]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/jbd2/journal.c
Btrfs: fix extent buffer leak after backref walking
[linux-imx.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108                   unsigned int line, const char *fmt, ...)
109 {
110         struct va_format vaf;
111         va_list args;
112
113         if (level > jbd2_journal_enable_debug)
114                 return;
115         va_start(args, fmt);
116         vaf.fmt = fmt;
117         vaf.va = &args;
118         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119         va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128                 return 1;
129
130         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
133 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135         __u32 csum, old_csum;
136
137         old_csum = sb->s_checksum;
138         sb->s_checksum = 0;
139         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140         sb->s_checksum = old_csum;
141
142         return cpu_to_be32(csum);
143 }
144
145 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
146 {
147         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
148                 return 1;
149
150         return sb->s_checksum == jbd2_superblock_csum(j, sb);
151 }
152
153 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
154 {
155         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
156                 return;
157
158         sb->s_checksum = jbd2_superblock_csum(j, sb);
159 }
160
161 /*
162  * Helper function used to manage commit timeouts
163  */
164
165 static void commit_timeout(unsigned long __data)
166 {
167         struct task_struct * p = (struct task_struct *) __data;
168
169         wake_up_process(p);
170 }
171
172 /*
173  * kjournald2: The main thread function used to manage a logging device
174  * journal.
175  *
176  * This kernel thread is responsible for two things:
177  *
178  * 1) COMMIT:  Every so often we need to commit the current state of the
179  *    filesystem to disk.  The journal thread is responsible for writing
180  *    all of the metadata buffers to disk.
181  *
182  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183  *    of the data in that part of the log has been rewritten elsewhere on
184  *    the disk.  Flushing these old buffers to reclaim space in the log is
185  *    known as checkpointing, and this thread is responsible for that job.
186  */
187
188 static int kjournald2(void *arg)
189 {
190         journal_t *journal = arg;
191         transaction_t *transaction;
192
193         /*
194          * Set up an interval timer which can be used to trigger a commit wakeup
195          * after the commit interval expires
196          */
197         setup_timer(&journal->j_commit_timer, commit_timeout,
198                         (unsigned long)current);
199
200         set_freezable();
201
202         /* Record that the journal thread is running */
203         journal->j_task = current;
204         wake_up(&journal->j_wait_done_commit);
205
206         /*
207          * And now, wait forever for commit wakeup events.
208          */
209         write_lock(&journal->j_state_lock);
210
211 loop:
212         if (journal->j_flags & JBD2_UNMOUNT)
213                 goto end_loop;
214
215         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
216                 journal->j_commit_sequence, journal->j_commit_request);
217
218         if (journal->j_commit_sequence != journal->j_commit_request) {
219                 jbd_debug(1, "OK, requests differ\n");
220                 write_unlock(&journal->j_state_lock);
221                 del_timer_sync(&journal->j_commit_timer);
222                 jbd2_journal_commit_transaction(journal);
223                 write_lock(&journal->j_state_lock);
224                 goto loop;
225         }
226
227         wake_up(&journal->j_wait_done_commit);
228         if (freezing(current)) {
229                 /*
230                  * The simpler the better. Flushing journal isn't a
231                  * good idea, because that depends on threads that may
232                  * be already stopped.
233                  */
234                 jbd_debug(1, "Now suspending kjournald2\n");
235                 write_unlock(&journal->j_state_lock);
236                 try_to_freeze();
237                 write_lock(&journal->j_state_lock);
238         } else {
239                 /*
240                  * We assume on resume that commits are already there,
241                  * so we don't sleep
242                  */
243                 DEFINE_WAIT(wait);
244                 int should_sleep = 1;
245
246                 prepare_to_wait(&journal->j_wait_commit, &wait,
247                                 TASK_INTERRUPTIBLE);
248                 if (journal->j_commit_sequence != journal->j_commit_request)
249                         should_sleep = 0;
250                 transaction = journal->j_running_transaction;
251                 if (transaction && time_after_eq(jiffies,
252                                                 transaction->t_expires))
253                         should_sleep = 0;
254                 if (journal->j_flags & JBD2_UNMOUNT)
255                         should_sleep = 0;
256                 if (should_sleep) {
257                         write_unlock(&journal->j_state_lock);
258                         schedule();
259                         write_lock(&journal->j_state_lock);
260                 }
261                 finish_wait(&journal->j_wait_commit, &wait);
262         }
263
264         jbd_debug(1, "kjournald2 wakes\n");
265
266         /*
267          * Were we woken up by a commit wakeup event?
268          */
269         transaction = journal->j_running_transaction;
270         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
271                 journal->j_commit_request = transaction->t_tid;
272                 jbd_debug(1, "woke because of timeout\n");
273         }
274         goto loop;
275
276 end_loop:
277         write_unlock(&journal->j_state_lock);
278         del_timer_sync(&journal->j_commit_timer);
279         journal->j_task = NULL;
280         wake_up(&journal->j_wait_done_commit);
281         jbd_debug(1, "Journal thread exiting.\n");
282         return 0;
283 }
284
285 static int jbd2_journal_start_thread(journal_t *journal)
286 {
287         struct task_struct *t;
288
289         t = kthread_run(kjournald2, journal, "jbd2/%s",
290                         journal->j_devname);
291         if (IS_ERR(t))
292                 return PTR_ERR(t);
293
294         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
295         return 0;
296 }
297
298 static void journal_kill_thread(journal_t *journal)
299 {
300         write_lock(&journal->j_state_lock);
301         journal->j_flags |= JBD2_UNMOUNT;
302
303         while (journal->j_task) {
304                 wake_up(&journal->j_wait_commit);
305                 write_unlock(&journal->j_state_lock);
306                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
307                 write_lock(&journal->j_state_lock);
308         }
309         write_unlock(&journal->j_state_lock);
310 }
311
312 /*
313  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
314  *
315  * Writes a metadata buffer to a given disk block.  The actual IO is not
316  * performed but a new buffer_head is constructed which labels the data
317  * to be written with the correct destination disk block.
318  *
319  * Any magic-number escaping which needs to be done will cause a
320  * copy-out here.  If the buffer happens to start with the
321  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
322  * magic number is only written to the log for descripter blocks.  In
323  * this case, we copy the data and replace the first word with 0, and we
324  * return a result code which indicates that this buffer needs to be
325  * marked as an escaped buffer in the corresponding log descriptor
326  * block.  The missing word can then be restored when the block is read
327  * during recovery.
328  *
329  * If the source buffer has already been modified by a new transaction
330  * since we took the last commit snapshot, we use the frozen copy of
331  * that data for IO. If we end up using the existing buffer_head's data
332  * for the write, then we have to make sure nobody modifies it while the
333  * IO is in progress. do_get_write_access() handles this.
334  *
335  * The function returns a pointer to the buffer_head to be used for IO.
336  * 
337  *
338  * Return value:
339  *  <0: Error
340  * >=0: Finished OK
341  *
342  * On success:
343  * Bit 0 set == escape performed on the data
344  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
345  */
346
347 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
348                                   struct journal_head  *jh_in,
349                                   struct buffer_head **bh_out,
350                                   sector_t blocknr)
351 {
352         int need_copy_out = 0;
353         int done_copy_out = 0;
354         int do_escape = 0;
355         char *mapped_data;
356         struct buffer_head *new_bh;
357         struct page *new_page;
358         unsigned int new_offset;
359         struct buffer_head *bh_in = jh2bh(jh_in);
360         journal_t *journal = transaction->t_journal;
361
362         /*
363          * The buffer really shouldn't be locked: only the current committing
364          * transaction is allowed to write it, so nobody else is allowed
365          * to do any IO.
366          *
367          * akpm: except if we're journalling data, and write() output is
368          * also part of a shared mapping, and another thread has
369          * decided to launch a writepage() against this buffer.
370          */
371         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
372
373 retry_alloc:
374         new_bh = alloc_buffer_head(GFP_NOFS);
375         if (!new_bh) {
376                 /*
377                  * Failure is not an option, but __GFP_NOFAIL is going
378                  * away; so we retry ourselves here.
379                  */
380                 congestion_wait(BLK_RW_ASYNC, HZ/50);
381                 goto retry_alloc;
382         }
383
384         /* keep subsequent assertions sane */
385         atomic_set(&new_bh->b_count, 1);
386
387         jbd_lock_bh_state(bh_in);
388 repeat:
389         /*
390          * If a new transaction has already done a buffer copy-out, then
391          * we use that version of the data for the commit.
392          */
393         if (jh_in->b_frozen_data) {
394                 done_copy_out = 1;
395                 new_page = virt_to_page(jh_in->b_frozen_data);
396                 new_offset = offset_in_page(jh_in->b_frozen_data);
397         } else {
398                 new_page = jh2bh(jh_in)->b_page;
399                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400         }
401
402         mapped_data = kmap_atomic(new_page);
403         /*
404          * Fire data frozen trigger if data already wasn't frozen.  Do this
405          * before checking for escaping, as the trigger may modify the magic
406          * offset.  If a copy-out happens afterwards, it will have the correct
407          * data in the buffer.
408          */
409         if (!done_copy_out)
410                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411                                            jh_in->b_triggers);
412
413         /*
414          * Check for escaping
415          */
416         if (*((__be32 *)(mapped_data + new_offset)) ==
417                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418                 need_copy_out = 1;
419                 do_escape = 1;
420         }
421         kunmap_atomic(mapped_data);
422
423         /*
424          * Do we need to do a data copy?
425          */
426         if (need_copy_out && !done_copy_out) {
427                 char *tmp;
428
429                 jbd_unlock_bh_state(bh_in);
430                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431                 if (!tmp) {
432                         brelse(new_bh);
433                         return -ENOMEM;
434                 }
435                 jbd_lock_bh_state(bh_in);
436                 if (jh_in->b_frozen_data) {
437                         jbd2_free(tmp, bh_in->b_size);
438                         goto repeat;
439                 }
440
441                 jh_in->b_frozen_data = tmp;
442                 mapped_data = kmap_atomic(new_page);
443                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444                 kunmap_atomic(mapped_data);
445
446                 new_page = virt_to_page(tmp);
447                 new_offset = offset_in_page(tmp);
448                 done_copy_out = 1;
449
450                 /*
451                  * This isn't strictly necessary, as we're using frozen
452                  * data for the escaping, but it keeps consistency with
453                  * b_frozen_data usage.
