]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: implement workaround for VTOTAL when using TRANSCODER_EDP
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * intel_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1840         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 }
1842
1843 /**
1844  * intel_enable_plane - enable a display plane on a given pipe
1845  * @dev_priv: i915 private structure
1846  * @plane: plane to enable
1847  * @pipe: pipe being fed
1848  *
1849  * Enable @plane on @pipe, making sure that @pipe is running first.
1850  */
1851 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1852                                enum plane plane, enum pipe pipe)
1853 {
1854         int reg;
1855         u32 val;
1856
1857         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1858         assert_pipe_enabled(dev_priv, pipe);
1859
1860         reg = DSPCNTR(plane);
1861         val = I915_READ(reg);
1862         if (val & DISPLAY_PLANE_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866         intel_flush_display_plane(dev_priv, plane);
1867         intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871  * intel_disable_plane - disable a display plane
1872  * @dev_priv: i915 private structure
1873  * @plane: plane to disable
1874  * @pipe: pipe consuming the data
1875  *
1876  * Disable @plane; should be an independent operation.
1877  */
1878 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1879                                 enum plane plane, enum pipe pipe)
1880 {
1881         int reg;
1882         u32 val;
1883
1884         reg = DSPCNTR(plane);
1885         val = I915_READ(reg);
1886         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1887                 return;
1888
1889         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1890         intel_flush_display_plane(dev_priv, plane);
1891         intel_wait_for_vblank(dev_priv->dev, pipe);
1892 }
1893
1894 int
1895 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1896                            struct drm_i915_gem_object *obj,
1897                            struct intel_ring_buffer *pipelined)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         u32 alignment;
1901         int ret;
1902
1903         switch (obj->tiling_mode) {
1904         case I915_TILING_NONE:
1905                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1906                         alignment = 128 * 1024;
1907                 else if (INTEL_INFO(dev)->gen >= 4)
1908                         alignment = 4 * 1024;
1909                 else
1910                         alignment = 64 * 1024;
1911                 break;
1912         case I915_TILING_X:
1913                 /* pin() will align the object as required by fence */
1914                 alignment = 0;
1915                 break;
1916         case I915_TILING_Y:
1917                 /* FIXME: Is this true? */
1918                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1919                 return -EINVAL;
1920         default:
1921                 BUG();
1922         }
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1959                                                         unsigned int bpp,
1960                                                         unsigned int pitch)
1961 {
1962         int tile_rows, tiles;
1963
1964         tile_rows = *y / 8;
1965         *y %= 8;
1966         tiles = *x / (512/bpp);
1967         *x %= 512/bpp;
1968
1969         return tile_rows * pitch * 8 + tiles * 4096;
1970 }
1971
1972 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1973                              int x, int y)
1974 {
1975         struct drm_device *dev = crtc->dev;
1976         struct drm_i915_private *dev_priv = dev->dev_private;
1977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978         struct intel_framebuffer *intel_fb;
1979         struct drm_i915_gem_object *obj;
1980         int plane = intel_crtc->plane;
1981         unsigned long linear_offset;
1982         u32 dspcntr;
1983         u32 reg;
1984
1985         switch (plane) {
1986         case 0:
1987         case 1:
1988                 break;
1989         default:
1990                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1991                 return -EINVAL;
1992         }
1993
1994         intel_fb = to_intel_framebuffer(fb);
1995         obj = intel_fb->obj;
1996
1997         reg = DSPCNTR(plane);
1998         dspcntr = I915_READ(reg);
1999         /* Mask out pixel format bits in case we change it */
2000         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2001         switch (fb->bits_per_pixel) {
2002         case 8:
2003                 dspcntr |= DISPPLANE_8BPP;
2004                 break;
2005         case 16:
2006                 if (fb->depth == 15)
2007                         dspcntr |= DISPPLANE_15_16BPP;
2008                 else
2009                         dspcntr |= DISPPLANE_16BPP;
2010                 break;
2011         case 24:
2012         case 32:
2013                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2014                 break;
2015         default:
2016                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2017                 return -EINVAL;
2018         }
2019         if (INTEL_INFO(dev)->gen >= 4) {
2020                 if (obj->tiling_mode != I915_TILING_NONE)
2021                         dspcntr |= DISPPLANE_TILED;
2022                 else
2023                         dspcntr &= ~DISPPLANE_TILED;
2024         }
2025
2026         I915_WRITE(reg, dspcntr);
2027
2028         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2029
2030         if (INTEL_INFO(dev)->gen >= 4) {
2031                 intel_crtc->dspaddr_offset =
2032                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2033                                                            fb->bits_per_pixel / 8,
2034                                                            fb->pitches[0]);
2035                 linear_offset -= intel_crtc->dspaddr_offset;
2036         } else {
2037                 intel_crtc->dspaddr_offset = linear_offset;
2038         }
2039
2040         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2041                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2042         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2045                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2046                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2047                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2048         } else
2049                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2050         POSTING_READ(reg);
2051
2052         return 0;
2053 }
2054
2055 static int ironlake_update_plane(struct drm_crtc *crtc,
2056                                  struct drm_framebuffer *fb, int x, int y)
2057 {
2058         struct drm_device *dev = crtc->dev;
2059         struct drm_i915_private *dev_priv = dev->dev_private;
2060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061         struct intel_framebuffer *intel_fb;
2062         struct drm_i915_gem_object *obj;
2063         int plane = intel_crtc->plane;
2064         unsigned long linear_offset;
2065         u32 dspcntr;
2066         u32 reg;
2067
2068         switch (plane) {
2069         case 0:
2070         case 1:
2071         case 2:
2072                 break;
2073         default:
2074                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2075                 return -EINVAL;
2076         }
2077
2078         intel_fb = to_intel_framebuffer(fb);
2079         obj = intel_fb->obj;
2080
2081         reg = DSPCNTR(plane);
2082         dspcntr = I915_READ(reg);
2083         /* Mask out pixel format bits in case we change it */
2084         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2085         switch (fb->bits_per_pixel) {
2086         case 8:
2087                 dspcntr |= DISPPLANE_8BPP;
2088                 break;
2089         case 16:
2090                 if (fb->depth != 16)
2091                         return -EINVAL;
2092
2093                 dspcntr |= DISPPLANE_16BPP;
2094                 break;
2095         case 24:
2096         case 32:
2097                 if (fb->depth == 24)
2098                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2099                 else if (fb->depth == 30)
2100                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2101                 else
2102                         return -EINVAL;
2103                 break;
2104         default:
2105                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2106                 return -EINVAL;
2107         }
2108
2109         if (obj->tiling_mode != I915_TILING_NONE)
2110                 dspcntr |= DISPPLANE_TILED;
2111         else
2112                 dspcntr &= ~DISPPLANE_TILED;
2113
2114         /* must disable */
2115         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2116
2117         I915_WRITE(reg, dspcntr);
2118
2119         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2120         intel_crtc->dspaddr_offset =
2121                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2122                                                    fb->bits_per_pixel / 8,
2123                                                    fb->pitches[0]);
2124         linear_offset -= intel_crtc->dspaddr_offset;
2125
2126         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2127                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2128         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2129         I915_MODIFY_DISPBASE(DSPSURF(plane),
2130                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2131         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2132         I915_WRITE(DSPLINOFF(plane), linear_offset);
2133         POSTING_READ(reg);
2134
2135         return 0;
2136 }
2137
2138 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2139 static int
2140 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2141                            int x, int y, enum mode_set_atomic state)
2142 {
2143         struct drm_device *dev = crtc->dev;
2144         struct drm_i915_private *dev_priv = dev->dev_private;
2145
2146         if (dev_priv->display.disable_fbc)
2147                 dev_priv->display.disable_fbc(dev);
2148         intel_increase_pllclock(crtc);
2149
2150         return dev_priv->display.update_plane(crtc, fb, x, y);
2151 }
2152
2153 static int
2154 intel_finish_fb(struct drm_framebuffer *old_fb)
2155 {
2156         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2157         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158         bool was_interruptible = dev_priv->mm.interruptible;
2159         int ret;
2160
2161         wait_event(dev_priv->pending_flip_queue,
2162                    atomic_read(&dev_priv->mm.wedged) ||
2163                    atomic_read(&obj->pending_flip) == 0);
2164
2165         /* Big Hammer, we also need to ensure that any pending
2166          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2167          * current scanout is retired before unpinning the old
2168          * framebuffer.
2169          *
2170          * This should only fail upon a hung GPU, in which case we
2171          * can safely continue.
2172          */
2173         dev_priv->mm.interruptible = false;
2174         ret = i915_gem_object_finish_gpu(obj);
2175         dev_priv->mm.interruptible = was_interruptible;
2176
2177         return ret;
2178 }
2179
2180 static int
2181 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2182                     struct drm_framebuffer *fb)
2183 {
2184         struct drm_device *dev = crtc->dev;
2185         struct drm_i915_private *dev_priv = dev->dev_private;
2186         struct drm_i915_master_private *master_priv;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188         struct drm_framebuffer *old_fb;
2189         int ret;
2190
2191         /* no fb bound */
2192         if (!fb) {
2193                 DRM_ERROR("No FB bound\n");
2194                 return 0;
2195         }
2196
2197         if(intel_crtc->plane > dev_priv->num_pipe) {
2198                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2199                                 intel_crtc->plane,
2200                                 dev_priv->num_pipe);
2201                 return -EINVAL;
2202         }
2203
2204         mutex_lock(&dev->struct_mutex);
2205         ret = intel_pin_and_fence_fb_obj(dev,
2206                                          to_intel_framebuffer(fb)->obj,
2207                                          NULL);
2208         if (ret != 0) {
2209                 mutex_unlock(&dev->struct_mutex);
2210                 DRM_ERROR("pin & fence failed\n");
2211                 return ret;
2212         }
2213
2214         if (crtc->fb)
2215                 intel_finish_fb(crtc->fb);
2216
2217         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2218         if (ret) {
2219                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2220                 mutex_unlock(&dev->struct_mutex);
2221                 DRM_ERROR("failed to update base address\n");
2222                 return ret;
2223         }
2224
2225         old_fb = crtc->fb;
2226         crtc->fb = fb;
2227         crtc->x = x;
2228         crtc->y = y;
2229
2230         if (old_fb) {
2231                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2232                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2233         }
2234
2235         intel_update_fbc(dev);
2236         mutex_unlock(&dev->struct_mutex);
2237
2238         if (!dev->primary->master)
2239                 return 0;
2240
2241         master_priv = dev->primary->master->driver_priv;
2242         if (!master_priv->sarea_priv)
2243                 return 0;
2244
2245         if (intel_crtc->pipe) {
2246                 master_priv->sarea_priv->pipeB_x = x;
2247                 master_priv->sarea_priv->pipeB_y = y;
2248         } else {
2249                 master_priv->sarea_priv->pipeA_x = x;
2250                 master_priv->sarea_priv->pipeA_y = y;
2251         }
2252
2253         return 0;
2254 }
2255
2256 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2257 {
2258         struct drm_device *dev = crtc->dev;
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         u32 dpa_ctl;
2261
2262         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2263         dpa_ctl = I915_READ(DP_A);
2264         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266         if (clock < 200000) {
2267                 u32 temp;
2268                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269                 /* workaround for 160Mhz:
2270                    1) program 0x4600c bits 15:0 = 0x8124
2271                    2) program 0x46010 bit 0 = 1
2272                    3) program 0x46034 bit 24 = 1
2273                    4) program 0x64000 bit 14 = 1
2274                    */
2275                 temp = I915_READ(0x4600c);
2276                 temp &= 0xffff0000;
2277                 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279                 temp = I915_READ(0x46010);
2280                 I915_WRITE(0x46010, temp | 1);
2281
2282                 temp = I915_READ(0x46034);
2283                 I915_WRITE(0x46034, temp | (1 << 24));
2284         } else {
2285                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286         }
2287         I915_WRITE(DP_A, dpa_ctl);
2288
2289         POSTING_READ(DP_A);
2290         udelay(500);
2291 }
2292
2293 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         int pipe = intel_crtc->pipe;
2299         u32 reg, temp;
2300
2301         /* enable normal train */
2302         reg = FDI_TX_CTL(pipe);
2303         temp = I915_READ(reg);
2304         if (IS_IVYBRIDGE(dev)) {
2305                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2307         } else {
2308                 temp &= ~FDI_LINK_TRAIN_NONE;
2309                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2310         }
2311         I915_WRITE(reg, temp);
2312
2313         reg = FDI_RX_CTL(pipe);
2314         temp = I915_READ(reg);
2315         if (HAS_PCH_CPT(dev)) {
2316                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318         } else {
2319                 temp &= ~FDI_LINK_TRAIN_NONE;
2320                 temp |= FDI_LINK_TRAIN_NONE;
2321         }
2322         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324         /* wait one idle pattern time */
2325         POSTING_READ(reg);
2326         udelay(1000);
2327
2328         /* IVB wants error correction enabled */
2329         if (IS_IVYBRIDGE(dev))
2330                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331                            FDI_FE_ERRC_ENABLE);
2332 }
2333
2334 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339         flags |= FDI_PHASE_SYNC_OVR(pipe);
2340         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341         flags |= FDI_PHASE_SYNC_EN(pipe);
2342         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343         POSTING_READ(SOUTH_CHICKEN1);
2344 }
2345
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348 {
2349         struct drm_device *dev = crtc->dev;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352         int pipe = intel_crtc->pipe;
2353         int plane = intel_crtc->plane;
2354         u32 reg, temp, tries;
2355
2356         /* FDI needs bits from pipe & plane first */
2357         assert_pipe_enabled(dev_priv, pipe);
2358         assert_plane_enabled(dev_priv, plane);
2359
2360         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361            for train result */
2362         reg = FDI_RX_IMR(pipe);
2363         temp = I915_READ(reg);
2364         temp &= ~FDI_RX_SYMBOL_LOCK;
2365         temp &= ~FDI_RX_BIT_LOCK;
2366         I915_WRITE(reg, temp);
2367         I915_READ(reg);
2368         udelay(150);
2369
2370         /* enable CPU FDI TX and PCH FDI RX */
2371         reg = FDI_TX_CTL(pipe);
2372         temp = I915_READ(reg);
2373         temp &= ~(7 << 19);
2374         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2375         temp &= ~FDI_LINK_TRAIN_NONE;
2376         temp |= FDI_LINK_TRAIN_PATTERN_1;
2377         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2378
2379         reg = FDI_RX_CTL(pipe);
2380         temp = I915_READ(reg);
2381         temp &= ~FDI_LINK_TRAIN_NONE;
2382         temp |= FDI_LINK_TRAIN_PATTERN_1;
2383         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385         POSTING_READ(reg);
2386         udelay(150);
2387
2388         /* Ironlake workaround, enable clock pointer after FDI enable*/
2389         if (HAS_PCH_IBX(dev)) {
2390                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392                            FDI_RX_PHASE_SYNC_POINTER_EN);
2393         }
2394
2395         reg = FDI_RX_IIR(pipe);
2396         for (tries = 0; tries < 5; tries++) {
2397                 temp = I915_READ(reg);
2398                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400                 if ((temp & FDI_RX_BIT_LOCK)) {
2401                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2402                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2403                         break;
2404                 }
2405         }
2406         if (tries == 5)
2407                 DRM_ERROR("FDI train 1 fail!\n");
2408
2409         /* Train 2 */
2410         reg = FDI_TX_CTL(pipe);
2411         temp = I915_READ(reg);
2412         temp &= ~FDI_LINK_TRAIN_NONE;
2413         temp |= FDI_LINK_TRAIN_PATTERN_2;
2414         I915_WRITE(reg, temp);
2415
2416         reg = FDI_RX_CTL(pipe);
2417         temp = I915_READ(reg);
2418         temp &= ~FDI_LINK_TRAIN_NONE;
2419         temp |= FDI_LINK_TRAIN_PATTERN_2;
2420         I915_WRITE(reg, temp);
2421
2422         POSTING_READ(reg);
2423         udelay(150);
2424
2425         reg = FDI_RX_IIR(pipe);
2426         for (tries = 0; tries < 5; tries++) {
2427                 temp = I915_READ(reg);
2428                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430                 if (temp & FDI_RX_SYMBOL_LOCK) {
2431                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2432                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2433                         break;
2434                 }
2435         }
2436         if (tries == 5)
2437                 DRM_ERROR("FDI train 2 fail!\n");
2438
2439         DRM_DEBUG_KMS("FDI train done\n");
2440
2441 }
2442
2443 static const int snb_b_fdi_train_param[] = {
2444         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448 };
2449
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452 {
2453         struct drm_device *dev = crtc->dev;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456         int pipe = intel_crtc->pipe;
2457         u32 reg, temp, i, retry;
2458
2459         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460            for train result */
2461         reg = FDI_RX_IMR(pipe);
2462         temp = I915_READ(reg);
2463         temp &= ~FDI_RX_SYMBOL_LOCK;
2464         temp &= ~FDI_RX_BIT_LOCK;
2465         I915_WRITE(reg, temp);
2466
2467         POSTING_READ(reg);
2468         udelay(150);
2469
2470         /* enable CPU FDI TX and PCH FDI RX */
2471         reg = FDI_TX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~(7 << 19);
2474         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2475         temp &= ~FDI_LINK_TRAIN_NONE;
2476         temp |= FDI_LINK_TRAIN_PATTERN_1;
2477         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478         /* SNB-B */
2479         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2480         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2481
2482         reg = FDI_RX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         if (HAS_PCH_CPT(dev)) {
2485                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2486                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2487         } else {
2488                 temp &= ~FDI_LINK_TRAIN_NONE;
2489                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         }
2491         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         if (HAS_PCH_CPT(dev))
2497                 cpt_phase_pointer_enable(dev, pipe);
2498
2499         for (i = 0; i < 4; i++) {
2500                 reg = FDI_TX_CTL(pipe);
2501                 temp = I915_READ(reg);
2502                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503                 temp |= snb_b_fdi_train_param[i];
2504                 I915_WRITE(reg, temp);
2505
2506                 POSTING_READ(reg);
2507                 udelay(500);
2508
2509                 for (retry = 0; retry < 5; retry++) {
2510                         reg = FDI_RX_IIR(pipe);
2511                         temp = I915_READ(reg);
2512                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513                         if (temp & FDI_RX_BIT_LOCK) {
2514                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2516                                 break;
2517                         }
2518                         udelay(50);
2519                 }
2520                 if (retry < 5)
2521                         break;
2522         }
2523         if (i == 4)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         if (IS_GEN6(dev)) {
2532                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533                 /* SNB-B */
2534                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         }
2536         I915_WRITE(reg, temp);
2537
2538         reg = FDI_RX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         if (HAS_PCH_CPT(dev)) {
2541                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2542                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2543         } else {
2544                 temp &= ~FDI_LINK_TRAIN_NONE;
2545                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2546         }
2547         I915_WRITE(reg, temp);
2548
2549         POSTING_READ(reg);
2550         udelay(150);
2551
2552         for (i = 0; i < 4; i++) {
2553                 reg = FDI_TX_CTL(pipe);
2554                 temp = I915_READ(reg);
2555                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2556                 temp |= snb_b_fdi_train_param[i];
2557                 I915_WRITE(reg, temp);
2558
2559                 POSTING_READ(reg);
2560                 udelay(500);
2561
2562                 for (retry = 0; retry < 5; retry++) {
2563                         reg = FDI_RX_IIR(pipe);
2564                         temp = I915_READ(reg);
2565                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2566                         if (temp & FDI_RX_SYMBOL_LOCK) {
2567                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2568                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2569                                 break;
2570                         }
2571                         udelay(50);
2572                 }
2573                 if (retry < 5)
2574                         break;
2575         }
2576         if (i == 4)
2577                 DRM_ERROR("FDI train 2 fail!\n");
2578
2579         DRM_DEBUG_KMS("FDI train done.\n");
2580 }
2581
2582 /* Manual link training for Ivy Bridge A0 parts */
2583 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2584 {
2585         struct drm_device *dev = crtc->dev;
2586         struct drm_i915_private *dev_priv = dev->dev_private;
2587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2588         int pipe = intel_crtc->pipe;
2589         u32 reg, temp, i;
2590
2591         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2592            for train result */
2593         reg = FDI_RX_IMR(pipe);
2594         temp = I915_READ(reg);
2595         temp &= ~FDI_RX_SYMBOL_LOCK;
2596         temp &= ~FDI_RX_BIT_LOCK;
2597         I915_WRITE(reg, temp);
2598
2599         POSTING_READ(reg);
2600         udelay(150);
2601
2602         /* enable CPU FDI TX and PCH FDI RX */
2603         reg = FDI_TX_CTL(pipe);
2604         temp = I915_READ(reg);
2605         temp &= ~(7 << 19);
2606         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2607         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2608         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2609         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2611         temp |= FDI_COMPOSITE_SYNC;
2612         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2613
2614         reg = FDI_RX_CTL(pipe);
2615         temp = I915_READ(reg);
2616         temp &= ~FDI_LINK_TRAIN_AUTO;
2617         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2618         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2619         temp |= FDI_COMPOSITE_SYNC;
2620         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2621
2622         POSTING_READ(reg);
2623         udelay(150);
2624
2625         if (HAS_PCH_CPT(dev))
2626                 cpt_phase_pointer_enable(dev, pipe);
2627
2628         for (i = 0; i < 4; i++) {
2629                 reg = FDI_TX_CTL(pipe);
2630                 temp = I915_READ(reg);
2631                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2632                 temp |= snb_b_fdi_train_param[i];
2633                 I915_WRITE(reg, temp);
2634
2635                 POSTING_READ(reg);
2636                 udelay(500);
2637
2638                 reg = FDI_RX_IIR(pipe);
2639                 temp = I915_READ(reg);
2640                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2641
2642                 if (temp & FDI_RX_BIT_LOCK ||
2643                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2644                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2645                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2646                         break;
2647                 }
2648         }
2649         if (i == 4)
2650                 DRM_ERROR("FDI train 1 fail!\n");
2651
2652         /* Train 2 */
2653         reg = FDI_TX_CTL(pipe);
2654         temp = I915_READ(reg);
2655         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2656         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2657         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2658         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2659         I915_WRITE(reg, temp);
2660
2661         reg = FDI_RX_CTL(pipe);
2662         temp = I915_READ(reg);
2663         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2664         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2665         I915_WRITE(reg, temp);
2666
2667         POSTING_READ(reg);
2668         udelay(150);
2669
2670         for (i = 0; i < 4; i++) {
2671                 reg = FDI_TX_CTL(pipe);
2672                 temp = I915_READ(reg);
2673                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674                 temp |= snb_b_fdi_train_param[i];
2675                 I915_WRITE(reg, temp);
2676
2677                 POSTING_READ(reg);
2678                 udelay(500);
2679
2680                 reg = FDI_RX_IIR(pipe);
2681                 temp = I915_READ(reg);
2682                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2683
2684                 if (temp & FDI_RX_SYMBOL_LOCK) {
2685                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2686                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2687                         break;
2688                 }
2689         }
2690         if (i == 4)
2691                 DRM_ERROR("FDI train 2 fail!\n");
2692
2693         DRM_DEBUG_KMS("FDI train done.\n");
2694 }
2695
2696 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2697 {
2698         struct drm_device *dev = intel_crtc->base.dev;
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         int pipe = intel_crtc->pipe;
2701         u32 reg, temp;
2702
2703         /* Write the TU size bits so error detection works */
2704         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2705                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2706
2707         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2708         reg = FDI_RX_CTL(pipe);
2709         temp = I915_READ(reg);
2710         temp &= ~((0x7 << 19) | (0x7 << 16));
2711         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2712         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2713         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2714
2715         POSTING_READ(reg);
2716         udelay(200);
2717
2718         /* Switch from Rawclk to PCDclk */
2719         temp = I915_READ(reg);
2720         I915_WRITE(reg, temp | FDI_PCDCLK);
2721
2722         POSTING_READ(reg);
2723         udelay(200);
2724
2725         /* On Haswell, the PLL configuration for ports and pipes is handled
2726          * separately, as part of DDI setup */
2727         if (!IS_HASWELL(dev)) {
2728                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2729                 reg = FDI_TX_CTL(pipe);
2730                 temp = I915_READ(reg);
2731                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2732                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2733
2734                         POSTING_READ(reg);
2735                         udelay(100);
2736                 }
2737         }
2738 }
2739
2740 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2741 {
2742         struct drm_device *dev = intel_crtc->base.dev;
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744         int pipe = intel_crtc->pipe;
2745         u32 reg, temp;
2746
2747         /* Switch from PCDclk to Rawclk */
2748         reg = FDI_RX_CTL(pipe);
2749         temp = I915_READ(reg);
2750         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2751
2752         /* Disable CPU FDI TX PLL */
2753         reg = FDI_TX_CTL(pipe);
2754         temp = I915_READ(reg);
2755         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2756
2757         POSTING_READ(reg);
2758         udelay(100);
2759
2760         reg = FDI_RX_CTL(pipe);
2761         temp = I915_READ(reg);
2762         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2763
2764         /* Wait for the clocks to turn off. */
2765         POSTING_READ(reg);
2766         udelay(100);
2767 }
2768
2769 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2770 {
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         u32 flags = I915_READ(SOUTH_CHICKEN1);
2773
2774         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2775         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2776         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2777         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2778         POSTING_READ(SOUTH_CHICKEN1);
2779 }
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782         struct drm_device *dev = crtc->dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785         int pipe = intel_crtc->pipe;
2786         u32 reg, temp;
2787
2788         /* disable CPU FDI tx and PCH FDI rx */
2789         reg = FDI_TX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792         POSTING_READ(reg);
2793
2794         reg = FDI_RX_CTL(pipe);
2795         temp = I915_READ(reg);
2796         temp &= ~(0x7 << 16);
2797         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2798         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800         POSTING_READ(reg);
2801         udelay(100);
2802
2803         /* Ironlake workaround, disable clock pointer after downing FDI */
2804         if (HAS_PCH_IBX(dev)) {
2805                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2807                            I915_READ(FDI_RX_CHICKEN(pipe) &
2808                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2809         } else if (HAS_PCH_CPT(dev)) {
2810                 cpt_phase_pointer_disable(dev, pipe);
2811         }
2812
2813         /* still set train pattern 1 */
2814         reg = FDI_TX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         temp &= ~FDI_LINK_TRAIN_NONE;
2817         temp |= FDI_LINK_TRAIN_PATTERN_1;
2818         I915_WRITE(reg, temp);
2819
2820         reg = FDI_RX_CTL(pipe);
2821         temp = I915_READ(reg);
2822         if (HAS_PCH_CPT(dev)) {
2823                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2824                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2825         } else {
2826                 temp &= ~FDI_LINK_TRAIN_NONE;
2827                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2828         }
2829         /* BPC in FDI rx is consistent with that in PIPECONF */
2830         temp &= ~(0x07 << 16);
2831         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2832         I915_WRITE(reg, temp);
2833
2834         POSTING_READ(reg);
2835         udelay(100);
2836 }
2837
2838 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2839 {
2840         struct drm_device *dev = crtc->dev;
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842         unsigned long flags;
2843         bool pending;
2844
2845         if (atomic_read(&dev_priv->mm.wedged))
2846                 return false;
2847
2848         spin_lock_irqsave(&dev->event_lock, flags);
2849         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2850         spin_unlock_irqrestore(&dev->event_lock, flags);
2851
2852         return pending;
2853 }
2854
2855 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2856 {
2857         struct drm_device *dev = crtc->dev;
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860         if (crtc->fb == NULL)
2861                 return;
2862
2863         wait_event(dev_priv->pending_flip_queue,
2864                    !intel_crtc_has_pending_flip(crtc));
2865
2866         mutex_lock(&dev->struct_mutex);
2867         intel_finish_fb(crtc->fb);
2868         mutex_unlock(&dev->struct_mutex);
2869 }
2870
2871 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2872 {
2873         struct drm_device *dev = crtc->dev;
2874         struct intel_encoder *intel_encoder;
2875
2876         /*
2877          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2878          * must be driven by its own crtc; no sharing is possible.
