]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/ctree.c
Btrfs: fix extent buffer leak after backref walking
[linux-imx.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid,
278                             (unsigned long)btrfs_header_fsid(cow),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366         seq &= 0xffffffff00000000ull;
367         seq += 1ull << 32;
368         atomic64_set(&fs_info->tree_mod_seq, seq);
369         return seq;
370 }
371
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385         return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393         return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405                            struct seq_list *elem)
406 {
407         u64 seq;
408
409         tree_mod_log_write_lock(fs_info);
410         spin_lock(&fs_info->tree_mod_seq_lock);
411         if (!elem->seq) {
412                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414         }
415         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417         tree_mod_log_write_unlock(fs_info);
418
419         return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423                             struct seq_list *elem)
424 {
425         struct rb_root *tm_root;
426         struct rb_node *node;
427         struct rb_node *next;
428         struct seq_list *cur_elem;
429         struct tree_mod_elem *tm;
430         u64 min_seq = (u64)-1;
431         u64 seq_putting = elem->seq;
432
433         if (!seq_putting)
434                 return;
435
436         spin_lock(&fs_info->tree_mod_seq_lock);
437         list_del(&elem->list);
438         elem->seq = 0;
439
440         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441                 if (cur_elem->seq < min_seq) {
442                         if (seq_putting > cur_elem->seq) {
443                                 /*
444                                  * blocker with lower sequence number exists, we
445                                  * cannot remove anything from the log
446                                  */
447                                 spin_unlock(&fs_info->tree_mod_seq_lock);
448                                 return;
449                         }
450                         min_seq = cur_elem->seq;
451                 }
452         }
453         spin_unlock(&fs_info->tree_mod_seq_lock);
454
455         /*
456          * anything that's lower than the lowest existing (read: blocked)
457          * sequence number can be removed from the tree.
458          */
459         tree_mod_log_write_lock(fs_info);
460         tm_root = &fs_info->tree_mod_log;
461         for (node = rb_first(tm_root); node; node = next) {
462                 next = rb_next(node);
463                 tm = container_of(node, struct tree_mod_elem, node);
464                 if (tm->seq > min_seq)
465                         continue;
466                 rb_erase(node, tm_root);
467                 kfree(tm);
468         }
469         tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm || !tm->seq);
489
490         tm_root = &fs_info->tree_mod_log;
491         new = &tm_root->rb_node;
492         while (*new) {
493                 cur = container_of(*new, struct tree_mod_elem, node);
494                 parent = *new;
495                 if (cur->index < tm->index)
496                         new = &((*new)->rb_left);
497                 else if (cur->index > tm->index)
498                         new = &((*new)->rb_right);
499                 else if (cur->seq < tm->seq)
500                         new = &((*new)->rb_left);
501                 else if (cur->seq > tm->seq)
502                         new = &((*new)->rb_right);
503                 else {
504                         kfree(tm);
505                         return -EEXIST;
506                 }
507         }
508
509         rb_link_node(&tm->node, parent, new);
510         rb_insert_color(&tm->node, tm_root);
511         return 0;
512 }
513
514 /*
515  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516  * returns zero with the tree_mod_log_lock acquired. The caller must hold
517  * this until all tree mod log insertions are recorded in the rb tree and then
518  * call tree_mod_log_write_unlock() to release.
519  */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521                                     struct extent_buffer *eb) {
522         smp_mb();
523         if (list_empty(&(fs_info)->tree_mod_seq_list))
524                 return 1;
525         if (eb && btrfs_header_level(eb) == 0)
526                 return 1;
527
528         tree_mod_log_write_lock(fs_info);
529         if (list_empty(&fs_info->tree_mod_seq_list)) {
530                 /*
531                  * someone emptied the list while we were waiting for the lock.
532                  * we must not add to the list when no blocker exists.
533                  */
534                 tree_mod_log_write_unlock(fs_info);
535                 return 1;
536         }
537
538         return 0;
539 }
540
541 /*
542  * This allocates memory and gets a tree modification sequence number.
543  *
544  * Returns <0 on error.
545  * Returns >0 (the added sequence number) on success.
546  */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548                                  struct tree_mod_elem **tm_ret)
549 {
550         struct tree_mod_elem *tm;
551
552         /*
553          * once we switch from spin locks to something different, we should
554          * honor the flags parameter here.
555          */
556         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557         if (!tm)
558                 return -ENOMEM;
559
560         spin_lock(&fs_info->tree_mod_seq_lock);
561         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562         spin_unlock(&fs_info->tree_mod_seq_lock);
563
564         return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569                           struct extent_buffer *eb, int slot,
570                           enum mod_log_op op, gfp_t flags)
571 {
572         int ret;
573         struct tree_mod_elem *tm;
574
575         ret = tree_mod_alloc(fs_info, flags, &tm);
576         if (ret < 0)
577                 return ret;
578
579         tm->index = eb->start >> PAGE_CACHE_SHIFT;
580         if (op != MOD_LOG_KEY_ADD) {
581                 btrfs_node_key(eb, &tm->key, slot);
582                 tm->blockptr = btrfs_node_blockptr(eb, slot);
583         }
584         tm->op = op;
585         tm->slot = slot;
586         tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588         return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593                              struct extent_buffer *eb, int slot,
594                              enum mod_log_op op, gfp_t flags)
595 {
596         int ret;
597
598         if (tree_mod_dont_log(fs_info, eb))
599                 return 0;
600
601         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603         tree_mod_log_write_unlock(fs_info);
604         return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609                         int slot, enum mod_log_op op)
610 {
611         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616                              struct extent_buffer *eb, int slot,
617                              enum mod_log_op op)
618 {
619         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624                          struct extent_buffer *eb, int dst_slot, int src_slot,
625                          int nr_items, gfp_t flags)
626 {
627         struct tree_mod_elem *tm;
628         int ret;
629         int i;
630
631         if (tree_mod_dont_log(fs_info, eb))
632                 return 0;
633
634         /*
635          * When we override something during the move, we log these removals.
636          * This can only happen when we move towards the beginning of the
637          * buffer, i.e. dst_slot < src_slot.
638          */
639         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642                 BUG_ON(ret < 0);
643         }
644
645         ret = tree_mod_alloc(fs_info, flags, &tm);
646         if (ret < 0)
647                 goto out;
648
649         tm->index = eb->start >> PAGE_CACHE_SHIFT;
650         tm->slot = src_slot;
651         tm->move.dst_slot = dst_slot;
652         tm->move.nr_items = nr_items;
653         tm->op = MOD_LOG_MOVE_KEYS;
654
655         ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657         tree_mod_log_write_unlock(fs_info);
658         return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664         int i;
665         u32 nritems;
666         int ret;
667
668         if (btrfs_header_level(eb) == 0)
669                 return;
670
671         nritems = btrfs_header_nritems(eb);
672         for (i = nritems - 1; i >= 0; i--) {
673                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675                 BUG_ON(ret < 0);
676         }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681                          struct extent_buffer *old_root,
682                          struct extent_buffer *new_root, gfp_t flags,
683                          int log_removal)
684 {
685         struct tree_mod_elem *tm;
686         int ret;
687
688         if (tree_mod_dont_log(fs_info, NULL))
689                 return 0;
690
691         if (log_removal)
692                 __tree_mod_log_free_eb(fs_info, old_root);
693
694         ret = tree_mod_alloc(fs_info, flags, &tm);
695         if (ret < 0)
696                 goto out;
697
698         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699         tm->old_root.logical = old_root->start;
700         tm->old_root.level = btrfs_header_level(old_root);
701         tm->generation = btrfs_header_generation(old_root);
702         tm->op = MOD_LOG_ROOT_REPLACE;
703
704         ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706         tree_mod_log_write_unlock(fs_info);
707         return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712                       int smallest)
713 {
714         struct rb_root *tm_root;
715         struct rb_node *node;
716         struct tree_mod_elem *cur = NULL;
717         struct tree_mod_elem *found = NULL;
718         u64 index = start >> PAGE_CACHE_SHIFT;
719
720         tree_mod_log_read_lock(fs_info);
721         tm_root = &fs_info->tree_mod_log;
722         node = tm_root->rb_node;
723         while (node) {
724                 cur = container_of(node, struct tree_mod_elem, node);
725                 if (cur->index < index) {
726                         node = node->rb_left;
727                 } else if (cur->index > index) {
728                         node = node->rb_right;
729                 } else if (cur->seq < min_seq) {
730                         node = node->rb_left;
731                 } else if (!smallest) {
732                         /* we want the node with the highest seq */
733                         if (found)
734                                 BUG_ON(found->seq > cur->seq);
735                         found = cur;
736                         node = node->rb_left;
737                 } else if (cur->seq > min_seq) {
738                         /* we want the node with the smallest seq */
739                         if (found)
740                                 BUG_ON(found->seq < cur->seq);
741                         found = cur;
742                         node = node->rb_right;
743                 } else {
744                         found = cur;
745                         break;
746                 }
747         }
748         tree_mod_log_read_unlock(fs_info);
749
750         return found;
751 }
752
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760                            u64 min_seq)
761 {
762         return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773         return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778                      struct extent_buffer *src, unsigned long dst_offset,
779                      unsigned long src_offset, int nr_items)
780 {
781         int ret;
782         int i;
783
784         if (tree_mod_dont_log(fs_info, NULL))
785                 return;
786
787         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788                 tree_mod_log_write_unlock(fs_info);
789                 return;
790         }
791
792         for (i = 0; i < nr_items; i++) {
793                 ret = tree_mod_log_insert_key_locked(fs_info, src,
794                                                 i + src_offset,
795                                                 MOD_LOG_KEY_REMOVE);
796                 BUG_ON(ret < 0);
797                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798                                                      i + dst_offset,
799                                                      MOD_LOG_KEY_ADD);
800                 BUG_ON(ret < 0);
801         }
802
803         tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808                      int dst_offset, int src_offset, int nr_items)
809 {
810         int ret;
811         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812                                        nr_items, GFP_NOFS);
813         BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818                           struct extent_buffer *eb, int slot, int atomic)
819 {
820         int ret;
821
822         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823                                            MOD_LOG_KEY_REPLACE,
824                                            atomic ? GFP_ATOMIC : GFP_NOFS);
825         BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831         if (tree_mod_dont_log(fs_info, eb))
832                 return;
833
834         __tree_mod_log_free_eb(fs_info, eb);
835
836         tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841                               struct extent_buffer *new_root_node,
842                               int log_removal)
843 {
844         int ret;
845         ret = tree_mod_log_insert_root(root->fs_info, root->node,
846                                        new_root_node, GFP_NOFS, log_removal);
847         BUG_ON(ret < 0);
848 }
849
850 /*
851  * check if the tree block can be shared by multiple trees
852  */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854                               struct extent_buffer *buf)
855 {
856         /*
857          * Tree blocks not in refernece counted trees and tree roots
858          * are never shared. If a block was allocated after the last
859          * snapshot and the block was not allocated by tree relocation,
860          * we know the block is not shared.
861          */
862         if (root->ref_cows &&
863             buf != root->node && buf != root->commit_root &&
864             (btrfs_header_generation(buf) <=
865              btrfs_root_last_snapshot(&root->root_item) ||
866              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867                 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869         if (root->ref_cows &&
870             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871                 return 1;
872 #endif
873         return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877                                        struct btrfs_root *root,
878                                        struct extent_buffer *buf,
879                                        struct extent_buffer *cow,
880                                        int *last_ref)
881 {
882         u64 refs;
883         u64 owner;
884         u64 flags;
885         u64 new_flags = 0;
886         int ret;
887
888         /*
889          * Backrefs update rules:
890          *
891          * Always use full backrefs for extent pointers in tree block
892          * allocated by tree relocation.
893          *
894          * If a shared tree block is no longer referenced by its owner
895          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896          * use full backrefs for extent pointers in tree block.
897          *
898          * If a tree block is been relocating
899          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900          * use full backrefs for extent pointers in tree block.
901          * The reason for this is some operations (such as drop tree)
902          * are only allowed for blocks use full backrefs.
903          */
904
905         if (btrfs_block_can_be_shared(root, buf)) {
906                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907                                                btrfs_header_level(buf), 1,
908                                                &refs, &flags);
909                 if (ret)
910                         return ret;
911                 if (refs == 0) {
912                         ret = -EROFS;
913                         btrfs_std_error(root->fs_info, ret);
914                         return ret;
915                 }
916         } else {
917                 refs = 1;
918                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921                 else
922                         flags = 0;
923         }
924
925         owner = btrfs_header_owner(buf);
926         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929         if (refs > 1) {
930                 if ((owner == root->root_key.objectid ||
931                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934                         BUG_ON(ret); /* -ENOMEM */
935
936                         if (root->root_key.objectid ==
937                             BTRFS_TREE_RELOC_OBJECTID) {
938                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939                                 BUG_ON(ret); /* -ENOMEM */
940                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941                                 BUG_ON(ret); /* -ENOMEM */
942                         }
943                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944                 } else {
945
946                         if (root->root_key.objectid ==
947                             BTRFS_TREE_RELOC_OBJECTID)
948                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949                         else
950                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951                         BUG_ON(ret); /* -ENOMEM */
952                 }
953                 if (new_flags != 0) {
954                         int level = btrfs_header_level(buf);
955
956                         ret = btrfs_set_disk_extent_flags(trans, root,
957                                                           buf->start,
958                                                           buf->len,
959                                                           new_flags, level, 0);
960                         if (ret)
961                                 return ret;
962                 }
963         } else {
964                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965                         if (root->root_key.objectid ==
966                             BTRFS_TREE_RELOC_OBJECTID)
967                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968                         else
969                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970                         BUG_ON(ret); /* -ENOMEM */
971                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972                         BUG_ON(ret); /* -ENOMEM */
973                 }
974                 clean_tree_block(trans, root, buf);
975                 *last_ref = 1;
976         }
977         return 0;
978 }
979
980 /*
981  * does the dirty work in cow of a single block.  The parent block (if
982  * supplied) is updated to point to the new cow copy.  The new buffer is marked
983  * dirty and returned locked.  If you modify the block it needs to be marked
984  * dirty again.
985  *
986  * search_start -- an allocation hint for the new block
987  *
988  * empty_size -- a hint that you plan on doing more cow.  This is the size in
989  * bytes the allocator should try to find free next to the block it returns.
990  * This is just a hint and may be ignored by the allocator.
991  */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993                              struct btrfs_root *root,
994                              struct extent_buffer *buf,
995                              struct extent_buffer *parent, int parent_slot,
996                              struct extent_buffer **cow_ret,
997                              u64 search_start, u64 empty_size)
998 {
999         struct btrfs_disk_key disk_key;
1000         struct extent_buffer *cow;
1001         int level, ret;
1002         int last_ref = 0;
1003         int unlock_orig = 0;
1004         u64 parent_start;
1005
1006         if (*cow_ret == buf)
1007                 unlock_orig = 1;
1008
1009         btrfs_assert_tree_locked(buf);
1010
1011         WARN_ON(root->ref_cows && trans->transid !=
1012                 root->fs_info->running_transaction->transid);
1013         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015         level = btrfs_header_level(buf);
1016
1017         if (level == 0)
1018                 btrfs_item_key(buf, &disk_key, 0);
1019         else
1020                 btrfs_node_key(buf, &disk_key, 0);
1021
1022         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023                 if (parent)
1024                         parent_start = parent->start;
1025                 else
1026                         parent_start = 0;
1027         } else
1028                 parent_start = 0;
1029
1030         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031                                      root->root_key.objectid, &disk_key,
1032                                      level, search_start, empty_size);
1033         if (IS_ERR(cow))
1034                 return PTR_ERR(cow);
1035
1036         /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039         btrfs_set_header_bytenr(cow, cow->start);
1040         btrfs_set_header_generation(cow, trans->transid);
1041         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043                                      BTRFS_HEADER_FLAG_RELOC);
1044         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046         else
1047                 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049         write_extent_buffer(cow, root->fs_info->fsid,
1050                             (unsigned long)btrfs_header_fsid(cow),
1051                             BTRFS_FSID_SIZE);
1052
1053         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054         if (ret) {
1055                 btrfs_abort_transaction(trans, root, ret);
1056                 return ret;
1057         }
1058
1059         if (root->ref_cows)
1060                 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062         if (buf == root->node) {
1063                 WARN_ON(parent && parent != buf);
1064                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066                         parent_start = buf->start;
1067                 else
1068                         parent_start = 0;
1069
1070                 extent_buffer_get(cow);
1071                 tree_mod_log_set_root_pointer(root, cow, 1);
1072                 rcu_assign_pointer(root->node, cow);
1073
1074                 btrfs_free_tree_block(trans, root, buf, parent_start,
1075                                       last_ref);
1076                 free_extent_buffer(buf);
1077                 add_root_to_dirty_list(root);
1078         } else {
1079                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                         parent_start = parent->start;
1081                 else
1082                         parent_start = 0;
1083
1084                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086                                         MOD_LOG_KEY_REPLACE);
1087                 btrfs_set_node_blockptr(parent, parent_slot,
1088                                         cow->start);
1089                 btrfs_set_node_ptr_generation(parent, parent_slot,
1090                                               trans->transid);
1091                 btrfs_mark_buffer_dirty(parent);
1092                 if (last_ref)
1093                         tree_mod_log_free_eb(root->fs_info, buf);
1094                 btrfs_free_tree_block(trans, root, buf, parent_start,
1095                                       last_ref);
1096         }
1097         if (unlock_orig)
1098                 btrfs_tree_unlock(buf);
1099         free_extent_buffer_stale(buf);
1100         btrfs_mark_buffer_dirty(cow);
1101         *cow_ret = cow;
1102         return 0;
1103 }
1104
1105 /*
1106  * returns the logical address of the oldest predecessor of the given root.
1107  * entries older than time_seq are ignored.
1108  */
1109 static struct tree_mod_elem *
1110 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1111                            struct extent_buffer *eb_root, u64 time_seq)
1112 {
1113         struct tree_mod_elem *tm;
1114         struct tree_mod_elem *found = NULL;
1115         u64 root_logical = eb_root->start;
1116         int looped = 0;
1117
1118         if (!time_seq)
1119                 return 0;
1120
1121         /*
1122          * the very last operation that's logged for a root is the replacement
1123          * operation (if it is replaced at all). this has the index of the *new*
1124          * root, making it the very first operation that's logged for this root.
1125          */
1126         while (1) {
1127                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1128                                                 time_seq);
1129                 if (!looped && !tm)
1130                         return 0;
1131                 /*
1132                  * if there are no tree operation for the oldest root, we simply
1133                  * return it. this should only happen if that (old) root is at
1134                  * level 0.
1135                  */
1136                 if (!tm)
1137                         break;
1138
1139                 /*
1140                  * if there's an operation that's not a root replacement, we
1141                  * found the oldest version of our root. normally, we'll find a
1142                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1143                  */
1144                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1145                         break;
1146
1147                 found = tm;
1148                 root_logical = tm->old_root.logical;
1149                 looped = 1;
1150         }
1151
1152         /* if there's no old root to return, return what we found instead */
1153         if (!found)
1154                 found = tm;
1155
1156         return found;
1157 }
1158
1159 /*
1160  * tm is a pointer to the first operation to rewind within eb. then, all
1161  * previous operations will be rewinded (until we reach something older than
1162  * time_seq).
1163  */
1164 static void
1165 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1166                       u64 time_seq, struct tree_mod_elem *first_tm)
1167 {
1168         u32 n;
1169         struct rb_node *next;
1170         struct tree_mod_elem *tm = first_tm;
1171         unsigned long o_dst;
1172         unsigned long o_src;
1173         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1174
1175         n = btrfs_header_nritems(eb);
1176         tree_mod_log_read_lock(fs_info);
1177         while (tm && tm->seq >= time_seq) {
1178                 /*
1179                  * all the operations are recorded with the operator used for
1180                  * the modification. as we're going backwards, we do the
1181                  * opposite of each operation here.
1182                  */
1183                 switch (tm->op) {
1184                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1185                         BUG_ON(tm->slot < n);
1186                         /* Fallthrough */
1187                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1188                 case MOD_LOG_KEY_REMOVE:
1189                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1190                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1191                         btrfs_set_node_ptr_generation(eb, tm->slot,
1192                                                       tm->generation);
1193                         n++;
1194                         break;
1195                 case MOD_LOG_KEY_REPLACE:
1196                         BUG_ON(tm->slot >= n);
1197                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1198                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1199                         btrfs_set_node_ptr_generation(eb, tm->slot,
1200                                                       tm->generation);
1201                         break;
1202                 case MOD_LOG_KEY_ADD:
1203                         /* if a move operation is needed it's in the log */
1204                         n--;
1205                         break;
1206                 case MOD_LOG_MOVE_KEYS:
1207                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1208                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1209                         memmove_extent_buffer(eb, o_dst, o_src,
1210                                               tm->move.nr_items * p_size);
1211                         break;
1212                 case MOD_LOG_ROOT_REPLACE:
1213                         /*
1214                          * this operation is special. for roots, this must be
1215                          * handled explicitly before rewinding.
