]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: add HAS_DDI check
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
476                                                 int refclk)
477 {
478         struct drm_device *dev = crtc->dev;
479         const intel_limit_t *limit;
480
481         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
482                 if (intel_is_dual_link_lvds(dev)) {
483                         /* LVDS dual channel */
484                         if (refclk == 100000)
485                                 limit = &intel_limits_ironlake_dual_lvds_100m;
486                         else
487                                 limit = &intel_limits_ironlake_dual_lvds;
488                 } else {
489                         if (refclk == 100000)
490                                 limit = &intel_limits_ironlake_single_lvds_100m;
491                         else
492                                 limit = &intel_limits_ironlake_single_lvds;
493                 }
494         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
495                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
496                 limit = &intel_limits_ironlake_display_port;
497         else
498                 limit = &intel_limits_ironlake_dac;
499
500         return limit;
501 }
502
503 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
504 {
505         struct drm_device *dev = crtc->dev;
506         const intel_limit_t *limit;
507
508         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
509                 if (intel_is_dual_link_lvds(dev))
510                         /* LVDS with dual channel */
511                         limit = &intel_limits_g4x_dual_channel_lvds;
512                 else
513                         /* LVDS with dual channel */
514                         limit = &intel_limits_g4x_single_channel_lvds;
515         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
516                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
517                 limit = &intel_limits_g4x_hdmi;
518         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
519                 limit = &intel_limits_g4x_sdvo;
520         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
521                 limit = &intel_limits_g4x_display_port;
522         } else /* The option is for other outputs */
523                 limit = &intel_limits_i9xx_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
529 {
530         struct drm_device *dev = crtc->dev;
531         const intel_limit_t *limit;
532
533         if (HAS_PCH_SPLIT(dev))
534                 limit = intel_ironlake_limit(crtc, refclk);
535         else if (IS_G4X(dev)) {
536                 limit = intel_g4x_limit(crtc);
537         } else if (IS_PINEVIEW(dev)) {
538                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
539                         limit = &intel_limits_pineview_lvds;
540                 else
541                         limit = &intel_limits_pineview_sdvo;
542         } else if (IS_VALLEYVIEW(dev)) {
543                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
544                         limit = &intel_limits_vlv_dac;
545                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
546                         limit = &intel_limits_vlv_hdmi;
547                 else
548                         limit = &intel_limits_vlv_dp;
549         } else if (!IS_GEN2(dev)) {
550                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
551                         limit = &intel_limits_i9xx_lvds;
552                 else
553                         limit = &intel_limits_i9xx_sdvo;
554         } else {
555                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
556                         limit = &intel_limits_i8xx_lvds;
557                 else
558                         limit = &intel_limits_i8xx_dvo;
559         }
560         return limit;
561 }
562
563 /* m1 is reserved as 0 in Pineview, n is a ring counter */
564 static void pineview_clock(int refclk, intel_clock_t *clock)
565 {
566         clock->m = clock->m2 + 2;
567         clock->p = clock->p1 * clock->p2;
568         clock->vco = refclk * clock->m / clock->n;
569         clock->dot = clock->vco / clock->p;
570 }
571
572 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
573 {
574         if (IS_PINEVIEW(dev)) {
575                 pineview_clock(refclk, clock);
576                 return;
577         }
578         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
579         clock->p = clock->p1 * clock->p2;
580         clock->vco = refclk * clock->m / (clock->n + 2);
581         clock->dot = clock->vco / clock->p;
582 }
583
584 /**
585  * Returns whether any output on the specified pipe is of the specified type
586  */
587 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
588 {
589         struct drm_device *dev = crtc->dev;
590         struct intel_encoder *encoder;
591
592         for_each_encoder_on_crtc(dev, crtc, encoder)
593                 if (encoder->type == type)
594                         return true;
595
596         return false;
597 }
598
599 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
600 /**
601  * Returns whether the given set of divisors are valid for a given refclk with
602  * the given connectors.
603  */
604
605 static bool intel_PLL_is_valid(struct drm_device *dev,
606                                const intel_limit_t *limit,
607                                const intel_clock_t *clock)
608 {
609         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610                 INTELPllInvalid("p1 out of range\n");
611         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
612                 INTELPllInvalid("p out of range\n");
613         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
614                 INTELPllInvalid("m2 out of range\n");
615         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
616                 INTELPllInvalid("m1 out of range\n");
617         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
618                 INTELPllInvalid("m1 <= m2\n");
619         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
620                 INTELPllInvalid("m out of range\n");
621         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
622                 INTELPllInvalid("n out of range\n");
623         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
624                 INTELPllInvalid("vco out of range\n");
625         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
626          * connector, etc., rather than just a single range.
627          */
628         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
629                 INTELPllInvalid("dot out of range\n");
630
631         return true;
632 }
633
634 static bool
635 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
636                     int target, int refclk, intel_clock_t *match_clock,
637                     intel_clock_t *best_clock)
638
639 {
640         struct drm_device *dev = crtc->dev;
641         intel_clock_t clock;
642         int err = target;
643
644         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
645                 /*
646                  * For LVDS just rely on its current settings for dual-channel.
647                  * We haven't figured out how to reliably set up different
648                  * single/dual channel state, if we even can.
649                  */
650                 if (intel_is_dual_link_lvds(dev))
651                         clock.p2 = limit->p2.p2_fast;
652                 else
653                         clock.p2 = limit->p2.p2_slow;
654         } else {
655                 if (target < limit->p2.dot_limit)
656                         clock.p2 = limit->p2.p2_slow;
657                 else
658                         clock.p2 = limit->p2.p2_fast;
659         }
660
661         memset(best_clock, 0, sizeof(*best_clock));
662
663         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664              clock.m1++) {
665                 for (clock.m2 = limit->m2.min;
666                      clock.m2 <= limit->m2.max; clock.m2++) {
667                         /* m1 is always 0 in Pineview */
668                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
669                                 break;
670                         for (clock.n = limit->n.min;
671                              clock.n <= limit->n.max; clock.n++) {
672                                 for (clock.p1 = limit->p1.min;
673                                         clock.p1 <= limit->p1.max; clock.p1++) {
674                                         int this_err;
675
676                                         intel_clock(dev, refclk, &clock);
677                                         if (!intel_PLL_is_valid(dev, limit,
678                                                                 &clock))
679                                                 continue;
680                                         if (match_clock &&
681                                             clock.p != match_clock->p)
682                                                 continue;
683
684                                         this_err = abs(clock.dot - target);
685                                         if (this_err < err) {
686                                                 *best_clock = clock;
687                                                 err = this_err;
688                                         }
689                                 }
690                         }
691                 }
692         }
693
694         return (err != target);
695 }
696
697 static bool
698 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
699                         int target, int refclk, intel_clock_t *match_clock,
700                         intel_clock_t *best_clock)
701 {
702         struct drm_device *dev = crtc->dev;
703         intel_clock_t clock;
704         int max_n;
705         bool found;
706         /* approximately equals target * 0.00585 */
707         int err_most = (target >> 8) + (target >> 9);
708         found = false;
709
710         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
711                 int lvds_reg;
712
713                 if (HAS_PCH_SPLIT(dev))
714                         lvds_reg = PCH_LVDS;
715                 else
716                         lvds_reg = LVDS;
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729         max_n = limit->n.max;
730         /* based on hardware requirement, prefer smaller n to precision */
731         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732                 /* based on hardware requirement, prefere larger m1,m2 */
733                 for (clock.m1 = limit->m1.max;
734                      clock.m1 >= limit->m1.min; clock.m1--) {
735                         for (clock.m2 = limit->m2.max;
736                              clock.m2 >= limit->m2.min; clock.m2--) {
737                                 for (clock.p1 = limit->p1.max;
738                                      clock.p1 >= limit->p1.min; clock.p1--) {
739                                         int this_err;
740
741                                         intel_clock(dev, refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745                                         if (match_clock &&
746                                             clock.p != match_clock->p)
747                                                 continue;
748
749                                         this_err = abs(clock.dot - target);
750                                         if (this_err < err_most) {
751                                                 *best_clock = clock;
752                                                 err_most = this_err;
753                                                 max_n = clock.n;
754                                                 found = true;
755                                         }
756                                 }
757                         }
758                 }
759         }
760         return found;
761 }
762
763 static bool
764 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
765                            int target, int refclk, intel_clock_t *match_clock,
766                            intel_clock_t *best_clock)
767 {
768         struct drm_device *dev = crtc->dev;
769         intel_clock_t clock;
770
771         if (target < 200000) {
772                 clock.n = 1;
773                 clock.p1 = 2;
774                 clock.p2 = 10;
775                 clock.m1 = 12;
776                 clock.m2 = 9;
777         } else {
778                 clock.n = 2;
779                 clock.p1 = 1;
780                 clock.p2 = 10;
781                 clock.m1 = 14;
782                 clock.m2 = 8;
783         }
784         intel_clock(dev, refclk, &clock);
785         memcpy(best_clock, &clock, sizeof(intel_clock_t));
786         return true;
787 }
788
789 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
790 static bool
791 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
792                       int target, int refclk, intel_clock_t *match_clock,
793                       intel_clock_t *best_clock)
794 {
795         intel_clock_t clock;
796         if (target < 200000) {
797                 clock.p1 = 2;
798                 clock.p2 = 10;
799                 clock.n = 2;
800                 clock.m1 = 23;
801                 clock.m2 = 8;
802         } else {
803                 clock.p1 = 1;
804                 clock.p2 = 10;
805                 clock.n = 1;
806                 clock.m1 = 14;
807                 clock.m2 = 2;
808         }
809         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
810         clock.p = (clock.p1 * clock.p2);
811         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
812         clock.vco = 0;
813         memcpy(best_clock, &clock, sizeof(intel_clock_t));
814         return true;
815 }
816 static bool
817 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
818                         int target, int refclk, intel_clock_t *match_clock,
819                         intel_clock_t *best_clock)
820 {
821         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
822         u32 m, n, fastclk;
823         u32 updrate, minupdate, fracbits, p;
824         unsigned long bestppm, ppm, absppm;
825         int dotclk, flag;
826
827         flag = 0;
828         dotclk = target * 1000;
829         bestppm = 1000000;
830         ppm = absppm = 0;
831         fastclk = dotclk / (2*100);
832         updrate = 0;
833         minupdate = 19200;
834         fracbits = 1;
835         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
836         bestm1 = bestm2 = bestp1 = bestp2 = 0;
837
838         /* based on hardware requirement, prefer smaller n to precision */
839         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
840                 updrate = refclk / n;
841                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
842                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
843                                 if (p2 > 10)
844                                         p2 = p2 - 1;
845                                 p = p1 * p2;
846                                 /* based on hardware requirement, prefer bigger m1,m2 values */
847                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
848                                         m2 = (((2*(fastclk * p * n / m1 )) +
849                                                refclk) / (2*refclk));
850                                         m = m1 * m2;
851                                         vco = updrate * m;
852                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
853                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
854                                                 absppm = (ppm > 0) ? ppm : (-ppm);
855                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
856                                                         bestppm = 0;
857                                                         flag = 1;
858                                                 }
859                                                 if (absppm < bestppm - 10) {
860                                                         bestppm = absppm;
861                                                         flag = 1;
862                                                 }
863                                                 if (flag) {
864                                                         bestn = n;
865                                                         bestm1 = m1;
866                                                         bestm2 = m2;
867                                                         bestp1 = p1;
868                                                         bestp2 = p2;
869                                                         flag = 0;
870                                                 }
871                                         }
872                                 }
873                         }
874                 }
875         }
876         best_clock->n = bestn;
877         best_clock->m1 = bestm1;
878         best_clock->m2 = bestm2;
879         best_clock->p1 = bestp1;
880         best_clock->p2 = bestp2;
881
882         return true;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886                                              enum pipe pipe)
887 {
888         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         return intel_crtc->cpu_transcoder;
892 }
893
894 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         u32 frame, frame_reg = PIPEFRAME(pipe);
898
899         frame = I915_READ(frame_reg);
900
901         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902                 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 /**
906  * intel_wait_for_vblank - wait for vblank on a given pipe
907  * @dev: drm device
908  * @pipe: pipe to wait for
909  *
910  * Wait for vblank to occur on a given pipe.  Needed for various bits of
911  * mode setting code.
912  */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         int pipestat_reg = PIPESTAT(pipe);
917
918         if (INTEL_INFO(dev)->gen >= 5) {
919                 ironlake_wait_for_vblank(dev, pipe);
920                 return;
921         }
922
923         /* Clear existing vblank status. Note this will clear any other
924          * sticky status fields as well.
925          *
926          * This races with i915_driver_irq_handler() with the result
927          * that either function could miss a vblank event.  Here it is not
928          * fatal, as we will either wait upon the next vblank interrupt or
929          * timeout.  Generally speaking intel_wait_for_vblank() is only
930          * called during modeset at which time the GPU should be idle and
931          * should *not* be performing page flips and thus not waiting on
932          * vblanks...
933          * Currently, the result of us stealing a vblank from the irq
934          * handler is that a single frame will be skipped during swapbuffers.
935          */
936         I915_WRITE(pipestat_reg,
937                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939         /* Wait for vblank interrupt bit to set */
940         if (wait_for(I915_READ(pipestat_reg) &
941                      PIPE_VBLANK_INTERRUPT_STATUS,
942                      50))
943                 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 /*
947  * intel_wait_for_pipe_off - wait for pipe to turn off
948  * @dev: drm device
949  * @pipe: pipe to wait for
950  *
951  * After disabling a pipe, we can't wait for vblank in the usual way,
952  * spinning on the vblank interrupt status bit, since we won't actually
953  * see an interrupt when the pipe is disabled.
954  *
955  * On Gen4 and above:
956  *   wait for the pipe register state bit to turn off
957  *
958  * Otherwise:
959  *   wait for the display line value to settle (it usually
960  *   ends up stopping at the start of the next frame).