2879          */
2880         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2881                 switch (intel_encoder->type) {
2882                 case INTEL_OUTPUT_EDP:
2883                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2884                                 return false;
2885                         continue;
2886                 }
2887         }
2888
2889         return true;
2890 }
2891
2892 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2893 {
2894         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2895 }
2896
2897 /* Program iCLKIP clock to the desired frequency */
2898 static void lpt_program_iclkip(struct drm_crtc *crtc)
2899 {
2900         struct drm_device *dev = crtc->dev;
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2903         u32 temp;
2904
2905         /* It is necessary to ungate the pixclk gate prior to programming
2906          * the divisors, and gate it back when it is done.
2907          */
2908         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2909
2910         /* Disable SSCCTL */
2911         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2912                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2913                                         SBI_SSCCTL_DISABLE);
2914
2915         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2916         if (crtc->mode.clock == 20000) {
2917                 auxdiv = 1;
2918                 divsel = 0x41;
2919                 phaseinc = 0x20;
2920         } else {
2921                 /* The iCLK virtual clock root frequency is in MHz,
2922                  * but the crtc->mode.clock in in KHz. To get the divisors,
2923                  * it is necessary to divide one by another, so we
2924                  * convert the virtual clock precision to KHz here for higher
2925                  * precision.
2926                  */
2927                 u32 iclk_virtual_root_freq = 172800 * 1000;
2928                 u32 iclk_pi_range = 64;
2929                 u32 desired_divisor, msb_divisor_value, pi_value;
2930
2931                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2932                 msb_divisor_value = desired_divisor / iclk_pi_range;
2933                 pi_value = desired_divisor % iclk_pi_range;
2934
2935                 auxdiv = 0;
2936                 divsel = msb_divisor_value - 2;
2937                 phaseinc = pi_value;
2938         }
2939
2940         /* This should not happen with any sane values */
2941         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2942                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2943         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2944                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2945
2946         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2947                         crtc->mode.clock,
2948                         auxdiv,
2949                         divsel,
2950                         phasedir,
2951                         phaseinc);
2952
2953         /* Program SSCDIVINTPHASE6 */
2954         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2955         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2956         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2957         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2958         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2959         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2960         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2961
2962         intel_sbi_write(dev_priv,
2963                         SBI_SSCDIVINTPHASE6,
2964                         temp);
2965
2966         /* Program SSCAUXDIV */
2967         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2968         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2969         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2970         intel_sbi_write(dev_priv,
2971                         SBI_SSCAUXDIV6,
2972                         temp);
2973
2974
2975         /* Enable modulator and associated divider */
2976         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2977         temp &= ~SBI_SSCCTL_DISABLE;
2978         intel_sbi_write(dev_priv,
2979                         SBI_SSCCTL6,
2980                         temp);
2981
2982         /* Wait for initialization time */
2983         udelay(24);
2984
2985         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2986 }
2987
2988 /*
2989  * Enable PCH resources required for PCH ports:
2990  *   - PCH PLLs
2991  *   - FDI training & RX/TX
2992  *   - update transcoder timings
2993  *   - DP transcoding bits
2994  *   - transcoder
2995  */
2996 static void ironlake_pch_enable(struct drm_crtc *crtc)
2997 {
2998         struct drm_device *dev = crtc->dev;
2999         struct drm_i915_private *dev_priv = dev->dev_private;
3000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3001         int pipe = intel_crtc->pipe;
3002         u32 reg, temp;
3003
3004         assert_transcoder_disabled(dev_priv, pipe);
3005
3006         /* For PCH output, training FDI link */
3007         dev_priv->display.fdi_link_train(crtc);
3008
3009         intel_enable_pch_pll(intel_crtc);
3010
3011         if (HAS_PCH_LPT(dev)) {
3012                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3013                 lpt_program_iclkip(crtc);
3014         } else if (HAS_PCH_CPT(dev)) {
3015                 u32 sel;
3016
3017                 temp = I915_READ(PCH_DPLL_SEL);
3018                 switch (pipe) {
3019                 default:
3020                 case 0:
3021                         temp |= TRANSA_DPLL_ENABLE;
3022                         sel = TRANSA_DPLLB_SEL;
3023                         break;
3024                 case 1:
3025                         temp |= TRANSB_DPLL_ENABLE;
3026                         sel = TRANSB_DPLLB_SEL;
3027                         break;
3028                 case 2:
3029                         temp |= TRANSC_DPLL_ENABLE;
3030                         sel = TRANSC_DPLLB_SEL;
3031                         break;
3032                 }
3033                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3034                         temp |= sel;
3035                 else
3036                         temp &= ~sel;
3037                 I915_WRITE(PCH_DPLL_SEL, temp);
3038         }
3039
3040         /* set transcoder timing, panel must allow it */
3041         assert_panel_unlocked(dev_priv, pipe);
3042         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3043         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3044         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3045
3046         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3047         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3048         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3049         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3050
3051         if (!IS_HASWELL(dev))
3052                 intel_fdi_normal_train(crtc);
3053
3054         /* For PCH DP, enable TRANS_DP_CTL */
3055         if (HAS_PCH_CPT(dev) &&
3056             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3057              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3058                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3059                 reg = TRANS_DP_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3062                           TRANS_DP_SYNC_MASK |
3063                           TRANS_DP_BPC_MASK);
3064                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3065                          TRANS_DP_ENH_FRAMING);
3066                 temp |= bpc << 9; /* same format but at 11:9 */
3067
3068                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3069                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3070                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3071                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3072
3073                 switch (intel_trans_dp_port_sel(crtc)) {
3074                 case PCH_DP_B:
3075                         temp |= TRANS_DP_PORT_SEL_B;
3076                         break;
3077                 case PCH_DP_C:
3078                         temp |= TRANS_DP_PORT_SEL_C;
3079                         break;
3080                 case PCH_DP_D:
3081                         temp |= TRANS_DP_PORT_SEL_D;
3082                         break;
3083                 default:
3084                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3085                         temp |= TRANS_DP_PORT_SEL_B;
3086                         break;
3087                 }
3088
3089                 I915_WRITE(reg, temp);
3090         }
3091
3092         intel_enable_transcoder(dev_priv, pipe);
3093 }
3094
3095 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3096 {
3097         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3098
3099         if (pll == NULL)
3100                 return;
3101
3102         if (pll->refcount == 0) {
3103                 WARN(1, "bad PCH PLL refcount\n");
3104                 return;
3105         }
3106
3107         --pll->refcount;
3108         intel_crtc->pch_pll = NULL;
3109 }
3110
3111 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3112 {
3113         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3114         struct intel_pch_pll *pll;
3115         int i;
3116
3117         pll = intel_crtc->pch_pll;
3118         if (pll) {
3119                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3120                               intel_crtc->base.base.id, pll->pll_reg);
3121                 goto prepare;
3122         }
3123
3124         if (HAS_PCH_IBX(dev_priv->dev)) {
3125                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3126                 i = intel_crtc->pipe;
3127                 pll = &dev_priv->pch_plls[i];
3128
3129                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3130                               intel_crtc->base.base.id, pll->pll_reg);
3131
3132                 goto found;
3133         }
3134
3135         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3136                 pll = &dev_priv->pch_plls[i];
3137
3138                 /* Only want to check enabled timings first */
3139                 if (pll->refcount == 0)
3140                         continue;
3141
3142                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3143                     fp == I915_READ(pll->fp0_reg)) {
3144                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3145                                       intel_crtc->base.base.id,
3146                                       pll->pll_reg, pll->refcount, pll->active);
3147
3148                         goto found;
3149                 }
3150         }
3151
3152         /* Ok no matching timings, maybe there's a free one? */
3153         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3154                 pll = &dev_priv->pch_plls[i];
3155                 if (pll->refcount == 0) {
3156                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3157                                       intel_crtc->base.base.id, pll->pll_reg);
3158                         goto found;
3159                 }
3160         }
3161
3162         return NULL;
3163
3164 found:
3165         intel_crtc->pch_pll = pll;
3166         pll->refcount++;
3167         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3168 prepare: /* separate function? */
3169         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3170
3171         /* Wait for the clocks to stabilize before rewriting the regs */
3172         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3173         POSTING_READ(pll->pll_reg);
3174         udelay(150);
3175
3176         I915_WRITE(pll->fp0_reg, fp);
3177         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3178         pll->on = false;
3179         return pll;
3180 }
3181
3182 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3183 {
3184         struct drm_i915_private *dev_priv = dev->dev_private;
3185         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3186         u32 temp;
3187
3188         temp = I915_READ(dslreg);
3189         udelay(500);
3190         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3191                 /* Without this, mode sets may fail silently on FDI */
3192                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3193                 udelay(250);
3194                 I915_WRITE(tc2reg, 0);
3195                 if (wait_for(I915_READ(dslreg) != temp, 5))
3196                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3197         }
3198 }
3199
3200 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3201 {
3202         struct drm_device *dev = crtc->dev;
3203         struct drm_i915_private *dev_priv = dev->dev_private;
3204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3205         struct intel_encoder *encoder;
3206         int pipe = intel_crtc->pipe;
3207         int plane = intel_crtc->plane;
3208         u32 temp;
3209         bool is_pch_port;
3210
3211         WARN_ON(!crtc->enabled);
3212
3213         if (intel_crtc->active)
3214                 return;
3215
3216         intel_crtc->active = true;
3217         intel_update_watermarks(dev);
3218
3219         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3220                 temp = I915_READ(PCH_LVDS);
3221                 if ((temp & LVDS_PORT_EN) == 0)
3222                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3223         }
3224
3225         is_pch_port = ironlake_crtc_driving_pch(crtc);
3226
3227         if (is_pch_port) {
3228                 ironlake_fdi_pll_enable(intel_crtc);
3229         } else {
3230                 assert_fdi_tx_disabled(dev_priv, pipe);
3231                 assert_fdi_rx_disabled(dev_priv, pipe);
3232         }
3233
3234         for_each_encoder_on_crtc(dev, crtc, encoder)
3235                 if (encoder->pre_enable)
3236                         encoder->pre_enable(encoder);
3237
3238         /* Enable panel fitting for LVDS */
3239         if (dev_priv->pch_pf_size &&
3240             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3241                 /* Force use of hard-coded filter coefficients
3242                  * as some pre-programmed values are broken,
3243                  * e.g. x201.
3244                  */
3245                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3246                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3247                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3248         }
3249
3250         /*
3251          * On ILK+ LUT must be loaded before the pipe is running but with
3252          * clocks enabled
3253          */
3254         intel_crtc_load_lut(crtc);
3255
3256         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3257         intel_enable_plane(dev_priv, plane, pipe);
3258
3259         if (is_pch_port)
3260                 ironlake_pch_enable(crtc);
3261
3262         mutex_lock(&dev->struct_mutex);
3263         intel_update_fbc(dev);
3264         mutex_unlock(&dev->struct_mutex);
3265
3266         intel_crtc_update_cursor(crtc, true);
3267
3268         for_each_encoder_on_crtc(dev, crtc, encoder)
3269                 encoder->enable(encoder);
3270
3271         if (HAS_PCH_CPT(dev))
3272                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3273
3274         /*
3275          * There seems to be a race in PCH platform hw (at least on some
3276          * outputs) where an enabled pipe still completes any pageflip right
3277          * away (as if the pipe is off) instead of waiting for vblank. As soon
3278          * as the first vblank happend, everything works as expected. Hence just
3279          * wait for one vblank before returning to avoid strange things
3280          * happening.
3281          */
3282         intel_wait_for_vblank(dev, intel_crtc->pipe);
3283 }
3284
3285 static void haswell_crtc_enable(struct drm_crtc *crtc)
3286 {
3287         struct drm_device *dev = crtc->dev;
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290         struct intel_encoder *encoder;
3291         int pipe = intel_crtc->pipe;
3292         int plane = intel_crtc->plane;
3293         bool is_pch_port;
3294
3295         WARN_ON(!crtc->enabled);
3296
3297         if (intel_crtc->active)
3298                 return;
3299
3300         intel_crtc->active = true;
3301         intel_update_watermarks(dev);
3302
3303         is_pch_port = haswell_crtc_driving_pch(crtc);
3304
3305         if (is_pch_port)
3306                 ironlake_fdi_pll_enable(intel_crtc);
3307
3308         for_each_encoder_on_crtc(dev, crtc, encoder)
3309                 if (encoder->pre_enable)
3310                         encoder->pre_enable(encoder);
3311
3312         intel_ddi_enable_pipe_clock(intel_crtc);
3313
3314         /* Enable panel fitting for eDP */
3315         if (dev_priv->pch_pf_size && HAS_eDP) {
3316                 /* Force use of hard-coded filter coefficients
3317                  * as some pre-programmed values are broken,
3318                  * e.g. x201.
3319                  */
3320                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3321                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3322                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3323         }
3324
3325         /*
3326          * On ILK+ LUT must be loaded before the pipe is running but with
3327          * clocks enabled
3328          */
3329         intel_crtc_load_lut(crtc);
3330
3331         intel_ddi_set_pipe_settings(crtc);
3332         intel_ddi_enable_pipe_func(crtc);
3333
3334         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3335         intel_enable_plane(dev_priv, plane, pipe);
3336
3337         if (is_pch_port)
3338                 ironlake_pch_enable(crtc);
3339
3340         mutex_lock(&dev->struct_mutex);
3341         intel_update_fbc(dev);
3342         mutex_unlock(&dev->struct_mutex);
3343
3344         intel_crtc_update_cursor(crtc, true);
3345
3346         for_each_encoder_on_crtc(dev, crtc, encoder)
3347                 encoder->enable(encoder);
3348
3349         /*
3350          * There seems to be a race in PCH platform hw (at least on some
3351          * outputs) where an enabled pipe still completes any pageflip right
3352          * away (as if the pipe is off) instead of waiting for vblank. As soon
3353          * as the first vblank happend, everything works as expected. Hence just
3354          * wait for one vblank before returning to avoid strange things
3355          * happening.
3356          */
3357         intel_wait_for_vblank(dev, intel_crtc->pipe);
3358 }
3359
3360 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3361 {
3362         struct drm_device *dev = crtc->dev;
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365         struct intel_encoder *encoder;
3366         int pipe = intel_crtc->pipe;
3367         int plane = intel_crtc->plane;
3368         u32 reg, temp;
3369
3370
3371         if (!intel_crtc->active)
3372                 return;
3373
3374         for_each_encoder_on_crtc(dev, crtc, encoder)
3375                 encoder->disable(encoder);
3376
3377         intel_crtc_wait_for_pending_flips(crtc);
3378         drm_vblank_off(dev, pipe);
3379         intel_crtc_update_cursor(crtc, false);
3380
3381         intel_disable_plane(dev_priv, plane, pipe);
3382
3383         if (dev_priv->cfb_plane == plane)
3384                 intel_disable_fbc(dev);
3385
3386         intel_disable_pipe(dev_priv, pipe);
3387
3388         /* Disable PF */
3389         I915_WRITE(PF_CTL(pipe), 0);
3390         I915_WRITE(PF_WIN_SZ(pipe), 0);
3391
3392         for_each_encoder_on_crtc(dev, crtc, encoder)
3393                 if (encoder->post_disable)
3394                         encoder->post_disable(encoder);
3395
3396         ironlake_fdi_disable(crtc);
3397
3398         intel_disable_transcoder(dev_priv, pipe);
3399
3400         if (HAS_PCH_CPT(dev)) {
3401                 /* disable TRANS_DP_CTL */
3402                 reg = TRANS_DP_CTL(pipe);
3403                 temp = I915_READ(reg);
3404                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3405                 temp |= TRANS_DP_PORT_SEL_NONE;
3406                 I915_WRITE(reg, temp);
3407
3408                 /* disable DPLL_SEL */
3409                 temp = I915_READ(PCH_DPLL_SEL);
3410                 switch (pipe) {
3411                 case 0:
3412                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3413                         break;
3414                 case 1:
3415                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3416                         break;
3417                 case 2:
3418                         /* C shares PLL A or B */
3419                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3420                         break;
3421                 default:
3422                         BUG(); /* wtf */
3423                 }
3424                 I915_WRITE(PCH_DPLL_SEL, temp);
3425         }
3426
3427         /* disable PCH DPLL */
3428         intel_disable_pch_pll(intel_crtc);
3429
3430         ironlake_fdi_pll_disable(intel_crtc);
3431
3432         intel_crtc->active = false;
3433         intel_update_watermarks(dev);
3434
3435         mutex_lock(&dev->struct_mutex);
3436         intel_update_fbc(dev);
3437         mutex_unlock(&dev->struct_mutex);
3438 }
3439
3440 static void haswell_crtc_disable(struct drm_crtc *crtc)
3441 {
3442         struct drm_device *dev = crtc->dev;
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445         struct intel_encoder *encoder;
3446         int pipe = intel_crtc->pipe;
3447         int plane = intel_crtc->plane;
3448         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3449         bool is_pch_port;
3450
3451         if (!intel_crtc->active)
3452                 return;
3453
3454         is_pch_port = haswell_crtc_driving_pch(crtc);
3455
3456         for_each_encoder_on_crtc(dev, crtc, encoder)
3457                 encoder->disable(encoder);
3458
3459         intel_crtc_wait_for_pending_flips(crtc);
3460         drm_vblank_off(dev, pipe);
3461         intel_crtc_update_cursor(crtc, false);
3462
3463         intel_disable_plane(dev_priv, plane, pipe);
3464
3465         if (dev_priv->cfb_plane == plane)
3466                 intel_disable_fbc(dev);
3467
3468         intel_disable_pipe(dev_priv, pipe);
3469
3470         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3471
3472         /* Disable PF */
3473         I915_WRITE(PF_CTL(pipe), 0);
3474         I915_WRITE(PF_WIN_SZ(pipe), 0);
3475
3476         intel_ddi_disable_pipe_clock(intel_crtc);
3477
3478         for_each_encoder_on_crtc(dev, crtc, encoder)
3479                 if (encoder->post_disable)
3480                         encoder->post_disable(encoder);
3481
3482         if (is_pch_port) {
3483                 ironlake_fdi_disable(crtc);
3484                 intel_disable_transcoder(dev_priv, pipe);
3485                 intel_disable_pch_pll(intel_crtc);
3486                 ironlake_fdi_pll_disable(intel_crtc);
3487         }
3488
3489         intel_crtc->active = false;
3490         intel_update_watermarks(dev);
3491
3492         mutex_lock(&dev->struct_mutex);
3493         intel_update_fbc(dev);
3494         mutex_unlock(&dev->struct_mutex);
3495 }
3496
3497 static void ironlake_crtc_off(struct drm_crtc *crtc)
3498 {
3499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3500         intel_put_pch_pll(intel_crtc);
3501 }
3502
3503 static void haswell_crtc_off(struct drm_crtc *crtc)
3504 {
3505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3506
3507         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3508          * start using it. */
3509         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3510
3511         intel_ddi_put_crtc_pll(crtc);
3512 }
3513
3514 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3515 {
3516         if (!enable && intel_crtc->overlay) {
3517                 struct drm_device *dev = intel_crtc->base.dev;
3518                 struct drm_i915_private *dev_priv = dev->dev_private;
3519
3520                 mutex_lock(&dev->struct_mutex);
3521                 dev_priv->mm.interruptible = false;
3522                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3523                 dev_priv->mm.interruptible = true;
3524                 mutex_unlock(&dev->struct_mutex);
3525         }
3526
3527         /* Let userspace switch the overlay on again. In most cases userspace
3528          * has to recompute where to put it anyway.
3529          */
3530 }
3531
3532 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3533 {
3534         struct drm_device *dev = crtc->dev;
3535         struct drm_i915_private *dev_priv = dev->dev_private;
3536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3537         struct intel_encoder *encoder;
3538         int pipe = intel_crtc->pipe;
3539         int plane = intel_crtc->plane;
3540
3541         WARN_ON(!crtc->enabled);
3542
3543         if (intel_crtc->active)
3544                 return;
3545
3546         intel_crtc->active = true;
3547         intel_update_watermarks(dev);
3548
3549         intel_enable_pll(dev_priv, pipe);
3550         intel_enable_pipe(dev_priv, pipe, false);
3551         intel_enable_plane(dev_priv, plane, pipe);
3552
3553         intel_crtc_load_lut(crtc);
3554         intel_update_fbc(dev);
3555
3556         /* Give the overlay scaler a chance to enable if it's on this pipe */
3557         intel_crtc_dpms_overlay(intel_crtc, true);
3558         intel_crtc_update_cursor(crtc, true);
3559
3560         for_each_encoder_on_crtc(dev, crtc, encoder)
3561                 encoder->enable(encoder);
3562 }
3563
3564 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3565 {
3566         struct drm_device *dev = crtc->dev;
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         struct intel_encoder *encoder;
3570         int pipe = intel_crtc->pipe;
3571         int plane = intel_crtc->plane;
3572
3573
3574         if (!intel_crtc->active)
3575                 return;
3576
3577         for_each_encoder_on_crtc(dev, crtc, encoder)
3578                 encoder->disable(encoder);
3579
3580         /* Give the overlay scaler a chance to disable if it's on this pipe */
3581         intel_crtc_wait_for_pending_flips(crtc);
3582         drm_vblank_off(dev, pipe);
3583         intel_crtc_dpms_overlay(intel_crtc, false);
3584         intel_crtc_update_cursor(crtc, false);
3585
3586         if (dev_priv->cfb_plane == plane)
3587                 intel_disable_fbc(dev);
3588
3589         intel_disable_plane(dev_priv, plane, pipe);
3590         intel_disable_pipe(dev_priv, pipe);
3591         intel_disable_pll(dev_priv, pipe);
3592
3593         intel_crtc->active = false;
3594         intel_update_fbc(dev);
3595         intel_update_watermarks(dev);
3596 }
3597
3598 static void i9xx_crtc_off(struct drm_crtc *crtc)
3599 {
3600 }
3601
3602 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3603                                     bool enabled)
3604 {
3605         struct drm_device *dev = crtc->dev;
3606         struct drm_i915_master_private *master_priv;
3607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3608         int pipe = intel_crtc->pipe;
3609
3610         if (!dev->primary->master)
3611                 return;
3612
3613         master_priv = dev->primary->master->driver_priv;
3614         if (!master_priv->sarea_priv)
3615                 return;
3616
3617         switch (pipe) {
3618         case 0:
3619                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3620                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3621                 break;
3622         case 1:
3623                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3624                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3625                 break;
3626         default:
3627                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3628                 break;
3629         }
3630 }
3631
3632 /**
3633  * Sets the power management mode of the pipe and plane.