454                  */
455                 jh_in->b_frozen_triggers = jh_in->b_triggers;
456         }
457
458         /*
459          * Did we need to do an escaping?  Now we've done all the
460          * copying, we can finally do so.
461          */
462         if (do_escape) {
463                 mapped_data = kmap_atomic(new_page);
464                 *((unsigned int *)(mapped_data + new_offset)) = 0;
465                 kunmap_atomic(mapped_data);
466         }
467
468         set_bh_page(new_bh, new_page, new_offset);
469         new_bh->b_size = bh_in->b_size;
470         new_bh->b_bdev = journal->j_dev;
471         new_bh->b_blocknr = blocknr;
472         new_bh->b_private = bh_in;
473         set_buffer_mapped(new_bh);
474         set_buffer_dirty(new_bh);
475
476         *bh_out = new_bh;
477
478         /*
479          * The to-be-written buffer needs to get moved to the io queue,
480          * and the original buffer whose contents we are shadowing or
481          * copying is moved to the transaction's shadow queue.
482          */
483         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484         spin_lock(&journal->j_list_lock);
485         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486         spin_unlock(&journal->j_list_lock);
487         set_buffer_shadow(bh_in);
488         jbd_unlock_bh_state(bh_in);
489
490         return do_escape | (done_copy_out << 1);
491 }
492
493 /*
494  * Allocation code for the journal file.  Manage the space left in the
495  * journal, so that we can begin checkpointing when appropriate.
496  */
497
498 /*
499  * Called with j_state_lock locked for writing.
500  * Returns true if a transaction commit was started.
501  */
502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
503 {
504         /* Return if the txn has already requested to be committed */
505         if (journal->j_commit_request == target)
506                 return 0;
507
508         /*
509          * The only transaction we can possibly wait upon is the
510          * currently running transaction (if it exists).  Otherwise,
511          * the target tid must be an old one.
512          */
513         if (journal->j_running_transaction &&
514             journal->j_running_transaction->t_tid == target) {
515                 /*
516                  * We want a new commit: OK, mark the request and wakeup the
517                  * commit thread.  We do _not_ do the commit ourselves.
518                  */
519
520                 journal->j_commit_request = target;
521                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522                           journal->j_commit_request,
523                           journal->j_commit_sequence);
524                 journal->j_running_transaction->t_requested = jiffies;
525                 wake_up(&journal->j_wait_commit);
526                 return 1;
527         } else if (!tid_geq(journal->j_commit_request, target))
528                 /* This should never happen, but if it does, preserve
529                    the evidence before kjournald goes into a loop and
530                    increments j_commit_sequence beyond all recognition. */
531                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532                           journal->j_commit_request,
533                           journal->j_commit_sequence,
534                           target, journal->j_running_transaction ? 
535                           journal->j_running_transaction->t_tid : 0);
536         return 0;
537 }
538
539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
540 {
541         int ret;
542
543         write_lock(&journal->j_state_lock);
544         ret = __jbd2_log_start_commit(journal, tid);
545         write_unlock(&journal->j_state_lock);
546         return ret;
547 }
548
549 /*
550  * Force and wait any uncommitted transactions.  We can only force the running
551  * transaction if we don't have an active handle, otherwise, we will deadlock.
552  * Returns: <0 in case of error,
553  *           0 if nothing to commit,
554  *           1 if transaction was successfully committed.
555  */
556 static int __jbd2_journal_force_commit(journal_t *journal)
557 {
558         transaction_t *transaction = NULL;
559         tid_t tid;
560         int need_to_start = 0, ret = 0;
561
562         read_lock(&journal->j_state_lock);
563         if (journal->j_running_transaction && !current->journal_info) {
564                 transaction = journal->j_running_transaction;
565                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566                         need_to_start = 1;
567         } else if (journal->j_committing_transaction)
568                 transaction = journal->j_committing_transaction;
569
570         if (!transaction) {
571                 /* Nothing to commit */
572                 read_unlock(&journal->j_state_lock);
573                 return 0;
574         }
575         tid = transaction->t_tid;
576         read_unlock(&journal->j_state_lock);
577         if (need_to_start)
578                 jbd2_log_start_commit(journal, tid);
579         ret = jbd2_log_wait_commit(journal, tid);
580         if (!ret)
581                 ret = 1;
582
583         return ret;
584 }
585
586 /**
587  * Force and wait upon a commit if the calling process is not within
588  * transaction.  This is used for forcing out undo-protected data which contains
589  * bitmaps, when the fs is running out of space.
590  *
591  * @journal: journal to force
592  * Returns true if progress was made.
593  */
594 int jbd2_journal_force_commit_nested(journal_t *journal)
595 {
596         int ret;
597
598         ret = __jbd2_journal_force_commit(journal);
599         return ret > 0;
600 }
601
602 /**
603  * int journal_force_commit() - force any uncommitted transactions
604  * @journal: journal to force
605  *
606  * Caller want unconditional commit. We can only force the running transaction
607  * if we don't have an active handle, otherwise, we will deadlock.
608  */
609 int jbd2_journal_force_commit(journal_t *journal)
610 {
611         int ret;
612
613         J_ASSERT(!current->journal_info);
614         ret = __jbd2_journal_force_commit(journal);
615         if (ret > 0)
616                 ret = 0;
617         return ret;
618 }
619
620 /*
621  * Start a commit of the current running transaction (if any).  Returns true
622  * if a transaction is going to be committed (or is currently already
623  * committing), and fills its tid in at *ptid
624  */
625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
626 {
627         int ret = 0;
628
629         write_lock(&journal->j_state_lock);
630         if (journal->j_running_transaction) {
631                 tid_t tid = journal->j_running_transaction->t_tid;
632
633                 __jbd2_log_start_commit(journal, tid);
634                 /* There's a running transaction and we've just made sure
635                  * it's commit has been scheduled. */
636                 if (ptid)
637                         *ptid = tid;
638                 ret = 1;
639         } else if (journal->j_committing_transaction) {
640                 /*
641                  * If commit has been started, then we have to wait for
642                  * completion of that transaction.
643                  */
644                 if (ptid)
645                         *ptid = journal->j_committing_transaction->t_tid;
646                 ret = 1;
647         }
648         write_unlock(&journal->j_state_lock);
649         return ret;
650 }
651
652 /*
653  * Return 1 if a given transaction has not yet sent barrier request
654  * connected with a transaction commit. If 0 is returned, transaction
655  * may or may not have sent the barrier. Used to avoid sending barrier
656  * twice in common cases.
657  */
658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
659 {
660         int ret = 0;
661         transaction_t *commit_trans;
662
663         if (!(journal->j_flags & JBD2_BARRIER))
664                 return 0;
665         read_lock(&journal->j_state_lock);
666         /* Transaction already committed? */
667         if (tid_geq(journal->j_commit_sequence, tid))
668                 goto out;
669         commit_trans = journal->j_committing_transaction;
670         if (!commit_trans || commit_trans->t_tid != tid) {
671                 ret = 1;
672                 goto out;
673         }
674         /*
675          * Transaction is being committed and we already proceeded to
676          * submitting a flush to fs partition?
677          */
678         if (journal->j_fs_dev != journal->j_dev) {
679                 if (!commit_trans->t_need_data_flush ||
680                     commit_trans->t_state >= T_COMMIT_DFLUSH)
681                         goto out;
682         } else {
683                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684                         goto out;
685         }
686         ret = 1;
687 out:
688         read_unlock(&journal->j_state_lock);
689         return ret;
690 }
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692
693 /*
694  * Wait for a specified commit to complete.
695  * The caller may not hold the journal lock.
696  */
697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
698 {
699         int err = 0;
700
701         read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_JBD2_DEBUG
703         if (!tid_geq(journal->j_commit_request, tid)) {
704                 printk(KERN_EMERG
705                        "%s: error: j_commit_request=%d, tid=%d\n",
706                        __func__, journal->j_commit_request, tid);
707         }
708 #endif
709         while (tid_gt(tid, journal->j_commit_sequence)) {
710                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
711                                   tid, journal->j_commit_sequence);
712                 wake_up(&journal->j_wait_commit);
713                 read_unlock(&journal->j_state_lock);
714                 wait_event(journal->j_wait_done_commit,
715                                 !tid_gt(tid, journal->j_commit_sequence));
716                 read_lock(&journal->j_state_lock);
717         }
718         read_unlock(&journal->j_state_lock);
719
720         if (unlikely(is_journal_aborted(journal))) {
721                 printk(KERN_EMERG "journal commit I/O error\n");
722                 err = -EIO;
723         }
724         return err;
725 }
726
727 /*
728  * When this function returns the transaction corresponding to tid
729  * will be completed.  If the transaction has currently running, start
730  * committing that transaction before waiting for it to complete.  If
731  * the transaction id is stale, it is by definition already completed,
732  * so just return SUCCESS.