961  *
962  */
963 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
964 {
965         struct drm_i915_private *dev_priv = dev->dev_private;
966         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
967                                                                       pipe);
968
969         if (INTEL_INFO(dev)->gen >= 4) {
970                 int reg = PIPECONF(cpu_transcoder);
971
972                 /* Wait for the Pipe State to go off */
973                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
974                              100))
975                         WARN(1, "pipe_off wait timed out\n");
976         } else {
977                 u32 last_line, line_mask;
978                 int reg = PIPEDSL(pipe);
979                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
980
981                 if (IS_GEN2(dev))
982                         line_mask = DSL_LINEMASK_GEN2;
983                 else
984                         line_mask = DSL_LINEMASK_GEN3;
985
986                 /* Wait for the display line to settle */
987                 do {
988                         last_line = I915_READ(reg) & line_mask;
989                         mdelay(5);
990                 } while (((I915_READ(reg) & line_mask) != last_line) &&
991                          time_after(timeout, jiffies));
992                 if (time_after(jiffies, timeout))
993                         WARN(1, "pipe_off wait timed out\n");
994         }
995 }
996
997 static const char *state_string(bool enabled)
998 {
999         return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 static void assert_pll(struct drm_i915_private *dev_priv,
1004                        enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = DPLL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & DPLL_VCO_ENABLE);
1013         WARN(cur_state != state,
1014              "PLL state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1018 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1019
1020 /* For ILK+ */
1021 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1022                            struct intel_pch_pll *pll,
1023                            struct intel_crtc *crtc,
1024                            bool state)
1025 {
1026         u32 val;
1027         bool cur_state;
1028
1029         if (HAS_PCH_LPT(dev_priv->dev)) {
1030                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1031                 return;
1032         }
1033
1034         if (WARN (!pll,
1035                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1036                 return;
1037
1038         val = I915_READ(pll->pll_reg);
1039         cur_state = !!(val & DPLL_VCO_ENABLE);
1040         WARN(cur_state != state,
1041              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1042              pll->pll_reg, state_string(state), state_string(cur_state), val);
1043
1044         /* Make sure the selected PLL is correctly attached to the transcoder */
1045         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1046                 u32 pch_dpll;
1047
1048                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1049                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1050                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1051                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1052                           cur_state, crtc->pipe, pch_dpll)) {
1053                         cur_state = !!(val >> (4*crtc->pipe + 3));
1054                         WARN(cur_state != state,
1055                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1056                              pll->pll_reg == _PCH_DPLL_B,
1057                              state_string(state),
1058                              crtc->pipe,
1059                              val);
1060                 }
1061         }
1062 }
1063 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1064 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1065
1066 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1067                           enum pipe pipe, bool state)
1068 {
1069         int reg;
1070         u32 val;
1071         bool cur_state;
1072         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1073                                                                       pipe);
1074
1075         if (HAS_DDI(dev_priv->dev)) {
1076                 /* DDI does not have a specific FDI_TX register */
1077                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1078                 val = I915_READ(reg);
1079                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1080         } else {
1081                 reg = FDI_TX_CTL(pipe);
1082                 val = I915_READ(reg);
1083                 cur_state = !!(val & FDI_TX_ENABLE);
1084         }
1085         WARN(cur_state != state,
1086              "FDI TX state assertion failure (expected %s, current %s)\n",
1087              state_string(state), state_string(cur_state));
1088 }
1089 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1090 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1091
1092 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         int reg;
1096         u32 val;
1097         bool cur_state;
1098
1099         reg = FDI_RX_CTL(pipe);
1100         val = I915_READ(reg);
1101         cur_state = !!(val & FDI_RX_ENABLE);
1102         WARN(cur_state != state,
1103              "FDI RX state assertion failure (expected %s, current %s)\n",
1104              state_string(state), state_string(cur_state));
1105 }
1106 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1107 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1108
1109 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1110                                       enum pipe pipe)
1111 {
1112         int reg;
1113         u32 val;
1114
1115         /* ILK FDI PLL is always enabled */
1116         if (dev_priv->info->gen == 5)
1117                 return;
1118
1119         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1120         if (HAS_DDI(dev_priv->dev))
1121                 return;
1122
1123         reg = FDI_TX_CTL(pipe);
1124         val = I915_READ(reg);
1125         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1126 }
1127
1128 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1129                                       enum pipe pipe)
1130 {
1131         int reg;
1132         u32 val;
1133
1134         reg = FDI_RX_CTL(pipe);
1135         val = I915_READ(reg);
1136         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1137 }
1138
1139 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1140                                   enum pipe pipe)
1141 {
1142         int pp_reg, lvds_reg;
1143         u32 val;
1144         enum pipe panel_pipe = PIPE_A;
1145         bool locked = true;
1146
1147         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1148                 pp_reg = PCH_PP_CONTROL;
1149                 lvds_reg = PCH_LVDS;
1150         } else {
1151                 pp_reg = PP_CONTROL;
1152                 lvds_reg = LVDS;
1153         }
1154
1155         val = I915_READ(pp_reg);
1156         if (!(val & PANEL_POWER_ON) ||
1157             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1158                 locked = false;
1159
1160         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1161                 panel_pipe = PIPE_B;
1162
1163         WARN(panel_pipe == pipe && locked,
1164              "panel assertion failure, pipe %c regs locked\n",
1165              pipe_name(pipe));
1166 }
1167
1168 void assert_pipe(struct drm_i915_private *dev_priv,
1169                  enum pipe pipe, bool state)
1170 {
1171         int reg;
1172         u32 val;
1173         bool cur_state;
1174         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1175                                                                       pipe);
1176
1177         /* if we need the pipe A quirk it must be always on */
1178         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1179                 state = true;
1180
1181         reg = PIPECONF(cpu_transcoder);
1182         val = I915_READ(reg);
1183         cur_state = !!(val & PIPECONF_ENABLE);
1184         WARN(cur_state != state,
1185              "pipe %c assertion failure (expected %s, current %s)\n",
1186              pipe_name(pipe), state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_plane(struct drm_i915_private *dev_priv,
1190                          enum plane plane, bool state)
1191 {
1192         int reg;
1193         u32 val;
1194         bool cur_state;
1195
1196         reg = DSPCNTR(plane);
1197         val = I915_READ(reg);
1198         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1199         WARN(cur_state != state,
1200              "plane %c assertion failure (expected %s, current %s)\n",
1201              plane_name(plane), state_string(state), state_string(cur_state));
1202 }
1203
1204 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1205 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1206
1207 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1208                                    enum pipe pipe)
1209 {
1210         int reg, i;
1211         u32 val;
1212         int cur_pipe;
1213
1214         /* Planes are fixed to pipes on ILK+ */
1215         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1216                 reg = DSPCNTR(pipe);
1217                 val = I915_READ(reg);
1218                 WARN((val & DISPLAY_PLANE_ENABLE),
1219                      "plane %c assertion failure, should be disabled but not\n",
1220                      plane_name(pipe));
1221                 return;
1222         }
1223
1224         /* Need to check both planes against the pipe */
1225         for (i = 0; i < 2; i++) {
1226                 reg = DSPCNTR(i);
1227                 val = I915_READ(reg);
1228                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1229                         DISPPLANE_SEL_PIPE_SHIFT;
1230                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1231                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1232                      plane_name(i), pipe_name(pipe));
1233         }
1234 }
1235
1236 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1237 {
1238         u32 val;
1239         bool enabled;
1240
1241         if (HAS_PCH_LPT(dev_priv->dev)) {
1242                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1243                 return;
1244         }
1245
1246         val = I915_READ(PCH_DREF_CONTROL);
1247         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1248                             DREF_SUPERSPREAD_SOURCE_MASK));
1249         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1250 }
1251
1252 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1253                                        enum pipe pipe)
1254 {
1255         int reg;
1256         u32 val;
1257         bool enabled;
1258
1259         reg = TRANSCONF(pipe);
1260         val = I915_READ(reg);
1261         enabled = !!(val & TRANS_ENABLE);
1262         WARN(enabled,
1263              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1264              pipe_name(pipe));
1265 }
1266
1267 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1268                             enum pipe pipe, u32 port_sel, u32 val)
1269 {
1270         if ((val & DP_PORT_EN) == 0)
1271                 return false;
1272
1273         if (HAS_PCH_CPT(dev_priv->dev)) {
1274                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1275                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1276                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1277                         return false;
1278         } else {
1279                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1280                         return false;
1281         }
1282         return true;
1283 }
1284
1285 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1286                               enum pipe pipe, u32 val)
1287 {
1288         if ((val & PORT_ENABLE) == 0)
1289                 return false;
1290
1291         if (HAS_PCH_CPT(dev_priv->dev)) {
1292                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1293                         return false;
1294         } else {
1295                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1296                         return false;
1297         }
1298         return true;
1299 }
1300
1301 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1302                               enum pipe pipe, u32 val)
1303 {
1304         if ((val & LVDS_PORT_EN) == 0)
1305                 return false;
1306
1307         if (HAS_PCH_CPT(dev_priv->dev)) {
1308                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1309                         return false;
1310         } else {
1311                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1312                         return false;
1313         }
1314         return true;
1315 }
1316
1317 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1318                               enum pipe pipe, u32 val)
1319 {
1320         if ((val & ADPA_DAC_ENABLE) == 0)
1321                 return false;
1322         if (HAS_PCH_CPT(dev_priv->dev)) {
1323                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1324                         return false;
1325         } else {
1326                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1327                         return false;
1328         }
1329         return true;
1330 }
1331
1332 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1333                                    enum pipe pipe, int reg, u32 port_sel)
1334 {
1335         u32 val = I915_READ(reg);
1336         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1337              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1338              reg, pipe_name(pipe));
1339
1340         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1341              && (val & DP_PIPEB_SELECT),
1342              "IBX PCH dp port still using transcoder B\n");
1343 }
1344
1345 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1346                                      enum pipe pipe, int reg)
1347 {
1348         u32 val = I915_READ(reg);
1349         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1350              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1351              reg, pipe_name(pipe));
1352
1353         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1354              && (val & SDVO_PIPE_B_SELECT),
1355              "IBX PCH hdmi port still using transcoder B\n");
1356 }
1357
1358 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1359                                       enum pipe pipe)
1360 {
1361         int reg;
1362         u32 val;
1363
1364         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1365         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1366         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1367
1368         reg = PCH_ADPA;
1369         val = I915_READ(reg);
1370         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1371              "PCH VGA enabled on transcoder %c, should be disabled\n",
1372              pipe_name(pipe));
1373
1374         reg = PCH_LVDS;
1375         val = I915_READ(reg);
1376         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1377              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1378              pipe_name(pipe));
1379
1380         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1381         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1382         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1383 }
1384
1385 /**
1386  * intel_enable_pll - enable a PLL
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe PLL to enable
1389  *
1390  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1391  * make sure the PLL reg is writable first though, since the panel write
1392  * protect mechanism may be enabled.
1393  *
1394  * Note!  This is for pre-ILK only.
1395  *
1396  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1397  */
1398 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1399 {
1400         int reg;
1401         u32 val;
1402
1403         /* No really, not for ILK+ */
1404         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1405
1406         /* PLL is protected by panel, make sure we can write it */
1407         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1408                 assert_panel_unlocked(dev_priv, pipe);
1409
1410         reg = DPLL(pipe);
1411         val = I915_READ(reg);
1412         val |= DPLL_VCO_ENABLE;
1413
1414         /* We do this three times for luck */
1415         I915_WRITE(reg, val);
1416         POSTING_READ(reg);
1417         udelay(150); /* wait for warmup */
1418         I915_WRITE(reg, val);
1419         POSTING_READ(reg);
1420         udelay(150); /* wait for warmup */
1421         I915_WRITE(reg, val);
1422         POSTING_READ(reg);
1423         udelay(150); /* wait for warmup */
1424 }
1425
1426 /**
1427  * intel_disable_pll - disable a PLL
1428  * @dev_priv: i915 private structure
1429  * @pipe: pipe PLL to disable
1430  *
1431  * Disable the PLL for @pipe, making sure the pipe is off first.
1432  *
1433  * Note!  This is for pre-ILK only.
1434  */
1435 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437         int reg;
1438         u32 val;
1439
1440         /* Don't disable pipe A or pipe A PLLs if needed */
1441         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1442                 return;
1443
1444         /* Make sure the pipe isn't still relying on us */
1445         assert_pipe_disabled(dev_priv, pipe);
1446
1447         reg = DPLL(pipe);
1448         val = I915_READ(reg);
1449         val &= ~DPLL_VCO_ENABLE;
1450         I915_WRITE(reg, val);
1451         POSTING_READ(reg);
1452 }
1453
1454 /* SBI access */
1455 static void
1456 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1457 {
1458         unsigned long flags;
1459
1460         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1461         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1462                                 100)) {
1463                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1464                 goto out_unlock;
1465         }
1466
1467         I915_WRITE(SBI_ADDR,
1468                         (reg << 16));
1469         I915_WRITE(SBI_DATA,
1470                         value);
1471         I915_WRITE(SBI_CTL_STAT,
1472                         SBI_BUSY |
1473                         SBI_CTL_OP_CRWR);
1474
1475         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1476                                 100)) {
1477                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1478                 goto out_unlock;
1479         }
1480
1481 out_unlock:
1482         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1483 }
1484
1485 static u32
1486 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1487 {
1488         unsigned long flags;
1489         u32 value = 0;
1490
1491         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1492         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1493                                 100)) {
1494                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1495                 goto out_unlock;
1496         }
1497
1498         I915_WRITE(SBI_ADDR,
1499                         (reg << 16));
1500         I915_WRITE(SBI_CTL_STAT,
1501                         SBI_BUSY |
1502                         SBI_CTL_OP_CRRD);
1503
1504         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1505                                 100)) {
1506                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1507                 goto out_unlock;
1508         }
1509
1510         value = I915_READ(SBI_DATA);
1511
1512 out_unlock:
1513         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1514         return value;
1515 }
1516
1517 /**
1518  * ironlake_enable_pch_pll - enable PCH PLL
1519  * @dev_priv: i915 private structure
1520  * @pipe: pipe PLL to enable
1521  *
1522  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1523  * drives the transcoder clock.
