]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: IVB FBC WaFbcDisableDpfcClockGating
[linux-imx.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49         /* Be paranoid as we can arrive here with only partial
50          * state retrieved from the hardware during setup.
51          */
52         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58         u32 fbc_ctl;
59
60         /* Disable compression */
61         fbc_ctl = I915_READ(FBC_CONTROL);
62         if ((fbc_ctl & FBC_CTL_EN) == 0)
63                 return;
64
65         fbc_ctl &= ~FBC_CTL_EN;
66         I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68         /* Wait for compressing bit to clear */
69         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70                 DRM_DEBUG_KMS("FBC idle timed out\n");
71                 return;
72         }
73
74         DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79         struct drm_device *dev = crtc->dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct drm_framebuffer *fb = crtc->fb;
82         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83         struct drm_i915_gem_object *obj = intel_fb->obj;
84         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85         int cfb_pitch;
86         int plane, i;
87         u32 fbc_ctl, fbc_ctl2;
88
89         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90         if (fb->pitches[0] < cfb_pitch)
91                 cfb_pitch = fb->pitches[0];
92
93         /* FBC_CTL wants 64B units */
94         cfb_pitch = (cfb_pitch / 64) - 1;
95         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97         /* Clear old tags */
98         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99                 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101         /* Set it up... */
102         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103         fbc_ctl2 |= plane;
104         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105         I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107         /* enable it... */
108         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109         if (IS_I945GM(dev))
110                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113         fbc_ctl |= obj->fence_reg;
114         I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123
124         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129         struct drm_device *dev = crtc->dev;
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         struct drm_framebuffer *fb = crtc->fb;
132         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133         struct drm_i915_gem_object *obj = intel_fb->obj;
134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136         unsigned long stall_watermark = 200;
137         u32 dpfc_ctl;
138
139         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148         /* enable it... */
149         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         u32 dpfc_ctl;
158
159         /* Disable compression */
160         dpfc_ctl = I915_READ(DPFC_CONTROL);
161         if (dpfc_ctl & DPFC_CTL_EN) {
162                 dpfc_ctl &= ~DPFC_CTL_EN;
163                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165                 DRM_DEBUG_KMS("disabled FBC\n");
166         }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172
173         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         u32 blt_ecoskpd;
180
181         /* Make sure blitter notifies FBC of writes */
182         gen6_gt_force_wake_get(dev_priv);
183         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185                 GEN6_BLITTER_LOCK_SHIFT;
186         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190                          GEN6_BLITTER_LOCK_SHIFT);
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         POSTING_READ(GEN6_BLITTER_ECOSKPD);
193         gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198         struct drm_device *dev = crtc->dev;
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_framebuffer *fb = crtc->fb;
201         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202         struct drm_i915_gem_object *obj = intel_fb->obj;
203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205         unsigned long stall_watermark = 200;
206         u32 dpfc_ctl;
207
208         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209         dpfc_ctl &= DPFC_RESERVED;
210         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211         /* Set persistent mode for front-buffer rendering, ala X. */
212         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221         /* enable it... */
222         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224         if (IS_GEN6(dev)) {
225                 I915_WRITE(SNB_DPFC_CTL_SA,
226                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228                 sandybridge_blit_fbc_update(dev);
229         }
230
231         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         u32 dpfc_ctl;
238
239         /* Disable compression */
240         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241         if (dpfc_ctl & DPFC_CTL_EN) {
242                 dpfc_ctl &= ~DPFC_CTL_EN;
243                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245                 if (IS_IVYBRIDGE(dev))
246                         /* WaFbcDisableDpfcClockGating */
247                         I915_WRITE(ILK_DSPCLK_GATE_D,
248                                    I915_READ(ILK_DSPCLK_GATE_D) &
249                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250
251                 DRM_DEBUG_KMS("disabled FBC\n");
252         }
253 }
254
255 static bool ironlake_fbc_enabled(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258
259         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
260 }
261
262 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
263 {
264         struct drm_device *dev = crtc->dev;
265         struct drm_i915_private *dev_priv = dev->dev_private;
266         struct drm_framebuffer *fb = crtc->fb;
267         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
268         struct drm_i915_gem_object *obj = intel_fb->obj;
269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
270
271         I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
272
273         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
274                    IVB_DPFC_CTL_FENCE_EN |
275                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
276
277         /* WaFbcAsynchFlipDisableFbcQueue */
278         I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
279         /* WaFbcDisableDpfcClockGating */
280         I915_WRITE(ILK_DSPCLK_GATE_D,
281                    I915_READ(ILK_DSPCLK_GATE_D) |
282                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
283
284         I915_WRITE(SNB_DPFC_CTL_SA,
285                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
286         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
287
288         sandybridge_blit_fbc_update(dev);
289
290         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
291 }
292
293 bool intel_fbc_enabled(struct drm_device *dev)
294 {
295         struct drm_i915_private *dev_priv = dev->dev_private;
296
297         if (!dev_priv->display.fbc_enabled)
298                 return false;
299
300         return dev_priv->display.fbc_enabled(dev);
301 }
302
303 static void intel_fbc_work_fn(struct work_struct *__work)
304 {
305         struct intel_fbc_work *work =
306                 container_of(to_delayed_work(__work),
307                              struct intel_fbc_work, work);
308         struct drm_device *dev = work->crtc->dev;
309         struct drm_i915_private *dev_priv = dev->dev_private;
310
311         mutex_lock(&dev->struct_mutex);
312         if (work == dev_priv->fbc_work) {
313                 /* Double check that we haven't switched fb without cancelling
314                  * the prior work.
315                  */
316                 if (work->crtc->fb == work->fb) {
317                         dev_priv->display.enable_fbc(work->crtc,
318                                                      work->interval);
319
320                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
321                         dev_priv->cfb_fb = work->crtc->fb->base.id;
322                         dev_priv->cfb_y = work->crtc->y;
323                 }
324
325                 dev_priv->fbc_work = NULL;
326         }
327         mutex_unlock(&dev->struct_mutex);
328
329         kfree(work);
330 }
331
332 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
333 {
334         if (dev_priv->fbc_work == NULL)
335                 return;
336
337         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
338
339         /* Synchronisation is provided by struct_mutex and checking of
340          * dev_priv->fbc_work, so we can perform the cancellation
341          * entirely asynchronously.
342          */
343         if (cancel_delayed_work(&dev_priv->fbc_work->work))
344                 /* tasklet was killed before being run, clean up */
345                 kfree(dev_priv->fbc_work);
346
347         /* Mark the work as no longer wanted so that if it does
348          * wake-up (because the work was already running and waiting
349          * for our mutex), it will discover that is no longer
350          * necessary to run.
351          */
352         dev_priv->fbc_work = NULL;
353 }
354
355 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
356 {
357         struct intel_fbc_work *work;
358         struct drm_device *dev = crtc->dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         if (!dev_priv->display.enable_fbc)
362                 return;
363
364         intel_cancel_fbc_work(dev_priv);
365
366         work = kzalloc(sizeof *work, GFP_KERNEL);
367         if (work == NULL) {
368                 dev_priv->display.enable_fbc(crtc, interval);
369                 return;
370         }
371
372         work->crtc = crtc;
373         work->fb = crtc->fb;
374         work->interval = interval;
375         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
376
377         dev_priv->fbc_work = work;
378
379         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
380
381         /* Delay the actual enabling to let pageflipping cease and the
382          * display to settle before starting the compression. Note that
383          * this delay also serves a second purpose: it allows for a
384          * vblank to pass after disabling the FBC before we attempt
385          * to modify the control registers.
386          *
387          * A more complicated solution would involve tracking vblanks
388          * following the termination of the page-flipping sequence
389          * and indeed performing the enable as a co-routine and not
390          * waiting synchronously upon the vblank.
391          */
392         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
393 }
394
395 void intel_disable_fbc(struct drm_device *dev)
396 {
397         struct drm_i915_private *dev_priv = dev->dev_private;
398
399         intel_cancel_fbc_work(dev_priv);
400
401         if (!dev_priv->display.disable_fbc)
402                 return;
403
404         dev_priv->display.disable_fbc(dev);
405         dev_priv->cfb_plane = -1;
406 }
407
408 /**
409  * intel_update_fbc - enable/disable FBC as needed
410  * @dev: the drm_device
411  *
412  * Set up the framebuffer compression hardware at mode set time.  We
413  * enable it if possible:
414  *   - plane A only (on pre-965)
415  *   - no pixel mulitply/line duplication
416  *   - no alpha buffer discard
417  *   - no dual wide
418  *   - framebuffer <= 2048 in width, 1536 in height
419  *
420  * We can't assume that any compression will take place (worst case),
421  * so the compressed buffer has to be the same size as the uncompressed
422  * one.  It also must reside (along with the line length buffer) in
423  * stolen memory.
424  *
425  * We need to enable/disable FBC on a global basis.
426  */
427 void intel_update_fbc(struct drm_device *dev)
428 {
429         struct drm_i915_private *dev_priv = dev->dev_private;
430         struct drm_crtc *crtc = NULL, *tmp_crtc;
431         struct intel_crtc *intel_crtc;
432         struct drm_framebuffer *fb;
433         struct intel_framebuffer *intel_fb;
434         struct drm_i915_gem_object *obj;
435         int enable_fbc;
436
437         if (!i915_powersave)
438                 return;
439
440         if (!I915_HAS_FBC(dev))
441                 return;
442
443         /*
444          * If FBC is already on, we just have to verify that we can
445          * keep it that way...
446          * Need to disable if:
447          *   - more than one pipe is active
448          *   - changing FBC params (stride, fence, mode)
449          *   - new fb is too large to fit in compressed buffer
450          *   - going to an unsupported config (interlace, pixel multiply, etc.)
451          */
452         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
453                 if (intel_crtc_active(tmp_crtc) &&
454                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
455                         if (crtc) {
456                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
457                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
458                                 goto out_disable;
459                         }
460                         crtc = tmp_crtc;
461                 }
462         }
463
464         if (!crtc || crtc->fb == NULL) {
465                 DRM_DEBUG_KMS("no output, disabling\n");
466                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
467                 goto out_disable;
468         }
469
470         intel_crtc = to_intel_crtc(crtc);
471         fb = crtc->fb;
472         intel_fb = to_intel_framebuffer(fb);
473         obj = intel_fb->obj;
474
475         enable_fbc = i915_enable_fbc;
476         if (enable_fbc < 0) {
477                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
478                 enable_fbc = 1;
479                 if (INTEL_INFO(dev)->gen <= 7)
480                         enable_fbc = 0;
481         }
482         if (!enable_fbc) {
483                 DRM_DEBUG_KMS("fbc disabled per module param\n");
484                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
485                 goto out_disable;
486         }
487         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
488             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
489                 DRM_DEBUG_KMS("mode incompatible with compression, "
490                               "disabling\n");
491                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
492                 goto out_disable;
493         }
494         if ((crtc->mode.hdisplay > 2048) ||
495             (crtc->mode.vdisplay > 1536)) {
496                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
497                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
498                 goto out_disable;
499         }
500         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
501                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
502                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
503                 goto out_disable;
504         }
505
506         /* The use of a CPU fence is mandatory in order to detect writes
507          * by the CPU to the scanout and trigger updates to the FBC.
508          */
509         if (obj->tiling_mode != I915_TILING_X ||
510             obj->fence_reg == I915_FENCE_REG_NONE) {
511                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
512                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
513                 goto out_disable;
514         }
515
516         /* If the kernel debugger is active, always disable compression */
517         if (in_dbg_master())
518                 goto out_disable;
519
520         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
521                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
522                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
523                 goto out_disable;
524         }
525
526         /* If the scanout has not changed, don't modify the FBC settings.
527          * Note that we make the fundamental assumption that the fb->obj
528          * cannot be unpinned (and have its GTT offset and fence revoked)
529          * without first being decoupled from the scanout and FBC disabled.
530          */
531         if (dev_priv->cfb_plane == intel_crtc->plane &&
532             dev_priv->cfb_fb == fb->base.id &&
533             dev_priv->cfb_y == crtc->y)
534                 return;
535
536         if (intel_fbc_enabled(dev)) {
537                 /* We update FBC along two paths, after changing fb/crtc
538                  * configuration (modeswitching) and after page-flipping
539                  * finishes. For the latter, we know that not only did
540                  * we disable the FBC at the start of the page-flip
541                  * sequence, but also more than one vblank has passed.
542                  *
543                  * For the former case of modeswitching, it is possible
544                  * to switch between two FBC valid configurations
545                  * instantaneously so we do need to disable the FBC
546                  * before we can modify its control registers. We also
547                  * have to wait for the next vblank for that to take
548                  * effect. However, since we delay enabling FBC we can
549                  * assume that a vblank has passed since disabling and
550                  * that we can safely alter the registers in the deferred
551                  * callback.
552                  *
553                  * In the scenario that we go from a valid to invalid
554                  * and then back to valid FBC configuration we have
555                  * no strict enforcement that a vblank occurred since
556                  * disabling the FBC. However, along all current pipe
557                  * disabling paths we do need to wait for a vblank at
558                  * some point. And we wait before enabling FBC anyway.
559                  */
560                 DRM_DEBUG_KMS("disabling active FBC for update\n");
561                 intel_disable_fbc(dev);
562         }
563
564         intel_enable_fbc(crtc, 500);
565         return;
566
567 out_disable:
568         /* Multiple disables should be harmless */
569         if (intel_fbc_enabled(dev)) {
570                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
571                 intel_disable_fbc(dev);
572         }
573         i915_gem_stolen_cleanup_compression(dev);
574 }
575
576 static void i915_pineview_get_mem_freq(struct drm_device *dev)
577 {
578         drm_i915_private_t *dev_priv = dev->dev_private;
579         u32 tmp;
580
581         tmp = I915_READ(CLKCFG);
582
583         switch (tmp & CLKCFG_FSB_MASK) {
584         case CLKCFG_FSB_533:
585                 dev_priv->fsb_freq = 533; /* 133*4 */
586                 break;
587         case CLKCFG_FSB_800:
588                 dev_priv->fsb_freq = 800; /* 200*4 */
589                 break;
590         case CLKCFG_FSB_667:
591                 dev_priv->fsb_freq =  667; /* 167*4 */
592                 break;
593         case CLKCFG_FSB_400:
594                 dev_priv->fsb_freq = 400; /* 100*4 */
595                 break;
596         }
597
598         switch (tmp & CLKCFG_MEM_MASK) {
599         case CLKCFG_MEM_533:
600                 dev_priv->mem_freq = 533;
601                 break;
602         case CLKCFG_MEM_667:
603                 dev_priv->mem_freq = 667;
604                 break;
605         case CLKCFG_MEM_800:
606                 dev_priv->mem_freq = 800;
607                 break;
608         }
609
610         /* detect pineview DDR3 setting */
611         tmp = I915_READ(CSHRDDR3CTL);
612         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
613 }
614
615 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
616 {
617         drm_i915_private_t *dev_priv = dev->dev_private;
618         u16 ddrpll, csipll;
619
620         ddrpll = I915_READ16(DDRMPLL1);
621         csipll = I915_READ16(CSIPLL0);
622
623         switch (ddrpll & 0xff) {
624         case 0xc:
625                 dev_priv->mem_freq = 800;
626                 break;
627         case 0x10:
628                 dev_priv->mem_freq = 1066;
629                 break;
630         case 0x14:
631                 dev_priv->mem_freq = 1333;
632                 break;
633         case 0x18:
634                 dev_priv->mem_freq = 1600;
635                 break;
636         default:
637                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
638                                  ddrpll & 0xff);
639                 dev_priv->mem_freq = 0;
640                 break;
641         }
642
643         dev_priv->ips.r_t = dev_priv->mem_freq;
644
645         switch (csipll & 0x3ff) {
646         case 0x00c:
647                 dev_priv->fsb_freq = 3200;
648                 break;
649         case 0x00e:
650                 dev_priv->fsb_freq = 3733;
651                 break;
652         case 0x010:
653                 dev_priv->fsb_freq = 4266;
654                 break;
655         case 0x012:
656                 dev_priv->fsb_freq = 4800;
657                 break;
658         case 0x014:
659                 dev_priv->fsb_freq = 5333;
660                 break;
661         case 0x016:
662                 dev_priv->fsb_freq = 5866;
663                 break;
664         case 0x018:
665                 dev_priv->fsb_freq = 6400;
666                 break;
667         default:
668                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
669                                  csipll & 0x3ff);
670                 dev_priv->fsb_freq = 0;
671                 break;
672         }
673
674         if (dev_priv->fsb_freq == 3200) {
675                 dev_priv->ips.c_m = 0;
676         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
677                 dev_priv->ips.c_m = 1;
678         } else {
679                 dev_priv->ips.c_m = 2;
680         }
681 }
682
683 static const struct cxsr_latency cxsr_latency_table[] = {
684         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
685         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
686         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
687         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
688         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
689
690         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
691         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
692         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
693         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
694         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
695
696         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
697         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
698         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
699         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
700         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
701
702         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
703         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
704         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
705         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
706         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
707
708         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
709         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
710         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
711         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
712         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
713
714         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
715         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
716         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
717         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
718         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
719 };
720
721 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
722                                                          int is_ddr3,
723                                                          int fsb,
724                                                          int mem)
725 {
726         const struct cxsr_latency *latency;
727         int i;
728
729         if (fsb == 0 || mem == 0)
730                 return NULL;
731
732         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
733                 latency = &cxsr_latency_table[i];
734                 if (is_desktop == latency->is_desktop &&
735                     is_ddr3 == latency->is_ddr3 &&
736                     fsb == latency->fsb_freq && mem == latency->mem_freq)
737                         return latency;
738         }
739
740         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
741
742         return NULL;
743 }
744
745 static void pineview_disable_cxsr(struct drm_device *dev)
746 {
747         struct drm_i915_private *dev_priv = dev->dev_private;
748
749         /* deactivate cxsr */
750         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
751 }
752
753 /*
754  * Latency for FIFO fetches is dependent on several factors:
755  *   - memory configuration (speed, channels)
756  *   - chipset
757  *   - current MCH state
758  * It can be fairly high in some situations, so here we assume a fairly
759  * pessimal value.  It's a tradeoff between extra memory fetches (if we
760  * set this value too high, the FIFO will fetch frequently to stay full)
761  * and power consumption (set it too low to save power and we might see
762  * FIFO underruns and display "flicker").
763  *
764  * A value of 5us seems to be a good balance; safe for very low end
765  * platforms but not overly aggressive on lower latency configs.