733  */
734 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
735 {
736         int     need_to_wait = 1;
737
738         read_lock(&journal->j_state_lock);
739         if (journal->j_running_transaction &&
740             journal->j_running_transaction->t_tid == tid) {
741                 if (journal->j_commit_request != tid) {
742                         /* transaction not yet started, so request it */
743                         read_unlock(&journal->j_state_lock);
744                         jbd2_log_start_commit(journal, tid);
745                         goto wait_commit;
746                 }
747         } else if (!(journal->j_committing_transaction &&
748                      journal->j_committing_transaction->t_tid == tid))
749                 need_to_wait = 0;
750         read_unlock(&journal->j_state_lock);
751         if (!need_to_wait)
752                 return 0;
753 wait_commit:
754         return jbd2_log_wait_commit(journal, tid);
755 }
756 EXPORT_SYMBOL(jbd2_complete_transaction);
757
758 /*
759  * Log buffer allocation routines:
760  */
761
762 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
763 {
764         unsigned long blocknr;
765
766         write_lock(&journal->j_state_lock);
767         J_ASSERT(journal->j_free > 1);
768
769         blocknr = journal->j_head;
770         journal->j_head++;
771         journal->j_free--;
772         if (journal->j_head == journal->j_last)
773                 journal->j_head = journal->j_first;
774         write_unlock(&journal->j_state_lock);
775         return jbd2_journal_bmap(journal, blocknr, retp);
776 }
777
778 /*
779  * Conversion of logical to physical block numbers for the journal
780  *
781  * On external journals the journal blocks are identity-mapped, so
782  * this is a no-op.  If needed, we can use j_blk_offset - everything is
783  * ready.
784  */
785 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
786                  unsigned long long *retp)
787 {
788         int err = 0;
789         unsigned long long ret;
790
791         if (journal->j_inode) {
792                 ret = bmap(journal->j_inode, blocknr);
793                 if (ret)
794                         *retp = ret;
795                 else {
796                         printk(KERN_ALERT "%s: journal block not found "
797                                         "at offset %lu on %s\n",
798                                __func__, blocknr, journal->j_devname);
799                         err = -EIO;
800                         __journal_abort_soft(journal, err);
801                 }
802         } else {
803                 *retp = blocknr; /* +journal->j_blk_offset */
804         }
805         return err;
806 }
807
808 /*
809  * We play buffer_head aliasing tricks to write data/metadata blocks to
810  * the journal without copying their contents, but for journal
811  * descriptor blocks we do need to generate bona fide buffers.
812  *
813  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
814  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
815  * But we don't bother doing that, so there will be coherency problems with
816  * mmaps of blockdevs which hold live JBD-controlled filesystems.
817  */
818 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
819 {
820         struct buffer_head *bh;
821         unsigned long long blocknr;
822         int err;
823
824         err = jbd2_journal_next_log_block(journal, &blocknr);
825
826         if (err)
827                 return NULL;
828
829         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
830         if (!bh)
831                 return NULL;
832         lock_buffer(bh);
833         memset(bh->b_data, 0, journal->j_blocksize);
834         set_buffer_uptodate(bh);
835         unlock_buffer(bh);
836         BUFFER_TRACE(bh, "return this buffer");
837         return bh;
838 }
839
840 /*
841  * Return tid of the oldest transaction in the journal and block in the journal
842  * where the transaction starts.
843  *
844  * If the journal is now empty, return which will be the next transaction ID
845  * we will write and where will that transaction start.
846  *
847  * The return value is 0 if journal tail cannot be pushed any further, 1 if
848  * it can.
849  */
850 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
851                               unsigned long *block)
852 {
853         transaction_t *transaction;
854         int ret;
855
856         read_lock(&journal->j_state_lock);
857         spin_lock(&journal->j_list_lock);
858         transaction = journal->j_checkpoint_transactions;
859         if (transaction) {
860                 *tid = transaction->t_tid;
861                 *block = transaction->t_log_start;
862         } else if ((transaction = journal->j_committing_transaction) != NULL) {
863                 *tid = transaction->t_tid;
864                 *block = transaction->t_log_start;
865         } else if ((transaction = journal->j_running_transaction) != NULL) {
866                 *tid = transaction->t_tid;
867                 *block = journal->j_head;
868         } else {
869                 *tid = journal->j_transaction_sequence;
870                 *block = journal->j_head;
871         }
872         ret = tid_gt(*tid, journal->j_tail_sequence);
873         spin_unlock(&journal->j_list_lock);
874         read_unlock(&journal->j_state_lock);
875
876         return ret;
877 }
878
879 /*
880  * Update information in journal structure and in on disk journal superblock
881  * about log tail. This function does not check whether information passed in
882  * really pushes log tail further. It's responsibility of the caller to make
883  * sure provided log tail information is valid (e.g. by holding
884  * j_checkpoint_mutex all the time between computing log tail and calling this
885  * function as is the case with jbd2_cleanup_journal_tail()).
886  *
887  * Requires j_checkpoint_mutex
888  */
889 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
890 {
891         unsigned long freed;
892
893         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
894
895         /*
896          * We cannot afford for write to remain in drive's caches since as
897          * soon as we update j_tail, next transaction can start reusing journal
898          * space and if we lose sb update during power failure we'd replay
899          * old transaction with possibly newly overwritten data.
900          */
901         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902         write_lock(&journal->j_state_lock);
903         freed = block - journal->j_tail;
904         if (block < journal->j_tail)
905                 freed += journal->j_last - journal->j_first;
906
907         trace_jbd2_update_log_tail(journal, tid, block, freed);
908         jbd_debug(1,
909                   "Cleaning journal tail from %d to %d (offset %lu), "
910                   "freeing %lu\n",
911                   journal->j_tail_sequence, tid, block, freed);
912
913         journal->j_free += freed;
914         journal->j_tail_sequence = tid;
915         journal->j_tail = block;
916         write_unlock(&journal->j_state_lock);
917 }
918
919 /*
920  * This is a variaon of __jbd2_update_log_tail which checks for validity of
921  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
922  * with other threads updating log tail.
923  */
924 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 {
926         mutex_lock(&journal->j_checkpoint_mutex);
927         if (tid_gt(tid, journal->j_tail_sequence))
928                 __jbd2_update_log_tail(journal, tid, block);
929         mutex_unlock(&journal->j_checkpoint_mutex);
930 }
931
932 struct jbd2_stats_proc_session {
933         journal_t *journal;
934         struct transaction_stats_s *stats;
935         int start;
936         int max;
937 };
938
939 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
940 {
941         return *pos ? NULL : SEQ_START_TOKEN;
942 }
943
944 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
945 {
946         return NULL;
947 }
948
949 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
950 {
951         struct jbd2_stats_proc_session *s = seq->private;
952
953         if (v != SEQ_START_TOKEN)
954                 return 0;
955         seq_printf(seq, "%lu transactions (%lu requested), "
956                    "each up to %u blocks\n",
957                    s->stats->ts_tid, s->stats->ts_requested,
958                    s->journal->j_max_transaction_buffers);
959         if (s->stats->ts_tid == 0)
960                 return 0;
961         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
962             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
963         seq_printf(seq, "  %ums request delay\n",
964             (s->stats->ts_requested == 0) ? 0 :
965             jiffies_to_msecs(s->stats->run.rs_request_delay /
966                              s->stats->ts_requested));
967         seq_printf(seq, "  %ums running transaction\n",
968             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
969         seq_printf(seq, "  %ums transaction was being locked\n",
970             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
971         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
972             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
973         seq_printf(seq, "  %ums logging transaction\n",
974             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
975         seq_printf(seq, "  %lluus average transaction commit time\n",
976                    div_u64(s->journal->j_average_commit_time, 1000));
977         seq_printf(seq, "  %lu handles per transaction\n",
978             s->stats->run.rs_handle_count / s->stats->ts_tid);
979         seq_printf(seq, "  %lu blocks per transaction\n",
980             s->stats->run.rs_blocks / s->stats->ts_tid);
981         seq_printf(seq, "  %lu logged blocks per transaction\n",
982             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
983         return 0;
984 }
985
986 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
987 {
988 }
989
990 static const struct seq_operations jbd2_seq_info_ops = {
991         .start  = jbd2_seq_info_start,
992         .next   = jbd2_seq_info_next,
993         .stop   = jbd2_seq_info_stop,
994         .show   = jbd2_seq_info_show,
995 };
996
997 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
998 {
999         journal_t *journal = PDE_DATA(inode);
1000         struct jbd2_stats_proc_session *s;
1001         int rc, size;
1002
1003         s = kmalloc(sizeof(*s), GFP_KERNEL);
1004         if (s == NULL)
1005                 return -ENOMEM;
1006         size = sizeof(struct transaction_stats_s);
1007         s->stats = kmalloc(size, GFP_KERNEL);
1008         if (s->stats == NULL) {
1009                 kfree(s);
1010                 return -ENOMEM;
1011         }
1012         spin_lock(&journal->j_history_lock);
1013         memcpy(s->stats, &journal->j_stats, size);
1014         s->journal = journal;
1015         spin_unlock(&journal->j_history_lock);
1016
1017         rc = seq_open(file, &jbd2_seq_info_ops);
1018         if (rc == 0) {
1019                 struct seq_file *m = file->private_data;
1020                 m->private = s;
1021         } else {
1022                 kfree(s->stats);
1023                 kfree(s);
1024         }
1025         return rc;
1026
1027 }
1028
1029 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1030 {
1031         struct seq_file *seq = file->private_data;
1032         struct jbd2_stats_proc_session *s = seq->private;
1033         kfree(s->stats);
1034         kfree(s);
1035         return seq_release(inode, file);
1036 }
1037
1038 static const struct file_operations jbd2_seq_info_fops = {
1039         .owner          = THIS_MODULE,
1040         .open           = jbd2_seq_info_open,
1041         .read           = seq_read,
1042         .llseek         = seq_lseek,
1043         .release        = jbd2_seq_info_release,
1044 };
1045
1046 static struct proc_dir_entry *proc_jbd2_stats;
1047
1048 static void jbd2_stats_proc_init(journal_t *journal)
1049 {
1050         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1051         if (journal->j_proc_entry) {
1052                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1053                                  &jbd2_seq_info_fops, journal);
1054         }
1055 }
1056
1057 static void jbd2_stats_proc_exit(journal_t *journal)
1058 {
1059         remove_proc_entry("info", journal->j_proc_entry);
1060         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1061 }
1062
1063 /*
1064  * Management for journal control blocks: functions to create and
1065  * destroy journal_t structures, and to initialise and read existing
1066  * journal blocks from disk.  */
1067
1068 /* First: create and setup a journal_t object in memory.  We initialise
1069  * very few fields yet: that has to wait until we have created the
1070  * journal structures from from scratch, or loaded them from disk. */
1071
1072 static journal_t * journal_init_common (void)
1073 {
1074         journal_t *journal;
1075         int err;
1076
1077         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1078         if (!journal)
1079                 return NULL;
1080
1081         init_waitqueue_head(&journal->j_wait_transaction_locked);
1082         init_waitqueue_head(&journal->j_wait_done_commit);
1083         init_waitqueue_head(&journal->j_wait_commit);
1084         init_waitqueue_head(&journal->j_wait_updates);
1085         init_waitqueue_head(&journal->j_wait_reserved);
1086         mutex_init(&journal->j_barrier);
1087         mutex_init(&journal->j_checkpoint_mutex);
1088         spin_lock_init(&journal->j_revoke_lock);
1089         spin_lock_init(&journal->j_list_lock);
1090         rwlock_init(&journal->j_state_lock);
1091
1092         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1093         journal->j_min_batch_time = 0;
1094         journal->j_max_batch_time = 15000; /* 15ms */
1095         atomic_set(&journal->j_reserved_credits, 0);
1096
1097         /* The journal is marked for error until we succeed with recovery! */
1098         journal->j_flags = JBD2_ABORT;
1099
1100         /* Set up a default-sized revoke table for the new mount. */
1101         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1102         if (err) {
1103                 kfree(journal);
1104                 return NULL;
1105         }
1106
1107         spin_lock_init(&journal->j_history_lock);
1108
1109         return journal;
1110 }
1111
1112 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1113  *
1114  * Create a journal structure assigned some fixed set of disk blocks to
1115  * the journal.  We don't actually touch those disk blocks yet, but we
1116  * need to set up all of the mapping information to tell the journaling
1117  * system where the journal blocks are.
