&buffers)) {
72                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74                        "refs %d\n", (unsigned long long)eb->start,
75                        eb->len, atomic_read(&eb->refs));
76                 list_del(&eb->leak_list);
77                 kmem_cache_free(extent_buffer_cache, eb);
78         }
79 }
80
81 #define btrfs_debug_check_extent_io_range(inode, start, end)            \
82         __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84                 struct inode *inode, u64 start, u64 end)
85 {
86         u64 isize = i_size_read(inode);
87
88         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89                 printk_ratelimited(KERN_DEBUG
90                     "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91                                 caller,
92                                 (unsigned long long)btrfs_ino(inode),
93                                 (unsigned long long)isize,
94                                 (unsigned long long)start,
95                                 (unsigned long long)end);
96         }
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry)     do {} while (0)
101 #define btrfs_leak_debug_check()        do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
103 #endif
104
105 #define BUFFER_LRU_MAX 64
106
107 struct tree_entry {
108         u64 start;
109         u64 end;
110         struct rb_node rb_node;
111 };
112
113 struct extent_page_data {
114         struct bio *bio;
115         struct extent_io_tree *tree;
116         get_extent_t *get_extent;
117         unsigned long bio_flags;
118
119         /* tells writepage not to lock the state bits for this range
120          * it still does the unlocking
121          */
122         unsigned int extent_locked:1;
123
124         /* tells the submit_bio code to use a WRITE_SYNC */
125         unsigned int sync_io:1;
126 };
127
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132         return btrfs_sb(tree->mapping->host->i_sb);
133 }
134
135 int __init extent_io_init(void)
136 {
137         extent_state_cache = kmem_cache_create("btrfs_extent_state",
138                         sizeof(struct extent_state), 0,
139                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140         if (!extent_state_cache)
141                 return -ENOMEM;
142
143         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144                         sizeof(struct extent_buffer), 0,
145                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146         if (!extent_buffer_cache)
147                 goto free_state_cache;
148
149         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150                                      offsetof(struct btrfs_io_bio, bio));
151         if (!btrfs_bioset)
152                 goto free_buffer_cache;
153         return 0;
154
155 free_buffer_cache:
156         kmem_cache_destroy(extent_buffer_cache);
157         extent_buffer_cache = NULL;
158
159 free_state_cache:
160         kmem_cache_destroy(extent_state_cache);
161         extent_state_cache = NULL;
162         return -ENOMEM;
163 }
164
165 void extent_io_exit(void)
166 {
167         btrfs_leak_debug_check();
168
169         /*
170          * Make sure all delayed rcu free are flushed before we
171          * destroy caches.
172          */
173         rcu_barrier();
174         if (extent_state_cache)
175                 kmem_cache_destroy(extent_state_cache);
176         if (extent_buffer_cache)
177                 kmem_cache_destroy(extent_buffer_cache);
178         if (btrfs_bioset)
179                 bioset_free(btrfs_bioset);
180 }
181
182 void extent_io_tree_init(struct extent_io_tree *tree,
183                          struct address_space *mapping)
184 {
185         tree->state = RB_ROOT;
186         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187         tree->ops = NULL;
188         tree->dirty_bytes = 0;
189         spin_lock_init(&tree->lock);
190         spin_lock_init(&tree->buffer_lock);
191         tree->mapping = mapping;
192 }
193
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196         struct extent_state *state;
197
198         state = kmem_cache_alloc(extent_state_cache, mask);
199         if (!state)
200                 return state;
201         state->state = 0;
202         state->private = 0;
203         state->tree = NULL;
204         btrfs_leak_debug_add(&state->leak_list, &states);
205         atomic_set(&state->refs, 1);
206         init_waitqueue_head(&state->wq);
207         trace_alloc_extent_state(state, mask, _RET_IP_);
208         return state;
209 }
210
211 void free_extent_state(struct extent_state *state)
212 {
213         if (!state)
214                 return;
215         if (atomic_dec_and_test(&state->refs)) {
216                 WARN_ON(state->tree);
217                 btrfs_leak_debug_del(&state->leak_list);
218                 trace_free_extent_state(state, _RET_IP_);
219                 kmem_cache_free(extent_state_cache, state);
220         }
221 }
222
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224                                    struct rb_node *node)
225 {
226         struct rb_node **p = &root->rb_node;
227         struct rb_node *parent = NULL;
228         struct tree_entry *entry;
229
230         while (*p) {
231                 parent = *p;
232                 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234                 if (offset < entry->start)
235                         p = &(*p)->rb_left;
236                 else if (offset > entry->end)
237                         p = &(*p)->rb_right;
238                 else
239                         return parent;
240         }
241
242         rb_link_node(node, parent, p);
243         rb_insert_color(node, root);
244         return NULL;
245 }
246
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248                                      struct rb_node **prev_ret,
249                                      struct rb_node **next_ret)
250 {
251         struct rb_root *root = &tree->state;
252         struct rb_node *n = root->rb_node;
253         struct rb_node *prev = NULL;
254         struct rb_node *orig_prev = NULL;
255         struct tree_entry *entry;
256         struct tree_entry *prev_entry = NULL;
257
258         while (n) {
259                 entry = rb_entry(n, struct tree_entry, rb_node);
260                 prev = n;
261                 prev_entry = entry;
262
263                 if (offset < entry->start)
264                         n = n->rb_left;
265                 else if (offset > entry->end)
266                         n = n->rb_right;
267                 else
268                         return n;
269         }
270
271         if (prev_ret) {
272                 orig_prev = prev;
273                 while (prev && offset > prev_entry->end) {
274                         prev = rb_next(prev);
275                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276                 }
277                 *prev_ret = prev;
278                 prev = orig_prev;
279         }
280
281         if (next_ret) {
282                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283                 while (prev && offset < prev_entry->start) {
284                         prev = rb_prev(prev);
285                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286                 }
287                 *next_ret = prev;
288         }
289         return NULL;
290 }
291
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293                                           u64 offset)
294 {
295         struct rb_node *prev = NULL;
296         struct rb_node *ret;
297
298         ret = __etree_search(tree, offset, &prev, NULL);
299         if (!ret)
300                 return prev;
301         return ret;
302 }
303
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305                      struct extent_state *other)
306 {
307         if (tree->ops && tree->ops->merge_extent_hook)
308                 tree->ops->merge_extent_hook(tree->mapping->host, new,
309                                              other);
310 }
311
312 /*
313  * utility function to look for merge candidates inside a given range.
314  * Any extents with matching state are merged together into a single
315  * extent in the tree.  Extents with EXTENT_IO in their state field
316  * are not merged because the end_io handlers need to be able to do
317  * operations on them without sleeping (or doing allocations/splits).
318  *
319  * This should be called with the tree lock held.
320  */
321 static void merge_state(struct extent_io_tree *tree,
322                         struct extent_state *state)
323 {
324         struct extent_state *other;
325         struct rb_node *other_node;
326
327         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328                 return;
329
330         other_node = rb_prev(&state->rb_node);
331         if (other_node) {
332                 other = rb_entry(other_node, struct extent_state, rb_node);
333                 if (other->end == state->start - 1 &&
334                     other->state == state->state) {
335                         merge_cb(tree, state, other);
336                         state->start = other->start;
337                         other->tree = NULL;
338                         rb_erase(&other->rb_node, &tree->state);
339                         free_extent_state(other);
340                 }
341         }
342         other_node = rb_next(&state->rb_node);
343         if (other_node) {
344                 other = rb_entry(other_node, struct extent_state, rb_node);
345                 if (other->start == state->end + 1 &&
346                     other->state == state->state) {
347                         merge_cb(tree, state, other);
348                         state->end = other->end;
349                         other->tree = NULL;
350                         rb_erase(&other->rb_node, &tree->state);
351                         free_extent_state(other);
352                 }
353         }
354 }
355
356 static void set_state_cb(struct extent_io_tree *tree,
357                          struct extent_state *state, unsigned long *bits)
358 {
359         if (tree->ops && tree->ops->set_bit_hook)
360                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362
363 static void clear_state_cb(struct extent_io_tree *tree,
364                            struct extent_state *state, unsigned long *bits)
365 {
366         if (tree->ops && tree->ops->clear_bit_hook)
367                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369
370 static void set_state_bits(struct extent_io_tree *tree,
371                            struct extent_state *state, unsigned long *bits);
372
373 /*
374  * insert an extent_state struct into the tree.  'bits' are set on the
375  * struct before it is inserted.
376  *
377  * This may return -EEXIST if the extent is already there, in which case the
378  * state struct is freed.
379  *
380  * The tree lock is not taken internally.  This is a utility function and
381  * probably isn't what you want to call (see set/clear_extent_bit).
382  */
383 static int insert_state(struct extent_io_tree *tree,
384                         struct extent_state *state, u64 start, u64 end,
385                         unsigned long *bits)
386 {
387         struct rb_node *node;
388
389         if (end < start)
390                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391                        (unsigned long long)end,
392                        (unsigned long long)start);
393         state->start = start;
394         state->end = end;
395
396         set_state_bits(tree, state, bits);
397
398         node = tree_insert(&tree->state, end, &state->rb_node);
399         if (node) {
400                 struct extent_state *found;
401                 found = rb_entry(node, struct extent_state, rb_node);
402                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403                        "%llu %llu\n", (unsigned long long)found->start,
404                        (unsigned long long)found->end,
405                        (unsigned long long)start, (unsigned long long)end);
406                 return -EEXIST;
407         }
408         state->tree = tree;
409         merge_state(tree, state);
410         return 0;
411 }
412
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414                      u64 split)
415 {
416         if (tree->ops && tree->ops->split_extent_hook)
417                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435                        struct extent_state *prealloc, u64 split)
436 {
437         struct rb_node *node;
438
439         split_cb(tree, orig, split);
440
441         prealloc->start = orig->start;
442         prealloc->end = split - 1;
443         prealloc->state = orig->state;
444         orig->start = split;
445
446         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447         if (node) {
448                 free_extent_state(prealloc);
449                 return -EEXIST;
450         }
451         prealloc->tree = tree;
452         return 0;
453 }
454
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457         struct rb_node *next = rb_next(&state->rb_node);
458         if (next)
459                 return rb_entry(next, struct extent_state, rb_node);
460         else
461                 return NULL;
462 }
463
464 /*
465  * utility function to clear some bits in an extent state struct.
466  * it will optionally wake up any one waiting on this state (wake == 1).
467  *
468  * If no bits are set on the state struct after clearing things, the
469  * struct is freed and removed from the tree
470  */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472                                             struct extent_state *state,
473                                             unsigned long *bits, int wake)
474 {
475         struct extent_state *next;
476         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477
478         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479                 u64 range = state->end - state->start + 1;
480                 WARN_ON(range > tree->dirty_bytes);
481                 tree->dirty_bytes -= range;
482         }
483         clear_state_cb(tree, state, bits);
484         state->state &= ~bits_to_clear;
485         if (wake)
486                 wake_up(&state->wq);
487         if (state->state == 0) {
488                 next = next_state(state);
489                 if (state->tree) {
490                         rb_erase(&state->rb_node, &tree->state);
491                         state->tree = NULL;
492                         free_extent_state(state);
493                 } else {
494                         WARN_ON(1);
495                 }
496         } else {
497                 merge_state(tree, state);
498                 next = next_state(state);
499         }
500         return next;
501 }
502
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506         if (!prealloc)
507                 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509         return prealloc;
510 }
511
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515                     "Extent tree was modified by another "
516                     "thread while locked.");
517 }
518
519 /*
520  * clear some bits on a range in the tree.  This may require splitting
521  * or inserting elements in the tree, so the gfp mask is used to
522  * indicate which allocations or sleeping are allowed.
523  *
524  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525  * the given range from the tree regardless of state (ie for truncate).
526  *
527  * the range [start, end] is inclusive.
528  *
529  * This takes the tree lock, and returns 0 on success and < 0 on error.
530  */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532                      unsigned long bits, int wake, int delete,
533                      struct extent_state **cached_state,
534                      gfp_t mask)
535 {
536         struct extent_state *state;
537         struct extent_state *cached;
538         struct extent_state *prealloc = NULL;
539         struct rb_node *node;
540         u64 last_end;
541         int err;
542         int clear = 0;
543
544         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
546         if (bits & EXTENT_DELALLOC)
547                 bits |= EXTENT_NORESERVE;
548
549         if (delete)
550                 bits |= ~EXTENT_CTLBITS;
551         bits |= EXTENT_FIRST_DELALLOC;
552
553         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554                 clear = 1;
555 again:
556         if (!prealloc && (mask & __GFP_WAIT)) {
557                 prealloc = alloc_extent_state(mask);
558                 if (!prealloc)
559                         return -ENOMEM;
560         }
561
562         spin_lock(&tree->lock);
563         if (cached_state) {
564                 cached = *cached_state;
565
566                 if (clear) {
567                         *cached_state = NULL;
568                         cached_state = NULL;
569                 }
570
571                 if (cached && cached->tree && cached->start <= start &&
572                     cached->end > start) {
573                         if (clear)
574                                 atomic_dec(&cached->refs);
575                         state = cached;
576                         goto hit_next;
577                 }
578                 if (clear)
579                         free_extent_state(cached);
580         }
581         /*
582          * this search will find the extents that end after
583          * our range starts
584          */
585         node = tree_search(tree, start);
586         if (!node)
587                 goto out;
588         state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590         if (state->start > end)
591                 goto out;
592         WARN_ON(state->end < start);
593         last_end = state->end;
594
595         /* the state doesn't have the wanted bits, go ahead */
596         if (!(state->state & bits)) {
597                 state = next_state(state);
598                 goto next;
599         }
600
601         /*
602          *     | ---- desired range ---- |
603          *  | state | or
604          *  | ------------- state -------------- |
605          *
606          * We need to split the extent we found, and may flip
607          * bits on second half.
608          *
609          * If the extent we found extends past our range, we
610          * just split and search again.  It'll get split again
611          * the next time though.
612          *
613          * If the extent we found is inside our range, we clear
614          * the desired bit on it.
615          */
616
617         if (state->start < start) {
618                 prealloc = alloc_extent_state_atomic(prealloc);
619                 BUG_ON(!prealloc);
620                 err = split_state(tree, state, prealloc, start);
621                 if (err)
622                         extent_io_tree_panic(tree, err);
623
624                 prealloc = NULL;
625                 if (err)
626                         goto out;
627                 if (state->end <= end) {
628                         state = clear_state_bit(tree, state, &bits, wake);
629                         goto next;
630                 }
631                 goto search_again;
632         }
633         /*
634          * | ---- desired range ---- |
635          *                        | state |
636          * We need to split the extent, and clear the bit
637          * on the first half
638          */
639         if (state->start <= end && state->end > end) {
640                 prealloc = alloc_extent_state_atomic(prealloc);
641                 BUG_ON(!prealloc);
642                 err = split_state(tree, state, prealloc, end + 1);
643                 if (err)
644                         extent_io_tree_panic(tree, err);
645
646                 if (wake)
647                         wake_up(&state->wq);
648
649                 clear_state_bit(tree, prealloc, &bits, wake);
650
651                 prealloc = NULL;
652                 goto out;
653         }
654
655         state = clear_state_bit(tree, state, &bits, wake);
656 next:
657         if (last_end == (u64)-1)
658                 goto out;
659         start = last_end + 1;
660         if (start <= end && state && !need_resched())
661                 goto hit_next;
662         goto search_again;
663
664 out:
665         spin_unlock(&tree->lock);
666         if (prealloc)
667                 free_extent_state(prealloc);
668
669         return 0;
670
671 search_again:
672         if (start > end)
673                 goto out;
674         spin_unlock(&tree->lock);
675         if (mask & __GFP_WAIT)
676                 cond_resched();
677         goto again;
678 }
679
680 static void wait_on_state(struct extent_io_tree *tree,
681                           struct extent_state *state)
682                 __releases(tree->lock)
683                 __acquires(tree->lock)
684 {
685         DEFINE_WAIT(wait);
686         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687         spin_unlock(&tree->lock);
688         schedule();
689         spin_lock(&tree->lock);
690         finish_wait(&state->wq, &wait);
691 }
692
693 /*
694  * waits for one or more bits to clear on a range in the state tree.
695  * The range [start, end] is inclusive.
696  * The tree lock is taken by this function
697  */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699                             unsigned long bits)
700 {
701         struct extent_state *state;
702         struct rb_node *node;
703
704         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
706         spin_lock(&tree->lock);
707 again:
708         while (1) {
709                 /*
710                  * this search will find all the extents that end after
711                  * our range starts
712                  */
713                 node = tree_search(tree, start);
714                 if (!node)
715                         break;
716
717                 state = rb_entry(node, struct extent_state, rb_node);
718
719                 if (state->start > end)
720                         goto out;
721
722                 if (state->state & bits) {
723                         start = state->start;
724                         atomic_inc(&state->refs);
725                         wait_on_state(tree, state);
726                         free_extent_state(state);
727                         goto again;
728                 }
729                 start = state->end + 1;
730
731                 if (start > end)
732                         break;
733
734                 cond_resched_lock(&tree->lock);
735         }
736 out:
737         spin_unlock(&tree->lock);
738 }
739
740 static void set_state_bits(struct extent_io_tree *tree,
741                            struct extent_state *state,
742                            unsigned long *bits)
743 {
744         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745
746         set_state_cb(tree, state, bits);
747         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748                 u64 range = state->end - state->start + 1;
749                 tree->dirty_bytes += range;
750         }
751         state->state |= bits_to_set;
752 }
753
754 static void cache_state(struct extent_state *state,
755                         struct extent_state **cached_ptr)
756 {
757         if (cached_ptr && !(*cached_ptr)) {
758                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759                         *cached_ptr = state;
760                         atomic_inc(&state->refs);
761                 }
762         }
763 }
764
765 static void uncache_state(struct extent_state **cached_ptr)
766 {
767         if (cached_ptr && (*cached_ptr)) {
768                 struct extent_state *state = *cached_ptr;
769                 *cached_ptr = NULL;
770                 free_extent_state(state);
771         }
772 }
773
774 /*
775  * set some bits on a range in the tree.  This may require allocations or
776  * sleeping, so the gfp mask is used to indicate what is allowed.
777  *
778  * If any of the exclusive bits are set, this will fail with -EEXIST if some
779  * part of the range already has the desired bits set.  The start of the
780  * existing range is returned in failed_start in this case.
781  *
782  * [start, end] is inclusive This takes the tree lock.