766  */
767 static const int latency_ns = 5000;
768
769 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
770 {
771         struct drm_i915_private *dev_priv = dev->dev_private;
772         uint32_t dsparb = I915_READ(DSPARB);
773         int size;
774
775         size = dsparb & 0x7f;
776         if (plane)
777                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
778
779         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
780                       plane ? "B" : "A", size);
781
782         return size;
783 }
784
785 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
786 {
787         struct drm_i915_private *dev_priv = dev->dev_private;
788         uint32_t dsparb = I915_READ(DSPARB);
789         int size;
790
791         size = dsparb & 0x1ff;
792         if (plane)
793                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
794         size >>= 1; /* Convert to cachelines */
795
796         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
797                       plane ? "B" : "A", size);
798
799         return size;
800 }
801
802 static int i845_get_fifo_size(struct drm_device *dev, int plane)
803 {
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         uint32_t dsparb = I915_READ(DSPARB);
806         int size;
807
808         size = dsparb & 0x7f;
809         size >>= 2; /* Convert to cachelines */
810
811         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
812                       plane ? "B" : "A",
813                       size);
814
815         return size;
816 }
817
818 static int i830_get_fifo_size(struct drm_device *dev, int plane)
819 {
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         uint32_t dsparb = I915_READ(DSPARB);
822         int size;
823
824         size = dsparb & 0x7f;
825         size >>= 1; /* Convert to cachelines */
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 /* Pineview has different values for various configs */
834 static const struct intel_watermark_params pineview_display_wm = {
835         PINEVIEW_DISPLAY_FIFO,
836         PINEVIEW_MAX_WM,
837         PINEVIEW_DFT_WM,
838         PINEVIEW_GUARD_WM,
839         PINEVIEW_FIFO_LINE_SIZE
840 };
841 static const struct intel_watermark_params pineview_display_hplloff_wm = {
842         PINEVIEW_DISPLAY_FIFO,
843         PINEVIEW_MAX_WM,
844         PINEVIEW_DFT_HPLLOFF_WM,
845         PINEVIEW_GUARD_WM,
846         PINEVIEW_FIFO_LINE_SIZE
847 };
848 static const struct intel_watermark_params pineview_cursor_wm = {
849         PINEVIEW_CURSOR_FIFO,
850         PINEVIEW_CURSOR_MAX_WM,
851         PINEVIEW_CURSOR_DFT_WM,
852         PINEVIEW_CURSOR_GUARD_WM,
853         PINEVIEW_FIFO_LINE_SIZE,
854 };
855 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
856         PINEVIEW_CURSOR_FIFO,
857         PINEVIEW_CURSOR_MAX_WM,
858         PINEVIEW_CURSOR_DFT_WM,
859         PINEVIEW_CURSOR_GUARD_WM,
860         PINEVIEW_FIFO_LINE_SIZE
861 };
862 static const struct intel_watermark_params g4x_wm_info = {
863         G4X_FIFO_SIZE,
864         G4X_MAX_WM,
865         G4X_MAX_WM,
866         2,
867         G4X_FIFO_LINE_SIZE,
868 };
869 static const struct intel_watermark_params g4x_cursor_wm_info = {
870         I965_CURSOR_FIFO,
871         I965_CURSOR_MAX_WM,
872         I965_CURSOR_DFT_WM,
873         2,
874         G4X_FIFO_LINE_SIZE,
875 };
876 static const struct intel_watermark_params valleyview_wm_info = {
877         VALLEYVIEW_FIFO_SIZE,
878         VALLEYVIEW_MAX_WM,
879         VALLEYVIEW_MAX_WM,
880         2,
881         G4X_FIFO_LINE_SIZE,
882 };
883 static const struct intel_watermark_params valleyview_cursor_wm_info = {
884         I965_CURSOR_FIFO,
885         VALLEYVIEW_CURSOR_MAX_WM,
886         I965_CURSOR_DFT_WM,
887         2,
888         G4X_FIFO_LINE_SIZE,
889 };
890 static const struct intel_watermark_params i965_cursor_wm_info = {
891         I965_CURSOR_FIFO,
892         I965_CURSOR_MAX_WM,
893         I965_CURSOR_DFT_WM,
894         2,
895         I915_FIFO_LINE_SIZE,
896 };
897 static const struct intel_watermark_params i945_wm_info = {
898         I945_FIFO_SIZE,
899         I915_MAX_WM,
900         1,
901         2,
902         I915_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params i915_wm_info = {
905         I915_FIFO_SIZE,
906         I915_MAX_WM,
907         1,
908         2,
909         I915_FIFO_LINE_SIZE
910 };
911 static const struct intel_watermark_params i855_wm_info = {
912         I855GM_FIFO_SIZE,
913         I915_MAX_WM,
914         1,
915         2,
916         I830_FIFO_LINE_SIZE
917 };
918 static const struct intel_watermark_params i830_wm_info = {
919         I830_FIFO_SIZE,
920         I915_MAX_WM,
921         1,
922         2,
923         I830_FIFO_LINE_SIZE
924 };
925
926 static const struct intel_watermark_params ironlake_display_wm_info = {
927         ILK_DISPLAY_FIFO,
928         ILK_DISPLAY_MAXWM,
929         ILK_DISPLAY_DFTWM,
930         2,
931         ILK_FIFO_LINE_SIZE
932 };
933 static const struct intel_watermark_params ironlake_cursor_wm_info = {
934         ILK_CURSOR_FIFO,
935         ILK_CURSOR_MAXWM,
936         ILK_CURSOR_DFTWM,
937         2,
938         ILK_FIFO_LINE_SIZE
939 };
940 static const struct intel_watermark_params ironlake_display_srwm_info = {
941         ILK_DISPLAY_SR_FIFO,
942         ILK_DISPLAY_MAX_SRWM,
943         ILK_DISPLAY_DFT_SRWM,
944         2,
945         ILK_FIFO_LINE_SIZE
946 };
947 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
948         ILK_CURSOR_SR_FIFO,
949         ILK_CURSOR_MAX_SRWM,
950         ILK_CURSOR_DFT_SRWM,
951         2,
952         ILK_FIFO_LINE_SIZE
953 };
954
955 static const struct intel_watermark_params sandybridge_display_wm_info = {
956         SNB_DISPLAY_FIFO,
957         SNB_DISPLAY_MAXWM,
958         SNB_DISPLAY_DFTWM,
959         2,
960         SNB_FIFO_LINE_SIZE
961 };
962 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
963         SNB_CURSOR_FIFO,
964         SNB_CURSOR_MAXWM,
965         SNB_CURSOR_DFTWM,
966         2,
967         SNB_FIFO_LINE_SIZE
968 };
969 static const struct intel_watermark_params sandybridge_display_srwm_info = {
970         SNB_DISPLAY_SR_FIFO,
971         SNB_DISPLAY_MAX_SRWM,
972         SNB_DISPLAY_DFT_SRWM,
973         2,
974         SNB_FIFO_LINE_SIZE
975 };
976 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
977         SNB_CURSOR_SR_FIFO,
978         SNB_CURSOR_MAX_SRWM,
979         SNB_CURSOR_DFT_SRWM,
980         2,
981         SNB_FIFO_LINE_SIZE
982 };
983
984
985 /**
986  * intel_calculate_wm - calculate watermark level
987  * @clock_in_khz: pixel clock
988  * @wm: chip FIFO params
989  * @pixel_size: display pixel size
990  * @latency_ns: memory latency for the platform
991  *
992  * Calculate the watermark level (the level at which the display plane will
993  * start fetching from memory again).  Each chip has a different display
994  * FIFO size and allocation, so the caller needs to figure that out and pass
995  * in the correct intel_watermark_params structure.
996  *
997  * As the pixel clock runs, the FIFO will be drained at a rate that depends
998  * on the pixel size.  When it reaches the watermark level, it'll start
999  * fetching FIFO line sized based chunks from memory until the FIFO fills
1000  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1001  * will occur, and a display engine hang could result.
1002  */
1003 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1004                                         const struct intel_watermark_params *wm,
1005                                         int fifo_size,
1006                                         int pixel_size,
1007                                         unsigned long latency_ns)
1008 {
1009         long entries_required, wm_size;
1010
1011         /*
1012          * Note: we need to make sure we don't overflow for various clock &
1013          * latency values.
1014          * clocks go from a few thousand to several hundred thousand.
1015          * latency is usually a few thousand
1016          */
1017         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1018                 1000;
1019         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1020
1021         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1022
1023         wm_size = fifo_size - (entries_required + wm->guard_size);
1024
1025         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1026
1027         /* Don't promote wm_size to unsigned... */
1028         if (wm_size > (long)wm->max_wm)
1029                 wm_size = wm->max_wm;
1030         if (wm_size <= 0)
1031                 wm_size = wm->default_wm;
1032         return wm_size;
1033 }
1034
1035 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1036 {
1037         struct drm_crtc *crtc, *enabled = NULL;
1038
1039         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1040                 if (intel_crtc_active(crtc)) {
1041                         if (enabled)
1042                                 return NULL;
1043                         enabled = crtc;
1044                 }
1045         }
1046
1047         return enabled;
1048 }
1049
1050 static void pineview_update_wm(struct drm_device *dev)
1051 {
1052         struct drm_i915_private *dev_priv = dev->dev_private;
1053         struct drm_crtc *crtc;
1054         const struct cxsr_latency *latency;
1055         u32 reg;
1056         unsigned long wm;
1057
1058         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1059                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1060         if (!latency) {
1061                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1062                 pineview_disable_cxsr(dev);
1063                 return;
1064         }
1065
1066         crtc = single_enabled_crtc(dev);
1067         if (crtc) {
1068                 int clock = crtc->mode.clock;
1069                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1070
1071                 /* Display SR */
1072                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1073                                         pineview_display_wm.fifo_size,
1074                                         pixel_size, latency->display_sr);
1075                 reg = I915_READ(DSPFW1);
1076                 reg &= ~DSPFW_SR_MASK;
1077                 reg |= wm << DSPFW_SR_SHIFT;
1078                 I915_WRITE(DSPFW1, reg);
1079                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1080
1081                 /* cursor SR */
1082                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1083                                         pineview_display_wm.fifo_size,
1084                                         pixel_size, latency->cursor_sr);
1085                 reg = I915_READ(DSPFW3);
1086                 reg &= ~DSPFW_CURSOR_SR_MASK;
1087                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1088                 I915_WRITE(DSPFW3, reg);
1089
1090                 /* Display HPLL off SR */
1091                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1092                                         pineview_display_hplloff_wm.fifo_size,
1093                                         pixel_size, latency->display_hpll_disable);
1094                 reg = I915_READ(DSPFW3);
1095                 reg &= ~DSPFW_HPLL_SR_MASK;
1096                 reg |= wm & DSPFW_HPLL_SR_MASK;
1097                 I915_WRITE(DSPFW3, reg);
1098
1099                 /* cursor HPLL off SR */
1100                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1101                                         pineview_display_hplloff_wm.fifo_size,
1102                                         pixel_size, latency->cursor_hpll_disable);
1103                 reg = I915_READ(DSPFW3);
1104                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1105                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1106                 I915_WRITE(DSPFW3, reg);
1107                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1108
1109                 /* activate cxsr */
1110                 I915_WRITE(DSPFW3,
1111                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1112                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1113         } else {
1114                 pineview_disable_cxsr(dev);
1115                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1116         }
1117 }
1118
1119 static bool g4x_compute_wm0(struct drm_device *dev,
1120                             int plane,
1121                             const struct intel_watermark_params *display,
1122                             int display_latency_ns,
1123                             const struct intel_watermark_params *cursor,
1124                             int cursor_latency_ns,
1125                             int *plane_wm,
1126                             int *cursor_wm)
1127 {
1128         struct drm_crtc *crtc;
1129         int htotal, hdisplay, clock, pixel_size;
1130         int line_time_us, line_count;
1131         int entries, tlb_miss;
1132
1133         crtc = intel_get_crtc_for_plane(dev, plane);
1134         if (!intel_crtc_active(crtc)) {
1135                 *cursor_wm = cursor->guard_size;
1136                 *plane_wm = display->guard_size;
1137                 return false;
1138         }
1139
1140         htotal = crtc->mode.htotal;
1141         hdisplay = crtc->mode.hdisplay;
1142         clock = crtc->mode.clock;
1143         pixel_size = crtc->fb->bits_per_pixel / 8;
1144
1145         /* Use the small buffer method to calculate plane watermark */
1146         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1147         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1148         if (tlb_miss > 0)
1149                 entries += tlb_miss;
1150         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1151         *plane_wm = entries + display->guard_size;
1152         if (*plane_wm > (int)display->max_wm)
1153                 *plane_wm = display->max_wm;
1154
1155         /* Use the large buffer method to calculate cursor watermark */
1156         line_time_us = ((htotal * 1000) / clock);
1157         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1158         entries = line_count * 64 * pixel_size;
1159         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1160         if (tlb_miss > 0)
1161                 entries += tlb_miss;
1162         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1163         *cursor_wm = entries + cursor->guard_size;
1164         if (*cursor_wm > (int)cursor->max_wm)
1165                 *cursor_wm = (int)cursor->max_wm;
1166
1167         return true;
1168 }
1169
1170 /*
1171  * Check the wm result.
1172  *
1173  * If any calculated watermark values is larger than the maximum value that
1174  * can be programmed into the associated watermark register, that watermark
1175  * must be disabled.
1176  */
1177 static bool g4x_check_srwm(struct drm_device *dev,
1178                            int display_wm, int cursor_wm,
1179                            const struct intel_watermark_params *display,
1180                            const struct intel_watermark_params *cursor)
1181 {
1182         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1183                       display_wm, cursor_wm);
1184
1185         if (display_wm > display->max_wm) {
1186                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1187                               display_wm, display->max_wm);
1188                 return false;
1189         }
1190
1191         if (cursor_wm > cursor->max_wm) {
1192                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1193                               cursor_wm, cursor->max_wm);
1194                 return false;
1195         }
1196
1197         if (!(display_wm || cursor_wm)) {
1198                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1199                 return false;
1200         }
1201
1202         return true;
1203 }
1204
1205 static bool g4x_compute_srwm(struct drm_device *dev,
1206                              int plane,
1207                              int latency_ns,
1208                              const struct intel_watermark_params *display,
1209                              const struct intel_watermark_params *cursor,
1210                              int *display_wm, int *cursor_wm)
1211 {
1212         struct drm_crtc *crtc;
1213         int hdisplay, htotal, pixel_size, clock;
1214         unsigned long line_time_us;
1215         int line_count, line_size;
1216         int small, large;
1217         int entries;
1218
1219         if (!latency_ns) {
1220                 *display_wm = *cursor_wm = 0;
1221                 return false;
1222         }
1223
1224         crtc = intel_get_crtc_for_plane(dev, plane);
1225         hdisplay = crtc->mode.hdisplay;
1226         htotal = crtc->mode.htotal;
1227         clock = crtc->mode.clock;
1228         pixel_size = crtc->fb->bits_per_pixel / 8;
1229
1230         line_time_us = (htotal * 1000) / clock;
1231         line_count = (latency_ns / line_time_us + 1000) / 1000;
1232         line_size = hdisplay * pixel_size;
1233
1234         /* Use the minimum of the small and large buffer method for primary */
1235         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1236         large = line_count * line_size;
1237
1238         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1239         *display_wm = entries + display->guard_size;
1240
1241         /* calculate the self-refresh watermark for display cursor */
1242         entries = line_count * pixel_size * 64;
1243         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1244         *cursor_wm = entries + cursor->guard_size;
1245
1246         return g4x_check_srwm(dev,
1247                               *display_wm, *cursor_wm,
1248                               display, cursor);
1249 }
1250
1251 static bool vlv_compute_drain_latency(struct drm_device *dev,
1252                                      int plane,
1253                                      int *plane_prec_mult,
1254                                      int *plane_dl,
1255                                      int *cursor_prec_mult,
1256                                      int *cursor_dl)
1257 {
1258         struct drm_crtc *crtc;
1259         int clock, pixel_size;
1260         int entries;
1261
1262         crtc = intel_get_crtc_for_plane(dev, plane);
1263         if (!intel_crtc_active(crtc))
1264                 return false;
1265
1266         clock = crtc->mode.clock;       /* VESA DOT Clock */
1267         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1268
1269         entries = (clock / 1000) * pixel_size;
1270         *plane_prec_mult = (entries > 256) ?
1271                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1272         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1273                                                      pixel_size);
1274
1275         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1276         *cursor_prec_mult = (entries > 256) ?
1277                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1278         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1279
1280         return true;
1281 }
1282
1283 /*
1284  * Update drain latency registers of memory arbiter
1285  *
1286  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1287  * to be programmed. Each plane has a drain latency multiplier and a drain
1288  * latency value.