1524  */
1525 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1526 {
1527         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1528         struct intel_pch_pll *pll;
1529         int reg;
1530         u32 val;
1531
1532         /* PCH PLLs only available on ILK, SNB and IVB */
1533         BUG_ON(dev_priv->info->gen < 5);
1534         pll = intel_crtc->pch_pll;
1535         if (pll == NULL)
1536                 return;
1537
1538         if (WARN_ON(pll->refcount == 0))
1539                 return;
1540
1541         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1542                       pll->pll_reg, pll->active, pll->on,
1543                       intel_crtc->base.base.id);
1544
1545         /* PCH refclock must be enabled first */
1546         assert_pch_refclk_enabled(dev_priv);
1547
1548         if (pll->active++ && pll->on) {
1549                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1550                 return;
1551         }
1552
1553         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1554
1555         reg = pll->pll_reg;
1556         val = I915_READ(reg);
1557         val |= DPLL_VCO_ENABLE;
1558         I915_WRITE(reg, val);
1559         POSTING_READ(reg);
1560         udelay(200);
1561
1562         pll->on = true;
1563 }
1564
1565 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1566 {
1567         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1569         int reg;
1570         u32 val;
1571
1572         /* PCH only available on ILK+ */
1573         BUG_ON(dev_priv->info->gen < 5);
1574         if (pll == NULL)
1575                return;
1576
1577         if (WARN_ON(pll->refcount == 0))
1578                 return;
1579
1580         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1581                       pll->pll_reg, pll->active, pll->on,
1582                       intel_crtc->base.base.id);
1583
1584         if (WARN_ON(pll->active == 0)) {
1585                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1586                 return;
1587         }
1588
1589         if (--pll->active) {
1590                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1591                 return;
1592         }
1593
1594         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1595
1596         /* Make sure transcoder isn't still depending on us */
1597         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1598
1599         reg = pll->pll_reg;
1600         val = I915_READ(reg);
1601         val &= ~DPLL_VCO_ENABLE;
1602         I915_WRITE(reg, val);
1603         POSTING_READ(reg);
1604         udelay(200);
1605
1606         pll->on = false;
1607 }
1608
1609 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1610                                            enum pipe pipe)
1611 {
1612         struct drm_device *dev = dev_priv->dev;
1613         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1614         uint32_t reg, val, pipeconf_val;
1615
1616         /* PCH only available on ILK+ */
1617         BUG_ON(dev_priv->info->gen < 5);
1618
1619         /* Make sure PCH DPLL is enabled */
1620         assert_pch_pll_enabled(dev_priv,
1621                                to_intel_crtc(crtc)->pch_pll,
1622                                to_intel_crtc(crtc));
1623
1624         /* FDI must be feeding us bits for PCH ports */
1625         assert_fdi_tx_enabled(dev_priv, pipe);
1626         assert_fdi_rx_enabled(dev_priv, pipe);
1627
1628         if (HAS_PCH_CPT(dev)) {
1629                 /* Workaround: Set the timing override bit before enabling the
1630                  * pch transcoder. */
1631                 reg = TRANS_CHICKEN2(pipe);
1632                 val = I915_READ(reg);
1633                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1634                 I915_WRITE(reg, val);
1635         }
1636
1637         reg = TRANSCONF(pipe);
1638         val = I915_READ(reg);
1639         pipeconf_val = I915_READ(PIPECONF(pipe));
1640
1641         if (HAS_PCH_IBX(dev_priv->dev)) {
1642                 /*
1643                  * make the BPC in transcoder be consistent with
1644                  * that in pipeconf reg.
1645                  */
1646                 val &= ~PIPE_BPC_MASK;
1647                 val |= pipeconf_val & PIPE_BPC_MASK;
1648         }
1649
1650         val &= ~TRANS_INTERLACE_MASK;
1651         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1652                 if (HAS_PCH_IBX(dev_priv->dev) &&
1653                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1654                         val |= TRANS_LEGACY_INTERLACED_ILK;
1655                 else
1656                         val |= TRANS_INTERLACED;
1657         else
1658                 val |= TRANS_PROGRESSIVE;
1659
1660         I915_WRITE(reg, val | TRANS_ENABLE);
1661         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1662                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1663 }
1664
1665 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1666                                       enum transcoder cpu_transcoder)
1667 {
1668         u32 val, pipeconf_val;
1669
1670         /* PCH only available on ILK+ */
1671         BUG_ON(dev_priv->info->gen < 5);
1672
1673         /* FDI must be feeding us bits for PCH ports */
1674         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1675         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1676
1677         /* Workaround: set timing override bit. */
1678         val = I915_READ(_TRANSA_CHICKEN2);
1679         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1680         I915_WRITE(_TRANSA_CHICKEN2, val);
1681
1682         val = TRANS_ENABLE;
1683         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1684
1685         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1686             PIPECONF_INTERLACED_ILK)
1687                 val |= TRANS_INTERLACED;
1688         else
1689                 val |= TRANS_PROGRESSIVE;
1690
1691         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1692         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1693                 DRM_ERROR("Failed to enable PCH transcoder\n");
1694 }
1695
1696 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1697                                             enum pipe pipe)
1698 {
1699         struct drm_device *dev = dev_priv->dev;
1700         uint32_t reg, val;
1701
1702         /* FDI relies on the transcoder */
1703         assert_fdi_tx_disabled(dev_priv, pipe);
1704         assert_fdi_rx_disabled(dev_priv, pipe);
1705
1706         /* Ports must be off as well */
1707         assert_pch_ports_disabled(dev_priv, pipe);
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         val &= ~TRANS_ENABLE;
1712         I915_WRITE(reg, val);
1713         /* wait for PCH transcoder off, transcoder state */
1714         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1715                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1716
1717         if (!HAS_PCH_IBX(dev)) {
1718                 /* Workaround: Clear the timing override chicken bit again. */
1719                 reg = TRANS_CHICKEN2(pipe);
1720                 val = I915_READ(reg);
1721                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1722                 I915_WRITE(reg, val);
1723         }
1724 }
1725
1726 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1727 {
1728         u32 val;
1729
1730         val = I915_READ(_TRANSACONF);
1731         val &= ~TRANS_ENABLE;
1732         I915_WRITE(_TRANSACONF, val);
1733         /* wait for PCH transcoder off, transcoder state */
1734         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1735                 DRM_ERROR("Failed to disable PCH transcoder\n");
1736
1737         /* Workaround: clear timing override bit. */
1738         val = I915_READ(_TRANSA_CHICKEN2);
1739         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1740         I915_WRITE(_TRANSA_CHICKEN2, val);
1741 }
1742
1743 /**
1744  * intel_enable_pipe - enable a pipe, asserting requirements
1745  * @dev_priv: i915 private structure
1746  * @pipe: pipe to enable
1747  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1748  *
1749  * Enable @pipe, making sure that various hardware specific requirements
1750  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1751  *
1752  * @pipe should be %PIPE_A or %PIPE_B.
1753  *
1754  * Will wait until the pipe is actually running (i.e. first vblank) before
1755  * returning.
1756  */
1757 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1758                               bool pch_port)
1759 {
1760         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1761                                                                       pipe);
1762         enum transcoder pch_transcoder;
1763         int reg;
1764         u32 val;
1765
1766         if (IS_HASWELL(dev_priv->dev))
1767                 pch_transcoder = TRANSCODER_A;
1768         else
1769                 pch_transcoder = pipe;
1770
1771         /*
1772          * A pipe without a PLL won't actually be able to drive bits from
1773          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1774          * need the check.
1775          */
1776         if (!HAS_PCH_SPLIT(dev_priv->dev))
1777                 assert_pll_enabled(dev_priv, pipe);
1778         else {
1779                 if (pch_port) {
1780                         /* if driving the PCH, we need FDI enabled */
1781                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1782                         assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
1783                 }
1784                 /* FIXME: assert CPU port conditions for SNB+ */
1785         }
1786
1787         reg = PIPECONF(cpu_transcoder);
1788         val = I915_READ(reg);
1789         if (val & PIPECONF_ENABLE)
1790                 return;
1791
1792         I915_WRITE(reg, val | PIPECONF_ENABLE);
1793         intel_wait_for_vblank(dev_priv->dev, pipe);
1794 }
1795
1796 /**
1797  * intel_disable_pipe - disable a pipe, asserting requirements
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe to disable
1800  *
1801  * Disable @pipe, making sure that various hardware specific requirements
1802  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1803  *
1804  * @pipe should be %PIPE_A or %PIPE_B.
1805  *
1806  * Will wait until the pipe has shut down before returning.
1807  */
1808 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1809                                enum pipe pipe)
1810 {
1811         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1812                                                                       pipe);
1813         int reg;
1814         u32 val;
1815
1816         /*
1817          * Make sure planes won't keep trying to pump pixels to us,
1818          * or we might hang the display.
1819          */
1820         assert_planes_disabled(dev_priv, pipe);
1821
1822         /* Don't disable pipe A or pipe A PLLs if needed */
1823         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1824                 return;
1825
1826         reg = PIPECONF(cpu_transcoder);
1827         val = I915_READ(reg);
1828         if ((val & PIPECONF_ENABLE) == 0)
1829                 return;
1830
1831         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1832         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1833 }
1834
1835 /*
1836  * Plane regs are double buffered, going from enabled->disabled needs a
1837  * trigger in order to latch.  The display address reg provides this.
1838  */
1839 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1840                                       enum plane plane)
1841 {
1842         if (dev_priv->info->gen >= 4)
1843                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1844         else
1845                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1846 }
1847
1848 /**
1849  * intel_enable_plane - enable a display plane on a given pipe
1850  * @dev_priv: i915 private structure
1851  * @plane: plane to enable
1852  * @pipe: pipe being fed
1853  *
1854  * Enable @plane on @pipe, making sure that @pipe is running first.
1855  */
1856 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1857                                enum plane plane, enum pipe pipe)
1858 {
1859         int reg;
1860         u32 val;
1861
1862         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1863         assert_pipe_enabled(dev_priv, pipe);
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if (val & DISPLAY_PLANE_ENABLE)
1868                 return;
1869
1870         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 /**
1876  * intel_disable_plane - disable a display plane
1877  * @dev_priv: i915 private structure
1878  * @plane: plane to disable
1879  * @pipe: pipe consuming the data
1880  *
1881  * Disable @plane; should be an independent operation.
1882  */
1883 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1884                                 enum plane plane, enum pipe pipe)
1885 {
1886         int reg;
1887         u32 val;
1888
1889         reg = DSPCNTR(plane);
1890         val = I915_READ(reg);
1891         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1892                 return;
1893
1894         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1895         intel_flush_display_plane(dev_priv, plane);
1896         intel_wait_for_vblank(dev_priv->dev, pipe);
1897 }
1898
1899 int
1900 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1901                            struct drm_i915_gem_object *obj,
1902                            struct intel_ring_buffer *pipelined)
1903 {
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905         u32 alignment;
1906         int ret;
1907
1908         switch (obj->tiling_mode) {
1909         case I915_TILING_NONE:
1910                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1911                         alignment = 128 * 1024;
1912                 else if (INTEL_INFO(dev)->gen >= 4)
1913                         alignment = 4 * 1024;
1914                 else
1915                         alignment = 64 * 1024;
1916                 break;
1917         case I915_TILING_X:
1918                 /* pin() will align the object as required by fence */
1919                 alignment = 0;
1920                 break;
1921         case I915_TILING_Y:
1922                 /* FIXME: Is this true? */
1923                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1924                 return -EINVAL;
1925         default:
1926                 BUG();
1927         }
1928
1929         dev_priv->mm.interruptible = false;
1930         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1931         if (ret)
1932                 goto err_interruptible;
1933
1934         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1935          * fence, whereas 965+ only requires a fence if using
1936          * framebuffer compression.  For simplicity, we always install
1937          * a fence as the cost is not that onerous.