3634  */
3635 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3636 {
3637         struct drm_device *dev = crtc->dev;
3638         struct drm_i915_private *dev_priv = dev->dev_private;
3639         struct intel_encoder *intel_encoder;
3640         bool enable = false;
3641
3642         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3643                 enable |= intel_encoder->connectors_active;
3644
3645         if (enable)
3646                 dev_priv->display.crtc_enable(crtc);
3647         else
3648                 dev_priv->display.crtc_disable(crtc);
3649
3650         intel_crtc_update_sarea(crtc, enable);
3651 }
3652
3653 static void intel_crtc_noop(struct drm_crtc *crtc)
3654 {
3655 }
3656
3657 static void intel_crtc_disable(struct drm_crtc *crtc)
3658 {
3659         struct drm_device *dev = crtc->dev;
3660         struct drm_connector *connector;
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662
3663         /* crtc should still be enabled when we disable it. */
3664         WARN_ON(!crtc->enabled);
3665
3666         dev_priv->display.crtc_disable(crtc);
3667         intel_crtc_update_sarea(crtc, false);
3668         dev_priv->display.off(crtc);
3669
3670         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3671         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3672
3673         if (crtc->fb) {
3674                 mutex_lock(&dev->struct_mutex);
3675                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3676                 mutex_unlock(&dev->struct_mutex);
3677                 crtc->fb = NULL;
3678         }
3679
3680         /* Update computed state. */
3681         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3682                 if (!connector->encoder || !connector->encoder->crtc)
3683                         continue;
3684
3685                 if (connector->encoder->crtc != crtc)
3686                         continue;
3687
3688                 connector->dpms = DRM_MODE_DPMS_OFF;
3689                 to_intel_encoder(connector->encoder)->connectors_active = false;
3690         }
3691 }
3692
3693 void intel_modeset_disable(struct drm_device *dev)
3694 {
3695         struct drm_crtc *crtc;
3696
3697         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3698                 if (crtc->enabled)
3699                         intel_crtc_disable(crtc);
3700         }
3701 }
3702
3703 void intel_encoder_noop(struct drm_encoder *encoder)
3704 {
3705 }
3706
3707 void intel_encoder_destroy(struct drm_encoder *encoder)
3708 {
3709         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3710
3711         drm_encoder_cleanup(encoder);
3712         kfree(intel_encoder);
3713 }
3714
3715 /* Simple dpms helper for encodres with just one connector, no cloning and only
3716  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3717  * state of the entire output pipe. */
3718 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3719 {
3720         if (mode == DRM_MODE_DPMS_ON) {
3721                 encoder->connectors_active = true;
3722
3723                 intel_crtc_update_dpms(encoder->base.crtc);
3724         } else {
3725                 encoder->connectors_active = false;
3726
3727                 intel_crtc_update_dpms(encoder->base.crtc);
3728         }
3729 }
3730
3731 /* Cross check the actual hw state with our own modeset state tracking (and it's
3732  * internal consistency). */
3733 static void intel_connector_check_state(struct intel_connector *connector)
3734 {
3735         if (connector->get_hw_state(connector)) {
3736                 struct intel_encoder *encoder = connector->encoder;
3737                 struct drm_crtc *crtc;
3738                 bool encoder_enabled;
3739                 enum pipe pipe;
3740
3741                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3742                               connector->base.base.id,
3743                               drm_get_connector_name(&connector->base));
3744
3745                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3746                      "wrong connector dpms state\n");
3747                 WARN(connector->base.encoder != &encoder->base,
3748                      "active connector not linked to encoder\n");
3749                 WARN(!encoder->connectors_active,
3750                      "encoder->connectors_active not set\n");
3751
3752                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3753                 WARN(!encoder_enabled, "encoder not enabled\n");
3754                 if (WARN_ON(!encoder->base.crtc))
3755                         return;
3756
3757                 crtc = encoder->base.crtc;
3758
3759                 WARN(!crtc->enabled, "crtc not enabled\n");
3760                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3761                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3762                      "encoder active on the wrong pipe\n");
3763         }
3764 }
3765
3766 /* Even simpler default implementation, if there's really no special case to
3767  * consider. */
3768 void intel_connector_dpms(struct drm_connector *connector, int mode)
3769 {
3770         struct intel_encoder *encoder = intel_attached_encoder(connector);
3771
3772         /* All the simple cases only support two dpms states. */
3773         if (mode != DRM_MODE_DPMS_ON)
3774                 mode = DRM_MODE_DPMS_OFF;
3775
3776         if (mode == connector->dpms)
3777                 return;
3778
3779         connector->dpms = mode;
3780
3781         /* Only need to change hw state when actually enabled */
3782         if (encoder->base.crtc)
3783                 intel_encoder_dpms(encoder, mode);
3784         else
3785                 WARN_ON(encoder->connectors_active != false);
3786
3787         intel_modeset_check_state(connector->dev);
3788 }
3789
3790 /* Simple connector->get_hw_state implementation for encoders that support only
3791  * one connector and no cloning and hence the encoder state determines the state
3792  * of the connector. */
3793 bool intel_connector_get_hw_state(struct intel_connector *connector)
3794 {
3795         enum pipe pipe = 0;
3796         struct intel_encoder *encoder = connector->encoder;
3797
3798         return encoder->get_hw_state(encoder, &pipe);
3799 }
3800
3801 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3802                                   const struct drm_display_mode *mode,
3803                                   struct drm_display_mode *adjusted_mode)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806
3807         if (HAS_PCH_SPLIT(dev)) {
3808                 /* FDI link clock is fixed at 2.7G */
3809                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3810                         return false;
3811         }
3812
3813         /* All interlaced capable intel hw wants timings in frames. Note though
3814          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3815          * timings, so we need to be careful not to clobber these.*/
3816         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3817                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3818
3819         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3820          * with a hsync front porch of 0.
3821          */
3822         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3823                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3824                 return false;
3825
3826         return true;
3827 }
3828
3829 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3830 {
3831         return 400000; /* FIXME */
3832 }
3833
3834 static int i945_get_display_clock_speed(struct drm_device *dev)
3835 {
3836         return 400000;
3837 }
3838
3839 static int i915_get_display_clock_speed(struct drm_device *dev)
3840 {
3841         return 333000;
3842 }
3843
3844 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3845 {
3846         return 200000;
3847 }
3848
3849 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3850 {
3851         u16 gcfgc = 0;
3852
3853         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3854
3855         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3856                 return 133000;
3857         else {
3858                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3859                 case GC_DISPLAY_CLOCK_333_MHZ:
3860                         return 333000;
3861                 default:
3862                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3863                         return 190000;
3864                 }
3865         }
3866 }
3867
3868 static int i865_get_display_clock_speed(struct drm_device *dev)
3869 {
3870         return 266000;
3871 }
3872
3873 static int i855_get_display_clock_speed(struct drm_device *dev)
3874 {
3875         u16 hpllcc = 0;
3876         /* Assume that the hardware is in the high speed state.  This
3877          * should be the default.
3878          */
3879         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3880         case GC_CLOCK_133_200:
3881         case GC_CLOCK_100_200:
3882                 return 200000;
3883         case GC_CLOCK_166_250:
3884                 return 250000;
3885         case GC_CLOCK_100_133:
3886                 return 133000;
3887         }
3888
3889         /* Shouldn't happen */
3890         return 0;
3891 }
3892
3893 static int i830_get_display_clock_speed(struct drm_device *dev)
3894 {
3895         return 133000;
3896 }
3897
3898 struct fdi_m_n {
3899         u32        tu;
3900         u32        gmch_m;
3901         u32        gmch_n;
3902         u32        link_m;
3903         u32        link_n;
3904 };
3905
3906 static void
3907 fdi_reduce_ratio(u32 *num, u32 *den)
3908 {
3909         while (*num > 0xffffff || *den > 0xffffff) {
3910                 *num >>= 1;
3911                 *den >>= 1;
3912         }
3913 }
3914
3915 static void
3916 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3917                      int link_clock, struct fdi_m_n *m_n)
3918 {
3919         m_n->tu = 64; /* default size */
3920
3921         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3922         m_n->gmch_m = bits_per_pixel * pixel_clock;
3923         m_n->gmch_n = link_clock * nlanes * 8;
3924         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3925
3926         m_n->link_m = pixel_clock;
3927         m_n->link_n = link_clock;
3928         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3929 }
3930
3931 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3932 {
3933         if (i915_panel_use_ssc >= 0)
3934                 return i915_panel_use_ssc != 0;
3935         return dev_priv->lvds_use_ssc
3936                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3937 }
3938
3939 /**
3940  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3941  * @crtc: CRTC structure
3942  * @mode: requested mode
3943  *
3944  * A pipe may be connected to one or more outputs.  Based on the depth of the
3945  * attached framebuffer, choose a good color depth to use on the pipe.
3946  *
3947  * If possible, match the pipe depth to the fb depth.  In some cases, this
3948  * isn't ideal, because the connected output supports a lesser or restricted
3949  * set of depths.  Resolve that here:
3950  *    LVDS typically supports only 6bpc, so clamp down in that case
3951  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3952  *    Displays may support a restricted set as well, check EDID and clamp as
3953  *      appropriate.
3954  *    DP may want to dither down to 6bpc to fit larger modes
3955  *
3956  * RETURNS:
3957  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3958  * true if they don't match).
3959  */
3960 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3961                                          struct drm_framebuffer *fb,
3962                                          unsigned int *pipe_bpp,
3963                                          struct drm_display_mode *mode)
3964 {
3965         struct drm_device *dev = crtc->dev;
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967         struct drm_connector *connector;
3968         struct intel_encoder *intel_encoder;
3969         unsigned int display_bpc = UINT_MAX, bpc;
3970
3971         /* Walk the encoders & connectors on this crtc, get min bpc */
3972         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3973
3974                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3975                         unsigned int lvds_bpc;
3976
3977                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3978                             LVDS_A3_POWER_UP)
3979                                 lvds_bpc = 8;
3980                         else
3981                                 lvds_bpc = 6;
3982
3983                         if (lvds_bpc < display_bpc) {
3984                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3985                                 display_bpc = lvds_bpc;
3986                         }
3987                         continue;
3988                 }
3989
3990                 /* Not one of the known troublemakers, check the EDID */
3991                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3992                                     head) {
3993                         if (connector->encoder != &intel_encoder->base)
3994                                 continue;
3995
3996                         /* Don't use an invalid EDID bpc value */
3997                         if (connector->display_info.bpc &&
3998                             connector->display_info.bpc < display_bpc) {
3999                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4000                                 display_bpc = connector->display_info.bpc;
4001                         }
4002                 }
4003
4004                 /*
4005                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4006                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4007                  */
4008                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4009                         if (display_bpc > 8 && display_bpc < 12) {
4010                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4011                                 display_bpc = 12;
4012                         } else {
4013                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4014                                 display_bpc = 8;
4015                         }
4016                 }
4017         }
4018
4019         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4020                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4021                 display_bpc = 6;
4022         }
4023
4024         /*
4025          * We could just drive the pipe at the highest bpc all the time and
4026          * enable dithering as needed, but that costs bandwidth.  So choose
4027          * the minimum value that expresses the full color range of the fb but
4028          * also stays within the max display bpc discovered above.
4029          */
4030
4031         switch (fb->depth) {
4032         case 8:
4033                 bpc = 8; /* since we go through a colormap */
4034                 break;
4035         case 15:
4036         case 16:
4037                 bpc = 6; /* min is 18bpp */
4038                 break;
4039         case 24:
4040                 bpc = 8;
4041                 break;
4042         case 30:
4043                 bpc = 10;
4044                 break;
4045         case 48:
4046                 bpc = 12;
4047                 break;
4048         default:
4049                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4050                 bpc = min((unsigned int)8, display_bpc);
4051                 break;
4052         }
4053
4054         display_bpc = min(display_bpc, bpc);
4055
4056         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4057                       bpc, display_bpc);
4058
4059         *pipe_bpp = display_bpc * 3;
4060
4061         return display_bpc != bpc;
4062 }
4063
4064 static int vlv_get_refclk(struct drm_crtc *crtc)
4065 {
4066         struct drm_device *dev = crtc->dev;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         int refclk = 27000; /* for DP & HDMI */
4069
4070         return 100000; /* only one validated so far */
4071
4072         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4073                 refclk = 96000;
4074         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4075                 if (intel_panel_use_ssc(dev_priv))
4076                         refclk = 100000;
4077                 else
4078                         refclk = 96000;
4079         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4080                 refclk = 100000;
4081         }
4082
4083         return refclk;
4084 }
4085
4086 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4087 {
4088         struct drm_device *dev = crtc->dev;
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         int refclk;
4091
4092         if (IS_VALLEYVIEW(dev)) {
4093                 refclk = vlv_get_refclk(crtc);
4094         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4095             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4096                 refclk = dev_priv->lvds_ssc_freq * 1000;
4097                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4098                               refclk / 1000);
4099         } else if (!IS_GEN2(dev)) {
4100                 refclk = 96000;
4101         } else {
4102                 refclk = 48000;
4103         }
4104
4105         return refclk;
4106 }
4107
4108 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4109                                       intel_clock_t *clock)
4110 {
4111         /* SDVO TV has fixed PLL values depend on its clock range,
4112            this mirrors vbios setting. */
4113         if (adjusted_mode->clock >= 100000
4114             && adjusted_mode->clock < 140500) {
4115                 clock->p1 = 2;
4116                 clock->p2 = 10;
4117                 clock->n = 3;
4118                 clock->m1 = 16;
4119                 clock->m2 = 8;
4120         } else if (adjusted_mode->clock >= 140500
4121                    && adjusted_mode->clock <= 200000) {
4122                 clock->p1 = 1;
4123                 clock->p2 = 10;
4124                 clock->n = 6;
4125                 clock->m1 = 12;
4126                 clock->m2 = 8;
4127         }
4128 }
4129
4130 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4131                                      intel_clock_t *clock,
4132                                      intel_clock_t *reduced_clock)
4133 {
4134         struct drm_device *dev = crtc->dev;
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4137         int pipe = intel_crtc->pipe;
4138         u32 fp, fp2 = 0;
4139
4140         if (IS_PINEVIEW(dev)) {
4141                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4142                 if (reduced_clock)
4143                         fp2 = (1 << reduced_clock->n) << 16 |
4144                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4145         } else {
4146                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4147                 if (reduced_clock)
4148                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4149                                 reduced_clock->m2;
4150         }
4151
4152         I915_WRITE(FP0(pipe), fp);
4153
4154         intel_crtc->lowfreq_avail = false;
4155         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4156             reduced_clock && i915_powersave) {
4157                 I915_WRITE(FP1(pipe), fp2);
4158                 intel_crtc->lowfreq_avail = true;
4159         } else {
4160                 I915_WRITE(FP1(pipe), fp);
4161         }
4162 }
4163
4164 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4165                               struct drm_display_mode *adjusted_mode)
4166 {
4167         struct drm_device *dev = crtc->dev;
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4170         int pipe = intel_crtc->pipe;
4171         u32 temp;
4172
4173         temp = I915_READ(LVDS);
4174         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4175         if (pipe == 1) {
4176                 temp |= LVDS_PIPEB_SELECT;
4177         } else {
4178                 temp &= ~LVDS_PIPEB_SELECT;
4179         }
4180         /* set the corresponsding LVDS_BORDER bit */
4181         temp |= dev_priv->lvds_border_bits;
4182         /* Set the B0-B3 data pairs corresponding to whether we're going to
4183          * set the DPLLs for dual-channel mode or not.
4184          */
4185         if (clock->p2 == 7)
4186                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4187         else
4188                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4189
4190         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4191          * appropriately here, but we need to look more thoroughly into how
4192          * panels behave in the two modes.
4193          */
4194         /* set the dithering flag on LVDS as needed */
4195         if (INTEL_INFO(dev)->gen >= 4) {
4196                 if (dev_priv->lvds_dither)
4197                         temp |= LVDS_ENABLE_DITHER;
4198                 else
4199                         temp &= ~LVDS_ENABLE_DITHER;
4200         }
4201         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4202         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4203                 temp |= LVDS_HSYNC_POLARITY;
4204         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4205                 temp |= LVDS_VSYNC_POLARITY;
4206         I915_WRITE(LVDS, temp);
4207 }
4208
4209 static void vlv_update_pll(struct drm_crtc *crtc,
4210                            struct drm_display_mode *mode,
4211                            struct drm_display_mode *adjusted_mode,
4212                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4213                            int num_connectors)
4214 {
4215         struct drm_device *dev = crtc->dev;
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4218         int pipe = intel_crtc->pipe;
4219         u32 dpll, mdiv, pdiv;
4220         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4221         bool is_sdvo;
4222         u32 temp;
4223
4224         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4225                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4226
4227         dpll = DPLL_VGA_MODE_DIS;
4228         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4229         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4230         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4231
4232         I915_WRITE(DPLL(pipe), dpll);
4233         POSTING_READ(DPLL(pipe));
4234
4235         bestn = clock->n;
4236         bestm1 = clock->m1;
4237         bestm2 = clock->m2;
4238         bestp1 = clock->p1;
4239         bestp2 = clock->p2;
4240
4241         /*
4242          * In Valleyview PLL and program lane counter registers are exposed
4243          * through DPIO interface
4244          */
4245         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4246         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4247         mdiv |= ((bestn << DPIO_N_SHIFT));
4248         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4249         mdiv |= (1 << DPIO_K_SHIFT);
4250         mdiv |= DPIO_ENABLE_CALIBRATION;
4251         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4252
4253         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4254
4255         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4256                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4257                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4258                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4259         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4260
4261         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4262
4263         dpll |= DPLL_VCO_ENABLE;
4264         I915_WRITE(DPLL(pipe), dpll);
4265         POSTING_READ(DPLL(pipe));
4266         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4267                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4268
4269         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4270
4271         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4272                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4273
4274         I915_WRITE(DPLL(pipe), dpll);
4275
4276         /* Wait for the clocks to stabilize. */
4277         POSTING_READ(DPLL(pipe));
4278         udelay(150);
4279
4280         temp = 0;
4281         if (is_sdvo) {
4282                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4283                 if (temp > 1)
4284                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4285                 else
4286                         temp = 0;
4287         }
4288         I915_WRITE(DPLL_MD(pipe), temp);
4289         POSTING_READ(DPLL_MD(pipe));
4290
4291         /* Now program lane control registers */
4292         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4293                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4294         {
4295                 temp = 0x1000C4;
4296                 if(pipe == 1)
4297                         temp |= (1 << 21);
4298                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4299         }
4300         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4301         {
4302                 temp = 0x1000C4;
4303                 if(pipe == 1)
4304                         temp |= (1 << 21);
4305                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4306         }
4307 }
4308
4309 static void i9xx_update_pll(struct drm_crtc *crtc,
4310                             struct drm_display_mode *mode,
4311                             struct drm_display_mode *adjusted_mode,
4312                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4313                             int num_connectors)
4314 {
4315         struct drm_device *dev = crtc->dev;
4316         struct drm_i915_private *dev_priv = dev->dev_private;
4317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4318         int pipe = intel_crtc->pipe;
4319         u32 dpll;
4320         bool is_sdvo;
4321
4322         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4323
4324         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4325                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4326
4327         dpll = DPLL_VGA_MODE_DIS;
4328
4329         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4330                 dpll |= DPLLB_MODE_LVDS;
4331         else
4332                 dpll |= DPLLB_MODE_DAC_SERIAL;
4333         if (is_sdvo) {
4334                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4335                 if (pixel_multiplier > 1) {
4336                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4337                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4338                 }
4339                 dpll |= DPLL_DVO_HIGH_SPEED;
4340         }
4341         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4342                 dpll |= DPLL_DVO_HIGH_SPEED;
4343
4344         /* compute bitmask from p1 value */
4345         if (IS_PINEVIEW(dev))
4346                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4347         else {
4348                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4349                 if (IS_G4X(dev) && reduced_clock)
4350                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4351         }
4352         switch (clock->p2) {
4353         case 5:
4354                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4355                 break;
4356         case 7:
4357                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4358                 break;
4359         case 10:
4360                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4361                 break;
4362         case 14:
4363                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4364                 break;
4365         }
4366         if (INTEL_INFO(dev)->gen >= 4)
4367                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4368
4369         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4370                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4371         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4372                 /* XXX: just matching BIOS for now */
4373                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4374                 dpll |= 3;
4375         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4376                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4377                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4378         else
4379                 dpll |= PLL_REF_INPUT_DREFCLK;
4380
4381         dpll |= DPLL_VCO_ENABLE;
4382         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4383         POSTING_READ(DPLL(pipe));
4384         udelay(150);
4385
4386         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4387          * This is an exception to the general rule that mode_set doesn't turn
4388          * things on.
4389          */
4390         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4391                 intel_update_lvds(crtc, clock, adjusted_mode);
4392
4393         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4394                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4395
4396         I915_WRITE(DPLL(pipe), dpll);
4397
4398         /* Wait for the clocks to stabilize. */
4399         POSTING_READ(DPLL(pipe));
4400         udelay(150);
4401
4402         if (INTEL_INFO(dev)->gen >= 4) {
4403                 u32 temp = 0;
4404                 if (is_sdvo) {
4405                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4406                         if (temp > 1)
4407                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4408                         else
4409                                 temp = 0;
4410                 }
4411                 I915_WRITE(DPLL_MD(pipe), temp);
4412         } else {
4413                 /* The pixel multiplier can only be updated once the
4414                  * DPLL is enabled and the clocks are stable.
4415                  *
4416                  * So write it again.
4417                  */
4418                 I915_WRITE(DPLL(pipe), dpll);
4419         }
4420 }
4421
4422 static void i8xx_update_pll(struct drm_crtc *crtc,
4423                             struct drm_display_mode *adjusted_mode,
4424                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4425                             int num_connectors)
4426 {
4427         struct drm_device *dev = crtc->dev;
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430         int pipe = intel_crtc->pipe;
4431         u32 dpll;
4432
4433         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4434
4435         dpll = DPLL_VGA_MODE_DIS;
4436
4437         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4438                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4439         } else {
4440                 if (clock->p1 == 2)
4441                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4442                 else
4443                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4444                 if (clock->p2 == 4)
4445                         dpll |= PLL_P2_DIVIDE_BY_4;
4446         }
4447
4448         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4449                 /* XXX: just matching BIOS for now */
4450                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4451                 dpll |= 3;
4452         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4453                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4454                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4455         else
4456                 dpll |= PLL_REF_INPUT_DREFCLK;
4457
4458         dpll |= DPLL_VCO_ENABLE;
4459         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4460         POSTING_READ(DPLL(pipe));
4461         udelay(150);
4462
4463         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4464          * This is an exception to the general rule that mode_set doesn't turn
4465          * things on.
4466          */
4467         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4468                 intel_update_lvds(crtc, clock, adjusted_mode);
4469
4470         I915_WRITE(DPLL(pipe), dpll);
4471
4472         /* Wait for the clocks to stabilize. */
4473         POSTING_READ(DPLL(pipe));
4474         udelay(150);
4475
4476         /* The pixel multiplier can only be updated once the
4477          * DPLL is enabled and the clocks are stable.
4478          *
4479          * So write it again.
4480          */
4481         I915_WRITE(DPLL(pipe), dpll);
4482 }
4483
4484 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4485                                    struct drm_display_mode *mode,
4486                                    struct drm_display_mode *adjusted_mode)
4487 {
4488         struct drm_device *dev = intel_crtc->base.dev;
4489         struct drm_i915_private *dev_priv = dev->dev_private;
4490         enum pipe pipe = intel_crtc->pipe;
4491         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4492         uint32_t vsyncshift;
4493
4494         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4495                 /* the chip adds 2 halflines automatically */
4496                 adjusted_mode->crtc_vtotal -= 1;
4497                 adjusted_mode->crtc_vblank_end -= 1;
4498                 vsyncshift = adjusted_mode->crtc_hsync_start
4499                              - adjusted_mode->crtc_htotal / 2;
4500         } else {
4501                 vsyncshift = 0;
4502         }
4503
4504         if (INTEL_INFO(dev)->gen > 3)
4505                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4506
4507         I915_WRITE(HTOTAL(cpu_transcoder),
4508                    (adjusted_mode->crtc_hdisplay - 1) |
4509                    ((adjusted_mode->crtc_htotal - 1) << 16));
4510         I915_WRITE(HBLANK(cpu_transcoder),
4511                    (adjusted_mode->crtc_hblank_start - 1) |
4512                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4513         I915_WRITE(HSYNC(cpu_transcoder),
4514                    (adjusted_mode->crtc_hsync_start - 1) |
4515                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4516
4517         I915_WRITE(VTOTAL(cpu_transcoder),
4518                    (adjusted_mode->crtc_vdisplay - 1) |
4519                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4520         I915_WRITE(VBLANK(cpu_transcoder),
4521                    (adjusted_mode->crtc_vblank_start - 1) |
4522                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4523         I915_WRITE(VSYNC(cpu_transcoder),
4524                    (adjusted_mode->crtc_vsync_start - 1) |
4525                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4526
4527         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4528          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4529          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4530          * bits. */
4531         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4532             (pipe == PIPE_B || pipe == PIPE_C))
4533                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4534
4535         /* pipesrc controls the size that is scaled from, which should
4536          * always be the user's requested size.
4537          */
4538         I915_WRITE(PIPESRC(pipe),
4539                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4540 }
4541
4542 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4543                               struct drm_display_mode *mode,
4544                               struct drm_display_mode *adjusted_mode,
4545                               int x, int y,
4546                               struct drm_framebuffer *fb)
4547 {
4548         struct drm_device *dev = crtc->dev;
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4551         int pipe = intel_crtc->pipe;
4552         int plane = intel_crtc->plane;
4553         int refclk, num_connectors = 0;
4554         intel_clock_t clock, reduced_clock;
4555         u32 dspcntr, pipeconf;
4556         bool ok, has_reduced_clock = false, is_sdvo = false;
4557         bool is_lvds = false, is_tv = false, is_dp = false;
4558         struct intel_encoder *encoder;
4559         const intel_limit_t *limit;
4560         int ret;
4561
4562         for_each_encoder_on_crtc(dev, crtc, encoder) {
4563                 switch (encoder->type) {
4564                 case INTEL_OUTPUT_LVDS:
4565                         is_lvds = true;
4566                         break;
4567                 case INTEL_OUTPUT_SDVO:
4568                 case INTEL_OUTPUT_HDMI:
4569                         is_sdvo = true;
4570                         if (encoder->needs_tv_clock)
4571                                 is_tv = true;
4572                         break;
4573                 case INTEL_OUTPUT_TVOUT:
4574                         is_tv = true;
4575                         break;
4576                 case INTEL_OUTPUT_DISPLAYPORT:
4577                         is_dp = true;
4578                         break;
4579                 }
4580
4581                 num_connectors++;
4582         }
4583
4584         refclk = i9xx_get_refclk(crtc, num_connectors);
4585
4586         /*
4587          * Returns a set of divisors for the desired target clock with the given
4588          * refclk, or FALSE.  The returned values represent the clock equation:
4589          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4590          */
4591         limit = intel_limit(crtc, refclk);
4592         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4593                              &clock);
4594         if (!ok) {
4595                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4596                 return -EINVAL;
4597         }
4598
4599         /* Ensure that the cursor is valid for the new mode before changing... */
4600         intel_crtc_update_cursor(crtc, true);
4601
4602         if (is_lvds && dev_priv->lvds_downclock_avail) {
4603                 /*
4604                  * Ensure we match the reduced clock's P to the target clock.
4605                  * If the clocks don't match, we can't switch the display clock
4606                  * by using the FP0/FP1. In such case we will disable the LVDS
4607                  * downclock feature.