1289  */
1290
1291 static void vlv_update_drain_latency(struct drm_device *dev)
1292 {
1293         struct drm_i915_private *dev_priv = dev->dev_private;
1294         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1295         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1296         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1297                                                         either 16 or 32 */
1298
1299         /* For plane A, Cursor A */
1300         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1301                                       &cursor_prec_mult, &cursora_dl)) {
1302                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1303                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1304                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1305                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1306
1307                 I915_WRITE(VLV_DDL1, cursora_prec |
1308                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1309                                 planea_prec | planea_dl);
1310         }
1311
1312         /* For plane B, Cursor B */
1313         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1314                                       &cursor_prec_mult, &cursorb_dl)) {
1315                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1316                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1317                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1318                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1319
1320                 I915_WRITE(VLV_DDL2, cursorb_prec |
1321                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1322                                 planeb_prec | planeb_dl);
1323         }
1324 }
1325
1326 #define single_plane_enabled(mask) is_power_of_2(mask)
1327
1328 static void valleyview_update_wm(struct drm_device *dev)
1329 {
1330         static const int sr_latency_ns = 12000;
1331         struct drm_i915_private *dev_priv = dev->dev_private;
1332         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1333         int plane_sr, cursor_sr;
1334         int ignore_plane_sr, ignore_cursor_sr;
1335         unsigned int enabled = 0;
1336
1337         vlv_update_drain_latency(dev);
1338
1339         if (g4x_compute_wm0(dev, 0,
1340                             &valleyview_wm_info, latency_ns,
1341                             &valleyview_cursor_wm_info, latency_ns,
1342                             &planea_wm, &cursora_wm))
1343                 enabled |= 1;
1344
1345         if (g4x_compute_wm0(dev, 1,
1346                             &valleyview_wm_info, latency_ns,
1347                             &valleyview_cursor_wm_info, latency_ns,
1348                             &planeb_wm, &cursorb_wm))
1349                 enabled |= 2;
1350
1351         if (single_plane_enabled(enabled) &&
1352             g4x_compute_srwm(dev, ffs(enabled) - 1,
1353                              sr_latency_ns,
1354                              &valleyview_wm_info,
1355                              &valleyview_cursor_wm_info,
1356                              &plane_sr, &ignore_cursor_sr) &&
1357             g4x_compute_srwm(dev, ffs(enabled) - 1,
1358                              2*sr_latency_ns,
1359                              &valleyview_wm_info,
1360                              &valleyview_cursor_wm_info,
1361                              &ignore_plane_sr, &cursor_sr)) {
1362                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1363         } else {
1364                 I915_WRITE(FW_BLC_SELF_VLV,
1365                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1366                 plane_sr = cursor_sr = 0;
1367         }
1368
1369         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1370                       planea_wm, cursora_wm,
1371                       planeb_wm, cursorb_wm,
1372                       plane_sr, cursor_sr);
1373
1374         I915_WRITE(DSPFW1,
1375                    (plane_sr << DSPFW_SR_SHIFT) |
1376                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1377                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1378                    planea_wm);
1379         I915_WRITE(DSPFW2,
1380                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1381                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1382         I915_WRITE(DSPFW3,
1383                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1384                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1385 }
1386
1387 static void g4x_update_wm(struct drm_device *dev)
1388 {
1389         static const int sr_latency_ns = 12000;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1392         int plane_sr, cursor_sr;
1393         unsigned int enabled = 0;
1394
1395         if (g4x_compute_wm0(dev, 0,
1396                             &g4x_wm_info, latency_ns,
1397                             &g4x_cursor_wm_info, latency_ns,
1398                             &planea_wm, &cursora_wm))
1399                 enabled |= 1;
1400
1401         if (g4x_compute_wm0(dev, 1,
1402                             &g4x_wm_info, latency_ns,
1403                             &g4x_cursor_wm_info, latency_ns,
1404                             &planeb_wm, &cursorb_wm))
1405                 enabled |= 2;
1406
1407         if (single_plane_enabled(enabled) &&
1408             g4x_compute_srwm(dev, ffs(enabled) - 1,
1409                              sr_latency_ns,
1410                              &g4x_wm_info,
1411                              &g4x_cursor_wm_info,
1412                              &plane_sr, &cursor_sr)) {
1413                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1414         } else {
1415                 I915_WRITE(FW_BLC_SELF,
1416                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1417                 plane_sr = cursor_sr = 0;
1418         }
1419
1420         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1421                       planea_wm, cursora_wm,
1422                       planeb_wm, cursorb_wm,
1423                       plane_sr, cursor_sr);
1424
1425         I915_WRITE(DSPFW1,
1426                    (plane_sr << DSPFW_SR_SHIFT) |
1427                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1428                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1429                    planea_wm);
1430         I915_WRITE(DSPFW2,
1431                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1432                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1433         /* HPLL off in SR has some issues on G4x... disable it */
1434         I915_WRITE(DSPFW3,
1435                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1436                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1437 }
1438
1439 static void i965_update_wm(struct drm_device *dev)
1440 {
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         struct drm_crtc *crtc;
1443         int srwm = 1;
1444         int cursor_sr = 16;
1445
1446         /* Calc sr entries for one plane configs */
1447         crtc = single_enabled_crtc(dev);
1448         if (crtc) {
1449                 /* self-refresh has much higher latency */
1450                 static const int sr_latency_ns = 12000;
1451                 int clock = crtc->mode.clock;
1452                 int htotal = crtc->mode.htotal;
1453                 int hdisplay = crtc->mode.hdisplay;
1454                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1455                 unsigned long line_time_us;
1456                 int entries;
1457
1458                 line_time_us = ((htotal * 1000) / clock);
1459
1460                 /* Use ns/us then divide to preserve precision */
1461                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1462                         pixel_size * hdisplay;
1463                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1464                 srwm = I965_FIFO_SIZE - entries;
1465                 if (srwm < 0)
1466                         srwm = 1;
1467                 srwm &= 0x1ff;
1468                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1469                               entries, srwm);
1470
1471                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472                         pixel_size * 64;
1473                 entries = DIV_ROUND_UP(entries,
1474                                           i965_cursor_wm_info.cacheline_size);
1475                 cursor_sr = i965_cursor_wm_info.fifo_size -
1476                         (entries + i965_cursor_wm_info.guard_size);
1477
1478                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1479                         cursor_sr = i965_cursor_wm_info.max_wm;
1480
1481                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1482                               "cursor %d\n", srwm, cursor_sr);
1483
1484                 if (IS_CRESTLINE(dev))
1485                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1486         } else {
1487                 /* Turn off self refresh if both pipes are enabled */
1488                 if (IS_CRESTLINE(dev))
1489                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1490                                    & ~FW_BLC_SELF_EN);
1491         }
1492
1493         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494                       srwm);
1495
1496         /* 965 has limitations... */
1497         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1498                    (8 << 16) | (8 << 8) | (8 << 0));
1499         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1500         /* update cursor SR watermark */
1501         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1502 }
1503
1504 static void i9xx_update_wm(struct drm_device *dev)
1505 {
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         const struct intel_watermark_params *wm_info;
1508         uint32_t fwater_lo;
1509         uint32_t fwater_hi;
1510         int cwm, srwm = 1;
1511         int fifo_size;
1512         int planea_wm, planeb_wm;
1513         struct drm_crtc *crtc, *enabled = NULL;
1514
1515         if (IS_I945GM(dev))
1516                 wm_info = &i945_wm_info;
1517         else if (!IS_GEN2(dev))
1518                 wm_info = &i915_wm_info;
1519         else
1520                 wm_info = &i855_wm_info;
1521
1522         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1523         crtc = intel_get_crtc_for_plane(dev, 0);
1524         if (intel_crtc_active(crtc)) {
1525                 int cpp = crtc->fb->bits_per_pixel / 8;
1526                 if (IS_GEN2(dev))
1527                         cpp = 4;
1528
1529                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1530                                                wm_info, fifo_size, cpp,
1531                                                latency_ns);
1532                 enabled = crtc;
1533         } else
1534                 planea_wm = fifo_size - wm_info->guard_size;
1535
1536         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1537         crtc = intel_get_crtc_for_plane(dev, 1);
1538         if (intel_crtc_active(crtc)) {
1539                 int cpp = crtc->fb->bits_per_pixel / 8;
1540                 if (IS_GEN2(dev))
1541                         cpp = 4;
1542
1543                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1544                                                wm_info, fifo_size, cpp,
1545                                                latency_ns);
1546                 if (enabled == NULL)
1547                         enabled = crtc;
1548                 else
1549                         enabled = NULL;
1550         } else
1551                 planeb_wm = fifo_size - wm_info->guard_size;
1552
1553         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1554
1555         /*
1556          * Overlay gets an aggressive default since video jitter is bad.
1557          */
1558         cwm = 2;
1559
1560         /* Play safe and disable self-refresh before adjusting watermarks. */
1561         if (IS_I945G(dev) || IS_I945GM(dev))
1562                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1563         else if (IS_I915GM(dev))
1564                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1565
1566         /* Calc sr entries for one plane configs */
1567         if (HAS_FW_BLC(dev) && enabled) {
1568                 /* self-refresh has much higher latency */
1569                 static const int sr_latency_ns = 6000;
1570                 int clock = enabled->mode.clock;
1571                 int htotal = enabled->mode.htotal;
1572                 int hdisplay = enabled->mode.hdisplay;
1573                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1574                 unsigned long line_time_us;
1575                 int entries;
1576
1577                 line_time_us = (htotal * 1000) / clock;
1578
1579                 /* Use ns/us then divide to preserve precision */
1580                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1581                         pixel_size * hdisplay;
1582                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1583                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1584                 srwm = wm_info->fifo_size - entries;
1585                 if (srwm < 0)
1586                         srwm = 1;
1587
1588                 if (IS_I945G(dev) || IS_I945GM(dev))
1589                         I915_WRITE(FW_BLC_SELF,
1590                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1591                 else if (IS_I915GM(dev))
1592                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1593         }
1594
1595         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1596                       planea_wm, planeb_wm, cwm, srwm);
1597
1598         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1599         fwater_hi = (cwm & 0x1f);
1600
1601         /* Set request length to 8 cachelines per fetch */
1602         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1603         fwater_hi = fwater_hi | (1 << 8);
1604
1605         I915_WRITE(FW_BLC, fwater_lo);
1606         I915_WRITE(FW_BLC2, fwater_hi);
1607
1608         if (HAS_FW_BLC(dev)) {
1609                 if (enabled) {
1610                         if (IS_I945G(dev) || IS_I945GM(dev))
1611                                 I915_WRITE(FW_BLC_SELF,
1612                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1613                         else if (IS_I915GM(dev))
1614                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1615                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1616                 } else
1617                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1618         }
1619 }
1620
1621 static void i830_update_wm(struct drm_device *dev)
1622 {
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_crtc *crtc;
1625         uint32_t fwater_lo;
1626         int planea_wm;
1627
1628         crtc = single_enabled_crtc(dev);
1629         if (crtc == NULL)
1630                 return;
1631
1632         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1633                                        dev_priv->display.get_fifo_size(dev, 0),
1634                                        4, latency_ns);
1635         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1636         fwater_lo |= (3<<8) | planea_wm;
1637
1638         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1639
1640         I915_WRITE(FW_BLC, fwater_lo);
1641 }
1642
1643 #define ILK_LP0_PLANE_LATENCY           700
1644 #define ILK_LP0_CURSOR_LATENCY          1300
1645
1646 /*
1647  * Check the wm result.
1648  *
1649  * If any calculated watermark values is larger than the maximum value that
1650  * can be programmed into the associated watermark register, that watermark
1651  * must be disabled.
1652  */
1653 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1654                                 int fbc_wm, int display_wm, int cursor_wm,
1655                                 const struct intel_watermark_params *display,
1656                                 const struct intel_watermark_params *cursor)
1657 {
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1661                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1662
1663         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1664                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1665                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1666
1667                 /* fbc has it's own way to disable FBC WM */
1668                 I915_WRITE(DISP_ARB_CTL,
1669                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1670                 return false;
1671         } else if (INTEL_INFO(dev)->gen >= 6) {
1672                 /* enable FBC WM (except on ILK, where it must remain off) */
1673                 I915_WRITE(DISP_ARB_CTL,
1674                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1675         }
1676
1677         if (display_wm > display->max_wm) {
1678                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1679                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1680                 return false;
1681         }
1682
1683         if (cursor_wm > cursor->max_wm) {
1684                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1685                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1686                 return false;
1687         }
1688
1689         if (!(fbc_wm || display_wm || cursor_wm)) {
1690                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1691                 return false;
1692         }
1693
1694         return true;
1695 }
1696
1697 /*
1698  * Compute watermark values of WM[1-3],
1699  */
1700 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1701                                   int latency_ns,
1702                                   const struct intel_watermark_params *display,
1703                                   const struct intel_watermark_params *cursor,
1704                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1705 {
1706         struct drm_crtc *crtc;
1707         unsigned long line_time_us;
1708         int hdisplay, htotal, pixel_size, clock;
1709         int line_count, line_size;
1710         int small, large;
1711         int entries;
1712
1713         if (!latency_ns) {
1714                 *fbc_wm = *display_wm = *cursor_wm = 0;
1715                 return false;
1716         }
1717
1718         crtc = intel_get_crtc_for_plane(dev, plane);
1719         hdisplay = crtc->mode.hdisplay;
1720         htotal = crtc->mode.htotal;
1721         clock = crtc->mode.clock;
1722         pixel_size = crtc->fb->bits_per_pixel / 8;
1723
1724         line_time_us = (htotal * 1000) / clock;
1725         line_count = (latency_ns / line_time_us + 1000) / 1000;
1726         line_size = hdisplay * pixel_size;
1727
1728         /* Use the minimum of the small and large buffer method for primary */
1729         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1730         large = line_count * line_size;
1731
1732         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1733         *display_wm = entries + display->guard_size;
1734
1735         /*
1736          * Spec says:
1737          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1738          */
1739         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1740
1741         /* calculate the self-refresh watermark for display cursor */
1742         entries = line_count * pixel_size * 64;
1743         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1744         *cursor_wm = entries + cursor->guard_size;
1745
1746         return ironlake_check_srwm(dev, level,
1747                                    *fbc_wm, *display_wm, *cursor_wm,
1748                                    display, cursor);
1749 }
1750
1751 static void ironlake_update_wm(struct drm_device *dev)
1752 {
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         int fbc_wm, plane_wm, cursor_wm;
1755         unsigned int enabled;
1756
1757         enabled = 0;
1758         if (g4x_compute_wm0(dev, 0,
1759                             &ironlake_display_wm_info,
1760                             ILK_LP0_PLANE_LATENCY,
1761                             &ironlake_cursor_wm_info,
1762                             ILK_LP0_CURSOR_LATENCY,
1763                             &plane_wm, &cursor_wm)) {
1764                 I915_WRITE(WM0_PIPEA_ILK,
1765                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1766                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1767                               " plane %d, " "cursor: %d\n",
1768                               plane_wm, cursor_wm);
1769                 enabled |= 1;
1770         }
1771
1772         if (g4x_compute_wm0(dev, 1,
1773                             &ironlake_display_wm_info,
1774                             ILK_LP0_PLANE_LATENCY,
1775                             &ironlake_cursor_wm_info,
1776                             ILK_LP0_CURSOR_LATENCY,
1777                             &plane_wm, &cursor_wm)) {
1778                 I915_WRITE(WM0_PIPEB_ILK,
1779                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1780                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1781                               " plane %d, cursor: %d\n",
1782                               plane_wm, cursor_wm);
1783                 enabled |= 2;
1784         }
1785
1786         /*
1787          * Calculate and update the self-refresh watermark only when one
1788          * display plane is used.
1789          */
1790         I915_WRITE(WM3_LP_ILK, 0);
1791         I915_WRITE(WM2_LP_ILK, 0);
1792         I915_WRITE(WM1_LP_ILK, 0);
1793
1794         if (!single_plane_enabled(enabled))
1795                 return;
1796         enabled = ffs(enabled) - 1;
1797
1798         /* WM1 */
1799         if (!ironlake_compute_srwm(dev, 1, enabled,
1800                                    ILK_READ_WM1_LATENCY() * 500,
1801                                    &ironlake_display_srwm_info,
1802                                    &ironlake_cursor_srwm_info,
1803                                    &fbc_wm, &plane_wm, &cursor_wm))
1804                 return;
1805
1806         I915_WRITE(WM1_LP_ILK,
1807                    WM1_LP_SR_EN |
1808                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1809                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1810                    (plane_wm << WM1_LP_SR_SHIFT) |
1811                    cursor_wm);
1812
1813         /* WM2 */
1814         if (!ironlake_compute_srwm(dev, 2, enabled,
1815                                    ILK_READ_WM2_LATENCY() * 500,
1816                                    &ironlake_display_srwm_info,
1817                                    &ironlake_cursor_srwm_info,
1818                                    &fbc_wm, &plane_wm, &cursor_wm))
1819                 return;
1820
1821         I915_WRITE(WM2_LP_ILK,
1822                    WM2_LP_EN |
1823                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1824                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1825                    (plane_wm << WM1_LP_SR_SHIFT) |
1826                    cursor_wm);
1827
1828         /*
1829          * WM3 is unsupported on ILK, probably because we don't have latency
1830          * data for that power state
1831          */
1832 }
1833
1834 static void sandybridge_update_wm(struct drm_device *dev)
1835 {
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1838         u32 val;
1839         int fbc_wm, plane_wm, cursor_wm;
1840         unsigned int enabled;
1841
1842         enabled = 0;
1843         if (g4x_compute_wm0(dev, 0,
1844                             &sandybridge_display_wm_info, latency,
1845                             &sandybridge_cursor_wm_info, latency,
1846                             &plane_wm, &cursor_wm)) {
1847                 val = I915_READ(WM0_PIPEA_ILK);
1848                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1849                 I915_WRITE(WM0_PIPEA_ILK, val |
1850                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1851                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1852                               " plane %d, " "cursor: %d\n",
1853                               plane_wm, cursor_wm);
1854                 enabled |= 1;
1855         }
1856
1857         if (g4x_compute_wm0(dev, 1,
1858                             &sandybridge_display_wm_info, latency,
1859                             &sandybridge_cursor_wm_info, latency,
1860                             &plane_wm, &cursor_wm)) {
1861                 val = I915_READ(WM0_PIPEB_ILK);
1862                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1863                 I915_WRITE(WM0_PIPEB_ILK, val |
1864                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1865                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1866                               " plane %d, cursor: %d\n",
1867                               plane_wm, cursor_wm);
1868                 enabled |= 2;
1869         }
1870
1871         /*
1872          * Calculate and update the self-refresh watermark only when one
1873          * display plane is used.
1874          *
1875          * SNB support 3 levels of watermark.