1216                          * for non-roots, this operation may exist if the node
1217                          * was a root: root A -> child B; then A gets empty and
1218                          * B is promoted to the new root. in the mod log, we'll
1219                          * have a root-replace operation for B, a tree block
1220                          * that is no root. we simply ignore that operation.
1221                          */
1222                         break;
1223                 }
1224                 next = rb_next(&tm->node);
1225                 if (!next)
1226                         break;
1227                 tm = container_of(next, struct tree_mod_elem, node);
1228                 if (tm->index != first_tm->index)
1229                         break;
1230         }
1231         tree_mod_log_read_unlock(fs_info);
1232         btrfs_set_header_nritems(eb, n);
1233 }
1234
1235 /*
1236  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1237  * is returned. If rewind operations happen, a fresh buffer is returned. The
1238  * returned buffer is always read-locked. If the returned buffer is not the
1239  * input buffer, the lock on the input buffer is released and the input buffer
1240  * is freed (its refcount is decremented).
1241  */
1242 static struct extent_buffer *
1243 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1244                     u64 time_seq)
1245 {
1246         struct extent_buffer *eb_rewin;
1247         struct tree_mod_elem *tm;
1248
1249         if (!time_seq)
1250                 return eb;
1251
1252         if (btrfs_header_level(eb) == 0)
1253                 return eb;
1254
1255         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1256         if (!tm)
1257                 return eb;
1258
1259         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1260                 BUG_ON(tm->slot != 0);
1261                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1262                                                 fs_info->tree_root->nodesize);
1263                 BUG_ON(!eb_rewin);
1264                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1265                 btrfs_set_header_backref_rev(eb_rewin,
1266                                              btrfs_header_backref_rev(eb));
1267                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1268                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1269         } else {
1270                 eb_rewin = btrfs_clone_extent_buffer(eb);
1271                 BUG_ON(!eb_rewin);
1272         }
1273
1274         btrfs_tree_read_unlock(eb);
1275         free_extent_buffer(eb);
1276
1277         extent_buffer_get(eb_rewin);
1278         btrfs_tree_read_lock(eb_rewin);
1279         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1280         WARN_ON(btrfs_header_nritems(eb_rewin) >
1281                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1282
1283         return eb_rewin;
1284 }
1285
1286 /*
1287  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1288  * value. If there are no changes, the current root->root_node is returned. If
1289  * anything changed in between, there's a fresh buffer allocated on which the
1290  * rewind operations are done. In any case, the returned buffer is read locked.
1291  * Returns NULL on error (with no locks held).
1292  */
1293 static inline struct extent_buffer *
1294 get_old_root(struct btrfs_root *root, u64 time_seq)
1295 {
1296         struct tree_mod_elem *tm;
1297         struct extent_buffer *eb = NULL;
1298         struct extent_buffer *eb_root;
1299         struct extent_buffer *old;
1300         struct tree_mod_root *old_root = NULL;
1301         u64 old_generation = 0;
1302         u64 logical;
1303         u32 blocksize;
1304
1305         eb_root = btrfs_read_lock_root_node(root);
1306         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1307         if (!tm)
1308                 return eb_root;
1309
1310         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1311                 old_root = &tm->old_root;
1312                 old_generation = tm->generation;
1313                 logical = old_root->logical;
1314         } else {
1315                 logical = eb_root->start;
1316         }
1317
1318         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1319         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1320                 btrfs_tree_read_unlock(eb_root);
1321                 free_extent_buffer(eb_root);
1322                 blocksize = btrfs_level_size(root, old_root->level);
1323                 old = read_tree_block(root, logical, blocksize, 0);
1324                 if (!old || !extent_buffer_uptodate(old)) {
1325                         free_extent_buffer(old);
1326                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1327                                 logical);
1328                         WARN_ON(1);
1329                 } else {
1330                         eb = btrfs_clone_extent_buffer(old);
1331                         free_extent_buffer(old);
1332                 }
1333         } else if (old_root) {
1334                 btrfs_tree_read_unlock(eb_root);
1335                 free_extent_buffer(eb_root);
1336                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1337         } else {
1338                 eb = btrfs_clone_extent_buffer(eb_root);
1339                 btrfs_tree_read_unlock(eb_root);
1340                 free_extent_buffer(eb_root);
1341         }
1342
1343         if (!eb)
1344                 return NULL;
1345         extent_buffer_get(eb);
1346         btrfs_tree_read_lock(eb);
1347         if (old_root) {
1348                 btrfs_set_header_bytenr(eb, eb->start);
1349                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1350                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1351                 btrfs_set_header_level(eb, old_root->level);
1352                 btrfs_set_header_generation(eb, old_generation);
1353         }
1354         if (tm)
1355                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1356         else
1357                 WARN_ON(btrfs_header_level(eb) != 0);
1358         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1359
1360         return eb;
1361 }
1362
1363 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1364 {
1365         struct tree_mod_elem *tm;
1366         int level;
1367         struct extent_buffer *eb_root = btrfs_root_node(root);
1368
1369         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1370         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1371                 level = tm->old_root.level;
1372         } else {
1373                 level = btrfs_header_level(eb_root);
1374         }
1375         free_extent_buffer(eb_root);
1376
1377         return level;
1378 }
1379
1380 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1381                                    struct btrfs_root *root,
1382                                    struct extent_buffer *buf)
1383 {
1384         /* ensure we can see the force_cow */
1385         smp_rmb();
1386
1387         /*
1388          * We do not need to cow a block if
1389          * 1) this block is not created or changed in this transaction;
1390          * 2) this block does not belong to TREE_RELOC tree;
1391          * 3) the root is not forced COW.
1392          *
1393          * What is forced COW:
1394          *    when we create snapshot during commiting the transaction,
1395          *    after we've finished coping src root, we must COW the shared
1396          *    block to ensure the metadata consistency.
1397          */
1398         if (btrfs_header_generation(buf) == trans->transid &&
1399             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1400             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1402             !root->force_cow)
1403                 return 0;
1404         return 1;
1405 }
1406
1407 /*
1408  * cows a single block, see __btrfs_cow_block for the real work.
1409  * This version of it has extra checks so that a block isn't cow'd more than
1410  * once per transaction, as long as it hasn't been written yet
1411  */
1412 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1413                     struct btrfs_root *root, struct extent_buffer *buf,
1414                     struct extent_buffer *parent, int parent_slot,
1415                     struct extent_buffer **cow_ret)
1416 {
1417         u64 search_start;
1418         int ret;
1419
1420         if (trans->transaction != root->fs_info->running_transaction)
1421                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1422                        (unsigned long long)trans->transid,
1423                        (unsigned long long)
1424                        root->fs_info->running_transaction->transid);
1425
1426         if (trans->transid != root->fs_info->generation)
1427                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1428                        (unsigned long long)trans->transid,
1429                        (unsigned long long)root->fs_info->generation);
1430
1431         if (!should_cow_block(trans, root, buf)) {
1432                 *cow_ret = buf;
1433                 return 0;
1434         }
1435
1436         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1437
1438         if (parent)
1439                 btrfs_set_lock_blocking(parent);
1440         btrfs_set_lock_blocking(buf);
1441
1442         ret = __btrfs_cow_block(trans, root, buf, parent,
1443                                  parent_slot, cow_ret, search_start, 0);
1444
1445         trace_btrfs_cow_block(root, buf, *cow_ret);
1446
1447         return ret;
1448 }
1449
1450 /*
1451  * helper function for defrag to decide if two blocks pointed to by a
1452  * node are actually close by
1453  */
1454 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1455 {
1456         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1457                 return 1;
1458         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1459                 return 1;
1460         return 0;
1461 }
1462
1463 /*
1464  * compare two keys in a memcmp fashion
1465  */
1466 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1467 {
1468         struct btrfs_key k1;
1469
1470         btrfs_disk_key_to_cpu(&k1, disk);
1471
1472         return btrfs_comp_cpu_keys(&k1, k2);
1473 }
1474
1475 /*
1476  * same as comp_keys only with two btrfs_key's
1477  */
1478 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1479 {
1480         if (k1->objectid > k2->objectid)
1481                 return 1;
1482         if (k1->objectid < k2->objectid)
1483                 return -1;
1484         if (k1->type > k2->type)
1485                 return 1;
1486         if (k1->type < k2->type)
1487                 return -1;
1488         if (k1->offset > k2->offset)
1489                 return 1;
1490         if (k1->offset < k2->offset)
1491                 return -1;
1492         return 0;
1493 }
1494
1495 /*
1496  * this is used by the defrag code to go through all the
1497  * leaves pointed to by a node and reallocate them so that
1498  * disk order is close to key order
1499  */
1500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1501                        struct btrfs_root *root, struct extent_buffer *parent,
1502                        int start_slot, u64 *last_ret,
1503                        struct btrfs_key *progress)
1504 {
1505         struct extent_buffer *cur;
1506         u64 blocknr;
1507         u64 gen;
1508         u64 search_start = *last_ret;
1509         u64 last_block = 0;
1510         u64 other;
1511         u32 parent_nritems;
1512         int end_slot;
1513         int i;
1514         int err = 0;
1515         int parent_level;
1516         int uptodate;
1517         u32 blocksize;
1518         int progress_passed = 0;
1519         struct btrfs_disk_key disk_key;
1520
1521         parent_level = btrfs_header_level(parent);
1522
1523         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1524         WARN_ON(trans->transid != root->fs_info->generation);
1525
1526         parent_nritems = btrfs_header_nritems(parent);
1527         blocksize = btrfs_level_size(root, parent_level - 1);
1528         end_slot = parent_nritems;
1529
1530         if (parent_nritems == 1)
1531                 return 0;
1532
1533         btrfs_set_lock_blocking(parent);
1534
1535         for (i = start_slot; i < end_slot; i++) {
1536                 int close = 1;
1537
1538                 btrfs_node_key(parent, &disk_key, i);
1539                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1540                         continue;
1541
1542                 progress_passed = 1;
1543                 blocknr = btrfs_node_blockptr(parent, i);
1544                 gen = btrfs_node_ptr_generation(parent, i);
1545                 if (last_block == 0)
1546                         last_block = blocknr;
1547
1548                 if (i > 0) {
1549                         other = btrfs_node_blockptr(parent, i - 1);
1550                         close = close_blocks(blocknr, other, blocksize);
1551                 }
1552                 if (!close && i < end_slot - 2) {
1553                         other = btrfs_node_blockptr(parent, i + 1);
1554                         close = close_blocks(blocknr, other, blocksize);
1555                 }
1556                 if (close) {
1557                         last_block = blocknr;
1558                         continue;
1559                 }
1560
1561                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1562                 if (cur)
1563                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1564                 else
1565                         uptodate = 0;
1566                 if (!cur || !uptodate) {
1567                         if (!cur) {
1568                                 cur = read_tree_block(root, blocknr,
1569                                                          blocksize, gen);
1570                                 if (!cur || !extent_buffer_uptodate(cur)) {
1571                                         free_extent_buffer(cur);
1572                                         return -EIO;
1573                                 }
1574                         } else if (!uptodate) {
1575                                 err = btrfs_read_buffer(cur, gen);
1576                                 if (err) {
1577                                         free_extent_buffer(cur);
1578                                         return err;
1579                                 }
1580                         }
1581                 }
1582                 if (search_start == 0)
1583                         search_start = last_block;
1584
1585                 btrfs_tree_lock(cur);
1586                 btrfs_set_lock_blocking(cur);
1587                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1588                                         &cur, search_start,
1589                                         min(16 * blocksize,
1590                                             (end_slot - i) * blocksize));
1591                 if (err) {
1592                         btrfs_tree_unlock(cur);
1593                         free_extent_buffer(cur);
1594                         break;
1595                 }
1596                 search_start = cur->start;
1597                 last_block = cur->start;
1598                 *last_ret = search_start;
1599                 btrfs_tree_unlock(cur);
1600                 free_extent_buffer(cur);
1601         }
1602         return err;
1603 }
1604
1605 /*
1606  * The leaf data grows from end-to-front in the node.
1607  * this returns the address of the start of the last item,
1608  * which is the stop of the leaf data stack
1609  */
1610 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1611                                          struct extent_buffer *leaf)
1612 {
1613         u32 nr = btrfs_header_nritems(leaf);
1614         if (nr == 0)
1615                 return BTRFS_LEAF_DATA_SIZE(root);
1616         return btrfs_item_offset_nr(leaf, nr - 1);
1617 }
1618
1619
1620 /*
1621  * search for key in the extent_buffer.  The items start at offset p,
1622  * and they are item_size apart.  There are 'max' items in p.
1623  *
1624  * the slot in the array is returned via slot, and it points to
1625  * the place where you would insert key if it is not found in
1626  * the array.
1627  *
1628  * slot may point to max if the key is bigger than all of the keys
1629  */
1630 static noinline int generic_bin_search(struct extent_buffer *eb,
1631                                        unsigned long p,
1632                                        int item_size, struct btrfs_key *key,
1633                                        int max, int *slot)
1634 {
1635         int low = 0;
1636         int high = max;
1637         int mid;
1638         int ret;
1639         struct btrfs_disk_key *tmp = NULL;
1640         struct btrfs_disk_key unaligned;
1641         unsigned long offset;
1642         char *kaddr = NULL;
1643         unsigned long map_start = 0;
1644         unsigned long map_len = 0;
1645         int err;
1646
1647         while (low < high) {
1648                 mid = (low + high) / 2;
1649                 offset = p + mid * item_size;
1650
1651                 if (!kaddr || offset < map_start ||
1652                     (offset + sizeof(struct btrfs_disk_key)) >
1653                     map_start + map_len) {
1654
1655                         err = map_private_extent_buffer(eb, offset,
1656                                                 sizeof(struct btrfs_disk_key),
1657                                                 &kaddr, &map_start, &map_len);
1658
1659                         if (!err) {
1660                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1661                                                         map_start);
1662                         } else {
1663                                 read_extent_buffer(eb, &unaligned,
1664                                                    offset, sizeof(unaligned));
1665                                 tmp = &unaligned;
1666                         }
1667
1668                 } else {
1669                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1670                                                         map_start);
1671                 }
1672                 ret = comp_keys(tmp, key);
1673
1674                 if (ret < 0)
1675                         low = mid + 1;
1676                 else if (ret > 0)
1677                         high = mid;
1678                 else {
1679                         *slot = mid;
1680                         return 0;
1681                 }
1682         }
1683         *slot = low;
1684         return 1;
1685 }
1686
1687 /*
1688  * simple bin_search frontend that does the right thing for
1689  * leaves vs nodes
1690  */
1691 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1692                       int level, int *slot)
1693 {
1694         if (level == 0)
1695                 return generic_bin_search(eb,
1696                                           offsetof(struct btrfs_leaf, items),
1697                                           sizeof(struct btrfs_item),
1698                                           key, btrfs_header_nritems(eb),
1699                                           slot);
1700         else
1701                 return generic_bin_search(eb,
1702                                           offsetof(struct btrfs_node, ptrs),
1703                                           sizeof(struct btrfs_key_ptr),
1704                                           key, btrfs_header_nritems(eb),
1705                                           slot);
1706 }
1707
1708 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1709                      int level, int *slot)
1710 {
1711         return bin_search(eb, key, level, slot);
1712 }
1713
1714 static void root_add_used(struct btrfs_root *root, u32 size)
1715 {
1716         spin_lock(&root->accounting_lock);
1717         btrfs_set_root_used(&root->root_item,
1718                             btrfs_root_used(&root->root_item) + size);
1719         spin_unlock(&root->accounting_lock);
1720 }
1721
1722 static void root_sub_used(struct btrfs_root *root, u32 size)
1723 {
1724         spin_lock(&root->accounting_lock);
1725         btrfs_set_root_used(&root->root_item,
1726                             btrfs_root_used(&root->root_item) - size);
1727         spin_unlock(&root->accounting_lock);
1728 }
1729
1730 /* given a node and slot number, this reads the blocks it points to.  The
1731  * extent buffer is returned with a reference taken (but unlocked).
1732  * NULL is returned on error.
1733  */
1734 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1735                                    struct extent_buffer *parent, int slot)
1736 {
1737         int level = btrfs_header_level(parent);
1738         struct extent_buffer *eb;
1739
1740         if (slot < 0)
1741                 return NULL;
1742         if (slot >= btrfs_header_nritems(parent))
1743                 return NULL;
1744
1745         BUG_ON(level == 0);
1746
1747         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1748                              btrfs_level_size(root, level - 1),
1749                              btrfs_node_ptr_generation(parent, slot));
1750         if (eb && !extent_buffer_uptodate(eb)) {
1751                 free_extent_buffer(eb);
1752                 eb = NULL;
1753         }
1754
1755         return eb;
1756 }
1757
1758 /*
1759  * node level balancing, used to make sure nodes are in proper order for
1760  * item deletion.  We balance from the top down, so we have to make sure
1761  * that a deletion won't leave an node completely empty later on.
1762  */
1763 static noinline int balance_level(struct btrfs_trans_handle *trans,
1764                          struct btrfs_root *root,
1765                          struct btrfs_path *path, int level)
1766 {
1767         struct extent_buffer *right = NULL;
1768         struct extent_buffer *mid;
1769         struct extent_buffer *left = NULL;
1770         struct extent_buffer *parent = NULL;
1771         int ret = 0;
1772         int wret;
1773         int pslot;
1774         int orig_slot = path->slots[level];
1775         u64 orig_ptr;
1776
1777         if (level == 0)
1778                 return 0;
1779
1780         mid = path->nodes[level];
1781
1782         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1783                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1784         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1785
1786         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1787
1788         if (level < BTRFS_MAX_LEVEL - 1) {
1789                 parent = path->nodes[level + 1];
1790                 pslot = path->slots[level + 1];
1791         }
1792
1793         /*
1794          * deal with the case where there is only one pointer in the root
1795          * by promoting the node below to a root
1796          */
1797         if (!parent) {
1798                 struct extent_buffer *child;
1799
1800                 if (btrfs_header_nritems(mid) != 1)
1801                         return 0;
1802
1803                 /* promote the child to a root */
1804                 child = read_node_slot(root, mid, 0);
1805                 if (!child) {
1806                         ret = -EROFS;
1807                         btrfs_std_error(root->fs_info, ret);
1808                         goto enospc;
1809                 }
1810
1811                 btrfs_tree_lock(child);
1812                 btrfs_set_lock_blocking(child);
1813                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1814                 if (ret) {
1815                         btrfs_tree_unlock(child);
1816                         free_extent_buffer(child);
1817                         goto enospc;
1818                 }
1819
1820                 tree_mod_log_set_root_pointer(root, child, 1);
1821                 rcu_assign_pointer(root->node, child);
1822
1823                 add_root_to_dirty_list(root);
1824                 btrfs_tree_unlock(child);
1825
1826                 path->locks[level] = 0;
1827                 path->nodes[level] = NULL;
1828                 clean_tree_block(trans, root, mid);
1829                 btrfs_tree_unlock(mid);
1830                 /* once for the path */
1831                 free_extent_buffer(mid);
1832
1833                 root_sub_used(root, mid->len);
1834                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1835                 /* once for the root ptr */
1836                 free_extent_buffer_stale(mid);
1837                 return 0;
1838         }
1839         if (btrfs_header_nritems(mid) >
1840             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1841                 return 0;
1842
1843         left = read_node_slot(root, parent, pslot - 1);
1844         if (left) {
1845                 btrfs_tree_lock(left);
1846                 btrfs_set_lock_blocking(left);
1847                 wret = btrfs_cow_block(trans, root, left,
1848                                        parent, pslot - 1, &left);
1849                 if (wret) {
1850                         ret = wret;
1851                         goto enospc;
1852                 }
1853         }
1854         right = read_node_slot(root, parent, pslot + 1);
1855         if (right) {
1856                 btrfs_tree_lock(right);
1857                 btrfs_set_lock_blocking(right);
1858                 wret = btrfs_cow_block(trans, root, right,
1859                                        parent, pslot + 1, &right);
1860                 if (wret) {
1861                         ret = wret;
1862                         goto enospc;
1863                 }
1864         }
1865
1866         /* first, try to make some room in the middle buffer */
1867         if (left) {
1868                 orig_slot += btrfs_header_nritems(left);
1869                 wret = push_node_left(trans, root, left, mid, 1);
1870                 if (wret < 0)
1871                         ret = wret;
1872         }
1873
1874         /*
1875          * then try to empty the right most buffer into the middle
1876          */
1877         if (right) {
1878                 wret = push_node_left(trans, root, mid, right, 1);
1879                 if (wret < 0 && wret != -ENOSPC)
1880                         ret = wret;
1881                 if (btrfs_header_nritems(right) == 0) {
1882                         clean_tree_block(trans, root, right);
1883                         btrfs_tree_unlock(right);
1884                         del_ptr(root, path, level + 1, pslot + 1);
1885                         root_sub_used(root, right->len);
1886                         btrfs_free_tree_block(trans, root, right, 0, 1);
1887                         free_extent_buffer_stale(right);
1888                         right = NULL;
1889                 } else {
1890                         struct btrfs_disk_key right_key;
1891                         btrfs_node_key(right, &right_key, 0);
1892                         tree_mod_log_set_node_key(root->fs_info, parent,
1893                                                   pslot + 1, 0);
1894                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1895                         btrfs_mark_buffer_dirty(parent);
1896                 }
1897         }
1898         if (btrfs_header_nritems(mid) == 1) {
1899                 /*
1900                  * we're not allowed to leave a node with one item in the
1901                  * tree during a delete.  A deletion from lower in the tree
1902                  * could try to delete the only pointer in this node.