4608                 */
4609                 has_reduced_clock = limit->find_pll(limit, crtc,
4610                                                     dev_priv->lvds_downclock,
4611                                                     refclk,
4612                                                     &clock,
4613                                                     &reduced_clock);
4614         }
4615
4616         if (is_sdvo && is_tv)
4617                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4618
4619         if (IS_GEN2(dev))
4620                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4621                                 has_reduced_clock ? &reduced_clock : NULL,
4622                                 num_connectors);
4623         else if (IS_VALLEYVIEW(dev))
4624                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4625                                 has_reduced_clock ? &reduced_clock : NULL,
4626                                 num_connectors);
4627         else
4628                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4629                                 has_reduced_clock ? &reduced_clock : NULL,
4630                                 num_connectors);
4631
4632         /* setup pipeconf */
4633         pipeconf = I915_READ(PIPECONF(pipe));
4634
4635         /* Set up the display plane register */
4636         dspcntr = DISPPLANE_GAMMA_ENABLE;
4637
4638         if (pipe == 0)
4639                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4640         else
4641                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4642
4643         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4644                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4645                  * core speed.
4646                  *
4647                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4648                  * pipe == 0 check?
4649                  */
4650                 if (mode->clock >
4651                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4652                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4653                 else
4654                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4655         }
4656
4657         /* default to 8bpc */
4658         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4659         if (is_dp) {
4660                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4661                         pipeconf |= PIPECONF_BPP_6 |
4662                                     PIPECONF_DITHER_EN |
4663                                     PIPECONF_DITHER_TYPE_SP;
4664                 }
4665         }
4666
4667         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4668                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4669                         pipeconf |= PIPECONF_BPP_6 |
4670                                         PIPECONF_ENABLE |
4671                                         I965_PIPECONF_ACTIVE;
4672                 }
4673         }
4674
4675         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4676         drm_mode_debug_printmodeline(mode);
4677
4678         if (HAS_PIPE_CXSR(dev)) {
4679                 if (intel_crtc->lowfreq_avail) {
4680                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4681                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4682                 } else {
4683                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4684                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4685                 }
4686         }
4687
4688         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4689         if (!IS_GEN2(dev) &&
4690             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4691                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4692         else
4693                 pipeconf |= PIPECONF_PROGRESSIVE;
4694
4695         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4696
4697         /* pipesrc and dspsize control the size that is scaled from,
4698          * which should always be the user's requested size.
4699          */
4700         I915_WRITE(DSPSIZE(plane),
4701                    ((mode->vdisplay - 1) << 16) |
4702                    (mode->hdisplay - 1));
4703         I915_WRITE(DSPPOS(plane), 0);
4704
4705         I915_WRITE(PIPECONF(pipe), pipeconf);
4706         POSTING_READ(PIPECONF(pipe));
4707         intel_enable_pipe(dev_priv, pipe, false);
4708
4709         intel_wait_for_vblank(dev, pipe);
4710
4711         I915_WRITE(DSPCNTR(plane), dspcntr);
4712         POSTING_READ(DSPCNTR(plane));
4713
4714         ret = intel_pipe_set_base(crtc, x, y, fb);
4715
4716         intel_update_watermarks(dev);
4717
4718         return ret;
4719 }
4720
4721 /*
4722  * Initialize reference clocks when the driver loads
4723  */
4724 void ironlake_init_pch_refclk(struct drm_device *dev)
4725 {
4726         struct drm_i915_private *dev_priv = dev->dev_private;
4727         struct drm_mode_config *mode_config = &dev->mode_config;
4728         struct intel_encoder *encoder;
4729         u32 temp;
4730         bool has_lvds = false;
4731         bool has_cpu_edp = false;
4732         bool has_pch_edp = false;
4733         bool has_panel = false;
4734         bool has_ck505 = false;
4735         bool can_ssc = false;
4736
4737         /* We need to take the global config into account */
4738         list_for_each_entry(encoder, &mode_config->encoder_list,
4739                             base.head) {
4740                 switch (encoder->type) {
4741                 case INTEL_OUTPUT_LVDS:
4742                         has_panel = true;
4743                         has_lvds = true;
4744                         break;
4745                 case INTEL_OUTPUT_EDP:
4746                         has_panel = true;
4747                         if (intel_encoder_is_pch_edp(&encoder->base))
4748                                 has_pch_edp = true;
4749                         else
4750                                 has_cpu_edp = true;
4751                         break;
4752                 }
4753         }
4754
4755         if (HAS_PCH_IBX(dev)) {
4756                 has_ck505 = dev_priv->display_clock_mode;
4757                 can_ssc = has_ck505;
4758         } else {
4759                 has_ck505 = false;
4760                 can_ssc = true;
4761         }
4762
4763         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4764                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4765                       has_ck505);
4766
4767         /* Ironlake: try to setup display ref clock before DPLL
4768          * enabling. This is only under driver's control after
4769          * PCH B stepping, previous chipset stepping should be
4770          * ignoring this setting.
4771          */
4772         temp = I915_READ(PCH_DREF_CONTROL);
4773         /* Always enable nonspread source */
4774         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4775
4776         if (has_ck505)
4777                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4778         else
4779                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4780
4781         if (has_panel) {
4782                 temp &= ~DREF_SSC_SOURCE_MASK;
4783                 temp |= DREF_SSC_SOURCE_ENABLE;
4784
4785                 /* SSC must be turned on before enabling the CPU output  */
4786                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4787                         DRM_DEBUG_KMS("Using SSC on panel\n");
4788                         temp |= DREF_SSC1_ENABLE;
4789                 } else
4790                         temp &= ~DREF_SSC1_ENABLE;
4791
4792                 /* Get SSC going before enabling the outputs */
4793                 I915_WRITE(PCH_DREF_CONTROL, temp);
4794                 POSTING_READ(PCH_DREF_CONTROL);
4795                 udelay(200);
4796
4797                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4798
4799                 /* Enable CPU source on CPU attached eDP */
4800                 if (has_cpu_edp) {
4801                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4802                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4803                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4804                         }
4805                         else
4806                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4807                 } else
4808                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4809
4810                 I915_WRITE(PCH_DREF_CONTROL, temp);
4811                 POSTING_READ(PCH_DREF_CONTROL);
4812                 udelay(200);
4813         } else {
4814                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4815
4816                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4817
4818                 /* Turn off CPU output */
4819                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4820
4821                 I915_WRITE(PCH_DREF_CONTROL, temp);
4822                 POSTING_READ(PCH_DREF_CONTROL);
4823                 udelay(200);
4824
4825                 /* Turn off the SSC source */
4826                 temp &= ~DREF_SSC_SOURCE_MASK;
4827                 temp |= DREF_SSC_SOURCE_DISABLE;
4828
4829                 /* Turn off SSC1 */
4830                 temp &= ~ DREF_SSC1_ENABLE;
4831
4832                 I915_WRITE(PCH_DREF_CONTROL, temp);
4833                 POSTING_READ(PCH_DREF_CONTROL);
4834                 udelay(200);
4835         }
4836 }
4837
4838 static int ironlake_get_refclk(struct drm_crtc *crtc)
4839 {
4840         struct drm_device *dev = crtc->dev;
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         struct intel_encoder *encoder;
4843         struct intel_encoder *edp_encoder = NULL;
4844         int num_connectors = 0;
4845         bool is_lvds = false;
4846
4847         for_each_encoder_on_crtc(dev, crtc, encoder) {
4848                 switch (encoder->type) {
4849                 case INTEL_OUTPUT_LVDS:
4850                         is_lvds = true;
4851                         break;
4852                 case INTEL_OUTPUT_EDP:
4853                         edp_encoder = encoder;
4854                         break;
4855                 }
4856                 num_connectors++;
4857         }
4858
4859         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4860                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4861                               dev_priv->lvds_ssc_freq);
4862                 return dev_priv->lvds_ssc_freq * 1000;
4863         }
4864
4865         return 120000;
4866 }
4867
4868 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4869                                   struct drm_display_mode *adjusted_mode,
4870                                   bool dither)
4871 {
4872         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874         int pipe = intel_crtc->pipe;
4875         uint32_t val;
4876
4877         val = I915_READ(PIPECONF(pipe));
4878
4879         val &= ~PIPE_BPC_MASK;
4880         switch (intel_crtc->bpp) {
4881         case 18:
4882                 val |= PIPE_6BPC;
4883                 break;
4884         case 24:
4885                 val |= PIPE_8BPC;
4886                 break;
4887         case 30:
4888                 val |= PIPE_10BPC;
4889                 break;
4890         case 36:
4891                 val |= PIPE_12BPC;
4892                 break;
4893         default:
4894                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4895                 BUG();
4896         }
4897
4898         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4899         if (dither)
4900                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4901
4902         val &= ~PIPECONF_INTERLACE_MASK;
4903         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4904                 val |= PIPECONF_INTERLACED_ILK;
4905         else
4906                 val |= PIPECONF_PROGRESSIVE;
4907
4908         I915_WRITE(PIPECONF(pipe), val);
4909         POSTING_READ(PIPECONF(pipe));
4910 }
4911
4912 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4913                                  struct drm_display_mode *adjusted_mode,
4914                                  bool dither)
4915 {
4916         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4919         uint32_t val;
4920
4921         val = I915_READ(PIPECONF(cpu_transcoder));
4922
4923         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4924         if (dither)
4925                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4926
4927         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4928         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4929                 val |= PIPECONF_INTERLACED_ILK;
4930         else
4931                 val |= PIPECONF_PROGRESSIVE;
4932
4933         I915_WRITE(PIPECONF(cpu_transcoder), val);
4934         POSTING_READ(PIPECONF(cpu_transcoder));
4935 }
4936
4937 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4938                                     struct drm_display_mode *adjusted_mode,
4939                                     intel_clock_t *clock,
4940                                     bool *has_reduced_clock,
4941                                     intel_clock_t *reduced_clock)
4942 {
4943         struct drm_device *dev = crtc->dev;
4944         struct drm_i915_private *dev_priv = dev->dev_private;
4945         struct intel_encoder *intel_encoder;
4946         int refclk;
4947         const intel_limit_t *limit;
4948         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4949
4950         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4951                 switch (intel_encoder->type) {
4952                 case INTEL_OUTPUT_LVDS:
4953                         is_lvds = true;
4954                         break;
4955                 case INTEL_OUTPUT_SDVO:
4956                 case INTEL_OUTPUT_HDMI:
4957                         is_sdvo = true;
4958                         if (intel_encoder->needs_tv_clock)
4959                                 is_tv = true;
4960                         break;
4961                 case INTEL_OUTPUT_TVOUT:
4962                         is_tv = true;
4963                         break;
4964                 }
4965         }
4966
4967         refclk = ironlake_get_refclk(crtc);
4968
4969         /*
4970          * Returns a set of divisors for the desired target clock with the given
4971          * refclk, or FALSE.  The returned values represent the clock equation:
4972          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4973          */
4974         limit = intel_limit(crtc, refclk);
4975         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4976                               clock);
4977         if (!ret)
4978                 return false;
4979
4980         if (is_lvds && dev_priv->lvds_downclock_avail) {
4981                 /*
4982                  * Ensure we match the reduced clock's P to the target clock.
4983                  * If the clocks don't match, we can't switch the display clock
4984                  * by using the FP0/FP1. In such case we will disable the LVDS
4985                  * downclock feature.
4986                 */
4987                 *has_reduced_clock = limit->find_pll(limit, crtc,
4988                                                      dev_priv->lvds_downclock,
4989                                                      refclk,
4990                                                      clock,
4991                                                      reduced_clock);
4992         }
4993
4994         if (is_sdvo && is_tv)
4995                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4996
4997         return true;
4998 }
4999
5000 static void ironlake_set_m_n(struct drm_crtc *crtc,
5001                              struct drm_display_mode *mode,
5002                              struct drm_display_mode *adjusted_mode)
5003 {
5004         struct drm_device *dev = crtc->dev;
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5007         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5008         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5009         struct fdi_m_n m_n = {0};
5010         int target_clock, pixel_multiplier, lane, link_bw;
5011         bool is_dp = false, is_cpu_edp = false;
5012
5013         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5014                 switch (intel_encoder->type) {
5015                 case INTEL_OUTPUT_DISPLAYPORT:
5016                         is_dp = true;
5017                         break;
5018                 case INTEL_OUTPUT_EDP:
5019                         is_dp = true;
5020                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5021                                 is_cpu_edp = true;
5022                         edp_encoder = intel_encoder;
5023                         break;
5024                 }
5025         }
5026
5027         /* FDI link */
5028         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5029         lane = 0;
5030         /* CPU eDP doesn't require FDI link, so just set DP M/N
5031            according to current link config */
5032         if (is_cpu_edp) {
5033                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5034         } else {
5035                 /* FDI is a binary signal running at ~2.7GHz, encoding
5036                  * each output octet as 10 bits. The actual frequency
5037                  * is stored as a divider into a 100MHz clock, and the
5038                  * mode pixel clock is stored in units of 1KHz.
5039                  * Hence the bw of each lane in terms of the mode signal
5040                  * is:
5041                  */
5042                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5043         }
5044
5045         /* [e]DP over FDI requires target mode clock instead of link clock. */
5046         if (edp_encoder)
5047                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5048         else if (is_dp)
5049                 target_clock = mode->clock;
5050         else
5051                 target_clock = adjusted_mode->clock;
5052
5053         if (!lane) {
5054                 /*
5055                  * Account for spread spectrum to avoid
5056                  * oversubscribing the link. Max center spread
5057                  * is 2.5%; use 5% for safety's sake.
5058                  */
5059                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5060                 lane = bps / (link_bw * 8) + 1;
5061         }
5062
5063         intel_crtc->fdi_lanes = lane;
5064
5065         if (pixel_multiplier > 1)
5066                 link_bw *= pixel_multiplier;
5067         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5068                              &m_n);
5069
5070         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5071         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5072         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5073         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5074 }
5075
5076 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5077                                       struct drm_display_mode *adjusted_mode,
5078                                       intel_clock_t *clock, u32 fp)
5079 {
5080         struct drm_crtc *crtc = &intel_crtc->base;
5081         struct drm_device *dev = crtc->dev;
5082         struct drm_i915_private *dev_priv = dev->dev_private;
5083         struct intel_encoder *intel_encoder;
5084         uint32_t dpll;
5085         int factor, pixel_multiplier, num_connectors = 0;
5086         bool is_lvds = false, is_sdvo = false, is_tv = false;
5087         bool is_dp = false, is_cpu_edp = false;
5088
5089         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5090                 switch (intel_encoder->type) {
5091                 case INTEL_OUTPUT_LVDS:
5092                         is_lvds = true;
5093                         break;
5094                 case INTEL_OUTPUT_SDVO:
5095                 case INTEL_OUTPUT_HDMI:
5096                         is_sdvo = true;
5097                         if (intel_encoder->needs_tv_clock)
5098                                 is_tv = true;
5099                         break;
5100                 case INTEL_OUTPUT_TVOUT:
5101                         is_tv = true;
5102                         break;
5103                 case INTEL_OUTPUT_DISPLAYPORT:
5104                         is_dp = true;
5105                         break;
5106                 case INTEL_OUTPUT_EDP:
5107                         is_dp = true;
5108                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5109                                 is_cpu_edp = true;
5110                         break;
5111                 }
5112
5113                 num_connectors++;
5114         }
5115
5116         /* Enable autotuning of the PLL clock (if permissible) */
5117         factor = 21;
5118         if (is_lvds) {
5119                 if ((intel_panel_use_ssc(dev_priv) &&
5120                      dev_priv->lvds_ssc_freq == 100) ||
5121                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5122                         factor = 25;
5123         } else if (is_sdvo && is_tv)
5124                 factor = 20;
5125
5126         if (clock->m < factor * clock->n)
5127                 fp |= FP_CB_TUNE;
5128
5129         dpll = 0;
5130
5131         if (is_lvds)
5132                 dpll |= DPLLB_MODE_LVDS;
5133         else
5134                 dpll |= DPLLB_MODE_DAC_SERIAL;
5135         if (is_sdvo) {
5136                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5137                 if (pixel_multiplier > 1) {
5138                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5139                 }
5140                 dpll |= DPLL_DVO_HIGH_SPEED;
5141         }
5142         if (is_dp && !is_cpu_edp)
5143                 dpll |= DPLL_DVO_HIGH_SPEED;
5144
5145         /* compute bitmask from p1 value */
5146         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5147         /* also FPA1 */
5148         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5149
5150         switch (clock->p2) {
5151         case 5:
5152                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5153                 break;
5154         case 7:
5155                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5156                 break;
5157         case 10:
5158                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5159                 break;
5160         case 14:
5161                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5162                 break;
5163         }
5164
5165         if (is_sdvo && is_tv)
5166                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5167         else if (is_tv)
5168                 /* XXX: just matching BIOS for now */
5169                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5170                 dpll |= 3;
5171         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5172                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5173         else
5174                 dpll |= PLL_REF_INPUT_DREFCLK;
5175
5176         return dpll;
5177 }
5178
5179 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5180                                   struct drm_display_mode *mode,
5181                                   struct drm_display_mode *adjusted_mode,
5182                                   int x, int y,
5183                                   struct drm_framebuffer *fb)
5184 {
5185         struct drm_device *dev = crtc->dev;
5186         struct drm_i915_private *dev_priv = dev->dev_private;
5187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188         int pipe = intel_crtc->pipe;
5189         int plane = intel_crtc->plane;
5190         int num_connectors = 0;
5191         intel_clock_t clock, reduced_clock;
5192         u32 dpll, fp = 0, fp2 = 0;
5193         bool ok, has_reduced_clock = false;
5194         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5195         struct intel_encoder *encoder;
5196         u32 temp;
5197         int ret;
5198         bool dither;
5199
5200         for_each_encoder_on_crtc(dev, crtc, encoder) {
5201                 switch (encoder->type) {
5202                 case INTEL_OUTPUT_LVDS:
5203                         is_lvds = true;
5204                         break;
5205                 case INTEL_OUTPUT_DISPLAYPORT:
5206                         is_dp = true;
5207                         break;
5208                 case INTEL_OUTPUT_EDP:
5209                         is_dp = true;
5210                         if (!intel_encoder_is_pch_edp(&encoder->base))
5211                                 is_cpu_edp = true;
5212                         break;
5213                 }
5214
5215                 num_connectors++;
5216         }
5217
5218         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5219              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5220
5221         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5222                                      &has_reduced_clock, &reduced_clock);
5223         if (!ok) {
5224                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5225                 return -EINVAL;
5226         }
5227
5228         /* Ensure that the cursor is valid for the new mode before changing... */
5229         intel_crtc_update_cursor(crtc, true);
5230
5231         /* determine panel color depth */
5232         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5233         if (is_lvds && dev_priv->lvds_dither)
5234                 dither = true;
5235
5236         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5237         if (has_reduced_clock)
5238                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5239                         reduced_clock.m2;
5240
5241         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5242
5243         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5244         drm_mode_debug_printmodeline(mode);
5245
5246         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5247         if (!is_cpu_edp) {
5248                 struct intel_pch_pll *pll;
5249
5250                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5251                 if (pll == NULL) {
5252                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5253                                          pipe);
5254                         return -EINVAL;
5255                 }
5256         } else
5257                 intel_put_pch_pll(intel_crtc);
5258
5259         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5260          * This is an exception to the general rule that mode_set doesn't turn
5261          * things on.
5262          */
5263         if (is_lvds) {
5264                 temp = I915_READ(PCH_LVDS);
5265                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5266                 if (HAS_PCH_CPT(dev)) {
5267                         temp &= ~PORT_TRANS_SEL_MASK;
5268                         temp |= PORT_TRANS_SEL_CPT(pipe);
5269                 } else {
5270                         if (pipe == 1)
5271                                 temp |= LVDS_PIPEB_SELECT;
5272                         else
5273                                 temp &= ~LVDS_PIPEB_SELECT;
5274                 }
5275
5276                 /* set the corresponsding LVDS_BORDER bit */
5277                 temp |= dev_priv->lvds_border_bits;
5278                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5279                  * set the DPLLs for dual-channel mode or not.
5280                  */
5281                 if (clock.p2 == 7)
5282                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5283                 else
5284                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5285
5286                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5287                  * appropriately here, but we need to look more thoroughly into how
5288                  * panels behave in the two modes.
5289                  */
5290                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5291                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5292                         temp |= LVDS_HSYNC_POLARITY;
5293                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5294                         temp |= LVDS_VSYNC_POLARITY;
5295                 I915_WRITE(PCH_LVDS, temp);
5296         }
5297
5298         if (is_dp && !is_cpu_edp) {
5299                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5300         } else {
5301                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5302                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5303                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5304                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5305                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5306         }
5307
5308         if (intel_crtc->pch_pll) {
5309                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5310
5311                 /* Wait for the clocks to stabilize. */
5312                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5313                 udelay(150);
5314
5315                 /* The pixel multiplier can only be updated once the
5316                  * DPLL is enabled and the clocks are stable.
5317                  *
5318                  * So write it again.
5319                  */
5320                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5321         }
5322
5323         intel_crtc->lowfreq_avail = false;
5324         if (intel_crtc->pch_pll) {
5325                 if (is_lvds && has_reduced_clock && i915_powersave) {
5326                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5327                         intel_crtc->lowfreq_avail = true;
5328                 } else {
5329                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5330                 }
5331         }
5332
5333         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5334
5335         ironlake_set_m_n(crtc, mode, adjusted_mode);
5336
5337         if (is_cpu_edp)
5338                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5339
5340         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5341
5342         intel_wait_for_vblank(dev, pipe);
5343
5344         /* Set up the display plane register */
5345         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5346         POSTING_READ(DSPCNTR(plane));
5347
5348         ret = intel_pipe_set_base(crtc, x, y, fb);
5349
5350         intel_update_watermarks(dev);
5351
5352         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5353
5354         return ret;
5355 }
5356
5357 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5358                                  struct drm_display_mode *mode,
5359                                  struct drm_display_mode *adjusted_mode,
5360                                  int x, int y,
5361                                  struct drm_framebuffer *fb)
5362 {
5363         struct drm_device *dev = crtc->dev;
5364         struct drm_i915_private *dev_priv = dev->dev_private;
5365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5366         int pipe = intel_crtc->pipe;
5367         int plane = intel_crtc->plane;
5368         int num_connectors = 0;
5369         intel_clock_t clock, reduced_clock;
5370         u32 dpll = 0, fp = 0, fp2 = 0;
5371         bool ok, has_reduced_clock = false;
5372         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5373         struct intel_encoder *encoder;
5374         u32 temp;
5375         int ret;
5376         bool dither;
5377
5378         for_each_encoder_on_crtc(dev, crtc, encoder) {
5379                 switch (encoder->type) {
5380                 case INTEL_OUTPUT_LVDS:
5381                         is_lvds = true;
5382                         break;
5383                 case INTEL_OUTPUT_DISPLAYPORT:
5384                         is_dp = true;
5385                         break;
5386                 case INTEL_OUTPUT_EDP:
5387                         is_dp = true;
5388                         if (!intel_encoder_is_pch_edp(&encoder->base))
5389                                 is_cpu_edp = true;
5390                         break;
5391                 }
5392
5393                 num_connectors++;
5394         }
5395
5396         if (is_cpu_edp)
5397                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5398         else
5399                 intel_crtc->cpu_transcoder = pipe;
5400
5401         /* We are not sure yet this won't happen. */
5402         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5403              INTEL_PCH_TYPE(dev));
5404
5405         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5406              num_connectors, pipe_name(pipe));
5407
5408         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5409                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5410
5411         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5412
5413         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5414                 return -EINVAL;
5415
5416         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5417                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5418                                              &has_reduced_clock,
5419                                              &reduced_clock);
5420                 if (!ok) {
5421                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5422                         return -EINVAL;
5423                 }
5424         }
5425
5426         /* Ensure that the cursor is valid for the new mode before changing... */
5427         intel_crtc_update_cursor(crtc, true);
5428
5429         /* determine panel color depth */
5430         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5431         if (is_lvds && dev_priv->lvds_dither)
5432                 dither = true;
5433
5434         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5435         drm_mode_debug_printmodeline(mode);
5436
5437         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5438                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5439                 if (has_reduced_clock)
5440                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5441                               reduced_clock.m2;
5442
5443                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5444                                              fp);
5445
5446                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5447                  * own on pre-Haswell/LPT generation */
5448                 if (!is_cpu_edp) {
5449                         struct intel_pch_pll *pll;
5450
5451                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5452                         if (pll == NULL) {
5453                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5454                                                  pipe);
5455                                 return -EINVAL;
5456                         }
5457                 } else
5458                         intel_put_pch_pll(intel_crtc);
5459
5460                 /* The LVDS pin pair needs to be on before the DPLLs are
5461                  * enabled.  This is an exception to the general rule that
5462                  * mode_set doesn't turn things on.
5463                  */
5464                 if (is_lvds) {
5465                         temp = I915_READ(PCH_LVDS);
5466                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5467                         if (HAS_PCH_CPT(dev)) {
5468                                 temp &= ~PORT_TRANS_SEL_MASK;
5469                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5470                         } else {
5471                                 if (pipe == 1)
5472                                         temp |= LVDS_PIPEB_SELECT;
5473                                 else
5474                                         temp &= ~LVDS_PIPEB_SELECT;
5475                         }
5476
5477                         /* set the corresponsding LVDS_BORDER bit */
5478                         temp |= dev_priv->lvds_border_bits;
5479                         /* Set the B0-B3 data pairs corresponding to whether
5480                          * we're going to set the DPLLs for dual-channel mode or
5481                          * not.
5482                          */
5483                         if (clock.p2 == 7)
5484                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5485                         else
5486                                 temp &= ~(LVDS_B0B3_POWER_UP |
5487                                           LVDS_CLKB_POWER_UP);
5488
5489                         /* It would be nice to set 24 vs 18-bit mode
5490                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5491                          * look more thoroughly into how panels behave in the
5492                          * two modes.
5493                          */
5494                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5495                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5496                                 temp |= LVDS_HSYNC_POLARITY;
5497                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5498                                 temp |= LVDS_VSYNC_POLARITY;
5499                         I915_WRITE(PCH_LVDS, temp);
5500                 }
5501         }
5502
5503         if (is_dp && !is_cpu_edp) {
5504                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5505         } else {
5506                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5507                         /* For non-DP output, clear any trans DP clock recovery
5508                          * setting.*/
5509                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5510                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5511                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5512                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5513                 }
5514         }
5515
5516         intel_crtc->lowfreq_avail = false;
5517         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5518                 if (intel_crtc->pch_pll) {
5519                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5520
5521                         /* Wait for the clocks to stabilize. */
5522                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5523                         udelay(150);
5524
5525                         /* The pixel multiplier can only be updated once the
5526                          * DPLL is enabled and the clocks are stable.