1938          */
1939         ret = i915_gem_object_get_fence(obj);
1940         if (ret)
1941                 goto err_unpin;
1942
1943         i915_gem_object_pin_fence(obj);
1944
1945         dev_priv->mm.interruptible = true;
1946         return 0;
1947
1948 err_unpin:
1949         i915_gem_object_unpin(obj);
1950 err_interruptible:
1951         dev_priv->mm.interruptible = true;
1952         return ret;
1953 }
1954
1955 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1956 {
1957         i915_gem_object_unpin_fence(obj);
1958         i915_gem_object_unpin(obj);
1959 }
1960
1961 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1962  * is assumed to be a power-of-two. */
1963 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1964                                                unsigned int bpp,
1965                                                unsigned int pitch)
1966 {
1967         int tile_rows, tiles;
1968
1969         tile_rows = *y / 8;
1970         *y %= 8;
1971         tiles = *x / (512/bpp);
1972         *x %= 512/bpp;
1973
1974         return tile_rows * pitch * 8 + tiles * 4096;
1975 }
1976
1977 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1978                              int x, int y)
1979 {
1980         struct drm_device *dev = crtc->dev;
1981         struct drm_i915_private *dev_priv = dev->dev_private;
1982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983         struct intel_framebuffer *intel_fb;
1984         struct drm_i915_gem_object *obj;
1985         int plane = intel_crtc->plane;
1986         unsigned long linear_offset;
1987         u32 dspcntr;
1988         u32 reg;
1989
1990         switch (plane) {
1991         case 0:
1992         case 1:
1993                 break;
1994         default:
1995                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1996                 return -EINVAL;
1997         }
1998
1999         intel_fb = to_intel_framebuffer(fb);
2000         obj = intel_fb->obj;
2001
2002         reg = DSPCNTR(plane);
2003         dspcntr = I915_READ(reg);
2004         /* Mask out pixel format bits in case we change it */
2005         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2006         switch (fb->pixel_format) {
2007         case DRM_FORMAT_C8:
2008                 dspcntr |= DISPPLANE_8BPP;
2009                 break;
2010         case DRM_FORMAT_XRGB1555:
2011         case DRM_FORMAT_ARGB1555:
2012                 dspcntr |= DISPPLANE_BGRX555;
2013                 break;
2014         case DRM_FORMAT_RGB565:
2015                 dspcntr |= DISPPLANE_BGRX565;
2016                 break;
2017         case DRM_FORMAT_XRGB8888:
2018         case DRM_FORMAT_ARGB8888:
2019                 dspcntr |= DISPPLANE_BGRX888;
2020                 break;
2021         case DRM_FORMAT_XBGR8888:
2022         case DRM_FORMAT_ABGR8888:
2023                 dspcntr |= DISPPLANE_RGBX888;
2024                 break;
2025         case DRM_FORMAT_XRGB2101010:
2026         case DRM_FORMAT_ARGB2101010:
2027                 dspcntr |= DISPPLANE_BGRX101010;
2028                 break;
2029         case DRM_FORMAT_XBGR2101010:
2030         case DRM_FORMAT_ABGR2101010:
2031                 dspcntr |= DISPPLANE_RGBX101010;
2032                 break;
2033         default:
2034                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2035                 return -EINVAL;
2036         }
2037
2038         if (INTEL_INFO(dev)->gen >= 4) {
2039                 if (obj->tiling_mode != I915_TILING_NONE)
2040                         dspcntr |= DISPPLANE_TILED;
2041                 else
2042                         dspcntr &= ~DISPPLANE_TILED;
2043         }
2044
2045         I915_WRITE(reg, dspcntr);
2046
2047         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2048
2049         if (INTEL_INFO(dev)->gen >= 4) {
2050                 intel_crtc->dspaddr_offset =
2051                         intel_gen4_compute_offset_xtiled(&x, &y,
2052                                                          fb->bits_per_pixel / 8,
2053                                                          fb->pitches[0]);
2054                 linear_offset -= intel_crtc->dspaddr_offset;
2055         } else {
2056                 intel_crtc->dspaddr_offset = linear_offset;
2057         }
2058
2059         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2060                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2061         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2062         if (INTEL_INFO(dev)->gen >= 4) {
2063                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2064                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2065                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2066                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2067         } else
2068                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2069         POSTING_READ(reg);
2070
2071         return 0;
2072 }
2073
2074 static int ironlake_update_plane(struct drm_crtc *crtc,
2075                                  struct drm_framebuffer *fb, int x, int y)
2076 {
2077         struct drm_device *dev = crtc->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080         struct intel_framebuffer *intel_fb;
2081         struct drm_i915_gem_object *obj;
2082         int plane = intel_crtc->plane;
2083         unsigned long linear_offset;
2084         u32 dspcntr;
2085         u32 reg;
2086
2087         switch (plane) {
2088         case 0:
2089         case 1:
2090         case 2:
2091                 break;
2092         default:
2093                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2094                 return -EINVAL;
2095         }
2096
2097         intel_fb = to_intel_framebuffer(fb);
2098         obj = intel_fb->obj;
2099
2100         reg = DSPCNTR(plane);
2101         dspcntr = I915_READ(reg);
2102         /* Mask out pixel format bits in case we change it */
2103         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2104         switch (fb->pixel_format) {
2105         case DRM_FORMAT_C8:
2106                 dspcntr |= DISPPLANE_8BPP;
2107                 break;
2108         case DRM_FORMAT_RGB565:
2109                 dspcntr |= DISPPLANE_BGRX565;
2110                 break;
2111         case DRM_FORMAT_XRGB8888:
2112         case DRM_FORMAT_ARGB8888:
2113                 dspcntr |= DISPPLANE_BGRX888;
2114                 break;
2115         case DRM_FORMAT_XBGR8888:
2116         case DRM_FORMAT_ABGR8888:
2117                 dspcntr |= DISPPLANE_RGBX888;
2118                 break;
2119         case DRM_FORMAT_XRGB2101010:
2120         case DRM_FORMAT_ARGB2101010:
2121                 dspcntr |= DISPPLANE_BGRX101010;
2122                 break;
2123         case DRM_FORMAT_XBGR2101010:
2124         case DRM_FORMAT_ABGR2101010:
2125                 dspcntr |= DISPPLANE_RGBX101010;
2126                 break;
2127         default:
2128                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2129                 return -EINVAL;
2130         }
2131
2132         if (obj->tiling_mode != I915_TILING_NONE)
2133                 dspcntr |= DISPPLANE_TILED;
2134         else
2135                 dspcntr &= ~DISPPLANE_TILED;
2136
2137         /* must disable */
2138         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2139
2140         I915_WRITE(reg, dspcntr);
2141
2142         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2143         intel_crtc->dspaddr_offset =
2144                 intel_gen4_compute_offset_xtiled(&x, &y,
2145                                                  fb->bits_per_pixel / 8,
2146                                                  fb->pitches[0]);
2147         linear_offset -= intel_crtc->dspaddr_offset;
2148
2149         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2150                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2151         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2152         I915_MODIFY_DISPBASE(DSPSURF(plane),
2153                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2154         if (IS_HASWELL(dev)) {
2155                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2156         } else {
2157                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2158                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2159         }
2160         POSTING_READ(reg);
2161
2162         return 0;
2163 }
2164
2165 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2166 static int
2167 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2168                            int x, int y, enum mode_set_atomic state)
2169 {
2170         struct drm_device *dev = crtc->dev;
2171         struct drm_i915_private *dev_priv = dev->dev_private;
2172
2173         if (dev_priv->display.disable_fbc)
2174                 dev_priv->display.disable_fbc(dev);
2175         intel_increase_pllclock(crtc);
2176
2177         return dev_priv->display.update_plane(crtc, fb, x, y);
2178 }
2179
2180 static int
2181 intel_finish_fb(struct drm_framebuffer *old_fb)
2182 {
2183         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2184         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2185         bool was_interruptible = dev_priv->mm.interruptible;
2186         int ret;
2187
2188         wait_event(dev_priv->pending_flip_queue,
2189                    atomic_read(&dev_priv->mm.wedged) ||
2190                    atomic_read(&obj->pending_flip) == 0);
2191
2192         /* Big Hammer, we also need to ensure that any pending
2193          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2194          * current scanout is retired before unpinning the old
2195          * framebuffer.
2196          *
2197          * This should only fail upon a hung GPU, in which case we
2198          * can safely continue.
2199          */
2200         dev_priv->mm.interruptible = false;
2201         ret = i915_gem_object_finish_gpu(obj);
2202         dev_priv->mm.interruptible = was_interruptible;
2203
2204         return ret;
2205 }
2206
2207 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2208 {
2209         struct drm_device *dev = crtc->dev;
2210         struct drm_i915_master_private *master_priv;
2211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2212
2213         if (!dev->primary->master)
2214                 return;
2215
2216         master_priv = dev->primary->master->driver_priv;
2217         if (!master_priv->sarea_priv)
2218                 return;
2219
2220         switch (intel_crtc->pipe) {
2221         case 0:
2222                 master_priv->sarea_priv->pipeA_x = x;
2223                 master_priv->sarea_priv->pipeA_y = y;
2224                 break;
2225         case 1:
2226                 master_priv->sarea_priv->pipeB_x = x;
2227                 master_priv->sarea_priv->pipeB_y = y;
2228                 break;
2229         default:
2230                 break;
2231         }
2232 }
2233
2234 static int
2235 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2236                     struct drm_framebuffer *fb)
2237 {
2238         struct drm_device *dev = crtc->dev;
2239         struct drm_i915_private *dev_priv = dev->dev_private;
2240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2241         struct drm_framebuffer *old_fb;
2242         int ret;
2243
2244         /* no fb bound */
2245         if (!fb) {
2246                 DRM_ERROR("No FB bound\n");
2247                 return 0;
2248         }
2249
2250         if(intel_crtc->plane > dev_priv->num_pipe) {
2251                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2252                                 intel_crtc->plane,
2253                                 dev_priv->num_pipe);
2254                 return -EINVAL;
2255         }
2256
2257         mutex_lock(&dev->struct_mutex);
2258         ret = intel_pin_and_fence_fb_obj(dev,
2259                                          to_intel_framebuffer(fb)->obj,
2260                                          NULL);
2261         if (ret != 0) {
2262                 mutex_unlock(&dev->struct_mutex);
2263                 DRM_ERROR("pin & fence failed\n");
2264                 return ret;
2265         }
2266
2267         if (crtc->fb)
2268                 intel_finish_fb(crtc->fb);
2269
2270         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2271         if (ret) {
2272                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2273                 mutex_unlock(&dev->struct_mutex);
2274                 DRM_ERROR("failed to update base address\n");
2275                 return ret;
2276         }
2277
2278         old_fb = crtc->fb;
2279         crtc->fb = fb;
2280         crtc->x = x;
2281         crtc->y = y;
2282
2283         if (old_fb) {
2284                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2285                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2286         }
2287
2288         intel_update_fbc(dev);
2289         mutex_unlock(&dev->struct_mutex);
2290
2291         intel_crtc_update_sarea_pos(crtc, x, y);
2292
2293         return 0;
2294 }
2295
2296 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2297 {
2298         struct drm_device *dev = crtc->dev;
2299         struct drm_i915_private *dev_priv = dev->dev_private;
2300         u32 dpa_ctl;
2301
2302         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2303         dpa_ctl = I915_READ(DP_A);
2304         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2305
2306         if (clock < 200000) {
2307                 u32 temp;
2308                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2309                 /* workaround for 160Mhz:
2310                    1) program 0x4600c bits 15:0 = 0x8124
2311                    2) program 0x46010 bit 0 = 1
2312                    3) program 0x46034 bit 24 = 1
2313                    4) program 0x64000 bit 14 = 1
2314                    */
2315                 temp = I915_READ(0x4600c);
2316                 temp &= 0xffff0000;
2317                 I915_WRITE(0x4600c, temp | 0x8124);
2318
2319                 temp = I915_READ(0x46010);
2320                 I915_WRITE(0x46010, temp | 1);
2321
2322                 temp = I915_READ(0x46034);
2323                 I915_WRITE(0x46034, temp | (1 << 24));
2324         } else {
2325                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2326         }
2327         I915_WRITE(DP_A, dpa_ctl);
2328
2329         POSTING_READ(DP_A);
2330         udelay(500);
2331 }
2332
2333 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2334 {
2335         struct drm_device *dev = crtc->dev;
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338         int pipe = intel_crtc->pipe;
2339         u32 reg, temp;
2340
2341         /* enable normal train */
2342         reg = FDI_TX_CTL(pipe);
2343         temp = I915_READ(reg);
2344         if (IS_IVYBRIDGE(dev)) {
2345                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2346                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         } else {
2348                 temp &= ~FDI_LINK_TRAIN_NONE;
2349                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2350         }
2351         I915_WRITE(reg, temp);
2352
2353         reg = FDI_RX_CTL(pipe);
2354         temp = I915_READ(reg);
2355         if (HAS_PCH_CPT(dev)) {
2356                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2357                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2358         } else {
2359                 temp &= ~FDI_LINK_TRAIN_NONE;
2360                 temp |= FDI_LINK_TRAIN_NONE;
2361         }
2362         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2363
2364         /* wait one idle pattern time */
2365         POSTING_READ(reg);
2366         udelay(1000);
2367
2368         /* IVB wants error correction enabled */
2369         if (IS_IVYBRIDGE(dev))
2370                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2371                            FDI_FE_ERRC_ENABLE);
2372 }
2373
2374 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2375 {
2376         struct drm_i915_private *dev_priv = dev->dev_private;
2377         u32 flags = I915_READ(SOUTH_CHICKEN1);
2378
2379         flags |= FDI_PHASE_SYNC_OVR(pipe);
2380         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2381         flags |= FDI_PHASE_SYNC_EN(pipe);
2382         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2383         POSTING_READ(SOUTH_CHICKEN1);
2384 }
2385
2386 static void ivb_modeset_global_resources(struct drm_device *dev)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389         struct intel_crtc *pipe_B_crtc =
2390                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2391         struct intel_crtc *pipe_C_crtc =
2392                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2393         uint32_t temp;
2394
2395         /* When everything is off disable fdi C so that we could enable fdi B
2396          * with all lanes. XXX: This misses the case where a pipe is not using
2397          * any pch resources and so doesn't need any fdi lanes. */
2398         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2399                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2400                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2401
2402                 temp = I915_READ(SOUTH_CHICKEN1);
2403                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2404                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2405                 I915_WRITE(SOUTH_CHICKEN1, temp);
2406         }
2407 }
2408
2409 /* The FDI link training functions for ILK/Ibexpeak. */
2410 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2411 {
2412         struct drm_device *dev = crtc->dev;
2413         struct drm_i915_private *dev_priv = dev->dev_private;
2414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2415         int pipe = intel_crtc->pipe;
2416         int plane = intel_crtc->plane;
2417         u32 reg, temp, tries;
2418
2419         /* FDI needs bits from pipe & plane first */
2420         assert_pipe_enabled(dev_priv, pipe);
2421         assert_plane_enabled(dev_priv, plane);
2422
2423         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2424            for train result */
2425         reg = FDI_RX_IMR(pipe);
2426         temp = I915_READ(reg);
2427         temp &= ~FDI_RX_SYMBOL_LOCK;
2428         temp &= ~FDI_RX_BIT_LOCK;
2429         I915_WRITE(reg, temp);
2430         I915_READ(reg);
2431         udelay(150);
2432
2433         /* enable CPU FDI TX and PCH FDI RX */
2434         reg = FDI_TX_CTL(pipe);
2435         temp = I915_READ(reg);
2436         temp &= ~(7 << 19);
2437         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2438         temp &= ~FDI_LINK_TRAIN_NONE;
2439         temp |= FDI_LINK_TRAIN_PATTERN_1;
2440         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2441
2442         reg = FDI_RX_CTL(pipe);
2443         temp = I915_READ(reg);
2444         temp &= ~FDI_LINK_TRAIN_NONE;
2445         temp |= FDI_LINK_TRAIN_PATTERN_1;
2446         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2447
2448         POSTING_READ(reg);
2449         udelay(150);
2450
2451         /* Ironlake workaround, enable clock pointer after FDI enable*/
2452         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2453         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2454                    FDI_RX_PHASE_SYNC_POINTER_EN);
2455
2456         reg = FDI_RX_IIR(pipe);
2457         for (tries = 0; tries < 5; tries++) {
2458                 temp = I915_READ(reg);
2459                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2460
2461                 if ((temp & FDI_RX_BIT_LOCK)) {
2462                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2463                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2464                         break;
2465                 }
2466         }
2467         if (tries == 5)
2468                 DRM_ERROR("FDI train 1 fail!\n");
2469
2470         /* Train 2 */
2471         reg = FDI_TX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_LINK_TRAIN_NONE;