1903                  * So, pull some keys from the left.
1904                  * There has to be a left pointer at this point because
1905                  * otherwise we would have pulled some pointers from the
1906                  * right
1907                  */
1908                 if (!left) {
1909                         ret = -EROFS;
1910                         btrfs_std_error(root->fs_info, ret);
1911                         goto enospc;
1912                 }
1913                 wret = balance_node_right(trans, root, mid, left);
1914                 if (wret < 0) {
1915                         ret = wret;
1916                         goto enospc;
1917                 }
1918                 if (wret == 1) {
1919                         wret = push_node_left(trans, root, left, mid, 1);
1920                         if (wret < 0)
1921                                 ret = wret;
1922                 }
1923                 BUG_ON(wret == 1);
1924         }
1925         if (btrfs_header_nritems(mid) == 0) {
1926                 clean_tree_block(trans, root, mid);
1927                 btrfs_tree_unlock(mid);
1928                 del_ptr(root, path, level + 1, pslot);
1929                 root_sub_used(root, mid->len);
1930                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1931                 free_extent_buffer_stale(mid);
1932                 mid = NULL;
1933         } else {
1934                 /* update the parent key to reflect our changes */
1935                 struct btrfs_disk_key mid_key;
1936                 btrfs_node_key(mid, &mid_key, 0);
1937                 tree_mod_log_set_node_key(root->fs_info, parent,
1938                                           pslot, 0);
1939                 btrfs_set_node_key(parent, &mid_key, pslot);
1940                 btrfs_mark_buffer_dirty(parent);
1941         }
1942
1943         /* update the path */
1944         if (left) {
1945                 if (btrfs_header_nritems(left) > orig_slot) {
1946                         extent_buffer_get(left);
1947                         /* left was locked after cow */
1948                         path->nodes[level] = left;
1949                         path->slots[level + 1] -= 1;
1950                         path->slots[level] = orig_slot;
1951                         if (mid) {
1952                                 btrfs_tree_unlock(mid);
1953                                 free_extent_buffer(mid);
1954                         }
1955                 } else {
1956                         orig_slot -= btrfs_header_nritems(left);
1957                         path->slots[level] = orig_slot;
1958                 }
1959         }
1960         /* double check we haven't messed things up */
1961         if (orig_ptr !=
1962             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1963                 BUG();
1964 enospc:
1965         if (right) {
1966                 btrfs_tree_unlock(right);
1967                 free_extent_buffer(right);
1968         }
1969         if (left) {
1970                 if (path->nodes[level] != left)
1971                         btrfs_tree_unlock(left);
1972                 free_extent_buffer(left);
1973         }
1974         return ret;
1975 }
1976
1977 /* Node balancing for insertion.  Here we only split or push nodes around
1978  * when they are completely full.  This is also done top down, so we
1979  * have to be pessimistic.
1980  */
1981 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1982                                           struct btrfs_root *root,
1983                                           struct btrfs_path *path, int level)
1984 {
1985         struct extent_buffer *right = NULL;
1986         struct extent_buffer *mid;
1987         struct extent_buffer *left = NULL;
1988         struct extent_buffer *parent = NULL;
1989         int ret = 0;
1990         int wret;
1991         int pslot;
1992         int orig_slot = path->slots[level];
1993
1994         if (level == 0)
1995                 return 1;
1996
1997         mid = path->nodes[level];
1998         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1999
2000         if (level < BTRFS_MAX_LEVEL - 1) {
2001                 parent = path->nodes[level + 1];
2002                 pslot = path->slots[level + 1];
2003         }
2004
2005         if (!parent)
2006                 return 1;
2007
2008         left = read_node_slot(root, parent, pslot - 1);
2009
2010         /* first, try to make some room in the middle buffer */
2011         if (left) {
2012                 u32 left_nr;
2013
2014                 btrfs_tree_lock(left);
2015                 btrfs_set_lock_blocking(left);
2016
2017                 left_nr = btrfs_header_nritems(left);
2018                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2019                         wret = 1;
2020                 } else {
2021                         ret = btrfs_cow_block(trans, root, left, parent,
2022                                               pslot - 1, &left);
2023                         if (ret)
2024                                 wret = 1;
2025                         else {
2026                                 wret = push_node_left(trans, root,
2027                                                       left, mid, 0);
2028                         }
2029                 }
2030                 if (wret < 0)
2031                         ret = wret;
2032                 if (wret == 0) {
2033                         struct btrfs_disk_key disk_key;
2034                         orig_slot += left_nr;
2035                         btrfs_node_key(mid, &disk_key, 0);
2036                         tree_mod_log_set_node_key(root->fs_info, parent,
2037                                                   pslot, 0);
2038                         btrfs_set_node_key(parent, &disk_key, pslot);
2039                         btrfs_mark_buffer_dirty(parent);
2040                         if (btrfs_header_nritems(left) > orig_slot) {
2041                                 path->nodes[level] = left;
2042                                 path->slots[level + 1] -= 1;
2043                                 path->slots[level] = orig_slot;
2044                                 btrfs_tree_unlock(mid);
2045                                 free_extent_buffer(mid);
2046                         } else {
2047                                 orig_slot -=
2048                                         btrfs_header_nritems(left);
2049                                 path->slots[level] = orig_slot;
2050                                 btrfs_tree_unlock(left);
2051                                 free_extent_buffer(left);
2052                         }
2053                         return 0;
2054                 }
2055                 btrfs_tree_unlock(left);
2056                 free_extent_buffer(left);
2057         }
2058         right = read_node_slot(root, parent, pslot + 1);
2059
2060         /*
2061          * then try to empty the right most buffer into the middle
2062          */
2063         if (right) {
2064                 u32 right_nr;
2065
2066                 btrfs_tree_lock(right);
2067                 btrfs_set_lock_blocking(right);
2068
2069                 right_nr = btrfs_header_nritems(right);
2070                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2071                         wret = 1;
2072                 } else {
2073                         ret = btrfs_cow_block(trans, root, right,
2074                                               parent, pslot + 1,
2075                                               &right);
2076                         if (ret)
2077                                 wret = 1;
2078                         else {
2079                                 wret = balance_node_right(trans, root,
2080                                                           right, mid);
2081                         }
2082                 }
2083                 if (wret < 0)
2084                         ret = wret;
2085                 if (wret == 0) {
2086                         struct btrfs_disk_key disk_key;
2087
2088                         btrfs_node_key(right, &disk_key, 0);
2089                         tree_mod_log_set_node_key(root->fs_info, parent,
2090                                                   pslot + 1, 0);
2091                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2092                         btrfs_mark_buffer_dirty(parent);
2093
2094                         if (btrfs_header_nritems(mid) <= orig_slot) {
2095                                 path->nodes[level] = right;
2096                                 path->slots[level + 1] += 1;
2097                                 path->slots[level] = orig_slot -
2098                                         btrfs_header_nritems(mid);
2099                                 btrfs_tree_unlock(mid);
2100                                 free_extent_buffer(mid);
2101                         } else {
2102                                 btrfs_tree_unlock(right);
2103                                 free_extent_buffer(right);
2104                         }
2105                         return 0;
2106                 }
2107                 btrfs_tree_unlock(right);
2108                 free_extent_buffer(right);
2109         }
2110         return 1;
2111 }
2112
2113 /*
2114  * readahead one full node of leaves, finding things that are close
2115  * to the block in 'slot', and triggering ra on them.
2116  */
2117 static void reada_for_search(struct btrfs_root *root,
2118                              struct btrfs_path *path,
2119                              int level, int slot, u64 objectid)
2120 {
2121         struct extent_buffer *node;
2122         struct btrfs_disk_key disk_key;
2123         u32 nritems;
2124         u64 search;
2125         u64 target;
2126         u64 nread = 0;
2127         u64 gen;
2128         int direction = path->reada;
2129         struct extent_buffer *eb;
2130         u32 nr;
2131         u32 blocksize;
2132         u32 nscan = 0;
2133
2134         if (level != 1)
2135                 return;
2136
2137         if (!path->nodes[level])
2138                 return;
2139
2140         node = path->nodes[level];
2141
2142         search = btrfs_node_blockptr(node, slot);
2143         blocksize = btrfs_level_size(root, level - 1);
2144         eb = btrfs_find_tree_block(root, search, blocksize);
2145         if (eb) {
2146                 free_extent_buffer(eb);
2147                 return;
2148         }
2149
2150         target = search;
2151
2152         nritems = btrfs_header_nritems(node);
2153         nr = slot;
2154
2155         while (1) {
2156                 if (direction < 0) {
2157                         if (nr == 0)
2158                                 break;
2159                         nr--;
2160                 } else if (direction > 0) {
2161                         nr++;
2162                         if (nr >= nritems)
2163                                 break;
2164                 }
2165                 if (path->reada < 0 && objectid) {
2166                         btrfs_node_key(node, &disk_key, nr);
2167                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2168                                 break;
2169                 }
2170                 search = btrfs_node_blockptr(node, nr);
2171                 if ((search <= target && target - search <= 65536) ||
2172                     (search > target && search - target <= 65536)) {
2173                         gen = btrfs_node_ptr_generation(node, nr);
2174                         readahead_tree_block(root, search, blocksize, gen);
2175                         nread += blocksize;
2176                 }
2177                 nscan++;
2178                 if ((nread > 65536 || nscan > 32))
2179                         break;
2180         }
2181 }
2182
2183 static noinline void reada_for_balance(struct btrfs_root *root,
2184                                        struct btrfs_path *path, int level)
2185 {
2186         int slot;
2187         int nritems;
2188         struct extent_buffer *parent;
2189         struct extent_buffer *eb;
2190         u64 gen;
2191         u64 block1 = 0;
2192         u64 block2 = 0;
2193         int blocksize;
2194
2195         parent = path->nodes[level + 1];
2196         if (!parent)
2197                 return;
2198
2199         nritems = btrfs_header_nritems(parent);
2200         slot = path->slots[level + 1];
2201         blocksize = btrfs_level_size(root, level);
2202
2203         if (slot > 0) {
2204                 block1 = btrfs_node_blockptr(parent, slot - 1);
2205                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2206                 eb = btrfs_find_tree_block(root, block1, blocksize);
2207                 /*
2208                  * if we get -eagain from btrfs_buffer_uptodate, we
2209                  * don't want to return eagain here.  That will loop
2210                  * forever
2211                  */
2212                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2213                         block1 = 0;
2214                 free_extent_buffer(eb);
2215         }
2216         if (slot + 1 < nritems) {
2217                 block2 = btrfs_node_blockptr(parent, slot + 1);
2218                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2219                 eb = btrfs_find_tree_block(root, block2, blocksize);
2220                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2221                         block2 = 0;
2222                 free_extent_buffer(eb);
2223         }
2224
2225         if (block1)
2226                 readahead_tree_block(root, block1, blocksize, 0);
2227         if (block2)
2228                 readahead_tree_block(root, block2, blocksize, 0);
2229 }
2230
2231
2232 /*
2233  * when we walk down the tree, it is usually safe to unlock the higher layers
2234  * in the tree.  The exceptions are when our path goes through slot 0, because
2235  * operations on the tree might require changing key pointers higher up in the
2236  * tree.
2237  *
2238  * callers might also have set path->keep_locks, which tells this code to keep
2239  * the lock if the path points to the last slot in the block.  This is part of
2240  * walking through the tree, and selecting the next slot in the higher block.
2241  *
2242  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2243  * if lowest_unlock is 1, level 0 won't be unlocked
2244  */
2245 static noinline void unlock_up(struct btrfs_path *path, int level,
2246                                int lowest_unlock, int min_write_lock_level,
2247                                int *write_lock_level)
2248 {
2249         int i;
2250         int skip_level = level;
2251         int no_skips = 0;
2252         struct extent_buffer *t;
2253
2254         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2255                 if (!path->nodes[i])
2256                         break;
2257                 if (!path->locks[i])
2258                         break;
2259                 if (!no_skips && path->slots[i] == 0) {
2260                         skip_level = i + 1;
2261                         continue;
2262                 }
2263                 if (!no_skips && path->keep_locks) {
2264                         u32 nritems;
2265                         t = path->nodes[i];
2266                         nritems = btrfs_header_nritems(t);
2267                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2268                                 skip_level = i + 1;
2269                                 continue;
2270                         }
2271                 }
2272                 if (skip_level < i && i >= lowest_unlock)
2273                         no_skips = 1;
2274
2275                 t = path->nodes[i];
2276                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2277                         btrfs_tree_unlock_rw(t, path->locks[i]);
2278                         path->locks[i] = 0;
2279                         if (write_lock_level &&
2280                             i > min_write_lock_level &&
2281                             i <= *write_lock_level) {
2282                                 *write_lock_level = i - 1;
2283                         }
2284                 }
2285         }
2286 }
2287
2288 /*
2289  * This releases any locks held in the path starting at level and
2290  * going all the way up to the root.
2291  *
2292  * btrfs_search_slot will keep the lock held on higher nodes in a few
2293  * corner cases, such as COW of the block at slot zero in the node.  This
2294  * ignores those rules, and it should only be called when there are no
2295  * more updates to be done higher up in the tree.
2296  */
2297 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2298 {
2299         int i;
2300
2301         if (path->keep_locks)
2302                 return;
2303
2304         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2305                 if (!path->nodes[i])
2306                         continue;
2307                 if (!path->locks[i])
2308                         continue;
2309                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2310                 path->locks[i] = 0;
2311         }
2312 }
2313
2314 /*
2315  * helper function for btrfs_search_slot.  The goal is to find a block
2316  * in cache without setting the path to blocking.  If we find the block
2317  * we return zero and the path is unchanged.
2318  *
2319  * If we can't find the block, we set the path blocking and do some
2320  * reada.  -EAGAIN is returned and the search must be repeated.
2321  */
2322 static int
2323 read_block_for_search(struct btrfs_trans_handle *trans,
2324                        struct btrfs_root *root, struct btrfs_path *p,
2325                        struct extent_buffer **eb_ret, int level, int slot,
2326                        struct btrfs_key *key, u64 time_seq)
2327 {
2328         u64 blocknr;
2329         u64 gen;
2330         u32 blocksize;
2331         struct extent_buffer *b = *eb_ret;
2332         struct extent_buffer *tmp;
2333         int ret;
2334
2335         blocknr = btrfs_node_blockptr(b, slot);
2336         gen = btrfs_node_ptr_generation(b, slot);
2337         blocksize = btrfs_level_size(root, level - 1);
2338
2339         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2340         if (tmp) {
2341                 /* first we do an atomic uptodate check */
2342                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2343                         *eb_ret = tmp;
2344                         return 0;
2345                 }
2346
2347                 /* the pages were up to date, but we failed
2348                  * the generation number check.  Do a full
2349                  * read for the generation number that is correct.
2350                  * We must do this without dropping locks so
2351                  * we can trust our generation number
2352                  */
2353                 btrfs_set_path_blocking(p);
2354
2355                 /* now we're allowed to do a blocking uptodate check */
2356                 ret = btrfs_read_buffer(tmp, gen);
2357                 if (!ret) {
2358                         *eb_ret = tmp;
2359                         return 0;
2360                 }
2361                 free_extent_buffer(tmp);
2362                 btrfs_release_path(p);
2363                 return -EIO;
2364         }
2365
2366         /*
2367          * reduce lock contention at high levels
2368          * of the btree by dropping locks before
2369          * we read.  Don't release the lock on the current
2370          * level because we need to walk this node to figure
2371          * out which blocks to read.
2372          */
2373         btrfs_unlock_up_safe(p, level + 1);
2374         btrfs_set_path_blocking(p);
2375
2376         free_extent_buffer(tmp);
2377         if (p->reada)
2378                 reada_for_search(root, p, level, slot, key->objectid);
2379
2380         btrfs_release_path(p);
2381
2382         ret = -EAGAIN;
2383         tmp = read_tree_block(root, blocknr, blocksize, 0);
2384         if (tmp) {
2385                 /*
2386                  * If the read above didn't mark this buffer up to date,
2387                  * it will never end up being up to date.  Set ret to EIO now
2388                  * and give up so that our caller doesn't loop forever
2389                  * on our EAGAINs.
2390                  */
2391                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2392                         ret = -EIO;
2393                 free_extent_buffer(tmp);
2394         }
2395         return ret;
2396 }
2397
2398 /*
2399  * helper function for btrfs_search_slot.  This does all of the checks
2400  * for node-level blocks and does any balancing required based on
2401  * the ins_len.
2402  *
2403  * If no extra work was required, zero is returned.  If we had to
2404  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2405  * start over
2406  */
2407 static int
2408 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2409                        struct btrfs_root *root, struct btrfs_path *p,
2410                        struct extent_buffer *b, int level, int ins_len,
2411                        int *write_lock_level)
2412 {
2413         int ret;
2414         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2415             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2416                 int sret;
2417
2418                 if (*write_lock_level < level + 1) {
2419                         *write_lock_level = level + 1;
2420                         btrfs_release_path(p);
2421                         goto again;
2422                 }
2423
2424                 btrfs_set_path_blocking(p);
2425                 reada_for_balance(root, p, level);
2426                 sret = split_node(trans, root, p, level);
2427                 btrfs_clear_path_blocking(p, NULL, 0);
2428
2429                 BUG_ON(sret > 0);
2430                 if (sret) {
2431                         ret = sret;
2432                         goto done;
2433                 }
2434                 b = p->nodes[level];
2435         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2436                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2437                 int sret;
2438
2439                 if (*write_lock_level < level + 1) {
2440                         *write_lock_level = level + 1;
2441                         btrfs_release_path(p);
2442                         goto again;
2443                 }
2444
2445                 btrfs_set_path_blocking(p);
2446                 reada_for_balance(root, p, level);
2447                 sret = balance_level(trans, root, p, level);
2448                 btrfs_clear_path_blocking(p, NULL, 0);
2449
2450                 if (sret) {
2451                         ret = sret;
2452                         goto done;
2453                 }
2454                 b = p->nodes[level];
2455                 if (!b) {
2456                         btrfs_release_path(p);
2457                         goto again;
2458                 }
2459                 BUG_ON(btrfs_header_nritems(b) == 1);
2460         }
2461         return 0;
2462
2463 again:
2464         ret = -EAGAIN;
2465 done:
2466         return ret;
2467 }
2468
2469 /*
2470  * look for key in the tree.  path is filled in with nodes along the way
2471  * if key is found, we return zero and you can find the item in the leaf
2472  * level of the path (level 0)
2473  *
2474  * If the key isn't found, the path points to the slot where it should
2475  * be inserted, and 1 is returned.  If there are other errors during the
2476  * search a negative error number is returned.