5527                          *
5528                          * So write it again.
5529                          */
5530                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5531                 }
5532
5533                 if (intel_crtc->pch_pll) {
5534                         if (is_lvds && has_reduced_clock && i915_powersave) {
5535                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5536                                 intel_crtc->lowfreq_avail = true;
5537                         } else {
5538                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5539                         }
5540                 }
5541         }
5542
5543         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5544
5545         if (!is_dp || is_cpu_edp)
5546                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5547
5548         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5549                 if (is_cpu_edp)
5550                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5551
5552         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5553
5554         /* Set up the display plane register */
5555         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5556         POSTING_READ(DSPCNTR(plane));
5557
5558         ret = intel_pipe_set_base(crtc, x, y, fb);
5559
5560         intel_update_watermarks(dev);
5561
5562         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5563
5564         return ret;
5565 }
5566
5567 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5568                                struct drm_display_mode *mode,
5569                                struct drm_display_mode *adjusted_mode,
5570                                int x, int y,
5571                                struct drm_framebuffer *fb)
5572 {
5573         struct drm_device *dev = crtc->dev;
5574         struct drm_i915_private *dev_priv = dev->dev_private;
5575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576         int pipe = intel_crtc->pipe;
5577         int ret;
5578
5579         drm_vblank_pre_modeset(dev, pipe);
5580
5581         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5582                                               x, y, fb);
5583         drm_vblank_post_modeset(dev, pipe);
5584
5585         return ret;
5586 }
5587
5588 static bool intel_eld_uptodate(struct drm_connector *connector,
5589                                int reg_eldv, uint32_t bits_eldv,
5590                                int reg_elda, uint32_t bits_elda,
5591                                int reg_edid)
5592 {
5593         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5594         uint8_t *eld = connector->eld;
5595         uint32_t i;
5596
5597         i = I915_READ(reg_eldv);
5598         i &= bits_eldv;
5599
5600         if (!eld[0])
5601                 return !i;
5602
5603         if (!i)
5604                 return false;
5605
5606         i = I915_READ(reg_elda);
5607         i &= ~bits_elda;
5608         I915_WRITE(reg_elda, i);
5609
5610         for (i = 0; i < eld[2]; i++)
5611                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5612                         return false;
5613
5614         return true;
5615 }
5616
5617 static void g4x_write_eld(struct drm_connector *connector,
5618                           struct drm_crtc *crtc)
5619 {
5620         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5621         uint8_t *eld = connector->eld;
5622         uint32_t eldv;
5623         uint32_t len;
5624         uint32_t i;
5625
5626         i = I915_READ(G4X_AUD_VID_DID);
5627
5628         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5629                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5630         else
5631                 eldv = G4X_ELDV_DEVCTG;
5632
5633         if (intel_eld_uptodate(connector,
5634                                G4X_AUD_CNTL_ST, eldv,
5635                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5636                                G4X_HDMIW_HDMIEDID))
5637                 return;
5638
5639         i = I915_READ(G4X_AUD_CNTL_ST);
5640         i &= ~(eldv | G4X_ELD_ADDR);
5641         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5642         I915_WRITE(G4X_AUD_CNTL_ST, i);
5643
5644         if (!eld[0])
5645                 return;
5646
5647         len = min_t(uint8_t, eld[2], len);
5648         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5649         for (i = 0; i < len; i++)
5650                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5651
5652         i = I915_READ(G4X_AUD_CNTL_ST);
5653         i |= eldv;
5654         I915_WRITE(G4X_AUD_CNTL_ST, i);
5655 }
5656
5657 static void haswell_write_eld(struct drm_connector *connector,
5658                                      struct drm_crtc *crtc)
5659 {
5660         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5661         uint8_t *eld = connector->eld;
5662         struct drm_device *dev = crtc->dev;
5663         uint32_t eldv;
5664         uint32_t i;
5665         int len;
5666         int pipe = to_intel_crtc(crtc)->pipe;
5667         int tmp;
5668
5669         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5670         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5671         int aud_config = HSW_AUD_CFG(pipe);
5672         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5673
5674
5675         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5676
5677         /* Audio output enable */
5678         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5679         tmp = I915_READ(aud_cntrl_st2);
5680         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5681         I915_WRITE(aud_cntrl_st2, tmp);
5682
5683         /* Wait for 1 vertical blank */
5684         intel_wait_for_vblank(dev, pipe);
5685
5686         /* Set ELD valid state */
5687         tmp = I915_READ(aud_cntrl_st2);
5688         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5689         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5690         I915_WRITE(aud_cntrl_st2, tmp);
5691         tmp = I915_READ(aud_cntrl_st2);
5692         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5693
5694         /* Enable HDMI mode */
5695         tmp = I915_READ(aud_config);
5696         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5697         /* clear N_programing_enable and N_value_index */
5698         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5699         I915_WRITE(aud_config, tmp);
5700
5701         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5702
5703         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5704
5705         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5706                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5707                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5708                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5709         } else
5710                 I915_WRITE(aud_config, 0);
5711
5712         if (intel_eld_uptodate(connector,
5713                                aud_cntrl_st2, eldv,
5714                                aud_cntl_st, IBX_ELD_ADDRESS,
5715                                hdmiw_hdmiedid))
5716                 return;
5717
5718         i = I915_READ(aud_cntrl_st2);
5719         i &= ~eldv;
5720         I915_WRITE(aud_cntrl_st2, i);
5721
5722         if (!eld[0])
5723                 return;
5724
5725         i = I915_READ(aud_cntl_st);
5726         i &= ~IBX_ELD_ADDRESS;
5727         I915_WRITE(aud_cntl_st, i);
5728         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5729         DRM_DEBUG_DRIVER("port num:%d\n", i);
5730
5731         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5732         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5733         for (i = 0; i < len; i++)
5734                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5735
5736         i = I915_READ(aud_cntrl_st2);
5737         i |= eldv;
5738         I915_WRITE(aud_cntrl_st2, i);
5739
5740 }
5741
5742 static void ironlake_write_eld(struct drm_connector *connector,
5743                                      struct drm_crtc *crtc)
5744 {
5745         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5746         uint8_t *eld = connector->eld;
5747         uint32_t eldv;
5748         uint32_t i;
5749         int len;
5750         int hdmiw_hdmiedid;
5751         int aud_config;
5752         int aud_cntl_st;
5753         int aud_cntrl_st2;
5754         int pipe = to_intel_crtc(crtc)->pipe;
5755
5756         if (HAS_PCH_IBX(connector->dev)) {
5757                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5758                 aud_config = IBX_AUD_CFG(pipe);
5759                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5760                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5761         } else {
5762                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5763                 aud_config = CPT_AUD_CFG(pipe);
5764                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5765                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5766         }
5767
5768         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5769
5770         i = I915_READ(aud_cntl_st);
5771         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5772         if (!i) {
5773                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5774                 /* operate blindly on all ports */
5775                 eldv = IBX_ELD_VALIDB;
5776                 eldv |= IBX_ELD_VALIDB << 4;
5777                 eldv |= IBX_ELD_VALIDB << 8;
5778         } else {
5779                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5780                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5781         }
5782
5783         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5784                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5785                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5786                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5787         } else
5788                 I915_WRITE(aud_config, 0);
5789
5790         if (intel_eld_uptodate(connector,
5791                                aud_cntrl_st2, eldv,
5792                                aud_cntl_st, IBX_ELD_ADDRESS,
5793                                hdmiw_hdmiedid))
5794                 return;
5795
5796         i = I915_READ(aud_cntrl_st2);
5797         i &= ~eldv;
5798         I915_WRITE(aud_cntrl_st2, i);
5799
5800         if (!eld[0])
5801                 return;
5802
5803         i = I915_READ(aud_cntl_st);
5804         i &= ~IBX_ELD_ADDRESS;
5805         I915_WRITE(aud_cntl_st, i);
5806
5807         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5808         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5809         for (i = 0; i < len; i++)
5810                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5811
5812         i = I915_READ(aud_cntrl_st2);
5813         i |= eldv;
5814         I915_WRITE(aud_cntrl_st2, i);
5815 }
5816
5817 void intel_write_eld(struct drm_encoder *encoder,
5818                      struct drm_display_mode *mode)
5819 {
5820         struct drm_crtc *crtc = encoder->crtc;
5821         struct drm_connector *connector;
5822         struct drm_device *dev = encoder->dev;
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824
5825         connector = drm_select_eld(encoder, mode);
5826         if (!connector)
5827                 return;
5828
5829         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5830                          connector->base.id,
5831                          drm_get_connector_name(connector),
5832                          connector->encoder->base.id,
5833                          drm_get_encoder_name(connector->encoder));
5834
5835         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5836
5837         if (dev_priv->display.write_eld)
5838                 dev_priv->display.write_eld(connector, crtc);
5839 }
5840
5841 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5842 void intel_crtc_load_lut(struct drm_crtc *crtc)
5843 {
5844         struct drm_device *dev = crtc->dev;
5845         struct drm_i915_private *dev_priv = dev->dev_private;
5846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5847         int palreg = PALETTE(intel_crtc->pipe);
5848         int i;
5849
5850         /* The clocks have to be on to load the palette. */
5851         if (!crtc->enabled || !intel_crtc->active)
5852                 return;
5853
5854         /* use legacy palette for Ironlake */
5855         if (HAS_PCH_SPLIT(dev))
5856                 palreg = LGC_PALETTE(intel_crtc->pipe);
5857
5858         for (i = 0; i < 256; i++) {
5859                 I915_WRITE(palreg + 4 * i,
5860                            (intel_crtc->lut_r[i] << 16) |
5861                            (intel_crtc->lut_g[i] << 8) |
5862                            intel_crtc->lut_b[i]);
5863         }
5864 }
5865
5866 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5867 {
5868         struct drm_device *dev = crtc->dev;
5869         struct drm_i915_private *dev_priv = dev->dev_private;
5870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5871         bool visible = base != 0;
5872         u32 cntl;
5873
5874         if (intel_crtc->cursor_visible == visible)
5875                 return;
5876
5877         cntl = I915_READ(_CURACNTR);
5878         if (visible) {
5879                 /* On these chipsets we can only modify the base whilst
5880                  * the cursor is disabled.
5881                  */
5882                 I915_WRITE(_CURABASE, base);
5883
5884                 cntl &= ~(CURSOR_FORMAT_MASK);
5885                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5886                 cntl |= CURSOR_ENABLE |
5887                         CURSOR_GAMMA_ENABLE |
5888                         CURSOR_FORMAT_ARGB;
5889         } else
5890                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5891         I915_WRITE(_CURACNTR, cntl);
5892
5893         intel_crtc->cursor_visible = visible;
5894 }
5895
5896 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5897 {
5898         struct drm_device *dev = crtc->dev;
5899         struct drm_i915_private *dev_priv = dev->dev_private;
5900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5901         int pipe = intel_crtc->pipe;
5902         bool visible = base != 0;
5903
5904         if (intel_crtc->cursor_visible != visible) {
5905                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5906                 if (base) {
5907                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5908                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5909                         cntl |= pipe << 28; /* Connect to correct pipe */
5910                 } else {
5911                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5912                         cntl |= CURSOR_MODE_DISABLE;
5913                 }
5914                 I915_WRITE(CURCNTR(pipe), cntl);
5915
5916                 intel_crtc->cursor_visible = visible;
5917         }
5918         /* and commit changes on next vblank */
5919         I915_WRITE(CURBASE(pipe), base);
5920 }
5921
5922 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5923 {
5924         struct drm_device *dev = crtc->dev;
5925         struct drm_i915_private *dev_priv = dev->dev_private;
5926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5927         int pipe = intel_crtc->pipe;
5928         bool visible = base != 0;
5929
5930         if (intel_crtc->cursor_visible != visible) {
5931                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5932                 if (base) {
5933                         cntl &= ~CURSOR_MODE;
5934                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5935                 } else {
5936                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5937                         cntl |= CURSOR_MODE_DISABLE;
5938                 }
5939                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5940
5941                 intel_crtc->cursor_visible = visible;
5942         }
5943         /* and commit changes on next vblank */
5944         I915_WRITE(CURBASE_IVB(pipe), base);
5945 }
5946
5947 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5948 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5949                                      bool on)
5950 {
5951         struct drm_device *dev = crtc->dev;
5952         struct drm_i915_private *dev_priv = dev->dev_private;
5953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5954         int pipe = intel_crtc->pipe;
5955         int x = intel_crtc->cursor_x;
5956         int y = intel_crtc->cursor_y;
5957         u32 base, pos;
5958         bool visible;
5959
5960         pos = 0;
5961
5962         if (on && crtc->enabled && crtc->fb) {
5963                 base = intel_crtc->cursor_addr;
5964                 if (x > (int) crtc->fb->width)
5965                         base = 0;
5966
5967                 if (y > (int) crtc->fb->height)
5968                         base = 0;
5969         } else
5970                 base = 0;
5971
5972         if (x < 0) {
5973                 if (x + intel_crtc->cursor_width < 0)
5974                         base = 0;
5975
5976                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5977                 x = -x;
5978         }
5979         pos |= x << CURSOR_X_SHIFT;
5980
5981         if (y < 0) {
5982                 if (y + intel_crtc->cursor_height < 0)
5983                         base = 0;
5984
5985                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5986                 y = -y;
5987         }
5988         pos |= y << CURSOR_Y_SHIFT;
5989
5990         visible = base != 0;
5991         if (!visible && !intel_crtc->cursor_visible)
5992                 return;
5993
5994         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5995                 I915_WRITE(CURPOS_IVB(pipe), pos);
5996                 ivb_update_cursor(crtc, base);
5997         } else {
5998                 I915_WRITE(CURPOS(pipe), pos);
5999                 if (IS_845G(dev) || IS_I865G(dev))
6000                         i845_update_cursor(crtc, base);
6001                 else
6002                         i9xx_update_cursor(crtc, base);
6003         }
6004 }
6005
6006 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6007                                  struct drm_file *file,
6008                                  uint32_t handle,
6009                                  uint32_t width, uint32_t height)
6010 {
6011         struct drm_device *dev = crtc->dev;
6012         struct drm_i915_private *dev_priv = dev->dev_private;
6013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6014         struct drm_i915_gem_object *obj;
6015         uint32_t addr;
6016         int ret;
6017
6018         /* if we want to turn off the cursor ignore width and height */
6019         if (!handle) {
6020                 DRM_DEBUG_KMS("cursor off\n");
6021                 addr = 0;
6022                 obj = NULL;
6023                 mutex_lock(&dev->struct_mutex);
6024                 goto finish;
6025         }
6026
6027         /* Currently we only support 64x64 cursors */
6028         if (width != 64 || height != 64) {
6029                 DRM_ERROR("we currently only support 64x64 cursors\n");
6030                 return -EINVAL;
6031         }
6032
6033         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6034         if (&obj->base == NULL)
6035                 return -ENOENT;
6036
6037         if (obj->base.size < width * height * 4) {
6038                 DRM_ERROR("buffer is to small\n");
6039                 ret = -ENOMEM;
6040                 goto fail;
6041         }
6042
6043         /* we only need to pin inside GTT if cursor is non-phy */
6044         mutex_lock(&dev->struct_mutex);
6045         if (!dev_priv->info->cursor_needs_physical) {
6046                 if (obj->tiling_mode) {
6047                         DRM_ERROR("cursor cannot be tiled\n");
6048                         ret = -EINVAL;
6049                         goto fail_locked;
6050                 }
6051
6052                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6053                 if (ret) {
6054                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6055                         goto fail_locked;
6056                 }
6057
6058                 ret = i915_gem_object_put_fence(obj);
6059                 if (ret) {
6060                         DRM_ERROR("failed to release fence for cursor");
6061                         goto fail_unpin;
6062                 }
6063
6064                 addr = obj->gtt_offset;
6065         } else {
6066                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6067                 ret = i915_gem_attach_phys_object(dev, obj,
6068                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6069                                                   align);
6070                 if (ret) {
6071                         DRM_ERROR("failed to attach phys object\n");
6072                         goto fail_locked;
6073                 }
6074                 addr = obj->phys_obj->handle->busaddr;
6075         }
6076
6077         if (IS_GEN2(dev))
6078                 I915_WRITE(CURSIZE, (height << 12) | width);
6079
6080  finish:
6081         if (intel_crtc->cursor_bo) {
6082                 if (dev_priv->info->cursor_needs_physical) {
6083                         if (intel_crtc->cursor_bo != obj)
6084                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6085                 } else
6086                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6087                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6088         }
6089
6090         mutex_unlock(&dev->struct_mutex);
6091
6092         intel_crtc->cursor_addr = addr;
6093         intel_crtc->cursor_bo = obj;
6094         intel_crtc->cursor_width = width;
6095         intel_crtc->cursor_height = height;
6096
6097         intel_crtc_update_cursor(crtc, true);
6098
6099         return 0;
6100 fail_unpin:
6101         i915_gem_object_unpin(obj);
6102 fail_locked:
6103         mutex_unlock(&dev->struct_mutex);
6104 fail:
6105         drm_gem_object_unreference_unlocked(&obj->base);
6106         return ret;
6107 }
6108
6109 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6110 {
6111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6112
6113         intel_crtc->cursor_x = x;
6114         intel_crtc->cursor_y = y;
6115
6116         intel_crtc_update_cursor(crtc, true);
6117
6118         return 0;
6119 }
6120
6121 /** Sets the color ramps on behalf of RandR */
6122 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6123                                  u16 blue, int regno)
6124 {
6125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6126
6127         intel_crtc->lut_r[regno] = red >> 8;
6128         intel_crtc->lut_g[regno] = green >> 8;
6129         intel_crtc->lut_b[regno] = blue >> 8;
6130 }
6131
6132 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6133                              u16 *blue, int regno)
6134 {
6135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6136
6137         *red = intel_crtc->lut_r[regno] << 8;
6138         *green = intel_crtc->lut_g[regno] << 8;
6139         *blue = intel_crtc->lut_b[regno] << 8;
6140 }
6141
6142 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6143                                  u16 *blue, uint32_t start, uint32_t size)
6144 {
6145         int end = (start + size > 256) ? 256 : start + size, i;
6146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6147
6148         for (i = start; i < end; i++) {
6149                 intel_crtc->lut_r[i] = red[i] >> 8;
6150                 intel_crtc->lut_g[i] = green[i] >> 8;
6151                 intel_crtc->lut_b[i] = blue[i] >> 8;
6152         }
6153
6154         intel_crtc_load_lut(crtc);
6155 }
6156
6157 /**
6158  * Get a pipe with a simple mode set on it for doing load-based monitor
6159  * detection.
6160  *
6161  * It will be up to the load-detect code to adjust the pipe as appropriate for
6162  * its requirements.  The pipe will be connected to no other encoders.
6163  *
6164  * Currently this code will only succeed if there is a pipe with no encoders
6165  * configured for it.  In the future, it could choose to temporarily disable
6166  * some outputs to free up a pipe for its use.
6167  *
6168  * \return crtc, or NULL if no pipes are available.
6169  */
6170
6171 /* VESA 640x480x72Hz mode to set on the pipe */
6172 static struct drm_display_mode load_detect_mode = {
6173         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6174                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6175 };
6176
6177 static struct drm_framebuffer *
6178 intel_framebuffer_create(struct drm_device *dev,
6179                          struct drm_mode_fb_cmd2 *mode_cmd,
6180                          struct drm_i915_gem_object *obj)
6181 {
6182         struct intel_framebuffer *intel_fb;
6183         int ret;
6184
6185         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6186         if (!intel_fb) {
6187                 drm_gem_object_unreference_unlocked(&obj->base);
6188                 return ERR_PTR(-ENOMEM);
6189         }
6190
6191         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6192         if (ret) {
6193                 drm_gem_object_unreference_unlocked(&obj->base);
6194                 kfree(intel_fb);
6195                 return ERR_PTR(ret);
6196         }
6197
6198         return &intel_fb->base;
6199 }
6200
6201 static u32
6202 intel_framebuffer_pitch_for_width(int width, int bpp)
6203 {
6204         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6205         return ALIGN(pitch, 64);
6206 }
6207
6208 static u32
6209 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6210 {
6211         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6212         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6213 }
6214
6215 static struct drm_framebuffer *
6216 intel_framebuffer_create_for_mode(struct drm_device *dev,
6217                                   struct drm_display_mode *mode,
6218                                   int depth, int bpp)
6219 {
6220         struct drm_i915_gem_object *obj;
6221         struct drm_mode_fb_cmd2 mode_cmd;
6222
6223         obj = i915_gem_alloc_object(dev,
6224                                     intel_framebuffer_size_for_mode(mode, bpp));
6225         if (obj == NULL)
6226                 return ERR_PTR(-ENOMEM);
6227
6228         mode_cmd.width = mode->hdisplay;
6229         mode_cmd.height = mode->vdisplay;
6230         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6231                                                                 bpp);
6232         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6233
6234         return intel_framebuffer_create(dev, &mode_cmd, obj);
6235 }
6236
6237 static struct drm_framebuffer *
6238 mode_fits_in_fbdev(struct drm_device *dev,
6239                    struct drm_display_mode *mode)
6240 {
6241         struct drm_i915_private *dev_priv = dev->dev_private;
6242         struct drm_i915_gem_object *obj;
6243         struct drm_framebuffer *fb;
6244
6245         if (dev_priv->fbdev == NULL)
6246                 return NULL;
6247
6248         obj = dev_priv->fbdev->ifb.obj;
6249         if (obj == NULL)
6250                 return NULL;
6251
6252         fb = &dev_priv->fbdev->ifb.base;
6253         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6254                                                                fb->bits_per_pixel))
6255                 return NULL;
6256
6257         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6258                 return NULL;
6259
6260         return fb;
6261 }
6262
6263 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6264                                 struct drm_display_mode *mode,
6265                                 struct intel_load_detect_pipe *old)
6266 {
6267         struct intel_crtc *intel_crtc;
6268         struct intel_encoder *intel_encoder =
6269                 intel_attached_encoder(connector);
6270         struct drm_crtc *possible_crtc;
6271         struct drm_encoder *encoder = &intel_encoder->base;
6272         struct drm_crtc *crtc = NULL;
6273         struct drm_device *dev = encoder->dev;
6274         struct drm_framebuffer *fb;
6275         int i = -1;
6276
6277         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6278                       connector->base.id, drm_get_connector_name(connector),
6279                       encoder->base.id, drm_get_encoder_name(encoder));
6280
6281         /*
6282          * Algorithm gets a little messy:
6283          *
6284          *   - if the connector already has an assigned crtc, use it (but make
6285          *     sure it's on first)
6286          *
6287          *   - try to find the first unused crtc that can drive this connector,
6288          *     and use that if we find one
6289          */
6290
6291         /* See if we already have a CRTC for this connector */
6292         if (encoder->crtc) {
6293                 crtc = encoder->crtc;
6294
6295                 old->dpms_mode = connector->dpms;
6296                 old->load_detect_temp = false;
6297
6298                 /* Make sure the crtc and connector are running */
6299                 if (connector->dpms != DRM_MODE_DPMS_ON)
6300                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6301
6302                 return true;
6303         }
6304
6305         /* Find an unused one (if possible) */
6306         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6307                 i++;
6308                 if (!(encoder->possible_crtcs & (1 << i)))
6309                         continue;
6310                 if (!possible_crtc->enabled) {
6311                         crtc = possible_crtc;
6312                         break;
6313                 }
6314         }
6315
6316         /*
6317          * If we didn't find an unused CRTC, don't use any.
6318          */
6319         if (!crtc) {
6320                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6321                 return false;
6322         }
6323
6324         intel_encoder->new_crtc = to_intel_crtc(crtc);
6325         to_intel_connector(connector)->new_encoder = intel_encoder;
6326
6327         intel_crtc = to_intel_crtc(crtc);
6328         old->dpms_mode = connector->dpms;
6329         old->load_detect_temp = true;
6330         old->release_fb = NULL;
6331
6332         if (!mode)
6333                 mode = &load_detect_mode;
6334
6335         /* We need a framebuffer large enough to accommodate all accesses
6336          * that the plane may generate whilst we perform load detection.
6337          * We can not rely on the fbcon either being present (we get called
6338          * during its initialisation to detect all boot displays, or it may
6339          * not even exist) or that it is large enough to satisfy the
6340          * requested mode.