783  */
784
785 static int __must_check
786 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
787                  unsigned long bits, unsigned long exclusive_bits,
788                  u64 *failed_start, struct extent_state **cached_state,
789                  gfp_t mask)
790 {
791         struct extent_state *state;
792         struct extent_state *prealloc = NULL;
793         struct rb_node *node;
794         int err = 0;
795         u64 last_start;
796         u64 last_end;
797
798         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799
800         bits |= EXTENT_FIRST_DELALLOC;
801 again:
802         if (!prealloc && (mask & __GFP_WAIT)) {
803                 prealloc = alloc_extent_state(mask);
804                 BUG_ON(!prealloc);
805         }
806
807         spin_lock(&tree->lock);
808         if (cached_state && *cached_state) {
809                 state = *cached_state;
810                 if (state->start <= start && state->end > start &&
811                     state->tree) {
812                         node = &state->rb_node;
813                         goto hit_next;
814                 }
815         }
816         /*
817          * this search will find all the extents that end after
818          * our range starts.
819          */
820         node = tree_search(tree, start);
821         if (!node) {
822                 prealloc = alloc_extent_state_atomic(prealloc);
823                 BUG_ON(!prealloc);
824                 err = insert_state(tree, prealloc, start, end, &bits);
825                 if (err)
826                         extent_io_tree_panic(tree, err);
827
828                 prealloc = NULL;
829                 goto out;
830         }
831         state = rb_entry(node, struct extent_state, rb_node);
832 hit_next:
833         last_start = state->start;
834         last_end = state->end;
835
836         /*
837          * | ---- desired range ---- |
838          * | state |
839          *
840          * Just lock what we found and keep going
841          */
842         if (state->start == start && state->end <= end) {
843                 if (state->state & exclusive_bits) {
844                         *failed_start = state->start;
845                         err = -EEXIST;
846                         goto out;
847                 }
848
849                 set_state_bits(tree, state, &bits);
850                 cache_state(state, cached_state);
851                 merge_state(tree, state);
852                 if (last_end == (u64)-1)
853                         goto out;
854                 start = last_end + 1;
855                 state = next_state(state);
856                 if (start < end && state && state->start == start &&
857                     !need_resched())
858                         goto hit_next;
859                 goto search_again;
860         }
861
862         /*
863          *     | ---- desired range ---- |
864          * | state |
865          *   or
866          * | ------------- state -------------- |
867          *
868          * We need to split the extent we found, and may flip bits on
869          * second half.
870          *
871          * If the extent we found extends past our
872          * range, we just split and search again.  It'll get split
873          * again the next time though.
874          *
875          * If the extent we found is inside our range, we set the
876          * desired bit on it.
877          */
878         if (state->start < start) {
879                 if (state->state & exclusive_bits) {
880                         *failed_start = start;
881                         err = -EEXIST;
882                         goto out;
883                 }
884
885                 prealloc = alloc_extent_state_atomic(prealloc);
886                 BUG_ON(!prealloc);
887                 err = split_state(tree, state, prealloc, start);
888                 if (err)
889                         extent_io_tree_panic(tree, err);
890
891                 prealloc = NULL;
892                 if (err)
893                         goto out;
894                 if (state->end <= end) {
895                         set_state_bits(tree, state, &bits);
896                         cache_state(state, cached_state);
897                         merge_state(tree, state);
898                         if (last_end == (u64)-1)
899                                 goto out;
900                         start = last_end + 1;
901                         state = next_state(state);
902                         if (start < end && state && state->start == start &&
903                             !need_resched())
904                                 goto hit_next;
905                 }
906                 goto search_again;
907         }
908         /*
909          * | ---- desired range ---- |
910          *     | state | or               | state |
911          *
912          * There's a hole, we need to insert something in it and
913          * ignore the extent we found.
914          */
915         if (state->start > start) {
916                 u64 this_end;
917                 if (end < last_start)
918                         this_end = end;
919                 else
920                         this_end = last_start - 1;
921
922                 prealloc = alloc_extent_state_atomic(prealloc);
923                 BUG_ON(!prealloc);
924
925                 /*
926                  * Avoid to free 'prealloc' if it can be merged with
927                  * the later extent.
928                  */
929                 err = insert_state(tree, prealloc, start, this_end,
930                                    &bits);
931                 if (err)
932                         extent_io_tree_panic(tree, err);
933
934                 cache_state(prealloc, cached_state);
935                 prealloc = NULL;
936                 start = this_end + 1;
937                 goto search_again;
938         }
939         /*
940          * | ---- desired range ---- |
941          *                        | state |
942          * We need to split the extent, and set the bit
943          * on the first half
944          */
945         if (state->start <= end && state->end > end) {
946                 if (state->state & exclusive_bits) {
947                         *failed_start = start;
948                         err = -EEXIST;
949                         goto out;
950                 }
951
952                 prealloc = alloc_extent_state_atomic(prealloc);
953                 BUG_ON(!prealloc);
954                 err = split_state(tree, state, prealloc, end + 1);
955                 if (err)
956                         extent_io_tree_panic(tree, err);
957
958                 set_state_bits(tree, prealloc, &bits);
959                 cache_state(prealloc, cached_state);
960                 merge_state(tree, prealloc);
961                 prealloc = NULL;
962                 goto out;
963         }
964
965         goto search_again;
966
967 out:
968         spin_unlock(&tree->lock);
969         if (prealloc)
970                 free_extent_state(prealloc);
971
972         return err;
973
974 search_again:
975         if (start > end)
976                 goto out;
977         spin_unlock(&tree->lock);
978         if (mask & __GFP_WAIT)
979                 cond_resched();
980         goto again;
981 }
982
983 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984                    unsigned long bits, u64 * failed_start,
985                    struct extent_state **cached_state, gfp_t mask)
986 {
987         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988                                 cached_state, mask);
989 }
990
991
992 /**
993  * convert_extent_bit - convert all bits in a given range from one bit to
994  *                      another
995  * @tree:       the io tree to search
996  * @start:      the start offset in bytes
997  * @end:        the end offset in bytes (inclusive)
998  * @bits:       the bits to set in this range
999  * @clear_bits: the bits to clear in this range
1000  * @cached_state:       state that we're going to cache
1001  * @mask:       the allocation mask
1002  *
1003  * This will go through and set bits for the given range.  If any states exist
1004  * already in this range they are set with the given bit and cleared of the
1005  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1006  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1007  * boundary bits like LOCK.
1008  */
1009 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1010                        unsigned long bits, unsigned long clear_bits,
1011                        struct extent_state **cached_state, gfp_t mask)
1012 {
1013         struct extent_state *state;
1014         struct extent_state *prealloc = NULL;
1015         struct rb_node *node;
1016         int err = 0;
1017         u64 last_start;
1018         u64 last_end;
1019
1020         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
1022 again:
1023         if (!prealloc && (mask & __GFP_WAIT)) {
1024                 prealloc = alloc_extent_state(mask);
1025                 if (!prealloc)
1026                         return -ENOMEM;
1027         }
1028
1029         spin_lock(&tree->lock);
1030         if (cached_state && *cached_state) {
1031                 state = *cached_state;
1032                 if (state->start <= start && state->end > start &&
1033                     state->tree) {
1034                         node = &state->rb_node;
1035                         goto hit_next;
1036                 }
1037         }
1038
1039         /*
1040          * this search will find all the extents that end after
1041          * our range starts.
1042          */
1043         node = tree_search(tree, start);
1044         if (!node) {
1045                 prealloc = alloc_extent_state_atomic(prealloc);
1046                 if (!prealloc) {
1047                         err = -ENOMEM;
1048                         goto out;
1049                 }
1050                 err = insert_state(tree, prealloc, start, end, &bits);
1051                 prealloc = NULL;
1052                 if (err)
1053                         extent_io_tree_panic(tree, err);
1054                 goto out;
1055         }
1056         state = rb_entry(node, struct extent_state, rb_node);
1057 hit_next:
1058         last_start = state->start;
1059         last_end = state->end;
1060
1061         /*
1062          * | ---- desired range ---- |
1063          * | state |
1064          *
1065          * Just lock what we found and keep going
1066          */
1067         if (state->start == start && state->end <= end) {
1068                 set_state_bits(tree, state, &bits);
1069                 cache_state(state, cached_state);
1070                 state = clear_state_bit(tree, state, &clear_bits, 0);
1071                 if (last_end == (u64)-1)
1072                         goto out;
1073                 start = last_end + 1;
1074                 if (start < end && state && state->start == start &&
1075                     !need_resched())
1076                         goto hit_next;
1077                 goto search_again;
1078         }
1079
1080         /*
1081          *     | ---- desired range ---- |
1082          * | state |
1083          *   or
1084          * | ------------- state -------------- |
1085          *
1086          * We need to split the extent we found, and may flip bits on
1087          * second half.
1088          *
1089          * If the extent we found extends past our
1090          * range, we just split and search again.  It'll get split
1091          * again the next time though.
1092          *
1093          * If the extent we found is inside our range, we set the
1094          * desired bit on it.
1095          */
1096         if (state->start < start) {
1097                 prealloc = alloc_extent_state_atomic(prealloc);
1098                 if (!prealloc) {
1099                         err = -ENOMEM;
1100                         goto out;
1101                 }
1102                 err = split_state(tree, state, prealloc, start);
1103                 if (err)
1104                         extent_io_tree_panic(tree, err);
1105                 prealloc = NULL;
1106                 if (err)
1107                         goto out;
1108                 if (state->end <= end) {
1109                         set_state_bits(tree, state, &bits);
1110                         cache_state(state, cached_state);
1111                         state = clear_state_bit(tree, state, &clear_bits, 0);
1112                         if (last_end == (u64)-1)
1113                                 goto out;
1114                         start = last_end + 1;
1115                         if (start < end && state && state->start == start &&
1116                             !need_resched())
1117                                 goto hit_next;
1118                 }
1119                 goto search_again;
1120         }
1121         /*
1122          * | ---- desired range ---- |
1123          *     | state | or               | state |
1124          *
1125          * There's a hole, we need to insert something in it and
1126          * ignore the extent we found.
1127          */
1128         if (state->start > start) {
1129                 u64 this_end;
1130                 if (end < last_start)
1131                         this_end = end;
1132                 else
1133                         this_end = last_start - 1;
1134
1135                 prealloc = alloc_extent_state_atomic(prealloc);
1136                 if (!prealloc) {
1137                         err = -ENOMEM;
1138                         goto out;
1139                 }
1140
1141                 /*
1142                  * Avoid to free 'prealloc' if it can be merged with
1143                  * the later extent.
1144                  */
1145                 err = insert_state(tree, prealloc, start, this_end,
1146                                    &bits);
1147                 if (err)
1148                         extent_io_tree_panic(tree, err);
1149                 cache_state(prealloc, cached_state);
1150                 prealloc = NULL;
1151                 start = this_end + 1;
1152                 goto search_again;
1153         }
1154         /*
1155          * | ---- desired range ---- |
1156          *                        | state |
1157          * We need to split the extent, and set the bit
1158          * on the first half
1159          */
1160         if (state->start <= end && state->end > end) {
1161                 prealloc = alloc_extent_state_atomic(prealloc);
1162                 if (!prealloc) {
1163                         err = -ENOMEM;
1164                         goto out;
1165                 }
1166
1167                 err = split_state(tree, state, prealloc, end + 1);
1168                 if (err)
1169                         extent_io_tree_panic(tree, err);
1170
1171                 set_state_bits(tree, prealloc, &bits);
1172                 cache_state(prealloc, cached_state);
1173                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1174                 prealloc = NULL;
1175                 goto out;
1176         }
1177
1178         goto search_again;
1179
1180 out:
1181         spin_unlock(&tree->lock);
1182         if (prealloc)
1183                 free_extent_state(prealloc);
1184
1185         return err;
1186
1187 search_again:
1188         if (start > end)
1189                 goto out;
1190         spin_unlock(&tree->lock);
1191         if (mask & __GFP_WAIT)
1192                 cond_resched();
1193         goto again;
1194 }
1195
1196 /* wrappers around set/clear extent bit */
1197 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198                      gfp_t mask)
1199 {
1200         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1201                               NULL, mask);
1202 }
1203
1204 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205                     unsigned long bits, gfp_t mask)
1206 {
1207         return set_extent_bit(tree, start, end, bits, NULL,
1208                               NULL, mask);
1209 }
1210
1211 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1212                       unsigned long bits, gfp_t mask)
1213 {
1214         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1215 }
1216
1217 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1218                         struct extent_state **cached_state, gfp_t mask)
1219 {
1220         return set_extent_bit(tree, start, end,
1221                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1222                               NULL, cached_state, mask);
1223 }
1224
1225 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226                       struct extent_state **cached_state, gfp_t mask)
1227 {
1228         return set_extent_bit(tree, start, end,
1229                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230                               NULL, cached_state, mask);
1231 }
1232
1233 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234                        gfp_t mask)
1235 {
1236         return clear_extent_bit(tree, start, end,
1237                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1238                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1239 }
1240
1241 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242                      gfp_t mask)
1243 {
1244         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1245                               NULL, mask);
1246 }
1247
1248 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249                         struct extent_state **cached_state, gfp_t mask)
1250 {
1251         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1252                               cached_state, mask);
1253 }
1254
1255 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256                           struct extent_state **cached_state, gfp_t mask)
1257 {
1258         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1259                                 cached_state, mask);
1260 }
1261
1262 /*
1263  * either insert or lock state struct between start and end use mask to tell
1264  * us if waiting is desired.
1265  */
1266 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1267                      unsigned long bits, struct extent_state **cached_state)
1268 {
1269         int err;
1270         u64 failed_start;
1271         while (1) {
1272                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273                                        EXTENT_LOCKED, &failed_start,
1274                                        cached_state, GFP_NOFS);
1275                 if (err == -EEXIST) {
1276                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277                         start = failed_start;
1278                 } else
1279                         break;
1280                 WARN_ON(start > end);
1281         }
1282         return err;
1283 }
1284
1285 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1286 {
1287         return lock_extent_bits(tree, start, end, 0, NULL);
1288 }
1289
1290 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1291 {
1292         int err;
1293         u64 failed_start;
1294
1295         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296                                &failed_start, NULL, GFP_NOFS);
1297         if (err == -EEXIST) {
1298                 if (failed_start > start)
1299                         clear_extent_bit(tree, start, failed_start - 1,
1300                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1301                 return 0;
1302         }
1303         return 1;
1304 }
1305
1306 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307                          struct extent_state **cached, gfp_t mask)
1308 {
1309         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310                                 mask);
1311 }
1312
1313 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1314 {
1315         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1316                                 GFP_NOFS);
1317 }
1318
1319 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321         unsigned long index = start >> PAGE_CACHE_SHIFT;
1322         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323         struct page *page;
1324
1325         while (index <= end_index) {
1326                 page = find_get_page(inode->i_mapping, index);
1327                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328                 clear_page_dirty_for_io(page);
1329                 page_cache_release(page);
1330                 index++;
1331         }
1332         return 0;
1333 }
1334
1335 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336 {
1337         unsigned long index = start >> PAGE_CACHE_SHIFT;
1338         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339         struct page *page;
1340
1341         while (index <= end_index) {
1342                 page = find_get_page(inode->i_mapping, index);
1343                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344                 account_page_redirty(page);
1345                 __set_page_dirty_nobuffers(page);
1346                 page_cache_release(page);
1347                 index++;
1348         }
1349         return 0;
1350 }
1351
1352 /*
1353  * helper function to set both pages and extents in the tree writeback
1354  */
1355 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1356 {
1357         unsigned long index = start >> PAGE_CACHE_SHIFT;
1358         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359         struct page *page;
1360
1361         while (index <= end_index) {
1362                 page = find_get_page(tree->mapping, index);
1363                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364                 set_page_writeback(page);
1365                 page_cache_release(page);
1366                 index++;
1367         }
1368         return 0;
1369 }
1370
1371 /* find the first state struct with 'bits' set after 'start', and
1372  * return it.  tree->lock must be held.  NULL will returned if
1373  * nothing was found after 'start'
1374  */
1375 static struct extent_state *
1376 find_first_extent_bit_state(struct extent_io_tree *tree,
1377                             u64 start, unsigned long bits)
1378 {
1379         struct rb_node *node;
1380         struct extent_state *state;
1381
1382         /*
1383          * this search will find all the extents that end after
1384          * our range starts.
1385          */
1386         node = tree_search(tree, start);
1387         if (!node)
1388                 goto out;
1389
1390         while (1) {
1391                 state = rb_entry(node, struct extent_state, rb_node);
1392                 if (state->end >= start && (state->state & bits))
1393                         return state;
1394
1395                 node = rb_next(node);
1396                 if (!node)
1397                         break;
1398         }
1399 out:
1400         return NULL;
1401 }
1402
1403 /*
1404  * find the first offset in the io tree with 'bits' set. zero is
1405  * returned if we find something, and *start_ret and *end_ret are
1406  * set to reflect the state struct that was found.
1407  *
1408  * If nothing was found, 1 is returned. If found something, return 0.
1409  */
1410 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1411                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1412                           struct extent_state **cached_state)
1413 {
1414         struct extent_state *state;
1415         struct rb_node *n;
1416         int ret = 1;
1417
1418         spin_lock(&tree->lock);
1419         if (cached_state && *cached_state) {
1420                 state = *cached_state;
1421                 if (state->end == start - 1 && state->tree) {
1422                         n = rb_next(&state->rb_node);
1423                         while (n) {
1424                                 state = rb_entry(n, struct extent_state,
1425                                                  rb_node);
1426                                 if (state->state & bits)
1427                                         goto got_it;
1428                                 n = rb_next(n);
1429                         }
1430                         free_extent_state(*cached_state);
1431                         *cached_state = NULL;
1432                         goto out;
1433                 }
1434                 free_extent_state(*cached_state);
1435                 *cached_state = NULL;
1436         }
1437
1438         state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440         if (state) {
1441                 cache_state(state, cached_state);
1442                 *start_ret = state->start;
1443                 *end_ret = state->end;
1444                 ret = 0;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return ret;
1449 }
1450
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * 1 is returned if we find something, 0 if nothing was in the tree
1456  */
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458                                         u64 *start, u64 *end, u64 max_bytes,
1459                                         struct extent_state **cached_state)
1460 {
1461         struct rb_node *node;
1462         struct extent_state *state;
1463         u64 cur_start = *start;
1464         u64 found = 0;
1465         u64 total_bytes = 0;
1466
1467         spin_lock(&tree->lock);
1468
1469         /*
1470          * this search will find all the extents that end after
1471          * our range starts.