2474         temp |= FDI_LINK_TRAIN_PATTERN_2;
2475         I915_WRITE(reg, temp);
2476
2477         reg = FDI_RX_CTL(pipe);
2478         temp = I915_READ(reg);
2479         temp &= ~FDI_LINK_TRAIN_NONE;
2480         temp |= FDI_LINK_TRAIN_PATTERN_2;
2481         I915_WRITE(reg, temp);
2482
2483         POSTING_READ(reg);
2484         udelay(150);
2485
2486         reg = FDI_RX_IIR(pipe);
2487         for (tries = 0; tries < 5; tries++) {
2488                 temp = I915_READ(reg);
2489                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2490
2491                 if (temp & FDI_RX_SYMBOL_LOCK) {
2492                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2493                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2494                         break;
2495                 }
2496         }
2497         if (tries == 5)
2498                 DRM_ERROR("FDI train 2 fail!\n");
2499
2500         DRM_DEBUG_KMS("FDI train done\n");
2501
2502 }
2503
2504 static const int snb_b_fdi_train_param[] = {
2505         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2506         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2507         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2508         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2509 };
2510
2511 /* The FDI link training functions for SNB/Cougarpoint. */
2512 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2513 {
2514         struct drm_device *dev = crtc->dev;
2515         struct drm_i915_private *dev_priv = dev->dev_private;
2516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517         int pipe = intel_crtc->pipe;
2518         u32 reg, temp, i, retry;
2519
2520         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2521            for train result */
2522         reg = FDI_RX_IMR(pipe);
2523         temp = I915_READ(reg);
2524         temp &= ~FDI_RX_SYMBOL_LOCK;
2525         temp &= ~FDI_RX_BIT_LOCK;
2526         I915_WRITE(reg, temp);
2527
2528         POSTING_READ(reg);
2529         udelay(150);
2530
2531         /* enable CPU FDI TX and PCH FDI RX */
2532         reg = FDI_TX_CTL(pipe);
2533         temp = I915_READ(reg);
2534         temp &= ~(7 << 19);
2535         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2536         temp &= ~FDI_LINK_TRAIN_NONE;
2537         temp |= FDI_LINK_TRAIN_PATTERN_1;
2538         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2539         /* SNB-B */
2540         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2541         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2542
2543         I915_WRITE(FDI_RX_MISC(pipe),
2544                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2545
2546         reg = FDI_RX_CTL(pipe);
2547         temp = I915_READ(reg);
2548         if (HAS_PCH_CPT(dev)) {
2549                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2550                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2551         } else {
2552                 temp &= ~FDI_LINK_TRAIN_NONE;
2553                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2554         }
2555         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2556
2557         POSTING_READ(reg);
2558         udelay(150);
2559
2560         cpt_phase_pointer_enable(dev, pipe);
2561
2562         for (i = 0; i < 4; i++) {
2563                 reg = FDI_TX_CTL(pipe);
2564                 temp = I915_READ(reg);
2565                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566                 temp |= snb_b_fdi_train_param[i];
2567                 I915_WRITE(reg, temp);
2568
2569                 POSTING_READ(reg);
2570                 udelay(500);
2571
2572                 for (retry = 0; retry < 5; retry++) {
2573                         reg = FDI_RX_IIR(pipe);
2574                         temp = I915_READ(reg);
2575                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576                         if (temp & FDI_RX_BIT_LOCK) {
2577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579                                 break;
2580                         }
2581                         udelay(50);
2582                 }
2583                 if (retry < 5)
2584                         break;
2585         }
2586         if (i == 4)
2587                 DRM_ERROR("FDI train 1 fail!\n");
2588
2589         /* Train 2 */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_2;
2594         if (IS_GEN6(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596                 /* SNB-B */
2597                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598         }
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609         }
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_SYMBOL_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 2 fail!\n");
2641
2642         DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         int pipe = intel_crtc->pipe;
2652         u32 reg, temp, i;
2653
2654         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655            for train result */
2656         reg = FDI_RX_IMR(pipe);
2657         temp = I915_READ(reg);
2658         temp &= ~FDI_RX_SYMBOL_LOCK;
2659         temp &= ~FDI_RX_BIT_LOCK;
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666                       I915_READ(FDI_RX_IIR(pipe)));
2667
2668         /* enable CPU FDI TX and PCH FDI RX */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~(7 << 19);
2672         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677         temp |= FDI_COMPOSITE_SYNC;
2678         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680         I915_WRITE(FDI_RX_MISC(pipe),
2681                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         temp &= ~FDI_LINK_TRAIN_AUTO;
2686         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688         temp |= FDI_COMPOSITE_SYNC;
2689         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691         POSTING_READ(reg);
2692         udelay(150);
2693
2694         cpt_phase_pointer_enable(dev, pipe);
2695
2696         for (i = 0; i < 4; i++) {
2697                 reg = FDI_TX_CTL(pipe);
2698                 temp = I915_READ(reg);
2699                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2700                 temp |= snb_b_fdi_train_param[i];
2701                 I915_WRITE(reg, temp);
2702
2703                 POSTING_READ(reg);
2704                 udelay(500);
2705
2706                 reg = FDI_RX_IIR(pipe);
2707                 temp = I915_READ(reg);
2708                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709
2710                 if (temp & FDI_RX_BIT_LOCK ||
2711                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2712                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2713                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2714                         break;
2715                 }
2716         }
2717         if (i == 4)
2718                 DRM_ERROR("FDI train 1 fail!\n");
2719
2720         /* Train 2 */
2721         reg = FDI_TX_CTL(pipe);
2722         temp = I915_READ(reg);
2723         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2724         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2725         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727         I915_WRITE(reg, temp);
2728
2729         reg = FDI_RX_CTL(pipe);
2730         temp = I915_READ(reg);
2731         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2733         I915_WRITE(reg, temp);
2734
2735         POSTING_READ(reg);
2736         udelay(150);
2737
2738         for (i = 0; i < 4; i++) {
2739                 reg = FDI_TX_CTL(pipe);
2740                 temp = I915_READ(reg);
2741                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2742                 temp |= snb_b_fdi_train_param[i];
2743                 I915_WRITE(reg, temp);
2744
2745                 POSTING_READ(reg);
2746                 udelay(500);
2747
2748                 reg = FDI_RX_IIR(pipe);
2749                 temp = I915_READ(reg);
2750                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2751
2752                 if (temp & FDI_RX_SYMBOL_LOCK) {
2753                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2754                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2755                         break;
2756                 }
2757         }
2758         if (i == 4)
2759                 DRM_ERROR("FDI train 2 fail!\n");
2760
2761         DRM_DEBUG_KMS("FDI train done.\n");
2762 }
2763
2764 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2765 {
2766         struct drm_device *dev = intel_crtc->base.dev;
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         int pipe = intel_crtc->pipe;
2769         u32 reg, temp;
2770
2771
2772         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2773         reg = FDI_RX_CTL(pipe);
2774         temp = I915_READ(reg);
2775         temp &= ~((0x7 << 19) | (0x7 << 16));
2776         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2777         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2778         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2779
2780         POSTING_READ(reg);
2781         udelay(200);
2782
2783         /* Switch from Rawclk to PCDclk */
2784         temp = I915_READ(reg);
2785         I915_WRITE(reg, temp | FDI_PCDCLK);
2786
2787         POSTING_READ(reg);
2788         udelay(200);
2789
2790         /* Enable CPU FDI TX PLL, always on for Ironlake */
2791         reg = FDI_TX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2794                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2795
2796                 POSTING_READ(reg);
2797                 udelay(100);
2798         }
2799 }
2800
2801 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2802 {
2803         struct drm_device *dev = intel_crtc->base.dev;
2804         struct drm_i915_private *dev_priv = dev->dev_private;
2805         int pipe = intel_crtc->pipe;
2806         u32 reg, temp;
2807
2808         /* Switch from PCDclk to Rawclk */
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2812
2813         /* Disable CPU FDI TX PLL */
2814         reg = FDI_TX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2817
2818         POSTING_READ(reg);
2819         udelay(100);
2820
2821         reg = FDI_RX_CTL(pipe);
2822         temp = I915_READ(reg);
2823         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2824
2825         /* Wait for the clocks to turn off. */
2826         POSTING_READ(reg);
2827         udelay(100);
2828 }
2829
2830 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2831 {
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833         u32 flags = I915_READ(SOUTH_CHICKEN1);
2834
2835         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2836         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2837         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2838         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2839         POSTING_READ(SOUTH_CHICKEN1);
2840 }
2841 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2842 {
2843         struct drm_device *dev = crtc->dev;
2844         struct drm_i915_private *dev_priv = dev->dev_private;
2845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2846         int pipe = intel_crtc->pipe;
2847         u32 reg, temp;
2848
2849         /* disable CPU FDI tx and PCH FDI rx */
2850         reg = FDI_TX_CTL(pipe);
2851         temp = I915_READ(reg);
2852         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2853         POSTING_READ(reg);
2854
2855         reg = FDI_RX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         temp &= ~(0x7 << 16);
2858         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2859         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2860
2861         POSTING_READ(reg);
2862         udelay(100);
2863
2864         /* Ironlake workaround, disable clock pointer after downing FDI */
2865         if (HAS_PCH_IBX(dev)) {
2866                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2867         } else if (HAS_PCH_CPT(dev)) {
2868                 cpt_phase_pointer_disable(dev, pipe);
2869         }
2870
2871         /* still set train pattern 1 */
2872         reg = FDI_TX_CTL(pipe);
2873         temp = I915_READ(reg);
2874         temp &= ~FDI_LINK_TRAIN_NONE;
2875         temp |= FDI_LINK_TRAIN_PATTERN_1;
2876         I915_WRITE(reg, temp);
2877
2878         reg = FDI_RX_CTL(pipe);
2879         temp = I915_READ(reg);
2880         if (HAS_PCH_CPT(dev)) {
2881                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2882                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2883         } else {
2884                 temp &= ~FDI_LINK_TRAIN_NONE;
2885                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2886         }
2887         /* BPC in FDI rx is consistent with that in PIPECONF */
2888         temp &= ~(0x07 << 16);
2889         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2890         I915_WRITE(reg, temp);
2891
2892         POSTING_READ(reg);
2893         udelay(100);
2894 }
2895
2896 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2897 {
2898         struct drm_device *dev = crtc->dev;
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         unsigned long flags;
2901         bool pending;
2902
2903         if (atomic_read(&dev_priv->mm.wedged))
2904                 return false;
2905
2906         spin_lock_irqsave(&dev->event_lock, flags);
2907         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2908         spin_unlock_irqrestore(&dev->event_lock, flags);
2909
2910         return pending;
2911 }
2912
2913 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2914 {
2915         struct drm_device *dev = crtc->dev;
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917
2918         if (crtc->fb == NULL)
2919                 return;
2920
2921         wait_event(dev_priv->pending_flip_queue,
2922                    !intel_crtc_has_pending_flip(crtc));
2923
2924         mutex_lock(&dev->struct_mutex);
2925         intel_finish_fb(crtc->fb);
2926         mutex_unlock(&dev->struct_mutex);
2927 }
2928
2929 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2930 {
2931         struct drm_device *dev = crtc->dev;
2932         struct intel_encoder *intel_encoder;
2933
2934         /*
2935          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2936          * must be driven by its own crtc; no sharing is possible.
2937          */
2938         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2939                 switch (intel_encoder->type) {
2940                 case INTEL_OUTPUT_EDP:
2941                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2942                                 return false;
2943                         continue;
2944                 }
2945         }
2946
2947         return true;
2948 }
2949
2950 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2951 {
2952         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2953 }
2954
2955 /* Program iCLKIP clock to the desired frequency */
2956 static void lpt_program_iclkip(struct drm_crtc *crtc)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2961         u32 temp;
2962
2963         /* It is necessary to ungate the pixclk gate prior to programming
2964          * the divisors, and gate it back when it is done.
2965          */
2966         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2967
2968         /* Disable SSCCTL */
2969         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2970                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2971                                         SBI_SSCCTL_DISABLE);
2972
2973         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2974         if (crtc->mode.clock == 20000) {
2975                 auxdiv = 1;
2976                 divsel = 0x41;
2977                 phaseinc = 0x20;
2978         } else {
2979                 /* The iCLK virtual clock root frequency is in MHz,
2980                  * but the crtc->mode.clock in in KHz. To get the divisors,
2981                  * it is necessary to divide one by another, so we
2982                  * convert the virtual clock precision to KHz here for higher
2983                  * precision.
2984                  */
2985                 u32 iclk_virtual_root_freq = 172800 * 1000;
2986                 u32 iclk_pi_range = 64;
2987                 u32 desired_divisor, msb_divisor_value, pi_value;
2988
2989                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2990                 msb_divisor_value = desired_divisor / iclk_pi_range;
2991                 pi_value = desired_divisor % iclk_pi_range;
2992
2993                 auxdiv = 0;
2994                 divsel = msb_divisor_value - 2;
2995                 phaseinc = pi_value;
2996         }
2997
2998         /* This should not happen with any sane values */
2999         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3000                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3001         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3002                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3003
3004         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3005                         crtc->mode.clock,
3006                         auxdiv,
3007                         divsel,
3008                         phasedir,
3009                         phaseinc);
3010
3011         /* Program SSCDIVINTPHASE6 */
3012         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3013         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3014         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3015         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3016         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3017         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3018         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3019
3020         intel_sbi_write(dev_priv,
3021                         SBI_SSCDIVINTPHASE6,
3022                         temp);
3023
3024         /* Program SSCAUXDIV */
3025         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3026         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3027         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3028         intel_sbi_write(dev_priv,
3029                         SBI_SSCAUXDIV6,
3030                         temp);
3031
3032
3033         /* Enable modulator and associated divider */
3034         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3035         temp &= ~SBI_SSCCTL_DISABLE;
3036         intel_sbi_write(dev_priv,
3037                         SBI_SSCCTL6,
3038                         temp);
3039
3040         /* Wait for initialization time */
3041         udelay(24);
3042
3043         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3044 }
3045
3046 /*
3047  * Enable PCH resources required for PCH ports:
3048  *   - PCH PLLs
3049  *   - FDI training & RX/TX
3050  *   - update transcoder timings
3051  *   - DP transcoding bits
3052  *   - transcoder
3053  */
3054 static void ironlake_pch_enable(struct drm_crtc *crtc)
3055 {
3056         struct drm_device *dev = crtc->dev;
3057         struct drm_i915_private *dev_priv = dev->dev_private;
3058         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3059         int pipe = intel_crtc->pipe;
3060         u32 reg, temp;
3061
3062         assert_transcoder_disabled(dev_priv, pipe);
3063
3064         /* Write the TU size bits before fdi link training, so that error
3065          * detection works. */
3066         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3067                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3068
3069         /* For PCH output, training FDI link */
3070         dev_priv->display.fdi_link_train(crtc);
3071
3072         /* XXX: pch pll's can be enabled any time before we enable the PCH
3073          * transcoder, and we actually should do this to not upset any PCH
3074          * transcoder that already use the clock when we share it.