1118  *
1119  */
1120
1121 /**
1122  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1123  *  @bdev: Block device on which to create the journal
1124  *  @fs_dev: Device which hold journalled filesystem for this journal.
1125  *  @start: Block nr Start of journal.
1126  *  @len:  Length of the journal in blocks.
1127  *  @blocksize: blocksize of journalling device
1128  *
1129  *  Returns: a newly created journal_t *
1130  *
1131  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1132  *  range of blocks on an arbitrary block device.
1133  *
1134  */
1135 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1136                         struct block_device *fs_dev,
1137                         unsigned long long start, int len, int blocksize)
1138 {
1139         journal_t *journal = journal_init_common();
1140         struct buffer_head *bh;
1141         char *p;
1142         int n;
1143
1144         if (!journal)
1145                 return NULL;
1146
1147         /* journal descriptor can store up to n blocks -bzzz */
1148         journal->j_blocksize = blocksize;
1149         journal->j_dev = bdev;
1150         journal->j_fs_dev = fs_dev;
1151         journal->j_blk_offset = start;
1152         journal->j_maxlen = len;
1153         bdevname(journal->j_dev, journal->j_devname);
1154         p = journal->j_devname;
1155         while ((p = strchr(p, '/')))
1156                 *p = '!';
1157         jbd2_stats_proc_init(journal);
1158         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1159         journal->j_wbufsize = n;
1160         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1161         if (!journal->j_wbuf) {
1162                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1163                         __func__);
1164                 goto out_err;
1165         }
1166
1167         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1168         if (!bh) {
1169                 printk(KERN_ERR
1170                        "%s: Cannot get buffer for journal superblock\n",
1171                        __func__);
1172                 goto out_err;
1173         }
1174         journal->j_sb_buffer = bh;
1175         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176
1177         return journal;
1178 out_err:
1179         kfree(journal->j_wbuf);
1180         jbd2_stats_proc_exit(journal);
1181         kfree(journal);
1182         return NULL;
1183 }
1184
1185 /**
1186  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1187  *  @inode: An inode to create the journal in
1188  *
1189  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1190  * the journal.  The inode must exist already, must support bmap() and
1191  * must have all data blocks preallocated.
1192  */
1193 journal_t * jbd2_journal_init_inode (struct inode *inode)
1194 {
1195         struct buffer_head *bh;
1196         journal_t *journal = journal_init_common();
1197         char *p;
1198         int err;
1199         int n;
1200         unsigned long long blocknr;
1201
1202         if (!journal)
1203                 return NULL;
1204
1205         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1206         journal->j_inode = inode;
1207         bdevname(journal->j_dev, journal->j_devname);
1208         p = journal->j_devname;
1209         while ((p = strchr(p, '/')))
1210                 *p = '!';
1211         p = journal->j_devname + strlen(journal->j_devname);
1212         sprintf(p, "-%lu", journal->j_inode->i_ino);
1213         jbd_debug(1,
1214                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1215                   journal, inode->i_sb->s_id, inode->i_ino,
1216                   (long long) inode->i_size,
1217                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1218
1219         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1220         journal->j_blocksize = inode->i_sb->s_blocksize;
1221         jbd2_stats_proc_init(journal);
1222
1223         /* journal descriptor can store up to n blocks -bzzz */
1224         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1225         journal->j_wbufsize = n;
1226         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1227         if (!journal->j_wbuf) {
1228                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1229                         __func__);
1230                 goto out_err;
1231         }
1232
1233         err = jbd2_journal_bmap(journal, 0, &blocknr);
1234         /* If that failed, give up */
1235         if (err) {
1236                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1237                        __func__);
1238                 goto out_err;
1239         }
1240
1241         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1242         if (!bh) {
1243                 printk(KERN_ERR
1244                        "%s: Cannot get buffer for journal superblock\n",
1245                        __func__);
1246                 goto out_err;
1247         }
1248         journal->j_sb_buffer = bh;
1249         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1250
1251         return journal;
1252 out_err:
1253         kfree(journal->j_wbuf);
1254         jbd2_stats_proc_exit(journal);
1255         kfree(journal);
1256         return NULL;
1257 }
1258
1259 /*
1260  * If the journal init or create aborts, we need to mark the journal
1261  * superblock as being NULL to prevent the journal destroy from writing
1262  * back a bogus superblock.
1263  */
1264 static void journal_fail_superblock (journal_t *journal)
1265 {
1266         struct buffer_head *bh = journal->j_sb_buffer;
1267         brelse(bh);
1268         journal->j_sb_buffer = NULL;
1269 }
1270
1271 /*
1272  * Given a journal_t structure, initialise the various fields for
1273  * startup of a new journaling session.  We use this both when creating
1274  * a journal, and after recovering an old journal to reset it for
1275  * subsequent use.
1276  */
1277
1278 static int journal_reset(journal_t *journal)
1279 {
1280         journal_superblock_t *sb = journal->j_superblock;
1281         unsigned long long first, last;
1282
1283         first = be32_to_cpu(sb->s_first);
1284         last = be32_to_cpu(sb->s_maxlen);
1285         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1286                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1287                        first, last);
1288                 journal_fail_superblock(journal);
1289                 return -EINVAL;
1290         }
1291
1292         journal->j_first = first;
1293         journal->j_last = last;
1294
1295         journal->j_head = first;
1296         journal->j_tail = first;
1297         journal->j_free = last - first;
1298
1299         journal->j_tail_sequence = journal->j_transaction_sequence;
1300         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1301         journal->j_commit_request = journal->j_commit_sequence;
1302
1303         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1304
1305         /*
1306          * As a special case, if the on-disk copy is already marked as needing
1307          * no recovery (s_start == 0), then we can safely defer the superblock
1308          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1309          * attempting a write to a potential-readonly device.
1310          */
1311         if (sb->s_start == 0) {
1312                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1313                         "(start %ld, seq %d, errno %d)\n",
1314                         journal->j_tail, journal->j_tail_sequence,
1315                         journal->j_errno);
1316                 journal->j_flags |= JBD2_FLUSHED;
1317         } else {
1318                 /* Lock here to make assertions happy... */
1319                 mutex_lock(&journal->j_checkpoint_mutex);
1320                 /*
1321                  * Update log tail information. We use WRITE_FUA since new
1322                  * transaction will start reusing journal space and so we
1323                  * must make sure information about current log tail is on
1324                  * disk before that.
1325                  */
1326                 jbd2_journal_update_sb_log_tail(journal,
1327                                                 journal->j_tail_sequence,
1328                                                 journal->j_tail,
1329                                                 WRITE_FUA);
1330                 mutex_unlock(&journal->j_checkpoint_mutex);
1331         }
1332         return jbd2_journal_start_thread(journal);
1333 }
1334
1335 static void jbd2_write_superblock(journal_t *journal, int write_op)
1336 {
1337         struct buffer_head *bh = journal->j_sb_buffer;
1338         journal_superblock_t *sb = journal->j_superblock;
1339         int ret;
1340
1341         trace_jbd2_write_superblock(journal, write_op);
1342         if (!(journal->j_flags & JBD2_BARRIER))
1343                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1344         lock_buffer(bh);
1345         if (buffer_write_io_error(bh)) {
1346                 /*
1347                  * Oh, dear.  A previous attempt to write the journal
1348                  * superblock failed.  This could happen because the
1349                  * USB device was yanked out.  Or it could happen to
1350                  * be a transient write error and maybe the block will
1351                  * be remapped.  Nothing we can do but to retry the
1352                  * write and hope for the best.
1353                  */
1354                 printk(KERN_ERR "JBD2: previous I/O error detected "
1355                        "for journal superblock update for %s.\n",
1356                        journal->j_devname);
1357                 clear_buffer_write_io_error(bh);
1358                 set_buffer_uptodate(bh);
1359         }
1360         jbd2_superblock_csum_set(journal, sb);
1361         get_bh(bh);
1362         bh->b_end_io = end_buffer_write_sync;
1363         ret = submit_bh(write_op, bh);
1364         wait_on_buffer(bh);
1365         if (buffer_write_io_error(bh)) {
1366                 clear_buffer_write_io_error(bh);
1367                 set_buffer_uptodate(bh);
1368                 ret = -EIO;
1369         }
1370         if (ret) {
1371                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1372                        "journal superblock for %s.\n", ret,
1373                        journal->j_devname);
1374         }
1375 }
1376
1377 /**
1378  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1379  * @journal: The journal to update.