1472          */
1473         node = tree_search(tree, cur_start);
1474         if (!node) {
1475                 if (!found)
1476                         *end = (u64)-1;
1477                 goto out;
1478         }
1479
1480         while (1) {
1481                 state = rb_entry(node, struct extent_state, rb_node);
1482                 if (found && (state->start != cur_start ||
1483                               (state->state & EXTENT_BOUNDARY))) {
1484                         goto out;
1485                 }
1486                 if (!(state->state & EXTENT_DELALLOC)) {
1487                         if (!found)
1488                                 *end = state->end;
1489                         goto out;
1490                 }
1491                 if (!found) {
1492                         *start = state->start;
1493                         *cached_state = state;
1494                         atomic_inc(&state->refs);
1495                 }
1496                 found++;
1497                 *end = state->end;
1498                 cur_start = state->end + 1;
1499                 node = rb_next(node);
1500                 if (!node)
1501                         break;
1502                 total_bytes += state->end - state->start + 1;
1503                 if (total_bytes >= max_bytes)
1504                         break;
1505         }
1506 out:
1507         spin_unlock(&tree->lock);
1508         return found;
1509 }
1510
1511 static noinline void __unlock_for_delalloc(struct inode *inode,
1512                                            struct page *locked_page,
1513                                            u64 start, u64 end)
1514 {
1515         int ret;
1516         struct page *pages[16];
1517         unsigned long index = start >> PAGE_CACHE_SHIFT;
1518         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519         unsigned long nr_pages = end_index - index + 1;
1520         int i;
1521
1522         if (index == locked_page->index && end_index == index)
1523                 return;
1524
1525         while (nr_pages > 0) {
1526                 ret = find_get_pages_contig(inode->i_mapping, index,
1527                                      min_t(unsigned long, nr_pages,
1528                                      ARRAY_SIZE(pages)), pages);
1529                 for (i = 0; i < ret; i++) {
1530                         if (pages[i] != locked_page)
1531                                 unlock_page(pages[i]);
1532                         page_cache_release(pages[i]);
1533                 }
1534                 nr_pages -= ret;
1535                 index += ret;
1536                 cond_resched();
1537         }
1538 }
1539
1540 static noinline int lock_delalloc_pages(struct inode *inode,
1541                                         struct page *locked_page,
1542                                         u64 delalloc_start,
1543                                         u64 delalloc_end)
1544 {
1545         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546         unsigned long start_index = index;
1547         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548         unsigned long pages_locked = 0;
1549         struct page *pages[16];
1550         unsigned long nrpages;
1551         int ret;
1552         int i;
1553
1554         /* the caller is responsible for locking the start index */
1555         if (index == locked_page->index && index == end_index)
1556                 return 0;
1557
1558         /* skip the page at the start index */
1559         nrpages = end_index - index + 1;
1560         while (nrpages > 0) {
1561                 ret = find_get_pages_contig(inode->i_mapping, index,
1562                                      min_t(unsigned long,
1563                                      nrpages, ARRAY_SIZE(pages)), pages);
1564                 if (ret == 0) {
1565                         ret = -EAGAIN;
1566                         goto done;
1567                 }
1568                 /* now we have an array of pages, lock them all */
1569                 for (i = 0; i < ret; i++) {
1570                         /*
1571                          * the caller is taking responsibility for
1572                          * locked_page
1573                          */
1574                         if (pages[i] != locked_page) {
1575                                 lock_page(pages[i]);
1576                                 if (!PageDirty(pages[i]) ||
1577                                     pages[i]->mapping != inode->i_mapping) {
1578                                         ret = -EAGAIN;
1579                                         unlock_page(pages[i]);
1580                                         page_cache_release(pages[i]);
1581                                         goto done;
1582                                 }
1583                         }
1584                         page_cache_release(pages[i]);
1585                         pages_locked++;
1586                 }
1587                 nrpages -= ret;
1588                 index += ret;
1589                 cond_resched();
1590         }
1591         ret = 0;
1592 done:
1593         if (ret && pages_locked) {
1594                 __unlock_for_delalloc(inode, locked_page,
1595                               delalloc_start,
1596                               ((u64)(start_index + pages_locked - 1)) <<
1597                               PAGE_CACHE_SHIFT);
1598         }
1599         return ret;
1600 }
1601
1602 /*
1603  * find a contiguous range of bytes in the file marked as delalloc, not
1604  * more than 'max_bytes'.  start and end are used to return the range,
1605  *
1606  * 1 is returned if we find something, 0 if nothing was in the tree
1607  */
1608 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609                                              struct extent_io_tree *tree,
1610                                              struct page *locked_page,
1611                                              u64 *start, u64 *end,
1612                                              u64 max_bytes)
1613 {
1614         u64 delalloc_start;
1615         u64 delalloc_end;
1616         u64 found;
1617         struct extent_state *cached_state = NULL;
1618         int ret;
1619         int loops = 0;
1620
1621 again:
1622         /* step one, find a bunch of delalloc bytes starting at start */
1623         delalloc_start = *start;
1624         delalloc_end = 0;
1625         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1626                                     max_bytes, &cached_state);
1627         if (!found || delalloc_end <= *start) {
1628                 *start = delalloc_start;
1629                 *end = delalloc_end;
1630                 free_extent_state(cached_state);
1631                 return found;
1632         }
1633
1634         /*
1635          * start comes from the offset of locked_page.  We have to lock
1636          * pages in order, so we can't process delalloc bytes before
1637          * locked_page
1638          */
1639         if (delalloc_start < *start)
1640                 delalloc_start = *start;
1641
1642         /*
1643          * make sure to limit the number of pages we try to lock down
1644          * if we're looping.
1645          */
1646         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1647                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1648
1649         /* step two, lock all the pages after the page that has start */
1650         ret = lock_delalloc_pages(inode, locked_page,
1651                                   delalloc_start, delalloc_end);
1652         if (ret == -EAGAIN) {
1653                 /* some of the pages are gone, lets avoid looping by
1654                  * shortening the size of the delalloc range we're searching
1655                  */
1656                 free_extent_state(cached_state);
1657                 if (!loops) {
1658                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659                         max_bytes = PAGE_CACHE_SIZE - offset;
1660                         loops = 1;
1661                         goto again;
1662                 } else {
1663                         found = 0;
1664                         goto out_failed;
1665                 }
1666         }
1667         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1668
1669         /* step three, lock the state bits for the whole range */
1670         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1671
1672         /* then test to make sure it is all still delalloc */
1673         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1674                              EXTENT_DELALLOC, 1, cached_state);
1675         if (!ret) {
1676                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677                                      &cached_state, GFP_NOFS);
1678                 __unlock_for_delalloc(inode, locked_page,
1679                               delalloc_start, delalloc_end);
1680                 cond_resched();
1681                 goto again;
1682         }
1683         free_extent_state(cached_state);
1684         *start = delalloc_start;
1685         *end = delalloc_end;
1686 out_failed:
1687         return found;
1688 }
1689
1690 int extent_clear_unlock_delalloc(struct inode *inode,
1691                                 struct extent_io_tree *tree,
1692                                 u64 start, u64 end, struct page *locked_page,
1693                                 unsigned long op)
1694 {
1695         int ret;
1696         struct page *pages[16];
1697         unsigned long index = start >> PAGE_CACHE_SHIFT;
1698         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699         unsigned long nr_pages = end_index - index + 1;
1700         int i;
1701         unsigned long clear_bits = 0;
1702
1703         if (op & EXTENT_CLEAR_UNLOCK)
1704                 clear_bits |= EXTENT_LOCKED;
1705         if (op & EXTENT_CLEAR_DIRTY)
1706                 clear_bits |= EXTENT_DIRTY;
1707
1708         if (op & EXTENT_CLEAR_DELALLOC)
1709                 clear_bits |= EXTENT_DELALLOC;
1710
1711         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1712         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714                     EXTENT_SET_PRIVATE2)))
1715                 return 0;
1716
1717         while (nr_pages > 0) {
1718                 ret = find_get_pages_contig(inode->i_mapping, index,
1719                                      min_t(unsigned long,
1720                                      nr_pages, ARRAY_SIZE(pages)), pages);
1721                 for (i = 0; i < ret; i++) {
1722
1723                         if (op & EXTENT_SET_PRIVATE2)
1724                                 SetPagePrivate2(pages[i]);
1725
1726                         if (pages[i] == locked_page) {
1727                                 page_cache_release(pages[i]);
1728                                 continue;
1729                         }
1730                         if (op & EXTENT_CLEAR_DIRTY)
1731                                 clear_page_dirty_for_io(pages[i]);
1732                         if (op & EXTENT_SET_WRITEBACK)
1733                                 set_page_writeback(pages[i]);
1734                         if (op & EXTENT_END_WRITEBACK)
1735                                 end_page_writeback(pages[i]);
1736                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1737                                 unlock_page(pages[i]);
1738                         page_cache_release(pages[i]);
1739                 }
1740                 nr_pages -= ret;
1741                 index += ret;
1742                 cond_resched();
1743         }
1744         return 0;
1745 }
1746
1747 /*
1748  * count the number of bytes in the tree that have a given bit(s)
1749  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1750  * cached.  The total number found is returned.
1751  */
1752 u64 count_range_bits(struct extent_io_tree *tree,
1753                      u64 *start, u64 search_end, u64 max_bytes,
1754                      unsigned long bits, int contig)
1755 {
1756         struct rb_node *node;
1757         struct extent_state *state;
1758         u64 cur_start = *start;
1759         u64 total_bytes = 0;
1760         u64 last = 0;
1761         int found = 0;
1762
1763         if (search_end <= cur_start) {
1764                 WARN_ON(1);
1765                 return 0;
1766         }
1767
1768         spin_lock(&tree->lock);
1769         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770                 total_bytes = tree->dirty_bytes;
1771                 goto out;
1772         }
1773         /*
1774          * this search will find all the extents that end after
1775          * our range starts.
1776          */
1777         node = tree_search(tree, cur_start);
1778         if (!node)
1779                 goto out;
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (state->start > search_end)
1784                         break;
1785                 if (contig && found && state->start > last + 1)
1786                         break;
1787                 if (state->end >= cur_start && (state->state & bits) == bits) {
1788                         total_bytes += min(search_end, state->end) + 1 -
1789                                        max(cur_start, state->start);
1790                         if (total_bytes >= max_bytes)
1791                                 break;
1792                         if (!found) {
1793                                 *start = max(cur_start, state->start);
1794                                 found = 1;
1795                         }
1796                         last = state->end;
1797                 } else if (contig && found) {
1798                         break;
1799                 }
1800                 node = rb_next(node);
1801                 if (!node)
1802                         break;
1803         }
1804 out:
1805         spin_unlock(&tree->lock);
1806         return total_bytes;
1807 }
1808
1809 /*
1810  * set the private field for a given byte offset in the tree.  If there isn't
1811  * an extent_state there already, this does nothing.
1812  */
1813 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814 {
1815         struct rb_node *node;
1816         struct extent_state *state;
1817         int ret = 0;
1818
1819         spin_lock(&tree->lock);
1820         /*
1821          * this search will find all the extents that end after
1822          * our range starts.
1823          */
1824         node = tree_search(tree, start);
1825         if (!node) {
1826                 ret = -ENOENT;
1827                 goto out;
1828         }
1829         state = rb_entry(node, struct extent_state, rb_node);
1830         if (state->start != start) {
1831                 ret = -ENOENT;
1832                 goto out;
1833         }
1834         state->private = private;
1835 out:
1836         spin_unlock(&tree->lock);
1837         return ret;
1838 }
1839
1840 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1841                             int count)
1842 {
1843         struct rb_node *node;
1844         struct extent_state *state;
1845
1846         spin_lock(&tree->lock);
1847         /*
1848          * this search will find all the extents that end after
1849          * our range starts.
1850          */
1851         node = tree_search(tree, start);
1852         BUG_ON(!node);
1853
1854         state = rb_entry(node, struct extent_state, rb_node);
1855         BUG_ON(state->start != start);
1856
1857         while (count) {
1858                 state->private = *csums++;
1859                 count--;
1860                 state = next_state(state);
1861         }
1862         spin_unlock(&tree->lock);
1863 }
1864
1865 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1866 {
1867         struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1868
1869         return page_offset(bvec->bv_page) + bvec->bv_offset;
1870 }
1871
1872 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1873                         u32 csums[], int count)
1874 {
1875         struct rb_node *node;
1876         struct extent_state *state = NULL;
1877         u64 start;
1878
1879         spin_lock(&tree->lock);
1880         do {
1881                 start = __btrfs_get_bio_offset(bio, bio_index);
1882                 if (state == NULL || state->start != start) {
1883                         node = tree_search(tree, start);
1884                         BUG_ON(!node);
1885
1886                         state = rb_entry(node, struct extent_state, rb_node);
1887                         BUG_ON(state->start != start);
1888                 }
1889                 state->private = *csums++;
1890                 count--;
1891                 bio_index++;
1892
1893                 state = next_state(state);
1894         } while (count);
1895         spin_unlock(&tree->lock);
1896 }
1897
1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899 {
1900         struct rb_node *node;
1901         struct extent_state *state;
1902         int ret = 0;
1903
1904         spin_lock(&tree->lock);
1905         /*
1906          * this search will find all the extents that end after
1907          * our range starts.
1908          */
1909         node = tree_search(tree, start);
1910         if (!node) {
1911                 ret = -ENOENT;
1912                 goto out;
1913         }
1914         state = rb_entry(node, struct extent_state, rb_node);
1915         if (state->start != start) {
1916                 ret = -ENOENT;
1917                 goto out;
1918         }
1919         *private = state->private;
1920 out:
1921         spin_unlock(&tree->lock);
1922         return ret;
1923 }
1924
1925 /*
1926  * searches a range in the state tree for a given mask.
1927  * If 'filled' == 1, this returns 1 only if every extent in the tree
1928  * has the bits set.  Otherwise, 1 is returned if any bit in the
1929  * range is found set.
1930  */
1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932                    unsigned long bits, int filled, struct extent_state *cached)
1933 {
1934         struct extent_state *state = NULL;
1935         struct rb_node *node;
1936         int bitset = 0;
1937
1938         spin_lock(&tree->lock);
1939         if (cached && cached->tree && cached->start <= start &&
1940             cached->end > start)
1941                 node = &cached->rb_node;
1942         else
1943                 node = tree_search(tree, start);
1944         while (node && start <= end) {
1945                 state = rb_entry(node, struct extent_state, rb_node);
1946
1947                 if (filled && state->start > start) {
1948                         bitset = 0;
1949                         break;
1950                 }
1951
1952                 if (state->start > end)
1953                         break;
1954
1955                 if (state->state & bits) {
1956                         bitset = 1;
1957                         if (!filled)
1958                                 break;
1959                 } else if (filled) {
1960                         bitset = 0;
1961                         break;
1962                 }
1963
1964                 if (state->end == (u64)-1)
1965                         break;
1966
1967                 start = state->end + 1;
1968                 if (start > end)
1969                         break;
1970                 node = rb_next(node);
1971                 if (!node) {
1972                         if (filled)
1973                                 bitset = 0;
1974                         break;
1975                 }
1976         }
1977         spin_unlock(&tree->lock);
1978         return bitset;
1979 }
1980
1981 /*
1982  * helper function to set a given page up to date if all the
1983  * extents in the tree for that page are up to date
1984  */
1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986 {
1987         u64 start = page_offset(page);
1988         u64 end = start + PAGE_CACHE_SIZE - 1;
1989         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990                 SetPageUptodate(page);
1991 }
1992
1993 /*
1994  * When IO fails, either with EIO or csum verification fails, we
1995  * try other mirrors that might have a good copy of the data.  This
1996  * io_failure_record is used to record state as we go through all the
1997  * mirrors.  If another mirror has good data, the page is set up to date
1998  * and things continue.  If a good mirror can't be found, the original
1999  * bio end_io callback is called to indicate things have failed.
2000  */
2001 struct io_failure_record {
2002         struct page *page;
2003         u64 start;
2004         u64 len;
2005         u64 logical;
2006         unsigned long bio_flags;
2007         int this_mirror;
2008         int failed_mirror;
2009         int in_validation;
2010 };
2011
2012 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
2013                                 int did_repair)
2014 {
2015         int ret;
2016         int err = 0;
2017         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018
2019         set_state_private(failure_tree, rec->start, 0);
2020         ret = clear_extent_bits(failure_tree, rec->start,
2021                                 rec->start + rec->len - 1,
2022                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2023         if (ret)
2024                 err = ret;
2025
2026         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2027                                 rec->start + rec->len - 1,
2028                                 EXTENT_DAMAGED, GFP_NOFS);
2029         if (ret && !err)
2030                 err = ret;
2031
2032         kfree(rec);
2033         return err;
2034 }
2035
2036 static void repair_io_failure_callback(struct bio *bio, int err)
2037 {
2038         complete(bio->bi_private);
2039 }
2040
2041 /*
2042  * this bypasses the standard btrfs submit functions deliberately, as
2043  * the standard behavior is to write all copies in a raid setup. here we only
2044  * want to write the one bad copy. so we do the mapping for ourselves and issue
2045  * submit_bio directly.
2046  * to avoid any synchronization issues, wait for the data after writing, which
2047  * actually prevents the read that triggered the error from finishing.
2048  * currently, there can be no more than two copies of every data bit. thus,
2049  * exactly one rewrite is required.