1876          *
1877          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1878          * and disabled in the descending order
1879          *
1880          */
1881         I915_WRITE(WM3_LP_ILK, 0);
1882         I915_WRITE(WM2_LP_ILK, 0);
1883         I915_WRITE(WM1_LP_ILK, 0);
1884
1885         if (!single_plane_enabled(enabled) ||
1886             dev_priv->sprite_scaling_enabled)
1887                 return;
1888         enabled = ffs(enabled) - 1;
1889
1890         /* WM1 */
1891         if (!ironlake_compute_srwm(dev, 1, enabled,
1892                                    SNB_READ_WM1_LATENCY() * 500,
1893                                    &sandybridge_display_srwm_info,
1894                                    &sandybridge_cursor_srwm_info,
1895                                    &fbc_wm, &plane_wm, &cursor_wm))
1896                 return;
1897
1898         I915_WRITE(WM1_LP_ILK,
1899                    WM1_LP_SR_EN |
1900                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1901                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1902                    (plane_wm << WM1_LP_SR_SHIFT) |
1903                    cursor_wm);
1904
1905         /* WM2 */
1906         if (!ironlake_compute_srwm(dev, 2, enabled,
1907                                    SNB_READ_WM2_LATENCY() * 500,
1908                                    &sandybridge_display_srwm_info,
1909                                    &sandybridge_cursor_srwm_info,
1910                                    &fbc_wm, &plane_wm, &cursor_wm))
1911                 return;
1912
1913         I915_WRITE(WM2_LP_ILK,
1914                    WM2_LP_EN |
1915                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1916                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1917                    (plane_wm << WM1_LP_SR_SHIFT) |
1918                    cursor_wm);
1919
1920         /* WM3 */
1921         if (!ironlake_compute_srwm(dev, 3, enabled,
1922                                    SNB_READ_WM3_LATENCY() * 500,
1923                                    &sandybridge_display_srwm_info,
1924                                    &sandybridge_cursor_srwm_info,
1925                                    &fbc_wm, &plane_wm, &cursor_wm))
1926                 return;
1927
1928         I915_WRITE(WM3_LP_ILK,
1929                    WM3_LP_EN |
1930                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1931                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1932                    (plane_wm << WM1_LP_SR_SHIFT) |
1933                    cursor_wm);
1934 }
1935
1936 static void ivybridge_update_wm(struct drm_device *dev)
1937 {
1938         struct drm_i915_private *dev_priv = dev->dev_private;
1939         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1940         u32 val;
1941         int fbc_wm, plane_wm, cursor_wm;
1942         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1943         unsigned int enabled;
1944
1945         enabled = 0;
1946         if (g4x_compute_wm0(dev, 0,
1947                             &sandybridge_display_wm_info, latency,
1948                             &sandybridge_cursor_wm_info, latency,
1949                             &plane_wm, &cursor_wm)) {
1950                 val = I915_READ(WM0_PIPEA_ILK);
1951                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1952                 I915_WRITE(WM0_PIPEA_ILK, val |
1953                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1954                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1955                               " plane %d, " "cursor: %d\n",
1956                               plane_wm, cursor_wm);
1957                 enabled |= 1;
1958         }
1959
1960         if (g4x_compute_wm0(dev, 1,
1961                             &sandybridge_display_wm_info, latency,
1962                             &sandybridge_cursor_wm_info, latency,
1963                             &plane_wm, &cursor_wm)) {
1964                 val = I915_READ(WM0_PIPEB_ILK);
1965                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1966                 I915_WRITE(WM0_PIPEB_ILK, val |
1967                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1968                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1969                               " plane %d, cursor: %d\n",
1970                               plane_wm, cursor_wm);
1971                 enabled |= 2;
1972         }
1973
1974         if (g4x_compute_wm0(dev, 2,
1975                             &sandybridge_display_wm_info, latency,
1976                             &sandybridge_cursor_wm_info, latency,
1977                             &plane_wm, &cursor_wm)) {
1978                 val = I915_READ(WM0_PIPEC_IVB);
1979                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1980                 I915_WRITE(WM0_PIPEC_IVB, val |
1981                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1982                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1983                               " plane %d, cursor: %d\n",
1984                               plane_wm, cursor_wm);
1985                 enabled |= 3;
1986         }
1987
1988         /*
1989          * Calculate and update the self-refresh watermark only when one
1990          * display plane is used.
1991          *
1992          * SNB support 3 levels of watermark.
1993          *
1994          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1995          * and disabled in the descending order
1996          *
1997          */
1998         I915_WRITE(WM3_LP_ILK, 0);
1999         I915_WRITE(WM2_LP_ILK, 0);
2000         I915_WRITE(WM1_LP_ILK, 0);
2001
2002         if (!single_plane_enabled(enabled) ||
2003             dev_priv->sprite_scaling_enabled)
2004                 return;
2005         enabled = ffs(enabled) - 1;
2006
2007         /* WM1 */
2008         if (!ironlake_compute_srwm(dev, 1, enabled,
2009                                    SNB_READ_WM1_LATENCY() * 500,
2010                                    &sandybridge_display_srwm_info,
2011                                    &sandybridge_cursor_srwm_info,
2012                                    &fbc_wm, &plane_wm, &cursor_wm))
2013                 return;
2014
2015         I915_WRITE(WM1_LP_ILK,
2016                    WM1_LP_SR_EN |
2017                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2018                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2019                    (plane_wm << WM1_LP_SR_SHIFT) |
2020                    cursor_wm);
2021
2022         /* WM2 */
2023         if (!ironlake_compute_srwm(dev, 2, enabled,
2024                                    SNB_READ_WM2_LATENCY() * 500,
2025                                    &sandybridge_display_srwm_info,
2026                                    &sandybridge_cursor_srwm_info,
2027                                    &fbc_wm, &plane_wm, &cursor_wm))
2028                 return;
2029
2030         I915_WRITE(WM2_LP_ILK,
2031                    WM2_LP_EN |
2032                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2033                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2034                    (plane_wm << WM1_LP_SR_SHIFT) |
2035                    cursor_wm);
2036
2037         /* WM3, note we have to correct the cursor latency */
2038         if (!ironlake_compute_srwm(dev, 3, enabled,
2039                                    SNB_READ_WM3_LATENCY() * 500,
2040                                    &sandybridge_display_srwm_info,
2041                                    &sandybridge_cursor_srwm_info,
2042                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2043             !ironlake_compute_srwm(dev, 3, enabled,
2044                                    2 * SNB_READ_WM3_LATENCY() * 500,
2045                                    &sandybridge_display_srwm_info,
2046                                    &sandybridge_cursor_srwm_info,
2047                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2048                 return;
2049
2050         I915_WRITE(WM3_LP_ILK,
2051                    WM3_LP_EN |
2052                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2053                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2054                    (plane_wm << WM1_LP_SR_SHIFT) |
2055                    cursor_wm);
2056 }
2057
2058 static void
2059 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2060                                  struct drm_display_mode *mode)
2061 {
2062         struct drm_i915_private *dev_priv = dev->dev_private;
2063         u32 temp;
2064
2065         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2066         temp &= ~PIPE_WM_LINETIME_MASK;
2067
2068         /* The WM are computed with base on how long it takes to fill a single
2069          * row at the given clock rate, multiplied by 8.
2070          * */
2071         temp |= PIPE_WM_LINETIME_TIME(
2072                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2073
2074         /* IPS watermarks are only used by pipe A, and are ignored by
2075          * pipes B and C.  They are calculated similarly to the common
2076          * linetime values, except that we are using CD clock frequency
2077          * in MHz instead of pixel rate for the division.
2078          *
2079          * This is a placeholder for the IPS watermark calculation code.
2080          */
2081
2082         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2083 }
2084
2085 static bool
2086 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2087                               uint32_t sprite_width, int pixel_size,
2088                               const struct intel_watermark_params *display,
2089                               int display_latency_ns, int *sprite_wm)
2090 {
2091         struct drm_crtc *crtc;
2092         int clock;
2093         int entries, tlb_miss;
2094
2095         crtc = intel_get_crtc_for_plane(dev, plane);
2096         if (!intel_crtc_active(crtc)) {
2097                 *sprite_wm = display->guard_size;
2098                 return false;
2099         }
2100
2101         clock = crtc->mode.clock;
2102
2103         /* Use the small buffer method to calculate the sprite watermark */
2104         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2105         tlb_miss = display->fifo_size*display->cacheline_size -
2106                 sprite_width * 8;
2107         if (tlb_miss > 0)
2108                 entries += tlb_miss;
2109         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2110         *sprite_wm = entries + display->guard_size;
2111         if (*sprite_wm > (int)display->max_wm)
2112                 *sprite_wm = display->max_wm;
2113
2114         return true;
2115 }
2116
2117 static bool
2118 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2119                                 uint32_t sprite_width, int pixel_size,
2120                                 const struct intel_watermark_params *display,
2121                                 int latency_ns, int *sprite_wm)
2122 {
2123         struct drm_crtc *crtc;
2124         unsigned long line_time_us;
2125         int clock;
2126         int line_count, line_size;
2127         int small, large;
2128         int entries;
2129
2130         if (!latency_ns) {
2131                 *sprite_wm = 0;
2132                 return false;
2133         }
2134
2135         crtc = intel_get_crtc_for_plane(dev, plane);
2136         clock = crtc->mode.clock;
2137         if (!clock) {
2138                 *sprite_wm = 0;
2139                 return false;
2140         }
2141
2142         line_time_us = (sprite_width * 1000) / clock;
2143         if (!line_time_us) {
2144                 *sprite_wm = 0;
2145                 return false;
2146         }
2147
2148         line_count = (latency_ns / line_time_us + 1000) / 1000;
2149         line_size = sprite_width * pixel_size;
2150
2151         /* Use the minimum of the small and large buffer method for primary */
2152         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2153         large = line_count * line_size;
2154
2155         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2156         *sprite_wm = entries + display->guard_size;
2157
2158         return *sprite_wm > 0x3ff ? false : true;
2159 }
2160
2161 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2162                                          uint32_t sprite_width, int pixel_size)
2163 {
2164         struct drm_i915_private *dev_priv = dev->dev_private;
2165         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2166         u32 val;
2167         int sprite_wm, reg;
2168         int ret;
2169
2170         switch (pipe) {
2171         case 0:
2172                 reg = WM0_PIPEA_ILK;
2173                 break;
2174         case 1:
2175                 reg = WM0_PIPEB_ILK;
2176                 break;
2177         case 2:
2178                 reg = WM0_PIPEC_IVB;
2179                 break;
2180         default:
2181                 return; /* bad pipe */
2182         }
2183
2184         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2185                                             &sandybridge_display_wm_info,
2186                                             latency, &sprite_wm);
2187         if (!ret) {
2188                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2189                               pipe_name(pipe));
2190                 return;
2191         }
2192
2193         val = I915_READ(reg);
2194         val &= ~WM0_PIPE_SPRITE_MASK;
2195         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2196         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2197
2198
2199         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2200                                               pixel_size,
2201                                               &sandybridge_display_srwm_info,
2202                                               SNB_READ_WM1_LATENCY() * 500,
2203                                               &sprite_wm);
2204         if (!ret) {
2205                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2206                               pipe_name(pipe));
2207                 return;
2208         }
2209         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2210
2211         /* Only IVB has two more LP watermarks for sprite */
2212         if (!IS_IVYBRIDGE(dev))
2213                 return;
2214
2215         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2216                                               pixel_size,
2217                                               &sandybridge_display_srwm_info,
2218                                               SNB_READ_WM2_LATENCY() * 500,
2219                                               &sprite_wm);
2220         if (!ret) {
2221                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2222                               pipe_name(pipe));
2223                 return;
2224         }
2225         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2226
2227         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2228                                               pixel_size,
2229                                               &sandybridge_display_srwm_info,
2230                                               SNB_READ_WM3_LATENCY() * 500,
2231                                               &sprite_wm);
2232         if (!ret) {
2233                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2234                               pipe_name(pipe));
2235                 return;
2236         }
2237         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2238 }
2239
2240 /**
2241  * intel_update_watermarks - update FIFO watermark values based on current modes
2242  *
2243  * Calculate watermark values for the various WM regs based on current mode
2244  * and plane configuration.
2245  *
2246  * There are several cases to deal with here:
2247  *   - normal (i.e. non-self-refresh)
2248  *   - self-refresh (SR) mode
2249  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2250  *   - lines are small relative to FIFO size (buffer can hold more than 2
2251  *     lines), so need to account for TLB latency
2252  *
2253  *   The normal calculation is:
2254  *     watermark = dotclock * bytes per pixel * latency
2255  *   where latency is platform & configuration dependent (we assume pessimal
2256  *   values here).
2257  *
2258  *   The SR calculation is:
2259  *     watermark = (trunc(latency/line time)+1) * surface width *
2260  *       bytes per pixel
2261  *   where
2262  *     line time = htotal / dotclock
2263  *     surface width = hdisplay for normal plane and 64 for cursor
2264  *   and latency is assumed to be high, as above.
2265  *
2266  * The final value programmed to the register should always be rounded up,
2267  * and include an extra 2 entries to account for clock crossings.
2268  *
2269  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2270  * to set the non-SR watermarks to 8.
2271  */
2272 void intel_update_watermarks(struct drm_device *dev)
2273 {
2274         struct drm_i915_private *dev_priv = dev->dev_private;
2275
2276         if (dev_priv->display.update_wm)
2277                 dev_priv->display.update_wm(dev);
2278 }
2279
2280 void intel_update_linetime_watermarks(struct drm_device *dev,
2281                 int pipe, struct drm_display_mode *mode)
2282 {
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284
2285         if (dev_priv->display.update_linetime_wm)
2286                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2287 }
2288
2289 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2290                                     uint32_t sprite_width, int pixel_size)
2291 {
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293
2294         if (dev_priv->display.update_sprite_wm)
2295                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2296                                                    pixel_size);
2297 }
2298
2299 static struct drm_i915_gem_object *
2300 intel_alloc_context_page(struct drm_device *dev)
2301 {
2302         struct drm_i915_gem_object *ctx;
2303         int ret;
2304
2305         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2306
2307         ctx = i915_gem_alloc_object(dev, 4096);
2308         if (!ctx) {
2309                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2310                 return NULL;
2311         }
2312
2313         ret = i915_gem_object_pin(ctx, 4096, true, false);
2314         if (ret) {
2315                 DRM_ERROR("failed to pin power context: %d\n", ret);
2316                 goto err_unref;
2317         }
2318
2319         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2320         if (ret) {
2321                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2322                 goto err_unpin;
2323         }
2324
2325         return ctx;
2326
2327 err_unpin:
2328         i915_gem_object_unpin(ctx);
2329 err_unref:
2330         drm_gem_object_unreference(&ctx->base);
2331         return NULL;
2332 }
2333
2334 /**
2335  * Lock protecting IPS related data structures
2336  */
2337 DEFINE_SPINLOCK(mchdev_lock);
2338
2339 /* Global for IPS driver to get at the current i915 device. Protected by
2340  * mchdev_lock. */
2341 static struct drm_i915_private *i915_mch_dev;
2342
2343 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2344 {
2345         struct drm_i915_private *dev_priv = dev->dev_private;
2346         u16 rgvswctl;
2347
2348         assert_spin_locked(&mchdev_lock);
2349
2350         rgvswctl = I915_READ16(MEMSWCTL);
2351         if (rgvswctl & MEMCTL_CMD_STS) {
2352                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2353                 return false; /* still busy with another command */
2354         }
2355
2356         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2357                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2358         I915_WRITE16(MEMSWCTL, rgvswctl);
2359         POSTING_READ16(MEMSWCTL);
2360
2361         rgvswctl |= MEMCTL_CMD_STS;
2362         I915_WRITE16(MEMSWCTL, rgvswctl);
2363
2364         return true;
2365 }
2366
2367 static void ironlake_enable_drps(struct drm_device *dev)
2368 {
2369         struct drm_i915_private *dev_priv = dev->dev_private;
2370         u32 rgvmodectl = I915_READ(MEMMODECTL);
2371         u8 fmax, fmin, fstart, vstart;
2372
2373         spin_lock_irq(&mchdev_lock);
2374
2375         /* Enable temp reporting */
2376         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2377         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2378
2379         /* 100ms RC evaluation intervals */
2380         I915_WRITE(RCUPEI, 100000);
2381         I915_WRITE(RCDNEI, 100000);
2382
2383         /* Set max/min thresholds to 90ms and 80ms respectively */
2384         I915_WRITE(RCBMAXAVG, 90000);
2385         I915_WRITE(RCBMINAVG, 80000);
2386
2387         I915_WRITE(MEMIHYST, 1);
2388
2389         /* Set up min, max, and cur for interrupt handling */
2390         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2391         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2392         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2393                 MEMMODE_FSTART_SHIFT;
2394
2395         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2396                 PXVFREQ_PX_SHIFT;
2397
2398         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2399         dev_priv->ips.fstart = fstart;
2400
2401         dev_priv->ips.max_delay = fstart;
2402         dev_priv->ips.min_delay = fmin;
2403         dev_priv->ips.cur_delay = fstart;
2404
2405         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2406                          fmax, fmin, fstart);
2407
2408         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2409
2410         /*
2411          * Interrupts will be enabled in ironlake_irq_postinstall
2412          */
2413
2414         I915_WRITE(VIDSTART, vstart);
2415         POSTING_READ(VIDSTART);
2416
2417         rgvmodectl |= MEMMODE_SWMODE_EN;
2418         I915_WRITE(MEMMODECTL, rgvmodectl);
2419
2420         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2421                 DRM_ERROR("stuck trying to change perf mode\n");
2422         mdelay(1);
2423
2424         ironlake_set_drps(dev, fstart);
2425
2426         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2427                 I915_READ(0x112e0);
2428         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2429         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2430         getrawmonotonic(&dev_priv->ips.last_time2);
2431
2432         spin_unlock_irq(&mchdev_lock);
2433 }
2434
2435 static void ironlake_disable_drps(struct drm_device *dev)
2436 {
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         u16 rgvswctl;
2439
2440         spin_lock_irq(&mchdev_lock);
2441
2442         rgvswctl = I915_READ16(MEMSWCTL);
2443
2444         /* Ack interrupts, disable EFC interrupt */
2445         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2446         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2447         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2448         I915_WRITE(DEIIR, DE_PCU_EVENT);
2449         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2450
2451         /* Go back to the starting frequency */
2452         ironlake_set_drps(dev, dev_priv->ips.fstart);
2453         mdelay(1);
2454         rgvswctl |= MEMCTL_CMD_STS;
2455         I915_WRITE(MEMSWCTL, rgvswctl);
2456         mdelay(1);
2457
2458         spin_unlock_irq(&mchdev_lock);
2459 }
2460
2461 /* There's a funny hw issue where the hw returns all 0 when reading from
2462  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2463  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2464  * all limits and the gpu stuck at whatever frequency it is at atm).
2465  */
2466 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2467 {
2468         u32 limits;
2469
2470         limits = 0;
2471
2472         if (*val >= dev_priv->rps.max_delay)
2473                 *val = dev_priv->rps.max_delay;
2474         limits |= dev_priv->rps.max_delay << 24;
2475
2476         /* Only set the down limit when we've reached the lowest level to avoid
2477          * getting more interrupts, otherwise leave this clear. This prevents a
2478          * race in the hw when coming out of rc6: There's a tiny window where
2479          * the hw runs at the minimal clock before selecting the desired
2480          * frequency, if the down threshold expires in that window we will not
2481          * receive a down interrupt. */
2482         if (*val <= dev_priv->rps.min_delay) {
2483                 *val = dev_priv->rps.min_delay;
2484                 limits |= dev_priv->rps.min_delay << 16;
2485         }
2486
2487         return limits;
2488 }
2489
2490 void gen6_set_rps(struct drm_device *dev, u8 val)
2491 {
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         u32 limits = gen6_rps_limits(dev_priv, &val);
2494
2495         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2496         WARN_ON(val > dev_priv->rps.max_delay);
2497         WARN_ON(val < dev_priv->rps.min_delay);
2498
2499         if (val == dev_priv->rps.cur_delay)
2500                 return;
2501
2502         if (IS_HASWELL(dev))
2503                 I915_WRITE(GEN6_RPNSWREQ,
2504                            HSW_FREQUENCY(val));
2505         else
2506                 I915_WRITE(GEN6_RPNSWREQ,
2507                            GEN6_FREQUENCY(val) |
2508                            GEN6_OFFSET(0) |
2509                            GEN6_AGGRESSIVE_TURBO);
2510
2511         /* Make sure we continue to get interrupts
2512          * until we hit the minimum or maximum frequencies.