1380  * @tail_tid: TID of the new transaction at the tail of the log
1381  * @tail_block: The first block of the transaction at the tail of the log
1382  * @write_op: With which operation should we write the journal sb
1383  *
1384  * Update a journal's superblock information about log tail and write it to
1385  * disk, waiting for the IO to complete.
1386  */
1387 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1388                                      unsigned long tail_block, int write_op)
1389 {
1390         journal_superblock_t *sb = journal->j_superblock;
1391
1392         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1393         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1394                   tail_block, tail_tid);
1395
1396         sb->s_sequence = cpu_to_be32(tail_tid);
1397         sb->s_start    = cpu_to_be32(tail_block);
1398
1399         jbd2_write_superblock(journal, write_op);
1400
1401         /* Log is no longer empty */
1402         write_lock(&journal->j_state_lock);
1403         WARN_ON(!sb->s_sequence);
1404         journal->j_flags &= ~JBD2_FLUSHED;
1405         write_unlock(&journal->j_state_lock);
1406 }
1407
1408 /**
1409  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410  * @journal: The journal to update.
1411  *
1412  * Update a journal's dynamic superblock fields to show that journal is empty.
1413  * Write updated superblock to disk waiting for IO to complete.
1414  */
1415 static void jbd2_mark_journal_empty(journal_t *journal)
1416 {
1417         journal_superblock_t *sb = journal->j_superblock;
1418
1419         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1420         read_lock(&journal->j_state_lock);
1421         /* Is it already empty? */
1422         if (sb->s_start == 0) {
1423                 read_unlock(&journal->j_state_lock);
1424                 return;
1425         }
1426         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1427                   journal->j_tail_sequence);
1428
1429         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1430         sb->s_start    = cpu_to_be32(0);
1431         read_unlock(&journal->j_state_lock);
1432
1433         jbd2_write_superblock(journal, WRITE_FUA);
1434
1435         /* Log is no longer empty */
1436         write_lock(&journal->j_state_lock);
1437         journal->j_flags |= JBD2_FLUSHED;
1438         write_unlock(&journal->j_state_lock);
1439 }
1440
1441
1442 /**
1443  * jbd2_journal_update_sb_errno() - Update error in the journal.
1444  * @journal: The journal to update.
1445  *
1446  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1447  * to complete.
1448  */
1449 void jbd2_journal_update_sb_errno(journal_t *journal)
1450 {
1451         journal_superblock_t *sb = journal->j_superblock;
1452
1453         read_lock(&journal->j_state_lock);
1454         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455                   journal->j_errno);
1456         sb->s_errno    = cpu_to_be32(journal->j_errno);
1457         read_unlock(&journal->j_state_lock);
1458
1459         jbd2_write_superblock(journal, WRITE_SYNC);
1460 }
1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1462
1463 /*
1464  * Read the superblock for a given journal, performing initial
1465  * validation of the format.
1466  */
1467 static int journal_get_superblock(journal_t *journal)
1468 {
1469         struct buffer_head *bh;
1470         journal_superblock_t *sb;
1471         int err = -EIO;
1472
1473         bh = journal->j_sb_buffer;
1474
1475         J_ASSERT(bh != NULL);
1476         if (!buffer_uptodate(bh)) {
1477                 ll_rw_block(READ, 1, &bh);
1478                 wait_on_buffer(bh);
1479                 if (!buffer_uptodate(bh)) {
1480                         printk(KERN_ERR
1481                                 "JBD2: IO error reading journal superblock\n");
1482                         goto out;
1483                 }
1484         }
1485
1486         if (buffer_verified(bh))
1487                 return 0;
1488
1489         sb = journal->j_superblock;
1490
1491         err = -EINVAL;
1492
1493         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1494             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1495                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1496                 goto out;
1497         }
1498
1499         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1500         case JBD2_SUPERBLOCK_V1:
1501                 journal->j_format_version = 1;
1502                 break;
1503         case JBD2_SUPERBLOCK_V2:
1504                 journal->j_format_version = 2;
1505                 break;
1506         default:
1507                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1508                 goto out;
1509         }
1510
1511         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1512                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1513         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1514                 printk(KERN_WARNING "JBD2: journal file too short\n");
1515                 goto out;
1516         }
1517
1518         if (be32_to_cpu(sb->s_first) == 0 ||
1519             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1520                 printk(KERN_WARNING
1521                         "JBD2: Invalid start block of journal: %u\n",
1522                         be32_to_cpu(sb->s_first));
1523                 goto out;
1524         }
1525
1526         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1527             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1528                 /* Can't have checksum v1 and v2 on at the same time! */
1529                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1530                        "at the same time!\n");
1531                 goto out;
1532         }
1533
1534         if (!jbd2_verify_csum_type(journal, sb)) {
1535                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1536                 goto out;
1537         }
1538
1539         /* Load the checksum driver */
1540         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1541                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1542                 if (IS_ERR(journal->j_chksum_driver)) {
1543                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1544                         err = PTR_ERR(journal->j_chksum_driver);
1545                         journal->j_chksum_driver = NULL;
1546                         goto out;
1547                 }
1548         }
1549
1550         /* Check superblock checksum */
1551         if (!jbd2_superblock_csum_verify(journal, sb)) {
1552                 printk(KERN_ERR "JBD: journal checksum error\n");
1553                 goto out;
1554         }
1555
1556         /* Precompute checksum seed for all metadata */
1557         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1558                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1559                                                    sizeof(sb->s_uuid));
1560
1561         set_buffer_verified(bh);
1562
1563         return 0;
1564
1565 out:
1566         journal_fail_superblock(journal);
1567         return err;
1568 }
1569
1570 /*
1571  * Load the on-disk journal superblock and read the key fields into the
1572  * journal_t.
1573  */
1574
1575 static int load_superblock(journal_t *journal)
1576 {
1577         int err;
1578         journal_superblock_t *sb;
1579
1580         err = journal_get_superblock(journal);
1581         if (err)
1582                 return err;
1583
1584         sb = journal->j_superblock;
1585
1586         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1587         journal->j_tail = be32_to_cpu(sb->s_start);
1588         journal->j_first = be32_to_cpu(sb->s_first);
1589         journal->j_last = be32_to_cpu(sb->s_maxlen);
1590         journal->j_errno = be32_to_cpu(sb->s_errno);
1591
1592         return 0;
1593 }
1594
1595
1596 /**
1597  * int jbd2_journal_load() - Read journal from disk.
1598  * @journal: Journal to act on.
1599  *
1600  * Given a journal_t structure which tells us which disk blocks contain
1601  * a journal, read the journal from disk to initialise the in-memory
1602  * structures.
1603  */
1604 int jbd2_journal_load(journal_t *journal)
1605 {
1606         int err;
1607         journal_superblock_t *sb;
1608
1609         err = load_superblock(journal);
1610         if (err)
1611                 return err;
1612
1613         sb = journal->j_superblock;
1614         /* If this is a V2 superblock, then we have to check the
1615          * features flags on it. */
1616
1617         if (journal->j_format_version >= 2) {
1618                 if ((sb->s_feature_ro_compat &
1619                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1620                     (sb->s_feature_incompat &
1621                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1622                         printk(KERN_WARNING
1623                                 "JBD2: Unrecognised features on journal\n");
1624                         return -EINVAL;
1625                 }
1626         }
1627
1628         /*
1629          * Create a slab for this blocksize
1630          */
1631         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1632         if (err)
1633                 return err;
1634
1635         /* Let the recovery code check whether it needs to recover any
1636          * data from the journal. */
1637         if (jbd2_journal_recover(journal))
1638                 goto recovery_error;
1639
1640         if (journal->j_failed_commit) {
1641                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1642                        "is corrupt.\n", journal->j_failed_commit,
1643                        journal->j_devname);
1644                 return -EIO;
1645         }
1646
1647         /* OK, we've finished with the dynamic journal bits:
1648          * reinitialise the dynamic contents of the superblock in memory
1649          * and reset them on disk. */
1650         if (journal_reset(journal))
1651                 goto recovery_error;
1652
1653         journal->j_flags &= ~JBD2_ABORT;
1654         journal->j_flags |= JBD2_LOADED;
1655         return 0;
1656
1657 recovery_error:
1658         printk(KERN_WARNING "JBD2: recovery failed\n");
1659         return -EIO;
1660 }
1661
1662 /**
1663  * void jbd2_journal_destroy() - Release a journal_t structure.
1664  * @journal: Journal to act on.
1665  *
1666  * Release a journal_t structure once it is no longer in use by the
1667  * journaled object.
1668  * Return <0 if we couldn't clean up the journal.
1669  */
1670 int jbd2_journal_destroy(journal_t *journal)
1671 {
1672         int err = 0;
1673
1674         /* Wait for the commit thread to wake up and die. */
1675         journal_kill_thread(journal);
1676
1677         /* Force a final log commit */
1678         if (journal->j_running_transaction)
1679                 jbd2_journal_commit_transaction(journal);
1680
1681         /* Force any old transactions to disk */
1682
1683         /* Totally anal locking here... */
1684         spin_lock(&journal->j_list_lock);
1685         while (journal->j_checkpoint_transactions != NULL) {
1686                 spin_unlock(&journal->j_list_lock);
1687                 mutex_lock(&journal->j_checkpoint_mutex);
1688                 jbd2_log_do_checkpoint(journal);
1689                 mutex_unlock(&journal->j_checkpoint_mutex);
1690                 spin_lock(&journal->j_list_lock);
1691         }
1692
1693         J_ASSERT(journal->j_running_transaction == NULL);
1694         J_ASSERT(journal->j_committing_transaction == NULL);
1695         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1696         spin_unlock(&journal->j_list_lock);
1697
1698         if (journal->j_sb_buffer) {
1699                 if (!is_journal_aborted(journal)) {
1700                         mutex_lock(&journal->j_checkpoint_mutex);
1701                         jbd2_mark_journal_empty(journal);
1702                         mutex_unlock(&journal->j_checkpoint_mutex);
1703                 } else
1704                         err = -EIO;
1705                 brelse(journal->j_sb_buffer);
1706         }
1707
1708         if (journal->j_proc_entry)
1709                 jbd2_stats_proc_exit(journal);
1710         if (journal->j_inode)
1711                 iput(journal->j_inode);
1712         if (journal->j_revoke)
1713                 jbd2_journal_destroy_revoke(journal);
1714         if (journal->j_chksum_driver)
1715                 crypto_free_shash(journal->j_chksum_driver);
1716         kfree(journal->j_wbuf);
1717         kfree(journal);
1718
1719         return err;
1720 }
1721
1722
1723 /**
1724  *int jbd2_journal_check_used_features () - Check if features specified are used.