6341          */
6342         fb = mode_fits_in_fbdev(dev, mode);
6343         if (fb == NULL) {
6344                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6345                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6346                 old->release_fb = fb;
6347         } else
6348                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6349         if (IS_ERR(fb)) {
6350                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6351                 goto fail;
6352         }
6353
6354         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6355                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6356                 if (old->release_fb)
6357                         old->release_fb->funcs->destroy(old->release_fb);
6358                 goto fail;
6359         }
6360
6361         /* let the connector get through one full cycle before testing */
6362         intel_wait_for_vblank(dev, intel_crtc->pipe);
6363
6364         return true;
6365 fail:
6366         connector->encoder = NULL;
6367         encoder->crtc = NULL;
6368         return false;
6369 }
6370
6371 void intel_release_load_detect_pipe(struct drm_connector *connector,
6372                                     struct intel_load_detect_pipe *old)
6373 {
6374         struct intel_encoder *intel_encoder =
6375                 intel_attached_encoder(connector);
6376         struct drm_encoder *encoder = &intel_encoder->base;
6377
6378         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6379                       connector->base.id, drm_get_connector_name(connector),
6380                       encoder->base.id, drm_get_encoder_name(encoder));
6381
6382         if (old->load_detect_temp) {
6383                 struct drm_crtc *crtc = encoder->crtc;
6384
6385                 to_intel_connector(connector)->new_encoder = NULL;
6386                 intel_encoder->new_crtc = NULL;
6387                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6388
6389                 if (old->release_fb)
6390                         old->release_fb->funcs->destroy(old->release_fb);
6391
6392                 return;
6393         }
6394
6395         /* Switch crtc and encoder back off if necessary */
6396         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6397                 connector->funcs->dpms(connector, old->dpms_mode);
6398 }
6399
6400 /* Returns the clock of the currently programmed mode of the given pipe. */
6401 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6402 {
6403         struct drm_i915_private *dev_priv = dev->dev_private;
6404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6405         int pipe = intel_crtc->pipe;
6406         u32 dpll = I915_READ(DPLL(pipe));
6407         u32 fp;
6408         intel_clock_t clock;
6409
6410         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6411                 fp = I915_READ(FP0(pipe));
6412         else
6413                 fp = I915_READ(FP1(pipe));
6414
6415         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6416         if (IS_PINEVIEW(dev)) {
6417                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6418                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6419         } else {
6420                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6421                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6422         }
6423
6424         if (!IS_GEN2(dev)) {
6425                 if (IS_PINEVIEW(dev))
6426                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6427                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6428                 else
6429                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6430                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6431
6432                 switch (dpll & DPLL_MODE_MASK) {
6433                 case DPLLB_MODE_DAC_SERIAL:
6434                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6435                                 5 : 10;
6436                         break;
6437                 case DPLLB_MODE_LVDS:
6438                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6439                                 7 : 14;
6440                         break;
6441                 default:
6442                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6443                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6444                         return 0;
6445                 }
6446
6447                 /* XXX: Handle the 100Mhz refclk */
6448                 intel_clock(dev, 96000, &clock);
6449         } else {
6450                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6451
6452                 if (is_lvds) {
6453                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6454                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6455                         clock.p2 = 14;
6456
6457                         if ((dpll & PLL_REF_INPUT_MASK) ==
6458                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6459                                 /* XXX: might not be 66MHz */
6460                                 intel_clock(dev, 66000, &clock);
6461                         } else
6462                                 intel_clock(dev, 48000, &clock);
6463                 } else {
6464                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6465                                 clock.p1 = 2;
6466                         else {
6467                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6468                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6469                         }
6470                         if (dpll & PLL_P2_DIVIDE_BY_4)
6471                                 clock.p2 = 4;
6472                         else
6473                                 clock.p2 = 2;
6474
6475                         intel_clock(dev, 48000, &clock);
6476                 }
6477         }
6478
6479         /* XXX: It would be nice to validate the clocks, but we can't reuse
6480          * i830PllIsValid() because it relies on the xf86_config connector
6481          * configuration being accurate, which it isn't necessarily.
6482          */
6483
6484         return clock.dot;
6485 }
6486
6487 /** Returns the currently programmed mode of the given pipe. */
6488 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6489                                              struct drm_crtc *crtc)
6490 {
6491         struct drm_i915_private *dev_priv = dev->dev_private;
6492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6493         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6494         struct drm_display_mode *mode;
6495         int htot = I915_READ(HTOTAL(cpu_transcoder));
6496         int hsync = I915_READ(HSYNC(cpu_transcoder));
6497         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6498         int vsync = I915_READ(VSYNC(cpu_transcoder));
6499
6500         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6501         if (!mode)
6502                 return NULL;
6503
6504         mode->clock = intel_crtc_clock_get(dev, crtc);
6505         mode->hdisplay = (htot & 0xffff) + 1;
6506         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6507         mode->hsync_start = (hsync & 0xffff) + 1;
6508         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6509         mode->vdisplay = (vtot & 0xffff) + 1;
6510         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6511         mode->vsync_start = (vsync & 0xffff) + 1;
6512         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6513
6514         drm_mode_set_name(mode);
6515
6516         return mode;
6517 }
6518
6519 static void intel_increase_pllclock(struct drm_crtc *crtc)
6520 {
6521         struct drm_device *dev = crtc->dev;
6522         drm_i915_private_t *dev_priv = dev->dev_private;
6523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6524         int pipe = intel_crtc->pipe;
6525         int dpll_reg = DPLL(pipe);
6526         int dpll;
6527
6528         if (HAS_PCH_SPLIT(dev))
6529                 return;
6530
6531         if (!dev_priv->lvds_downclock_avail)
6532                 return;
6533
6534         dpll = I915_READ(dpll_reg);
6535         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6536                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6537
6538                 assert_panel_unlocked(dev_priv, pipe);
6539
6540                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6541                 I915_WRITE(dpll_reg, dpll);
6542                 intel_wait_for_vblank(dev, pipe);
6543
6544                 dpll = I915_READ(dpll_reg);
6545                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6546                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6547         }
6548 }
6549
6550 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6551 {
6552         struct drm_device *dev = crtc->dev;
6553         drm_i915_private_t *dev_priv = dev->dev_private;
6554         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6555
6556         if (HAS_PCH_SPLIT(dev))
6557                 return;
6558
6559         if (!dev_priv->lvds_downclock_avail)
6560                 return;
6561
6562         /*
6563          * Since this is called by a timer, we should never get here in
6564          * the manual case.
6565          */
6566         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6567                 int pipe = intel_crtc->pipe;
6568                 int dpll_reg = DPLL(pipe);
6569                 int dpll;
6570
6571                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6572
6573                 assert_panel_unlocked(dev_priv, pipe);
6574
6575                 dpll = I915_READ(dpll_reg);
6576                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6577                 I915_WRITE(dpll_reg, dpll);
6578                 intel_wait_for_vblank(dev, pipe);
6579                 dpll = I915_READ(dpll_reg);
6580                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6581                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6582         }
6583
6584 }
6585
6586 void intel_mark_busy(struct drm_device *dev)
6587 {
6588         i915_update_gfx_val(dev->dev_private);
6589 }
6590
6591 void intel_mark_idle(struct drm_device *dev)
6592 {
6593 }
6594
6595 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6596 {
6597         struct drm_device *dev = obj->base.dev;
6598         struct drm_crtc *crtc;
6599
6600         if (!i915_powersave)
6601                 return;
6602
6603         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6604                 if (!crtc->fb)
6605                         continue;
6606
6607                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6608                         intel_increase_pllclock(crtc);
6609         }
6610 }
6611
6612 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6613 {
6614         struct drm_device *dev = obj->base.dev;
6615         struct drm_crtc *crtc;
6616
6617         if (!i915_powersave)
6618                 return;
6619
6620         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6621                 if (!crtc->fb)
6622                         continue;
6623
6624                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6625                         intel_decrease_pllclock(crtc);
6626         }
6627 }
6628
6629 static void intel_crtc_destroy(struct drm_crtc *crtc)
6630 {
6631         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6632         struct drm_device *dev = crtc->dev;
6633         struct intel_unpin_work *work;
6634         unsigned long flags;
6635
6636         spin_lock_irqsave(&dev->event_lock, flags);
6637         work = intel_crtc->unpin_work;
6638         intel_crtc->unpin_work = NULL;
6639         spin_unlock_irqrestore(&dev->event_lock, flags);
6640
6641         if (work) {
6642                 cancel_work_sync(&work->work);
6643                 kfree(work);
6644         }
6645
6646         drm_crtc_cleanup(crtc);
6647
6648         kfree(intel_crtc);
6649 }
6650
6651 static void intel_unpin_work_fn(struct work_struct *__work)
6652 {
6653         struct intel_unpin_work *work =
6654                 container_of(__work, struct intel_unpin_work, work);
6655
6656         mutex_lock(&work->dev->struct_mutex);
6657         intel_unpin_fb_obj(work->old_fb_obj);
6658         drm_gem_object_unreference(&work->pending_flip_obj->base);
6659         drm_gem_object_unreference(&work->old_fb_obj->base);
6660
6661         intel_update_fbc(work->dev);
6662         mutex_unlock(&work->dev->struct_mutex);
6663         kfree(work);
6664 }
6665
6666 static void do_intel_finish_page_flip(struct drm_device *dev,
6667                                       struct drm_crtc *crtc)
6668 {
6669         drm_i915_private_t *dev_priv = dev->dev_private;
6670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6671         struct intel_unpin_work *work;
6672         struct drm_i915_gem_object *obj;
6673         struct drm_pending_vblank_event *e;
6674         struct timeval tvbl;
6675         unsigned long flags;
6676
6677         /* Ignore early vblank irqs */
6678         if (intel_crtc == NULL)
6679                 return;
6680
6681         spin_lock_irqsave(&dev->event_lock, flags);
6682         work = intel_crtc->unpin_work;
6683         if (work == NULL || !work->pending) {
6684                 spin_unlock_irqrestore(&dev->event_lock, flags);
6685                 return;
6686         }
6687
6688         intel_crtc->unpin_work = NULL;
6689
6690         if (work->event) {
6691                 e = work->event;
6692                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6693
6694                 e->event.tv_sec = tvbl.tv_sec;
6695                 e->event.tv_usec = tvbl.tv_usec;
6696
6697                 list_add_tail(&e->base.link,
6698                               &e->base.file_priv->event_list);
6699                 wake_up_interruptible(&e->base.file_priv->event_wait);
6700         }
6701
6702         drm_vblank_put(dev, intel_crtc->pipe);
6703
6704         spin_unlock_irqrestore(&dev->event_lock, flags);
6705
6706         obj = work->old_fb_obj;
6707
6708         atomic_clear_mask(1 << intel_crtc->plane,
6709                           &obj->pending_flip.counter);
6710
6711         wake_up(&dev_priv->pending_flip_queue);
6712         schedule_work(&work->work);
6713
6714         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6715 }
6716
6717 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6718 {
6719         drm_i915_private_t *dev_priv = dev->dev_private;
6720         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6721
6722         do_intel_finish_page_flip(dev, crtc);
6723 }
6724
6725 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6726 {
6727         drm_i915_private_t *dev_priv = dev->dev_private;
6728         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6729
6730         do_intel_finish_page_flip(dev, crtc);
6731 }
6732
6733 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6734 {
6735         drm_i915_private_t *dev_priv = dev->dev_private;
6736         struct intel_crtc *intel_crtc =
6737                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6738         unsigned long flags;
6739
6740         spin_lock_irqsave(&dev->event_lock, flags);
6741         if (intel_crtc->unpin_work) {
6742                 if ((++intel_crtc->unpin_work->pending) > 1)
6743                         DRM_ERROR("Prepared flip multiple times\n");
6744         } else {
6745                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6746         }
6747         spin_unlock_irqrestore(&dev->event_lock, flags);
6748 }
6749
6750 static int intel_gen2_queue_flip(struct drm_device *dev,
6751                                  struct drm_crtc *crtc,
6752                                  struct drm_framebuffer *fb,
6753                                  struct drm_i915_gem_object *obj)
6754 {
6755         struct drm_i915_private *dev_priv = dev->dev_private;
6756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6757         u32 flip_mask;
6758         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6759         int ret;
6760
6761         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6762         if (ret)
6763                 goto err;
6764
6765         ret = intel_ring_begin(ring, 6);
6766         if (ret)
6767                 goto err_unpin;
6768
6769         /* Can't queue multiple flips, so wait for the previous
6770          * one to finish before executing the next.
6771          */
6772         if (intel_crtc->plane)
6773                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6774         else
6775                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6776         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6777         intel_ring_emit(ring, MI_NOOP);
6778         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6779                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6780         intel_ring_emit(ring, fb->pitches[0]);
6781         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6782         intel_ring_emit(ring, 0); /* aux display base address, unused */
6783         intel_ring_advance(ring);
6784         return 0;
6785
6786 err_unpin:
6787         intel_unpin_fb_obj(obj);
6788 err:
6789         return ret;
6790 }
6791
6792 static int intel_gen3_queue_flip(struct drm_device *dev,
6793                                  struct drm_crtc *crtc,
6794                                  struct drm_framebuffer *fb,
6795                                  struct drm_i915_gem_object *obj)
6796 {
6797         struct drm_i915_private *dev_priv = dev->dev_private;
6798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6799         u32 flip_mask;
6800         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6801         int ret;
6802
6803         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6804         if (ret)
6805                 goto err;
6806
6807         ret = intel_ring_begin(ring, 6);
6808         if (ret)
6809                 goto err_unpin;
6810
6811         if (intel_crtc->plane)
6812                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6813         else
6814                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6815         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6816         intel_ring_emit(ring, MI_NOOP);
6817         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6818                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6819         intel_ring_emit(ring, fb->pitches[0]);
6820         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6821         intel_ring_emit(ring, MI_NOOP);
6822
6823         intel_ring_advance(ring);
6824         return 0;
6825
6826 err_unpin:
6827         intel_unpin_fb_obj(obj);
6828 err:
6829         return ret;
6830 }
6831
6832 static int intel_gen4_queue_flip(struct drm_device *dev,
6833                                  struct drm_crtc *crtc,
6834                                  struct drm_framebuffer *fb,
6835                                  struct drm_i915_gem_object *obj)
6836 {
6837         struct drm_i915_private *dev_priv = dev->dev_private;
6838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6839         uint32_t pf, pipesrc;
6840         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6841         int ret;
6842
6843         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6844         if (ret)
6845                 goto err;
6846
6847         ret = intel_ring_begin(ring, 4);
6848         if (ret)
6849                 goto err_unpin;
6850
6851         /* i965+ uses the linear or tiled offsets from the
6852          * Display Registers (which do not change across a page-flip)
6853          * so we need only reprogram the base address.
6854          */
6855         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6856                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6857         intel_ring_emit(ring, fb->pitches[0]);
6858         intel_ring_emit(ring,
6859                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6860                         obj->tiling_mode);
6861
6862         /* XXX Enabling the panel-fitter across page-flip is so far
6863          * untested on non-native modes, so ignore it for now.
6864          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6865          */
6866         pf = 0;
6867         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6868         intel_ring_emit(ring, pf | pipesrc);
6869         intel_ring_advance(ring);
6870         return 0;
6871
6872 err_unpin:
6873         intel_unpin_fb_obj(obj);
6874 err:
6875         return ret;
6876 }
6877
6878 static int intel_gen6_queue_flip(struct drm_device *dev,
6879                                  struct drm_crtc *crtc,
6880                                  struct drm_framebuffer *fb,
6881                                  struct drm_i915_gem_object *obj)
6882 {
6883         struct drm_i915_private *dev_priv = dev->dev_private;
6884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6885         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6886         uint32_t pf, pipesrc;
6887         int ret;
6888
6889         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6890         if (ret)
6891                 goto err;
6892
6893         ret = intel_ring_begin(ring, 4);
6894         if (ret)
6895                 goto err_unpin;
6896
6897         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6898                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6899         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6900         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6901
6902         /* Contrary to the suggestions in the documentation,
6903          * "Enable Panel Fitter" does not seem to be required when page
6904          * flipping with a non-native mode, and worse causes a normal
6905          * modeset to fail.
6906          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6907          */
6908         pf = 0;
6909         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6910         intel_ring_emit(ring, pf | pipesrc);
6911         intel_ring_advance(ring);
6912         return 0;
6913
6914 err_unpin:
6915         intel_unpin_fb_obj(obj);
6916 err:
6917         return ret;
6918 }
6919
6920 /*
6921  * On gen7 we currently use the blit ring because (in early silicon at least)
6922  * the render ring doesn't give us interrpts for page flip completion, which
6923  * means clients will hang after the first flip is queued.  Fortunately the
6924  * blit ring generates interrupts properly, so use it instead.
6925  */
6926 static int intel_gen7_queue_flip(struct drm_device *dev,
6927                                  struct drm_crtc *crtc,
6928                                  struct drm_framebuffer *fb,
6929                                  struct drm_i915_gem_object *obj)
6930 {
6931         struct drm_i915_private *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6934         uint32_t plane_bit = 0;
6935         int ret;
6936
6937         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6938         if (ret)
6939                 goto err;
6940
6941         switch(intel_crtc->plane) {
6942         case PLANE_A:
6943                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6944                 break;
6945         case PLANE_B:
6946                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6947                 break;
6948         case PLANE_C:
6949                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6950                 break;
6951         default:
6952                 WARN_ONCE(1, "unknown plane in flip command\n");
6953                 ret = -ENODEV;
6954                 goto err_unpin;
6955         }
6956
6957         ret = intel_ring_begin(ring, 4);
6958         if (ret)
6959                 goto err_unpin;
6960
6961         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6962         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6963         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6964         intel_ring_emit(ring, (MI_NOOP));
6965         intel_ring_advance(ring);
6966         return 0;
6967
6968 err_unpin:
6969         intel_unpin_fb_obj(obj);
6970 err:
6971         return ret;
6972 }
6973
6974 static int intel_default_queue_flip(struct drm_device *dev,
6975                                     struct drm_crtc *crtc,
6976                                     struct drm_framebuffer *fb,
6977                                     struct drm_i915_gem_object *obj)
6978 {
6979         return -ENODEV;
6980 }
6981
6982 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6983                                 struct drm_framebuffer *fb,
6984                                 struct drm_pending_vblank_event *event)
6985 {
6986         struct drm_device *dev = crtc->dev;
6987         struct drm_i915_private *dev_priv = dev->dev_private;
6988         struct intel_framebuffer *intel_fb;
6989         struct drm_i915_gem_object *obj;
6990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6991         struct intel_unpin_work *work;
6992         unsigned long flags;
6993         int ret;
6994
6995         /* Can't change pixel format via MI display flips. */
6996         if (fb->pixel_format != crtc->fb->pixel_format)
6997                 return -EINVAL;
6998
6999         /*
7000          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7001          * Note that pitch changes could also affect these register.
7002          */
7003         if (INTEL_INFO(dev)->gen > 3 &&
7004             (fb->offsets[0] != crtc->fb->offsets[0] ||
7005              fb->pitches[0] != crtc->fb->pitches[0]))
7006                 return -EINVAL;
7007
7008         work = kzalloc(sizeof *work, GFP_KERNEL);
7009         if (work == NULL)
7010                 return -ENOMEM;
7011
7012         work->event = event;
7013         work->dev = crtc->dev;
7014         intel_fb = to_intel_framebuffer(crtc->fb);
7015         work->old_fb_obj = intel_fb->obj;
7016         INIT_WORK(&work->work, intel_unpin_work_fn);
7017
7018         ret = drm_vblank_get(dev, intel_crtc->pipe);
7019         if (ret)
7020                 goto free_work;
7021
7022         /* We borrow the event spin lock for protecting unpin_work */
7023         spin_lock_irqsave(&dev->event_lock, flags);
7024         if (intel_crtc->unpin_work) {
7025                 spin_unlock_irqrestore(&dev->event_lock, flags);
7026                 kfree(work);
7027                 drm_vblank_put(dev, intel_crtc->pipe);
7028
7029                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7030                 return -EBUSY;
7031         }
7032         intel_crtc->unpin_work = work;
7033         spin_unlock_irqrestore(&dev->event_lock, flags);
7034
7035         intel_fb = to_intel_framebuffer(fb);
7036         obj = intel_fb->obj;
7037
7038         ret = i915_mutex_lock_interruptible(dev);
7039         if (ret)
7040                 goto cleanup;
7041
7042         /* Reference the objects for the scheduled work. */
7043         drm_gem_object_reference(&work->old_fb_obj->base);
7044         drm_gem_object_reference(&obj->base);
7045
7046         crtc->fb = fb;
7047
7048         work->pending_flip_obj = obj;
7049
7050         work->enable_stall_check = true;
7051
7052         /* Block clients from rendering to the new back buffer until
7053          * the flip occurs and the object is no longer visible.
7054          */
7055         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7056
7057         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7058         if (ret)
7059                 goto cleanup_pending;
7060
7061         intel_disable_fbc(dev);
7062         intel_mark_fb_busy(obj);
7063         mutex_unlock(&dev->struct_mutex);
7064
7065         trace_i915_flip_request(intel_crtc->plane, obj);
7066
7067         return 0;
7068
7069 cleanup_pending:
7070         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7071         drm_gem_object_unreference(&work->old_fb_obj->base);
7072         drm_gem_object_unreference(&obj->base);
7073         mutex_unlock(&dev->struct_mutex);
7074
7075 cleanup:
7076         spin_lock_irqsave(&dev->event_lock, flags);
7077         intel_crtc->unpin_work = NULL;
7078         spin_unlock_irqrestore(&dev->event_lock, flags);
7079
7080         drm_vblank_put(dev, intel_crtc->pipe);
7081 free_work:
7082         kfree(work);
7083
7084         return ret;
7085 }
7086
7087 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7088         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7089         .load_lut = intel_crtc_load_lut,
7090         .disable = intel_crtc_noop,
7091 };
7092
7093 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7094 {
7095         struct intel_encoder *other_encoder;
7096         struct drm_crtc *crtc = &encoder->new_crtc->base;
7097
7098         if (WARN_ON(!crtc))
7099                 return false;
7100
7101         list_for_each_entry(other_encoder,
7102                             &crtc->dev->mode_config.encoder_list,
7103                             base.head) {
7104
7105                 if (&other_encoder->new_crtc->base != crtc ||
7106                     encoder == other_encoder)
7107                         continue;
7108                 else
7109                         return true;
7110         }
7111
7112         return false;
7113 }
7114
7115 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7116                                   struct drm_crtc *crtc)
7117 {
7118         struct drm_device *dev;
7119         struct drm_crtc *tmp;
7120         int crtc_mask = 1;
7121
7122         WARN(!crtc, "checking null crtc?\n");
7123
7124         dev = crtc->dev;
7125
7126         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7127                 if (tmp == crtc)
7128                         break;
7129                 crtc_mask <<= 1;
7130         }
7131
7132         if (encoder->possible_crtcs & crtc_mask)
7133                 return true;
7134         return false;
7135 }
7136
7137 /**
7138  * intel_modeset_update_staged_output_state
7139  *
7140  * Updates the staged output configuration state, e.g. after we've read out the
7141  * current hw state.
7142  */
7143 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7144 {
7145         struct intel_encoder *encoder;
7146         struct intel_connector *connector;
7147
7148         list_for_each_entry(connector, &dev->mode_config.connector_list,
7149                             base.head) {
7150                 connector->new_encoder =
7151                         to_intel_encoder(connector->base.encoder);
7152         }
7153
7154         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7155                             base.head) {
7156                 encoder->new_crtc =
7157                         to_intel_crtc(encoder->base.crtc);
7158         }
7159 }
7160
7161 /**
7162  * intel_modeset_commit_output_state
7163  *
7164  * This function copies the stage display pipe configuration to the real one.
7165  */
7166 static void intel_modeset_commit_output_state(struct drm_device *dev)
7167 {
7168         struct intel_encoder *encoder;
7169         struct intel_connector *connector;
7170
7171         list_for_each_entry(connector, &dev->mode_config.connector_list,
7172                             base.head) {
7173                 connector->base.encoder = &connector->new_encoder->base;
7174         }
7175
7176         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7177                             base.head) {
7178                 encoder->base.crtc = &encoder->new_crtc->base;
7179         }
7180 }
7181
7182 static struct drm_display_mode *
7183 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7184                             struct drm_display_mode *mode)
7185 {
7186         struct drm_device *dev = crtc->dev;
7187         struct drm_display_mode *adjusted_mode;
7188         struct drm_encoder_helper_funcs *encoder_funcs;
7189         struct intel_encoder *encoder;
7190
7191         adjusted_mode = drm_mode_duplicate(dev, mode);
7192         if (!adjusted_mode)
7193                 return ERR_PTR(-ENOMEM);
7194
7195         /* Pass our mode to the connectors and the CRTC to give them a chance to
7196          * adjust it according to limitations or connector properties, and also
7197          * a chance to reject the mode entirely.
7198          */
7199         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7200                             base.head) {
7201
7202                 if (&encoder->new_crtc->base != crtc)
7203                         continue;
7204                 encoder_funcs = encoder->base.helper_private;
7205                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7206                                                 adjusted_mode))) {
7207                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7208                         goto fail;
7209                 }
7210         }
7211
7212         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7213                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7214                 goto fail;
7215         }
7216         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7217
7218         return adjusted_mode;
7219 fail:
7220         drm_mode_destroy(dev, adjusted_mode);
7221         return ERR_PTR(-EINVAL);
7222 }
7223
7224 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7225  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7226 static void
7227 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7228                              unsigned *prepare_pipes, unsigned *disable_pipes)
7229 {
7230         struct intel_crtc *intel_crtc;
7231         struct drm_device *dev = crtc->dev;
7232         struct intel_encoder *encoder;
7233         struct intel_connector *connector;
7234         struct drm_crtc *tmp_crtc;
7235
7236         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7237
7238         /* Check which crtcs have changed outputs connected to them, these need
7239          * to be part of the prepare_pipes mask. We don't (yet) support global
7240          * modeset across multiple crtcs, so modeset_pipes will only have one
7241          * bit set at most. */
7242         list_for_each_entry(connector, &dev->mode_config.connector_list,
7243                             base.head) {
7244                 if (connector->base.encoder == &connector->new_encoder->base)
7245                         continue;
7246
7247                 if (connector->base.encoder) {
7248                         tmp_crtc = connector->base.encoder->crtc;
7249
7250                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7251                 }
7252
7253                 if (connector->new_encoder)
7254                         *prepare_pipes |=
7255                                 1 << connector->new_encoder->new_crtc->pipe;
7256         }
7257
7258         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7259                             base.head) {
7260                 if (encoder->base.crtc == &encoder->new_crtc->base)
7261                         continue;
7262
7263                 if (encoder->base.crtc) {
7264                         tmp_crtc = encoder->base.crtc;
7265
7266                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7267                 }
7268
7269                 if (encoder->new_crtc)
7270                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7271         }
7272
7273         /* Check for any pipes that will be fully disabled ... */
7274         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7275                             base.head) {
7276                 bool used = false;
7277
7278                 /* Don't try to disable disabled crtcs. */
7279                 if (!intel_crtc->base.enabled)
7280                         continue;
7281
7282                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7283                                     base.head) {
7284                         if (encoder->new_crtc == intel_crtc)
7285                                 used = true;
7286                 }
7287
7288                 if (!used)
7289                         *disable_pipes |= 1 << intel_crtc->pipe;
7290         }
7291
7292
7293         /* set_mode is also used to update properties on life display pipes. */
7294         intel_crtc = to_intel_crtc(crtc);
7295         if (crtc->enabled)
7296                 *prepare_pipes |= 1 << intel_crtc->pipe;
7297
7298         /* We only support modeset on one single crtc, hence we need to do that
7299          * only for the passed in crtc iff we change anything else than just
7300          * disable crtcs.