2513          */
2514         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2515
2516         POSTING_READ(GEN6_RPNSWREQ);
2517
2518         dev_priv->rps.cur_delay = val;
2519
2520         trace_intel_gpu_freq_change(val * 50);
2521 }
2522
2523 void valleyview_set_rps(struct drm_device *dev, u8 val)
2524 {
2525         struct drm_i915_private *dev_priv = dev->dev_private;
2526         unsigned long timeout = jiffies + msecs_to_jiffies(10);
2527         u32 limits = gen6_rps_limits(dev_priv, &val);
2528         u32 pval;
2529
2530         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2531         WARN_ON(val > dev_priv->rps.max_delay);
2532         WARN_ON(val < dev_priv->rps.min_delay);
2533
2534         DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
2535                          vlv_gpu_freq(dev_priv->mem_freq,
2536                                       dev_priv->rps.cur_delay),
2537                          vlv_gpu_freq(dev_priv->mem_freq, val));
2538
2539         if (val == dev_priv->rps.cur_delay)
2540                 return;
2541
2542         valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
2543
2544         do {
2545                 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2546                 if (time_after(jiffies, timeout)) {
2547                         DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
2548                         break;
2549                 }
2550                 udelay(10);
2551         } while (pval & 1);
2552
2553         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2554         if ((pval >> 8) != val)
2555                 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
2556                           val, pval >> 8);
2557
2558         /* Make sure we continue to get interrupts
2559          * until we hit the minimum or maximum frequencies.
2560          */
2561         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2562
2563         dev_priv->rps.cur_delay = pval >> 8;
2564
2565         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
2566 }
2567
2568
2569 static void gen6_disable_rps(struct drm_device *dev)
2570 {
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572
2573         I915_WRITE(GEN6_RC_CONTROL, 0);
2574         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2575         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2576         I915_WRITE(GEN6_PMIER, 0);
2577         /* Complete PM interrupt masking here doesn't race with the rps work
2578          * item again unmasking PM interrupts because that is using a different
2579          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2580          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2581
2582         spin_lock_irq(&dev_priv->rps.lock);
2583         dev_priv->rps.pm_iir = 0;
2584         spin_unlock_irq(&dev_priv->rps.lock);
2585
2586         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2587 }
2588
2589 static void valleyview_disable_rps(struct drm_device *dev)
2590 {
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592
2593         I915_WRITE(GEN6_RC_CONTROL, 0);
2594         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2595         I915_WRITE(GEN6_PMIER, 0);
2596         /* Complete PM interrupt masking here doesn't race with the rps work
2597          * item again unmasking PM interrupts because that is using a different
2598          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2599          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2600
2601         spin_lock_irq(&dev_priv->rps.lock);
2602         dev_priv->rps.pm_iir = 0;
2603         spin_unlock_irq(&dev_priv->rps.lock);
2604
2605         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2606
2607         if (dev_priv->vlv_pctx) {
2608                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
2609                 dev_priv->vlv_pctx = NULL;
2610         }
2611 }
2612
2613 int intel_enable_rc6(const struct drm_device *dev)
2614 {
2615         /* Respect the kernel parameter if it is set */
2616         if (i915_enable_rc6 >= 0)
2617                 return i915_enable_rc6;
2618
2619         /* Disable RC6 on Ironlake */
2620         if (INTEL_INFO(dev)->gen == 5)
2621                 return 0;
2622
2623         if (IS_HASWELL(dev)) {
2624                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2625                 return INTEL_RC6_ENABLE;
2626         }
2627
2628         /* snb/ivb have more than one rc6 state. */
2629         if (INTEL_INFO(dev)->gen == 6) {
2630                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2631                 return INTEL_RC6_ENABLE;
2632         }
2633
2634         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2635         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2636 }
2637
2638 static void gen6_enable_rps(struct drm_device *dev)
2639 {
2640         struct drm_i915_private *dev_priv = dev->dev_private;
2641         struct intel_ring_buffer *ring;
2642         u32 rp_state_cap;
2643         u32 gt_perf_status;
2644         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2645         u32 gtfifodbg;
2646         int rc6_mode;
2647         int i, ret;
2648
2649         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2650
2651         /* Here begins a magic sequence of register writes to enable
2652          * auto-downclocking.
2653          *
2654          * Perhaps there might be some value in exposing these to
2655          * userspace...
2656          */
2657         I915_WRITE(GEN6_RC_STATE, 0);
2658
2659         /* Clear the DBG now so we don't confuse earlier errors */
2660         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2661                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2662                 I915_WRITE(GTFIFODBG, gtfifodbg);
2663         }
2664
2665         gen6_gt_force_wake_get(dev_priv);
2666
2667         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2668         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2669
2670         /* In units of 50MHz */
2671         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2672         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2673         dev_priv->rps.cur_delay = 0;
2674
2675         /* disable the counters and set deterministic thresholds */
2676         I915_WRITE(GEN6_RC_CONTROL, 0);
2677
2678         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2679         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2680         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2681         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2682         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2683
2684         for_each_ring(ring, dev_priv, i)
2685                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2686
2687         I915_WRITE(GEN6_RC_SLEEP, 0);
2688         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2689         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2690         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2691         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2692
2693         /* Check if we are enabling RC6 */
2694         rc6_mode = intel_enable_rc6(dev_priv->dev);
2695         if (rc6_mode & INTEL_RC6_ENABLE)
2696                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2697
2698         /* We don't use those on Haswell */
2699         if (!IS_HASWELL(dev)) {
2700                 if (rc6_mode & INTEL_RC6p_ENABLE)
2701                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2702
2703                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2704                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2705         }
2706
2707         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2708                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2709                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2710                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2711
2712         I915_WRITE(GEN6_RC_CONTROL,
2713                    rc6_mask |
2714                    GEN6_RC_CTL_EI_MODE(1) |
2715                    GEN6_RC_CTL_HW_ENABLE);
2716
2717         if (IS_HASWELL(dev)) {
2718                 I915_WRITE(GEN6_RPNSWREQ,
2719                            HSW_FREQUENCY(10));
2720                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2721                            HSW_FREQUENCY(12));
2722         } else {
2723                 I915_WRITE(GEN6_RPNSWREQ,
2724                            GEN6_FREQUENCY(10) |
2725                            GEN6_OFFSET(0) |
2726                            GEN6_AGGRESSIVE_TURBO);
2727                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2728                            GEN6_FREQUENCY(12));
2729         }
2730
2731         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2732         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2733                    dev_priv->rps.max_delay << 24 |
2734                    dev_priv->rps.min_delay << 16);
2735
2736         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2737         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2738         I915_WRITE(GEN6_RP_UP_EI, 66000);
2739         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2740
2741         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2742         I915_WRITE(GEN6_RP_CONTROL,
2743                    GEN6_RP_MEDIA_TURBO |
2744                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2745                    GEN6_RP_MEDIA_IS_GFX |
2746                    GEN6_RP_ENABLE |
2747                    GEN6_RP_UP_BUSY_AVG |
2748                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2749
2750         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2751         if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
2752                 pcu_mbox = 0;
2753                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2754                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2755                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2756                                          (dev_priv->rps.max_delay & 0xff) * 50,
2757                                          (pcu_mbox & 0xff) * 50);
2758                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
2759                 }
2760         } else {
2761                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2762         }
2763
2764         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2765
2766         /* requires MSI enabled */
2767         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2768         spin_lock_irq(&dev_priv->rps.lock);
2769         WARN_ON(dev_priv->rps.pm_iir != 0);
2770         I915_WRITE(GEN6_PMIMR, 0);
2771         spin_unlock_irq(&dev_priv->rps.lock);
2772         /* enable all PM interrupts */
2773         I915_WRITE(GEN6_PMINTRMSK, 0);
2774
2775         rc6vids = 0;
2776         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2777         if (IS_GEN6(dev) && ret) {
2778                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2779         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2780                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2781                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2782                 rc6vids &= 0xffff00;
2783                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2784                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2785                 if (ret)
2786                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2787         }
2788
2789         gen6_gt_force_wake_put(dev_priv);
2790 }
2791
2792 static void gen6_update_ring_freq(struct drm_device *dev)
2793 {
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795         int min_freq = 15;
2796         unsigned int gpu_freq;
2797         unsigned int max_ia_freq, min_ring_freq;
2798         int scaling_factor = 180;
2799
2800         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2801
2802         max_ia_freq = cpufreq_quick_get_max(0);
2803         /*
2804          * Default to measured freq if none found, PCU will ensure we don't go
2805          * over
2806          */
2807         if (!max_ia_freq)
2808                 max_ia_freq = tsc_khz;
2809
2810         /* Convert from kHz to MHz */
2811         max_ia_freq /= 1000;
2812
2813         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2814         /* convert DDR frequency from units of 133.3MHz to bandwidth */
2815         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2816
2817         /*
2818          * For each potential GPU frequency, load a ring frequency we'd like
2819          * to use for memory access.  We do this by specifying the IA frequency
2820          * the PCU should use as a reference to determine the ring frequency.
2821          */
2822         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2823              gpu_freq--) {
2824                 int diff = dev_priv->rps.max_delay - gpu_freq;
2825                 unsigned int ia_freq = 0, ring_freq = 0;
2826
2827                 if (IS_HASWELL(dev)) {
2828                         ring_freq = (gpu_freq * 5 + 3) / 4;
2829                         ring_freq = max(min_ring_freq, ring_freq);
2830                         /* leave ia_freq as the default, chosen by cpufreq */
2831                 } else {
2832                         /* On older processors, there is no separate ring
2833                          * clock domain, so in order to boost the bandwidth
2834                          * of the ring, we need to upclock the CPU (ia_freq).
2835                          *
2836                          * For GPU frequencies less than 750MHz,
2837                          * just use the lowest ring freq.
2838                          */
2839                         if (gpu_freq < min_freq)
2840                                 ia_freq = 800;
2841                         else
2842                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2843                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2844                 }
2845
2846                 sandybridge_pcode_write(dev_priv,
2847                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2848                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2849                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2850                                         gpu_freq);
2851         }
2852 }
2853
2854 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
2855 {
2856         u32 val, rp0;
2857
2858         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
2859
2860         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
2861         /* Clamp to max */
2862         rp0 = min_t(u32, rp0, 0xea);
2863
2864         return rp0;
2865 }
2866
2867 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
2868 {
2869         u32 val, rpe;
2870
2871         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
2872         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
2873         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
2874         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
2875
2876         return rpe;
2877 }
2878
2879 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
2880 {
2881         u32 val;
2882
2883         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
2884
2885         return val & 0xff;
2886 }
2887
2888 static void vlv_rps_timer_work(struct work_struct *work)
2889 {
2890         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
2891                                                     rps.vlv_work.work);
2892
2893         /*
2894          * Timer fired, we must be idle.  Drop to min voltage state.
2895          * Note: we use RPe here since it should match the
2896          * Vmin we were shooting for.  That should give us better
2897          * perf when we come back out of RC6 than if we used the
2898          * min freq available.
2899          */
2900         mutex_lock(&dev_priv->rps.hw_lock);
2901         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
2902         mutex_unlock(&dev_priv->rps.hw_lock);
2903 }
2904
2905 static void valleyview_setup_pctx(struct drm_device *dev)
2906 {
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         struct drm_i915_gem_object *pctx;
2909         unsigned long pctx_paddr;
2910         u32 pcbr;
2911         int pctx_size = 24*1024;
2912
2913         pcbr = I915_READ(VLV_PCBR);
2914         if (pcbr) {
2915                 /* BIOS set it up already, grab the pre-alloc'd space */
2916                 int pcbr_offset;
2917
2918                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
2919                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
2920                                                                       pcbr_offset,
2921                                                                       -1,
2922                                                                       pctx_size);
2923                 goto out;
2924         }
2925
2926         /*
2927          * From the Gunit register HAS:
2928          * The Gfx driver is expected to program this register and ensure
2929          * proper allocation within Gfx stolen memory.  For example, this
2930          * register should be programmed such than the PCBR range does not
2931          * overlap with other ranges, such as the frame buffer, protected
2932          * memory, or any other relevant ranges.
2933          */
2934         pctx = i915_gem_object_create_stolen(dev, pctx_size);
2935         if (!pctx) {
2936                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
2937                 return;
2938         }
2939
2940         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
2941         I915_WRITE(VLV_PCBR, pctx_paddr);
2942
2943 out:
2944         dev_priv->vlv_pctx = pctx;
2945 }
2946
2947 static void valleyview_enable_rps(struct drm_device *dev)
2948 {
2949         struct drm_i915_private *dev_priv = dev->dev_private;
2950         struct intel_ring_buffer *ring;
2951         u32 gtfifodbg, val, rpe;
2952         int i;
2953
2954         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2955
2956         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2957                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2958                 I915_WRITE(GTFIFODBG, gtfifodbg);
2959         }
2960
2961         valleyview_setup_pctx(dev);
2962
2963         gen6_gt_force_wake_get(dev_priv);
2964
2965         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2966         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2967         I915_WRITE(GEN6_RP_UP_EI, 66000);
2968         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2969
2970         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2971
2972         I915_WRITE(GEN6_RP_CONTROL,
2973                    GEN6_RP_MEDIA_TURBO |
2974                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2975                    GEN6_RP_MEDIA_IS_GFX |
2976                    GEN6_RP_ENABLE |
2977                    GEN6_RP_UP_BUSY_AVG |
2978                    GEN6_RP_DOWN_IDLE_CONT);
2979
2980         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
2981         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2982         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2983
2984         for_each_ring(ring, dev_priv, i)
2985                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2986
2987         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
2988
2989         /* allows RC6 residency counter to work */
2990         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
2991         I915_WRITE(GEN6_RC_CONTROL,
2992                    GEN7_RC_CTL_TO_MODE);
2993
2994         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
2995         switch ((val >> 6) & 3) {
2996         case 0:
2997         case 1:
2998                 dev_priv->mem_freq = 800;
2999                 break;
3000         case 2:
3001                 dev_priv->mem_freq = 1066;
3002                 break;
3003         case 3:
3004                 dev_priv->mem_freq = 1333;
3005                 break;
3006         }
3007         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3008
3009         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3010         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3011
3012         DRM_DEBUG_DRIVER("current GPU freq: %d\n",
3013                          vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
3014         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3015
3016         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3017         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3018         DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3019                                                      dev_priv->rps.max_delay));
3020
3021         rpe = valleyview_rps_rpe_freq(dev_priv);
3022         DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
3023                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
3024         dev_priv->rps.rpe_delay = rpe;
3025
3026         val = valleyview_rps_min_freq(dev_priv);
3027         DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3028                                                             val));
3029         dev_priv->rps.min_delay = val;
3030
3031         DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
3032                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
3033
3034         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3035
3036         valleyview_set_rps(dev_priv->dev, rpe);
3037
3038         /* requires MSI enabled */
3039         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
3040         spin_lock_irq(&dev_priv->rps.lock);
3041         WARN_ON(dev_priv->rps.pm_iir != 0);
3042         I915_WRITE(GEN6_PMIMR, 0);
3043         spin_unlock_irq(&dev_priv->rps.lock);
3044         /* enable all PM interrupts */
3045         I915_WRITE(GEN6_PMINTRMSK, 0);
3046
3047         gen6_gt_force_wake_put(dev_priv);
3048 }
3049
3050 void ironlake_teardown_rc6(struct drm_device *dev)
3051 {
3052         struct drm_i915_private *dev_priv = dev->dev_private;
3053
3054         if (dev_priv->ips.renderctx) {
3055                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3056                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3057                 dev_priv->ips.renderctx = NULL;
3058         }
3059
3060         if (dev_priv->ips.pwrctx) {
3061                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3062                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3063                 dev_priv->ips.pwrctx = NULL;
3064         }
3065 }
3066
3067 static void ironlake_disable_rc6(struct drm_device *dev)
3068 {
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070
3071         if (I915_READ(PWRCTXA)) {
3072                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3073                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3074                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3075                          50);
3076
3077                 I915_WRITE(PWRCTXA, 0);
3078                 POSTING_READ(PWRCTXA);
3079
3080                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3081                 POSTING_READ(RSTDBYCTL);
3082         }
3083 }
3084
3085 static int ironlake_setup_rc6(struct drm_device *dev)
3086 {
3087         struct drm_i915_private *dev_priv = dev->dev_private;
3088
3089         if (dev_priv->ips.renderctx == NULL)
3090                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3091         if (!dev_priv->ips.renderctx)
3092                 return -ENOMEM;
3093
3094         if (dev_priv->ips.pwrctx == NULL)
3095                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3096         if (!dev_priv->ips.pwrctx) {
3097                 ironlake_teardown_rc6(dev);
3098                 return -ENOMEM;
3099         }
3100
3101         return 0;
3102 }
3103
3104 static void ironlake_enable_rc6(struct drm_device *dev)
3105 {
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3108         bool was_interruptible;
3109         int ret;
3110
3111         /* rc6 disabled by default due to repeated reports of hanging during
3112          * boot and resume.
3113          */
3114         if (!intel_enable_rc6(dev))
3115                 return;
3116
3117         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3118
3119         ret = ironlake_setup_rc6(dev);
3120         if (ret)
3121                 return;
3122
3123         was_interruptible = dev_priv->mm.interruptible;
3124         dev_priv->mm.interruptible = false;
3125
3126         /*
3127          * GPU can automatically power down the render unit if given a page
3128          * to save state.