1725  * @journal: Journal to check.
1726  * @compat: bitmask of compatible features
1727  * @ro: bitmask of features that force read-only mount
1728  * @incompat: bitmask of incompatible features
1729  *
1730  * Check whether the journal uses all of a given set of
1731  * features.  Return true (non-zero) if it does.
1732  **/
1733
1734 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1735                                  unsigned long ro, unsigned long incompat)
1736 {
1737         journal_superblock_t *sb;
1738
1739         if (!compat && !ro && !incompat)
1740                 return 1;
1741         /* Load journal superblock if it is not loaded yet. */
1742         if (journal->j_format_version == 0 &&
1743             journal_get_superblock(journal) != 0)
1744                 return 0;
1745         if (journal->j_format_version == 1)
1746                 return 0;
1747
1748         sb = journal->j_superblock;
1749
1750         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1751             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1752             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1753                 return 1;
1754
1755         return 0;
1756 }
1757
1758 /**
1759  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1760  * @journal: Journal to check.
1761  * @compat: bitmask of compatible features
1762  * @ro: bitmask of features that force read-only mount
1763  * @incompat: bitmask of incompatible features
1764  *
1765  * Check whether the journaling code supports the use of
1766  * all of a given set of features on this journal.  Return true
1767  * (non-zero) if it can. */
1768
1769 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1770                                       unsigned long ro, unsigned long incompat)
1771 {
1772         if (!compat && !ro && !incompat)
1773                 return 1;
1774
1775         /* We can support any known requested features iff the
1776          * superblock is in version 2.  Otherwise we fail to support any
1777          * extended sb features. */
1778
1779         if (journal->j_format_version != 2)
1780                 return 0;
1781
1782         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1783             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1784             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1785                 return 1;
1786
1787         return 0;
1788 }
1789
1790 /**
1791  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1792  * @journal: Journal to act on.
1793  * @compat: bitmask of compatible features
1794  * @ro: bitmask of features that force read-only mount
1795  * @incompat: bitmask of incompatible features
1796  *
1797  * Mark a given journal feature as present on the
1798  * superblock.  Returns true if the requested features could be set.
1799  *
1800  */
1801
1802 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1803                           unsigned long ro, unsigned long incompat)
1804 {
1805 #define INCOMPAT_FEATURE_ON(f) \
1806                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1807 #define COMPAT_FEATURE_ON(f) \
1808                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1809         journal_superblock_t *sb;
1810
1811         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1812                 return 1;
1813
1814         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1815                 return 0;
1816
1817         /* Asking for checksumming v2 and v1?  Only give them v2. */
1818         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1819             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1820                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1821
1822         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1823                   compat, ro, incompat);
1824
1825         sb = journal->j_superblock;
1826
1827         /* If enabling v2 checksums, update superblock */
1828         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1829                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1830                 sb->s_feature_compat &=
1831                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1832
1833                 /* Load the checksum driver */
1834                 if (journal->j_chksum_driver == NULL) {
1835                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1836                                                                       0, 0);
1837                         if (IS_ERR(journal->j_chksum_driver)) {
1838                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1839                                        "driver.\n");
1840                                 journal->j_chksum_driver = NULL;
1841                                 return 0;
1842                         }
1843                 }
1844
1845                 /* Precompute checksum seed for all metadata */
1846                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1847                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1848                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1849                                                            sb->s_uuid,
1850                                                            sizeof(sb->s_uuid));
1851         }
1852
1853         /* If enabling v1 checksums, downgrade superblock */
1854         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1855                 sb->s_feature_incompat &=
1856                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1857
1858         sb->s_feature_compat    |= cpu_to_be32(compat);
1859         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1860         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1861
1862         return 1;
1863 #undef COMPAT_FEATURE_ON
1864 #undef INCOMPAT_FEATURE_ON
1865 }
1866
1867 /*
1868  * jbd2_journal_clear_features () - Clear a given journal feature in the
1869  *                                  superblock
1870  * @journal: Journal to act on.
1871  * @compat: bitmask of compatible features
1872  * @ro: bitmask of features that force read-only mount
1873  * @incompat: bitmask of incompatible features
1874  *
1875  * Clear a given journal feature as present on the
1876  * superblock.
1877  */
1878 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1879                                 unsigned long ro, unsigned long incompat)
1880 {
1881         journal_superblock_t *sb;
1882
1883         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1884                   compat, ro, incompat);
1885
1886         sb = journal->j_superblock;
1887
1888         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1889         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1890         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1891 }
1892 EXPORT_SYMBOL(jbd2_journal_clear_features);
1893
1894 /**
1895  * int jbd2_journal_flush () - Flush journal
1896  * @journal: Journal to act on.
1897  *
1898  * Flush all data for a given journal to disk and empty the journal.
1899  * Filesystems can use this when remounting readonly to ensure that
1900  * recovery does not need to happen on remount.
1901  */
1902
1903 int jbd2_journal_flush(journal_t *journal)
1904 {
1905         int err = 0;
1906         transaction_t *transaction = NULL;
1907
1908         write_lock(&journal->j_state_lock);
1909
1910         /* Force everything buffered to the log... */
1911         if (journal->j_running_transaction) {
1912                 transaction = journal->j_running_transaction;
1913                 __jbd2_log_start_commit(journal, transaction->t_tid);
1914         } else if (journal->j_committing_transaction)
1915                 transaction = journal->j_committing_transaction;
1916
1917         /* Wait for the log commit to complete... */
1918         if (transaction) {
1919                 tid_t tid = transaction->t_tid;
1920
1921                 write_unlock(&journal->j_state_lock);
1922                 jbd2_log_wait_commit(journal, tid);
1923         } else {
1924                 write_unlock(&journal->j_state_lock);
1925         }
1926
1927         /* ...and flush everything in the log out to disk. */
1928         spin_lock(&journal->j_list_lock);
1929         while (!err && journal->j_checkpoint_transactions != NULL) {
1930                 spin_unlock(&journal->j_list_lock);
1931                 mutex_lock(&journal->j_checkpoint_mutex);
1932                 err = jbd2_log_do_checkpoint(journal);
1933                 mutex_unlock(&journal->j_checkpoint_mutex);
1934                 spin_lock(&journal->j_list_lock);
1935         }
1936         spin_unlock(&journal->j_list_lock);
1937
1938         if (is_journal_aborted(journal))
1939                 return -EIO;
1940
1941         mutex_lock(&journal->j_checkpoint_mutex);
1942         jbd2_cleanup_journal_tail(journal);
1943
1944         /* Finally, mark the journal as really needing no recovery.
1945          * This sets s_start==0 in the underlying superblock, which is
1946          * the magic code for a fully-recovered superblock.  Any future
1947          * commits of data to the journal will restore the current
1948          * s_start value. */
1949         jbd2_mark_journal_empty(journal);
1950         mutex_unlock(&journal->j_checkpoint_mutex);
1951         write_lock(&journal->j_state_lock);
1952         J_ASSERT(!journal->j_running_transaction);
1953         J_ASSERT(!journal->j_committing_transaction);
1954         J_ASSERT(!journal->j_checkpoint_transactions);
1955         J_ASSERT(journal->j_head == journal->j_tail);
1956         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1957         write_unlock(&journal->j_state_lock);
1958         return 0;
1959 }
1960
1961 /**
1962  * int jbd2_journal_wipe() - Wipe journal contents
1963  * @journal: Journal to act on.
1964  * @write: flag (see below)
1965  *
1966  * Wipe out all of the contents of a journal, safely.  This will produce
1967  * a warning if the journal contains any valid recovery information.
1968  * Must be called between journal_init_*() and jbd2_journal_load().
1969  *
1970  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1971  * we merely suppress recovery.
1972  */
1973
1974 int jbd2_journal_wipe(journal_t *journal, int write)
1975 {
1976         int err = 0;
1977
1978         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1979
1980         err = load_superblock(journal);
1981         if (err)
1982                 return err;
1983
1984         if (!journal->j_tail)
1985                 goto no_recovery;
1986
1987         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1988                 write ? "Clearing" : "Ignoring");
1989
1990         err = jbd2_journal_skip_recovery(journal);
1991         if (write) {
1992                 /* Lock to make assertions happy... */
1993                 mutex_lock(&journal->j_checkpoint_mutex);
1994                 jbd2_mark_journal_empty(journal);
1995                 mutex_unlock(&journal->j_checkpoint_mutex);
1996         }
1997
1998  no_recovery:
1999         return err;
2000 }
2001
2002 /*
2003  * Journal abort has very specific semantics, which we describe
2004  * for journal abort.
2005  *
2006  * Two internal functions, which provide abort to the jbd layer
2007  * itself are here.
2008  */
2009
2010 /*
2011  * Quick version for internal journal use (doesn't lock the journal).
2012  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2013  * and don't attempt to make any other journal updates.