2050  */
2051 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2052                         u64 length, u64 logical, struct page *page,
2053                         int mirror_num)
2054 {
2055         struct bio *bio;
2056         struct btrfs_device *dev;
2057         DECLARE_COMPLETION_ONSTACK(compl);
2058         u64 map_length = 0;
2059         u64 sector;
2060         struct btrfs_bio *bbio = NULL;
2061         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2062         int ret;
2063
2064         BUG_ON(!mirror_num);
2065
2066         /* we can't repair anything in raid56 yet */
2067         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2068                 return 0;
2069
2070         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2071         if (!bio)
2072                 return -EIO;
2073         bio->bi_private = &compl;
2074         bio->bi_end_io = repair_io_failure_callback;
2075         bio->bi_size = 0;
2076         map_length = length;
2077
2078         ret = btrfs_map_block(fs_info, WRITE, logical,
2079                               &map_length, &bbio, mirror_num);
2080         if (ret) {
2081                 bio_put(bio);
2082                 return -EIO;
2083         }
2084         BUG_ON(mirror_num != bbio->mirror_num);
2085         sector = bbio->stripes[mirror_num-1].physical >> 9;
2086         bio->bi_sector = sector;
2087         dev = bbio->stripes[mirror_num-1].dev;
2088         kfree(bbio);
2089         if (!dev || !dev->bdev || !dev->writeable) {
2090                 bio_put(bio);
2091                 return -EIO;
2092         }
2093         bio->bi_bdev = dev->bdev;
2094         bio_add_page(bio, page, length, start - page_offset(page));
2095         btrfsic_submit_bio(WRITE_SYNC, bio);
2096         wait_for_completion(&compl);
2097
2098         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2099                 /* try to remap that extent elsewhere? */
2100                 bio_put(bio);
2101                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2102                 return -EIO;
2103         }
2104
2105         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2106                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2107                       start, rcu_str_deref(dev->name), sector);
2108
2109         bio_put(bio);
2110         return 0;
2111 }
2112
2113 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2114                          int mirror_num)
2115 {
2116         u64 start = eb->start;
2117         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2118         int ret = 0;
2119
2120         for (i = 0; i < num_pages; i++) {
2121                 struct page *p = extent_buffer_page(eb, i);
2122                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2123                                         start, p, mirror_num);
2124                 if (ret)
2125                         break;
2126                 start += PAGE_CACHE_SIZE;
2127         }
2128
2129         return ret;
2130 }
2131
2132 /*
2133  * each time an IO finishes, we do a fast check in the IO failure tree
2134  * to see if we need to process or clean up an io_failure_record
2135  */
2136 static int clean_io_failure(u64 start, struct page *page)
2137 {
2138         u64 private;
2139         u64 private_failure;
2140         struct io_failure_record *failrec;
2141         struct btrfs_fs_info *fs_info;
2142         struct extent_state *state;
2143         int num_copies;
2144         int did_repair = 0;
2145         int ret;
2146         struct inode *inode = page->mapping->host;
2147
2148         private = 0;
2149         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2150                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2151         if (!ret)
2152                 return 0;
2153
2154         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2155                                 &private_failure);
2156         if (ret)
2157                 return 0;
2158
2159         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2160         BUG_ON(!failrec->this_mirror);
2161
2162         if (failrec->in_validation) {
2163                 /* there was no real error, just free the record */
2164                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2165                          failrec->start);
2166                 did_repair = 1;
2167                 goto out;
2168         }
2169
2170         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2171         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2172                                             failrec->start,
2173                                             EXTENT_LOCKED);
2174         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2175
2176         if (state && state->start == failrec->start) {
2177                 fs_info = BTRFS_I(inode)->root->fs_info;
2178                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2179                                               failrec->len);
2180                 if (num_copies > 1)  {
2181                         ret = repair_io_failure(fs_info, start, failrec->len,
2182                                                 failrec->logical, page,
2183                                                 failrec->failed_mirror);
2184                         did_repair = !ret;
2185                 }
2186                 ret = 0;
2187         }
2188
2189 out:
2190         if (!ret)
2191                 ret = free_io_failure(inode, failrec, did_repair);
2192
2193         return ret;
2194 }
2195
2196 /*
2197  * this is a generic handler for readpage errors (default
2198  * readpage_io_failed_hook). if other copies exist, read those and write back
2199  * good data to the failed position. does not investigate in remapping the
2200  * failed extent elsewhere, hoping the device will be smart enough to do this as
2201  * needed
2202  */
2203
2204 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2205                                 u64 start, u64 end, int failed_mirror,
2206                                 struct extent_state *state)
2207 {
2208         struct io_failure_record *failrec = NULL;
2209         u64 private;
2210         struct extent_map *em;
2211         struct inode *inode = page->mapping->host;
2212         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2213         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2214         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2215         struct bio *bio;
2216         int num_copies;
2217         int ret;
2218         int read_mode;
2219         u64 logical;
2220
2221         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2222
2223         ret = get_state_private(failure_tree, start, &private);
2224         if (ret) {
2225                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226                 if (!failrec)
2227                         return -ENOMEM;
2228                 failrec->start = start;
2229                 failrec->len = end - start + 1;
2230                 failrec->this_mirror = 0;
2231                 failrec->bio_flags = 0;
2232                 failrec->in_validation = 0;
2233
2234                 read_lock(&em_tree->lock);
2235                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2236                 if (!em) {
2237                         read_unlock(&em_tree->lock);
2238                         kfree(failrec);
2239                         return -EIO;
2240                 }
2241
2242                 if (em->start > start || em->start + em->len < start) {
2243                         free_extent_map(em);
2244                         em = NULL;
2245                 }
2246                 read_unlock(&em_tree->lock);
2247
2248                 if (!em) {
2249                         kfree(failrec);
2250                         return -EIO;
2251                 }
2252                 logical = start - em->start;
2253                 logical = em->block_start + logical;
2254                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2255                         logical = em->block_start;
2256                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2257                         extent_set_compress_type(&failrec->bio_flags,
2258                                                  em->compress_type);
2259                 }
2260                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261                          "len=%llu\n", logical, start, failrec->len);
2262                 failrec->logical = logical;
2263                 free_extent_map(em);
2264
2265                 /* set the bits in the private failure tree */
2266                 ret = set_extent_bits(failure_tree, start, end,
2267                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268                 if (ret >= 0)
2269                         ret = set_state_private(failure_tree, start,
2270                                                 (u64)(unsigned long)failrec);
2271                 /* set the bits in the inode's tree */
2272                 if (ret >= 0)
2273                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274                                                 GFP_NOFS);
2275                 if (ret < 0) {
2276                         kfree(failrec);
2277                         return ret;
2278                 }
2279         } else {
2280                 failrec = (struct io_failure_record *)(unsigned long)private;
2281                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2282                          "start=%llu, len=%llu, validation=%d\n",
2283                          failrec->logical, failrec->start, failrec->len,
2284                          failrec->in_validation);
2285                 /*
2286                  * when data can be on disk more than twice, add to failrec here
2287                  * (e.g. with a list for failed_mirror) to make
2288                  * clean_io_failure() clean all those errors at once.
2289                  */
2290         }
2291         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2292                                       failrec->logical, failrec->len);
2293         if (num_copies == 1) {
2294                 /*
2295                  * we only have a single copy of the data, so don't bother with
2296                  * all the retry and error correction code that follows. no
2297                  * matter what the error is, it is very likely to persist.
2298                  */
2299                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2300                          "state=%p, num_copies=%d, next_mirror %d, "
2301                          "failed_mirror %d\n", state, num_copies,
2302                          failrec->this_mirror, failed_mirror);
2303                 free_io_failure(inode, failrec, 0);
2304                 return -EIO;
2305         }
2306
2307         if (!state) {
2308                 spin_lock(&tree->lock);
2309                 state = find_first_extent_bit_state(tree, failrec->start,
2310                                                     EXTENT_LOCKED);
2311                 if (state && state->start != failrec->start)
2312                         state = NULL;
2313                 spin_unlock(&tree->lock);
2314         }
2315
2316         /*
2317          * there are two premises:
2318          *      a) deliver good data to the caller
2319          *      b) correct the bad sectors on disk
2320          */
2321         if (failed_bio->bi_vcnt > 1) {
2322                 /*
2323                  * to fulfill b), we need to know the exact failing sectors, as
2324                  * we don't want to rewrite any more than the failed ones. thus,
2325                  * we need separate read requests for the failed bio
2326                  *
2327                  * if the following BUG_ON triggers, our validation request got
2328                  * merged. we need separate requests for our algorithm to work.
2329                  */
2330                 BUG_ON(failrec->in_validation);
2331                 failrec->in_validation = 1;
2332                 failrec->this_mirror = failed_mirror;
2333                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2334         } else {
2335                 /*
2336                  * we're ready to fulfill a) and b) alongside. get a good copy
2337                  * of the failed sector and if we succeed, we have setup
2338                  * everything for repair_io_failure to do the rest for us.
2339                  */
2340                 if (failrec->in_validation) {
2341                         BUG_ON(failrec->this_mirror != failed_mirror);
2342                         failrec->in_validation = 0;
2343                         failrec->this_mirror = 0;
2344                 }
2345                 failrec->failed_mirror = failed_mirror;
2346                 failrec->this_mirror++;
2347                 if (failrec->this_mirror == failed_mirror)
2348                         failrec->this_mirror++;
2349                 read_mode = READ_SYNC;
2350         }
2351
2352         if (!state || failrec->this_mirror > num_copies) {
2353                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2354                          "next_mirror %d, failed_mirror %d\n", state,
2355                          num_copies, failrec->this_mirror, failed_mirror);
2356                 free_io_failure(inode, failrec, 0);
2357                 return -EIO;
2358         }
2359
2360         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2361         if (!bio) {
2362                 free_io_failure(inode, failrec, 0);
2363                 return -EIO;
2364         }
2365         bio->bi_private = state;
2366         bio->bi_end_io = failed_bio->bi_end_io;
2367         bio->bi_sector = failrec->logical >> 9;
2368         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369         bio->bi_size = 0;
2370
2371         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2372
2373         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2374                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2375                  failrec->this_mirror, num_copies, failrec->in_validation);
2376
2377         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2378                                          failrec->this_mirror,
2379                                          failrec->bio_flags, 0);
2380         return ret;
2381 }
2382
2383 /* lots and lots of room for performance fixes in the end_bio funcs */
2384
2385 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2386 {
2387         int uptodate = (err == 0);
2388         struct extent_io_tree *tree;
2389         int ret;
2390
2391         tree = &BTRFS_I(page->mapping->host)->io_tree;
2392
2393         if (tree->ops && tree->ops->writepage_end_io_hook) {
2394                 ret = tree->ops->writepage_end_io_hook(page, start,
2395                                                end, NULL, uptodate);
2396                 if (ret)
2397                         uptodate = 0;
2398         }
2399
2400         if (!uptodate) {
2401                 ClearPageUptodate(page);
2402                 SetPageError(page);
2403         }
2404         return 0;
2405 }
2406
2407 /*
2408  * after a writepage IO is done, we need to:
2409  * clear the uptodate bits on error
2410  * clear the writeback bits in the extent tree for this IO
2411  * end_page_writeback if the page has no more pending IO
2412  *
2413  * Scheduling is not allowed, so the extent state tree is expected
2414  * to have one and only one object corresponding to this IO.
2415  */
2416 static void end_bio_extent_writepage(struct bio *bio, int err)
2417 {
2418         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2419         struct extent_io_tree *tree;
2420         u64 start;
2421         u64 end;
2422
2423         do {
2424                 struct page *page = bvec->bv_page;
2425                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427                 /* We always issue full-page reads, but if some block
2428                  * in a page fails to read, blk_update_request() will
2429                  * advance bv_offset and adjust bv_len to compensate.
2430                  * Print a warning for nonzero offsets, and an error
2431                  * if they don't add up to a full page.  */
2432                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2433                         printk("%s page write in btrfs with offset %u and length %u\n",
2434                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2435                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2436                                bvec->bv_offset, bvec->bv_len);
2437
2438                 start = page_offset(page);
2439                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2440
2441                 if (--bvec >= bio->bi_io_vec)
2442                         prefetchw(&bvec->bv_page->flags);
2443
2444                 if (end_extent_writepage(page, err, start, end))
2445                         continue;
2446
2447                 end_page_writeback(page);
2448         } while (bvec >= bio->bi_io_vec);
2449
2450         bio_put(bio);
2451 }
2452
2453 /*
2454  * after a readpage IO is done, we need to:
2455  * clear the uptodate bits on error
2456  * set the uptodate bits if things worked
2457  * set the page up to date if all extents in the tree are uptodate
2458  * clear the lock bit in the extent tree
2459  * unlock the page if there are no other extents locked for it
2460  *
2461  * Scheduling is not allowed, so the extent state tree is expected
2462  * to have one and only one object corresponding to this IO.
2463  */
2464 static void end_bio_extent_readpage(struct bio *bio, int err)
2465 {
2466         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2467         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2468         struct bio_vec *bvec = bio->bi_io_vec;
2469         struct extent_io_tree *tree;
2470         u64 start;
2471         u64 end;
2472         int mirror;
2473         int ret;
2474
2475         if (err)
2476                 uptodate = 0;
2477
2478         do {
2479                 struct page *page = bvec->bv_page;
2480                 struct extent_state *cached = NULL;
2481                 struct extent_state *state;
2482                 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2483                 struct inode *inode = page->mapping->host;
2484
2485                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2486                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2487                          io_bio->mirror_num);
2488                 tree = &BTRFS_I(inode)->io_tree;
2489
2490                 /* We always issue full-page reads, but if some block
2491                  * in a page fails to read, blk_update_request() will
2492                  * advance bv_offset and adjust bv_len to compensate.
2493                  * Print a warning for nonzero offsets, and an error
2494                  * if they don't add up to a full page.  */
2495                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2496                         printk("%s page read in btrfs with offset %u and length %u\n",
2497                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2498                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2499                                bvec->bv_offset, bvec->bv_len);
2500
2501                 start = page_offset(page);
2502                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2503
2504                 if (++bvec <= bvec_end)
2505                         prefetchw(&bvec->bv_page->flags);
2506
2507                 spin_lock(&tree->lock);
2508                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2509                 if (state && state->start == start) {
2510                         /*
2511                          * take a reference on the state, unlock will drop
2512                          * the ref
2513                          */
2514                         cache_state(state, &cached);
2515                 }
2516                 spin_unlock(&tree->lock);
2517
2518                 mirror = io_bio->mirror_num;
2519                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2520                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2521                                                               state, mirror);
2522                         if (ret)
2523                                 uptodate = 0;
2524                         else
2525                                 clean_io_failure(start, page);
2526                 }
2527
2528                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2529                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2530                         if (!ret && !err &&
2531                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2532                                 uptodate = 1;
2533                 } else if (!uptodate) {
2534                         /*
2535                          * The generic bio_readpage_error handles errors the
2536                          * following way: If possible, new read requests are
2537                          * created and submitted and will end up in
2538                          * end_bio_extent_readpage as well (if we're lucky, not
2539                          * in the !uptodate case). In that case it returns 0 and
2540                          * we just go on with the next page in our bio. If it
2541                          * can't handle the error it will return -EIO and we
2542                          * remain responsible for that page.