3129          */
3130         ret = intel_ring_begin(ring, 6);
3131         if (ret) {
3132                 ironlake_teardown_rc6(dev);
3133                 dev_priv->mm.interruptible = was_interruptible;
3134                 return;
3135         }
3136
3137         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3138         intel_ring_emit(ring, MI_SET_CONTEXT);
3139         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3140                         MI_MM_SPACE_GTT |
3141                         MI_SAVE_EXT_STATE_EN |
3142                         MI_RESTORE_EXT_STATE_EN |
3143                         MI_RESTORE_INHIBIT);
3144         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3145         intel_ring_emit(ring, MI_NOOP);
3146         intel_ring_emit(ring, MI_FLUSH);
3147         intel_ring_advance(ring);
3148
3149         /*
3150          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3151          * does an implicit flush, combined with MI_FLUSH above, it should be
3152          * safe to assume that renderctx is valid
3153          */
3154         ret = intel_ring_idle(ring);
3155         dev_priv->mm.interruptible = was_interruptible;
3156         if (ret) {
3157                 DRM_ERROR("failed to enable ironlake power savings\n");
3158                 ironlake_teardown_rc6(dev);
3159                 return;
3160         }
3161
3162         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3163         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3164 }
3165
3166 static unsigned long intel_pxfreq(u32 vidfreq)
3167 {
3168         unsigned long freq;
3169         int div = (vidfreq & 0x3f0000) >> 16;
3170         int post = (vidfreq & 0x3000) >> 12;
3171         int pre = (vidfreq & 0x7);
3172
3173         if (!pre)
3174                 return 0;
3175
3176         freq = ((div * 133333) / ((1<<post) * pre));
3177
3178         return freq;
3179 }
3180
3181 static const struct cparams {
3182         u16 i;
3183         u16 t;
3184         u16 m;
3185         u16 c;
3186 } cparams[] = {
3187         { 1, 1333, 301, 28664 },
3188         { 1, 1066, 294, 24460 },
3189         { 1, 800, 294, 25192 },
3190         { 0, 1333, 276, 27605 },
3191         { 0, 1066, 276, 27605 },
3192         { 0, 800, 231, 23784 },
3193 };
3194
3195 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3196 {
3197         u64 total_count, diff, ret;
3198         u32 count1, count2, count3, m = 0, c = 0;
3199         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3200         int i;
3201
3202         assert_spin_locked(&mchdev_lock);
3203
3204         diff1 = now - dev_priv->ips.last_time1;
3205
3206         /* Prevent division-by-zero if we are asking too fast.
3207          * Also, we don't get interesting results if we are polling
3208          * faster than once in 10ms, so just return the saved value
3209          * in such cases.
3210          */
3211         if (diff1 <= 10)
3212                 return dev_priv->ips.chipset_power;
3213
3214         count1 = I915_READ(DMIEC);
3215         count2 = I915_READ(DDREC);
3216         count3 = I915_READ(CSIEC);
3217
3218         total_count = count1 + count2 + count3;
3219
3220         /* FIXME: handle per-counter overflow */
3221         if (total_count < dev_priv->ips.last_count1) {
3222                 diff = ~0UL - dev_priv->ips.last_count1;
3223                 diff += total_count;
3224         } else {
3225                 diff = total_count - dev_priv->ips.last_count1;
3226         }
3227
3228         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3229                 if (cparams[i].i == dev_priv->ips.c_m &&
3230                     cparams[i].t == dev_priv->ips.r_t) {
3231                         m = cparams[i].m;
3232                         c = cparams[i].c;
3233                         break;
3234                 }
3235         }
3236
3237         diff = div_u64(diff, diff1);
3238         ret = ((m * diff) + c);
3239         ret = div_u64(ret, 10);
3240
3241         dev_priv->ips.last_count1 = total_count;
3242         dev_priv->ips.last_time1 = now;
3243
3244         dev_priv->ips.chipset_power = ret;
3245
3246         return ret;
3247 }
3248
3249 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3250 {
3251         unsigned long val;
3252
3253         if (dev_priv->info->gen != 5)
3254                 return 0;
3255
3256         spin_lock_irq(&mchdev_lock);
3257
3258         val = __i915_chipset_val(dev_priv);
3259
3260         spin_unlock_irq(&mchdev_lock);
3261
3262         return val;
3263 }
3264
3265 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3266 {
3267         unsigned long m, x, b;
3268         u32 tsfs;
3269
3270         tsfs = I915_READ(TSFS);
3271
3272         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3273         x = I915_READ8(TR1);
3274
3275         b = tsfs & TSFS_INTR_MASK;
3276
3277         return ((m * x) / 127) - b;
3278 }
3279
3280 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3281 {
3282         static const struct v_table {
3283                 u16 vd; /* in .1 mil */
3284                 u16 vm; /* in .1 mil */
3285         } v_table[] = {
3286                 { 0, 0, },
3287                 { 375, 0, },
3288                 { 500, 0, },
3289                 { 625, 0, },
3290                 { 750, 0, },
3291                 { 875, 0, },
3292                 { 1000, 0, },
3293                 { 1125, 0, },
3294                 { 4125, 3000, },
3295                 { 4125, 3000, },
3296                 { 4125, 3000, },
3297                 { 4125, 3000, },
3298                 { 4125, 3000, },
3299                 { 4125, 3000, },
3300                 { 4125, 3000, },
3301                 { 4125, 3000, },
3302                 { 4125, 3000, },
3303                 { 4125, 3000, },
3304                 { 4125, 3000, },
3305                 { 4125, 3000, },
3306                 { 4125, 3000, },
3307                 { 4125, 3000, },
3308                 { 4125, 3000, },
3309                 { 4125, 3000, },
3310                 { 4125, 3000, },
3311                 { 4125, 3000, },
3312                 { 4125, 3000, },
3313                 { 4125, 3000, },
3314                 { 4125, 3000, },
3315                 { 4125, 3000, },
3316                 { 4125, 3000, },
3317                 { 4125, 3000, },
3318                 { 4250, 3125, },
3319                 { 4375, 3250, },
3320                 { 4500, 3375, },
3321                 { 4625, 3500, },
3322                 { 4750, 3625, },
3323                 { 4875, 3750, },
3324                 { 5000, 3875, },
3325                 { 5125, 4000, },
3326                 { 5250, 4125, },
3327                 { 5375, 4250, },
3328                 { 5500, 4375, },
3329                 { 5625, 4500, },
3330                 { 5750, 4625, },
3331                 { 5875, 4750, },
3332                 { 6000, 4875, },
3333                 { 6125, 5000, },
3334                 { 6250, 5125, },
3335                 { 6375, 5250, },
3336                 { 6500, 5375, },
3337                 { 6625, 5500, },
3338                 { 6750, 5625, },
3339                 { 6875, 5750, },
3340                 { 7000, 5875, },
3341                 { 7125, 6000, },
3342                 { 7250, 6125, },
3343                 { 7375, 6250, },
3344                 { 7500, 6375, },
3345                 { 7625, 6500, },
3346                 { 7750, 6625, },
3347                 { 7875, 6750, },
3348                 { 8000, 6875, },
3349                 { 8125, 7000, },
3350                 { 8250, 7125, },
3351                 { 8375, 7250, },
3352                 { 8500, 7375, },
3353                 { 8625, 7500, },
3354                 { 8750, 7625, },
3355                 { 8875, 7750, },
3356                 { 9000, 7875, },
3357                 { 9125, 8000, },
3358                 { 9250, 8125, },
3359                 { 9375, 8250, },
3360                 { 9500, 8375, },
3361                 { 9625, 8500, },
3362                 { 9750, 8625, },
3363                 { 9875, 8750, },
3364                 { 10000, 8875, },
3365                 { 10125, 9000, },
3366                 { 10250, 9125, },
3367                 { 10375, 9250, },
3368                 { 10500, 9375, },
3369                 { 10625, 9500, },
3370                 { 10750, 9625, },
3371                 { 10875, 9750, },
3372                 { 11000, 9875, },
3373                 { 11125, 10000, },
3374                 { 11250, 10125, },
3375                 { 11375, 10250, },
3376                 { 11500, 10375, },
3377                 { 11625, 10500, },
3378                 { 11750, 10625, },
3379                 { 11875, 10750, },
3380                 { 12000, 10875, },
3381                 { 12125, 11000, },
3382                 { 12250, 11125, },
3383                 { 12375, 11250, },
3384                 { 12500, 11375, },
3385                 { 12625, 11500, },
3386                 { 12750, 11625, },
3387                 { 12875, 11750, },
3388                 { 13000, 11875, },
3389                 { 13125, 12000, },
3390                 { 13250, 12125, },
3391                 { 13375, 12250, },
3392                 { 13500, 12375, },
3393                 { 13625, 12500, },
3394                 { 13750, 12625, },
3395                 { 13875, 12750, },
3396                 { 14000, 12875, },
3397                 { 14125, 13000, },
3398                 { 14250, 13125, },
3399                 { 14375, 13250, },
3400                 { 14500, 13375, },
3401                 { 14625, 13500, },
3402                 { 14750, 13625, },
3403                 { 14875, 13750, },
3404                 { 15000, 13875, },
3405                 { 15125, 14000, },
3406                 { 15250, 14125, },
3407                 { 15375, 14250, },
3408                 { 15500, 14375, },
3409                 { 15625, 14500, },
3410                 { 15750, 14625, },
3411                 { 15875, 14750, },
3412                 { 16000, 14875, },
3413                 { 16125, 15000, },
3414         };
3415         if (dev_priv->info->is_mobile)
3416                 return v_table[pxvid].vm;
3417         else
3418                 return v_table[pxvid].vd;
3419 }
3420
3421 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3422 {
3423         struct timespec now, diff1;
3424         u64 diff;
3425         unsigned long diffms;
3426         u32 count;
3427
3428         assert_spin_locked(&mchdev_lock);
3429
3430         getrawmonotonic(&now);
3431         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3432
3433         /* Don't divide by 0 */
3434         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3435         if (!diffms)
3436                 return;
3437
3438         count = I915_READ(GFXEC);
3439
3440         if (count < dev_priv->ips.last_count2) {
3441                 diff = ~0UL - dev_priv->ips.last_count2;
3442                 diff += count;
3443         } else {
3444                 diff = count - dev_priv->ips.last_count2;
3445         }
3446
3447         dev_priv->ips.last_count2 = count;
3448         dev_priv->ips.last_time2 = now;
3449
3450         /* More magic constants... */
3451         diff = diff * 1181;
3452         diff = div_u64(diff, diffms * 10);
3453         dev_priv->ips.gfx_power = diff;
3454 }
3455
3456 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3457 {
3458         if (dev_priv->info->gen != 5)
3459                 return;
3460
3461         spin_lock_irq(&mchdev_lock);
3462
3463         __i915_update_gfx_val(dev_priv);
3464
3465         spin_unlock_irq(&mchdev_lock);
3466 }
3467
3468 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3469 {
3470         unsigned long t, corr, state1, corr2, state2;
3471         u32 pxvid, ext_v;
3472
3473         assert_spin_locked(&mchdev_lock);
3474
3475         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3476         pxvid = (pxvid >> 24) & 0x7f;
3477         ext_v = pvid_to_extvid(dev_priv, pxvid);
3478
3479         state1 = ext_v;
3480
3481         t = i915_mch_val(dev_priv);
3482
3483         /* Revel in the empirically derived constants */
3484
3485         /* Correction factor in 1/100000 units */
3486         if (t > 80)
3487                 corr = ((t * 2349) + 135940);
3488         else if (t >= 50)
3489                 corr = ((t * 964) + 29317);
3490         else /* < 50 */
3491                 corr = ((t * 301) + 1004);
3492
3493         corr = corr * ((150142 * state1) / 10000 - 78642);
3494         corr /= 100000;
3495         corr2 = (corr * dev_priv->ips.corr);
3496
3497         state2 = (corr2 * state1) / 10000;
3498         state2 /= 100; /* convert to mW */
3499
3500         __i915_update_gfx_val(dev_priv);
3501
3502         return dev_priv->ips.gfx_power + state2;
3503 }
3504
3505 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3506 {
3507         unsigned long val;
3508
3509         if (dev_priv->info->gen != 5)
3510                 return 0;
3511
3512         spin_lock_irq(&mchdev_lock);
3513
3514         val = __i915_gfx_val(dev_priv);
3515
3516         spin_unlock_irq(&mchdev_lock);
3517
3518         return val;
3519 }
3520
3521 /**
3522  * i915_read_mch_val - return value for IPS use
3523  *
3524  * Calculate and return a value for the IPS driver to use when deciding whether
3525  * we have thermal and power headroom to increase CPU or GPU power budget.
3526  */
3527 unsigned long i915_read_mch_val(void)
3528 {
3529         struct drm_i915_private *dev_priv;
3530         unsigned long chipset_val, graphics_val, ret = 0;
3531
3532         spin_lock_irq(&mchdev_lock);
3533         if (!i915_mch_dev)
3534                 goto out_unlock;
3535         dev_priv = i915_mch_dev;
3536
3537         chipset_val = __i915_chipset_val(dev_priv);
3538         graphics_val = __i915_gfx_val(dev_priv);
3539
3540         ret = chipset_val + graphics_val;
3541
3542 out_unlock:
3543         spin_unlock_irq(&mchdev_lock);
3544
3545         return ret;
3546 }
3547 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3548
3549 /**
3550  * i915_gpu_raise - raise GPU frequency limit
3551  *
3552  * Raise the limit; IPS indicates we have thermal headroom.
3553  */
3554 bool i915_gpu_raise(void)
3555 {
3556         struct drm_i915_private *dev_priv;
3557         bool ret = true;
3558
3559         spin_lock_irq(&mchdev_lock);
3560         if (!i915_mch_dev) {
3561                 ret = false;
3562                 goto out_unlock;
3563         }
3564         dev_priv = i915_mch_dev;
3565
3566         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3567                 dev_priv->ips.max_delay--;
3568
3569 out_unlock:
3570         spin_unlock_irq(&mchdev_lock);
3571
3572         return ret;
3573 }
3574 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3575
3576 /**
3577  * i915_gpu_lower - lower GPU frequency limit
3578  *
3579  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3580  * frequency maximum.
3581  */
3582 bool i915_gpu_lower(void)
3583 {
3584         struct drm_i915_private *dev_priv;
3585         bool ret = true;
3586
3587         spin_lock_irq(&mchdev_lock);
3588         if (!i915_mch_dev) {
3589                 ret = false;
3590                 goto out_unlock;
3591         }
3592         dev_priv = i915_mch_dev;
3593
3594         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3595                 dev_priv->ips.max_delay++;
3596
3597 out_unlock:
3598         spin_unlock_irq(&mchdev_lock);
3599
3600         return ret;
3601 }
3602 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3603
3604 /**
3605  * i915_gpu_busy - indicate GPU business to IPS
3606  *
3607  * Tell the IPS driver whether or not the GPU is busy.
3608  */
3609 bool i915_gpu_busy(void)
3610 {
3611         struct drm_i915_private *dev_priv;
3612         struct intel_ring_buffer *ring;
3613         bool ret = false;
3614         int i;
3615
3616         spin_lock_irq(&mchdev_lock);
3617         if (!i915_mch_dev)
3618                 goto out_unlock;
3619         dev_priv = i915_mch_dev;
3620
3621         for_each_ring(ring, dev_priv, i)
3622                 ret |= !list_empty(&ring->request_list);
3623
3624 out_unlock:
3625         spin_unlock_irq(&mchdev_lock);
3626
3627         return ret;
3628 }
3629 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3630
3631 /**
3632  * i915_gpu_turbo_disable - disable graphics turbo
3633  *
3634  * Disable graphics turbo by resetting the max frequency and setting the
3635  * current frequency to the default.
3636  */
3637 bool i915_gpu_turbo_disable(void)
3638 {
3639         struct drm_i915_private *dev_priv;
3640         bool ret = true;
3641
3642         spin_lock_irq(&mchdev_lock);
3643         if (!i915_mch_dev) {
3644                 ret = false;
3645                 goto out_unlock;
3646         }
3647         dev_priv = i915_mch_dev;
3648
3649         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3650
3651         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3652                 ret = false;
3653
3654 out_unlock:
3655         spin_unlock_irq(&mchdev_lock);
3656
3657         return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3660
3661 /**
3662  * Tells the intel_ips driver that the i915 driver is now loaded, if
3663  * IPS got loaded first.
3664  *
3665  * This awkward dance is so that neither module has to depend on the
3666  * other in order for IPS to do the appropriate communication of
3667  * GPU turbo limits to i915.
3668  */
3669 static void
3670 ips_ping_for_i915_load(void)
3671 {
3672         void (*link)(void);
3673
3674         link = symbol_get(ips_link_to_i915_driver);
3675         if (link) {
3676                 link();
3677                 symbol_put(ips_link_to_i915_driver);
3678         }
3679 }
3680
3681 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3682 {
3683         /* We only register the i915 ips part with intel-ips once everything is
3684          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3685         spin_lock_irq(&mchdev_lock);
3686         i915_mch_dev = dev_priv;
3687         spin_unlock_irq(&mchdev_lock);
3688
3689         ips_ping_for_i915_load();
3690 }
3691
3692 void intel_gpu_ips_teardown(void)
3693 {
3694         spin_lock_irq(&mchdev_lock);
3695         i915_mch_dev = NULL;
3696         spin_unlock_irq(&mchdev_lock);
3697 }
3698 static void intel_init_emon(struct drm_device *dev)
3699 {
3700         struct drm_i915_private *dev_priv = dev->dev_private;
3701         u32 lcfuse;
3702         u8 pxw[16];
3703         int i;
3704
3705         /* Disable to program */
3706         I915_WRITE(ECR, 0);
3707         POSTING_READ(ECR);
3708
3709         /* Program energy weights for various events */
3710         I915_WRITE(SDEW, 0x15040d00);
3711         I915_WRITE(CSIEW0, 0x007f0000);
3712         I915_WRITE(CSIEW1, 0x1e220004);
3713         I915_WRITE(CSIEW2, 0x04000004);
3714
3715         for (i = 0; i < 5; i++)
3716                 I915_WRITE(PEW + (i * 4), 0);
3717         for (i = 0; i < 3; i++)
3718                 I915_WRITE(DEW + (i * 4), 0);
3719
3720         /* Program P-state weights to account for frequency power adjustment */
3721         for (i = 0; i < 16; i++) {
3722                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3723                 unsigned long freq = intel_pxfreq(pxvidfreq);
3724                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3725                         PXVFREQ_PX_SHIFT;
3726                 unsigned long val;
3727
3728                 val = vid * vid;
3729                 val *= (freq / 1000);
3730                 val *= 255;
3731                 val /= (127*127*900);
3732                 if (val > 0xff)
3733                         DRM_ERROR("bad pxval: %ld\n", val);
3734                 pxw[i] = val;
3735         }
3736         /* Render standby states get 0 weight */
3737         pxw[14] = 0;
3738         pxw[15] = 0;
3739
3740         for (i = 0; i < 4; i++) {
3741                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3742                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3743                 I915_WRITE(PXW + (i * 4), val);
3744         }
3745
3746         /* Adjust magic regs to magic values (more experimental results) */
3747         I915_WRITE(OGW0, 0);
3748         I915_WRITE(OGW1, 0);
3749         I915_WRITE(EG0, 0x00007f00);
3750         I915_WRITE(EG1, 0x0000000e);
3751         I915_WRITE(EG2, 0x000e0000);
3752         I915_WRITE(EG3, 0x68000300);
3753         I915_WRITE(EG4, 0x42000000);
3754         I915_WRITE(EG5, 0x00140031);
3755         I915_WRITE(EG6, 0);
3756         I915_WRITE(EG7, 0);
3757
3758         for (i = 0; i < 8; i++)
3759                 I915_WRITE(PXWL + (i * 4), 0);
3760
3761         /* Enable PMON + select events */
3762         I915_WRITE(ECR, 0x80000019);
3763
3764         lcfuse = I915_READ(LCFUSE02);
3765
3766         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3767 }
3768
3769 void intel_disable_gt_powersave(struct drm_device *dev)
3770 {
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773         /* Interrupts should be disabled already to avoid re-arming. */
3774         WARN_ON(dev->irq_enabled);
3775
3776         if (IS_IRONLAKE_M(dev)) {
3777                 ironlake_disable_drps(dev);
3778                 ironlake_disable_rc6(dev);
3779         } else if (INTEL_INFO(dev)->gen >= 6) {
3780                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3781                 cancel_work_sync(&dev_priv->rps.work);
3782                 if (IS_VALLEYVIEW(dev))
3783                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
3784                 mutex_lock(&dev_priv->rps.hw_lock);
3785                 if (IS_VALLEYVIEW(dev))
3786                         valleyview_disable_rps(dev);
3787                 else
3788                         gen6_disable_rps(dev);
3789                 mutex_unlock(&dev_priv->rps.hw_lock);
3790         }
3791 }
3792
3793 static void intel_gen6_powersave_work(struct work_struct *work)
3794 {
3795         struct drm_i915_private *dev_priv =
3796                 container_of(work, struct drm_i915_private,
3797                              rps.delayed_resume_work.work);
3798         struct drm_device *dev = dev_priv->dev;
3799
3800         mutex_lock(&dev_priv->rps.hw_lock);
3801
3802         if (IS_VALLEYVIEW(dev)) {
3803                 valleyview_enable_rps(dev);
3804         } else {
3805                 gen6_enable_rps(dev);
3806                 gen6_update_ring_freq(dev);
3807         }
3808         mutex_unlock(&dev_priv->rps.hw_lock);
3809 }
3810
3811 void intel_enable_gt_powersave(struct drm_device *dev)
3812 {
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814
3815         if (IS_IRONLAKE_M(dev)) {
3816                 ironlake_enable_drps(dev);
3817                 ironlake_enable_rc6(dev);
3818                 intel_init_emon(dev);
3819         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3820                 /*
3821                  * PCU communication is slow and this doesn't need to be
3822                  * done at any specific time, so do this out of our fast path
3823                  * to make resume and init faster.