3075          *
3076          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3077          * unconditionally resets the pll - we need that to have the right LVDS
3078          * enable sequence. */
3079         ironlake_enable_pch_pll(intel_crtc);
3080
3081         if (HAS_PCH_CPT(dev)) {
3082                 u32 sel;
3083
3084                 temp = I915_READ(PCH_DPLL_SEL);
3085                 switch (pipe) {
3086                 default:
3087                 case 0:
3088                         temp |= TRANSA_DPLL_ENABLE;
3089                         sel = TRANSA_DPLLB_SEL;
3090                         break;
3091                 case 1:
3092                         temp |= TRANSB_DPLL_ENABLE;
3093                         sel = TRANSB_DPLLB_SEL;
3094                         break;
3095                 case 2:
3096                         temp |= TRANSC_DPLL_ENABLE;
3097                         sel = TRANSC_DPLLB_SEL;
3098                         break;
3099                 }
3100                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3101                         temp |= sel;
3102                 else
3103                         temp &= ~sel;
3104                 I915_WRITE(PCH_DPLL_SEL, temp);
3105         }
3106
3107         /* set transcoder timing, panel must allow it */
3108         assert_panel_unlocked(dev_priv, pipe);
3109         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3110         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3111         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3112
3113         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3114         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3115         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3116         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3117
3118         intel_fdi_normal_train(crtc);
3119
3120         /* For PCH DP, enable TRANS_DP_CTL */
3121         if (HAS_PCH_CPT(dev) &&
3122             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3123              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3124                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3125                 reg = TRANS_DP_CTL(pipe);
3126                 temp = I915_READ(reg);
3127                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3128                           TRANS_DP_SYNC_MASK |
3129                           TRANS_DP_BPC_MASK);
3130                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3131                          TRANS_DP_ENH_FRAMING);
3132                 temp |= bpc << 9; /* same format but at 11:9 */
3133
3134                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3135                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3136                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3137                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3138
3139                 switch (intel_trans_dp_port_sel(crtc)) {
3140                 case PCH_DP_B:
3141                         temp |= TRANS_DP_PORT_SEL_B;
3142                         break;
3143                 case PCH_DP_C:
3144                         temp |= TRANS_DP_PORT_SEL_C;
3145                         break;
3146                 case PCH_DP_D:
3147                         temp |= TRANS_DP_PORT_SEL_D;
3148                         break;
3149                 default:
3150                         BUG();
3151                 }
3152
3153                 I915_WRITE(reg, temp);
3154         }
3155
3156         ironlake_enable_pch_transcoder(dev_priv, pipe);
3157 }
3158
3159 static void lpt_pch_enable(struct drm_crtc *crtc)
3160 {
3161         struct drm_device *dev = crtc->dev;
3162         struct drm_i915_private *dev_priv = dev->dev_private;
3163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3164         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3165
3166         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3167
3168         lpt_program_iclkip(crtc);
3169
3170         /* Set transcoder timing. */
3171         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3172         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3173         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3174
3175         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3176         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3177         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3178         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3179
3180         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3181 }
3182
3183 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3184 {
3185         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3186
3187         if (pll == NULL)
3188                 return;
3189
3190         if (pll->refcount == 0) {
3191                 WARN(1, "bad PCH PLL refcount\n");
3192                 return;
3193         }
3194
3195         --pll->refcount;
3196         intel_crtc->pch_pll = NULL;
3197 }
3198
3199 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3200 {
3201         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3202         struct intel_pch_pll *pll;
3203         int i;
3204
3205         pll = intel_crtc->pch_pll;
3206         if (pll) {
3207                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3208                               intel_crtc->base.base.id, pll->pll_reg);
3209                 goto prepare;
3210         }
3211
3212         if (HAS_PCH_IBX(dev_priv->dev)) {
3213                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3214                 i = intel_crtc->pipe;
3215                 pll = &dev_priv->pch_plls[i];
3216
3217                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3218                               intel_crtc->base.base.id, pll->pll_reg);
3219
3220                 goto found;
3221         }
3222
3223         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3224                 pll = &dev_priv->pch_plls[i];
3225
3226                 /* Only want to check enabled timings first */
3227                 if (pll->refcount == 0)
3228                         continue;
3229
3230                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3231                     fp == I915_READ(pll->fp0_reg)) {
3232                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3233                                       intel_crtc->base.base.id,
3234                                       pll->pll_reg, pll->refcount, pll->active);
3235
3236                         goto found;
3237                 }
3238         }
3239
3240         /* Ok no matching timings, maybe there's a free one? */
3241         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3242                 pll = &dev_priv->pch_plls[i];
3243                 if (pll->refcount == 0) {
3244                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3245                                       intel_crtc->base.base.id, pll->pll_reg);
3246                         goto found;
3247                 }
3248         }
3249
3250         return NULL;
3251
3252 found:
3253         intel_crtc->pch_pll = pll;
3254         pll->refcount++;
3255         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3256 prepare: /* separate function? */
3257         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3258
3259         /* Wait for the clocks to stabilize before rewriting the regs */
3260         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3261         POSTING_READ(pll->pll_reg);
3262         udelay(150);
3263
3264         I915_WRITE(pll->fp0_reg, fp);
3265         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3266         pll->on = false;
3267         return pll;
3268 }
3269
3270 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3271 {
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273         int dslreg = PIPEDSL(pipe);
3274         u32 temp;
3275
3276         temp = I915_READ(dslreg);
3277         udelay(500);
3278         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3279                 if (wait_for(I915_READ(dslreg) != temp, 5))
3280                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3281         }
3282 }
3283
3284 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3285 {
3286         struct drm_device *dev = crtc->dev;
3287         struct drm_i915_private *dev_priv = dev->dev_private;
3288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289         struct intel_encoder *encoder;
3290         int pipe = intel_crtc->pipe;
3291         int plane = intel_crtc->plane;
3292         u32 temp;
3293         bool is_pch_port;
3294
3295         WARN_ON(!crtc->enabled);
3296
3297         if (intel_crtc->active)
3298                 return;
3299
3300         intel_crtc->active = true;
3301         intel_update_watermarks(dev);
3302
3303         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3304                 temp = I915_READ(PCH_LVDS);
3305                 if ((temp & LVDS_PORT_EN) == 0)
3306                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3307         }
3308
3309         is_pch_port = ironlake_crtc_driving_pch(crtc);
3310
3311         if (is_pch_port) {
3312                 /* Note: FDI PLL enabling _must_ be done before we enable the
3313                  * cpu pipes, hence this is separate from all the other fdi/pch
3314                  * enabling. */
3315                 ironlake_fdi_pll_enable(intel_crtc);
3316         } else {
3317                 assert_fdi_tx_disabled(dev_priv, pipe);
3318                 assert_fdi_rx_disabled(dev_priv, pipe);
3319         }
3320
3321         for_each_encoder_on_crtc(dev, crtc, encoder)
3322                 if (encoder->pre_enable)
3323                         encoder->pre_enable(encoder);
3324
3325         /* Enable panel fitting for LVDS */
3326         if (dev_priv->pch_pf_size &&
3327             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3328              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3329                 /* Force use of hard-coded filter coefficients
3330                  * as some pre-programmed values are broken,
3331                  * e.g. x201.
3332                  */
3333                 if (IS_IVYBRIDGE(dev))
3334                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3335                                                  PF_PIPE_SEL_IVB(pipe));
3336                 else
3337                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3338                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3339                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3340         }
3341
3342         /*
3343          * On ILK+ LUT must be loaded before the pipe is running but with
3344          * clocks enabled
3345          */
3346         intel_crtc_load_lut(crtc);
3347
3348         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3349         intel_enable_plane(dev_priv, plane, pipe);
3350
3351         if (is_pch_port)
3352                 ironlake_pch_enable(crtc);
3353
3354         mutex_lock(&dev->struct_mutex);
3355         intel_update_fbc(dev);
3356         mutex_unlock(&dev->struct_mutex);
3357
3358         intel_crtc_update_cursor(crtc, true);
3359
3360         for_each_encoder_on_crtc(dev, crtc, encoder)
3361                 encoder->enable(encoder);
3362
3363         if (HAS_PCH_CPT(dev))
3364                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3365
3366         /*
3367          * There seems to be a race in PCH platform hw (at least on some
3368          * outputs) where an enabled pipe still completes any pageflip right
3369          * away (as if the pipe is off) instead of waiting for vblank. As soon
3370          * as the first vblank happend, everything works as expected. Hence just
3371          * wait for one vblank before returning to avoid strange things
3372          * happening.
3373          */
3374         intel_wait_for_vblank(dev, intel_crtc->pipe);
3375 }
3376
3377 static void haswell_crtc_enable(struct drm_crtc *crtc)
3378 {
3379         struct drm_device *dev = crtc->dev;
3380         struct drm_i915_private *dev_priv = dev->dev_private;
3381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382         struct intel_encoder *encoder;
3383         int pipe = intel_crtc->pipe;
3384         int plane = intel_crtc->plane;
3385         bool is_pch_port;
3386
3387         WARN_ON(!crtc->enabled);
3388
3389         if (intel_crtc->active)
3390                 return;
3391
3392         intel_crtc->active = true;
3393         intel_update_watermarks(dev);
3394
3395         is_pch_port = haswell_crtc_driving_pch(crtc);
3396
3397         if (is_pch_port)
3398                 dev_priv->display.fdi_link_train(crtc);
3399
3400         for_each_encoder_on_crtc(dev, crtc, encoder)
3401                 if (encoder->pre_enable)
3402                         encoder->pre_enable(encoder);
3403
3404         intel_ddi_enable_pipe_clock(intel_crtc);
3405
3406         /* Enable panel fitting for eDP */
3407         if (dev_priv->pch_pf_size &&
3408             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3409                 /* Force use of hard-coded filter coefficients
3410                  * as some pre-programmed values are broken,
3411                  * e.g. x201.
3412                  */
3413                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3414                                          PF_PIPE_SEL_IVB(pipe));
3415                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3416                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3417         }
3418
3419         /*
3420          * On ILK+ LUT must be loaded before the pipe is running but with
3421          * clocks enabled
3422          */
3423         intel_crtc_load_lut(crtc);
3424
3425         intel_ddi_set_pipe_settings(crtc);
3426         intel_ddi_enable_pipe_func(crtc);
3427
3428         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3429         intel_enable_plane(dev_priv, plane, pipe);
3430
3431         if (is_pch_port)
3432                 lpt_pch_enable(crtc);
3433
3434         mutex_lock(&dev->struct_mutex);
3435         intel_update_fbc(dev);
3436         mutex_unlock(&dev->struct_mutex);
3437
3438         intel_crtc_update_cursor(crtc, true);
3439
3440         for_each_encoder_on_crtc(dev, crtc, encoder)
3441                 encoder->enable(encoder);
3442
3443         /*
3444          * There seems to be a race in PCH platform hw (at least on some
3445          * outputs) where an enabled pipe still completes any pageflip right
3446          * away (as if the pipe is off) instead of waiting for vblank. As soon
3447          * as the first vblank happend, everything works as expected. Hence just
3448          * wait for one vblank before returning to avoid strange things
3449          * happening.