2543                          */
2544                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2545                         if (ret == 0) {
2546                                 uptodate =
2547                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2548                                 if (err)
2549                                         uptodate = 0;
2550                                 uncache_state(&cached);
2551                                 continue;
2552                         }
2553                 }
2554
2555                 if (uptodate && tree->track_uptodate) {
2556                         set_extent_uptodate(tree, start, end, &cached,
2557                                             GFP_ATOMIC);
2558                 }
2559                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2560
2561                 if (uptodate) {
2562                         loff_t i_size = i_size_read(inode);
2563                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2564                         unsigned offset;
2565
2566                         /* Zero out the end if this page straddles i_size */
2567                         offset = i_size & (PAGE_CACHE_SIZE-1);
2568                         if (page->index == end_index && offset)
2569                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2570                         SetPageUptodate(page);
2571                 } else {
2572                         ClearPageUptodate(page);
2573                         SetPageError(page);
2574                 }
2575                 unlock_page(page);
2576         } while (bvec <= bvec_end);
2577
2578         bio_put(bio);
2579 }
2580
2581 /*
2582  * this allocates from the btrfs_bioset.  We're returning a bio right now
2583  * but you can call btrfs_io_bio for the appropriate container_of magic
2584  */
2585 struct bio *
2586 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2587                 gfp_t gfp_flags)
2588 {
2589         struct bio *bio;
2590
2591         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2592
2593         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2594                 while (!bio && (nr_vecs /= 2)) {
2595                         bio = bio_alloc_bioset(gfp_flags,
2596                                                nr_vecs, btrfs_bioset);
2597                 }
2598         }
2599
2600         if (bio) {
2601                 bio->bi_size = 0;
2602                 bio->bi_bdev = bdev;
2603                 bio->bi_sector = first_sector;
2604         }
2605         return bio;
2606 }
2607
2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2609 {
2610         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2611 }
2612
2613
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2616 {
2617         return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2618 }
2619
2620
2621 static int __must_check submit_one_bio(int rw, struct bio *bio,
2622                                        int mirror_num, unsigned long bio_flags)
2623 {
2624         int ret = 0;
2625         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2626         struct page *page = bvec->bv_page;
2627         struct extent_io_tree *tree = bio->bi_private;
2628         u64 start;
2629
2630         start = page_offset(page) + bvec->bv_offset;
2631
2632         bio->bi_private = NULL;
2633
2634         bio_get(bio);
2635
2636         if (tree->ops && tree->ops->submit_bio_hook)
2637                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2638                                            mirror_num, bio_flags, start);
2639         else
2640                 btrfsic_submit_bio(rw, bio);
2641
2642         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2643                 ret = -EOPNOTSUPP;
2644         bio_put(bio);
2645         return ret;
2646 }
2647
2648 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2649                      unsigned long offset, size_t size, struct bio *bio,
2650                      unsigned long bio_flags)
2651 {
2652         int ret = 0;
2653         if (tree->ops && tree->ops->merge_bio_hook)
2654                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2655                                                 bio_flags);
2656         BUG_ON(ret < 0);
2657         return ret;
2658
2659 }
2660
2661 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2662                               struct page *page, sector_t sector,
2663                               size_t size, unsigned long offset,
2664                               struct block_device *bdev,
2665                               struct bio **bio_ret,
2666                               unsigned long max_pages,
2667                               bio_end_io_t end_io_func,
2668                               int mirror_num,
2669                               unsigned long prev_bio_flags,
2670                               unsigned long bio_flags)
2671 {
2672         int ret = 0;
2673         struct bio *bio;
2674         int nr;
2675         int contig = 0;
2676         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2677         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2678         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2679
2680         if (bio_ret && *bio_ret) {
2681                 bio = *bio_ret;
2682                 if (old_compressed)
2683                         contig = bio->bi_sector == sector;
2684                 else
2685                         contig = bio_end_sector(bio) == sector;
2686
2687                 if (prev_bio_flags != bio_flags || !contig ||
2688                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2689                     bio_add_page(bio, page, page_size, offset) < page_size) {
2690                         ret = submit_one_bio(rw, bio, mirror_num,
2691                                              prev_bio_flags);
2692                         if (ret < 0)
2693                                 return ret;
2694                         bio = NULL;
2695                 } else {
2696                         return 0;
2697                 }
2698         }
2699         if (this_compressed)
2700                 nr = BIO_MAX_PAGES;
2701         else
2702                 nr = bio_get_nr_vecs(bdev);
2703
2704         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2705         if (!bio)
2706                 return -ENOMEM;
2707
2708         bio_add_page(bio, page, page_size, offset);
2709         bio->bi_end_io = end_io_func;
2710         bio->bi_private = tree;
2711
2712         if (bio_ret)
2713                 *bio_ret = bio;
2714         else
2715                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2716
2717         return ret;
2718 }
2719
2720 static void attach_extent_buffer_page(struct extent_buffer *eb,
2721                                       struct page *page)
2722 {
2723         if (!PagePrivate(page)) {
2724                 SetPagePrivate(page);
2725                 page_cache_get(page);
2726                 set_page_private(page, (unsigned long)eb);
2727         } else {
2728                 WARN_ON(page->private != (unsigned long)eb);
2729         }
2730 }
2731
2732 void set_page_extent_mapped(struct page *page)
2733 {
2734         if (!PagePrivate(page)) {
2735                 SetPagePrivate(page);
2736                 page_cache_get(page);
2737                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2738         }
2739 }
2740
2741 /*
2742  * basic readpage implementation.  Locked extent state structs are inserted
2743  * into the tree that are removed when the IO is done (by the end_io
2744  * handlers)
2745  * XXX JDM: This needs looking at to ensure proper page locking
2746  */
2747 static int __extent_read_full_page(struct extent_io_tree *tree,
2748                                    struct page *page,
2749                                    get_extent_t *get_extent,
2750                                    struct bio **bio, int mirror_num,
2751                                    unsigned long *bio_flags, int rw)
2752 {
2753         struct inode *inode = page->mapping->host;
2754         u64 start = page_offset(page);
2755         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756         u64 end;
2757         u64 cur = start;
2758         u64 extent_offset;
2759         u64 last_byte = i_size_read(inode);
2760         u64 block_start;
2761         u64 cur_end;
2762         sector_t sector;
2763         struct extent_map *em;
2764         struct block_device *bdev;
2765         struct btrfs_ordered_extent *ordered;
2766         int ret;
2767         int nr = 0;
2768         size_t pg_offset = 0;
2769         size_t iosize;
2770         size_t disk_io_size;
2771         size_t blocksize = inode->i_sb->s_blocksize;
2772         unsigned long this_bio_flag = 0;
2773
2774         set_page_extent_mapped(page);
2775
2776         if (!PageUptodate(page)) {
2777                 if (cleancache_get_page(page) == 0) {
2778                         BUG_ON(blocksize != PAGE_SIZE);
2779                         goto out;
2780                 }
2781         }
2782
2783         end = page_end;
2784         while (1) {
2785                 lock_extent(tree, start, end);
2786                 ordered = btrfs_lookup_ordered_extent(inode, start);
2787                 if (!ordered)
2788                         break;
2789                 unlock_extent(tree, start, end);
2790                 btrfs_start_ordered_extent(inode, ordered, 1);
2791                 btrfs_put_ordered_extent(ordered);
2792         }
2793
2794         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2795                 char *userpage;
2796                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2797
2798                 if (zero_offset) {
2799                         iosize = PAGE_CACHE_SIZE - zero_offset;
2800                         userpage = kmap_atomic(page);
2801                         memset(userpage + zero_offset, 0, iosize);
2802                         flush_dcache_page(page);
2803                         kunmap_atomic(userpage);
2804                 }
2805         }
2806         while (cur <= end) {
2807                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2808
2809                 if (cur >= last_byte) {
2810                         char *userpage;
2811                         struct extent_state *cached = NULL;
2812
2813                         iosize = PAGE_CACHE_SIZE - pg_offset;
2814                         userpage = kmap_atomic(page);
2815                         memset(userpage + pg_offset, 0, iosize);
2816                         flush_dcache_page(page);
2817                         kunmap_atomic(userpage);
2818                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2819                                             &cached, GFP_NOFS);
2820                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2821                                              &cached, GFP_NOFS);
2822                         break;
2823                 }
2824                 em = get_extent(inode, page, pg_offset, cur,
2825                                 end - cur + 1, 0);
2826                 if (IS_ERR_OR_NULL(em)) {
2827                         SetPageError(page);
2828                         unlock_extent(tree, cur, end);
2829                         break;
2830                 }
2831                 extent_offset = cur - em->start;
2832                 BUG_ON(extent_map_end(em) <= cur);
2833                 BUG_ON(end < cur);
2834
2835                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2836                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2837                         extent_set_compress_type(&this_bio_flag,
2838                                                  em->compress_type);
2839                 }
2840
2841                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2842                 cur_end = min(extent_map_end(em) - 1, end);
2843                 iosize = ALIGN(iosize, blocksize);
2844                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2845                         disk_io_size = em->block_len;
2846                         sector = em->block_start >> 9;
2847                 } else {
2848                         sector = (em->block_start + extent_offset) >> 9;
2849                         disk_io_size = iosize;
2850                 }
2851                 bdev = em->bdev;
2852                 block_start = em->block_start;
2853                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2854                         block_start = EXTENT_MAP_HOLE;
2855                 free_extent_map(em);
2856                 em = NULL;
2857
2858                 /* we've found a hole, just zero and go on */
2859                 if (block_start == EXTENT_MAP_HOLE) {
2860                         char *userpage;
2861                         struct extent_state *cached = NULL;
2862
2863                         userpage = kmap_atomic(page);
2864                         memset(userpage + pg_offset, 0, iosize);
2865                         flush_dcache_page(page);
2866                         kunmap_atomic(userpage);
2867
2868                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2869                                             &cached, GFP_NOFS);
2870                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2871                                              &cached, GFP_NOFS);
2872                         cur = cur + iosize;
2873                         pg_offset += iosize;
2874                         continue;
2875                 }
2876                 /* the get_extent function already copied into the page */
2877                 if (test_range_bit(tree, cur, cur_end,
2878                                    EXTENT_UPTODATE, 1, NULL)) {
2879                         check_page_uptodate(tree, page);
2880                         unlock_extent(tree, cur, cur + iosize - 1);
2881                         cur = cur + iosize;
2882                         pg_offset += iosize;
2883                         continue;
2884                 }
2885                 /* we have an inline extent but it didn't get marked up
2886                  * to date.  Error out
2887                  */
2888                 if (block_start == EXTENT_MAP_INLINE) {
2889                         SetPageError(page);
2890                         unlock_extent(tree, cur, cur + iosize - 1);
2891                         cur = cur + iosize;
2892                         pg_offset += iosize;
2893                         continue;
2894                 }
2895
2896                 pnr -= page->index;
2897                 ret = submit_extent_page(rw, tree, page,
2898                                          sector, disk_io_size, pg_offset,
2899                                          bdev, bio, pnr,
2900                                          end_bio_extent_readpage, mirror_num,
2901                                          *bio_flags,
2902                                          this_bio_flag);
2903                 if (!ret) {
2904                         nr++;
2905                         *bio_flags = this_bio_flag;
2906                 } else {
2907                         SetPageError(page);
2908                         unlock_extent(tree, cur, cur + iosize - 1);
2909                 }
2910                 cur = cur + iosize;
2911                 pg_offset += iosize;
2912         }
2913 out:
2914         if (!nr) {
2915                 if (!PageError(page))
2916                         SetPageUptodate(page);
2917                 unlock_page(page);
2918         }
2919         return 0;
2920 }
2921
2922 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2923                             get_extent_t *get_extent, int mirror_num)
2924 {
2925         struct bio *bio = NULL;
2926         unsigned long bio_flags = 0;
2927         int ret;
2928
2929         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2930                                       &bio_flags, READ);
2931         if (bio)
2932                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2933         return ret;
2934 }
2935
2936 static noinline void update_nr_written(struct page *page,
2937                                       struct writeback_control *wbc,
2938                                       unsigned long nr_written)
2939 {
2940         wbc->nr_to_write -= nr_written;
2941         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2942             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2943                 page->mapping->writeback_index = page->index + nr_written;
2944 }
2945
2946 /*
2947  * the writepage semantics are similar to regular writepage.  extent
2948  * records are inserted to lock ranges in the tree, and as dirty areas
2949  * are found, they are marked writeback.  Then the lock bits are removed
2950  * and the end_io handler clears the writeback ranges
2951  */
2952 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2953                               void *data)
2954 {
2955         struct inode *inode = page->mapping->host;
2956         struct extent_page_data *epd = data;
2957         struct extent_io_tree *tree = epd->tree;
2958         u64 start = page_offset(page);
2959         u64 delalloc_start;
2960         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2961         u64 end;
2962         u64 cur = start;
2963         u64 extent_offset;
2964         u64 last_byte = i_size_read(inode);
2965         u64 block_start;
2966         u64 iosize;
2967         sector_t sector;
2968         struct extent_state *cached_state = NULL;
2969         struct extent_map *em;
2970         struct block_device *bdev;
2971         int ret;
2972         int nr = 0;
2973         size_t pg_offset = 0;
2974         size_t blocksize;
2975         loff_t i_size = i_size_read(inode);
2976         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2977         u64 nr_delalloc;
2978         u64 delalloc_end;
2979         int page_started;
2980         int compressed;
2981         int write_flags;
2982         unsigned long nr_written = 0;
2983         bool fill_delalloc = true;
2984
2985         if (wbc->sync_mode == WB_SYNC_ALL)
2986                 write_flags = WRITE_SYNC;
2987         else
2988                 write_flags = WRITE;
2989
2990         trace___extent_writepage(page, inode, wbc);
2991
2992         WARN_ON(!PageLocked(page));
2993
2994         ClearPageError(page);
2995
2996         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2997         if (page->index > end_index ||
2998            (page->index == end_index && !pg_offset)) {
2999                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3000                 unlock_page(page);
3001                 return 0;
3002         }
3003
3004         if (page->index == end_index) {
3005                 char *userpage;
3006
3007                 userpage = kmap_atomic(page);
3008                 memset(userpage + pg_offset, 0,
3009                        PAGE_CACHE_SIZE - pg_offset);
3010                 kunmap_atomic(userpage);
3011                 flush_dcache_page(page);
3012         }
3013         pg_offset = 0;
3014
3015         set_page_extent_mapped(page);
3016
3017         if (!tree->ops || !tree->ops->fill_delalloc)
3018                 fill_delalloc = false;
3019
3020         delalloc_start = start;
3021         delalloc_end = 0;
3022         page_started = 0;
3023         if (!epd->extent_locked && fill_delalloc) {
3024                 u64 delalloc_to_write = 0;
3025                 /*
3026                  * make sure the wbc mapping index is at least updated
3027                  * to this page.
3028                  */
3029                 update_nr_written(page, wbc, 0);
3030
3031                 while (delalloc_end < page_end) {
3032                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3033                                                        page,
3034                                                        &delalloc_start,
3035                                                        &delalloc_end,
3036                                                        128 * 1024 * 1024);
3037                         if (nr_delalloc == 0) {
3038                                 delalloc_start = delalloc_end + 1;
3039                                 continue;
3040                         }
3041                         ret = tree->ops->fill_delalloc(inode, page,
3042                                                        delalloc_start,
3043                                                        delalloc_end,
3044                                                        &page_started,
3045                                                        &nr_written);
3046                         /* File system has been set read-only */
3047                         if (ret) {
3048                                 SetPageError(page);
3049                                 goto done;
3050                         }
3051                         /*
3052                          * delalloc_end is already one less than the total
3053                          * length, so we don't subtract one from
3054                          * PAGE_CACHE_SIZE
3055                          */
3056                         delalloc_to_write += (delalloc_end - delalloc_start +
3057                                               PAGE_CACHE_SIZE) >>
3058                                               PAGE_CACHE_SHIFT;
3059                         delalloc_start = delalloc_end + 1;
3060                 }
3061                 if (wbc->nr_to_write < delalloc_to_write) {
3062                         int thresh = 8192;
3063
3064                         if (delalloc_to_write < thresh * 2)
3065                                 thresh = delalloc_to_write;
3066                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3067                                                  thresh);
3068                 }
3069
3070                 /* did the fill delalloc function already unlock and start
3071                  * the IO?
3072                  */
3073                 if (page_started) {
3074                         ret = 0;
3075                         /*
3076                          * we've unlocked the page, so we can't update
3077                          * the mapping's writeback index, just update
3078                          * nr_to_write.
3079                          */
3080                         wbc->nr_to_write -= nr_written;
3081                         goto done_unlocked;
3082                 }
3083         }
3084         if (tree->ops && tree->ops->writepage_start_hook) {
3085                 ret = tree->ops->writepage_start_hook(page, start,
3086                                                       page_end);
3087                 if (ret) {
3088                         /* Fixup worker will requeue */
3089                         if (ret == -EBUSY)
3090                                 wbc->pages_skipped++;
3091                         else
3092                                 redirty_page_for_writepage(wbc, page);
3093                         update_nr_written(page, wbc, nr_written);
3094                         unlock_page(page);
3095                         ret = 0;
3096                         goto done_unlocked;
3097                 }
3098         }
3099
3100         /*
3101          * we don't want to touch the inode after unlocking the page,
3102          * so we update the mapping writeback index now
3103          */
3104         update_nr_written(page, wbc, nr_written + 1);
3105
3106         end = page_end;
3107         if (last_byte <= start) {
3108                 if (tree->ops && tree->ops->writepage_end_io_hook)
3109                         tree->ops->writepage_end_io_hook(page, start,
3110                                                          page_end, NULL, 1);
3111                 goto done;
3112         }
3113
3114         blocksize = inode->i_sb->s_blocksize;
3115
3116         while (cur <= end) {
3117                 if (cur >= last_byte) {
3118                         if (tree->ops && tree->ops->writepage_end_io_hook)
3119                                 tree->ops->writepage_end_io_hook(page, cur,
3120                                                          page_end, NULL, 1);
3121                         break;
3122                 }
3123                 em = epd->get_extent(inode, page, pg_offset, cur,
3124                                      end - cur + 1, 1);
3125                 if (IS_ERR_OR_NULL(em)) {
3126                         SetPageError(page);
3127                         break;
3128                 }
3129
3130                 extent_offset = cur - em->start;
3131                 BUG_ON(extent_map_end(em) <= cur);
3132                 BUG_ON(end < cur);
3133                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3134                 iosize = ALIGN(iosize, blocksize);
3135                 sector = (em->block_start + extent_offset) >> 9;
3136                 bdev = em->bdev;
3137                 block_start = em->block_start;
3138                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3139                 free_extent_map(em);
3140                 em = NULL;
3141
3142                 /*
3143                  * compressed and inline extents are written through other
3144                  * paths in the FS
3145                  */
3146                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3147                     block_start == EXTENT_MAP_INLINE) {
3148                         /*
3149                          * end_io notification does not happen here for
3150                          * compressed extents
3151                          */
3152                         if (!compressed && tree->ops &&
3153                             tree->ops->writepage_end_io_hook)
3154                                 tree->ops->writepage_end_io_hook(page, cur,
3155                                                          cur + iosize - 1,
3156                                                          NULL, 1);
3157                         else if (compressed) {
3158                                 /* we don't want to end_page_writeback on
3159                                  * a compressed extent.  this happens
3160                                  * elsewhere
3161                                  */
3162                                 nr++;
3163                         }
3164
3165                         cur += iosize;
3166                         pg_offset += iosize;
3167                         continue;
3168                 }
3169                 /* leave this out until we have a page_mkwrite call */
3170                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3171                                    EXTENT_DIRTY, 0, NULL)) {
3172                         cur = cur + iosize;
3173                         pg_offset += iosize;
3174                         continue;
3175                 }
3176
3177                 if (tree->ops && tree->ops->writepage_io_hook) {
3178                         ret = tree->ops->writepage_io_hook(page, cur,
3179                                                 cur + iosize - 1);
3180                 } else {
3181                         ret = 0;
3182                 }
3183                 if (ret) {
3184                         SetPageError(page);
3185                 } else {
3186                         unsigned long max_nr = end_index + 1;
3187
3188                         set_range_writeback(tree, cur, cur + iosize - 1);
3189                         if (!PageWriteback(page)) {
3190                                 printk(KERN_ERR "btrfs warning page %lu not "
3191                                        "writeback, cur %llu end %llu\n",
3192                                        page->index, (unsigned long long)cur,
3193                                        (unsigned long long)end);
3194                         }
3195
3196                         ret = submit_extent_page(write_flags, tree, page,
3197                                                  sector, iosize, pg_offset,
3198                                                  bdev, &epd->bio, max_nr,
3199                                                  end_bio_extent_writepage,
3200                                                  0, 0, 0);
3201                         if (ret)
3202                                 SetPageError(page);
3203                 }
3204                 cur = cur + iosize;
3205                 pg_offset += iosize;
3206                 nr++;
3207         }
3208 done:
3209         if (nr == 0) {
3210                 /* make sure the mapping tag for page dirty gets cleared */
3211                 set_page_writeback(page);
3212                 end_page_writeback(page);
3213         }
3214         unlock_page(page);
3215
3216 done_unlocked:
3217
3218         /* drop our reference on any cached states */
3219         free_extent_state(cached_state);
3220         return 0;
3221 }
3222
3223 static int eb_wait(void *word)
3224 {
3225         io_schedule();
3226         return 0;
3227 }
3228
3229 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3230 {
3231         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3232                     TASK_UNINTERRUPTIBLE);
3233 }
3234
3235 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3236                                      struct btrfs_fs_info *fs_info,
3237                                      struct extent_page_data *epd)
3238 {
3239         unsigned long i, num_pages;
3240         int flush = 0;
3241         int ret = 0;
3242
3243         if (!btrfs_try_tree_write_lock(eb)) {
3244                 flush = 1;
3245                 flush_write_bio(epd);
3246                 btrfs_tree_lock(eb);
3247         }
3248
3249         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3250                 btrfs_tree_unlock(eb);
3251                 if (!epd->sync_io)
3252                         return 0;
3253                 if (!flush) {
3254                         flush_write_bio(epd);
3255                         flush = 1;
3256                 }
3257                 while (1) {
3258                         wait_on_extent_buffer_writeback(eb);
3259                         btrfs_tree_lock(eb);
3260                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3261                                 break;
3262                         btrfs_tree_unlock(eb);
3263                 }
3264         }
3265
3266         /*
3267          * We need to do this to prevent races in people who check if the eb is
3268          * under IO since we can end up having no IO bits set for a short period
3269          * of time.