3824                  */
3825                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3826                                       round_jiffies_up_relative(HZ));
3827         }
3828 }
3829
3830 static void ibx_init_clock_gating(struct drm_device *dev)
3831 {
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833
3834         /*
3835          * On Ibex Peak and Cougar Point, we need to disable clock
3836          * gating for the panel power sequencer or it will fail to
3837          * start up when no ports are active.
3838          */
3839         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3840 }
3841
3842 static void ironlake_init_clock_gating(struct drm_device *dev)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3846
3847         /* Required for FBC */
3848         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3849                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3850                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3851
3852         I915_WRITE(PCH_3DCGDIS0,
3853                    MARIUNIT_CLOCK_GATE_DISABLE |
3854                    SVSMUNIT_CLOCK_GATE_DISABLE);
3855         I915_WRITE(PCH_3DCGDIS1,
3856                    VFMUNIT_CLOCK_GATE_DISABLE);
3857
3858         /*
3859          * According to the spec the following bits should be set in
3860          * order to enable memory self-refresh
3861          * The bit 22/21 of 0x42004
3862          * The bit 5 of 0x42020
3863          * The bit 15 of 0x45000
3864          */
3865         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3866                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3867                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3868         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3869         I915_WRITE(DISP_ARB_CTL,
3870                    (I915_READ(DISP_ARB_CTL) |
3871                     DISP_FBC_WM_DIS));
3872         I915_WRITE(WM3_LP_ILK, 0);
3873         I915_WRITE(WM2_LP_ILK, 0);
3874         I915_WRITE(WM1_LP_ILK, 0);
3875
3876         /*
3877          * Based on the document from hardware guys the following bits
3878          * should be set unconditionally in order to enable FBC.
3879          * The bit 22 of 0x42000
3880          * The bit 22 of 0x42004
3881          * The bit 7,8,9 of 0x42020.
3882          */
3883         if (IS_IRONLAKE_M(dev)) {
3884                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3885                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3886                            ILK_FBCQ_DIS);
3887                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3888                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3889                            ILK_DPARB_GATE);
3890         }
3891
3892         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3893
3894         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3895                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3896                    ILK_ELPIN_409_SELECT);
3897         I915_WRITE(_3D_CHICKEN2,
3898                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3899                    _3D_CHICKEN2_WM_READ_PIPELINED);
3900
3901         /* WaDisableRenderCachePipelinedFlush:ilk */
3902         I915_WRITE(CACHE_MODE_0,
3903                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3904
3905         ibx_init_clock_gating(dev);
3906 }
3907
3908 static void cpt_init_clock_gating(struct drm_device *dev)
3909 {
3910         struct drm_i915_private *dev_priv = dev->dev_private;
3911         int pipe;
3912         uint32_t val;
3913
3914         /*
3915          * On Ibex Peak and Cougar Point, we need to disable clock
3916          * gating for the panel power sequencer or it will fail to
3917          * start up when no ports are active.
3918          */
3919         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3920         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3921                    DPLS_EDP_PPS_FIX_DIS);
3922         /* The below fixes the weird display corruption, a few pixels shifted
3923          * downward, on (only) LVDS of some HP laptops with IVY.
3924          */
3925         for_each_pipe(pipe) {
3926                 val = I915_READ(TRANS_CHICKEN2(pipe));
3927                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3928                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3929                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3930                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3931                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3932                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3933                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3934                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3935         }
3936         /* WADP0ClockGatingDisable */
3937         for_each_pipe(pipe) {
3938                 I915_WRITE(TRANS_CHICKEN1(pipe),
3939                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3940         }
3941 }
3942
3943 static void gen6_check_mch_setup(struct drm_device *dev)
3944 {
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         uint32_t tmp;
3947
3948         tmp = I915_READ(MCH_SSKPD);
3949         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3950                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3951                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3952                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3953         }
3954 }
3955
3956 static void gen6_init_clock_gating(struct drm_device *dev)
3957 {
3958         struct drm_i915_private *dev_priv = dev->dev_private;
3959         int pipe;
3960         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3961
3962         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3963
3964         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3965                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3966                    ILK_ELPIN_409_SELECT);
3967
3968         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3969         I915_WRITE(_3D_CHICKEN,
3970                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3971
3972         /* WaSetupGtModeTdRowDispatch:snb */
3973         if (IS_SNB_GT1(dev))
3974                 I915_WRITE(GEN6_GT_MODE,
3975                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3976
3977         I915_WRITE(WM3_LP_ILK, 0);
3978         I915_WRITE(WM2_LP_ILK, 0);
3979         I915_WRITE(WM1_LP_ILK, 0);
3980
3981         I915_WRITE(CACHE_MODE_0,
3982                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3983
3984         I915_WRITE(GEN6_UCGCTL1,
3985                    I915_READ(GEN6_UCGCTL1) |
3986                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3987                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3988
3989         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3990          * gating disable must be set.  Failure to set it results in
3991          * flickering pixels due to Z write ordering failures after
3992          * some amount of runtime in the Mesa "fire" demo, and Unigine
3993          * Sanctuary and Tropics, and apparently anything else with
3994          * alpha test or pixel discard.
3995          *
3996          * According to the spec, bit 11 (RCCUNIT) must also be set,
3997          * but we didn't debug actual testcases to find it out.
3998          *
3999          * Also apply WaDisableVDSUnitClockGating:snb and
4000          * WaDisableRCPBUnitClockGating:snb.
4001          */
4002         I915_WRITE(GEN6_UCGCTL2,
4003                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4004                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4005                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4006
4007         /* Bspec says we need to always set all mask bits. */
4008         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4009                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4010
4011         /*
4012          * According to the spec the following bits should be
4013          * set in order to enable memory self-refresh and fbc:
4014          * The bit21 and bit22 of 0x42000
4015          * The bit21 and bit22 of 0x42004
4016          * The bit5 and bit7 of 0x42020
4017          * The bit14 of 0x70180
4018          * The bit14 of 0x71180
4019          */
4020         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4021                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4022                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4023         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4024                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4025                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4026         I915_WRITE(ILK_DSPCLK_GATE_D,
4027                    I915_READ(ILK_DSPCLK_GATE_D) |
4028                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4029                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4030
4031         /* WaMbcDriverBootEnable:snb */
4032         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4033                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4034
4035         for_each_pipe(pipe) {
4036                 I915_WRITE(DSPCNTR(pipe),
4037                            I915_READ(DSPCNTR(pipe)) |
4038                            DISPPLANE_TRICKLE_FEED_DISABLE);
4039                 intel_flush_display_plane(dev_priv, pipe);
4040         }
4041
4042         /* The default value should be 0x200 according to docs, but the two
4043          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4044         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4045         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4046
4047         cpt_init_clock_gating(dev);
4048
4049         gen6_check_mch_setup(dev);
4050 }
4051
4052 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4053 {
4054         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4055
4056         reg &= ~GEN7_FF_SCHED_MASK;
4057         reg |= GEN7_FF_TS_SCHED_HW;
4058         reg |= GEN7_FF_VS_SCHED_HW;
4059         reg |= GEN7_FF_DS_SCHED_HW;
4060
4061         if (IS_HASWELL(dev_priv->dev))
4062                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4063
4064         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4065 }
4066
4067 static void lpt_init_clock_gating(struct drm_device *dev)
4068 {
4069         struct drm_i915_private *dev_priv = dev->dev_private;
4070
4071         /*
4072          * TODO: this bit should only be enabled when really needed, then
4073          * disabled when not needed anymore in order to save power.
4074          */
4075         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4076                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4077                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4078                            PCH_LP_PARTITION_LEVEL_DISABLE);
4079 }
4080
4081 static void lpt_suspend_hw(struct drm_device *dev)
4082 {
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084
4085         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4086                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4087
4088                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4089                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4090         }
4091 }
4092
4093 static void haswell_init_clock_gating(struct drm_device *dev)
4094 {
4095         struct drm_i915_private *dev_priv = dev->dev_private;
4096         int pipe;
4097
4098         I915_WRITE(WM3_LP_ILK, 0);
4099         I915_WRITE(WM2_LP_ILK, 0);
4100         I915_WRITE(WM1_LP_ILK, 0);
4101
4102         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4103          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4104          */
4105         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4106
4107         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4108         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4109                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4110
4111         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4112         I915_WRITE(GEN7_L3CNTLREG1,
4113                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4114         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4115                         GEN7_WA_L3_CHICKEN_MODE);
4116
4117         /* This is required by WaCatErrorRejectionIssue:hsw */
4118         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4119                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4120                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4121
4122         for_each_pipe(pipe) {
4123                 I915_WRITE(DSPCNTR(pipe),
4124                            I915_READ(DSPCNTR(pipe)) |
4125                            DISPPLANE_TRICKLE_FEED_DISABLE);
4126                 intel_flush_display_plane(dev_priv, pipe);
4127         }
4128
4129         /* WaVSRefCountFullforceMissDisable:hsw */
4130         gen7_setup_fixed_func_scheduler(dev_priv);
4131
4132         /* WaDisable4x2SubspanOptimization:hsw */
4133         I915_WRITE(CACHE_MODE_1,
4134                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4135
4136         /* WaMbcDriverBootEnable:hsw */
4137         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4138                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4139
4140         /* WaSwitchSolVfFArbitrationPriority:hsw */
4141         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4142
4143         /* XXX: This is a workaround for early silicon revisions and should be
4144          * removed later.
4145          */
4146         I915_WRITE(WM_DBG,
4147                         I915_READ(WM_DBG) |
4148                         WM_DBG_DISALLOW_MULTIPLE_LP |
4149                         WM_DBG_DISALLOW_SPRITE |
4150                         WM_DBG_DISALLOW_MAXFIFO);
4151
4152         lpt_init_clock_gating(dev);
4153 }
4154
4155 static void ivybridge_init_clock_gating(struct drm_device *dev)
4156 {
4157         struct drm_i915_private *dev_priv = dev->dev_private;
4158         int pipe;
4159         uint32_t snpcr;
4160
4161         I915_WRITE(WM3_LP_ILK, 0);
4162         I915_WRITE(WM2_LP_ILK, 0);
4163         I915_WRITE(WM1_LP_ILK, 0);
4164
4165         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4166
4167         /* WaDisableEarlyCull:ivb */
4168         I915_WRITE(_3D_CHICKEN3,
4169                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4170
4171         /* WaDisableBackToBackFlipFix:ivb */
4172         I915_WRITE(IVB_CHICKEN3,
4173                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4174                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4175
4176         /* WaDisablePSDDualDispatchEnable:ivb */
4177         if (IS_IVB_GT1(dev))
4178                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4179                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4180         else
4181                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4182                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4183
4184         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4185         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4186                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4187
4188         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4189         I915_WRITE(GEN7_L3CNTLREG1,
4190                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4191         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4192                    GEN7_WA_L3_CHICKEN_MODE);
4193         if (IS_IVB_GT1(dev))
4194                 I915_WRITE(GEN7_ROW_CHICKEN2,
4195                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4196         else
4197                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4198                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4199
4200
4201         /* WaForceL3Serialization:ivb */
4202         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4203                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4204
4205         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4206          * gating disable must be set.  Failure to set it results in
4207          * flickering pixels due to Z write ordering failures after
4208          * some amount of runtime in the Mesa "fire" demo, and Unigine
4209          * Sanctuary and Tropics, and apparently anything else with
4210          * alpha test or pixel discard.
4211          *
4212          * According to the spec, bit 11 (RCCUNIT) must also be set,
4213          * but we didn't debug actual testcases to find it out.
4214          *
4215          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4216          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4217          */
4218         I915_WRITE(GEN6_UCGCTL2,
4219                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4220                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4221
4222         /* This is required by WaCatErrorRejectionIssue:ivb */
4223         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4224                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4225                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4226
4227         for_each_pipe(pipe) {
4228                 I915_WRITE(DSPCNTR(pipe),
4229                            I915_READ(DSPCNTR(pipe)) |
4230                            DISPPLANE_TRICKLE_FEED_DISABLE);
4231                 intel_flush_display_plane(dev_priv, pipe);
4232         }
4233
4234         /* WaMbcDriverBootEnable:ivb */
4235         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4236                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4237
4238         /* WaVSRefCountFullforceMissDisable:ivb */
4239         gen7_setup_fixed_func_scheduler(dev_priv);
4240
4241         /* WaDisable4x2SubspanOptimization:ivb */
4242         I915_WRITE(CACHE_MODE_1,
4243                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4244
4245         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4246         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4247         snpcr |= GEN6_MBC_SNPCR_MED;
4248         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4249
4250         if (!HAS_PCH_NOP(dev))
4251                 cpt_init_clock_gating(dev);
4252
4253         gen6_check_mch_setup(dev);
4254 }
4255
4256 static void valleyview_init_clock_gating(struct drm_device *dev)
4257 {
4258         struct drm_i915_private *dev_priv = dev->dev_private;
4259         int pipe;
4260
4261         I915_WRITE(WM3_LP_ILK, 0);
4262         I915_WRITE(WM2_LP_ILK, 0);
4263         I915_WRITE(WM1_LP_ILK, 0);
4264
4265         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4266
4267         /* WaDisableEarlyCull:vlv */
4268         I915_WRITE(_3D_CHICKEN3,
4269                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4270
4271         /* WaDisableBackToBackFlipFix:vlv */
4272         I915_WRITE(IVB_CHICKEN3,
4273                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4274                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4275
4276         /* WaDisablePSDDualDispatchEnable:vlv */
4277         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4278                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4279                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4280
4281         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4282         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4283                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4284
4285         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4286         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4287         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4288
4289         /* WaForceL3Serialization:vlv */
4290         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4291                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4292
4293         /* WaDisableDopClockGating:vlv */
4294         I915_WRITE(GEN7_ROW_CHICKEN2,
4295                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4296
4297         /* WaForceL3Serialization:vlv */
4298         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4299                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4300
4301         /* This is required by WaCatErrorRejectionIssue:vlv */
4302         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4303                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4304                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4305
4306         /* WaMbcDriverBootEnable:vlv */
4307         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4308                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4309
4310
4311         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4312          * gating disable must be set.  Failure to set it results in
4313          * flickering pixels due to Z write ordering failures after
4314          * some amount of runtime in the Mesa "fire" demo, and Unigine
4315          * Sanctuary and Tropics, and apparently anything else with
4316          * alpha test or pixel discard.
4317          *
4318          * According to the spec, bit 11 (RCCUNIT) must also be set,
4319          * but we didn't debug actual testcases to find it out.
4320          *
4321          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4322          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4323          *
4324          * Also apply WaDisableVDSUnitClockGating:vlv and
4325          * WaDisableRCPBUnitClockGating:vlv.
4326          */
4327         I915_WRITE(GEN6_UCGCTL2,
4328                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4329                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4330                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4331                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4332                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4333
4334         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4335
4336         for_each_pipe(pipe) {
4337                 I915_WRITE(DSPCNTR(pipe),
4338                            I915_READ(DSPCNTR(pipe)) |
4339                            DISPPLANE_TRICKLE_FEED_DISABLE);
4340                 intel_flush_display_plane(dev_priv, pipe);
4341         }
4342
4343         I915_WRITE(CACHE_MODE_1,
4344                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4345
4346         /*
4347          * WaDisableVLVClockGating_VBIIssue:vlv
4348          * Disable clock gating on th GCFG unit to prevent a delay
4349          * in the reporting of vblank events.