7301          *
7302          * This is actually not true, to be fully compatible with the old crtc
7303          * helper we automatically disable _any_ output (i.e. doesn't need to be
7304          * connected to the crtc we're modesetting on) if it's disconnected.
7305          * Which is a rather nutty api (since changed the output configuration
7306          * without userspace's explicit request can lead to confusion), but
7307          * alas. Hence we currently need to modeset on all pipes we prepare. */
7308         if (*prepare_pipes)
7309                 *modeset_pipes = *prepare_pipes;
7310
7311         /* ... and mask these out. */
7312         *modeset_pipes &= ~(*disable_pipes);
7313         *prepare_pipes &= ~(*disable_pipes);
7314 }
7315
7316 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7317 {
7318         struct drm_encoder *encoder;
7319         struct drm_device *dev = crtc->dev;
7320
7321         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7322                 if (encoder->crtc == crtc)
7323                         return true;
7324
7325         return false;
7326 }
7327
7328 static void
7329 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7330 {
7331         struct intel_encoder *intel_encoder;
7332         struct intel_crtc *intel_crtc;
7333         struct drm_connector *connector;
7334
7335         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7336                             base.head) {
7337                 if (!intel_encoder->base.crtc)
7338                         continue;
7339
7340                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7341
7342                 if (prepare_pipes & (1 << intel_crtc->pipe))
7343                         intel_encoder->connectors_active = false;
7344         }
7345
7346         intel_modeset_commit_output_state(dev);
7347
7348         /* Update computed state. */
7349         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7350                             base.head) {
7351                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7352         }
7353
7354         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7355                 if (!connector->encoder || !connector->encoder->crtc)
7356                         continue;
7357
7358                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7359
7360                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7361                         struct drm_property *dpms_property =
7362                                 dev->mode_config.dpms_property;
7363
7364                         connector->dpms = DRM_MODE_DPMS_ON;
7365                         drm_connector_property_set_value(connector,
7366                                                          dpms_property,
7367                                                          DRM_MODE_DPMS_ON);
7368
7369                         intel_encoder = to_intel_encoder(connector->encoder);
7370                         intel_encoder->connectors_active = true;
7371                 }
7372         }
7373
7374 }
7375
7376 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7377         list_for_each_entry((intel_crtc), \
7378                             &(dev)->mode_config.crtc_list, \
7379                             base.head) \
7380                 if (mask & (1 <<(intel_crtc)->pipe)) \
7381
7382 void
7383 intel_modeset_check_state(struct drm_device *dev)
7384 {
7385         struct intel_crtc *crtc;
7386         struct intel_encoder *encoder;
7387         struct intel_connector *connector;
7388
7389         list_for_each_entry(connector, &dev->mode_config.connector_list,
7390                             base.head) {
7391                 /* This also checks the encoder/connector hw state with the
7392                  * ->get_hw_state callbacks. */
7393                 intel_connector_check_state(connector);
7394
7395                 WARN(&connector->new_encoder->base != connector->base.encoder,
7396                      "connector's staged encoder doesn't match current encoder\n");
7397         }
7398
7399         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7400                             base.head) {
7401                 bool enabled = false;
7402                 bool active = false;
7403                 enum pipe pipe, tracked_pipe;
7404
7405                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7406                               encoder->base.base.id,
7407                               drm_get_encoder_name(&encoder->base));
7408
7409                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7410                      "encoder's stage crtc doesn't match current crtc\n");
7411                 WARN(encoder->connectors_active && !encoder->base.crtc,
7412                      "encoder's active_connectors set, but no crtc\n");
7413
7414                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7415                                     base.head) {
7416                         if (connector->base.encoder != &encoder->base)
7417                                 continue;
7418                         enabled = true;
7419                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7420                                 active = true;
7421                 }
7422                 WARN(!!encoder->base.crtc != enabled,
7423                      "encoder's enabled state mismatch "
7424                      "(expected %i, found %i)\n",
7425                      !!encoder->base.crtc, enabled);
7426                 WARN(active && !encoder->base.crtc,
7427                      "active encoder with no crtc\n");
7428
7429                 WARN(encoder->connectors_active != active,
7430                      "encoder's computed active state doesn't match tracked active state "
7431                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7432
7433                 active = encoder->get_hw_state(encoder, &pipe);
7434                 WARN(active != encoder->connectors_active,
7435                      "encoder's hw state doesn't match sw tracking "
7436                      "(expected %i, found %i)\n",
7437                      encoder->connectors_active, active);
7438
7439                 if (!encoder->base.crtc)
7440                         continue;
7441
7442                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7443                 WARN(active && pipe != tracked_pipe,
7444                      "active encoder's pipe doesn't match"
7445                      "(expected %i, found %i)\n",
7446                      tracked_pipe, pipe);
7447
7448         }
7449
7450         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7451                             base.head) {
7452                 bool enabled = false;
7453                 bool active = false;
7454
7455                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7456                               crtc->base.base.id);
7457
7458                 WARN(crtc->active && !crtc->base.enabled,
7459                      "active crtc, but not enabled in sw tracking\n");
7460
7461                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7462                                     base.head) {
7463                         if (encoder->base.crtc != &crtc->base)
7464                                 continue;
7465                         enabled = true;
7466                         if (encoder->connectors_active)
7467                                 active = true;
7468                 }
7469                 WARN(active != crtc->active,
7470                      "crtc's computed active state doesn't match tracked active state "
7471                      "(expected %i, found %i)\n", active, crtc->active);
7472                 WARN(enabled != crtc->base.enabled,
7473                      "crtc's computed enabled state doesn't match tracked enabled state "
7474                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7475
7476                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7477         }
7478 }
7479
7480 bool intel_set_mode(struct drm_crtc *crtc,
7481                     struct drm_display_mode *mode,
7482                     int x, int y, struct drm_framebuffer *fb)
7483 {
7484         struct drm_device *dev = crtc->dev;
7485         drm_i915_private_t *dev_priv = dev->dev_private;
7486         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7487         struct drm_encoder_helper_funcs *encoder_funcs;
7488         struct drm_encoder *encoder;
7489         struct intel_crtc *intel_crtc;
7490         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7491         bool ret = true;
7492
7493         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7494                                      &prepare_pipes, &disable_pipes);
7495
7496         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7497                       modeset_pipes, prepare_pipes, disable_pipes);
7498
7499         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7500                 intel_crtc_disable(&intel_crtc->base);
7501
7502         saved_hwmode = crtc->hwmode;
7503         saved_mode = crtc->mode;
7504
7505         /* Hack: Because we don't (yet) support global modeset on multiple
7506          * crtcs, we don't keep track of the new mode for more than one crtc.
7507          * Hence simply check whether any bit is set in modeset_pipes in all the
7508          * pieces of code that are not yet converted to deal with mutliple crtcs
7509          * changing their mode at the same time. */
7510         adjusted_mode = NULL;
7511         if (modeset_pipes) {
7512                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7513                 if (IS_ERR(adjusted_mode)) {
7514                         return false;
7515                 }
7516         }
7517
7518         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7519                 if (intel_crtc->base.enabled)
7520                         dev_priv->display.crtc_disable(&intel_crtc->base);
7521         }
7522
7523         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7524          * to set it here already despite that we pass it down the callchain.
7525          */
7526         if (modeset_pipes)
7527                 crtc->mode = *mode;
7528
7529         /* Only after disabling all output pipelines that will be changed can we
7530          * update the the output configuration. */
7531         intel_modeset_update_state(dev, prepare_pipes);
7532
7533         /* Set up the DPLL and any encoders state that needs to adjust or depend
7534          * on the DPLL.
7535          */
7536         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7537                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7538                                            mode, adjusted_mode,
7539                                            x, y, fb);
7540                 if (!ret)
7541                     goto done;
7542
7543                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7544
7545                         if (encoder->crtc != &intel_crtc->base)
7546                                 continue;
7547
7548                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7549                                 encoder->base.id, drm_get_encoder_name(encoder),
7550                                 mode->base.id, mode->name);
7551                         encoder_funcs = encoder->helper_private;
7552                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7553                 }
7554         }
7555
7556         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7557         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7558                 dev_priv->display.crtc_enable(&intel_crtc->base);
7559
7560         if (modeset_pipes) {
7561                 /* Store real post-adjustment hardware mode. */
7562                 crtc->hwmode = *adjusted_mode;
7563
7564                 /* Calculate and store various constants which
7565                  * are later needed by vblank and swap-completion
7566                  * timestamping. They are derived from true hwmode.
7567                  */
7568                 drm_calc_timestamping_constants(crtc);
7569         }
7570
7571         /* FIXME: add subpixel order */
7572 done:
7573         drm_mode_destroy(dev, adjusted_mode);
7574         if (!ret && crtc->enabled) {
7575                 crtc->hwmode = saved_hwmode;
7576                 crtc->mode = saved_mode;
7577         } else {
7578                 intel_modeset_check_state(dev);
7579         }
7580
7581         return ret;
7582 }
7583
7584 #undef for_each_intel_crtc_masked
7585
7586 static void intel_set_config_free(struct intel_set_config *config)
7587 {
7588         if (!config)
7589                 return;
7590
7591         kfree(config->save_connector_encoders);
7592         kfree(config->save_encoder_crtcs);
7593         kfree(config);
7594 }
7595
7596 static int intel_set_config_save_state(struct drm_device *dev,
7597                                        struct intel_set_config *config)
7598 {
7599         struct drm_encoder *encoder;
7600         struct drm_connector *connector;
7601         int count;
7602
7603         config->save_encoder_crtcs =
7604                 kcalloc(dev->mode_config.num_encoder,
7605                         sizeof(struct drm_crtc *), GFP_KERNEL);
7606         if (!config->save_encoder_crtcs)
7607                 return -ENOMEM;
7608
7609         config->save_connector_encoders =
7610                 kcalloc(dev->mode_config.num_connector,
7611                         sizeof(struct drm_encoder *), GFP_KERNEL);
7612         if (!config->save_connector_encoders)
7613                 return -ENOMEM;
7614
7615         /* Copy data. Note that driver private data is not affected.
7616          * Should anything bad happen only the expected state is
7617          * restored, not the drivers personal bookkeeping.
7618          */
7619         count = 0;
7620         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7621                 config->save_encoder_crtcs[count++] = encoder->crtc;
7622         }
7623
7624         count = 0;
7625         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7626                 config->save_connector_encoders[count++] = connector->encoder;
7627         }
7628
7629         return 0;
7630 }
7631
7632 static void intel_set_config_restore_state(struct drm_device *dev,
7633                                            struct intel_set_config *config)
7634 {
7635         struct intel_encoder *encoder;
7636         struct intel_connector *connector;
7637         int count;
7638
7639         count = 0;
7640         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7641                 encoder->new_crtc =
7642                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7643         }
7644
7645         count = 0;
7646         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7647                 connector->new_encoder =
7648                         to_intel_encoder(config->save_connector_encoders[count++]);
7649         }
7650 }
7651
7652 static void
7653 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7654                                       struct intel_set_config *config)
7655 {
7656
7657         /* We should be able to check here if the fb has the same properties
7658          * and then just flip_or_move it */
7659         if (set->crtc->fb != set->fb) {
7660                 /* If we have no fb then treat it as a full mode set */
7661                 if (set->crtc->fb == NULL) {
7662                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7663                         config->mode_changed = true;
7664                 } else if (set->fb == NULL) {
7665                         config->mode_changed = true;
7666                 } else if (set->fb->depth != set->crtc->fb->depth) {
7667                         config->mode_changed = true;
7668                 } else if (set->fb->bits_per_pixel !=
7669                            set->crtc->fb->bits_per_pixel) {
7670                         config->mode_changed = true;
7671                 } else
7672                         config->fb_changed = true;
7673         }
7674
7675         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7676                 config->fb_changed = true;
7677
7678         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7679                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7680                 drm_mode_debug_printmodeline(&set->crtc->mode);
7681                 drm_mode_debug_printmodeline(set->mode);
7682                 config->mode_changed = true;
7683         }
7684 }
7685
7686 static int
7687 intel_modeset_stage_output_state(struct drm_device *dev,
7688                                  struct drm_mode_set *set,
7689                                  struct intel_set_config *config)
7690 {
7691         struct drm_crtc *new_crtc;
7692         struct intel_connector *connector;
7693         struct intel_encoder *encoder;
7694         int count, ro;
7695
7696         /* The upper layers ensure that we either disabl a crtc or have a list
7697          * of connectors. For paranoia, double-check this. */
7698         WARN_ON(!set->fb && (set->num_connectors != 0));
7699         WARN_ON(set->fb && (set->num_connectors == 0));
7700
7701         count = 0;
7702         list_for_each_entry(connector, &dev->mode_config.connector_list,
7703                             base.head) {
7704                 /* Otherwise traverse passed in connector list and get encoders
7705                  * for them. */
7706                 for (ro = 0; ro < set->num_connectors; ro++) {
7707                         if (set->connectors[ro] == &connector->base) {
7708                                 connector->new_encoder = connector->encoder;
7709                                 break;
7710                         }
7711                 }
7712
7713                 /* If we disable the crtc, disable all its connectors. Also, if
7714                  * the connector is on the changing crtc but not on the new
7715                  * connector list, disable it. */
7716                 if ((!set->fb || ro == set->num_connectors) &&
7717                     connector->base.encoder &&
7718                     connector->base.encoder->crtc == set->crtc) {
7719                         connector->new_encoder = NULL;
7720
7721                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7722                                 connector->base.base.id,
7723                                 drm_get_connector_name(&connector->base));
7724                 }
7725
7726
7727                 if (&connector->new_encoder->base != connector->base.encoder) {
7728                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7729                         config->mode_changed = true;
7730                 }
7731
7732                 /* Disable all disconnected encoders. */
7733                 if (connector->base.status == connector_status_disconnected)
7734                         connector->new_encoder = NULL;
7735         }
7736         /* connector->new_encoder is now updated for all connectors. */
7737
7738         /* Update crtc of enabled connectors. */
7739         count = 0;
7740         list_for_each_entry(connector, &dev->mode_config.connector_list,
7741                             base.head) {
7742                 if (!connector->new_encoder)
7743                         continue;
7744
7745                 new_crtc = connector->new_encoder->base.crtc;
7746
7747                 for (ro = 0; ro < set->num_connectors; ro++) {
7748                         if (set->connectors[ro] == &connector->base)
7749                                 new_crtc = set->crtc;
7750                 }
7751
7752                 /* Make sure the new CRTC will work with the encoder */
7753                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7754                                            new_crtc)) {
7755                         return -EINVAL;
7756                 }
7757                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7758
7759                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7760                         connector->base.base.id,
7761                         drm_get_connector_name(&connector->base),
7762                         new_crtc->base.id);
7763         }
7764
7765         /* Check for any encoders that needs to be disabled. */
7766         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7767                             base.head) {
7768                 list_for_each_entry(connector,
7769                                     &dev->mode_config.connector_list,
7770                                     base.head) {
7771                         if (connector->new_encoder == encoder) {
7772                                 WARN_ON(!connector->new_encoder->new_crtc);
7773
7774                                 goto next_encoder;
7775                         }
7776                 }
7777                 encoder->new_crtc = NULL;
7778 next_encoder:
7779                 /* Only now check for crtc changes so we don't miss encoders
7780                  * that will be disabled. */
7781                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7782                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7783                         config->mode_changed = true;
7784                 }
7785         }
7786         /* Now we've also updated encoder->new_crtc for all encoders. */
7787
7788         return 0;
7789 }
7790
7791 static int intel_crtc_set_config(struct drm_mode_set *set)
7792 {
7793         struct drm_device *dev;
7794         struct drm_mode_set save_set;
7795         struct intel_set_config *config;
7796         int ret;
7797
7798         BUG_ON(!set);
7799         BUG_ON(!set->crtc);
7800         BUG_ON(!set->crtc->helper_private);
7801
7802         if (!set->mode)
7803                 set->fb = NULL;
7804
7805         /* The fb helper likes to play gross jokes with ->mode_set_config.
7806          * Unfortunately the crtc helper doesn't do much at all for this case,
7807          * so we have to cope with this madness until the fb helper is fixed up. */
7808         if (set->fb && set->num_connectors == 0)
7809                 return 0;
7810
7811         if (set->fb) {
7812                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7813                                 set->crtc->base.id, set->fb->base.id,
7814                                 (int)set->num_connectors, set->x, set->y);
7815         } else {
7816                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7817         }
7818
7819         dev = set->crtc->dev;
7820
7821         ret = -ENOMEM;
7822         config = kzalloc(sizeof(*config), GFP_KERNEL);
7823         if (!config)
7824                 goto out_config;
7825
7826         ret = intel_set_config_save_state(dev, config);
7827         if (ret)
7828                 goto out_config;
7829
7830         save_set.crtc = set->crtc;
7831         save_set.mode = &set->crtc->mode;
7832         save_set.x = set->crtc->x;
7833         save_set.y = set->crtc->y;
7834         save_set.fb = set->crtc->fb;
7835
7836         /* Compute whether we need a full modeset, only an fb base update or no
7837          * change at all. In the future we might also check whether only the
7838          * mode changed, e.g. for LVDS where we only change the panel fitter in
7839          * such cases. */
7840         intel_set_config_compute_mode_changes(set, config);
7841
7842         ret = intel_modeset_stage_output_state(dev, set, config);
7843         if (ret)
7844                 goto fail;
7845
7846         if (config->mode_changed) {
7847                 if (set->mode) {
7848                         DRM_DEBUG_KMS("attempting to set mode from"
7849                                         " userspace\n");
7850                         drm_mode_debug_printmodeline(set->mode);
7851                 }
7852
7853                 if (!intel_set_mode(set->crtc, set->mode,
7854                                     set->x, set->y, set->fb)) {
7855                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7856                                   set->crtc->base.id);
7857                         ret = -EINVAL;
7858                         goto fail;
7859                 }
7860         } else if (config->fb_changed) {
7861                 ret = intel_pipe_set_base(set->crtc,
7862                                           set->x, set->y, set->fb);
7863         }
7864
7865         intel_set_config_free(config);
7866
7867         return 0;
7868
7869 fail:
7870         intel_set_config_restore_state(dev, config);
7871
7872         /* Try to restore the config */
7873         if (config->mode_changed &&
7874             !intel_set_mode(save_set.crtc, save_set.mode,
7875                             save_set.x, save_set.y, save_set.fb))
7876                 DRM_ERROR("failed to restore config after modeset failure\n");
7877
7878 out_config:
7879         intel_set_config_free(config);
7880         return ret;
7881 }
7882
7883 static const struct drm_crtc_funcs intel_crtc_funcs = {
7884         .cursor_set = intel_crtc_cursor_set,
7885         .cursor_move = intel_crtc_cursor_move,
7886         .gamma_set = intel_crtc_gamma_set,
7887         .set_config = intel_crtc_set_config,
7888         .destroy = intel_crtc_destroy,
7889         .page_flip = intel_crtc_page_flip,
7890 };
7891
7892 static void intel_cpu_pll_init(struct drm_device *dev)
7893 {
7894         if (IS_HASWELL(dev))
7895                 intel_ddi_pll_init(dev);
7896 }
7897
7898 static void intel_pch_pll_init(struct drm_device *dev)
7899 {
7900         drm_i915_private_t *dev_priv = dev->dev_private;
7901         int i;
7902
7903         if (dev_priv->num_pch_pll == 0) {
7904                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7905                 return;
7906         }
7907
7908         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7909                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7910                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7911                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7912         }
7913 }
7914
7915 static void intel_crtc_init(struct drm_device *dev, int pipe)
7916 {
7917         drm_i915_private_t *dev_priv = dev->dev_private;
7918         struct intel_crtc *intel_crtc;
7919         int i;
7920
7921         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7922         if (intel_crtc == NULL)
7923                 return;
7924
7925         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7926
7927         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7928         for (i = 0; i < 256; i++) {
7929                 intel_crtc->lut_r[i] = i;
7930                 intel_crtc->lut_g[i] = i;
7931                 intel_crtc->lut_b[i] = i;
7932         }
7933
7934         /* Swap pipes & planes for FBC on pre-965 */
7935         intel_crtc->pipe = pipe;
7936         intel_crtc->plane = pipe;
7937         intel_crtc->cpu_transcoder = pipe;
7938         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7939                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7940                 intel_crtc->plane = !pipe;
7941         }
7942
7943         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7944                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7945         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7946         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7947
7948         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7949
7950         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7951 }
7952
7953 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7954                                 struct drm_file *file)
7955 {
7956         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7957         struct drm_mode_object *drmmode_obj;
7958         struct intel_crtc *crtc;
7959
7960         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7961                 return -ENODEV;
7962
7963         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7964                         DRM_MODE_OBJECT_CRTC);
7965
7966         if (!drmmode_obj) {
7967                 DRM_ERROR("no such CRTC id\n");
7968                 return -EINVAL;
7969         }
7970
7971         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7972         pipe_from_crtc_id->pipe = crtc->pipe;
7973
7974         return 0;
7975 }
7976
7977 static int intel_encoder_clones(struct intel_encoder *encoder)
7978 {
7979         struct drm_device *dev = encoder->base.dev;
7980         struct intel_encoder *source_encoder;
7981         int index_mask = 0;
7982         int entry = 0;
7983
7984         list_for_each_entry(source_encoder,
7985                             &dev->mode_config.encoder_list, base.head) {
7986
7987                 if (encoder == source_encoder)
7988                         index_mask |= (1 << entry);
7989
7990                 /* Intel hw has only one MUX where enocoders could be cloned. */
7991                 if (encoder->cloneable && source_encoder->cloneable)
7992                         index_mask |= (1 << entry);
7993
7994                 entry++;
7995         }
7996
7997         return index_mask;
7998 }
7999
8000 static bool has_edp_a(struct drm_device *dev)
8001 {
8002         struct drm_i915_private *dev_priv = dev->dev_private;
8003
8004         if (!IS_MOBILE(dev))
8005                 return false;
8006
8007         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8008                 return false;
8009
8010         if (IS_GEN5(dev) &&
8011             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8012                 return false;
8013
8014         return true;
8015 }
8016
8017 static void intel_setup_outputs(struct drm_device *dev)
8018 {
8019         struct drm_i915_private *dev_priv = dev->dev_private;
8020         struct intel_encoder *encoder;
8021         bool dpd_is_edp = false;
8022         bool has_lvds;
8023
8024         has_lvds = intel_lvds_init(dev);
8025         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8026                 /* disable the panel fitter on everything but LVDS */
8027                 I915_WRITE(PFIT_CONTROL, 0);
8028         }
8029
8030         if (HAS_PCH_SPLIT(dev)) {
8031                 dpd_is_edp = intel_dpd_is_edp(dev);
8032
8033                 if (has_edp_a(dev))
8034                         intel_dp_init(dev, DP_A, PORT_A);
8035
8036                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8037                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8038         }
8039
8040         intel_crt_init(dev);
8041
8042         if (IS_HASWELL(dev)) {
8043                 int found;
8044
8045                 /* Haswell uses DDI functions to detect digital outputs */
8046                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8047                 /* DDI A only supports eDP */
8048                 if (found)
8049                         intel_ddi_init(dev, PORT_A);
8050
8051                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8052                  * register */
8053                 found = I915_READ(SFUSE_STRAP);
8054
8055                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8056                         intel_ddi_init(dev, PORT_B);
8057                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8058                         intel_ddi_init(dev, PORT_C);
8059                 if (found & SFUSE_STRAP_DDID_DETECTED)
8060                         intel_ddi_init(dev, PORT_D);
8061         } else if (HAS_PCH_SPLIT(dev)) {
8062                 int found;
8063
8064                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8065                         /* PCH SDVOB multiplex with HDMIB */
8066                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8067                         if (!found)
8068                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8069                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8070                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8071                 }
8072
8073                 if (I915_READ(HDMIC) & PORT_DETECTED)
8074                         intel_hdmi_init(dev, HDMIC, PORT_C);
8075
8076                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8077                         intel_hdmi_init(dev, HDMID, PORT_D);
8078
8079                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8080                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8081
8082                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8083                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8084         } else if (IS_VALLEYVIEW(dev)) {
8085                 int found;
8086
8087                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8088                 if (I915_READ(DP_C) & DP_DETECTED)
8089                         intel_dp_init(dev, DP_C, PORT_C);
8090
8091                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8092                         /* SDVOB multiplex with HDMIB */
8093                         found = intel_sdvo_init(dev, SDVOB, true);
8094                         if (!found)
8095                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8096                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8097                                 intel_dp_init(dev, DP_B, PORT_B);
8098                 }
8099
8100                 if (I915_READ(SDVOC) & PORT_DETECTED)
8101                         intel_hdmi_init(dev, SDVOC, PORT_C);
8102
8103         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8104                 bool found = false;
8105
8106                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8107                         DRM_DEBUG_KMS("probing SDVOB\n");
8108                         found = intel_sdvo_init(dev, SDVOB, true);
8109                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8110                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8111                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8112                         }
8113
8114                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8115                                 DRM_DEBUG_KMS("probing DP_B\n");
8116                                 intel_dp_init(dev, DP_B, PORT_B);
8117                         }
8118                 }
8119
8120                 /* Before G4X SDVOC doesn't have its own detect register */
8121
8122                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8123                         DRM_DEBUG_KMS("probing SDVOC\n");
8124                         found = intel_sdvo_init(dev, SDVOC, false);
8125                 }
8126
8127                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8128
8129                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8130                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8131                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8132                         }
8133                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8134                                 DRM_DEBUG_KMS("probing DP_C\n");
8135                                 intel_dp_init(dev, DP_C, PORT_C);
8136                         }
8137                 }
8138
8139                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8140                     (I915_READ(DP_D) & DP_DETECTED)) {
8141                         DRM_DEBUG_KMS("probing DP_D\n");
8142                         intel_dp_init(dev, DP_D, PORT_D);
8143                 }
8144         } else if (IS_GEN2(dev))
8145                 intel_dvo_init(dev);
8146
8147         if (SUPPORTS_TV(dev))
8148                 intel_tv_init(dev);
8149
8150         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8151                 encoder->base.possible_crtcs = encoder->crtc_mask;
8152                 encoder->base.possible_clones =
8153                         intel_encoder_clones(encoder);
8154         }
8155
8156         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8157                 ironlake_init_pch_refclk(dev);
8158 }
8159
8160 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8161 {
8162         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8163
8164         drm_framebuffer_cleanup(fb);
8165         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8166
8167         kfree(intel_fb);
8168 }
8169
8170 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8171                                                 struct drm_file *file,
8172                                                 unsigned int *handle)
8173 {
8174         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8175         struct drm_i915_gem_object *obj = intel_fb->obj;
8176
8177         return drm_gem_handle_create(file, &obj->base, handle);
8178 }
8179
8180 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8181         .destroy = intel_user_framebuffer_destroy,
8182         .create_handle = intel_user_framebuffer_create_handle,
8183 };
8184
8185 int intel_framebuffer_init(struct drm_device *dev,
8186                            struct intel_framebuffer *intel_fb,
8187                            struct drm_mode_fb_cmd2 *mode_cmd,
8188                            struct drm_i915_gem_object *obj)
8189 {
8190         int ret;
8191
8192         if (obj->tiling_mode == I915_TILING_Y)
8193                 return -EINVAL;
8194
8195         if (mode_cmd->pitches[0] & 63)
8196                 return -EINVAL;
8197
8198         switch (mode_cmd->pixel_format) {
8199         case DRM_FORMAT_RGB332:
8200         case DRM_FORMAT_RGB565:
8201         case DRM_FORMAT_XRGB8888:
8202         case DRM_FORMAT_XBGR8888:
8203         case DRM_FORMAT_ARGB8888:
8204         case DRM_FORMAT_XRGB2101010:
8205         case DRM_FORMAT_ARGB2101010:
8206                 /* RGB formats are common across chipsets */
8207                 break;
8208         case DRM_FORMAT_YUYV:
8209         case DRM_FORMAT_UYVY:
8210         case DRM_FORMAT_YVYU:
8211         case DRM_FORMAT_VYUY:
8212                 break;
8213         default:
8214                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8215                                 mode_cmd->pixel_format);
8216                 return -EINVAL;
8217         }
8218
8219         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8220         if (ret) {
8221                 DRM_ERROR("framebuffer init failed %d\n", ret);
8222                 return ret;
8223         }
8224
8225         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8226         intel_fb->obj = obj;
8227         return 0;
8228 }
8229
8230 static struct drm_framebuffer *
8231 intel_user_framebuffer_create(struct drm_device *dev,
8232                               struct drm_file *filp,
8233                               struct drm_mode_fb_cmd2 *mode_cmd)
8234 {
8235         struct drm_i915_gem_object *obj;
8236
8237         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8238                                                 mode_cmd->handles[0]));
8239         if (&obj->base == NULL)
8240                 return ERR_PTR(-ENOENT);
8241
8242         return intel_framebuffer_create(dev, mode_cmd, obj);
8243 }
8244
8245 static const struct drm_mode_config_funcs intel_mode_funcs = {
8246         .fb_create = intel_user_framebuffer_create,
8247         .output_poll_changed = intel_fb_output_poll_changed,
8248 };
8249
8250 /* Set up chip specific display functions */
8251 static void intel_init_display(struct drm_device *dev)
8252 {
8253         struct drm_i915_private *dev_priv = dev->dev_private;
8254
8255         /* We always want a DPMS function */
8256         if (IS_HASWELL(dev)) {
8257                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8258                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8259                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8260                 dev_priv->display.off = haswell_crtc_off;
8261                 dev_priv->display.update_plane = ironlake_update_plane;
8262         } else if (HAS_PCH_SPLIT(dev)) {
8263                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8264                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8265                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8266                 dev_priv->display.off = ironlake_crtc_off;
8267                 dev_priv->display.update_plane = ironlake_update_plane;
8268         } else {
8269                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8270                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8271                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8272                 dev_priv->display.off = i9xx_crtc_off;
8273                 dev_priv->display.update_plane = i9xx_update_plane;
8274         }
8275
8276         /* Returns the core display clock speed */
8277         if (IS_VALLEYVIEW(dev))
8278                 dev_priv->display.get_display_clock_speed =
8279                         valleyview_get_display_clock_speed;
8280         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8281                 dev_priv->display.get_display_clock_speed =
8282                         i945_get_display_clock_speed;
8283         else if (IS_I915G(dev))
8284                 dev_priv->display.get_display_clock_speed =
8285                         i915_get_display_clock_speed;
8286         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8287                 dev_priv->display.get_display_clock_speed =
8288                         i9xx_misc_get_display_clock_speed;
8289         else if (IS_I915GM(dev))
8290                 dev_priv->display.get_display_clock_speed =
8291                         i915gm_get_display_clock_speed;
8292         else if (IS_I865G(dev))
8293                 dev_priv->display.get_display_clock_speed =
8294                         i865_get_display_clock_speed;
8295         else if (IS_I85X(dev))
8296                 dev_priv->display.get_display_clock_speed =
8297                         i855_get_display_clock_speed;
8298         else /* 852, 830 */
8299                 dev_priv->display.get_display_clock_speed =
8300                         i830_get_display_clock_speed;
8301
8302         if (HAS_PCH_SPLIT(dev)) {
8303                 if (IS_GEN5(dev)) {
8304                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8305                         dev_priv->display.write_eld = ironlake_write_eld;
8306                 } else if (IS_GEN6(dev)) {
8307                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8308                         dev_priv->display.write_eld = ironlake_write_eld;
8309                 } else if (IS_IVYBRIDGE(dev)) {
8310                         /* FIXME: detect B0+ stepping and use auto training */
8311                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8312                         dev_priv->display.write_eld = ironlake_write_eld;
8313                 } else if (IS_HASWELL(dev)) {
8314                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8315                         dev_priv->display.write_eld = haswell_write_eld;
8316                 } else
8317                         dev_priv->display.update_wm = NULL;
8318         } else if (IS_G4X(dev)) {
8319                 dev_priv->display.write_eld = g4x_write_eld;
8320         }
8321
8322         /* Default just returns -ENODEV to indicate unsupported */
8323         dev_priv->display.queue_flip = intel_default_queue_flip;
8324
8325         switch (INTEL_INFO(dev)->gen) {
8326         case 2:
8327                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8328                 break;
8329
8330         case 3:
8331                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8332                 break;
8333
8334         case 4:
8335         case 5:
8336                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8337                 break;
8338
8339         case 6:
8340                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8341                 break;
8342         case 7:
8343                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8344                 break;
8345         }
8346 }
8347
8348 /*
8349  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8350  * resume, or other times.  This quirk makes sure that's the case for
8351  * affected systems.