2477  *
2478  * if ins_len > 0, nodes and leaves will be split as we walk down the
2479  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2480  * possible)
2481  */
2482 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2483                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2484                       ins_len, int cow)
2485 {
2486         struct extent_buffer *b;
2487         int slot;
2488         int ret;
2489         int err;
2490         int level;
2491         int lowest_unlock = 1;
2492         int root_lock;
2493         /* everything at write_lock_level or lower must be write locked */
2494         int write_lock_level = 0;
2495         u8 lowest_level = 0;
2496         int min_write_lock_level;
2497
2498         lowest_level = p->lowest_level;
2499         WARN_ON(lowest_level && ins_len > 0);
2500         WARN_ON(p->nodes[0] != NULL);
2501
2502         if (ins_len < 0) {
2503                 lowest_unlock = 2;
2504
2505                 /* when we are removing items, we might have to go up to level
2506                  * two as we update tree pointers  Make sure we keep write
2507                  * for those levels as well
2508                  */
2509                 write_lock_level = 2;
2510         } else if (ins_len > 0) {
2511                 /*
2512                  * for inserting items, make sure we have a write lock on
2513                  * level 1 so we can update keys
2514                  */
2515                 write_lock_level = 1;
2516         }
2517
2518         if (!cow)
2519                 write_lock_level = -1;
2520
2521         if (cow && (p->keep_locks || p->lowest_level))
2522                 write_lock_level = BTRFS_MAX_LEVEL;
2523
2524         min_write_lock_level = write_lock_level;
2525
2526 again:
2527         /*
2528          * we try very hard to do read locks on the root
2529          */
2530         root_lock = BTRFS_READ_LOCK;
2531         level = 0;
2532         if (p->search_commit_root) {
2533                 /*
2534                  * the commit roots are read only
2535                  * so we always do read locks
2536                  */
2537                 b = root->commit_root;
2538                 extent_buffer_get(b);
2539                 level = btrfs_header_level(b);
2540                 if (!p->skip_locking)
2541                         btrfs_tree_read_lock(b);
2542         } else {
2543                 if (p->skip_locking) {
2544                         b = btrfs_root_node(root);
2545                         level = btrfs_header_level(b);
2546                 } else {
2547                         /* we don't know the level of the root node
2548                          * until we actually have it read locked
2549                          */
2550                         b = btrfs_read_lock_root_node(root);
2551                         level = btrfs_header_level(b);
2552                         if (level <= write_lock_level) {
2553                                 /* whoops, must trade for write lock */
2554                                 btrfs_tree_read_unlock(b);
2555                                 free_extent_buffer(b);
2556                                 b = btrfs_lock_root_node(root);
2557                                 root_lock = BTRFS_WRITE_LOCK;
2558
2559                                 /* the level might have changed, check again */
2560                                 level = btrfs_header_level(b);
2561                         }
2562                 }
2563         }
2564         p->nodes[level] = b;
2565         if (!p->skip_locking)
2566                 p->locks[level] = root_lock;
2567
2568         while (b) {
2569                 level = btrfs_header_level(b);
2570
2571                 /*
2572                  * setup the path here so we can release it under lock
2573                  * contention with the cow code
2574                  */
2575                 if (cow) {
2576                         /*
2577                          * if we don't really need to cow this block
2578                          * then we don't want to set the path blocking,
2579                          * so we test it here
2580                          */
2581                         if (!should_cow_block(trans, root, b))
2582                                 goto cow_done;
2583
2584                         btrfs_set_path_blocking(p);
2585
2586                         /*
2587                          * must have write locks on this node and the
2588                          * parent
2589                          */
2590                         if (level > write_lock_level ||
2591                             (level + 1 > write_lock_level &&
2592                             level + 1 < BTRFS_MAX_LEVEL &&
2593                             p->nodes[level + 1])) {
2594                                 write_lock_level = level + 1;
2595                                 btrfs_release_path(p);
2596                                 goto again;
2597                         }
2598
2599                         err = btrfs_cow_block(trans, root, b,
2600                                               p->nodes[level + 1],
2601                                               p->slots[level + 1], &b);
2602                         if (err) {
2603                                 ret = err;
2604                                 goto done;
2605                         }
2606                 }
2607 cow_done:
2608                 BUG_ON(!cow && ins_len);
2609
2610                 p->nodes[level] = b;
2611                 btrfs_clear_path_blocking(p, NULL, 0);
2612
2613                 /*
2614                  * we have a lock on b and as long as we aren't changing
2615                  * the tree, there is no way to for the items in b to change.
2616                  * It is safe to drop the lock on our parent before we
2617                  * go through the expensive btree search on b.
2618                  *
2619                  * If cow is true, then we might be changing slot zero,
2620                  * which may require changing the parent.  So, we can't
2621                  * drop the lock until after we know which slot we're
2622                  * operating on.
2623                  */
2624                 if (!cow)
2625                         btrfs_unlock_up_safe(p, level + 1);
2626
2627                 ret = bin_search(b, key, level, &slot);
2628
2629                 if (level != 0) {
2630                         int dec = 0;
2631                         if (ret && slot > 0) {
2632                                 dec = 1;
2633                                 slot -= 1;
2634                         }
2635                         p->slots[level] = slot;
2636                         err = setup_nodes_for_search(trans, root, p, b, level,
2637                                              ins_len, &write_lock_level);
2638                         if (err == -EAGAIN)
2639                                 goto again;
2640                         if (err) {
2641                                 ret = err;
2642                                 goto done;
2643                         }
2644                         b = p->nodes[level];
2645                         slot = p->slots[level];
2646
2647                         /*
2648                          * slot 0 is special, if we change the key
2649                          * we have to update the parent pointer
2650                          * which means we must have a write lock
2651                          * on the parent
2652                          */
2653                         if (slot == 0 && cow &&
2654                             write_lock_level < level + 1) {
2655                                 write_lock_level = level + 1;
2656                                 btrfs_release_path(p);
2657                                 goto again;
2658                         }
2659
2660                         unlock_up(p, level, lowest_unlock,
2661                                   min_write_lock_level, &write_lock_level);
2662
2663                         if (level == lowest_level) {
2664                                 if (dec)
2665                                         p->slots[level]++;
2666                                 goto done;
2667                         }
2668
2669                         err = read_block_for_search(trans, root, p,
2670                                                     &b, level, slot, key, 0);
2671                         if (err == -EAGAIN)
2672                                 goto again;
2673                         if (err) {
2674                                 ret = err;
2675                                 goto done;
2676                         }
2677
2678                         if (!p->skip_locking) {
2679                                 level = btrfs_header_level(b);
2680                                 if (level <= write_lock_level) {
2681                                         err = btrfs_try_tree_write_lock(b);
2682                                         if (!err) {
2683                                                 btrfs_set_path_blocking(p);
2684                                                 btrfs_tree_lock(b);
2685                                                 btrfs_clear_path_blocking(p, b,
2686                                                                   BTRFS_WRITE_LOCK);
2687                                         }
2688                                         p->locks[level] = BTRFS_WRITE_LOCK;
2689                                 } else {
2690                                         err = btrfs_try_tree_read_lock(b);
2691                                         if (!err) {
2692                                                 btrfs_set_path_blocking(p);
2693                                                 btrfs_tree_read_lock(b);
2694                                                 btrfs_clear_path_blocking(p, b,
2695                                                                   BTRFS_READ_LOCK);
2696                                         }
2697                                         p->locks[level] = BTRFS_READ_LOCK;
2698                                 }
2699                                 p->nodes[level] = b;
2700                         }
2701                 } else {
2702                         p->slots[level] = slot;
2703                         if (ins_len > 0 &&
2704                             btrfs_leaf_free_space(root, b) < ins_len) {
2705                                 if (write_lock_level < 1) {
2706                                         write_lock_level = 1;
2707                                         btrfs_release_path(p);
2708                                         goto again;
2709                                 }
2710
2711                                 btrfs_set_path_blocking(p);
2712                                 err = split_leaf(trans, root, key,
2713                                                  p, ins_len, ret == 0);
2714                                 btrfs_clear_path_blocking(p, NULL, 0);
2715
2716                                 BUG_ON(err > 0);
2717                                 if (err) {
2718                                         ret = err;
2719                                         goto done;
2720                                 }
2721                         }
2722                         if (!p->search_for_split)
2723                                 unlock_up(p, level, lowest_unlock,
2724                                           min_write_lock_level, &write_lock_level);
2725                         goto done;
2726                 }
2727         }
2728         ret = 1;
2729 done:
2730         /*
2731          * we don't really know what they plan on doing with the path
2732          * from here on, so for now just mark it as blocking
2733          */
2734         if (!p->leave_spinning)
2735                 btrfs_set_path_blocking(p);
2736         if (ret < 0)
2737                 btrfs_release_path(p);
2738         return ret;
2739 }
2740
2741 /*
2742  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2743  * current state of the tree together with the operations recorded in the tree
2744  * modification log to search for the key in a previous version of this tree, as
2745  * denoted by the time_seq parameter.
2746  *
2747  * Naturally, there is no support for insert, delete or cow operations.
2748  *
2749  * The resulting path and return value will be set up as if we called
2750  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2751  */
2752 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2753                           struct btrfs_path *p, u64 time_seq)
2754 {
2755         struct extent_buffer *b;
2756         int slot;
2757         int ret;
2758         int err;
2759         int level;
2760         int lowest_unlock = 1;
2761         u8 lowest_level = 0;
2762
2763         lowest_level = p->lowest_level;
2764         WARN_ON(p->nodes[0] != NULL);
2765
2766         if (p->search_commit_root) {
2767                 BUG_ON(time_seq);
2768                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769         }
2770
2771 again:
2772         b = get_old_root(root, time_seq);
2773         level = btrfs_header_level(b);
2774         p->locks[level] = BTRFS_READ_LOCK;
2775
2776         while (b) {
2777                 level = btrfs_header_level(b);
2778                 p->nodes[level] = b;
2779                 btrfs_clear_path_blocking(p, NULL, 0);
2780
2781                 /*
2782                  * we have a lock on b and as long as we aren't changing
2783                  * the tree, there is no way to for the items in b to change.
2784                  * It is safe to drop the lock on our parent before we
2785                  * go through the expensive btree search on b.
2786                  */
2787                 btrfs_unlock_up_safe(p, level + 1);
2788
2789                 ret = bin_search(b, key, level, &slot);
2790
2791                 if (level != 0) {
2792                         int dec = 0;
2793                         if (ret && slot > 0) {
2794                                 dec = 1;
2795                                 slot -= 1;
2796                         }
2797                         p->slots[level] = slot;
2798                         unlock_up(p, level, lowest_unlock, 0, NULL);
2799
2800                         if (level == lowest_level) {
2801                                 if (dec)
2802                                         p->slots[level]++;
2803                                 goto done;
2804                         }
2805
2806                         err = read_block_for_search(NULL, root, p, &b, level,
2807                                                     slot, key, time_seq);
2808                         if (err == -EAGAIN)
2809                                 goto again;
2810                         if (err) {
2811                                 ret = err;
2812                                 goto done;
2813                         }
2814
2815                         level = btrfs_header_level(b);
2816                         err = btrfs_try_tree_read_lock(b);
2817                         if (!err) {
2818                                 btrfs_set_path_blocking(p);
2819                                 btrfs_tree_read_lock(b);
2820                                 btrfs_clear_path_blocking(p, b,
2821                                                           BTRFS_READ_LOCK);
2822                         }
2823                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2824                         p->locks[level] = BTRFS_READ_LOCK;
2825                         p->nodes[level] = b;
2826                 } else {
2827                         p->slots[level] = slot;
2828                         unlock_up(p, level, lowest_unlock, 0, NULL);
2829                         goto done;
2830                 }
2831         }
2832         ret = 1;
2833 done:
2834         if (!p->leave_spinning)
2835                 btrfs_set_path_blocking(p);
2836         if (ret < 0)
2837                 btrfs_release_path(p);
2838
2839         return ret;
2840 }
2841
2842 /*
2843  * helper to use instead of search slot if no exact match is needed but
2844  * instead the next or previous item should be returned.
2845  * When find_higher is true, the next higher item is returned, the next lower
2846  * otherwise.
2847  * When return_any and find_higher are both true, and no higher item is found,
2848  * return the next lower instead.
2849  * When return_any is true and find_higher is false, and no lower item is found,
2850  * return the next higher instead.
2851  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2852  * < 0 on error
2853  */
2854 int btrfs_search_slot_for_read(struct btrfs_root *root,
2855                                struct btrfs_key *key, struct btrfs_path *p,
2856                                int find_higher, int return_any)
2857 {
2858         int ret;
2859         struct extent_buffer *leaf;
2860
2861 again:
2862         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2863         if (ret <= 0)
2864                 return ret;
2865         /*
2866          * a return value of 1 means the path is at the position where the
2867          * item should be inserted. Normally this is the next bigger item,
2868          * but in case the previous item is the last in a leaf, path points
2869          * to the first free slot in the previous leaf, i.e. at an invalid
2870          * item.
2871          */
2872         leaf = p->nodes[0];
2873
2874         if (find_higher) {
2875                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2876                         ret = btrfs_next_leaf(root, p);
2877                         if (ret <= 0)
2878                                 return ret;
2879                         if (!return_any)
2880                                 return 1;
2881                         /*
2882                          * no higher item found, return the next
2883                          * lower instead
2884                          */
2885                         return_any = 0;
2886                         find_higher = 0;
2887                         btrfs_release_path(p);
2888                         goto again;
2889                 }
2890         } else {
2891                 if (p->slots[0] == 0) {
2892                         ret = btrfs_prev_leaf(root, p);
2893                         if (ret < 0)
2894                                 return ret;
2895                         if (!ret) {
2896                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2897                                 return 0;
2898                         }
2899                         if (!return_any)
2900                                 return 1;
2901                         /*
2902                          * no lower item found, return the next
2903                          * higher instead
2904                          */
2905                         return_any = 0;
2906                         find_higher = 1;
2907                         btrfs_release_path(p);
2908                         goto again;
2909                 } else {
2910                         --p->slots[0];
2911                 }
2912         }
2913         return 0;
2914 }
2915
2916 /*
2917  * adjust the pointers going up the tree, starting at level
2918  * making sure the right key of each node is points to 'key'.
2919  * This is used after shifting pointers to the left, so it stops
2920  * fixing up pointers when a given leaf/node is not in slot 0 of the
2921  * higher levels
2922  *
2923  */
2924 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2925                            struct btrfs_disk_key *key, int level)
2926 {
2927         int i;
2928         struct extent_buffer *t;
2929
2930         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2931                 int tslot = path->slots[i];
2932                 if (!path->nodes[i])
2933                         break;
2934                 t = path->nodes[i];
2935                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2936                 btrfs_set_node_key(t, key, tslot);
2937                 btrfs_mark_buffer_dirty(path->nodes[i]);
2938                 if (tslot != 0)
2939                         break;
2940         }
2941 }
2942
2943 /*
2944  * update item key.
2945  *
2946  * This function isn't completely safe. It's the caller's responsibility
2947  * that the new key won't break the order
2948  */
2949 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2950                              struct btrfs_key *new_key)
2951 {
2952         struct btrfs_disk_key disk_key;
2953         struct extent_buffer *eb;
2954         int slot;
2955
2956         eb = path->nodes[0];
2957         slot = path->slots[0];
2958         if (slot > 0) {
2959                 btrfs_item_key(eb, &disk_key, slot - 1);
2960                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2961         }
2962         if (slot < btrfs_header_nritems(eb) - 1) {
2963                 btrfs_item_key(eb, &disk_key, slot + 1);
2964                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2965         }
2966
2967         btrfs_cpu_key_to_disk(&disk_key, new_key);
2968         btrfs_set_item_key(eb, &disk_key, slot);
2969         btrfs_mark_buffer_dirty(eb);
2970         if (slot == 0)
2971                 fixup_low_keys(root, path, &disk_key, 1);
2972 }
2973
2974 /*
2975  * try to push data from one node into the next node left in the
2976  * tree.
2977  *
2978  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2979  * error, and > 0 if there was no room in the left hand block.
2980  */
2981 static int push_node_left(struct btrfs_trans_handle *trans,
2982                           struct btrfs_root *root, struct extent_buffer *dst,
2983                           struct extent_buffer *src, int empty)
2984 {
2985         int push_items = 0;
2986         int src_nritems;
2987         int dst_nritems;
2988         int ret = 0;
2989
2990         src_nritems = btrfs_header_nritems(src);
2991         dst_nritems = btrfs_header_nritems(dst);
2992         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2993         WARN_ON(btrfs_header_generation(src) != trans->transid);
2994         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2995
2996         if (!empty && src_nritems <= 8)
2997                 return 1;
2998
2999         if (push_items <= 0)
3000                 return 1;
3001
3002         if (empty) {
3003                 push_items = min(src_nritems, push_items);
3004                 if (push_items < src_nritems) {
3005                         /* leave at least 8 pointers in the node if
3006                          * we aren't going to empty it
3007                          */
3008                         if (src_nritems - push_items < 8) {
3009                                 if (push_items <= 8)
3010                                         return 1;
3011                                 push_items -= 8;
3012                         }
3013                 }
3014         } else
3015                 push_items = min(src_nritems - 8, push_items);
3016
3017         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3018                              push_items);
3019         copy_extent_buffer(dst, src,
3020                            btrfs_node_key_ptr_offset(dst_nritems),
3021                            btrfs_node_key_ptr_offset(0),
3022                            push_items * sizeof(struct btrfs_key_ptr));
3023
3024         if (push_items < src_nritems) {
3025                 /*
3026                  * don't call tree_mod_log_eb_move here, key removal was already
3027                  * fully logged by tree_mod_log_eb_copy above.
3028                  */
3029                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3030                                       btrfs_node_key_ptr_offset(push_items),
3031                                       (src_nritems - push_items) *
3032                                       sizeof(struct btrfs_key_ptr));
3033         }
3034         btrfs_set_header_nritems(src, src_nritems - push_items);
3035         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3036         btrfs_mark_buffer_dirty(src);
3037         btrfs_mark_buffer_dirty(dst);
3038
3039         return ret;
3040 }
3041
3042 /*
3043  * try to push data from one node into the next node right in the
3044  * tree.
3045  *
3046  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3047  * error, and > 0 if there was no room in the right hand block.
3048  *
3049  * this will  only push up to 1/2 the contents of the left node over
3050  */
3051 static int balance_node_right(struct btrfs_trans_handle *trans,
3052                               struct btrfs_root *root,
3053                               struct extent_buffer *dst,
3054                               struct extent_buffer *src)
3055 {
3056         int push_items = 0;
3057         int max_push;
3058         int src_nritems;
3059         int dst_nritems;
3060         int ret = 0;
3061
3062         WARN_ON(btrfs_header_generation(src) != trans->transid);
3063         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3064
3065         src_nritems = btrfs_header_nritems(src);
3066         dst_nritems = btrfs_header_nritems(dst);
3067         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3068         if (push_items <= 0)
3069                 return 1;
3070
3071         if (src_nritems < 4)
3072                 return 1;
3073
3074         max_push = src_nritems / 2 + 1;
3075         /* don't try to empty the node */
3076         if (max_push >= src_nritems)
3077                 return 1;
3078
3079         if (max_push < push_items)
3080                 push_items = max_push;
3081
3082         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3083         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3084                                       btrfs_node_key_ptr_offset(0),
3085                                       (dst_nritems) *
3086                                       sizeof(struct btrfs_key_ptr));
3087
3088         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3089                              src_nritems - push_items, push_items);
3090         copy_extent_buffer(dst, src,
3091                            btrfs_node_key_ptr_offset(0),
3092                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3093                            push_items * sizeof(struct btrfs_key_ptr));
3094
3095         btrfs_set_header_nritems(src, src_nritems - push_items);
3096         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3097
3098         btrfs_mark_buffer_dirty(src);
3099         btrfs_mark_buffer_dirty(dst);
3100
3101         return ret;
3102 }
3103
3104 /*
3105  * helper function to insert a new root level in the tree.
3106  * A new node is allocated, and a single item is inserted to
3107  * point to the existing root
3108  *
3109  * returns zero on success or < 0 on failure.