4350          */
4351         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4352
4353         /* Conservative clock gating settings for now */
4354         I915_WRITE(0x9400, 0xffffffff);
4355         I915_WRITE(0x9404, 0xffffffff);
4356         I915_WRITE(0x9408, 0xffffffff);
4357         I915_WRITE(0x940c, 0xffffffff);
4358         I915_WRITE(0x9410, 0xffffffff);
4359         I915_WRITE(0x9414, 0xffffffff);
4360         I915_WRITE(0x9418, 0xffffffff);
4361 }
4362
4363 static void g4x_init_clock_gating(struct drm_device *dev)
4364 {
4365         struct drm_i915_private *dev_priv = dev->dev_private;
4366         uint32_t dspclk_gate;
4367
4368         I915_WRITE(RENCLK_GATE_D1, 0);
4369         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4370                    GS_UNIT_CLOCK_GATE_DISABLE |
4371                    CL_UNIT_CLOCK_GATE_DISABLE);
4372         I915_WRITE(RAMCLK_GATE_D, 0);
4373         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4374                 OVRUNIT_CLOCK_GATE_DISABLE |
4375                 OVCUNIT_CLOCK_GATE_DISABLE;
4376         if (IS_GM45(dev))
4377                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4378         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4379
4380         /* WaDisableRenderCachePipelinedFlush */
4381         I915_WRITE(CACHE_MODE_0,
4382                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4383 }
4384
4385 static void crestline_init_clock_gating(struct drm_device *dev)
4386 {
4387         struct drm_i915_private *dev_priv = dev->dev_private;
4388
4389         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4390         I915_WRITE(RENCLK_GATE_D2, 0);
4391         I915_WRITE(DSPCLK_GATE_D, 0);
4392         I915_WRITE(RAMCLK_GATE_D, 0);
4393         I915_WRITE16(DEUC, 0);
4394 }
4395
4396 static void broadwater_init_clock_gating(struct drm_device *dev)
4397 {
4398         struct drm_i915_private *dev_priv = dev->dev_private;
4399
4400         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4401                    I965_RCC_CLOCK_GATE_DISABLE |
4402                    I965_RCPB_CLOCK_GATE_DISABLE |
4403                    I965_ISC_CLOCK_GATE_DISABLE |
4404                    I965_FBC_CLOCK_GATE_DISABLE);
4405         I915_WRITE(RENCLK_GATE_D2, 0);
4406 }
4407
4408 static void gen3_init_clock_gating(struct drm_device *dev)
4409 {
4410         struct drm_i915_private *dev_priv = dev->dev_private;
4411         u32 dstate = I915_READ(D_STATE);
4412
4413         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4414                 DSTATE_DOT_CLOCK_GATING;
4415         I915_WRITE(D_STATE, dstate);
4416
4417         if (IS_PINEVIEW(dev))
4418                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4419
4420         /* IIR "flip pending" means done if this bit is set */
4421         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4422 }
4423
4424 static void i85x_init_clock_gating(struct drm_device *dev)
4425 {
4426         struct drm_i915_private *dev_priv = dev->dev_private;
4427
4428         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4429 }
4430
4431 static void i830_init_clock_gating(struct drm_device *dev)
4432 {
4433         struct drm_i915_private *dev_priv = dev->dev_private;
4434
4435         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4436 }
4437
4438 void intel_init_clock_gating(struct drm_device *dev)
4439 {
4440         struct drm_i915_private *dev_priv = dev->dev_private;
4441
4442         dev_priv->display.init_clock_gating(dev);
4443 }
4444
4445 void intel_suspend_hw(struct drm_device *dev)
4446 {
4447         if (HAS_PCH_LPT(dev))
4448                 lpt_suspend_hw(dev);
4449 }
4450
4451 /**
4452  * We should only use the power well if we explicitly asked the hardware to
4453  * enable it, so check if it's enabled and also check if we've requested it to
4454  * be enabled.
4455  */
4456 bool intel_display_power_enabled(struct drm_device *dev,
4457                                  enum intel_display_power_domain domain)
4458 {
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460
4461         if (!HAS_POWER_WELL(dev))
4462                 return true;
4463
4464         switch (domain) {
4465         case POWER_DOMAIN_PIPE_A:
4466         case POWER_DOMAIN_TRANSCODER_EDP:
4467                 return true;
4468         case POWER_DOMAIN_PIPE_B:
4469         case POWER_DOMAIN_PIPE_C:
4470         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
4471         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
4472         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
4473         case POWER_DOMAIN_TRANSCODER_A:
4474         case POWER_DOMAIN_TRANSCODER_B:
4475         case POWER_DOMAIN_TRANSCODER_C:
4476                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4477                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4478         default:
4479                 BUG();
4480         }
4481 }
4482
4483 void intel_set_power_well(struct drm_device *dev, bool enable)
4484 {
4485         struct drm_i915_private *dev_priv = dev->dev_private;
4486         bool is_enabled, enable_requested;
4487         uint32_t tmp;
4488
4489         if (!HAS_POWER_WELL(dev))
4490                 return;
4491
4492         if (!i915_disable_power_well && !enable)
4493                 return;
4494
4495         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4496         is_enabled = tmp & HSW_PWR_WELL_STATE;
4497         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4498
4499         if (enable) {
4500                 if (!enable_requested)
4501                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4502
4503                 if (!is_enabled) {
4504                         DRM_DEBUG_KMS("Enabling power well\n");
4505                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4506                                       HSW_PWR_WELL_STATE), 20))
4507                                 DRM_ERROR("Timeout enabling power well\n");
4508                 }
4509         } else {
4510                 if (enable_requested) {
4511                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4512                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4513                 }
4514         }
4515 }
4516
4517 /*
4518  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4519  * when not needed anymore. We have 4 registers that can request the power well
4520  * to be enabled, and it will only be disabled if none of the registers is
4521  * requesting it to be enabled.
4522  */
4523 void intel_init_power_well(struct drm_device *dev)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526
4527         if (!HAS_POWER_WELL(dev))
4528                 return;
4529
4530         /* For now, we need the power well to be always enabled. */
4531         intel_set_power_well(dev, true);
4532
4533         /* We're taking over the BIOS, so clear any requests made by it since
4534          * the driver is in charge now. */
4535         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4536                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4537 }
4538
4539 /* Set up chip specific power management-related functions */
4540 void intel_init_pm(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543
4544         if (I915_HAS_FBC(dev)) {
4545                 if (HAS_PCH_SPLIT(dev)) {
4546                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4547                         if (IS_IVYBRIDGE(dev))
4548                                 dev_priv->display.enable_fbc =
4549                                         gen7_enable_fbc;
4550                         else
4551                                 dev_priv->display.enable_fbc =
4552                                         ironlake_enable_fbc;
4553                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4554                 } else if (IS_GM45(dev)) {
4555                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4556                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4557                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4558                 } else if (IS_CRESTLINE(dev)) {
4559                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4560                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4561                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4562                 }
4563                 /* 855GM needs testing */
4564         }
4565
4566         /* For cxsr */
4567         if (IS_PINEVIEW(dev))
4568                 i915_pineview_get_mem_freq(dev);
4569         else if (IS_GEN5(dev))
4570                 i915_ironlake_get_mem_freq(dev);
4571
4572         /* For FIFO watermark updates */
4573         if (HAS_PCH_SPLIT(dev)) {
4574                 if (IS_GEN5(dev)) {
4575                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4576                                 dev_priv->display.update_wm = ironlake_update_wm;
4577                         else {
4578                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4579                                               "Disable CxSR\n");
4580                                 dev_priv->display.update_wm = NULL;
4581                         }
4582                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4583                 } else if (IS_GEN6(dev)) {
4584                         if (SNB_READ_WM0_LATENCY()) {
4585                                 dev_priv->display.update_wm = sandybridge_update_wm;
4586                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4587                         } else {
4588                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4589                                               "Disable CxSR\n");
4590                                 dev_priv->display.update_wm = NULL;
4591                         }
4592                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4593                 } else if (IS_IVYBRIDGE(dev)) {
4594                         if (SNB_READ_WM0_LATENCY()) {
4595                                 dev_priv->display.update_wm = ivybridge_update_wm;
4596                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4597                         } else {
4598                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4599                                               "Disable CxSR\n");
4600                                 dev_priv->display.update_wm = NULL;
4601                         }
4602                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4603                 } else if (IS_HASWELL(dev)) {
4604                         if (SNB_READ_WM0_LATENCY()) {
4605                                 dev_priv->display.update_wm = sandybridge_update_wm;
4606                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4607                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4608                         } else {
4609                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4610                                               "Disable CxSR\n");
4611                                 dev_priv->display.update_wm = NULL;
4612                         }
4613                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4614                 } else
4615                         dev_priv->display.update_wm = NULL;
4616         } else if (IS_VALLEYVIEW(dev)) {
4617                 dev_priv->display.update_wm = valleyview_update_wm;
4618                 dev_priv->display.init_clock_gating =
4619                         valleyview_init_clock_gating;
4620         } else if (IS_PINEVIEW(dev)) {
4621                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4622                                             dev_priv->is_ddr3,
4623                                             dev_priv->fsb_freq,
4624                                             dev_priv->mem_freq)) {
4625                         DRM_INFO("failed to find known CxSR latency "
4626                                  "(found ddr%s fsb freq %d, mem freq %d), "
4627                                  "disabling CxSR\n",
4628                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4629                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4630                         /* Disable CxSR and never update its watermark again */
4631                         pineview_disable_cxsr(dev);
4632                         dev_priv->display.update_wm = NULL;
4633                 } else
4634                         dev_priv->display.update_wm = pineview_update_wm;
4635                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4636         } else if (IS_G4X(dev)) {
4637                 dev_priv->display.update_wm = g4x_update_wm;
4638                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4639         } else if (IS_GEN4(dev)) {
4640                 dev_priv->display.update_wm = i965_update_wm;
4641                 if (IS_CRESTLINE(dev))
4642                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4643                 else if (IS_BROADWATER(dev))
4644                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4645         } else if (IS_GEN3(dev)) {
4646                 dev_priv->display.update_wm = i9xx_update_wm;
4647                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4648                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4649         } else if (IS_I865G(dev)) {
4650                 dev_priv->display.update_wm = i830_update_wm;
4651                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4652                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4653         } else if (IS_I85X(dev)) {
4654                 dev_priv->display.update_wm = i9xx_update_wm;
4655                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4656                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4657         } else {
4658                 dev_priv->display.update_wm = i830_update_wm;
4659                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4660                 if (IS_845G(dev))
4661                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4662                 else
4663                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4664         }
4665 }
4666
4667 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4668 {
4669         u32 gt_thread_status_mask;
4670
4671         if (IS_HASWELL(dev_priv->dev))
4672                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4673         else
4674                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4675
4676         /* w/a for a sporadic read returning 0 by waiting for the GT
4677          * thread to wake up.
4678          */
4679         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4680                 DRM_ERROR("GT thread status wait timed out\n");
4681 }
4682
4683 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4684 {
4685         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4686         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4687 }
4688
4689 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4690 {
4691         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4692                             FORCEWAKE_ACK_TIMEOUT_MS))
4693                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4694
4695         I915_WRITE_NOTRACE(FORCEWAKE, 1);
4696         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4697
4698         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4699                             FORCEWAKE_ACK_TIMEOUT_MS))
4700                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4701
4702         /* WaRsForcewakeWaitTC0:snb */
4703         __gen6_gt_wait_for_thread_c0(dev_priv);
4704 }
4705
4706 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4707 {
4708         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4709         /* something from same cacheline, but !FORCEWAKE_MT */
4710         POSTING_READ(ECOBUS);
4711 }
4712
4713 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4714 {
4715         u32 forcewake_ack;
4716
4717         if (IS_HASWELL(dev_priv->dev))
4718                 forcewake_ack = FORCEWAKE_ACK_HSW;
4719         else
4720                 forcewake_ack = FORCEWAKE_MT_ACK;
4721
4722         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4723                             FORCEWAKE_ACK_TIMEOUT_MS))
4724                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4725
4726         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4727         /* something from same cacheline, but !FORCEWAKE_MT */
4728         POSTING_READ(ECOBUS);
4729
4730         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4731                             FORCEWAKE_ACK_TIMEOUT_MS))
4732                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4733
4734         /* WaRsForcewakeWaitTC0:ivb,hsw */
4735         __gen6_gt_wait_for_thread_c0(dev_priv);
4736 }
4737
4738 /*
4739  * Generally this is called implicitly by the register read function. However,
4740  * if some sequence requires the GT to not power down then this function should
4741  * be called at the beginning of the sequence followed by a call to
4742  * gen6_gt_force_wake_put() at the end of the sequence.
4743  */
4744 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4745 {
4746         unsigned long irqflags;
4747
4748         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4749         if (dev_priv->forcewake_count++ == 0)
4750                 dev_priv->gt.force_wake_get(dev_priv);
4751         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4752 }
4753
4754 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4755 {
4756         u32 gtfifodbg;
4757         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4758         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4759              "MMIO read or write has been dropped %x\n", gtfifodbg))
4760                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4761 }
4762
4763 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4764 {
4765         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4766         /* something from same cacheline, but !FORCEWAKE */
4767         POSTING_READ(ECOBUS);
4768         gen6_gt_check_fifodbg(dev_priv);
4769 }
4770
4771 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4772 {
4773         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4774         /* something from same cacheline, but !FORCEWAKE_MT */
4775         POSTING_READ(ECOBUS);
4776         gen6_gt_check_fifodbg(dev_priv);
4777 }
4778
4779 /*
4780  * see gen6_gt_force_wake_get()
4781  */
4782 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4783 {
4784         unsigned long irqflags;
4785
4786         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4787         if (--dev_priv->forcewake_count == 0)
4788                 dev_priv->gt.force_wake_put(dev_priv);
4789         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4790 }
4791
4792 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4793 {
4794         int ret = 0;
4795
4796         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4797                 int loop = 500;
4798                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4799                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4800                         udelay(10);
4801                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4802                 }
4803                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4804                         ++ret;
4805                 dev_priv->gt_fifo_count = fifo;
4806         }
4807         dev_priv->gt_fifo_count--;
4808
4809         return ret;
4810 }
4811
4812 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4813 {
4814         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4815         /* something from same cacheline, but !FORCEWAKE_VLV */
4816         POSTING_READ(FORCEWAKE_ACK_VLV);
4817 }
4818
4819 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4820 {
4821         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4822                             FORCEWAKE_ACK_TIMEOUT_MS))
4823                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4824
4825         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4826         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4827                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4828
4829         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4830                             FORCEWAKE_ACK_TIMEOUT_MS))
4831                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4832
4833         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4834                              FORCEWAKE_KERNEL),
4835                             FORCEWAKE_ACK_TIMEOUT_MS))
4836                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4837
4838         /* WaRsForcewakeWaitTC0:vlv */
4839         __gen6_gt_wait_for_thread_c0(dev_priv);
4840 }
4841
4842 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4843 {
4844         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4845         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4846                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4847         /* The below doubles as a POSTING_READ */
4848         gen6_gt_check_fifodbg(dev_priv);
4849 }
4850
4851 void intel_gt_reset(struct drm_device *dev)
4852 {
4853         struct drm_i915_private *dev_priv = dev->dev_private;
4854
4855         if (IS_VALLEYVIEW(dev)) {
4856                 vlv_force_wake_reset(dev_priv);
4857         } else if (INTEL_INFO(dev)->gen >= 6) {
4858                 __gen6_gt_force_wake_reset(dev_priv);
4859                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4860                         __gen6_gt_force_wake_mt_reset(dev_priv);
4861         }
4862 }
4863
4864 void intel_gt_init(struct drm_device *dev)
4865 {
4866         struct drm_i915_private *dev_priv = dev->dev_private;
4867
4868         spin_lock_init(&dev_priv->gt_lock);
4869
4870         intel_gt_reset(dev);
4871
4872         if (IS_VALLEYVIEW(dev)) {
4873                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4874                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4875         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4876                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4877                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4878         } else if (IS_GEN6(dev)) {
4879                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4880                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4881         }
4882         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4883                           intel_gen6_powersave_work);
4884 }
4885
4886 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4887 {
4888         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4889
4890         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4891                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4892                 return -EAGAIN;
4893         }
4894
4895         I915_WRITE(GEN6_PCODE_DATA, *val);
4896         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4897
4898         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4899                      500)) {
4900                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4901                 return -ETIMEDOUT;
4902         }
4903
4904         *val = I915_READ(GEN6_PCODE_DATA);
4905         I915_WRITE(GEN6_PCODE_DATA, 0);
4906
4907         return 0;
4908 }
4909
4910 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4911 {
4912         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4913
4914         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4915                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4916                 return -EAGAIN;
4917         }
4918
4919         I915_WRITE(GEN6_PCODE_DATA, val);
4920         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4921
4922         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4923                      500)) {
4924                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4925                 return -ETIMEDOUT;
4926         }
4927
4928         I915_WRITE(GEN6_PCODE_DATA, 0);
4929
4930         return 0;
4931 }
4932
4933 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
4934                         u8 addr, u32 *val)
4935 {
4936         u32 cmd, devfn, be, bar;
4937
4938         bar = 0;
4939         be = 0xf;
4940         devfn = PCI_DEVFN(2, 0);
4941
4942         cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4943                 (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4944                 (bar << IOSF_BAR_SHIFT);
4945
4946         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4947
4948         if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4949                 DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4950                                  opcode == PUNIT_OPCODE_REG_READ ?
4951                                  "read" : "write");
4952                 return -EAGAIN;
4953         }
4954
4955         I915_WRITE(VLV_IOSF_ADDR, addr);
4956         if (opcode == PUNIT_OPCODE_REG_WRITE)
4957                 I915_WRITE(VLV_IOSF_DATA, *val);
4958         I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4959
4960         if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4961                      5)) {
4962                 DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4963                           opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4964                           addr);
4965                 return -ETIMEDOUT;
4966         }
4967
4968         if (opcode == PUNIT_OPCODE_REG_READ)
4969                 *val = I915_READ(VLV_IOSF_DATA);
4970         I915_WRITE(VLV_IOSF_DATA, 0);
4971
4972         return 0;
4973 }
4974
4975 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4976 {
4977         return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
4978                             addr, val);
4979 }
4980
4981 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4982 {
4983         return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
4984                             addr, &val);
4985 }
4986
4987 int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4988 {
4989         return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
4990                             addr, val);
4991 }
4992
4993 int vlv_gpu_freq(int ddr_freq, int val)
4994 {
4995         int mult, base;
4996
4997         switch (ddr_freq) {
4998         case 800:
4999                 mult = 20;
5000                 base = 120;
5001                 break;
5002         case 1066:
5003                 mult = 22;
5004                 base = 133;
5005                 break;
5006         case 1333:
5007                 mult = 21;
5008                 base = 125;
5009                 break;
5010         default:
5011                 return -1;
5012         }
5013
5014         return ((val - 0xbd) * mult) + base;
5015 }
5016
5017 int vlv_freq_opcode(int ddr_freq, int val)
5018 {
5019         int mult, base;
5020
5021         switch (ddr_freq) {
5022         case 800:
5023                 mult = 20;
5024                 base = 120;
5025                 break;
5026         case 1066:
5027                 mult = 22;
5028                 base = 133;
5029                 break;
5030         case 1333:
5031                 mult = 21;
5032                 base = 125;
5033                 break;
5034         default:
5035                 return -1;
5036         }
5037
5038         val /= mult;
5039         val -= base / mult;
5040         val += 0xbd;
5041
5042         if (val > 0xea)
5043                 val = 0xea;
5044
5045         return val;
5046 }
5047