3450          */
3451         intel_wait_for_vblank(dev, intel_crtc->pipe);
3452 }
3453
3454 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3455 {
3456         struct drm_device *dev = crtc->dev;
3457         struct drm_i915_private *dev_priv = dev->dev_private;
3458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3459         struct intel_encoder *encoder;
3460         int pipe = intel_crtc->pipe;
3461         int plane = intel_crtc->plane;
3462         u32 reg, temp;
3463
3464
3465         if (!intel_crtc->active)
3466                 return;
3467
3468         for_each_encoder_on_crtc(dev, crtc, encoder)
3469                 encoder->disable(encoder);
3470
3471         intel_crtc_wait_for_pending_flips(crtc);
3472         drm_vblank_off(dev, pipe);
3473         intel_crtc_update_cursor(crtc, false);
3474
3475         intel_disable_plane(dev_priv, plane, pipe);
3476
3477         if (dev_priv->cfb_plane == plane)
3478                 intel_disable_fbc(dev);
3479
3480         intel_disable_pipe(dev_priv, pipe);
3481
3482         /* Disable PF */
3483         I915_WRITE(PF_CTL(pipe), 0);
3484         I915_WRITE(PF_WIN_SZ(pipe), 0);
3485
3486         for_each_encoder_on_crtc(dev, crtc, encoder)
3487                 if (encoder->post_disable)
3488                         encoder->post_disable(encoder);
3489
3490         ironlake_fdi_disable(crtc);
3491
3492         ironlake_disable_pch_transcoder(dev_priv, pipe);
3493
3494         if (HAS_PCH_CPT(dev)) {
3495                 /* disable TRANS_DP_CTL */
3496                 reg = TRANS_DP_CTL(pipe);
3497                 temp = I915_READ(reg);
3498                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3499                 temp |= TRANS_DP_PORT_SEL_NONE;
3500                 I915_WRITE(reg, temp);
3501
3502                 /* disable DPLL_SEL */
3503                 temp = I915_READ(PCH_DPLL_SEL);
3504                 switch (pipe) {
3505                 case 0:
3506                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3507                         break;
3508                 case 1:
3509                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3510                         break;
3511                 case 2:
3512                         /* C shares PLL A or B */
3513                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3514                         break;
3515                 default:
3516                         BUG(); /* wtf */
3517                 }
3518                 I915_WRITE(PCH_DPLL_SEL, temp);
3519         }
3520
3521         /* disable PCH DPLL */
3522         intel_disable_pch_pll(intel_crtc);
3523
3524         ironlake_fdi_pll_disable(intel_crtc);
3525
3526         intel_crtc->active = false;
3527         intel_update_watermarks(dev);
3528
3529         mutex_lock(&dev->struct_mutex);
3530         intel_update_fbc(dev);
3531         mutex_unlock(&dev->struct_mutex);
3532 }
3533
3534 static void haswell_crtc_disable(struct drm_crtc *crtc)
3535 {
3536         struct drm_device *dev = crtc->dev;
3537         struct drm_i915_private *dev_priv = dev->dev_private;
3538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3539         struct intel_encoder *encoder;
3540         int pipe = intel_crtc->pipe;
3541         int plane = intel_crtc->plane;
3542         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3543         bool is_pch_port;
3544
3545         if (!intel_crtc->active)
3546                 return;
3547
3548         is_pch_port = haswell_crtc_driving_pch(crtc);
3549
3550         for_each_encoder_on_crtc(dev, crtc, encoder)
3551                 encoder->disable(encoder);
3552
3553         intel_crtc_wait_for_pending_flips(crtc);
3554         drm_vblank_off(dev, pipe);
3555         intel_crtc_update_cursor(crtc, false);
3556
3557         intel_disable_plane(dev_priv, plane, pipe);
3558
3559         if (dev_priv->cfb_plane == plane)
3560                 intel_disable_fbc(dev);
3561
3562         intel_disable_pipe(dev_priv, pipe);
3563
3564         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3565
3566         /* Disable PF */
3567         I915_WRITE(PF_CTL(pipe), 0);
3568         I915_WRITE(PF_WIN_SZ(pipe), 0);
3569
3570         intel_ddi_disable_pipe_clock(intel_crtc);
3571
3572         for_each_encoder_on_crtc(dev, crtc, encoder)
3573                 if (encoder->post_disable)
3574                         encoder->post_disable(encoder);
3575
3576         if (is_pch_port) {
3577                 lpt_disable_pch_transcoder(dev_priv);
3578                 intel_ddi_fdi_disable(crtc);
3579         }
3580
3581         intel_crtc->active = false;
3582         intel_update_watermarks(dev);
3583
3584         mutex_lock(&dev->struct_mutex);
3585         intel_update_fbc(dev);
3586         mutex_unlock(&dev->struct_mutex);
3587 }
3588
3589 static void ironlake_crtc_off(struct drm_crtc *crtc)
3590 {
3591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3592         intel_put_pch_pll(intel_crtc);
3593 }
3594
3595 static void haswell_crtc_off(struct drm_crtc *crtc)
3596 {
3597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3598
3599         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3600          * start using it. */
3601         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3602
3603         intel_ddi_put_crtc_pll(crtc);
3604 }
3605
3606 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3607 {
3608         if (!enable && intel_crtc->overlay) {
3609                 struct drm_device *dev = intel_crtc->base.dev;
3610                 struct drm_i915_private *dev_priv = dev->dev_private;
3611
3612                 mutex_lock(&dev->struct_mutex);
3613                 dev_priv->mm.interruptible = false;
3614                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3615                 dev_priv->mm.interruptible = true;
3616                 mutex_unlock(&dev->struct_mutex);
3617         }
3618
3619         /* Let userspace switch the overlay on again. In most cases userspace
3620          * has to recompute where to put it anyway.
3621          */
3622 }
3623
3624 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3625 {
3626         struct drm_device *dev = crtc->dev;
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629         struct intel_encoder *encoder;
3630         int pipe = intel_crtc->pipe;
3631         int plane = intel_crtc->plane;
3632
3633         WARN_ON(!crtc->enabled);
3634
3635         if (intel_crtc->active)
3636                 return;
3637
3638         intel_crtc->active = true;
3639         intel_update_watermarks(dev);
3640
3641         intel_enable_pll(dev_priv, pipe);
3642         intel_enable_pipe(dev_priv, pipe, false);
3643         intel_enable_plane(dev_priv, plane, pipe);
3644
3645         intel_crtc_load_lut(crtc);
3646         intel_update_fbc(dev);
3647
3648         /* Give the overlay scaler a chance to enable if it's on this pipe */
3649         intel_crtc_dpms_overlay(intel_crtc, true);
3650         intel_crtc_update_cursor(crtc, true);
3651
3652         for_each_encoder_on_crtc(dev, crtc, encoder)
3653                 encoder->enable(encoder);
3654 }
3655
3656 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3657 {
3658         struct drm_device *dev = crtc->dev;
3659         struct drm_i915_private *dev_priv = dev->dev_private;
3660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3661         struct intel_encoder *encoder;
3662         int pipe = intel_crtc->pipe;
3663         int plane = intel_crtc->plane;
3664
3665
3666         if (!intel_crtc->active)
3667                 return;
3668
3669         for_each_encoder_on_crtc(dev, crtc, encoder)
3670                 encoder->disable(encoder);
3671
3672         /* Give the overlay scaler a chance to disable if it's on this pipe */
3673         intel_crtc_wait_for_pending_flips(crtc);
3674         drm_vblank_off(dev, pipe);
3675         intel_crtc_dpms_overlay(intel_crtc, false);
3676         intel_crtc_update_cursor(crtc, false);
3677
3678         if (dev_priv->cfb_plane == plane)
3679                 intel_disable_fbc(dev);
3680
3681         intel_disable_plane(dev_priv, plane, pipe);
3682         intel_disable_pipe(dev_priv, pipe);
3683         intel_disable_pll(dev_priv, pipe);
3684
3685         intel_crtc->active = false;
3686         intel_update_fbc(dev);
3687         intel_update_watermarks(dev);
3688 }
3689
3690 static void i9xx_crtc_off(struct drm_crtc *crtc)
3691 {
3692 }
3693
3694 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3695                                     bool enabled)
3696 {
3697         struct drm_device *dev = crtc->dev;
3698         struct drm_i915_master_private *master_priv;
3699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3700         int pipe = intel_crtc->pipe;
3701
3702         if (!dev->primary->master)
3703                 return;
3704
3705         master_priv = dev->primary->master->driver_priv;
3706         if (!master_priv->sarea_priv)
3707                 return;
3708
3709         switch (pipe) {
3710         case 0:
3711                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3712                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3713                 break;
3714         case 1:
3715                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3716                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3717                 break;
3718         default:
3719                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3720                 break;
3721         }
3722 }
3723
3724 /**
3725  * Sets the power management mode of the pipe and plane.
3726  */
3727 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3728 {
3729         struct drm_device *dev = crtc->dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731         struct intel_encoder *intel_encoder;
3732         bool enable = false;
3733
3734         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3735                 enable |= intel_encoder->connectors_active;
3736
3737         if (enable)
3738                 dev_priv->display.crtc_enable(crtc);
3739         else
3740                 dev_priv->display.crtc_disable(crtc);
3741
3742         intel_crtc_update_sarea(crtc, enable);
3743 }
3744
3745 static void intel_crtc_noop(struct drm_crtc *crtc)
3746 {
3747 }
3748
3749 static void intel_crtc_disable(struct drm_crtc *crtc)
3750 {
3751         struct drm_device *dev = crtc->dev;
3752         struct drm_connector *connector;
3753         struct drm_i915_private *dev_priv = dev->dev_private;
3754
3755         /* crtc should still be enabled when we disable it. */
3756         WARN_ON(!crtc->enabled);
3757
3758         dev_priv->display.crtc_disable(crtc);
3759         intel_crtc_update_sarea(crtc, false);
3760         dev_priv->display.off(crtc);
3761
3762         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3763         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3764
3765         if (crtc->fb) {
3766                 mutex_lock(&dev->struct_mutex);
3767                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3768                 mutex_unlock(&dev->struct_mutex);
3769                 crtc->fb = NULL;
3770         }
3771
3772         /* Update computed state. */
3773         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3774                 if (!connector->encoder || !connector->encoder->crtc)
3775                         continue;
3776
3777                 if (connector->encoder->crtc != crtc)
3778                         continue;
3779
3780                 connector->dpms = DRM_MODE_DPMS_OFF;
3781                 to_intel_encoder(connector->encoder)->connectors_active = false;
3782         }
3783 }
3784
3785 void intel_modeset_disable(struct drm_device *dev)
3786 {
3787         struct drm_crtc *crtc;
3788
3789         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3790                 if (crtc->enabled)
3791                         intel_crtc_disable(crtc);
3792         }
3793 }
3794
3795 void intel_encoder_noop(struct drm_encoder *encoder)
3796 {
3797 }
3798
3799 void intel_encoder_destroy(struct drm_encoder *encoder)
3800 {
3801         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3802
3803         drm_encoder_cleanup(encoder);
3804         kfree(intel_encoder);
3805 }
3806
3807 /* Simple dpms helper for encodres with just one connector, no cloning and only
3808  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3809  * state of the entire output pipe. */
3810 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3811 {
3812         if (mode == DRM_MODE_DPMS_ON) {
3813                 encoder->connectors_active = true;
3814
3815                 intel_crtc_update_dpms(encoder->base.crtc);
3816         } else {
3817                 encoder->connectors_active = false;
3818
3819                 intel_crtc_update_dpms(encoder->base.crtc);
3820         }
3821 }
3822
3823 /* Cross check the actual hw state with our own modeset state tracking (and it's
3824  * internal consistency). */
3825 static void intel_connector_check_state(struct intel_connector *connector)
3826 {
3827         if (connector->get_hw_state(connector)) {
3828                 struct intel_encoder *encoder = connector->encoder;
3829                 struct drm_crtc *crtc;
3830                 bool encoder_enabled;
3831                 enum pipe pipe;
3832
3833                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3834                               connector->base.base.id,
3835                               drm_get_connector_name(&connector->base));
3836
3837                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3838                      "wrong connector dpms state\n");
3839                 WARN(connector->base.encoder != &encoder->base,
3840                      "active connector not linked to encoder\n");
3841                 WARN(!encoder->connectors_active,
3842                      "encoder->connectors_active not set\n");
3843
3844                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3845                 WARN(!encoder_enabled, "encoder not enabled\n");
3846                 if (WARN_ON(!encoder->base.crtc))
3847                         return;
3848
3849                 crtc = encoder->base.crtc;
3850
3851                 WARN(!crtc->enabled, "crtc not enabled\n");
3852                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3853                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3854                      "encoder active on the wrong pipe\n");
3855         }
3856 }
3857
3858 /* Even simpler default implementation, if there's really no special case to
3859  * consider. */
3860 void intel_connector_dpms(struct drm_connector *connector, int mode)
3861 {
3862         struct intel_encoder *encoder = intel_attached_encoder(connector);
3863
3864         /* All the simple cases only support two dpms states. */
3865         if (mode != DRM_MODE_DPMS_ON)
3866                 mode = DRM_MODE_DPMS_OFF;
3867
3868         if (mode == connector->dpms)
3869                 return;
3870
3871         connector->dpms = mode;
3872
3873         /* Only need to change hw state when actually enabled */
3874         if (encoder->base.crtc)
3875                 intel_encoder_dpms(encoder, mode);
3876         else
3877                 WARN_ON(encoder->connectors_active != false);
3878
3879         intel_modeset_check_state(connector->dev);
3880 }
3881
3882 /* Simple connector->get_hw_state implementation for encoders that support only
3883  * one connector and no cloning and hence the encoder state determines the state
3884  * of the connector. */
3885 bool intel_connector_get_hw_state(struct intel_connector *connector)
3886 {
3887         enum pipe pipe = 0;
3888         struct intel_encoder *encoder = connector->encoder;
3889
3890         return encoder->get_hw_state(encoder, &pipe);
3891 }
3892
3893 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3894                                   const struct drm_display_mode *mode,
3895                                   struct drm_display_mode *adjusted_mode)
3896 {
3897         struct drm_device *dev = crtc->dev;
3898
3899         if (HAS_PCH_SPLIT(dev)) {
3900                 /* FDI link clock is fixed at 2.7G */
3901                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3902                         return false;
3903         }
3904
3905         /* All interlaced capable intel hw wants timings in frames. Note though
3906          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3907          * timings, so we need to be careful not to clobber these.*/
3908         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3909                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3910
3911         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3912          * with a hsync front porch of 0.
3913          */
3914         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3915                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3916                 return false;
3917
3918         return true;
3919 }
3920
3921 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3922 {
3923         return 400000; /* FIXME */
3924 }
3925
3926 static int i945_get_display_clock_speed(struct drm_device *dev)
3927 {
3928         return 400000;
3929 }
3930
3931 static int i915_get_display_clock_speed(struct drm_device *dev)
3932 {
3933         return 333000;
3934 }
3935
3936 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3937 {
3938         return 200000;
3939 }
3940
3941 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3942 {
3943         u16 gcfgc = 0;
3944
3945         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3946
3947         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3948                 return 133000;
3949         else {
3950                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3951                 case GC_DISPLAY_CLOCK_333_MHZ:
3952                         return 333000;
3953                 default:
3954                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3955                         return 190000;
3956                 }
3957         }
3958 }
3959
3960 static int i865_get_display_clock_speed(struct drm_device *dev)
3961 {
3962         return 266000;
3963 }
3964
3965 static int i855_get_display_clock_speed(struct drm_device *dev)
3966 {
3967         u16 hpllcc = 0;
3968         /* Assume that the hardware is in the high speed state.  This
3969          * should be the default.
3970          */
3971         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3972         case GC_CLOCK_133_200:
3973         case GC_CLOCK_100_200:
3974                 return 200000;
3975         case GC_CLOCK_166_250:
3976                 return 250000;
3977         case GC_CLOCK_100_133:
3978                 return 133000;
3979         }
3980
3981         /* Shouldn't happen */
3982         return 0;
3983 }
3984
3985 static int i830_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 133000;
3988 }
3989
3990 struct fdi_m_n {
3991         u32        tu;
3992         u32        gmch_m;
3993         u32        gmch_n;
3994         u32        link_m;
3995         u32        link_n;
3996 };
3997
3998 static void
3999 fdi_reduce_ratio(u32 *num, u32 *den)
4000 {
4001         while (*num > 0xffffff || *den > 0xffffff) {
4002                 *num >>= 1;
4003                 *den >>= 1;
4004         }
4005 }
4006
4007 static void
4008 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4009                      int link_clock, struct fdi_m_n *m_n)
4010 {
4011         m_n->tu = 64; /* default size */
4012
4013         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4014         m_n->gmch_m = bits_per_pixel * pixel_clock;
4015         m_n->gmch_n = link_clock * nlanes * 8;
4016         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4017
4018         m_n->link_m = pixel_clock;
4019         m_n->link_n = link_clock;
4020         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4021 }
4022
4023 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4024 {
4025         if (i915_panel_use_ssc >= 0)
4026                 return i915_panel_use_ssc != 0;
4027         return dev_priv->lvds_use_ssc
4028                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4029 }
4030
4031 /**
4032  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4033  * @crtc: CRTC structure
4034  * @mode: requested mode
4035  *
4036  * A pipe may be connected to one or more outputs.  Based on the depth of the
4037  * attached framebuffer, choose a good color depth to use on the pipe.