3270          */
3271         spin_lock(&eb->refs_lock);
3272         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3273                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3274                 spin_unlock(&eb->refs_lock);
3275                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3276                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3277                                      -eb->len,
3278                                      fs_info->dirty_metadata_batch);
3279                 ret = 1;
3280         } else {
3281                 spin_unlock(&eb->refs_lock);
3282         }
3283
3284         btrfs_tree_unlock(eb);
3285
3286         if (!ret)
3287                 return ret;
3288
3289         num_pages = num_extent_pages(eb->start, eb->len);
3290         for (i = 0; i < num_pages; i++) {
3291                 struct page *p = extent_buffer_page(eb, i);
3292
3293                 if (!trylock_page(p)) {
3294                         if (!flush) {
3295                                 flush_write_bio(epd);
3296                                 flush = 1;
3297                         }
3298                         lock_page(p);
3299                 }
3300         }
3301
3302         return ret;
3303 }
3304
3305 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3306 {
3307         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3308         smp_mb__after_clear_bit();
3309         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3310 }
3311
3312 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3313 {
3314         int uptodate = err == 0;
3315         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3316         struct extent_buffer *eb;
3317         int done;
3318
3319         do {
3320                 struct page *page = bvec->bv_page;
3321
3322                 bvec--;
3323                 eb = (struct extent_buffer *)page->private;
3324                 BUG_ON(!eb);
3325                 done = atomic_dec_and_test(&eb->io_pages);
3326
3327                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3328                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329                         ClearPageUptodate(page);
3330                         SetPageError(page);
3331                 }
3332
3333                 end_page_writeback(page);
3334
3335                 if (!done)
3336                         continue;
3337
3338                 end_extent_buffer_writeback(eb);
3339         } while (bvec >= bio->bi_io_vec);
3340
3341         bio_put(bio);
3342
3343 }
3344
3345 static int write_one_eb(struct extent_buffer *eb,
3346                         struct btrfs_fs_info *fs_info,
3347                         struct writeback_control *wbc,
3348                         struct extent_page_data *epd)
3349 {
3350         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3351         u64 offset = eb->start;
3352         unsigned long i, num_pages;
3353         unsigned long bio_flags = 0;
3354         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3355         int ret = 0;
3356
3357         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3358         num_pages = num_extent_pages(eb->start, eb->len);
3359         atomic_set(&eb->io_pages, num_pages);
3360         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3361                 bio_flags = EXTENT_BIO_TREE_LOG;
3362
3363         for (i = 0; i < num_pages; i++) {
3364                 struct page *p = extent_buffer_page(eb, i);
3365
3366                 clear_page_dirty_for_io(p);
3367                 set_page_writeback(p);
3368                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3369                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3370                                          -1, end_bio_extent_buffer_writepage,
3371                                          0, epd->bio_flags, bio_flags);
3372                 epd->bio_flags = bio_flags;
3373                 if (ret) {
3374                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3375                         SetPageError(p);
3376                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3377                                 end_extent_buffer_writeback(eb);
3378                         ret = -EIO;
3379                         break;
3380                 }
3381                 offset += PAGE_CACHE_SIZE;
3382                 update_nr_written(p, wbc, 1);
3383                 unlock_page(p);
3384         }
3385
3386         if (unlikely(ret)) {
3387                 for (; i < num_pages; i++) {
3388                         struct page *p = extent_buffer_page(eb, i);
3389                         unlock_page(p);
3390                 }
3391         }
3392
3393         return ret;
3394 }
3395
3396 int btree_write_cache_pages(struct address_space *mapping,
3397                                    struct writeback_control *wbc)
3398 {
3399         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3400         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3401         struct extent_buffer *eb, *prev_eb = NULL;
3402         struct extent_page_data epd = {
3403                 .bio = NULL,
3404                 .tree = tree,
3405                 .extent_locked = 0,
3406                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3407                 .bio_flags = 0,
3408         };
3409         int ret = 0;
3410         int done = 0;
3411         int nr_to_write_done = 0;
3412         struct pagevec pvec;
3413         int nr_pages;
3414         pgoff_t index;
3415         pgoff_t end;            /* Inclusive */
3416         int scanned = 0;
3417         int tag;
3418
3419         pagevec_init(&pvec, 0);
3420         if (wbc->range_cyclic) {
3421                 index = mapping->writeback_index; /* Start from prev offset */
3422                 end = -1;
3423         } else {
3424                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3425                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3426                 scanned = 1;
3427         }
3428         if (wbc->sync_mode == WB_SYNC_ALL)
3429                 tag = PAGECACHE_TAG_TOWRITE;
3430         else
3431                 tag = PAGECACHE_TAG_DIRTY;
3432 retry:
3433         if (wbc->sync_mode == WB_SYNC_ALL)
3434                 tag_pages_for_writeback(mapping, index, end);
3435         while (!done && !nr_to_write_done && (index <= end) &&
3436                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3437                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3438                 unsigned i;
3439
3440                 scanned = 1;
3441                 for (i = 0; i < nr_pages; i++) {
3442                         struct page *page = pvec.pages[i];
3443
3444                         if (!PagePrivate(page))
3445                                 continue;
3446
3447                         if (!wbc->range_cyclic && page->index > end) {
3448                                 done = 1;
3449                                 break;
3450                         }
3451
3452                         spin_lock(&mapping->private_lock);
3453                         if (!PagePrivate(page)) {
3454                                 spin_unlock(&mapping->private_lock);
3455                                 continue;
3456                         }
3457
3458                         eb = (struct extent_buffer *)page->private;
3459
3460                         /*
3461                          * Shouldn't happen and normally this would be a BUG_ON
3462                          * but no sense in crashing the users box for something
3463                          * we can survive anyway.
3464                          */
3465                         if (!eb) {
3466                                 spin_unlock(&mapping->private_lock);
3467                                 WARN_ON(1);
3468                                 continue;
3469                         }
3470
3471                         if (eb == prev_eb) {
3472                                 spin_unlock(&mapping->private_lock);
3473                                 continue;
3474                         }
3475
3476                         ret = atomic_inc_not_zero(&eb->refs);
3477                         spin_unlock(&mapping->private_lock);
3478                         if (!ret)
3479                                 continue;
3480
3481                         prev_eb = eb;
3482                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3483                         if (!ret) {
3484                                 free_extent_buffer(eb);
3485                                 continue;
3486                         }
3487
3488                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3489                         if (ret) {
3490                                 done = 1;
3491                                 free_extent_buffer(eb);
3492                                 break;
3493                         }
3494                         free_extent_buffer(eb);
3495
3496                         /*
3497                          * the filesystem may choose to bump up nr_to_write.
3498                          * We have to make sure to honor the new nr_to_write
3499                          * at any time
3500                          */
3501                         nr_to_write_done = wbc->nr_to_write <= 0;
3502                 }
3503                 pagevec_release(&pvec);
3504                 cond_resched();
3505         }
3506         if (!scanned && !done) {
3507                 /*
3508                  * We hit the last page and there is more work to be done: wrap
3509                  * back to the start of the file
3510                  */
3511                 scanned = 1;
3512                 index = 0;
3513                 goto retry;
3514         }
3515         flush_write_bio(&epd);
3516         return ret;
3517 }
3518
3519 /**
3520  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3521  * @mapping: address space structure to write
3522  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3523  * @writepage: function called for each page
3524  * @data: data passed to writepage function
3525  *
3526  * If a page is already under I/O, write_cache_pages() skips it, even
3527  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3528  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3529  * and msync() need to guarantee that all the data which was dirty at the time
3530  * the call was made get new I/O started against them.  If wbc->sync_mode is
3531  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3532  * existing IO to complete.
3533  */
3534 static int extent_write_cache_pages(struct extent_io_tree *tree,
3535                              struct address_space *mapping,
3536                              struct writeback_control *wbc,
3537                              writepage_t writepage, void *data,
3538                              void (*flush_fn)(void *))
3539 {
3540         struct inode *inode = mapping->host;
3541         int ret = 0;
3542         int done = 0;
3543         int nr_to_write_done = 0;
3544         struct pagevec pvec;
3545         int nr_pages;
3546         pgoff_t index;
3547         pgoff_t end;            /* Inclusive */
3548         int scanned = 0;
3549         int tag;
3550
3551         /*
3552          * We have to hold onto the inode so that ordered extents can do their
3553          * work when the IO finishes.  The alternative to this is failing to add
3554          * an ordered extent if the igrab() fails there and that is a huge pain
3555          * to deal with, so instead just hold onto the inode throughout the
3556          * writepages operation.  If it fails here we are freeing up the inode
3557          * anyway and we'd rather not waste our time writing out stuff that is
3558          * going to be truncated anyway.
3559          */
3560         if (!igrab(inode))
3561                 return 0;
3562
3563         pagevec_init(&pvec, 0);
3564         if (wbc->range_cyclic) {
3565                 index = mapping->writeback_index; /* Start from prev offset */
3566                 end = -1;
3567         } else {
3568                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570                 scanned = 1;
3571         }
3572         if (wbc->sync_mode == WB_SYNC_ALL)
3573                 tag = PAGECACHE_TAG_TOWRITE;
3574         else
3575                 tag = PAGECACHE_TAG_DIRTY;
3576 retry:
3577         if (wbc->sync_mode == WB_SYNC_ALL)
3578                 tag_pages_for_writeback(mapping, index, end);
3579         while (!done && !nr_to_write_done && (index <= end) &&
3580                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582                 unsigned i;
3583
3584                 scanned = 1;
3585                 for (i = 0; i < nr_pages; i++) {
3586                         struct page *page = pvec.pages[i];
3587
3588                         /*
3589                          * At this point we hold neither mapping->tree_lock nor
3590                          * lock on the page itself: the page may be truncated or
3591                          * invalidated (changing page->mapping to NULL), or even
3592                          * swizzled back from swapper_space to tmpfs file
3593                          * mapping
3594                          */
3595                         if (!trylock_page(page)) {
3596                                 flush_fn(data);
3597                                 lock_page(page);
3598                         }
3599
3600                         if (unlikely(page->mapping != mapping)) {
3601                                 unlock_page(page);
3602                                 continue;
3603                         }
3604
3605                         if (!wbc->range_cyclic && page->index > end) {
3606                                 done = 1;
3607                                 unlock_page(page);
3608                                 continue;
3609                         }
3610
3611                         if (wbc->sync_mode != WB_SYNC_NONE) {
3612                                 if (PageWriteback(page))
3613                                         flush_fn(data);
3614                                 wait_on_page_writeback(page);
3615                         }
3616
3617                         if (PageWriteback(page) ||
3618                             !clear_page_dirty_for_io(page)) {
3619                                 unlock_page(page);
3620                                 continue;
3621                         }
3622
3623                         ret = (*writepage)(page, wbc, data);
3624
3625                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3626                                 unlock_page(page);
3627                                 ret = 0;
3628                         }
3629                         if (ret)
3630                                 done = 1;
3631
3632                         /*
3633                          * the filesystem may choose to bump up nr_to_write.
3634                          * We have to make sure to honor the new nr_to_write
3635                          * at any time
3636                          */
3637                         nr_to_write_done = wbc->nr_to_write <= 0;
3638                 }
3639                 pagevec_release(&pvec);
3640                 cond_resched();
3641         }
3642         if (!scanned && !done) {
3643                 /*
3644                  * We hit the last page and there is more work to be done: wrap
3645                  * back to the start of the file
3646                  */
3647                 scanned = 1;
3648                 index = 0;
3649                 goto retry;
3650         }
3651         btrfs_add_delayed_iput(inode);
3652         return ret;
3653 }
3654
3655 static void flush_epd_write_bio(struct extent_page_data *epd)
3656 {
3657         if (epd->bio) {
3658                 int rw = WRITE;
3659                 int ret;
3660
3661                 if (epd->sync_io)
3662                         rw = WRITE_SYNC;
3663
3664                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3665                 BUG_ON(ret < 0); /* -ENOMEM */
3666                 epd->bio = NULL;
3667         }
3668 }
3669
3670 static noinline void flush_write_bio(void *data)
3671 {
3672         struct extent_page_data *epd = data;
3673         flush_epd_write_bio(epd);
3674 }
3675
3676 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3677                           get_extent_t *get_extent,
3678                           struct writeback_control *wbc)
3679 {
3680         int ret;
3681         struct extent_page_data epd = {
3682                 .bio = NULL,
3683                 .tree = tree,
3684                 .get_extent = get_extent,
3685                 .extent_locked = 0,
3686                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3687                 .bio_flags = 0,
3688         };
3689
3690         ret = __extent_writepage(page, wbc, &epd);
3691
3692         flush_epd_write_bio(&epd);
3693         return ret;
3694 }
3695
3696 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3697                               u64 start, u64 end, get_extent_t *get_extent,
3698                               int mode)
3699 {
3700         int ret = 0;
3701         struct address_space *mapping = inode->i_mapping;
3702         struct page *page;
3703         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3704                 PAGE_CACHE_SHIFT;
3705
3706         struct extent_page_data epd = {
3707                 .bio = NULL,
3708                 .tree = tree,
3709                 .get_extent = get_extent,
3710                 .extent_locked = 1,
3711                 .sync_io = mode == WB_SYNC_ALL,
3712                 .bio_flags = 0,
3713         };
3714         struct writeback_control wbc_writepages = {
3715                 .sync_mode      = mode,
3716                 .nr_to_write    = nr_pages * 2,
3717                 .range_start    = start,
3718                 .range_end      = end + 1,
3719         };
3720
3721         while (start <= end) {
3722                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3723                 if (clear_page_dirty_for_io(page))
3724                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3725                 else {
3726                         if (tree->ops && tree->ops->writepage_end_io_hook)
3727                                 tree->ops->writepage_end_io_hook(page, start,
3728                                                  start + PAGE_CACHE_SIZE - 1,
3729                                                  NULL, 1);
3730                         unlock_page(page);
3731                 }
3732                 page_cache_release(page);
3733                 start += PAGE_CACHE_SIZE;
3734         }
3735
3736         flush_epd_write_bio(&epd);
3737         return ret;
3738 }
3739
3740 int extent_writepages(struct extent_io_tree *tree,
3741                       struct address_space *mapping,
3742                       get_extent_t *get_extent,
3743                       struct writeback_control *wbc)
3744 {
3745         int ret = 0;
3746         struct extent_page_data epd = {
3747                 .bio = NULL,
3748                 .tree = tree,
3749                 .get_extent = get_extent,
3750                 .extent_locked = 0,
3751                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3752                 .bio_flags = 0,
3753         };
3754
3755         ret = extent_write_cache_pages(tree, mapping, wbc,
3756                                        __extent_writepage, &epd,
3757                                        flush_write_bio);
3758         flush_epd_write_bio(&epd);
3759         return ret;
3760 }
3761
3762 int extent_readpages(struct extent_io_tree *tree,
3763                      struct address_space *mapping,
3764                      struct list_head *pages, unsigned nr_pages,
3765                      get_extent_t get_extent)
3766 {
3767         struct bio *bio = NULL;
3768         unsigned page_idx;
3769         unsigned long bio_flags = 0;
3770         struct page *pagepool[16];
3771         struct page *page;
3772         int i = 0;
3773         int nr = 0;
3774
3775         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3776                 page = list_entry(pages->prev, struct page, lru);
3777
3778                 prefetchw(&page->flags);
3779                 list_del(&page->lru);
3780                 if (add_to_page_cache_lru(page, mapping,
3781                                         page->index, GFP_NOFS)) {
3782                         page_cache_release(page);
3783                         continue;
3784                 }
3785
3786                 pagepool[nr++] = page;
3787                 if (nr < ARRAY_SIZE(pagepool))
3788                         continue;
3789                 for (i = 0; i < nr; i++) {
3790                         __extent_read_full_page(tree, pagepool[i], get_extent,
3791                                         &bio, 0, &bio_flags, READ);
3792                         page_cache_release(pagepool[i]);
3793                 }
3794                 nr = 0;
3795         }
3796         for (i = 0; i < nr; i++) {
3797                 __extent_read_full_page(tree, pagepool[i], get_extent,
3798                                         &bio, 0, &bio_flags, READ);
3799                 page_cache_release(pagepool[i]);
3800         }
3801
3802         BUG_ON(!list_empty(pages));
3803         if (bio)
3804                 return submit_one_bio(READ, bio, 0, bio_flags);
3805         return 0;
3806 }
3807
3808 /*
3809  * basic invalidatepage code, this waits on any locked or writeback
3810  * ranges corresponding to the page, and then deletes any extent state
3811  * records from the tree
3812  */
3813 int extent_invalidatepage(struct extent_io_tree *tree,
3814                           struct page *page, unsigned long offset)
3815 {
3816         struct extent_state *cached_state = NULL;
3817         u64 start = page_offset(page);
3818         u64 end = start + PAGE_CACHE_SIZE - 1;
3819         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3820
3821         start += ALIGN(offset, blocksize);
3822         if (start > end)
3823                 return 0;
3824
3825         lock_extent_bits(tree, start, end, 0, &cached_state);
3826         wait_on_page_writeback(page);
3827         clear_extent_bit(tree, start, end,
3828                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3829                          EXTENT_DO_ACCOUNTING,
3830                          1, 1, &cached_state, GFP_NOFS);
3831         return 0;
3832 }
3833
3834 /*
3835  * a helper for releasepage, this tests for areas of the page that
3836  * are locked or under IO and drops the related state bits if it is safe
3837  * to drop the page.
3838  */
3839 static int try_release_extent_state(struct extent_map_tree *map,
3840                                     struct extent_io_tree *tree,
3841                                     struct page *page, gfp_t mask)
3842 {
3843         u64 start = page_offset(page);
3844         u64 end = start + PAGE_CACHE_SIZE - 1;
3845         int ret = 1;
3846
3847         if (test_range_bit(tree, start, end,
3848                            EXTENT_IOBITS, 0, NULL))
3849                 ret = 0;
3850         else {
3851                 if ((mask & GFP_NOFS) == GFP_NOFS)
3852                         mask = GFP_NOFS;
3853                 /*
3854                  * at this point we can safely clear everything except the
3855                  * locked bit and the nodatasum bit
3856                  */
3857                 ret = clear_extent_bit(tree, start, end,
3858                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3859                                  0, 0, NULL, mask);
3860
3861                 /* if clear_extent_bit failed for enomem reasons,
3862                  * we can't allow the release to continue.