8352  */
8353 static void quirk_pipea_force(struct drm_device *dev)
8354 {
8355         struct drm_i915_private *dev_priv = dev->dev_private;
8356
8357         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8358         DRM_INFO("applying pipe a force quirk\n");
8359 }
8360
8361 /*
8362  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8363  */
8364 static void quirk_ssc_force_disable(struct drm_device *dev)
8365 {
8366         struct drm_i915_private *dev_priv = dev->dev_private;
8367         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8368         DRM_INFO("applying lvds SSC disable quirk\n");
8369 }
8370
8371 /*
8372  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8373  * brightness value
8374  */
8375 static void quirk_invert_brightness(struct drm_device *dev)
8376 {
8377         struct drm_i915_private *dev_priv = dev->dev_private;
8378         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8379         DRM_INFO("applying inverted panel brightness quirk\n");
8380 }
8381
8382 struct intel_quirk {
8383         int device;
8384         int subsystem_vendor;
8385         int subsystem_device;
8386         void (*hook)(struct drm_device *dev);
8387 };
8388
8389 static struct intel_quirk intel_quirks[] = {
8390         /* HP Mini needs pipe A force quirk (LP: #322104) */
8391         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8392
8393         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8394         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8395
8396         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8397         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8398
8399         /* 830/845 need to leave pipe A & dpll A up */
8400         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8401         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8402
8403         /* Lenovo U160 cannot use SSC on LVDS */
8404         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8405
8406         /* Sony Vaio Y cannot use SSC on LVDS */
8407         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8408
8409         /* Acer Aspire 5734Z must invert backlight brightness */
8410         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8411 };
8412
8413 static void intel_init_quirks(struct drm_device *dev)
8414 {
8415         struct pci_dev *d = dev->pdev;
8416         int i;
8417
8418         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8419                 struct intel_quirk *q = &intel_quirks[i];
8420
8421                 if (d->device == q->device &&
8422                     (d->subsystem_vendor == q->subsystem_vendor ||
8423                      q->subsystem_vendor == PCI_ANY_ID) &&
8424                     (d->subsystem_device == q->subsystem_device ||
8425                      q->subsystem_device == PCI_ANY_ID))
8426                         q->hook(dev);
8427         }
8428 }
8429
8430 /* Disable the VGA plane that we never use */
8431 static void i915_disable_vga(struct drm_device *dev)
8432 {
8433         struct drm_i915_private *dev_priv = dev->dev_private;
8434         u8 sr1;
8435         u32 vga_reg;
8436
8437         if (HAS_PCH_SPLIT(dev))
8438                 vga_reg = CPU_VGACNTRL;
8439         else
8440                 vga_reg = VGACNTRL;
8441
8442         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8443         outb(SR01, VGA_SR_INDEX);
8444         sr1 = inb(VGA_SR_DATA);
8445         outb(sr1 | 1<<5, VGA_SR_DATA);
8446         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8447         udelay(300);
8448
8449         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8450         POSTING_READ(vga_reg);
8451 }
8452
8453 void intel_modeset_init_hw(struct drm_device *dev)
8454 {
8455         /* We attempt to init the necessary power wells early in the initialization
8456          * time, so the subsystems that expect power to be enabled can work.
8457          */
8458         intel_init_power_wells(dev);
8459
8460         intel_prepare_ddi(dev);
8461
8462         intel_init_clock_gating(dev);
8463
8464         mutex_lock(&dev->struct_mutex);
8465         intel_enable_gt_powersave(dev);
8466         mutex_unlock(&dev->struct_mutex);
8467 }
8468
8469 void intel_modeset_init(struct drm_device *dev)
8470 {
8471         struct drm_i915_private *dev_priv = dev->dev_private;
8472         int i, ret;
8473
8474         drm_mode_config_init(dev);
8475
8476         dev->mode_config.min_width = 0;
8477         dev->mode_config.min_height = 0;
8478
8479         dev->mode_config.preferred_depth = 24;
8480         dev->mode_config.prefer_shadow = 1;
8481
8482         dev->mode_config.funcs = &intel_mode_funcs;
8483
8484         intel_init_quirks(dev);
8485
8486         intel_init_pm(dev);
8487
8488         intel_init_display(dev);
8489
8490         if (IS_GEN2(dev)) {
8491                 dev->mode_config.max_width = 2048;
8492                 dev->mode_config.max_height = 2048;
8493         } else if (IS_GEN3(dev)) {
8494                 dev->mode_config.max_width = 4096;
8495                 dev->mode_config.max_height = 4096;
8496         } else {
8497                 dev->mode_config.max_width = 8192;
8498                 dev->mode_config.max_height = 8192;
8499         }
8500         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8501
8502         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8503                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8504
8505         for (i = 0; i < dev_priv->num_pipe; i++) {
8506                 intel_crtc_init(dev, i);
8507                 ret = intel_plane_init(dev, i);
8508                 if (ret)
8509                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8510         }
8511
8512         intel_cpu_pll_init(dev);
8513         intel_pch_pll_init(dev);
8514
8515         /* Just disable it once at startup */
8516         i915_disable_vga(dev);
8517         intel_setup_outputs(dev);
8518 }
8519
8520 static void
8521 intel_connector_break_all_links(struct intel_connector *connector)
8522 {
8523         connector->base.dpms = DRM_MODE_DPMS_OFF;
8524         connector->base.encoder = NULL;
8525         connector->encoder->connectors_active = false;
8526         connector->encoder->base.crtc = NULL;
8527 }
8528
8529 static void intel_enable_pipe_a(struct drm_device *dev)
8530 {
8531         struct intel_connector *connector;
8532         struct drm_connector *crt = NULL;
8533         struct intel_load_detect_pipe load_detect_temp;
8534
8535         /* We can't just switch on the pipe A, we need to set things up with a
8536          * proper mode and output configuration. As a gross hack, enable pipe A
8537          * by enabling the load detect pipe once. */
8538         list_for_each_entry(connector,
8539                             &dev->mode_config.connector_list,
8540                             base.head) {
8541                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8542                         crt = &connector->base;
8543                         break;
8544                 }
8545         }
8546
8547         if (!crt)
8548                 return;
8549
8550         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8551                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8552
8553
8554 }
8555
8556 static bool
8557 intel_check_plane_mapping(struct intel_crtc *crtc)
8558 {
8559         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8560         u32 reg, val;
8561
8562         if (dev_priv->num_pipe == 1)
8563                 return true;
8564
8565         reg = DSPCNTR(!crtc->plane);
8566         val = I915_READ(reg);
8567
8568         if ((val & DISPLAY_PLANE_ENABLE) &&
8569             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8570                 return false;
8571
8572         return true;
8573 }
8574
8575 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8576 {
8577         struct drm_device *dev = crtc->base.dev;
8578         struct drm_i915_private *dev_priv = dev->dev_private;
8579         u32 reg;
8580
8581         /* Clear any frame start delays used for debugging left by the BIOS */
8582         reg = PIPECONF(crtc->cpu_transcoder);
8583         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8584
8585         /* We need to sanitize the plane -> pipe mapping first because this will
8586          * disable the crtc (and hence change the state) if it is wrong. Note
8587          * that gen4+ has a fixed plane -> pipe mapping.  */
8588         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8589                 struct intel_connector *connector;
8590                 bool plane;
8591
8592                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8593                               crtc->base.base.id);
8594
8595                 /* Pipe has the wrong plane attached and the plane is active.
8596                  * Temporarily change the plane mapping and disable everything
8597                  * ...  */
8598                 plane = crtc->plane;
8599                 crtc->plane = !plane;
8600                 dev_priv->display.crtc_disable(&crtc->base);
8601                 crtc->plane = plane;
8602
8603                 /* ... and break all links. */
8604                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8605                                     base.head) {
8606                         if (connector->encoder->base.crtc != &crtc->base)
8607                                 continue;
8608
8609                         intel_connector_break_all_links(connector);
8610                 }
8611
8612                 WARN_ON(crtc->active);
8613                 crtc->base.enabled = false;
8614         }
8615
8616         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8617             crtc->pipe == PIPE_A && !crtc->active) {
8618                 /* BIOS forgot to enable pipe A, this mostly happens after
8619                  * resume. Force-enable the pipe to fix this, the update_dpms
8620                  * call below we restore the pipe to the right state, but leave
8621                  * the required bits on. */
8622                 intel_enable_pipe_a(dev);
8623         }
8624
8625         /* Adjust the state of the output pipe according to whether we
8626          * have active connectors/encoders. */
8627         intel_crtc_update_dpms(&crtc->base);
8628
8629         if (crtc->active != crtc->base.enabled) {
8630                 struct intel_encoder *encoder;
8631
8632                 /* This can happen either due to bugs in the get_hw_state
8633                  * functions or because the pipe is force-enabled due to the
8634                  * pipe A quirk. */
8635                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8636                               crtc->base.base.id,
8637                               crtc->base.enabled ? "enabled" : "disabled",
8638                               crtc->active ? "enabled" : "disabled");
8639
8640                 crtc->base.enabled = crtc->active;
8641
8642                 /* Because we only establish the connector -> encoder ->
8643                  * crtc links if something is active, this means the
8644                  * crtc is now deactivated. Break the links. connector
8645                  * -> encoder links are only establish when things are
8646                  *  actually up, hence no need to break them. */
8647                 WARN_ON(crtc->active);
8648
8649                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8650                         WARN_ON(encoder->connectors_active);
8651                         encoder->base.crtc = NULL;
8652                 }
8653         }
8654 }
8655
8656 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8657 {
8658         struct intel_connector *connector;
8659         struct drm_device *dev = encoder->base.dev;
8660
8661         /* We need to check both for a crtc link (meaning that the
8662          * encoder is active and trying to read from a pipe) and the
8663          * pipe itself being active. */
8664         bool has_active_crtc = encoder->base.crtc &&
8665                 to_intel_crtc(encoder->base.crtc)->active;
8666
8667         if (encoder->connectors_active && !has_active_crtc) {
8668                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8669                               encoder->base.base.id,
8670                               drm_get_encoder_name(&encoder->base));
8671
8672                 /* Connector is active, but has no active pipe. This is
8673                  * fallout from our resume register restoring. Disable
8674                  * the encoder manually again. */
8675                 if (encoder->base.crtc) {
8676                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8677                                       encoder->base.base.id,
8678                                       drm_get_encoder_name(&encoder->base));
8679                         encoder->disable(encoder);
8680                 }
8681
8682                 /* Inconsistent output/port/pipe state happens presumably due to
8683                  * a bug in one of the get_hw_state functions. Or someplace else
8684                  * in our code, like the register restore mess on resume. Clamp
8685                  * things to off as a safer default. */
8686                 list_for_each_entry(connector,
8687                                     &dev->mode_config.connector_list,
8688                                     base.head) {
8689                         if (connector->encoder != encoder)
8690                                 continue;
8691
8692                         intel_connector_break_all_links(connector);
8693                 }
8694         }
8695         /* Enabled encoders without active connectors will be fixed in
8696          * the crtc fixup. */
8697 }
8698
8699 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8700  * and i915 state tracking structures. */
8701 void intel_modeset_setup_hw_state(struct drm_device *dev)
8702 {
8703         struct drm_i915_private *dev_priv = dev->dev_private;
8704         enum pipe pipe;
8705         u32 tmp;
8706         struct intel_crtc *crtc;
8707         struct intel_encoder *encoder;
8708         struct intel_connector *connector;
8709
8710         if (IS_HASWELL(dev)) {
8711                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8712
8713                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8714                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8715                         case TRANS_DDI_EDP_INPUT_A_ON:
8716                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8717                                 pipe = PIPE_A;
8718                                 break;
8719                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8720                                 pipe = PIPE_B;
8721                                 break;
8722                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8723                                 pipe = PIPE_C;
8724                                 break;
8725                         }
8726
8727                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8728                         crtc->cpu_transcoder = TRANSCODER_EDP;
8729
8730                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8731                                       pipe_name(pipe));
8732                 }
8733         }
8734
8735         for_each_pipe(pipe) {
8736                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8737
8738                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8739                 if (tmp & PIPECONF_ENABLE)
8740                         crtc->active = true;
8741                 else
8742                         crtc->active = false;
8743
8744                 crtc->base.enabled = crtc->active;
8745
8746                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8747                               crtc->base.base.id,
8748                               crtc->active ? "enabled" : "disabled");
8749         }
8750
8751         if (IS_HASWELL(dev))
8752                 intel_ddi_setup_hw_pll_state(dev);
8753
8754         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8755                             base.head) {
8756                 pipe = 0;
8757
8758                 if (encoder->get_hw_state(encoder, &pipe)) {
8759                         encoder->base.crtc =
8760                                 dev_priv->pipe_to_crtc_mapping[pipe];
8761                 } else {
8762                         encoder->base.crtc = NULL;
8763                 }
8764
8765                 encoder->connectors_active = false;
8766                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8767                               encoder->base.base.id,
8768                               drm_get_encoder_name(&encoder->base),
8769                               encoder->base.crtc ? "enabled" : "disabled",
8770                               pipe);
8771         }
8772
8773         list_for_each_entry(connector, &dev->mode_config.connector_list,
8774                             base.head) {
8775                 if (connector->get_hw_state(connector)) {
8776                         connector->base.dpms = DRM_MODE_DPMS_ON;
8777                         connector->encoder->connectors_active = true;
8778                         connector->base.encoder = &connector->encoder->base;
8779                 } else {
8780                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8781                         connector->base.encoder = NULL;
8782                 }
8783                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8784                               connector->base.base.id,
8785                               drm_get_connector_name(&connector->base),
8786                               connector->base.encoder ? "enabled" : "disabled");
8787         }
8788
8789         /* HW state is read out, now we need to sanitize this mess. */
8790         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8791                             base.head) {
8792                 intel_sanitize_encoder(encoder);
8793         }
8794
8795         for_each_pipe(pipe) {
8796                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8797                 intel_sanitize_crtc(crtc);
8798         }
8799
8800         intel_modeset_update_staged_output_state(dev);
8801
8802         intel_modeset_check_state(dev);
8803
8804         drm_mode_config_reset(dev);
8805 }
8806
8807 void intel_modeset_gem_init(struct drm_device *dev)
8808 {
8809         intel_modeset_init_hw(dev);
8810
8811         intel_setup_overlay(dev);
8812
8813         intel_modeset_setup_hw_state(dev);
8814 }
8815
8816 void intel_modeset_cleanup(struct drm_device *dev)
8817 {
8818         struct drm_i915_private *dev_priv = dev->dev_private;
8819         struct drm_crtc *crtc;
8820         struct intel_crtc *intel_crtc;
8821
8822         drm_kms_helper_poll_fini(dev);
8823         mutex_lock(&dev->struct_mutex);
8824
8825         intel_unregister_dsm_handler();
8826
8827
8828         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8829                 /* Skip inactive CRTCs */
8830                 if (!crtc->fb)
8831                         continue;
8832
8833                 intel_crtc = to_intel_crtc(crtc);
8834                 intel_increase_pllclock(crtc);
8835         }
8836
8837         intel_disable_fbc(dev);
8838
8839         intel_disable_gt_powersave(dev);
8840
8841         ironlake_teardown_rc6(dev);
8842
8843         if (IS_VALLEYVIEW(dev))
8844                 vlv_init_dpio(dev);
8845
8846         mutex_unlock(&dev->struct_mutex);
8847
8848         /* Disable the irq before mode object teardown, for the irq might
8849          * enqueue unpin/hotplug work. */
8850         drm_irq_uninstall(dev);
8851         cancel_work_sync(&dev_priv->hotplug_work);
8852         cancel_work_sync(&dev_priv->rps.work);
8853
8854         /* flush any delayed tasks or pending work */
8855         flush_scheduled_work();
8856
8857         drm_mode_config_cleanup(dev);
8858 }
8859
8860 /*
8861  * Return which encoder is currently attached for connector.
8862  */
8863 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8864 {
8865         return &intel_attached_encoder(connector)->base;
8866 }
8867
8868 void intel_connector_attach_encoder(struct intel_connector *connector,
8869                                     struct intel_encoder *encoder)
8870 {
8871         connector->encoder = encoder;
8872         drm_mode_connector_attach_encoder(&connector->base,
8873                                           &encoder->base);
8874 }
8875
8876 /*
8877  * set vga decode state - true == enable VGA decode
8878  */
8879 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8880 {
8881         struct drm_i915_private *dev_priv = dev->dev_private;
8882         u16 gmch_ctrl;
8883
8884         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8885         if (state)
8886                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8887         else
8888                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8889         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8890         return 0;
8891 }
8892
8893 #ifdef CONFIG_DEBUG_FS
8894 #include <linux/seq_file.h>
8895
8896 struct intel_display_error_state {
8897         struct intel_cursor_error_state {
8898                 u32 control;
8899                 u32 position;
8900                 u32 base;
8901                 u32 size;
8902         } cursor[I915_MAX_PIPES];
8903
8904         struct intel_pipe_error_state {
8905                 u32 conf;
8906                 u32 source;
8907
8908                 u32 htotal;
8909                 u32 hblank;
8910                 u32 hsync;
8911                 u32 vtotal;
8912                 u32 vblank;
8913                 u32 vsync;
8914         } pipe[I915_MAX_PIPES];
8915
8916         struct intel_plane_error_state {
8917                 u32 control;
8918                 u32 stride;
8919                 u32 size;
8920                 u32 pos;
8921                 u32 addr;
8922                 u32 surface;
8923                 u32 tile_offset;
8924         } plane[I915_MAX_PIPES];
8925 };
8926
8927 struct intel_display_error_state *
8928 intel_display_capture_error_state(struct drm_device *dev)
8929 {
8930         drm_i915_private_t *dev_priv = dev->dev_private;
8931         struct intel_display_error_state *error;
8932         enum transcoder cpu_transcoder;
8933         int i;
8934
8935         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8936         if (error == NULL)
8937                 return NULL;
8938
8939         for_each_pipe(i) {
8940                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
8941
8942                 error->cursor[i].control = I915_READ(CURCNTR(i));
8943                 error->cursor[i].position = I915_READ(CURPOS(i));
8944                 error->cursor[i].base = I915_READ(CURBASE(i));
8945
8946                 error->plane[i].control = I915_READ(DSPCNTR(i));
8947                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8948                 error->plane[i].size = I915_READ(DSPSIZE(i));
8949                 error->plane[i].pos = I915_READ(DSPPOS(i));
8950                 error->plane[i].addr = I915_READ(DSPADDR(i));
8951                 if (INTEL_INFO(dev)->gen >= 4) {
8952                         error->plane[i].surface = I915_READ(DSPSURF(i));
8953                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8954                 }
8955
8956                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
8957                 error->pipe[i].source = I915_READ(PIPESRC(i));
8958                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
8959                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
8960                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
8961                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
8962                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
8963                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
8964         }
8965
8966         return error;
8967 }
8968
8969 void
8970 intel_display_print_error_state(struct seq_file *m,
8971                                 struct drm_device *dev,
8972                                 struct intel_display_error_state *error)
8973 {
8974         drm_i915_private_t *dev_priv = dev->dev_private;
8975         int i;
8976
8977         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8978         for_each_pipe(i) {
8979                 seq_printf(m, "Pipe [%d]:\n", i);
8980                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8981                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8982                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8983                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8984                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8985                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8986                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8987                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8988
8989                 seq_printf(m, "Plane [%d]:\n", i);
8990                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8991                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8992                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8993                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8994                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8995                 if (INTEL_INFO(dev)->gen >= 4) {
8996                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8997                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8998                 }
8999
9000                 seq_printf(m, "Cursor [%d]:\n", i);
9001                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9002                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9003                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9004         }
9005 }
9006 #endif