2014  */
2015 void __jbd2_journal_abort_hard(journal_t *journal)
2016 {
2017         transaction_t *transaction;
2018
2019         if (journal->j_flags & JBD2_ABORT)
2020                 return;
2021
2022         printk(KERN_ERR "Aborting journal on device %s.\n",
2023                journal->j_devname);
2024
2025         write_lock(&journal->j_state_lock);
2026         journal->j_flags |= JBD2_ABORT;
2027         transaction = journal->j_running_transaction;
2028         if (transaction)
2029                 __jbd2_log_start_commit(journal, transaction->t_tid);
2030         write_unlock(&journal->j_state_lock);
2031 }
2032
2033 /* Soft abort: record the abort error status in the journal superblock,
2034  * but don't do any other IO. */
2035 static void __journal_abort_soft (journal_t *journal, int errno)
2036 {
2037         if (journal->j_flags & JBD2_ABORT)
2038                 return;
2039
2040         if (!journal->j_errno)
2041                 journal->j_errno = errno;
2042
2043         __jbd2_journal_abort_hard(journal);
2044
2045         if (errno)
2046                 jbd2_journal_update_sb_errno(journal);
2047 }
2048
2049 /**
2050  * void jbd2_journal_abort () - Shutdown the journal immediately.
2051  * @journal: the journal to shutdown.
2052  * @errno:   an error number to record in the journal indicating
2053  *           the reason for the shutdown.
2054  *
2055  * Perform a complete, immediate shutdown of the ENTIRE
2056  * journal (not of a single transaction).  This operation cannot be
2057  * undone without closing and reopening the journal.
2058  *
2059  * The jbd2_journal_abort function is intended to support higher level error
2060  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2061  * mode.
2062  *
2063  * Journal abort has very specific semantics.  Any existing dirty,
2064  * unjournaled buffers in the main filesystem will still be written to
2065  * disk by bdflush, but the journaling mechanism will be suspended
2066  * immediately and no further transaction commits will be honoured.
2067  *
2068  * Any dirty, journaled buffers will be written back to disk without
2069  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2070  * filesystem, but we _do_ attempt to leave as much data as possible
2071  * behind for fsck to use for cleanup.
2072  *
2073  * Any attempt to get a new transaction handle on a journal which is in
2074  * ABORT state will just result in an -EROFS error return.  A
2075  * jbd2_journal_stop on an existing handle will return -EIO if we have
2076  * entered abort state during the update.
2077  *
2078  * Recursive transactions are not disturbed by journal abort until the
2079  * final jbd2_journal_stop, which will receive the -EIO error.
2080  *
2081  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2082  * which will be recorded (if possible) in the journal superblock.  This
2083  * allows a client to record failure conditions in the middle of a
2084  * transaction without having to complete the transaction to record the
2085  * failure to disk.  ext3_error, for example, now uses this
2086  * functionality.
2087  *
2088  * Errors which originate from within the journaling layer will NOT
2089  * supply an errno; a null errno implies that absolutely no further
2090  * writes are done to the journal (unless there are any already in
2091  * progress).
2092  *
2093  */
2094
2095 void jbd2_journal_abort(journal_t *journal, int errno)
2096 {
2097         __journal_abort_soft(journal, errno);
2098 }
2099
2100 /**
2101  * int jbd2_journal_errno () - returns the journal's error state.
2102  * @journal: journal to examine.
2103  *
2104  * This is the errno number set with jbd2_journal_abort(), the last
2105  * time the journal was mounted - if the journal was stopped
2106  * without calling abort this will be 0.
2107  *
2108  * If the journal has been aborted on this mount time -EROFS will
2109  * be returned.
2110  */
2111 int jbd2_journal_errno(journal_t *journal)
2112 {
2113         int err;
2114
2115         read_lock(&journal->j_state_lock);
2116         if (journal->j_flags & JBD2_ABORT)
2117                 err = -EROFS;
2118         else
2119                 err = journal->j_errno;
2120         read_unlock(&journal->j_state_lock);
2121         return err;
2122 }
2123
2124 /**
2125  * int jbd2_journal_clear_err () - clears the journal's error state
2126  * @journal: journal to act on.
2127  *
2128  * An error must be cleared or acked to take a FS out of readonly
2129  * mode.
2130  */
2131 int jbd2_journal_clear_err(journal_t *journal)
2132 {
2133         int err = 0;
2134
2135         write_lock(&journal->j_state_lock);
2136         if (journal->j_flags & JBD2_ABORT)
2137                 err = -EROFS;
2138         else
2139                 journal->j_errno = 0;
2140         write_unlock(&journal->j_state_lock);
2141         return err;
2142 }
2143
2144 /**
2145  * void jbd2_journal_ack_err() - Ack journal err.
2146  * @journal: journal to act on.
2147  *
2148  * An error must be cleared or acked to take a FS out of readonly
2149  * mode.
2150  */
2151 void jbd2_journal_ack_err(journal_t *journal)
2152 {
2153         write_lock(&journal->j_state_lock);
2154         if (journal->j_errno)
2155                 journal->j_flags |= JBD2_ACK_ERR;
2156         write_unlock(&journal->j_state_lock);
2157 }
2158
2159 int jbd2_journal_blocks_per_page(struct inode *inode)
2160 {
2161         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2162 }
2163
2164 /*
2165  * helper functions to deal with 32 or 64bit block numbers.
2166  */
2167 size_t journal_tag_bytes(journal_t *journal)
2168 {
2169         journal_block_tag_t tag;
2170         size_t x = 0;
2171
2172         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2173                 x += sizeof(tag.t_checksum);
2174
2175         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2176                 return x + JBD2_TAG_SIZE64;
2177         else
2178                 return x + JBD2_TAG_SIZE32;
2179 }
2180
2181 /*
2182  * JBD memory management
2183  *
2184  * These functions are used to allocate block-sized chunks of memory
2185  * used for making copies of buffer_head data.  Very often it will be
2186  * page-sized chunks of data, but sometimes it will be in
2187  * sub-page-size chunks.  (For example, 16k pages on Power systems
2188  * with a 4k block file system.)  For blocks smaller than a page, we
2189  * use a SLAB allocator.  There are slab caches for each block size,
2190  * which are allocated at mount time, if necessary, and we only free
2191  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2192  * this reason we don't need to a mutex to protect access to
2193  * jbd2_slab[] allocating or releasing memory; only in
2194  * jbd2_journal_create_slab().
2195  */
2196 #define JBD2_MAX_SLABS 8
2197 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2198
2199 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2200         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2201         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2202 };
2203
2204
2205 static void jbd2_journal_destroy_slabs(void)
2206 {
2207         int i;
2208
2209         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2210                 if (jbd2_slab[i])
2211                         kmem_cache_destroy(jbd2_slab[i]);
2212                 jbd2_slab[i] = NULL;
2213         }
2214 }
2215
2216 static int jbd2_journal_create_slab(size_t size)
2217 {
2218         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2219         int i = order_base_2(size) - 10;
2220         size_t slab_size;
2221
2222         if (size == PAGE_SIZE)
2223                 return 0;
2224
2225         if (i >= JBD2_MAX_SLABS)
2226                 return -EINVAL;
2227
2228         if (unlikely(i < 0))
2229                 i = 0;
2230         mutex_lock(&jbd2_slab_create_mutex);
2231         if (jbd2_slab[i]) {
2232                 mutex_unlock(&jbd2_slab_create_mutex);
2233                 return 0;       /* Already created */
2234         }
2235
2236         slab_size = 1 << (i+10);
2237         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2238                                          slab_size, 0, NULL);
2239         mutex_unlock(&jbd2_slab_create_mutex);
2240         if (!jbd2_slab[i]) {
2241                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2242                 return -ENOMEM;
2243         }
2244         return 0;
2245 }
2246
2247 static struct kmem_cache *get_slab(size_t size)
2248 {
2249         int i = order_base_2(size) - 10;
2250
2251         BUG_ON(i >= JBD2_MAX_SLABS);
2252         if (unlikely(i < 0))
2253                 i = 0;
2254         BUG_ON(jbd2_slab[i] == NULL);
2255         return jbd2_slab[i];
2256 }
2257
2258 void *jbd2_alloc(size_t size, gfp_t flags)
2259 {
2260         void *ptr;
2261
2262         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2263
2264         flags |= __GFP_REPEAT;
2265         if (size == PAGE_SIZE)
2266                 ptr = (void *)__get_free_pages(flags, 0);
2267         else if (size > PAGE_SIZE) {
2268                 int order = get_order(size);
2269
2270                 if (order < 3)
2271                         ptr = (void *)__get_free_pages(flags, order);
2272                 else
2273                         ptr = vmalloc(size);
2274         } else
2275                 ptr = kmem_cache_alloc(get_slab(size), flags);
2276
2277         /* Check alignment; SLUB has gotten this wrong in the past,
2278          * and this can lead to user data corruption! */
2279         BUG_ON(((unsigned long) ptr) & (size-1));
2280
2281         return ptr;
2282 }
2283
2284 void jbd2_free(void *ptr, size_t size)
2285 {
2286         if (size == PAGE_SIZE) {
2287                 free_pages((unsigned long)ptr, 0);
2288                 return;
2289         }
2290         if (size > PAGE_SIZE) {
2291                 int order = get_order(size);
2292
2293                 if (order < 3)
2294                         free_pages((unsigned long)ptr, order);
2295                 else
2296                         vfree(ptr);
2297                 return;
2298         }
2299         kmem_cache_free(get_slab(size), ptr);
2300 };
2301
2302 /*
2303  * Journal_head storage management
2304  */
2305 static struct kmem_cache *jbd2_journal_head_cache;
2306 #ifdef CONFIG_JBD2_DEBUG
2307 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2308 #endif
2309
2310 static int jbd2_journal_init_journal_head_cache(void)
2311 {
2312         int retval;
2313
2314         J_ASSERT(jbd2_journal_head_cache == NULL);
2315         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2316                                 sizeof(struct journal_head),
2317                                 0,              /* offset */
2318                                 SLAB_TEMPORARY, /* flags */
2319                                 NULL);          /* ctor */
2320         retval = 0;
2321         if (!jbd2_journal_head_cache) {
2322                 retval = -ENOMEM;
2323                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2324         }
2325         return retval;
2326 }
2327
2328 static void jbd2_journal_destroy_journal_head_cache(void)
2329 {
2330         if (jbd2_journal_head_cache) {
2331                 kmem_cache_destroy(jbd2_journal_head_cache);
2332                 jbd2_journal_head_cache = NULL;
2333         }
2334 }
2335
2336 /*
2337  * journal_head splicing and dicing
2338  */
2339 static struct journal_head *journal_alloc_journal_head(void)
2340 {
2341         struct journal_head *ret;
2342
2343 #ifdef CONFIG_JBD2_DEBUG
2344         atomic_inc(&nr_journal_heads);
2345 #endif
2346         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2347         if (!ret) {
2348                 jbd_debug(1, "out of memory for journal_head\n");
2349                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2350                 while (!ret) {
2351                         yield();
2352                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2353                 }
2354         }
2355         return ret;
2356 }
2357
2358 static void journal_free_journal_head(struct journal_head *jh)
2359 {
2360 #ifdef CONFIG_JBD2_DEBUG
2361         atomic_dec(&nr_journal_heads);
2362         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2363 #endif
2364         kmem_cache_free(jbd2_journal_head_cache, jh);
2365 }
2366
2367 /*
2368  * A journal_head is attached to a buffer_head whenever JBD has an
2369  * interest in the buffer.