3863                  */
3864                 if (ret < 0)
3865                         ret = 0;
3866                 else
3867                         ret = 1;
3868         }
3869         return ret;
3870 }
3871
3872 /*
3873  * a helper for releasepage.  As long as there are no locked extents
3874  * in the range corresponding to the page, both state records and extent
3875  * map records are removed
3876  */
3877 int try_release_extent_mapping(struct extent_map_tree *map,
3878                                struct extent_io_tree *tree, struct page *page,
3879                                gfp_t mask)
3880 {
3881         struct extent_map *em;
3882         u64 start = page_offset(page);
3883         u64 end = start + PAGE_CACHE_SIZE - 1;
3884
3885         if ((mask & __GFP_WAIT) &&
3886             page->mapping->host->i_size > 16 * 1024 * 1024) {
3887                 u64 len;
3888                 while (start <= end) {
3889                         len = end - start + 1;
3890                         write_lock(&map->lock);
3891                         em = lookup_extent_mapping(map, start, len);
3892                         if (!em) {
3893                                 write_unlock(&map->lock);
3894                                 break;
3895                         }
3896                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3897                             em->start != start) {
3898                                 write_unlock(&map->lock);
3899                                 free_extent_map(em);
3900                                 break;
3901                         }
3902                         if (!test_range_bit(tree, em->start,
3903                                             extent_map_end(em) - 1,
3904                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3905                                             0, NULL)) {
3906                                 remove_extent_mapping(map, em);
3907                                 /* once for the rb tree */
3908                                 free_extent_map(em);
3909                         }
3910                         start = extent_map_end(em);
3911                         write_unlock(&map->lock);
3912
3913                         /* once for us */
3914                         free_extent_map(em);
3915                 }
3916         }
3917         return try_release_extent_state(map, tree, page, mask);
3918 }
3919
3920 /*
3921  * helper function for fiemap, which doesn't want to see any holes.
3922  * This maps until we find something past 'last'
3923  */
3924 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3925                                                 u64 offset,
3926                                                 u64 last,
3927                                                 get_extent_t *get_extent)
3928 {
3929         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3930         struct extent_map *em;
3931         u64 len;
3932
3933         if (offset >= last)
3934                 return NULL;
3935
3936         while(1) {
3937                 len = last - offset;
3938                 if (len == 0)
3939                         break;
3940                 len = ALIGN(len, sectorsize);
3941                 em = get_extent(inode, NULL, 0, offset, len, 0);
3942                 if (IS_ERR_OR_NULL(em))
3943                         return em;
3944
3945                 /* if this isn't a hole return it */
3946                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3947                     em->block_start != EXTENT_MAP_HOLE) {
3948                         return em;
3949                 }
3950
3951                 /* this is a hole, advance to the next extent */
3952                 offset = extent_map_end(em);
3953                 free_extent_map(em);
3954                 if (offset >= last)
3955                         break;
3956         }
3957         return NULL;
3958 }
3959
3960 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961                 __u64 start, __u64 len, get_extent_t *get_extent)
3962 {
3963         int ret = 0;
3964         u64 off = start;
3965         u64 max = start + len;
3966         u32 flags = 0;
3967         u32 found_type;
3968         u64 last;
3969         u64 last_for_get_extent = 0;
3970         u64 disko = 0;
3971         u64 isize = i_size_read(inode);
3972         struct btrfs_key found_key;
3973         struct extent_map *em = NULL;
3974         struct extent_state *cached_state = NULL;
3975         struct btrfs_path *path;
3976         struct btrfs_file_extent_item *item;
3977         int end = 0;
3978         u64 em_start = 0;
3979         u64 em_len = 0;
3980         u64 em_end = 0;
3981         unsigned long emflags;
3982
3983         if (len == 0)
3984                 return -EINVAL;
3985
3986         path = btrfs_alloc_path();
3987         if (!path)
3988                 return -ENOMEM;
3989         path->leave_spinning = 1;
3990
3991         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3992         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3993
3994         /*
3995          * lookup the last file extent.  We're not using i_size here
3996          * because there might be preallocation past i_size
3997          */
3998         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3999                                        path, btrfs_ino(inode), -1, 0);
4000         if (ret < 0) {
4001                 btrfs_free_path(path);
4002                 return ret;
4003         }
4004         WARN_ON(!ret);
4005         path->slots[0]--;
4006         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4007                               struct btrfs_file_extent_item);
4008         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4009         found_type = btrfs_key_type(&found_key);
4010
4011         /* No extents, but there might be delalloc bits */
4012         if (found_key.objectid != btrfs_ino(inode) ||
4013             found_type != BTRFS_EXTENT_DATA_KEY) {
4014                 /* have to trust i_size as the end */
4015                 last = (u64)-1;
4016                 last_for_get_extent = isize;
4017         } else {
4018                 /*
4019                  * remember the start of the last extent.  There are a
4020                  * bunch of different factors that go into the length of the
4021                  * extent, so its much less complex to remember where it started
4022                  */
4023                 last = found_key.offset;
4024                 last_for_get_extent = last + 1;
4025         }
4026         btrfs_free_path(path);
4027
4028         /*
4029          * we might have some extents allocated but more delalloc past those
4030          * extents.  so, we trust isize unless the start of the last extent is
4031          * beyond isize
4032          */
4033         if (last < isize) {
4034                 last = (u64)-1;
4035                 last_for_get_extent = isize;
4036         }
4037
4038         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4039                          &cached_state);
4040
4041         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4042                                    get_extent);
4043         if (!em)
4044                 goto out;
4045         if (IS_ERR(em)) {
4046                 ret = PTR_ERR(em);
4047                 goto out;
4048         }
4049
4050         while (!end) {
4051                 u64 offset_in_extent = 0;
4052
4053                 /* break if the extent we found is outside the range */
4054                 if (em->start >= max || extent_map_end(em) < off)
4055                         break;
4056
4057                 /*
4058                  * get_extent may return an extent that starts before our
4059                  * requested range.  We have to make sure the ranges
4060                  * we return to fiemap always move forward and don't
4061                  * overlap, so adjust the offsets here
4062                  */
4063                 em_start = max(em->start, off);
4064
4065                 /*
4066                  * record the offset from the start of the extent
4067                  * for adjusting the disk offset below.  Only do this if the
4068                  * extent isn't compressed since our in ram offset may be past
4069                  * what we have actually allocated on disk.
4070                  */
4071                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4072                         offset_in_extent = em_start - em->start;
4073                 em_end = extent_map_end(em);
4074                 em_len = em_end - em_start;
4075                 emflags = em->flags;
4076                 disko = 0;
4077                 flags = 0;
4078
4079                 /*
4080                  * bump off for our next call to get_extent
4081                  */
4082                 off = extent_map_end(em);
4083                 if (off >= max)
4084                         end = 1;
4085
4086                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4087                         end = 1;
4088                         flags |= FIEMAP_EXTENT_LAST;
4089                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4090                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4091                                   FIEMAP_EXTENT_NOT_ALIGNED);
4092                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4093                         flags |= (FIEMAP_EXTENT_DELALLOC |
4094                                   FIEMAP_EXTENT_UNKNOWN);
4095                 } else {
4096                         disko = em->block_start + offset_in_extent;
4097                 }
4098                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4099                         flags |= FIEMAP_EXTENT_ENCODED;
4100
4101                 free_extent_map(em);
4102                 em = NULL;
4103                 if ((em_start >= last) || em_len == (u64)-1 ||
4104                    (last == (u64)-1 && isize <= em_end)) {
4105                         flags |= FIEMAP_EXTENT_LAST;
4106                         end = 1;
4107                 }
4108
4109                 /* now scan forward to see if this is really the last extent. */
4110                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4111                                            get_extent);
4112                 if (IS_ERR(em)) {
4113                         ret = PTR_ERR(em);
4114                         goto out;
4115                 }
4116                 if (!em) {
4117                         flags |= FIEMAP_EXTENT_LAST;
4118                         end = 1;
4119                 }
4120                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4121                                               em_len, flags);
4122                 if (ret)
4123                         goto out_free;
4124         }
4125 out_free:
4126         free_extent_map(em);
4127 out:
4128         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4129                              &cached_state, GFP_NOFS);
4130         return ret;
4131 }
4132
4133 static void __free_extent_buffer(struct extent_buffer *eb)
4134 {
4135         btrfs_leak_debug_del(&eb->leak_list);
4136         kmem_cache_free(extent_buffer_cache, eb);
4137 }
4138
4139 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4140                                                    u64 start,
4141                                                    unsigned long len,
4142                                                    gfp_t mask)
4143 {
4144         struct extent_buffer *eb = NULL;
4145
4146         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4147         if (eb == NULL)
4148                 return NULL;
4149         eb->start = start;
4150         eb->len = len;
4151         eb->tree = tree;
4152         eb->bflags = 0;
4153         rwlock_init(&eb->lock);
4154         atomic_set(&eb->write_locks, 0);
4155         atomic_set(&eb->read_locks, 0);
4156         atomic_set(&eb->blocking_readers, 0);
4157         atomic_set(&eb->blocking_writers, 0);
4158         atomic_set(&eb->spinning_readers, 0);
4159         atomic_set(&eb->spinning_writers, 0);
4160         eb->lock_nested = 0;
4161         init_waitqueue_head(&eb->write_lock_wq);
4162         init_waitqueue_head(&eb->read_lock_wq);
4163
4164         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4165
4166         spin_lock_init(&eb->refs_lock);
4167         atomic_set(&eb->refs, 1);
4168         atomic_set(&eb->io_pages, 0);
4169
4170         /*
4171          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4172          */
4173         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4174                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4175         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4176
4177         return eb;
4178 }
4179
4180 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4181 {
4182         unsigned long i;
4183         struct page *p;
4184         struct extent_buffer *new;
4185         unsigned long num_pages = num_extent_pages(src->start, src->len);
4186
4187         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4188         if (new == NULL)
4189                 return NULL;
4190
4191         for (i = 0; i < num_pages; i++) {
4192                 p = alloc_page(GFP_ATOMIC);
4193                 BUG_ON(!p);
4194                 attach_extent_buffer_page(new, p);
4195                 WARN_ON(PageDirty(p));
4196                 SetPageUptodate(p);
4197                 new->pages[i] = p;
4198         }
4199
4200         copy_extent_buffer(new, src, 0, 0, src->len);
4201         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4202         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4203
4204         return new;
4205 }
4206
4207 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4208 {
4209         struct extent_buffer *eb;
4210         unsigned long num_pages = num_extent_pages(0, len);
4211         unsigned long i;
4212
4213         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4214         if (!eb)
4215                 return NULL;
4216
4217         for (i = 0; i < num_pages; i++) {
4218                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4219                 if (!eb->pages[i])
4220                         goto err;
4221         }
4222         set_extent_buffer_uptodate(eb);
4223         btrfs_set_header_nritems(eb, 0);
4224         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4225
4226         return eb;
4227 err:
4228         for (; i > 0; i--)
4229                 __free_page(eb->pages[i - 1]);
4230         __free_extent_buffer(eb);
4231         return NULL;
4232 }
4233
4234 static int extent_buffer_under_io(struct extent_buffer *eb)
4235 {
4236         return (atomic_read(&eb->io_pages) ||
4237                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4238                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4239 }
4240
4241 /*
4242  * Helper for releasing extent buffer page.
4243  */
4244 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4245                                                 unsigned long start_idx)
4246 {
4247         unsigned long index;
4248         unsigned long num_pages;
4249         struct page *page;
4250         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4251
4252         BUG_ON(extent_buffer_under_io(eb));
4253
4254         num_pages = num_extent_pages(eb->start, eb->len);
4255         index = start_idx + num_pages;
4256         if (start_idx >= index)
4257                 return;
4258
4259         do {
4260                 index--;
4261                 page = extent_buffer_page(eb, index);
4262                 if (page && mapped) {
4263                         spin_lock(&page->mapping->private_lock);
4264                         /*
4265                          * We do this since we'll remove the pages after we've
4266                          * removed the eb from the radix tree, so we could race
4267                          * and have this page now attached to the new eb.  So
4268                          * only clear page_private if it's still connected to
4269                          * this eb.
4270                          */
4271                         if (PagePrivate(page) &&
4272                             page->private == (unsigned long)eb) {
4273                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4274                                 BUG_ON(PageDirty(page));
4275                                 BUG_ON(PageWriteback(page));
4276                                 /*
4277                                  * We need to make sure we haven't be attached
4278                                  * to a new eb.
4279                                  */
4280                                 ClearPagePrivate(page);
4281                                 set_page_private(page, 0);
4282                                 /* One for the page private */
4283                                 page_cache_release(page);
4284                         }
4285                         spin_unlock(&page->mapping->private_lock);
4286
4287                 }
4288                 if (page) {
4289                         /* One for when we alloced the page */
4290                         page_cache_release(page);
4291                 }
4292         } while (index != start_idx);
4293 }
4294
4295 /*
4296  * Helper for releasing the extent buffer.
4297  */
4298 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4299 {
4300         btrfs_release_extent_buffer_page(eb, 0);
4301         __free_extent_buffer(eb);
4302 }
4303
4304 static void check_buffer_tree_ref(struct extent_buffer *eb)
4305 {
4306         int refs;
4307         /* the ref bit is tricky.  We have to make sure it is set
4308          * if we have the buffer dirty.   Otherwise the
4309          * code to free a buffer can end up dropping a dirty
4310          * page
4311          *
4312          * Once the ref bit is set, it won't go away while the
4313          * buffer is dirty or in writeback, and it also won't
4314          * go away while we have the reference count on the
4315          * eb bumped.
4316          *
4317          * We can't just set the ref bit without bumping the
4318          * ref on the eb because free_extent_buffer might
4319          * see the ref bit and try to clear it.  If this happens
4320          * free_extent_buffer might end up dropping our original
4321          * ref by mistake and freeing the page before we are able
4322          * to add one more ref.
4323          *
4324          * So bump the ref count first, then set the bit.  If someone
4325          * beat us to it, drop the ref we added.
4326          */
4327         refs = atomic_read(&eb->refs);
4328         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4329                 return;
4330
4331         spin_lock(&eb->refs_lock);
4332         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4333                 atomic_inc(&eb->refs);
4334         spin_unlock(&eb->refs_lock);
4335 }
4336
4337 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4338 {
4339         unsigned long num_pages, i;
4340
4341         check_buffer_tree_ref(eb);
4342
4343         num_pages = num_extent_pages(eb->start, eb->len);
4344         for (i = 0; i < num_pages; i++) {
4345                 struct page *p = extent_buffer_page(eb, i);
4346                 mark_page_accessed(p);
4347         }
4348 }
4349
4350 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4351                                           u64 start, unsigned long len)
4352 {
4353         unsigned long num_pages = num_extent_pages(start, len);
4354         unsigned long i;
4355         unsigned long index = start >> PAGE_CACHE_SHIFT;
4356         struct extent_buffer *eb;
4357         struct extent_buffer *exists = NULL;
4358         struct page *p;
4359         struct address_space *mapping = tree->mapping;
4360         int uptodate = 1;
4361         int ret;
4362
4363         rcu_read_lock();
4364         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4365         if (eb && atomic_inc_not_zero(&eb->refs)) {
4366                 rcu_read_unlock();
4367                 mark_extent_buffer_accessed(eb);
4368                 return eb;
4369         }
4370         rcu_read_unlock();
4371
4372         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4373         if (!eb)
4374                 return NULL;
4375
4376         for (i = 0; i < num_pages; i++, index++) {
4377                 p = find_or_create_page(mapping, index, GFP_NOFS);
4378                 if (!p)
4379                         goto free_eb;
4380
4381                 spin_lock(&mapping->private_lock);
4382                 if (PagePrivate(p)) {
4383                         /*
4384                          * We could have already allocated an eb for this page
4385                          * and attached one so lets see if we can get a ref on
4386                          * the existing eb, and if we can we know it's good and
4387                          * we can just return that one, else we know we can just
4388                          * overwrite page->private.
4389                          */
4390                         exists = (struct extent_buffer *)p->private;
4391                         if (atomic_inc_not_zero(&exists->refs)) {
4392                                 spin_unlock(&mapping->private_lock);
4393                                 unlock_page(p);
4394                                 page_cache_release(p);
4395                                 mark_extent_buffer_accessed(exists);
4396                                 goto free_eb;
4397                         }
4398
4399                         /*
4400                          * Do this so attach doesn't complain and we need to
4401                          * drop the ref the old guy had.
4402                          */
4403                         ClearPagePrivate(p);
4404                         WARN_ON(PageDirty(p));
4405                         page_cache_release(p);
4406                 }
4407                 attach_extent_buffer_page(eb, p);
4408                 spin_unlock(&mapping->private_lock);
4409                 WARN_ON(PageDirty(p));
4410                 mark_page_accessed(p);
4411                 eb->pages[i] = p;
4412                 if (!PageUptodate(p))
4413                         uptodate = 0;
4414
4415                 /*
4416                  * see below about how we avoid a nasty race with release page
4417                  * and why we unlock later
4418                  */
4419         }
4420         if (uptodate)
4421                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4422 again:
4423         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4424         if (ret)
4425                 goto free_eb;
4426
4427         spin_lock(&tree->buffer_lock);
4428         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4429         if (ret == -EEXIST) {
4430                 exists = radix_tree_lookup(&tree->buffer,
4431                                                 start >> PAGE_CACHE_SHIFT);
4432                 if (!atomic_inc_not_zero(&exists->refs)) {
4433                         spin_unlock(&tree->buffer_lock);
4434                         radix_tree_preload_end();
4435                         exists = NULL;
4436                         goto again;
4437                 }
4438                 spin_unlock(&tree->buffer_lock);
4439                 radix_tree_preload_end();
4440                 mark_extent_buffer_accessed(exists);
4441                 goto free_eb;
4442         }
4443         /* add one reference for the tree */
4444         check_buffer_tree_ref(eb);
4445         spin_unlock(&tree->buffer_lock);
4446         radix_tree_preload_end();
4447
4448         /*
4449          * there is a race where release page may have
4450          * tried to find this extent buffer in the radix
4451          * but failed.  It will tell the VM it is safe to
4452          * reclaim the, and it will clear the page private bit.