3110  */
3111 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3112                            struct btrfs_root *root,
3113                            struct btrfs_path *path, int level)
3114 {
3115         u64 lower_gen;
3116         struct extent_buffer *lower;
3117         struct extent_buffer *c;
3118         struct extent_buffer *old;
3119         struct btrfs_disk_key lower_key;
3120
3121         BUG_ON(path->nodes[level]);
3122         BUG_ON(path->nodes[level-1] != root->node);
3123
3124         lower = path->nodes[level-1];
3125         if (level == 1)
3126                 btrfs_item_key(lower, &lower_key, 0);
3127         else
3128                 btrfs_node_key(lower, &lower_key, 0);
3129
3130         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3131                                    root->root_key.objectid, &lower_key,
3132                                    level, root->node->start, 0);
3133         if (IS_ERR(c))
3134                 return PTR_ERR(c);
3135
3136         root_add_used(root, root->nodesize);
3137
3138         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3139         btrfs_set_header_nritems(c, 1);
3140         btrfs_set_header_level(c, level);
3141         btrfs_set_header_bytenr(c, c->start);
3142         btrfs_set_header_generation(c, trans->transid);
3143         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3144         btrfs_set_header_owner(c, root->root_key.objectid);
3145
3146         write_extent_buffer(c, root->fs_info->fsid,
3147                             (unsigned long)btrfs_header_fsid(c),
3148                             BTRFS_FSID_SIZE);
3149
3150         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3151                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3152                             BTRFS_UUID_SIZE);
3153
3154         btrfs_set_node_key(c, &lower_key, 0);
3155         btrfs_set_node_blockptr(c, 0, lower->start);
3156         lower_gen = btrfs_header_generation(lower);
3157         WARN_ON(lower_gen != trans->transid);
3158
3159         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3160
3161         btrfs_mark_buffer_dirty(c);
3162
3163         old = root->node;
3164         tree_mod_log_set_root_pointer(root, c, 0);
3165         rcu_assign_pointer(root->node, c);
3166
3167         /* the super has an extra ref to root->node */
3168         free_extent_buffer(old);
3169
3170         add_root_to_dirty_list(root);
3171         extent_buffer_get(c);
3172         path->nodes[level] = c;
3173         path->locks[level] = BTRFS_WRITE_LOCK;
3174         path->slots[level] = 0;
3175         return 0;
3176 }
3177
3178 /*
3179  * worker function to insert a single pointer in a node.
3180  * the node should have enough room for the pointer already
3181  *
3182  * slot and level indicate where you want the key to go, and
3183  * blocknr is the block the key points to.
3184  */
3185 static void insert_ptr(struct btrfs_trans_handle *trans,
3186                        struct btrfs_root *root, struct btrfs_path *path,
3187                        struct btrfs_disk_key *key, u64 bytenr,
3188                        int slot, int level)
3189 {
3190         struct extent_buffer *lower;
3191         int nritems;
3192         int ret;
3193
3194         BUG_ON(!path->nodes[level]);
3195         btrfs_assert_tree_locked(path->nodes[level]);
3196         lower = path->nodes[level];
3197         nritems = btrfs_header_nritems(lower);
3198         BUG_ON(slot > nritems);
3199         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3200         if (slot != nritems) {
3201                 if (level)
3202                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3203                                              slot, nritems - slot);
3204                 memmove_extent_buffer(lower,
3205                               btrfs_node_key_ptr_offset(slot + 1),
3206                               btrfs_node_key_ptr_offset(slot),
3207                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3208         }
3209         if (level) {
3210                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3211                                               MOD_LOG_KEY_ADD);
3212                 BUG_ON(ret < 0);
3213         }
3214         btrfs_set_node_key(lower, key, slot);
3215         btrfs_set_node_blockptr(lower, slot, bytenr);
3216         WARN_ON(trans->transid == 0);
3217         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3218         btrfs_set_header_nritems(lower, nritems + 1);
3219         btrfs_mark_buffer_dirty(lower);
3220 }
3221
3222 /*
3223  * split the node at the specified level in path in two.
3224  * The path is corrected to point to the appropriate node after the split
3225  *
3226  * Before splitting this tries to make some room in the node by pushing
3227  * left and right, if either one works, it returns right away.
3228  *
3229  * returns 0 on success and < 0 on failure
3230  */
3231 static noinline int split_node(struct btrfs_trans_handle *trans,
3232                                struct btrfs_root *root,
3233                                struct btrfs_path *path, int level)
3234 {
3235         struct extent_buffer *c;
3236         struct extent_buffer *split;
3237         struct btrfs_disk_key disk_key;
3238         int mid;
3239         int ret;
3240         u32 c_nritems;
3241
3242         c = path->nodes[level];
3243         WARN_ON(btrfs_header_generation(c) != trans->transid);
3244         if (c == root->node) {
3245                 /*
3246                  * trying to split the root, lets make a new one
3247                  *
3248                  * tree mod log: We don't log_removal old root in
3249                  * insert_new_root, because that root buffer will be kept as a
3250                  * normal node. We are going to log removal of half of the
3251                  * elements below with tree_mod_log_eb_copy. We're holding a
3252                  * tree lock on the buffer, which is why we cannot race with
3253                  * other tree_mod_log users.
3254                  */
3255                 ret = insert_new_root(trans, root, path, level + 1);
3256                 if (ret)
3257                         return ret;
3258         } else {
3259                 ret = push_nodes_for_insert(trans, root, path, level);
3260                 c = path->nodes[level];
3261                 if (!ret && btrfs_header_nritems(c) <
3262                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3263                         return 0;
3264                 if (ret < 0)
3265                         return ret;
3266         }
3267
3268         c_nritems = btrfs_header_nritems(c);
3269         mid = (c_nritems + 1) / 2;
3270         btrfs_node_key(c, &disk_key, mid);
3271
3272         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3273                                         root->root_key.objectid,
3274                                         &disk_key, level, c->start, 0);
3275         if (IS_ERR(split))
3276                 return PTR_ERR(split);
3277
3278         root_add_used(root, root->nodesize);
3279
3280         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3281         btrfs_set_header_level(split, btrfs_header_level(c));
3282         btrfs_set_header_bytenr(split, split->start);
3283         btrfs_set_header_generation(split, trans->transid);
3284         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3285         btrfs_set_header_owner(split, root->root_key.objectid);
3286         write_extent_buffer(split, root->fs_info->fsid,
3287                             (unsigned long)btrfs_header_fsid(split),
3288                             BTRFS_FSID_SIZE);
3289         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3290                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3291                             BTRFS_UUID_SIZE);
3292
3293         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3294         copy_extent_buffer(split, c,
3295                            btrfs_node_key_ptr_offset(0),
3296                            btrfs_node_key_ptr_offset(mid),
3297                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3298         btrfs_set_header_nritems(split, c_nritems - mid);
3299         btrfs_set_header_nritems(c, mid);
3300         ret = 0;
3301
3302         btrfs_mark_buffer_dirty(c);
3303         btrfs_mark_buffer_dirty(split);
3304
3305         insert_ptr(trans, root, path, &disk_key, split->start,
3306                    path->slots[level + 1] + 1, level + 1);
3307
3308         if (path->slots[level] >= mid) {
3309                 path->slots[level] -= mid;
3310                 btrfs_tree_unlock(c);
3311                 free_extent_buffer(c);
3312                 path->nodes[level] = split;
3313                 path->slots[level + 1] += 1;
3314         } else {
3315                 btrfs_tree_unlock(split);
3316                 free_extent_buffer(split);
3317         }
3318         return ret;
3319 }
3320
3321 /*
3322  * how many bytes are required to store the items in a leaf.  start
3323  * and nr indicate which items in the leaf to check.  This totals up the
3324  * space used both by the item structs and the item data
3325  */
3326 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3327 {
3328         struct btrfs_item *start_item;
3329         struct btrfs_item *end_item;
3330         struct btrfs_map_token token;
3331         int data_len;
3332         int nritems = btrfs_header_nritems(l);
3333         int end = min(nritems, start + nr) - 1;
3334
3335         if (!nr)
3336                 return 0;
3337         btrfs_init_map_token(&token);
3338         start_item = btrfs_item_nr(l, start);
3339         end_item = btrfs_item_nr(l, end);
3340         data_len = btrfs_token_item_offset(l, start_item, &token) +
3341                 btrfs_token_item_size(l, start_item, &token);
3342         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3343         data_len += sizeof(struct btrfs_item) * nr;
3344         WARN_ON(data_len < 0);
3345         return data_len;
3346 }
3347
3348 /*
3349  * The space between the end of the leaf items and
3350  * the start of the leaf data.  IOW, how much room
3351  * the leaf has left for both items and data
3352  */
3353 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3354                                    struct extent_buffer *leaf)
3355 {
3356         int nritems = btrfs_header_nritems(leaf);
3357         int ret;
3358         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3359         if (ret < 0) {
3360                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3361                        "used %d nritems %d\n",
3362                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3363                        leaf_space_used(leaf, 0, nritems), nritems);
3364         }
3365         return ret;
3366 }
3367
3368 /*
3369  * min slot controls the lowest index we're willing to push to the
3370  * right.  We'll push up to and including min_slot, but no lower
3371  */
3372 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3373                                       struct btrfs_root *root,
3374                                       struct btrfs_path *path,
3375                                       int data_size, int empty,
3376                                       struct extent_buffer *right,
3377                                       int free_space, u32 left_nritems,
3378                                       u32 min_slot)
3379 {
3380         struct extent_buffer *left = path->nodes[0];
3381         struct extent_buffer *upper = path->nodes[1];
3382         struct btrfs_map_token token;
3383         struct btrfs_disk_key disk_key;
3384         int slot;
3385         u32 i;
3386         int push_space = 0;
3387         int push_items = 0;
3388         struct btrfs_item *item;
3389         u32 nr;
3390         u32 right_nritems;
3391         u32 data_end;
3392         u32 this_item_size;
3393
3394         btrfs_init_map_token(&token);
3395
3396         if (empty)
3397                 nr = 0;
3398         else
3399                 nr = max_t(u32, 1, min_slot);
3400
3401         if (path->slots[0] >= left_nritems)
3402                 push_space += data_size;
3403
3404         slot = path->slots[1];
3405         i = left_nritems - 1;
3406         while (i >= nr) {
3407                 item = btrfs_item_nr(left, i);
3408
3409                 if (!empty && push_items > 0) {
3410                         if (path->slots[0] > i)
3411                                 break;
3412                         if (path->slots[0] == i) {
3413                                 int space = btrfs_leaf_free_space(root, left);
3414                                 if (space + push_space * 2 > free_space)
3415                                         break;
3416                         }
3417                 }
3418
3419                 if (path->slots[0] == i)
3420                         push_space += data_size;
3421
3422                 this_item_size = btrfs_item_size(left, item);
3423                 if (this_item_size + sizeof(*item) + push_space > free_space)
3424                         break;
3425
3426                 push_items++;
3427                 push_space += this_item_size + sizeof(*item);
3428                 if (i == 0)
3429                         break;
3430                 i--;
3431         }
3432
3433         if (push_items == 0)
3434                 goto out_unlock;
3435
3436         WARN_ON(!empty && push_items == left_nritems);
3437
3438         /* push left to right */
3439         right_nritems = btrfs_header_nritems(right);
3440
3441         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3442         push_space -= leaf_data_end(root, left);
3443
3444         /* make room in the right data area */
3445         data_end = leaf_data_end(root, right);
3446         memmove_extent_buffer(right,
3447                               btrfs_leaf_data(right) + data_end - push_space,
3448                               btrfs_leaf_data(right) + data_end,
3449                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3450
3451         /* copy from the left data area */
3452         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3453                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3454                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3455                      push_space);
3456
3457         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3458                               btrfs_item_nr_offset(0),
3459                               right_nritems * sizeof(struct btrfs_item));
3460
3461         /* copy the items from left to right */
3462         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3463                    btrfs_item_nr_offset(left_nritems - push_items),
3464                    push_items * sizeof(struct btrfs_item));
3465
3466         /* update the item pointers */
3467         right_nritems += push_items;
3468         btrfs_set_header_nritems(right, right_nritems);
3469         push_space = BTRFS_LEAF_DATA_SIZE(root);
3470         for (i = 0; i < right_nritems; i++) {
3471                 item = btrfs_item_nr(right, i);
3472                 push_space -= btrfs_token_item_size(right, item, &token);
3473                 btrfs_set_token_item_offset(right, item, push_space, &token);
3474         }
3475
3476         left_nritems -= push_items;
3477         btrfs_set_header_nritems(left, left_nritems);
3478
3479         if (left_nritems)
3480                 btrfs_mark_buffer_dirty(left);
3481         else
3482                 clean_tree_block(trans, root, left);
3483
3484         btrfs_mark_buffer_dirty(right);
3485
3486         btrfs_item_key(right, &disk_key, 0);
3487         btrfs_set_node_key(upper, &disk_key, slot + 1);
3488         btrfs_mark_buffer_dirty(upper);
3489
3490         /* then fixup the leaf pointer in the path */
3491         if (path->slots[0] >= left_nritems) {
3492                 path->slots[0] -= left_nritems;
3493                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3494                         clean_tree_block(trans, root, path->nodes[0]);
3495                 btrfs_tree_unlock(path->nodes[0]);
3496                 free_extent_buffer(path->nodes[0]);
3497                 path->nodes[0] = right;
3498                 path->slots[1] += 1;
3499         } else {
3500                 btrfs_tree_unlock(right);
3501                 free_extent_buffer(right);
3502         }
3503         return 0;
3504
3505 out_unlock:
3506         btrfs_tree_unlock(right);
3507         free_extent_buffer(right);
3508         return 1;
3509 }
3510
3511 /*
3512  * push some data in the path leaf to the right, trying to free up at
3513  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3514  *
3515  * returns 1 if the push failed because the other node didn't have enough
3516  * room, 0 if everything worked out and < 0 if there were major errors.
3517  *
3518  * this will push starting from min_slot to the end of the leaf.  It won't
3519  * push any slot lower than min_slot
3520  */
3521 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3522                            *root, struct btrfs_path *path,
3523                            int min_data_size, int data_size,
3524                            int empty, u32 min_slot)
3525 {
3526         struct extent_buffer *left = path->nodes[0];
3527         struct extent_buffer *right;
3528         struct extent_buffer *upper;
3529         int slot;
3530         int free_space;
3531         u32 left_nritems;
3532         int ret;
3533
3534         if (!path->nodes[1])
3535                 return 1;
3536
3537         slot = path->slots[1];
3538         upper = path->nodes[1];
3539         if (slot >= btrfs_header_nritems(upper) - 1)
3540                 return 1;
3541
3542         btrfs_assert_tree_locked(path->nodes[1]);
3543
3544         right = read_node_slot(root, upper, slot + 1);
3545         if (right == NULL)
3546                 return 1;
3547
3548         btrfs_tree_lock(right);
3549         btrfs_set_lock_blocking(right);
3550
3551         free_space = btrfs_leaf_free_space(root, right);
3552         if (free_space < data_size)
3553                 goto out_unlock;
3554
3555         /* cow and double check */
3556         ret = btrfs_cow_block(trans, root, right, upper,
3557                               slot + 1, &right);
3558         if (ret)
3559                 goto out_unlock;
3560
3561         free_space = btrfs_leaf_free_space(root, right);
3562         if (free_space < data_size)
3563                 goto out_unlock;
3564
3565         left_nritems = btrfs_header_nritems(left);
3566         if (left_nritems == 0)
3567                 goto out_unlock;
3568
3569         return __push_leaf_right(trans, root, path, min_data_size, empty,
3570                                 right, free_space, left_nritems, min_slot);
3571 out_unlock:
3572         btrfs_tree_unlock(right);
3573         free_extent_buffer(right);
3574         return 1;
3575 }
3576
3577 /*
3578  * push some data in the path leaf to the left, trying to free up at
3579  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3580  *
3581  * max_slot can put a limit on how far into the leaf we'll push items.  The
3582  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3583  * items
3584  */
3585 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3586                                      struct btrfs_root *root,
3587                                      struct btrfs_path *path, int data_size,
3588                                      int empty, struct extent_buffer *left,
3589                                      int free_space, u32 right_nritems,
3590                                      u32 max_slot)
3591 {
3592         struct btrfs_disk_key disk_key;
3593         struct extent_buffer *right = path->nodes[0];
3594         int i;
3595         int push_space = 0;
3596         int push_items = 0;
3597         struct btrfs_item *item;
3598         u32 old_left_nritems;
3599         u32 nr;
3600         int ret = 0;
3601         u32 this_item_size;
3602         u32 old_left_item_size;
3603         struct btrfs_map_token token;
3604
3605         btrfs_init_map_token(&token);
3606
3607         if (empty)
3608                 nr = min(right_nritems, max_slot);
3609         else
3610                 nr = min(right_nritems - 1, max_slot);
3611
3612         for (i = 0; i < nr; i++) {
3613                 item = btrfs_item_nr(right, i);
3614
3615                 if (!empty && push_items > 0) {
3616                         if (path->slots[0] < i)
3617                                 break;
3618                         if (path->slots[0] == i) {
3619                                 int space = btrfs_leaf_free_space(root, right);
3620                                 if (space + push_space * 2 > free_space)
3621                                         break;
3622                         }
3623                 }
3624
3625                 if (path->slots[0] == i)
3626                         push_space += data_size;
3627
3628                 this_item_size = btrfs_item_size(right, item);
3629                 if (this_item_size + sizeof(*item) + push_space > free_space)
3630                         break;
3631
3632                 push_items++;
3633                 push_space += this_item_size + sizeof(*item);
3634         }
3635
3636         if (push_items == 0) {
3637                 ret = 1;
3638                 goto out;
3639         }
3640         if (!empty && push_items == btrfs_header_nritems(right))
3641                 WARN_ON(1);
3642
3643         /* push data from right to left */
3644         copy_extent_buffer(left, right,
3645                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3646                            btrfs_item_nr_offset(0),
3647                            push_items * sizeof(struct btrfs_item));
3648
3649         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3650                      btrfs_item_offset_nr(right, push_items - 1);
3651
3652         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3653                      leaf_data_end(root, left) - push_space,
3654                      btrfs_leaf_data(right) +
3655                      btrfs_item_offset_nr(right, push_items - 1),
3656                      push_space);
3657         old_left_nritems = btrfs_header_nritems(left);
3658         BUG_ON(old_left_nritems <= 0);
3659
3660         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3661         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3662                 u32 ioff;
3663
3664                 item = btrfs_item_nr(left, i);
3665
3666                 ioff = btrfs_token_item_offset(left, item, &token);
3667                 btrfs_set_token_item_offset(left, item,
3668                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3669                       &token);
3670         }
3671         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3672
3673         /* fixup right node */
3674         if (push_items > right_nritems)
3675                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3676                        right_nritems);
3677
3678         if (push_items < right_nritems) {
3679                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3680                                                   leaf_data_end(root, right);
3681                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3682                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3683                                       btrfs_leaf_data(right) +
3684                                       leaf_data_end(root, right), push_space);
3685
3686                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3687                               btrfs_item_nr_offset(push_items),
3688                              (btrfs_header_nritems(right) - push_items) *
3689                              sizeof(struct btrfs_item));
3690         }
3691         right_nritems -= push_items;
3692         btrfs_set_header_nritems(right, right_nritems);
3693         push_space = BTRFS_LEAF_DATA_SIZE(root);
3694         for (i = 0; i < right_nritems; i++) {
3695                 item = btrfs_item_nr(right, i);
3696
3697                 push_space = push_space - btrfs_token_item_size(right,
3698                                                                 item, &token);
3699                 btrfs_set_token_item_offset(right, item, push_space, &token);
3700         }
3701
3702         btrfs_mark_buffer_dirty(left);
3703         if (right_nritems)
3704                 btrfs_mark_buffer_dirty(right);
3705         else
3706                 clean_tree_block(trans, root, right);
3707
3708         btrfs_item_key(right, &disk_key, 0);
3709         fixup_low_keys(root, path, &disk_key, 1);
3710
3711         /* then fixup the leaf pointer in the path */
3712         if (path->slots[0] < push_items) {
3713                 path->slots[0] += old_left_nritems;
3714                 btrfs_tree_unlock(path->nodes[0]);
3715                 free_extent_buffer(path->nodes[0]);
3716                 path->nodes[0] = left;
3717                 path->slots[1] -= 1;
3718         } else {
3719                 btrfs_tree_unlock(left);
3720                 free_extent_buffer(left);
3721                 path->slots[0] -= push_items;
3722         }
3723         BUG_ON(path->slots[0] < 0);
3724         return ret;
3725 out:
3726         btrfs_tree_unlock(left);
3727         free_extent_buffer(left);
3728         return ret;
3729 }
3730
3731 /*
3732  * push some data in the path leaf to the left, trying to free up at
3733  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3734  *
3735  * max_slot can put a limit on how far into the leaf we'll push items.  The
3736  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3737  * items
3738  */
3739 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3740                           *root, struct btrfs_path *path, int min_data_size,
3741                           int data_size, int empty, u32 max_slot)
3742 {
3743         struct extent_buffer *right = path->nodes[0];
3744         struct extent_buffer *left;
3745         int slot;
3746         int free_space;
3747         u32 right_nritems;
3748         int ret = 0;
3749
3750         slot = path->slots[1];
3751         if (slot == 0)
3752                 return 1;
3753         if (!path->nodes[1])
3754                 return 1;
3755
3756         right_nritems = btrfs_header_nritems(right);
3757         if (right_nritems == 0)
3758                 return 1;
3759
3760         btrfs_assert_tree_locked(path->nodes[1]);
3761
3762         left = read_node_slot(root, path->nodes[1], slot - 1);
3763         if (left == NULL)
3764                 return 1;
3765
3766         btrfs_tree_lock(left);
3767         btrfs_set_lock_blocking(left);
3768
3769         free_space = btrfs_leaf_free_space(root, left);
3770         if (free_space < data_size) {
3771                 ret = 1;
3772                 goto out;
3773         }
3774
3775         /* cow and double check */
3776         ret = btrfs_cow_block(trans, root, left,
3777                               path->nodes[1], slot - 1, &left);
3778         if (ret) {
3779                 /* we hit -ENOSPC, but it isn't fatal here */
3780                 if (ret == -ENOSPC)
3781                         ret = 1;
3782                 goto out;
3783         }
3784
3785         free_space = btrfs_leaf_free_space(root, left);
3786         if (free_space < data_size) {
3787                 ret = 1;
3788                 goto out;
3789         }
3790
3791         return __push_leaf_left(trans, root, path, min_data_size,
3792                                empty, left, free_space, right_nritems,
3793                                max_slot);
3794 out:
3795         btrfs_tree_unlock(left);
3796         free_extent_buffer(left);
3797         return ret;
3798 }
3799
3800 /*
3801  * split the path's leaf in two, making sure there is at least data_size
3802  * available for the resulting leaf level of the path.