2370  *
2371  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2372  * is set.  This bit is tested in core kernel code where we need to take
2373  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2374  * there.
2375  *
2376  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2377  *
2378  * When a buffer has its BH_JBD bit set it is immune from being released by
2379  * core kernel code, mainly via ->b_count.
2380  *
2381  * A journal_head is detached from its buffer_head when the journal_head's
2382  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2383  * transaction (b_cp_transaction) hold their references to b_jcount.
2384  *
2385  * Various places in the kernel want to attach a journal_head to a buffer_head
2386  * _before_ attaching the journal_head to a transaction.  To protect the
2387  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2388  * journal_head's b_jcount refcount by one.  The caller must call
2389  * jbd2_journal_put_journal_head() to undo this.
2390  *
2391  * So the typical usage would be:
2392  *
2393  *      (Attach a journal_head if needed.  Increments b_jcount)
2394  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2395  *      ...
2396  *      (Get another reference for transaction)
2397  *      jbd2_journal_grab_journal_head(bh);
2398  *      jh->b_transaction = xxx;
2399  *      (Put original reference)
2400  *      jbd2_journal_put_journal_head(jh);
2401  */
2402
2403 /*
2404  * Give a buffer_head a journal_head.
2405  *
2406  * May sleep.
2407  */
2408 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2409 {
2410         struct journal_head *jh;
2411         struct journal_head *new_jh = NULL;
2412
2413 repeat:
2414         if (!buffer_jbd(bh))
2415                 new_jh = journal_alloc_journal_head();
2416
2417         jbd_lock_bh_journal_head(bh);
2418         if (buffer_jbd(bh)) {
2419                 jh = bh2jh(bh);
2420         } else {
2421                 J_ASSERT_BH(bh,
2422                         (atomic_read(&bh->b_count) > 0) ||
2423                         (bh->b_page && bh->b_page->mapping));
2424
2425                 if (!new_jh) {
2426                         jbd_unlock_bh_journal_head(bh);
2427                         goto repeat;
2428                 }
2429
2430                 jh = new_jh;
2431                 new_jh = NULL;          /* We consumed it */
2432                 set_buffer_jbd(bh);
2433                 bh->b_private = jh;
2434                 jh->b_bh = bh;
2435                 get_bh(bh);
2436                 BUFFER_TRACE(bh, "added journal_head");
2437         }
2438         jh->b_jcount++;
2439         jbd_unlock_bh_journal_head(bh);
2440         if (new_jh)
2441                 journal_free_journal_head(new_jh);
2442         return bh->b_private;
2443 }
2444
2445 /*
2446  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2447  * having a journal_head, return NULL
2448  */
2449 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2450 {
2451         struct journal_head *jh = NULL;
2452
2453         jbd_lock_bh_journal_head(bh);
2454         if (buffer_jbd(bh)) {
2455                 jh = bh2jh(bh);
2456                 jh->b_jcount++;
2457         }
2458         jbd_unlock_bh_journal_head(bh);
2459         return jh;
2460 }
2461
2462 static void __journal_remove_journal_head(struct buffer_head *bh)
2463 {
2464         struct journal_head *jh = bh2jh(bh);
2465
2466         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2467         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2468         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2469         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2470         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2471         J_ASSERT_BH(bh, buffer_jbd(bh));
2472         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2473         BUFFER_TRACE(bh, "remove journal_head");
2474         if (jh->b_frozen_data) {
2475                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2476                 jbd2_free(jh->b_frozen_data, bh->b_size);
2477         }
2478         if (jh->b_committed_data) {
2479                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2480                 jbd2_free(jh->b_committed_data, bh->b_size);
2481         }
2482         bh->b_private = NULL;
2483         jh->b_bh = NULL;        /* debug, really */
2484         clear_buffer_jbd(bh);
2485         journal_free_journal_head(jh);
2486 }
2487
2488 /*
2489  * Drop a reference on the passed journal_head.  If it fell to zero then
2490  * release the journal_head from the buffer_head.
2491  */
2492 void jbd2_journal_put_journal_head(struct journal_head *jh)
2493 {
2494         struct buffer_head *bh = jh2bh(jh);
2495
2496         jbd_lock_bh_journal_head(bh);
2497         J_ASSERT_JH(jh, jh->b_jcount > 0);
2498         --jh->b_jcount;
2499         if (!jh->b_jcount) {
2500                 __journal_remove_journal_head(bh);
2501                 jbd_unlock_bh_journal_head(bh);
2502                 __brelse(bh);
2503         } else
2504                 jbd_unlock_bh_journal_head(bh);
2505 }
2506
2507 /*
2508  * Initialize jbd inode head
2509  */
2510 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2511 {
2512         jinode->i_transaction = NULL;
2513         jinode->i_next_transaction = NULL;
2514         jinode->i_vfs_inode = inode;
2515         jinode->i_flags = 0;
2516         INIT_LIST_HEAD(&jinode->i_list);
2517 }
2518
2519 /*
2520  * Function to be called before we start removing inode from memory (i.e.,
2521  * clear_inode() is a fine place to be called from). It removes inode from
2522  * transaction's lists.
2523  */
2524 void jbd2_journal_release_jbd_inode(journal_t *journal,
2525                                     struct jbd2_inode *jinode)
2526 {
2527         if (!journal)
2528                 return;
2529 restart:
2530         spin_lock(&journal->j_list_lock);
2531         /* Is commit writing out inode - we have to wait */
2532         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2533                 wait_queue_head_t *wq;
2534                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2535                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2536                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2537                 spin_unlock(&journal->j_list_lock);
2538                 schedule();
2539                 finish_wait(wq, &wait.wait);
2540                 goto restart;
2541         }
2542
2543         if (jinode->i_transaction) {
2544                 list_del(&jinode->i_list);
2545                 jinode->i_transaction = NULL;
2546         }
2547         spin_unlock(&journal->j_list_lock);
2548 }
2549
2550
2551 #ifdef CONFIG_PROC_FS
2552
2553 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2554
2555 static void __init jbd2_create_jbd_stats_proc_entry(void)
2556 {
2557         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2558 }
2559
2560 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2561 {
2562         if (proc_jbd2_stats)
2563                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2564 }
2565
2566 #else
2567
2568 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2569 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2570
2571 #endif
2572
2573 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2574
2575 static int __init jbd2_journal_init_handle_cache(void)
2576 {
2577         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2578         if (jbd2_handle_cache == NULL) {
2579                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2580                 return -ENOMEM;
2581         }
2582         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2583         if (jbd2_inode_cache == NULL) {
2584                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2585                 kmem_cache_destroy(jbd2_handle_cache);
2586                 return -ENOMEM;
2587         }
2588         return 0;
2589 }
2590
2591 static void jbd2_journal_destroy_handle_cache(void)
2592 {
2593         if (jbd2_handle_cache)
2594                 kmem_cache_destroy(jbd2_handle_cache);
2595         if (jbd2_inode_cache)
2596                 kmem_cache_destroy(jbd2_inode_cache);
2597
2598 }
2599
2600 /*
2601  * Module startup and shutdown
2602  */
2603
2604 static int __init journal_init_caches(void)
2605 {
2606         int ret;
2607
2608         ret = jbd2_journal_init_revoke_caches();
2609         if (ret == 0)
2610                 ret = jbd2_journal_init_journal_head_cache();
2611         if (ret == 0)
2612                 ret = jbd2_journal_init_handle_cache();
2613         if (ret == 0)
2614                 ret = jbd2_journal_init_transaction_cache();
2615         return ret;
2616 }
2617
2618 static void jbd2_journal_destroy_caches(void)
2619 {
2620         jbd2_journal_destroy_revoke_caches();
2621         jbd2_journal_destroy_journal_head_cache();
2622         jbd2_journal_destroy_handle_cache();
2623         jbd2_journal_destroy_transaction_cache();
2624         jbd2_journal_destroy_slabs();
2625 }
2626
2627 static int __init journal_init(void)
2628 {
2629         int ret;
2630
2631         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2632
2633         ret = journal_init_caches();
2634         if (ret == 0) {
2635                 jbd2_create_jbd_stats_proc_entry();
2636         } else {
2637                 jbd2_journal_destroy_caches();
2638         }
2639         return ret;
2640 }
2641
2642 static void __exit journal_exit(void)
2643 {
2644 #ifdef CONFIG_JBD2_DEBUG
2645         int n = atomic_read(&nr_journal_heads);
2646         if (n)
2647                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2648 #endif
2649         jbd2_remove_jbd_stats_proc_entry();
2650         jbd2_journal_destroy_caches();
2651 }
2652
2653 MODULE_LICENSE("GPL");
2654 module_init(journal_init);
2655 module_exit(journal_exit);
2656