4453          * We must make sure to set the page private bit properly
4454          * after the extent buffer is in the radix tree so
4455          * it doesn't get lost
4456          */
4457         SetPageChecked(eb->pages[0]);
4458         for (i = 1; i < num_pages; i++) {
4459                 p = extent_buffer_page(eb, i);
4460                 ClearPageChecked(p);
4461                 unlock_page(p);
4462         }
4463         unlock_page(eb->pages[0]);
4464         return eb;
4465
4466 free_eb:
4467         for (i = 0; i < num_pages; i++) {
4468                 if (eb->pages[i])
4469                         unlock_page(eb->pages[i]);
4470         }
4471
4472         WARN_ON(!atomic_dec_and_test(&eb->refs));
4473         btrfs_release_extent_buffer(eb);
4474         return exists;
4475 }
4476
4477 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4478                                          u64 start, unsigned long len)
4479 {
4480         struct extent_buffer *eb;
4481
4482         rcu_read_lock();
4483         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4484         if (eb && atomic_inc_not_zero(&eb->refs)) {
4485                 rcu_read_unlock();
4486                 mark_extent_buffer_accessed(eb);
4487                 return eb;
4488         }
4489         rcu_read_unlock();
4490
4491         return NULL;
4492 }
4493
4494 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4495 {
4496         struct extent_buffer *eb =
4497                         container_of(head, struct extent_buffer, rcu_head);
4498
4499         __free_extent_buffer(eb);
4500 }
4501
4502 /* Expects to have eb->eb_lock already held */
4503 static int release_extent_buffer(struct extent_buffer *eb)
4504 {
4505         WARN_ON(atomic_read(&eb->refs) == 0);
4506         if (atomic_dec_and_test(&eb->refs)) {
4507                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4508                         spin_unlock(&eb->refs_lock);
4509                 } else {
4510                         struct extent_io_tree *tree = eb->tree;
4511
4512                         spin_unlock(&eb->refs_lock);
4513
4514                         spin_lock(&tree->buffer_lock);
4515                         radix_tree_delete(&tree->buffer,
4516                                           eb->start >> PAGE_CACHE_SHIFT);
4517                         spin_unlock(&tree->buffer_lock);
4518                 }
4519
4520                 /* Should be safe to release our pages at this point */
4521                 btrfs_release_extent_buffer_page(eb, 0);
4522                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4523                 return 1;
4524         }
4525         spin_unlock(&eb->refs_lock);
4526
4527         return 0;
4528 }
4529
4530 void free_extent_buffer(struct extent_buffer *eb)
4531 {
4532         int refs;
4533         int old;
4534         if (!eb)
4535                 return;
4536
4537         while (1) {
4538                 refs = atomic_read(&eb->refs);
4539                 if (refs <= 3)
4540                         break;
4541                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4542                 if (old == refs)
4543                         return;
4544         }
4545
4546         spin_lock(&eb->refs_lock);
4547         if (atomic_read(&eb->refs) == 2 &&
4548             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4549                 atomic_dec(&eb->refs);
4550
4551         if (atomic_read(&eb->refs) == 2 &&
4552             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4553             !extent_buffer_under_io(eb) &&
4554             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4555                 atomic_dec(&eb->refs);
4556
4557         /*
4558          * I know this is terrible, but it's temporary until we stop tracking
4559          * the uptodate bits and such for the extent buffers.
4560          */
4561         release_extent_buffer(eb);
4562 }
4563
4564 void free_extent_buffer_stale(struct extent_buffer *eb)
4565 {
4566         if (!eb)
4567                 return;
4568
4569         spin_lock(&eb->refs_lock);
4570         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4571
4572         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4573             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4574                 atomic_dec(&eb->refs);
4575         release_extent_buffer(eb);
4576 }
4577
4578 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4579 {
4580         unsigned long i;
4581         unsigned long num_pages;
4582         struct page *page;
4583
4584         num_pages = num_extent_pages(eb->start, eb->len);
4585
4586         for (i = 0; i < num_pages; i++) {
4587                 page = extent_buffer_page(eb, i);
4588                 if (!PageDirty(page))
4589                         continue;
4590
4591                 lock_page(page);
4592                 WARN_ON(!PagePrivate(page));
4593
4594                 clear_page_dirty_for_io(page);
4595                 spin_lock_irq(&page->mapping->tree_lock);
4596                 if (!PageDirty(page)) {
4597                         radix_tree_tag_clear(&page->mapping->page_tree,
4598                                                 page_index(page),
4599                                                 PAGECACHE_TAG_DIRTY);
4600                 }
4601                 spin_unlock_irq(&page->mapping->tree_lock);
4602                 ClearPageError(page);
4603                 unlock_page(page);
4604         }
4605         WARN_ON(atomic_read(&eb->refs) == 0);
4606 }
4607
4608 int set_extent_buffer_dirty(struct extent_buffer *eb)
4609 {
4610         unsigned long i;
4611         unsigned long num_pages;
4612         int was_dirty = 0;
4613
4614         check_buffer_tree_ref(eb);
4615
4616         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4617
4618         num_pages = num_extent_pages(eb->start, eb->len);
4619         WARN_ON(atomic_read(&eb->refs) == 0);
4620         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4621
4622         for (i = 0; i < num_pages; i++)
4623                 set_page_dirty(extent_buffer_page(eb, i));
4624         return was_dirty;
4625 }
4626
4627 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4628 {
4629         unsigned long i;
4630         struct page *page;
4631         unsigned long num_pages;
4632
4633         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4634         num_pages = num_extent_pages(eb->start, eb->len);
4635         for (i = 0; i < num_pages; i++) {
4636                 page = extent_buffer_page(eb, i);
4637                 if (page)
4638                         ClearPageUptodate(page);
4639         }
4640         return 0;
4641 }
4642
4643 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4644 {
4645         unsigned long i;
4646         struct page *page;
4647         unsigned long num_pages;
4648
4649         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4650         num_pages = num_extent_pages(eb->start, eb->len);
4651         for (i = 0; i < num_pages; i++) {
4652                 page = extent_buffer_page(eb, i);
4653                 SetPageUptodate(page);
4654         }
4655         return 0;
4656 }
4657
4658 int extent_buffer_uptodate(struct extent_buffer *eb)
4659 {
4660         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4661 }
4662
4663 int read_extent_buffer_pages(struct extent_io_tree *tree,
4664                              struct extent_buffer *eb, u64 start, int wait,
4665                              get_extent_t *get_extent, int mirror_num)
4666 {
4667         unsigned long i;
4668         unsigned long start_i;
4669         struct page *page;
4670         int err;
4671         int ret = 0;
4672         int locked_pages = 0;
4673         int all_uptodate = 1;
4674         unsigned long num_pages;
4675         unsigned long num_reads = 0;
4676         struct bio *bio = NULL;
4677         unsigned long bio_flags = 0;
4678
4679         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4680                 return 0;
4681
4682         if (start) {
4683                 WARN_ON(start < eb->start);
4684                 start_i = (start >> PAGE_CACHE_SHIFT) -
4685                         (eb->start >> PAGE_CACHE_SHIFT);
4686         } else {
4687                 start_i = 0;
4688         }
4689
4690         num_pages = num_extent_pages(eb->start, eb->len);
4691         for (i = start_i; i < num_pages; i++) {
4692                 page = extent_buffer_page(eb, i);
4693                 if (wait == WAIT_NONE) {
4694                         if (!trylock_page(page))
4695                                 goto unlock_exit;
4696                 } else {
4697                         lock_page(page);
4698                 }
4699                 locked_pages++;
4700                 if (!PageUptodate(page)) {
4701                         num_reads++;
4702                         all_uptodate = 0;
4703                 }
4704         }
4705         if (all_uptodate) {
4706                 if (start_i == 0)
4707                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4708                 goto unlock_exit;
4709         }
4710
4711         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4712         eb->read_mirror = 0;
4713         atomic_set(&eb->io_pages, num_reads);
4714         for (i = start_i; i < num_pages; i++) {
4715                 page = extent_buffer_page(eb, i);
4716                 if (!PageUptodate(page)) {
4717                         ClearPageError(page);
4718                         err = __extent_read_full_page(tree, page,
4719                                                       get_extent, &bio,
4720                                                       mirror_num, &bio_flags,
4721                                                       READ | REQ_META);
4722                         if (err)
4723                                 ret = err;
4724                 } else {
4725                         unlock_page(page);
4726                 }
4727         }
4728
4729         if (bio) {
4730                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4731                                      bio_flags);
4732                 if (err)
4733                         return err;
4734         }
4735
4736         if (ret || wait != WAIT_COMPLETE)
4737                 return ret;
4738
4739         for (i = start_i; i < num_pages; i++) {
4740                 page = extent_buffer_page(eb, i);
4741                 wait_on_page_locked(page);
4742                 if (!PageUptodate(page))
4743                         ret = -EIO;
4744         }
4745
4746         return ret;
4747
4748 unlock_exit:
4749         i = start_i;
4750         while (locked_pages > 0) {
4751                 page = extent_buffer_page(eb, i);
4752                 i++;
4753                 unlock_page(page);
4754                 locked_pages--;
4755         }
4756         return ret;
4757 }
4758
4759 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4760                         unsigned long start,
4761                         unsigned long len)
4762 {
4763         size_t cur;
4764         size_t offset;
4765         struct page *page;
4766         char *kaddr;
4767         char *dst = (char *)dstv;
4768         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4769         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4770
4771         WARN_ON(start > eb->len);
4772         WARN_ON(start + len > eb->start + eb->len);
4773
4774         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4775
4776         while (len > 0) {
4777                 page = extent_buffer_page(eb, i);
4778
4779                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4780                 kaddr = page_address(page);
4781                 memcpy(dst, kaddr + offset, cur);
4782
4783                 dst += cur;
4784                 len -= cur;
4785                 offset = 0;
4786                 i++;
4787         }
4788 }
4789
4790 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4791                                unsigned long min_len, char **map,
4792                                unsigned long *map_start,
4793                                unsigned long *map_len)
4794 {
4795         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4796         char *kaddr;
4797         struct page *p;
4798         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4799         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4800         unsigned long end_i = (start_offset + start + min_len - 1) >>
4801                 PAGE_CACHE_SHIFT;
4802
4803         if (i != end_i)
4804                 return -EINVAL;
4805
4806         if (i == 0) {
4807                 offset = start_offset;
4808                 *map_start = 0;
4809         } else {
4810                 offset = 0;
4811                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4812         }
4813
4814         if (start + min_len > eb->len) {
4815                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4816                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4817                        eb->len, start, min_len);
4818                 return -EINVAL;
4819         }
4820
4821         p = extent_buffer_page(eb, i);
4822         kaddr = page_address(p);
4823         *map = kaddr + offset;
4824         *map_len = PAGE_CACHE_SIZE - offset;
4825         return 0;
4826 }
4827
4828 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4829                           unsigned long start,
4830                           unsigned long len)
4831 {
4832         size_t cur;
4833         size_t offset;
4834         struct page *page;
4835         char *kaddr;
4836         char *ptr = (char *)ptrv;
4837         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4838         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4839         int ret = 0;
4840
4841         WARN_ON(start > eb->len);
4842         WARN_ON(start + len > eb->start + eb->len);
4843
4844         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4845
4846         while (len > 0) {
4847                 page = extent_buffer_page(eb, i);
4848
4849                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4850
4851                 kaddr = page_address(page);
4852                 ret = memcmp(ptr, kaddr + offset, cur);
4853                 if (ret)
4854                         break;
4855
4856                 ptr += cur;
4857                 len -= cur;
4858                 offset = 0;
4859                 i++;
4860         }
4861         return ret;
4862 }
4863
4864 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4865                          unsigned long start, unsigned long len)
4866 {
4867         size_t cur;
4868         size_t offset;
4869         struct page *page;
4870         char *kaddr;
4871         char *src = (char *)srcv;
4872         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4873         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4874
4875         WARN_ON(start > eb->len);
4876         WARN_ON(start + len > eb->start + eb->len);
4877
4878         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4879
4880         while (len > 0) {
4881                 page = extent_buffer_page(eb, i);
4882                 WARN_ON(!PageUptodate(page));
4883
4884                 cur = min(len, PAGE_CACHE_SIZE - offset);
4885                 kaddr = page_address(page);
4886                 memcpy(kaddr + offset, src, cur);
4887
4888                 src += cur;
4889                 len -= cur;
4890                 offset = 0;
4891                 i++;
4892         }
4893 }
4894
4895 void memset_extent_buffer(struct extent_buffer *eb, char c,
4896                           unsigned long start, unsigned long len)
4897 {
4898         size_t cur;
4899         size_t offset;
4900         struct page *page;
4901         char *kaddr;
4902         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4903         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4904
4905         WARN_ON(start > eb->len);
4906         WARN_ON(start + len > eb->start + eb->len);
4907
4908         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4909
4910         while (len > 0) {
4911                 page = extent_buffer_page(eb, i);
4912                 WARN_ON(!PageUptodate(page));
4913
4914                 cur = min(len, PAGE_CACHE_SIZE - offset);
4915                 kaddr = page_address(page);
4916                 memset(kaddr + offset, c, cur);
4917
4918                 len -= cur;
4919                 offset = 0;
4920                 i++;
4921         }
4922 }
4923
4924 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4925                         unsigned long dst_offset, unsigned long src_offset,
4926                         unsigned long len)
4927 {
4928         u64 dst_len = dst->len;
4929         size_t cur;
4930         size_t offset;
4931         struct page *page;
4932         char *kaddr;
4933         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4934         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4935
4936         WARN_ON(src->len != dst_len);
4937
4938         offset = (start_offset + dst_offset) &
4939                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4940
4941         while (len > 0) {
4942                 page = extent_buffer_page(dst, i);
4943                 WARN_ON(!PageUptodate(page));
4944
4945                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4946
4947                 kaddr = page_address(page);
4948                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4949
4950                 src_offset += cur;
4951                 len -= cur;
4952                 offset = 0;
4953                 i++;
4954         }
4955 }
4956
4957 static void move_pages(struct page *dst_page, struct page *src_page,
4958                        unsigned long dst_off, unsigned long src_off,
4959                        unsigned long len)
4960 {
4961         char *dst_kaddr = page_address(dst_page);
4962         if (dst_page == src_page) {
4963                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4964         } else {
4965                 char *src_kaddr = page_address(src_page);
4966                 char *p = dst_kaddr + dst_off + len;
4967                 char *s = src_kaddr + src_off + len;
4968
4969                 while (len--)
4970                         *--p = *--s;
4971         }
4972 }
4973
4974 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4975 {
4976         unsigned long distance = (src > dst) ? src - dst : dst - src;
4977         return distance < len;
4978 }
4979
4980 static void copy_pages(struct page *dst_page, struct page *src_page,
4981                        unsigned long dst_off, unsigned long src_off,
4982                        unsigned long len)
4983 {
4984         char *dst_kaddr = page_address(dst_page);
4985         char *src_kaddr;
4986         int must_memmove = 0;
4987
4988         if (dst_page != src_page) {
4989                 src_kaddr = page_address(src_page);
4990         } else {
4991                 src_kaddr = dst_kaddr;
4992                 if (areas_overlap(src_off, dst_off, len))
4993                         must_memmove = 1;
4994         }
4995
4996         if (must_memmove)
4997                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4998         else
4999                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5000 }
5001
5002 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5003                            unsigned long src_offset, unsigned long len)
5004 {
5005         size_t cur;
5006         size_t dst_off_in_page;
5007         size_t src_off_in_page;
5008         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5009         unsigned long dst_i;
5010         unsigned long src_i;
5011
5012         if (src_offset + len > dst->len) {
5013                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5014                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5015                 BUG_ON(1);
5016         }
5017         if (dst_offset + len > dst->len) {
5018                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5019                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5020                 BUG_ON(1);
5021         }
5022
5023         while (len > 0) {
5024                 dst_off_in_page = (start_offset + dst_offset) &
5025                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5026                 src_off_in_page = (start_offset + src_offset) &
5027                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5028
5029                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5030                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5031
5032                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5033                                                src_off_in_page));
5034                 cur = min_t(unsigned long, cur,
5035                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5036
5037                 copy_pages(extent_buffer_page(dst, dst_i),
5038                            extent_buffer_page(dst, src_i),
5039                            dst_off_in_page, src_off_in_page, cur);
5040
5041                 src_offset += cur;
5042                 dst_offset += cur;
5043                 len -= cur;
5044         }
5045 }
5046
5047 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5048                            unsigned long src_offset, unsigned long len)
5049 {
5050         size_t cur;
5051         size_t dst_off_in_page;
5052         size_t src_off_in_page;
5053         unsigned long dst_end = dst_offset + len - 1;
5054         unsigned long src_end = src_offset + len - 1;
5055         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5056         unsigned long dst_i;
5057         unsigned long src_i;
5058
5059         if (src_offset + len > dst->len) {
5060                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5061                        "len %lu len %lu\n", src_offset, len, dst->len);
5062                 BUG_ON(1);
5063         }
5064         if (dst_offset + len > dst->len) {
5065                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5066                        "len %lu len %lu\n", dst_offset, len, dst->len);
5067                 BUG_ON(1);
5068         }
5069         if (dst_offset < src_offset) {
5070                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5071                 return;
5072         }
5073         while (len > 0) {
5074                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5075                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5076
5077                 dst_off_in_page = (start_offset + dst_end) &
5078                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5079                 src_off_in_page = (start_offset + src_end) &
5080                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5081
5082                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5083                 cur = min(cur, dst_off_in_page + 1);
5084                 move_pages(extent_buffer_page(dst, dst_i),
5085                            extent_buffer_page(dst, src_i),
5086                            dst_off_in_page - cur + 1,
5087                            src_off_in_page - cur + 1, cur);
5088
5089                 dst_end -= cur;
5090                 src_end -= cur;
5091                 len -= cur;
5092         }
5093 }
5094
5095 int try_release_extent_buffer(struct page *page)
5096 {
5097         struct extent_buffer *eb;
5098
5099         /*
5100          * We need to make sure noboody is attaching this page to an eb right
5101          * now.
5102          */
5103         spin_lock(&page->mapping->private_lock);
5104         if (!PagePrivate(page)) {
5105                 spin_unlock(&page->mapping->private_lock);
5106                 return 1;
5107         }
5108
5109         eb = (struct extent_buffer *)page->private;
5110         BUG_ON(!eb);
5111
5112         /*
5113          * This is a little awful but should be ok, we need to make sure that
5114          * the eb doesn't disappear out from under us while we're looking at
5115          * this page.
5116          */
5117         spin_lock(&eb->refs_lock);
5118         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5119                 spin_unlock(&eb->refs_lock);
5120                 spin_unlock(&page->mapping->private_lock);
5121                 return 0;
5122         }
5123         spin_unlock(&page->mapping->private_lock);
5124
5125         /*
5126          * If tree ref isn't set then we know the ref on this eb is a real ref,
5127          * so just return, this page will likely be freed soon anyway.
5128          */
5129         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5130                 spin_unlock(&eb->refs_lock);
5131                 return 0;
5132         }
5133
5134         return release_extent_buffer(eb);
5135 }