3803  */
3804 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3805                                     struct btrfs_root *root,
3806                                     struct btrfs_path *path,
3807                                     struct extent_buffer *l,
3808                                     struct extent_buffer *right,
3809                                     int slot, int mid, int nritems)
3810 {
3811         int data_copy_size;
3812         int rt_data_off;
3813         int i;
3814         struct btrfs_disk_key disk_key;
3815         struct btrfs_map_token token;
3816
3817         btrfs_init_map_token(&token);
3818
3819         nritems = nritems - mid;
3820         btrfs_set_header_nritems(right, nritems);
3821         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3822
3823         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3824                            btrfs_item_nr_offset(mid),
3825                            nritems * sizeof(struct btrfs_item));
3826
3827         copy_extent_buffer(right, l,
3828                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3829                      data_copy_size, btrfs_leaf_data(l) +
3830                      leaf_data_end(root, l), data_copy_size);
3831
3832         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3833                       btrfs_item_end_nr(l, mid);
3834
3835         for (i = 0; i < nritems; i++) {
3836                 struct btrfs_item *item = btrfs_item_nr(right, i);
3837                 u32 ioff;
3838
3839                 ioff = btrfs_token_item_offset(right, item, &token);
3840                 btrfs_set_token_item_offset(right, item,
3841                                             ioff + rt_data_off, &token);
3842         }
3843
3844         btrfs_set_header_nritems(l, mid);
3845         btrfs_item_key(right, &disk_key, 0);
3846         insert_ptr(trans, root, path, &disk_key, right->start,
3847                    path->slots[1] + 1, 1);
3848
3849         btrfs_mark_buffer_dirty(right);
3850         btrfs_mark_buffer_dirty(l);
3851         BUG_ON(path->slots[0] != slot);
3852
3853         if (mid <= slot) {
3854                 btrfs_tree_unlock(path->nodes[0]);
3855                 free_extent_buffer(path->nodes[0]);
3856                 path->nodes[0] = right;
3857                 path->slots[0] -= mid;
3858                 path->slots[1] += 1;
3859         } else {
3860                 btrfs_tree_unlock(right);
3861                 free_extent_buffer(right);
3862         }
3863
3864         BUG_ON(path->slots[0] < 0);
3865 }
3866
3867 /*
3868  * double splits happen when we need to insert a big item in the middle
3869  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3870  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3871  *          A                 B                 C
3872  *
3873  * We avoid this by trying to push the items on either side of our target
3874  * into the adjacent leaves.  If all goes well we can avoid the double split
3875  * completely.
3876  */
3877 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3878                                           struct btrfs_root *root,
3879                                           struct btrfs_path *path,
3880                                           int data_size)
3881 {
3882         int ret;
3883         int progress = 0;
3884         int slot;
3885         u32 nritems;
3886
3887         slot = path->slots[0];
3888
3889         /*
3890          * try to push all the items after our slot into the
3891          * right leaf
3892          */
3893         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3894         if (ret < 0)
3895                 return ret;
3896
3897         if (ret == 0)
3898                 progress++;
3899
3900         nritems = btrfs_header_nritems(path->nodes[0]);
3901         /*
3902          * our goal is to get our slot at the start or end of a leaf.  If
3903          * we've done so we're done
3904          */
3905         if (path->slots[0] == 0 || path->slots[0] == nritems)
3906                 return 0;
3907
3908         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3909                 return 0;
3910
3911         /* try to push all the items before our slot into the next leaf */
3912         slot = path->slots[0];
3913         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3914         if (ret < 0)
3915                 return ret;
3916
3917         if (ret == 0)
3918                 progress++;
3919
3920         if (progress)
3921                 return 0;
3922         return 1;
3923 }
3924
3925 /*
3926  * split the path's leaf in two, making sure there is at least data_size
3927  * available for the resulting leaf level of the path.
3928  *
3929  * returns 0 if all went well and < 0 on failure.
3930  */
3931 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3932                                struct btrfs_root *root,
3933                                struct btrfs_key *ins_key,
3934                                struct btrfs_path *path, int data_size,
3935                                int extend)
3936 {
3937         struct btrfs_disk_key disk_key;
3938         struct extent_buffer *l;
3939         u32 nritems;
3940         int mid;
3941         int slot;
3942         struct extent_buffer *right;
3943         int ret = 0;
3944         int wret;
3945         int split;
3946         int num_doubles = 0;
3947         int tried_avoid_double = 0;
3948
3949         l = path->nodes[0];
3950         slot = path->slots[0];
3951         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3952             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3953                 return -EOVERFLOW;
3954
3955         /* first try to make some room by pushing left and right */
3956         if (data_size && path->nodes[1]) {
3957                 wret = push_leaf_right(trans, root, path, data_size,
3958                                        data_size, 0, 0);
3959                 if (wret < 0)
3960                         return wret;
3961                 if (wret) {
3962                         wret = push_leaf_left(trans, root, path, data_size,
3963                                               data_size, 0, (u32)-1);
3964                         if (wret < 0)
3965                                 return wret;
3966                 }
3967                 l = path->nodes[0];
3968
3969                 /* did the pushes work? */
3970                 if (btrfs_leaf_free_space(root, l) >= data_size)
3971                         return 0;
3972         }
3973
3974         if (!path->nodes[1]) {
3975                 ret = insert_new_root(trans, root, path, 1);
3976                 if (ret)
3977                         return ret;
3978         }
3979 again:
3980         split = 1;
3981         l = path->nodes[0];
3982         slot = path->slots[0];
3983         nritems = btrfs_header_nritems(l);
3984         mid = (nritems + 1) / 2;
3985
3986         if (mid <= slot) {
3987                 if (nritems == 1 ||
3988                     leaf_space_used(l, mid, nritems - mid) + data_size >
3989                         BTRFS_LEAF_DATA_SIZE(root)) {
3990                         if (slot >= nritems) {
3991                                 split = 0;
3992                         } else {
3993                                 mid = slot;
3994                                 if (mid != nritems &&
3995                                     leaf_space_used(l, mid, nritems - mid) +
3996                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3997                                         if (data_size && !tried_avoid_double)
3998                                                 goto push_for_double;
3999                                         split = 2;
4000                                 }
4001                         }
4002                 }
4003         } else {
4004                 if (leaf_space_used(l, 0, mid) + data_size >
4005                         BTRFS_LEAF_DATA_SIZE(root)) {
4006                         if (!extend && data_size && slot == 0) {
4007                                 split = 0;
4008                         } else if ((extend || !data_size) && slot == 0) {
4009                                 mid = 1;
4010                         } else {
4011                                 mid = slot;
4012                                 if (mid != nritems &&
4013                                     leaf_space_used(l, mid, nritems - mid) +
4014                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4015                                         if (data_size && !tried_avoid_double)
4016                                                 goto push_for_double;
4017                                         split = 2 ;
4018                                 }
4019                         }
4020                 }
4021         }
4022
4023         if (split == 0)
4024                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4025         else
4026                 btrfs_item_key(l, &disk_key, mid);
4027
4028         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4029                                         root->root_key.objectid,
4030                                         &disk_key, 0, l->start, 0);
4031         if (IS_ERR(right))
4032                 return PTR_ERR(right);
4033
4034         root_add_used(root, root->leafsize);
4035
4036         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4037         btrfs_set_header_bytenr(right, right->start);
4038         btrfs_set_header_generation(right, trans->transid);
4039         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4040         btrfs_set_header_owner(right, root->root_key.objectid);
4041         btrfs_set_header_level(right, 0);
4042         write_extent_buffer(right, root->fs_info->fsid,
4043                             (unsigned long)btrfs_header_fsid(right),
4044                             BTRFS_FSID_SIZE);
4045
4046         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4047                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4048                             BTRFS_UUID_SIZE);
4049
4050         if (split == 0) {
4051                 if (mid <= slot) {
4052                         btrfs_set_header_nritems(right, 0);
4053                         insert_ptr(trans, root, path, &disk_key, right->start,
4054                                    path->slots[1] + 1, 1);
4055                         btrfs_tree_unlock(path->nodes[0]);
4056                         free_extent_buffer(path->nodes[0]);
4057                         path->nodes[0] = right;
4058                         path->slots[0] = 0;
4059                         path->slots[1] += 1;
4060                 } else {
4061                         btrfs_set_header_nritems(right, 0);
4062                         insert_ptr(trans, root, path, &disk_key, right->start,
4063                                           path->slots[1], 1);
4064                         btrfs_tree_unlock(path->nodes[0]);
4065                         free_extent_buffer(path->nodes[0]);
4066                         path->nodes[0] = right;
4067                         path->slots[0] = 0;
4068                         if (path->slots[1] == 0)
4069                                 fixup_low_keys(root, path, &disk_key, 1);
4070                 }
4071                 btrfs_mark_buffer_dirty(right);
4072                 return ret;
4073         }
4074
4075         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4076
4077         if (split == 2) {
4078                 BUG_ON(num_doubles != 0);
4079                 num_doubles++;
4080                 goto again;
4081         }
4082
4083         return 0;
4084
4085 push_for_double:
4086         push_for_double_split(trans, root, path, data_size);
4087         tried_avoid_double = 1;
4088         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4089                 return 0;
4090         goto again;
4091 }
4092
4093 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4094                                          struct btrfs_root *root,
4095                                          struct btrfs_path *path, int ins_len)
4096 {
4097         struct btrfs_key key;
4098         struct extent_buffer *leaf;
4099         struct btrfs_file_extent_item *fi;
4100         u64 extent_len = 0;
4101         u32 item_size;
4102         int ret;
4103
4104         leaf = path->nodes[0];
4105         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4106
4107         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4108                key.type != BTRFS_EXTENT_CSUM_KEY);
4109
4110         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4111                 return 0;
4112
4113         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4114         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4115                 fi = btrfs_item_ptr(leaf, path->slots[0],
4116                                     struct btrfs_file_extent_item);
4117                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4118         }
4119         btrfs_release_path(path);
4120
4121         path->keep_locks = 1;
4122         path->search_for_split = 1;
4123         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4124         path->search_for_split = 0;
4125         if (ret < 0)
4126                 goto err;
4127
4128         ret = -EAGAIN;
4129         leaf = path->nodes[0];
4130         /* if our item isn't there or got smaller, return now */
4131         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4132                 goto err;
4133
4134         /* the leaf has  changed, it now has room.  return now */
4135         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4136                 goto err;
4137
4138         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4139                 fi = btrfs_item_ptr(leaf, path->slots[0],
4140                                     struct btrfs_file_extent_item);
4141                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4142                         goto err;
4143         }
4144
4145         btrfs_set_path_blocking(path);
4146         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4147         if (ret)
4148                 goto err;
4149
4150         path->keep_locks = 0;
4151         btrfs_unlock_up_safe(path, 1);
4152         return 0;
4153 err:
4154         path->keep_locks = 0;
4155         return ret;
4156 }
4157
4158 static noinline int split_item(struct btrfs_trans_handle *trans,
4159                                struct btrfs_root *root,
4160                                struct btrfs_path *path,
4161                                struct btrfs_key *new_key,
4162                                unsigned long split_offset)
4163 {
4164         struct extent_buffer *leaf;
4165         struct btrfs_item *item;
4166         struct btrfs_item *new_item;
4167         int slot;
4168         char *buf;
4169         u32 nritems;
4170         u32 item_size;
4171         u32 orig_offset;
4172         struct btrfs_disk_key disk_key;
4173
4174         leaf = path->nodes[0];
4175         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4176
4177         btrfs_set_path_blocking(path);
4178
4179         item = btrfs_item_nr(leaf, path->slots[0]);
4180         orig_offset = btrfs_item_offset(leaf, item);
4181         item_size = btrfs_item_size(leaf, item);
4182
4183         buf = kmalloc(item_size, GFP_NOFS);
4184         if (!buf)
4185                 return -ENOMEM;
4186
4187         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4188                             path->slots[0]), item_size);
4189
4190         slot = path->slots[0] + 1;
4191         nritems = btrfs_header_nritems(leaf);
4192         if (slot != nritems) {
4193                 /* shift the items */
4194                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4195                                 btrfs_item_nr_offset(slot),
4196                                 (nritems - slot) * sizeof(struct btrfs_item));
4197         }
4198
4199         btrfs_cpu_key_to_disk(&disk_key, new_key);
4200         btrfs_set_item_key(leaf, &disk_key, slot);
4201
4202         new_item = btrfs_item_nr(leaf, slot);
4203
4204         btrfs_set_item_offset(leaf, new_item, orig_offset);
4205         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4206
4207         btrfs_set_item_offset(leaf, item,
4208                               orig_offset + item_size - split_offset);
4209         btrfs_set_item_size(leaf, item, split_offset);
4210
4211         btrfs_set_header_nritems(leaf, nritems + 1);
4212
4213         /* write the data for the start of the original item */
4214         write_extent_buffer(leaf, buf,
4215                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4216                             split_offset);
4217
4218         /* write the data for the new item */
4219         write_extent_buffer(leaf, buf + split_offset,
4220                             btrfs_item_ptr_offset(leaf, slot),
4221                             item_size - split_offset);
4222         btrfs_mark_buffer_dirty(leaf);
4223
4224         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4225         kfree(buf);
4226         return 0;
4227 }
4228
4229 /*
4230  * This function splits a single item into two items,
4231  * giving 'new_key' to the new item and splitting the
4232  * old one at split_offset (from the start of the item).
4233  *
4234  * The path may be released by this operation.  After
4235  * the split, the path is pointing to the old item.  The
4236  * new item is going to be in the same node as the old one.
4237  *
4238  * Note, the item being split must be smaller enough to live alone on
4239  * a tree block with room for one extra struct btrfs_item
4240  *
4241  * This allows us to split the item in place, keeping a lock on the
4242  * leaf the entire time.
4243  */
4244 int btrfs_split_item(struct btrfs_trans_handle *trans,
4245                      struct btrfs_root *root,
4246                      struct btrfs_path *path,
4247                      struct btrfs_key *new_key,
4248                      unsigned long split_offset)
4249 {
4250         int ret;
4251         ret = setup_leaf_for_split(trans, root, path,
4252                                    sizeof(struct btrfs_item));
4253         if (ret)
4254                 return ret;
4255
4256         ret = split_item(trans, root, path, new_key, split_offset);
4257         return ret;
4258 }
4259
4260 /*
4261  * This function duplicate a item, giving 'new_key' to the new item.
4262  * It guarantees both items live in the same tree leaf and the new item
4263  * is contiguous with the original item.
4264  *
4265  * This allows us to split file extent in place, keeping a lock on the
4266  * leaf the entire time.
4267  */
4268 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4269                          struct btrfs_root *root,
4270                          struct btrfs_path *path,
4271                          struct btrfs_key *new_key)
4272 {
4273         struct extent_buffer *leaf;
4274         int ret;
4275         u32 item_size;
4276
4277         leaf = path->nodes[0];
4278         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4279         ret = setup_leaf_for_split(trans, root, path,
4280                                    item_size + sizeof(struct btrfs_item));
4281         if (ret)
4282                 return ret;
4283
4284         path->slots[0]++;
4285         setup_items_for_insert(root, path, new_key, &item_size,
4286                                item_size, item_size +
4287                                sizeof(struct btrfs_item), 1);
4288         leaf = path->nodes[0];
4289         memcpy_extent_buffer(leaf,
4290                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4291                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4292                              item_size);
4293         return 0;
4294 }
4295
4296 /*
4297  * make the item pointed to by the path smaller.  new_size indicates
4298  * how small to make it, and from_end tells us if we just chop bytes
4299  * off the end of the item or if we shift the item to chop bytes off
4300  * the front.
4301  */
4302 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4303                          u32 new_size, int from_end)
4304 {
4305         int slot;
4306         struct extent_buffer *leaf;
4307         struct btrfs_item *item;
4308         u32 nritems;
4309         unsigned int data_end;
4310         unsigned int old_data_start;
4311         unsigned int old_size;
4312         unsigned int size_diff;
4313         int i;
4314         struct btrfs_map_token token;
4315
4316         btrfs_init_map_token(&token);
4317
4318         leaf = path->nodes[0];
4319         slot = path->slots[0];
4320
4321         old_size = btrfs_item_size_nr(leaf, slot);
4322         if (old_size == new_size)
4323                 return;
4324
4325         nritems = btrfs_header_nritems(leaf);
4326         data_end = leaf_data_end(root, leaf);
4327
4328         old_data_start = btrfs_item_offset_nr(leaf, slot);
4329
4330         size_diff = old_size - new_size;
4331
4332         BUG_ON(slot < 0);
4333         BUG_ON(slot >= nritems);
4334
4335         /*
4336          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4337          */
4338         /* first correct the data pointers */
4339         for (i = slot; i < nritems; i++) {
4340                 u32 ioff;
4341                 item = btrfs_item_nr(leaf, i);
4342
4343                 ioff = btrfs_token_item_offset(leaf, item, &token);
4344                 btrfs_set_token_item_offset(leaf, item,
4345                                             ioff + size_diff, &token);
4346         }
4347
4348         /* shift the data */
4349         if (from_end) {
4350                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4351                               data_end + size_diff, btrfs_leaf_data(leaf) +
4352                               data_end, old_data_start + new_size - data_end);
4353         } else {
4354                 struct btrfs_disk_key disk_key;
4355                 u64 offset;
4356
4357                 btrfs_item_key(leaf, &disk_key, slot);
4358
4359                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4360                         unsigned long ptr;
4361                         struct btrfs_file_extent_item *fi;
4362
4363                         fi = btrfs_item_ptr(leaf, slot,
4364                                             struct btrfs_file_extent_item);
4365                         fi = (struct btrfs_file_extent_item *)(
4366                              (unsigned long)fi - size_diff);
4367
4368                         if (btrfs_file_extent_type(leaf, fi) ==
4369                             BTRFS_FILE_EXTENT_INLINE) {
4370                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4371                                 memmove_extent_buffer(leaf, ptr,
4372                                       (unsigned long)fi,
4373                                       offsetof(struct btrfs_file_extent_item,
4374                                                  disk_bytenr));
4375                         }
4376                 }
4377
4378                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4379                               data_end + size_diff, btrfs_leaf_data(leaf) +
4380                               data_end, old_data_start - data_end);
4381
4382                 offset = btrfs_disk_key_offset(&disk_key);
4383                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4384                 btrfs_set_item_key(leaf, &disk_key, slot);
4385                 if (slot == 0)
4386                         fixup_low_keys(root, path, &disk_key, 1);
4387         }
4388
4389         item = btrfs_item_nr(leaf, slot);
4390         btrfs_set_item_size(leaf, item, new_size);
4391         btrfs_mark_buffer_dirty(leaf);
4392
4393         if (btrfs_leaf_free_space(root, leaf) < 0) {
4394                 btrfs_print_leaf(root, leaf);
4395                 BUG();
4396         }
4397 }
4398
4399 /*
4400  * make the item pointed to by the path bigger, data_size is the added size.
4401  */
4402 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4403                        u32 data_size)
4404 {
4405         int slot;
4406         struct extent_buffer *leaf;
4407         struct btrfs_item *item;
4408         u32 nritems;
4409         unsigned int data_end;
4410         unsigned int old_data;
4411         unsigned int old_size;
4412         int i;
4413         struct btrfs_map_token token;
4414
4415         btrfs_init_map_token(&token);
4416
4417         leaf = path->nodes[0];
4418
4419         nritems = btrfs_header_nritems(leaf);
4420         data_end = leaf_data_end(root, leaf);
4421
4422         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4423                 btrfs_print_leaf(root, leaf);
4424                 BUG();
4425         }
4426         slot = path->slots[0];
4427         old_data = btrfs_item_end_nr(leaf, slot);
4428
4429         BUG_ON(slot < 0);
4430         if (slot >= nritems) {
4431                 btrfs_print_leaf(root, leaf);
4432                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4433                        slot, nritems);
4434                 BUG_ON(1);
4435         }
4436
4437         /*
4438          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4439          */
4440         /* first correct the data pointers */
4441         for (i = slot; i < nritems; i++) {
4442                 u32 ioff;
4443                 item = btrfs_item_nr(leaf, i);
4444
4445                 ioff = btrfs_token_item_offset(leaf, item, &token);
4446                 btrfs_set_token_item_offset(leaf, item,
4447                                             ioff - data_size, &token);
4448         }
4449
4450         /* shift the data */
4451         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4452                       data_end - data_size, btrfs_leaf_data(leaf) +
4453                       data_end, old_data - data_end);
4454
4455         data_end = old_data;
4456         old_size = btrfs_item_size_nr(leaf, slot);
4457         item = btrfs_item_nr(leaf, slot);
4458         btrfs_set_item_size(leaf, item, old_size + data_size);
4459         btrfs_mark_buffer_dirty(leaf);
4460
4461         if (btrfs_leaf_free_space(root, leaf) < 0) {
4462                 btrfs_print_leaf(root, leaf);
4463                 BUG();
4464         }
4465 }
4466
4467 /*
4468  * this is a helper for btrfs_insert_empty_items, the main goal here is
4469  * to save stack depth by doing the bulk of the work in a function
4470  * that doesn't call btrfs_search_slot
4471  */
4472 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4473                             struct btrfs_key *cpu_key, u32 *data_size,
4474                             u32 total_data, u32 total_size, int nr)
4475 {
4476         struct btrfs_item *item;
4477         int i;
4478         u32 nritems;
4479         unsigned int data_end;
4480         struct btrfs_disk_key disk_key;
4481         struct extent_buffer *leaf;
4482         int slot;
4483         struct btrfs_map_token token;
4484
4485         btrfs_init_map_token(&token);
4486
4487         leaf = path->nodes[0];
4488         slot = path->slots[0];
4489
4490         nritems = btrfs_header_nritems(leaf);
4491         data_end = leaf_data_end(root, leaf);
4492
4493         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4494                 btrfs_print_leaf(root, leaf);
4495                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4496                        total_size, btrfs_leaf_free_space(root, leaf));
4497                 BUG();
4498         }
4499
4500         if (slot != nritems) {
4501                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4502
4503                 if (old_data < data_end) {
4504                         btrfs_print_leaf(root, leaf);
4505                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4506                                slot, old_data, data_end);
4507                         BUG_ON(1);
4508                 }
4509                 /*
4510                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4511                  */
4512                 /* first correct the data pointers */
4513                 for (i = slot; i < nritems; i++) {
4514                         u32 ioff;
4515
4516                         item = btrfs_item_nr(leaf, i);
4517                         ioff = btrfs_token_item_offset(leaf, item, &token);
4518                         btrfs_set_token_item_offset(leaf, item,
4519                                                     ioff - total_data, &token);
4520                 }
4521                 /* shift the items */
4522                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4523                               btrfs_item_nr_offset(slot),
4524                               (nritems - slot) * sizeof(struct btrfs_item));
4525
4526                 /* shift the data */
4527                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4528                               data_end - total_data, btrfs_leaf_data(leaf) +
4529                               data_end, old_data - data_end);
4530                 data_end = old_data;
4531         }
4532
4533         /* setup the item for the new data */
4534         for (i = 0; i < nr; i++) {
4535                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4536                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4537                 item = btrfs_item_nr(leaf, slot + i);
4538                 btrfs_set_token_item_offset(leaf, item,
4539                                             data_end - data_size[i], &token);
4540                 data_end -= data_size[i];
4541                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4542         }
4543
4544         btrfs_set_header_nritems(leaf, nritems + nr);
4545
4546         if (slot == 0) {
4547                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4548                 fixup_low_keys(root, path, &disk_key, 1);
4549         }
4550         btrfs_unlock_up_safe(path, 1);
4551         btrfs_mark_buffer_dirty(leaf);
4552
4553         if (btrfs_leaf_free_space(root, leaf) < 0) {
4554                 btrfs_print_leaf(root, leaf);
4555                 BUG();
4556         }
4557 }
4558
4559 /*
4560  * Given a key and some data, insert items into the tree.
4561  * This does all the path init required, making room in the tree if needed.
4562  */
4563 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4564                             struct btrfs_root *root,
4565                             struct btrfs_path *path,
4566                             struct btrfs_key *cpu_key, u32 *data_size,
4567                             int nr)
4568 {
4569         int ret = 0;
4570         int slot;
4571         int i;
4572         u32 total_size = 0;
4573         u32 total_data = 0;
4574
4575         for (i = 0; i < nr; i++)
4576                 total_data += data_size[i];
4577
4578         total_size = total_data + (nr * sizeof(struct btrfs_item));
4579         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4580         if (ret == 0)
4581                 return -EEXIST;
4582         if (ret < 0)
4583                 return ret;
4584
4585         slot = path->slots[0];
4586         BUG_ON(slot < 0);
4587
4588         setup_items_for_insert(root, path, cpu_key, data_size,
4589                                total_data, total_size, nr);
4590         return 0;
4591 }
4592
4593 /*
4594  * Given a key and some data, insert an item into the tree.
4595  * This does all the path init required, making room in the tree if needed.
4596  */
4597 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4598                       *root, struct btrfs_key *cpu_key, void *data, u32
4599                       data_size)
4600 {
4601         int ret = 0;
4602         struct btrfs_path *path;
4603         struct extent_buffer *leaf;
4604         unsigned long ptr;
4605
4606         path = btrfs_alloc_path();
4607         if (!path)
4608                 return -ENOMEM;
4609         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4610         if (!ret) {
4611                 leaf = path->nodes[0];
4612                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4613                 write_extent_buffer(leaf, data, ptr, data_size);
4614                 btrfs_mark_buffer_dirty(leaf);
4615         }
4616         btrfs_free_path(path);
4617         return ret;
4618 }
4619
4620 /*
4621  * delete the pointer from a given node.
4622  *
4623  * the tree should have been previously balanced so the deletion does not
4624  * empty a node.
4625  */
4626 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4627                     int level, int slot)
4628 {
4629         struct extent_buffer *parent = path->nodes[level];
4630         u32 nritems;
4631         int ret;
4632
4633         nritems = btrfs_header_nritems(parent);
4634         if (slot != nritems - 1) {
4635                 if (level)
4636                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4637                                              slot + 1, nritems - slot - 1);
4638                 memmove_extent_buffer(parent,
4639                               btrfs_node_key_ptr_offset(slot),
4640                               btrfs_node_key_ptr_offset(slot + 1),
4641                               sizeof(struct btrfs_key_ptr) *
4642                               (nritems - slot - 1));
4643         } else if (level) {
4644                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4645                                               MOD_LOG_KEY_REMOVE);
4646                 BUG_ON(ret < 0);
4647         }
4648
4649         nritems--;
4650         btrfs_set_header_nritems(parent, nritems);
4651         if (nritems == 0 && parent == root->node) {
4652                 BUG_ON(btrfs_header_level(root->node) != 1);
4653                 /* just turn the root into a leaf and break */
4654                 btrfs_set_header_level(root->node, 0);
4655         } else if (slot == 0) {
4656                 struct btrfs_disk_key disk_key;
4657
4658                 btrfs_node_key(parent, &disk_key, 0);
4659                 fixup_low_keys(root, path, &disk_key, level + 1);
4660         }
4661         btrfs_mark_buffer_dirty(parent);
4662 }
4663
4664 /*
4665  * a helper function to delete the leaf pointed to by path->slots[1] and
4666  * path->nodes[1].
4667  *
4668  * This deletes the pointer in path->nodes[1] and frees the leaf
4669  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4670  *
4671  * The path must have already been setup for deleting the leaf, including
4672  * all the proper balancing.  path->nodes[1] must be locked.
4673  */
4674 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4675                                     struct btrfs_root *root,
4676                                     struct btrfs_path *path,
4677                                     struct extent_buffer *leaf)
4678 {
4679         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4680         del_ptr(root, path, 1, path->slots[1]);
4681
4682         /*
4683          * btrfs_free_extent is expensive, we want to make sure we
4684          * aren't holding any locks when we call it
4685          */
4686         btrfs_unlock_up_safe(path, 0);
4687
4688         root_sub_used(root, leaf->len);
4689
4690         extent_buffer_get(leaf);
4691         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4692         free_extent_buffer_stale(leaf);
4693 }
4694 /*
4695  * delete the item at the leaf level in path.  If that empties
4696  * the leaf, remove it from the tree
4697  */
4698 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4699                     struct btrfs_path *path, int slot, int nr)
4700 {
4701         struct extent_buffer *leaf;
4702         struct btrfs_item *item;
4703         int last_off;
4704         int dsize = 0;
4705         int ret = 0;
4706         int wret;
4707         int i;
4708         u32 nritems;
4709         struct btrfs_map_token token;
4710
4711         btrfs_init_map_token(&token);
4712
4713         leaf = path->nodes[0];
4714         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4715
4716         for (i = 0; i < nr; i++)
4717                 dsize += btrfs_item_size_nr(leaf, slot + i);
4718
4719         nritems = btrfs_header_nritems(leaf);
4720
4721         if (slot + nr != nritems) {
4722                 int data_end = leaf_data_end(root, leaf);
4723
4724                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4725                               data_end + dsize,
4726                               btrfs_leaf_data(leaf) + data_end,
4727                               last_off - data_end);
4728
4729                 for (i = slot + nr; i < nritems; i++) {
4730                         u32 ioff;
4731
4732                         item = btrfs_item_nr(leaf, i);
4733                         ioff = btrfs_token_item_offset(leaf, item, &token);
4734                         btrfs_set_token_item_offset(leaf, item,
4735                                                     ioff + dsize, &token);
4736                 }
4737
4738                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4739                               btrfs_item_nr_offset(slot + nr),
4740                               sizeof(struct btrfs_item) *
4741                               (nritems - slot - nr));
4742         }
4743         btrfs_set_header_nritems(leaf, nritems - nr);
4744         nritems -= nr;
4745
4746         /* delete the leaf if we've emptied it */
4747         if (nritems == 0) {
4748                 if (leaf == root->node) {
4749                         btrfs_set_header_level(leaf, 0);
4750                 } else {
4751                         btrfs_set_path_blocking(path);
4752                         clean_tree_block(trans, root, leaf);
4753                         btrfs_del_leaf(trans, root, path, leaf);
4754                 }
4755         } else {
4756                 int used = leaf_space_used(leaf, 0, nritems);
4757                 if (slot == 0) {
4758                         struct btrfs_disk_key disk_key;
4759
4760                         btrfs_item_key(leaf, &disk_key, 0);
4761                         fixup_low_keys(root, path, &disk_key, 1);
4762                 }
4763
4764                 /* delete the leaf if it is mostly empty */
4765                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4766                         /* push_leaf_left fixes the path.
4767                          * make sure the path still points to our leaf
4768                          * for possible call to del_ptr below
4769                          */
4770                         slot = path->slots[1];
4771                         extent_buffer_get(leaf);
4772
4773                         btrfs_set_path_blocking(path);
4774                         wret = push_leaf_left(trans, root, path, 1, 1,
4775                                               1, (u32)-1);
4776                         if (wret < 0 && wret != -ENOSPC)
4777                                 ret = wret;
4778
4779                         if (path->nodes[0] == leaf &&
4780                             btrfs_header_nritems(leaf)) {
4781                                 wret = push_leaf_right(trans, root, path, 1,
4782                                                        1, 1, 0);
4783                                 if (wret < 0 && wret != -ENOSPC)
4784                                         ret = wret;
4785                         }
4786
4787                         if (btrfs_header_nritems(leaf) == 0) {
4788                                 path->slots[1] = slot;
4789                                 btrfs_del_leaf(trans, root, path, leaf);
4790                                 free_extent_buffer(leaf);
4791                                 ret = 0;
4792                         } else {
4793                                 /* if we're still in the path, make sure
4794                                  * we're dirty.  Otherwise, one of the
4795                                  * push_leaf functions must have already
4796                                  * dirtied this buffer
4797                                  */
4798                                 if (path->nodes[0] == leaf)
4799                                         btrfs_mark_buffer_dirty(leaf);
4800                                 free_extent_buffer(leaf);
4801                         }
4802                 } else {
4803                         btrfs_mark_buffer_dirty(leaf);
4804                 }
4805         }
4806         return ret;
4807 }
4808
4809 /*
4810  * search the tree again to find a leaf with lesser keys
4811  * returns 0 if it found something or 1 if there are no lesser leaves.
4812  * returns < 0 on io errors.
4813  *
4814  * This may release the path, and so you may lose any locks held at the
4815  * time you call it.
4816  */
4817 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4818 {
4819         struct btrfs_key key;
4820         struct btrfs_disk_key found_key;
4821         int ret;
4822
4823         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4824
4825         if (key.offset > 0)
4826                 key.offset--;
4827         else if (key.type > 0)
4828                 key.type--;
4829         else if (key.objectid > 0)
4830                 key.objectid--;
4831         else
4832                 return 1;
4833
4834         btrfs_release_path(path);
4835         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4836         if (ret < 0)
4837                 return ret;
4838         btrfs_item_key(path->nodes[0], &found_key, 0);
4839         ret = comp_keys(&found_key, &key);
4840         if (ret < 0)
4841                 return 0;
4842         return 1;
4843 }
4844
4845 /*
4846  * A helper function to walk down the tree starting at min_key, and looking
4847  * for nodes or leaves that are have a minimum transaction id.
4848  * This is used by the btree defrag code, and tree logging
4849  *
4850  * This does not cow, but it does stuff the starting key it finds back
4851  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4852  * key and get a writable path.
4853  *
4854  * This does lock as it descends, and path->keep_locks should be set
4855  * to 1 by the caller.
4856  *
4857  * This honors path->lowest_level to prevent descent past a given level
4858  * of the tree.
4859  *
4860  * min_trans indicates the oldest transaction that you are interested
4861  * in walking through.  Any nodes or leaves older than min_trans are
4862  * skipped over (without reading them).
4863  *
4864  * returns zero if something useful was found, < 0 on error and 1 if there
4865  * was nothing in the tree that matched the search criteria.
4866  */
4867 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4868                          struct btrfs_key *max_key,
4869                          struct btrfs_path *path,
4870                          u64 min_trans)
4871 {
4872         struct extent_buffer *cur;
4873         struct btrfs_key found_key;
4874         int slot;
4875         int sret;
4876         u32 nritems;
4877         int level;
4878         int ret = 1;
4879
4880         WARN_ON(!path->keep_locks);
4881 again:
4882         cur = btrfs_read_lock_root_node(root);
4883         level = btrfs_header_level(cur);
4884         WARN_ON(path->nodes[level]);
4885         path->nodes[level] = cur;
4886         path->locks[level] = BTRFS_READ_LOCK;
4887
4888         if (btrfs_header_generation(cur) < min_trans) {
4889                 ret = 1;
4890                 goto out;
4891         }
4892         while (1) {
4893                 nritems = btrfs_header_nritems(cur);
4894                 level = btrfs_header_level(cur);
4895                 sret = bin_search(cur, min_key, level, &slot);
4896
4897                 /* at the lowest level, we're done, setup the path and exit */
4898                 if (level == path->lowest_level) {
4899                         if (slot >= nritems)
4900                                 goto find_next_key;
4901                         ret = 0;
4902                         path->slots[level] = slot;
4903                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4904                         goto out;
4905                 }
4906                 if (sret && slot > 0)
4907                         slot--;
4908                 /*
4909                  * check this node pointer against the min_trans parameters.
4910                  * If it is too old, old, skip to the next one.
4911                  */
4912                 while (slot < nritems) {
4913                         u64 blockptr;
4914                         u64 gen;
4915
4916                         blockptr = btrfs_node_blockptr(cur, slot);
4917                         gen = btrfs_node_ptr_generation(cur, slot);
4918                         if (gen < min_trans) {
4919                                 slot++;
4920                                 continue;
4921                         }
4922                         break;
4923                 }
4924 find_next_key:
4925                 /*
4926                  * we didn't find a candidate key in this node, walk forward
4927                  * and find another one
4928                  */
4929                 if (slot >= nritems) {
4930                         path->slots[level] = slot;
4931                         btrfs_set_path_blocking(path);
4932                         sret = btrfs_find_next_key(root, path, min_key, level,
4933                                                   min_trans);
4934                         if (sret == 0) {
4935                                 btrfs_release_path(path);
4936                                 goto again;
4937                         } else {
4938                                 goto out;
4939                         }
4940                 }
4941                 /* save our key for returning back */
4942                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4943                 path->slots[level] = slot;
4944                 if (level == path->lowest_level) {
4945                         ret = 0;
4946                         unlock_up(path, level, 1, 0, NULL);
4947                         goto out;
4948                 }
4949                 btrfs_set_path_blocking(path);
4950                 cur = read_node_slot(root, cur, slot);
4951                 BUG_ON(!cur); /* -ENOMEM */
4952
4953                 btrfs_tree_read_lock(cur);
4954
4955                 path->locks[level - 1] = BTRFS_READ_LOCK;
4956                 path->nodes[level - 1] = cur;
4957                 unlock_up(path, level, 1, 0, NULL);
4958                 btrfs_clear_path_blocking(path, NULL, 0);
4959         }
4960 out:
4961         if (ret == 0)
4962                 memcpy(min_key, &found_key, sizeof(found_key));
4963         btrfs_set_path_blocking(path);
4964         return ret;
4965 }
4966
4967 static void tree_move_down(struct btrfs_root *root,
4968                            struct btrfs_path *path,
4969                            int *level, int root_level)
4970 {
4971         BUG_ON(*level == 0);
4972         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4973                                         path->slots[*level]);
4974         path->slots[*level - 1] = 0;
4975         (*level)--;
4976 }
4977
4978 static int tree_move_next_or_upnext(struct btrfs_root *root,
4979                                     struct btrfs_path *path,
4980                                     int *level, int root_level)
4981 {
4982         int ret = 0;
4983         int nritems;
4984         nritems = btrfs_header_nritems(path->nodes[*level]);
4985
4986         path->slots[*level]++;
4987
4988         while (path->slots[*level] >= nritems) {
4989                 if (*level == root_level)
4990                         return -1;
4991
4992                 /* move upnext */
4993                 path->slots[*level] = 0;
4994                 free_extent_buffer(path->nodes[*level]);
4995                 path->nodes[*level] = NULL;
4996                 (*level)++;
4997                 path->slots[*level]++;
4998
4999                 nritems = btrfs_header_nritems(path->nodes[*level]);
5000                 ret = 1;
5001         }
5002         return ret;
5003 }
5004
5005 /*
5006  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5007  * or down.
5008  */
5009 static int tree_advance(struct btrfs_root *root,
5010                         struct btrfs_path *path,
5011                         int *level, int root_level,
5012                         int allow_down,
5013                         struct btrfs_key *key)
5014 {
5015         int ret;
5016
5017         if (*level == 0 || !allow_down) {
5018                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5019         } else {
5020                 tree_move_down(root, path, level, root_level);
5021                 ret = 0;
5022         }
5023         if (ret >= 0) {
5024                 if (*level == 0)
5025                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5026                                         path->slots[*level]);
5027                 else
5028                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5029                                         path->slots[*level]);
5030         }
5031         return ret;
5032 }
5033
5034 static int tree_compare_item(struct btrfs_root *left_root,
5035                              struct btrfs_path *left_path,
5036                              struct btrfs_path *right_path,
5037                              char *tmp_buf)
5038 {
5039         int cmp;
5040         int len1, len2;
5041         unsigned long off1, off2;
5042
5043         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5044         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5045         if (len1 != len2)
5046                 return 1;
5047
5048         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5049         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5050                                 right_path->slots[0]);
5051
5052         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5053
5054         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5055         if (cmp)
5056                 return 1;
5057         return 0;
5058 }
5059
5060 #define ADVANCE 1
5061 #define ADVANCE_ONLY_NEXT -1
5062
5063 /*
5064  * This function compares two trees and calls the provided callback for
5065  * every changed/new/deleted item it finds.
5066  * If shared tree blocks are encountered, whole subtrees are skipped, making
5067  * the compare pretty fast on snapshotted subvolumes.
5068  *
5069  * This currently works on commit roots only. As commit roots are read only,
5070  * we don't do any locking. The commit roots are protected with transactions.
5071  * Transactions are ended and rejoined when a commit is tried in between.
5072  *
5073  * This function checks for modifications done to the trees while comparing.
5074  * If it detects a change, it aborts immediately.
5075  */
5076 int btrfs_compare_trees(struct btrfs_root *left_root,
5077                         struct btrfs_root *right_root,
5078                         btrfs_changed_cb_t changed_cb, void *ctx)
5079 {
5080         int ret;
5081         int cmp;
5082         struct btrfs_trans_handle *trans = NULL;
5083         struct btrfs_path *left_path = NULL;
5084         struct btrfs_path *right_path = NULL;
5085         struct btrfs_key left_key;
5086         struct btrfs_key right_key;
5087         char *tmp_buf = NULL;
5088         int left_root_level;
5089         int right_root_level;
5090         int left_level;
5091         int right_level;
5092         int left_end_reached;
5093         int right_end_reached;
5094         int advance_left;
5095         int advance_right;
5096         u64 left_blockptr;
5097         u64 right_blockptr;
5098         u64 left_start_ctransid;
5099         u64 right_start_ctransid;
5100         u64 ctransid;
5101
5102         left_path = btrfs_alloc_path();
5103         if (!left_path) {
5104                 ret = -ENOMEM;
5105                 goto out;
5106         }
5107         right_path = btrfs_alloc_path();
5108         if (!right_path) {
5109                 ret = -ENOMEM;
5110                 goto out;
5111         }
5112
5113         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5114         if (!tmp_buf) {
5115                 ret = -ENOMEM;
5116                 goto out;
5117         }
5118
5119         left_path->search_commit_root = 1;
5120         left_path->skip_locking = 1;
5121         right_path->search_commit_root = 1;
5122         right_path->skip_locking = 1;
5123
5124         spin_lock(&left_root->root_item_lock);
5125         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5126         spin_unlock(&left_root->root_item_lock);
5127
5128         spin_lock(&right_root->root_item_lock);
5129         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5130         spin_unlock(&right_root->root_item_lock);
5131
5132         trans = btrfs_join_transaction(left_root);
5133         if (IS_ERR(trans)) {
5134                 ret = PTR_ERR(trans);
5135                 trans = NULL;
5136                 goto out;
5137         }
5138
5139         /*
5140          * Strategy: Go to the first items of both trees. Then do
5141          *
5142          * If both trees are at level 0
5143          *   Compare keys of current items
5144          *     If left < right treat left item as new, advance left tree
5145          *       and repeat
5146          *     If left > right treat right item as deleted, advance right tree
5147          *       and repeat
5148          *     If left == right do deep compare of items, treat as changed if
5149          *       needed, advance both trees and repeat
5150          * If both trees are at the same level but not at level 0
5151          *   Compare keys of current nodes/leafs
5152          *     If left < right advance left tree and repeat
5153          *     If left > right advance right tree and repeat
5154          *     If left == right compare blockptrs of the next nodes/leafs
5155          *       If they match advance both trees but stay at the same level
5156          *         and repeat
5157          *       If they don't match advance both trees while allowing to go
5158          *         deeper and repeat
5159          * If tree levels are different
5160          *   Advance the tree that needs it and repeat
5161          *
5162          * Advancing a tree means:
5163          *   If we are at level 0, try to go to the next slot. If that's not
5164          *   possible, go one level up and repeat. Stop when we found a level
5165          *   where we could go to the next slot. We may at this point be on a
5166          *   node or a leaf.
5167          *
5168          *   If we are not at level 0 and not on shared tree blocks, go one
5169          *   level deeper.
5170          *
5171          *   If we are not at level 0 and on shared tree blocks, go one slot to
5172          *   the right if possible or go up and right.
5173          */
5174
5175         left_level = btrfs_header_level(left_root->commit_root);
5176         left_root_level = left_level;
5177         left_path->nodes[left_level] = left_root->commit_root;
5178         extent_buffer_get(left_path->nodes[left_level]);
5179
5180         right_level = btrfs_header_level(right_root->commit_root);
5181         right_root_level = right_level;
5182         right_path->nodes[right_level] = right_root->commit_root;
5183         extent_buffer_get(right_path->nodes[right_level]);
5184
5185         if (left_level == 0)
5186                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5187                                 &left_key, left_path->slots[left_level]);
5188         else
5189                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5190                                 &left_key, left_path->slots[left_level]);
5191         if (right_level == 0)
5192                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5193                                 &right_key, right_path->slots[right_level]);
5194         else
5195                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5196                                 &right_key, right_path->slots[right_level]);
5197
5198         left_end_reached = right_end_reached = 0;
5199         advance_left = advance_right = 0;
5200
5201         while (1) {
5202                 /*
5203                  * We need to make sure the transaction does not get committed
5204                  * while we do anything on commit roots. This means, we need to
5205                  * join and leave transactions for every item that we process.
5206                  */
5207                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5208                         btrfs_release_path(left_path);
5209                         btrfs_release_path(right_path);
5210
5211                         ret = btrfs_end_transaction(trans, left_root);
5212                         trans = NULL;
5213                         if (ret < 0)
5214                                 goto out;
5215                 }
5216                 /* now rejoin the transaction */
5217                 if (!trans) {
5218                         trans = btrfs_join_transaction(left_root);
5219                         if (IS_ERR(trans)) {
5220                                 ret = PTR_ERR(trans);
5221                                 trans = NULL;
5222                                 goto out;
5223                         }
5224
5225                         spin_lock(&left_root->root_item_lock);
5226                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5227                         spin_unlock(&left_root->root_item_lock);
5228                         if (ctransid != left_start_ctransid)
5229                                 left_start_ctransid = 0;
5230
5231                         spin_lock(&right_root->root_item_lock);
5232                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5233                         spin_unlock(&right_root->root_item_lock);
5234                         if (ctransid != right_start_ctransid)
5235                                 right_start_ctransid = 0;
5236
5237                         if (!left_start_ctransid || !right_start_ctransid) {
5238                                 WARN(1, KERN_WARNING
5239                                         "btrfs: btrfs_compare_tree detected "
5240                                         "a change in one of the trees while "
5241                                         "iterating. This is probably a "
5242                                         "bug.\n");
5243                                 ret = -EIO;
5244                                 goto out;
5245                         }
5246
5247                         /*
5248                          * the commit root may have changed, so start again
5249                          * where we stopped
5250                          */
5251                         left_path->lowest_level = left_level;
5252                         right_path->lowest_level = right_level;
5253                         ret = btrfs_search_slot(NULL, left_root,
5254                                         &left_key, left_path, 0, 0);
5255                         if (ret < 0)
5256                                 goto out;
5257                         ret = btrfs_search_slot(NULL, right_root,
5258                                         &right_key, right_path, 0, 0);
5259                         if (ret < 0)
5260                                 goto out;
5261                 }
5262
5263                 if (advance_left && !left_end_reached) {
5264                         ret = tree_advance(left_root, left_path, &left_level,
5265                                         left_root_level,
5266                                         advance_left != ADVANCE_ONLY_NEXT,
5267                                         &left_key);
5268                         if (ret < 0)
5269                                 left_end_reached = ADVANCE;
5270                         advance_left = 0;
5271                 }
5272                 if (advance_right && !right_end_reached) {
5273                         ret = tree_advance(right_root, right_path, &right_level,
5274                                         right_root_level,
5275                                         advance_right != ADVANCE_ONLY_NEXT,
5276                                         &right_key);
5277                         if (ret < 0)
5278                                 right_end_reached = ADVANCE;
5279                         advance_right = 0;
5280                 }
5281
5282                 if (left_end_reached && right_end_reached) {
5283                         ret = 0;
5284                         goto out;
5285                 } else if (left_end_reached) {
5286                         if (right_level == 0) {
5287                                 ret = changed_cb(left_root, right_root,
5288                                                 left_path, right_path,
5289                                                 &right_key,
5290                                                 BTRFS_COMPARE_TREE_DELETED,
5291                                                 ctx);
5292                                 if (ret < 0)
5293                                         goto out;
5294                         }
5295                         advance_right = ADVANCE;
5296                         continue;
5297                 } else if (right_end_reached) {
5298                         if (left_level == 0) {
5299                                 ret = changed_cb(left_root, right_root,
5300                                                 left_path, right_path,
5301                                                 &left_key,
5302                                                 BTRFS_COMPARE_TREE_NEW,
5303                                                 ctx);
5304                                 if (ret < 0)
5305                                         goto out;
5306                         }
5307                         advance_left = ADVANCE;
5308                         continue;
5309                 }
5310
5311                 if (left_level == 0 && right_level == 0) {
5312                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5313                         if (cmp < 0) {
5314                                 ret = changed_cb(left_root, right_root,
5315                                                 left_path, right_path,
5316                                                 &left_key,
5317                                                 BTRFS_COMPARE_TREE_NEW,
5318                                                 ctx);
5319                                 if (ret < 0)
5320                                         goto out;
5321                                 advance_left = ADVANCE;
5322                         } else if (cmp > 0) {
5323                                 ret = changed_cb(left_root, right_root,
5324                                                 left_path, right_path,
5325                                                 &right_key,
5326                                                 BTRFS_COMPARE_TREE_DELETED,
5327                                                 ctx);
5328                                 if (ret < 0)
5329                                         goto out;
5330                                 advance_right = ADVANCE;
5331                         } else {
5332                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333                                 ret = tree_compare_item(left_root, left_path,
5334                                                 right_path, tmp_buf);
5335                                 if (ret) {
5336                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337                                         ret = changed_cb(left_root, right_root,
5338                                                 left_path, right_path,
5339                                                 &left_key,
5340                                                 BTRFS_COMPARE_TREE_CHANGED,
5341                                                 ctx);
5342                                         if (ret < 0)
5343                                                 goto out;
5344                                 }
5345                                 advance_left = ADVANCE;
5346                                 advance_right = ADVANCE;
5347                         }
5348                 } else if (left_level == right_level) {
5349                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5350                         if (cmp < 0) {
5351                                 advance_left = ADVANCE;
5352                         } else if (cmp > 0) {
5353                                 advance_right = ADVANCE;
5354                         } else {
5355                                 left_blockptr = btrfs_node_blockptr(
5356                                                 left_path->nodes[left_level],
5357                                                 left_path->slots[left_level]);
5358                                 right_blockptr = btrfs_node_blockptr(
5359                                                 right_path->nodes[right_level],
5360                                                 right_path->slots[right_level]);
5361                                 if (left_blockptr == right_blockptr) {
5362                                         /*
5363                                          * As we're on a shared block, don't
5364                                          * allow to go deeper.
5365                                          */
5366                                         advance_left = ADVANCE_ONLY_NEXT;
5367                                         advance_right = ADVANCE_ONLY_NEXT;
5368                                 } else {
5369                                         advance_left = ADVANCE;
5370                                         advance_right = ADVANCE;
5371                                 }
5372                         }
5373                 } else if (left_level < right_level) {
5374                         advance_right = ADVANCE;
5375                 } else {
5376                         advance_left = ADVANCE;
5377                 }
5378         }
5379
5380 out:
5381         btrfs_free_path(left_path);
5382         btrfs_free_path(right_path);
5383         kfree(tmp_buf);
5384
5385         if (trans) {
5386                 if (!ret)
5387                         ret = btrfs_end_transaction(trans, left_root);
5388                 else
5389                         btrfs_end_transaction(trans, left_root);
5390         }
5391
5392         return ret;
5393 }
5394
5395 /*
5396  * this is similar to btrfs_next_leaf, but does not try to preserve
5397  * and fixup the path.  It looks for and returns the next key in the
5398  * tree based on the current path and the min_trans parameters.
5399  *
5400  * 0 is returned if another key is found, < 0 if there are any errors
5401  * and 1 is returned if there are no higher keys in the tree
5402  *
5403  * path->keep_locks should be set to 1 on the search made before
5404  * calling this function.
5405  */
5406 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5407                         struct btrfs_key *key, int level, u64 min_trans)
5408 {
5409         int slot;
5410         struct extent_buffer *c;
5411
5412         WARN_ON(!path->keep_locks);
5413         while (level < BTRFS_MAX_LEVEL) {
5414                 if (!path->nodes[level])
5415                         return 1;
5416
5417                 slot = path->slots[level] + 1;
5418                 c = path->nodes[level];
5419 next:
5420                 if (slot >= btrfs_header_nritems(c)) {
5421                         int ret;
5422                         int orig_lowest;
5423                         struct btrfs_key cur_key;
5424                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5425                             !path->nodes[level + 1])
5426                                 return 1;
5427
5428                         if (path->locks[level + 1]) {
5429                                 level++;
5430                                 continue;
5431                         }
5432
5433                         slot = btrfs_header_nritems(c) - 1;
5434                         if (level == 0)
5435                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5436                         else
5437                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5438
5439                         orig_lowest = path->lowest_level;
5440                         btrfs_release_path(path);
5441                         path->lowest_level = level;
5442                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5443                                                 0, 0);
5444                         path->lowest_level = orig_lowest;
5445                         if (ret < 0)
5446                                 return ret;
5447
5448                         c = path->nodes[level];
5449                         slot = path->slots[level];
5450                         if (ret == 0)
5451                                 slot++;
5452                         goto next;
5453                 }
5454
5455                 if (level == 0)
5456                         btrfs_item_key_to_cpu(c, key, slot);
5457                 else {
5458                         u64 gen = btrfs_node_ptr_generation(c, slot);
5459
5460                         if (gen < min_trans) {
5461                                 slot++;
5462                                 goto next;
5463                         }
5464                         btrfs_node_key_to_cpu(c, key, slot);
5465                 }
5466                 return 0;
5467         }
5468         return 1;
5469 }
5470
5471 /*
5472  * search the tree again to find a leaf with greater keys
5473  * returns 0 if it found something or 1 if there are no greater leaves.
5474  * returns < 0 on io errors.
5475  */
5476 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5477 {
5478         return btrfs_next_old_leaf(root, path, 0);
5479 }
5480
5481 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5482                         u64 time_seq)
5483 {
5484         int slot;
5485         int level;
5486         struct extent_buffer *c;
5487         struct extent_buffer *next;
5488         struct btrfs_key key;
5489         u32 nritems;
5490         int ret;
5491         int old_spinning = path->leave_spinning;
5492         int next_rw_lock = 0;
5493
5494         nritems = btrfs_header_nritems(path->nodes[0]);
5495         if (nritems == 0)
5496                 return 1;
5497
5498         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5499 again:
5500         level = 1;
5501         next = NULL;
5502         next_rw_lock = 0;
5503         btrfs_release_path(path);
5504
5505         path->keep_locks = 1;
5506         path->leave_spinning = 1;
5507
5508         if (time_seq)
5509                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5510         else
5511                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5512         path->keep_locks = 0;
5513
5514         if (ret < 0)
5515                 return ret;
5516
5517         nritems = btrfs_header_nritems(path->nodes[0]);
5518         /*
5519          * by releasing the path above we dropped all our locks.  A balance
5520          * could have added more items next to the key that used to be
5521          * at the very end of the block.  So, check again here and
5522          * advance the path if there are now more items available.
5523          */
5524         if (nritems > 0 && path->slots[0] < nritems - 1) {
5525                 if (ret == 0)
5526                         path->slots[0]++;
5527                 ret = 0;
5528                 goto done;
5529         }
5530
5531         while (level < BTRFS_MAX_LEVEL) {
5532                 if (!path->nodes[level]) {
5533                         ret = 1;
5534                         goto done;
5535                 }
5536
5537                 slot = path->slots[level] + 1;
5538                 c = path->nodes[level];
5539                 if (slot >= btrfs_header_nritems(c)) {
5540                         level++;
5541                         if (level == BTRFS_MAX_LEVEL) {
5542                                 ret = 1;
5543                                 goto done;
5544                         }
5545                         continue;
5546                 }
5547
5548                 if (next) {
5549                         btrfs_tree_unlock_rw(next, next_rw_lock);
5550                         free_extent_buffer(next);
5551                 }
5552
5553                 next = c;
5554                 next_rw_lock = path->locks[level];
5555                 ret = read_block_for_search(NULL, root, path, &next, level,
5556                                             slot, &key, 0);
5557                 if (ret == -EAGAIN)
5558                         goto again;
5559
5560                 if (ret < 0) {
5561                         btrfs_release_path(path);
5562                         goto done;
5563                 }
5564
5565                 if (!path->skip_locking) {
5566                         ret = btrfs_try_tree_read_lock(next);
5567                         if (!ret && time_seq) {
5568                                 /*
5569                                  * If we don't get the lock, we may be racing
5570                                  * with push_leaf_left, holding that lock while
5571                                  * itself waiting for the leaf we've currently
5572                                  * locked. To solve this situation, we give up
5573                                  * on our lock and cycle.
5574                                  */
5575                                 free_extent_buffer(next);
5576                                 btrfs_release_path(path);
5577                                 cond_resched();
5578                                 goto again;
5579                         }
5580                         if (!ret) {
5581                                 btrfs_set_path_blocking(path);
5582                                 btrfs_tree_read_lock(next);
5583                                 btrfs_clear_path_blocking(path, next,
5584                                                           BTRFS_READ_LOCK);
5585                         }
5586                         next_rw_lock = BTRFS_READ_LOCK;
5587                 }
5588                 break;
5589         }
5590         path->slots[level] = slot;
5591         while (1) {
5592                 level--;
5593                 c = path->nodes[level];
5594                 if (path->locks[level])
5595                         btrfs_tree_unlock_rw(c, path->locks[level]);
5596
5597                 free_extent_buffer(c);
5598                 path->nodes[level] = next;
5599                 path->slots[level] = 0;
5600                 if (!path->skip_locking)
5601                         path->locks[level] = next_rw_lock;
5602                 if (!level)
5603                         break;
5604
5605                 ret = read_block_for_search(NULL, root, path, &next, level,
5606                                             0, &key, 0);
5607                 if (ret == -EAGAIN)
5608                         goto again;
5609
5610                 if (ret < 0) {
5611                         btrfs_release_path(path);
5612                         goto done;
5613                 }
5614
5615                 if (!path->skip_locking) {
5616                         ret = btrfs_try_tree_read_lock(next);
5617                         if (!ret) {
5618                                 btrfs_set_path_blocking(path);
5619                                 btrfs_tree_read_lock(next);
5620                                 btrfs_clear_path_blocking(path, next,
5621                                                           BTRFS_READ_LOCK);
5622                         }
5623                         next_rw_lock = BTRFS_READ_LOCK;
5624                 }
5625         }
5626         ret = 0;
5627 done:
5628         unlock_up(path, 0, 1, 0, NULL);
5629         path->leave_spinning = old_spinning;
5630         if (!old_spinning)
5631                 btrfs_set_path_blocking(path);
5632
5633         return ret;
5634 }
5635
5636 /*
5637  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5638  * searching until it gets past min_objectid or finds an item of 'type'
5639  *
5640  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5641  */
5642 int btrfs_previous_item(struct btrfs_root *root,
5643                         struct btrfs_path *path, u64 min_objectid,
5644                         int type)
5645 {
5646         struct btrfs_key found_key;
5647         struct extent_buffer *leaf;
5648         u32 nritems;
5649         int ret;
5650
5651         while (1) {
5652                 if (path->slots[0] == 0) {
5653                         btrfs_set_path_blocking(path);
5654                         ret = btrfs_prev_leaf(root, path);
5655                         if (ret != 0)
5656                                 return ret;
5657                 } else {
5658                         path->slots[0]--;
5659                 }
5660                 leaf = path->nodes[0];
5661                 nritems = btrfs_header_nritems(leaf);
5662                 if (nritems == 0)
5663                         return 1;
5664                 if (path->slots[0] == nritems)
5665                         path->slots[0]--;
5666
5667                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5668                 if (found_key.objectid < min_objectid)
5669                         break;
5670                 if (found_key.type == type)
5671                         return 0;
5672                 if (found_key.objectid == min_objectid &&
5673                     found_key.type < type)
5674                         break;
5675         }
5676         return 1;
5677 }