4038  *
4039  * If possible, match the pipe depth to the fb depth.  In some cases, this
4040  * isn't ideal, because the connected output supports a lesser or restricted
4041  * set of depths.  Resolve that here:
4042  *    LVDS typically supports only 6bpc, so clamp down in that case
4043  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4044  *    Displays may support a restricted set as well, check EDID and clamp as
4045  *      appropriate.
4046  *    DP may want to dither down to 6bpc to fit larger modes
4047  *
4048  * RETURNS:
4049  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4050  * true if they don't match).
4051  */
4052 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4053                                          struct drm_framebuffer *fb,
4054                                          unsigned int *pipe_bpp,
4055                                          struct drm_display_mode *mode)
4056 {
4057         struct drm_device *dev = crtc->dev;
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059         struct drm_connector *connector;
4060         struct intel_encoder *intel_encoder;
4061         unsigned int display_bpc = UINT_MAX, bpc;
4062
4063         /* Walk the encoders & connectors on this crtc, get min bpc */
4064         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4065
4066                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4067                         unsigned int lvds_bpc;
4068
4069                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4070                             LVDS_A3_POWER_UP)
4071                                 lvds_bpc = 8;
4072                         else
4073                                 lvds_bpc = 6;
4074
4075                         if (lvds_bpc < display_bpc) {
4076                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4077                                 display_bpc = lvds_bpc;
4078                         }
4079                         continue;
4080                 }
4081
4082                 /* Not one of the known troublemakers, check the EDID */
4083                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4084                                     head) {
4085                         if (connector->encoder != &intel_encoder->base)
4086                                 continue;
4087
4088                         /* Don't use an invalid EDID bpc value */
4089                         if (connector->display_info.bpc &&
4090                             connector->display_info.bpc < display_bpc) {
4091                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4092                                 display_bpc = connector->display_info.bpc;
4093                         }
4094                 }
4095
4096                 /*
4097                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4098                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4099                  */
4100                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4101                         if (display_bpc > 8 && display_bpc < 12) {
4102                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4103                                 display_bpc = 12;
4104                         } else {
4105                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4106                                 display_bpc = 8;
4107                         }
4108                 }
4109         }
4110
4111         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4112                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4113                 display_bpc = 6;
4114         }
4115
4116         /*
4117          * We could just drive the pipe at the highest bpc all the time and
4118          * enable dithering as needed, but that costs bandwidth.  So choose
4119          * the minimum value that expresses the full color range of the fb but
4120          * also stays within the max display bpc discovered above.
4121          */
4122
4123         switch (fb->depth) {
4124         case 8:
4125                 bpc = 8; /* since we go through a colormap */
4126                 break;
4127         case 15:
4128         case 16:
4129                 bpc = 6; /* min is 18bpp */
4130                 break;
4131         case 24:
4132                 bpc = 8;
4133                 break;
4134         case 30:
4135                 bpc = 10;
4136                 break;
4137         case 48:
4138                 bpc = 12;
4139                 break;
4140         default:
4141                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4142                 bpc = min((unsigned int)8, display_bpc);
4143                 break;
4144         }
4145
4146         display_bpc = min(display_bpc, bpc);
4147
4148         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4149                       bpc, display_bpc);
4150
4151         *pipe_bpp = display_bpc * 3;
4152
4153         return display_bpc != bpc;
4154 }
4155
4156 static int vlv_get_refclk(struct drm_crtc *crtc)
4157 {
4158         struct drm_device *dev = crtc->dev;
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160         int refclk = 27000; /* for DP & HDMI */
4161
4162         return 100000; /* only one validated so far */
4163
4164         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4165                 refclk = 96000;
4166         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4167                 if (intel_panel_use_ssc(dev_priv))
4168                         refclk = 100000;
4169                 else
4170                         refclk = 96000;
4171         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4172                 refclk = 100000;
4173         }
4174
4175         return refclk;
4176 }
4177
4178 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182         int refclk;
4183
4184         if (IS_VALLEYVIEW(dev)) {
4185                 refclk = vlv_get_refclk(crtc);
4186         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4187             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4188                 refclk = dev_priv->lvds_ssc_freq * 1000;
4189                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4190                               refclk / 1000);
4191         } else if (!IS_GEN2(dev)) {
4192                 refclk = 96000;
4193         } else {
4194                 refclk = 48000;
4195         }
4196
4197         return refclk;
4198 }
4199
4200 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4201                                       intel_clock_t *clock)
4202 {
4203         /* SDVO TV has fixed PLL values depend on its clock range,
4204            this mirrors vbios setting. */
4205         if (adjusted_mode->clock >= 100000
4206             && adjusted_mode->clock < 140500) {
4207                 clock->p1 = 2;
4208                 clock->p2 = 10;
4209                 clock->n = 3;
4210                 clock->m1 = 16;
4211                 clock->m2 = 8;
4212         } else if (adjusted_mode->clock >= 140500
4213                    && adjusted_mode->clock <= 200000) {
4214                 clock->p1 = 1;
4215                 clock->p2 = 10;
4216                 clock->n = 6;
4217                 clock->m1 = 12;
4218                 clock->m2 = 8;
4219         }
4220 }
4221
4222 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4223                                      intel_clock_t *clock,
4224                                      intel_clock_t *reduced_clock)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229         int pipe = intel_crtc->pipe;
4230         u32 fp, fp2 = 0;
4231
4232         if (IS_PINEVIEW(dev)) {
4233                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4234                 if (reduced_clock)
4235                         fp2 = (1 << reduced_clock->n) << 16 |
4236                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4237         } else {
4238                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4239                 if (reduced_clock)
4240                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4241                                 reduced_clock->m2;
4242         }
4243
4244         I915_WRITE(FP0(pipe), fp);
4245
4246         intel_crtc->lowfreq_avail = false;
4247         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4248             reduced_clock && i915_powersave) {
4249                 I915_WRITE(FP1(pipe), fp2);
4250                 intel_crtc->lowfreq_avail = true;
4251         } else {
4252                 I915_WRITE(FP1(pipe), fp);
4253         }
4254 }
4255
4256 static void vlv_update_pll(struct drm_crtc *crtc,
4257                            struct drm_display_mode *mode,
4258                            struct drm_display_mode *adjusted_mode,
4259                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4260                            int num_connectors)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265         int pipe = intel_crtc->pipe;
4266         u32 dpll, mdiv, pdiv;
4267         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4268         bool is_sdvo;
4269         u32 temp;
4270
4271         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4272                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4273
4274         dpll = DPLL_VGA_MODE_DIS;
4275         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4276         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4277         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4278
4279         I915_WRITE(DPLL(pipe), dpll);
4280         POSTING_READ(DPLL(pipe));
4281
4282         bestn = clock->n;
4283         bestm1 = clock->m1;
4284         bestm2 = clock->m2;
4285         bestp1 = clock->p1;
4286         bestp2 = clock->p2;
4287
4288         /*
4289          * In Valleyview PLL and program lane counter registers are exposed
4290          * through DPIO interface
4291          */
4292         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4293         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4294         mdiv |= ((bestn << DPIO_N_SHIFT));
4295         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4296         mdiv |= (1 << DPIO_K_SHIFT);
4297         mdiv |= DPIO_ENABLE_CALIBRATION;
4298         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4299
4300         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4301
4302         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4303                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4304                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4305                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4306         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4307
4308         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4309
4310         dpll |= DPLL_VCO_ENABLE;
4311         I915_WRITE(DPLL(pipe), dpll);
4312         POSTING_READ(DPLL(pipe));
4313         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4314                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4315
4316         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4317
4318         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4319                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4320
4321         I915_WRITE(DPLL(pipe), dpll);
4322
4323         /* Wait for the clocks to stabilize. */
4324         POSTING_READ(DPLL(pipe));
4325         udelay(150);
4326
4327         temp = 0;
4328         if (is_sdvo) {
4329                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4330                 if (temp > 1)
4331                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4332                 else
4333                         temp = 0;
4334         }
4335         I915_WRITE(DPLL_MD(pipe), temp);
4336         POSTING_READ(DPLL_MD(pipe));
4337
4338         /* Now program lane control registers */
4339         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4340                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4341         {
4342                 temp = 0x1000C4;
4343                 if(pipe == 1)
4344                         temp |= (1 << 21);
4345                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4346         }
4347         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4348         {
4349                 temp = 0x1000C4;
4350                 if(pipe == 1)
4351                         temp |= (1 << 21);
4352                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4353         }
4354 }
4355
4356 static void i9xx_update_pll(struct drm_crtc *crtc,
4357                             struct drm_display_mode *mode,
4358                             struct drm_display_mode *adjusted_mode,
4359                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4360                             int num_connectors)
4361 {
4362         struct drm_device *dev = crtc->dev;
4363         struct drm_i915_private *dev_priv = dev->dev_private;
4364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4365         struct intel_encoder *encoder;
4366         int pipe = intel_crtc->pipe;
4367         u32 dpll;
4368         bool is_sdvo;
4369
4370         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4371
4372         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4373                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4374
4375         dpll = DPLL_VGA_MODE_DIS;
4376
4377         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4378                 dpll |= DPLLB_MODE_LVDS;
4379         else
4380                 dpll |= DPLLB_MODE_DAC_SERIAL;
4381         if (is_sdvo) {
4382                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4383                 if (pixel_multiplier > 1) {
4384                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4385                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4386                 }
4387                 dpll |= DPLL_DVO_HIGH_SPEED;
4388         }
4389         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4390                 dpll |= DPLL_DVO_HIGH_SPEED;
4391
4392         /* compute bitmask from p1 value */
4393         if (IS_PINEVIEW(dev))
4394                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4395         else {
4396                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4397                 if (IS_G4X(dev) && reduced_clock)
4398                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4399         }
4400         switch (clock->p2) {
4401         case 5:
4402                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4403                 break;
4404         case 7:
4405                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4406                 break;
4407         case 10:
4408                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4409                 break;
4410         case 14:
4411                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4412                 break;
4413         }
4414         if (INTEL_INFO(dev)->gen >= 4)
4415                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4416
4417         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4418                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4419         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4420                 /* XXX: just matching BIOS for now */
4421                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4422                 dpll |= 3;
4423         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4424                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4425                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4426         else
4427                 dpll |= PLL_REF_INPUT_DREFCLK;
4428
4429         dpll |= DPLL_VCO_ENABLE;
4430         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4431         POSTING_READ(DPLL(pipe));
4432         udelay(150);
4433
4434         for_each_encoder_on_crtc(dev, crtc, encoder)
4435                 if (encoder->pre_pll_enable)
4436                         encoder->pre_pll_enable(encoder);
4437
4438         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4439                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4440
4441         I915_WRITE(DPLL(pipe), dpll);
4442
4443         /* Wait for the clocks to stabilize. */
4444         POSTING_READ(DPLL(pipe));
4445         udelay(150);
4446
4447         if (INTEL_INFO(dev)->gen >= 4) {
4448                 u32 temp = 0;
4449                 if (is_sdvo) {
4450                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4451                         if (temp > 1)
4452                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4453                         else
4454                                 temp = 0;
4455                 }
4456                 I915_WRITE(DPLL_MD(pipe), temp);
4457         } else {
4458                 /* The pixel multiplier can only be updated once the
4459                  * DPLL is enabled and the clocks are stable.
4460                  *
4461                  * So write it again.
4462                  */
4463                 I915_WRITE(DPLL(pipe), dpll);
4464         }
4465 }
4466
4467 static void i8xx_update_pll(struct drm_crtc *crtc,
4468                             struct drm_display_mode *adjusted_mode,
4469                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4470                             int num_connectors)
4471 {
4472         struct drm_device *dev = crtc->dev;
4473         struct drm_i915_private *dev_priv = dev->dev_private;
4474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4475         struct intel_encoder *encoder;
4476         int pipe = intel_crtc->pipe;
4477         u32 dpll;
4478
4479         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4480
4481         dpll = DPLL_VGA_MODE_DIS;
4482
4483         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4484                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485         } else {
4486                 if (clock->p1 == 2)
4487                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4488                 else
4489                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4490                 if (clock->p2 == 4)
4491                         dpll |= PLL_P2_DIVIDE_BY_4;
4492         }
4493
4494         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4495                 /* XXX: just matching BIOS for now */
4496                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4497                 dpll |= 3;
4498         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4499                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4500                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4501         else
4502                 dpll |= PLL_REF_INPUT_DREFCLK;
4503
4504         dpll |= DPLL_VCO_ENABLE;
4505         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4506         POSTING_READ(DPLL(pipe));
4507         udelay(150);
4508
4509         for_each_encoder_on_crtc(dev, crtc, encoder)
4510                 if (encoder->pre_pll_enable)
4511                         encoder->pre_pll_enable(encoder);
4512
4513         I915_WRITE(DPLL(pipe), dpll);
4514
4515         /* Wait for the clocks to stabilize. */
4516         POSTING_READ(DPLL(pipe));
4517         udelay(150);
4518
4519         /* The pixel multiplier can only be updated once the
4520          * DPLL is enabled and the clocks are stable.
4521          *
4522          * So write it again.
4523          */
4524         I915_WRITE(DPLL(pipe), dpll);
4525 }
4526
4527 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4528                                    struct drm_display_mode *mode,
4529                                    struct drm_display_mode *adjusted_mode)
4530 {
4531         struct drm_device *dev = intel_crtc->base.dev;
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533         enum pipe pipe = intel_crtc->pipe;
4534         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4535         uint32_t vsyncshift;
4536
4537         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4538                 /* the chip adds 2 halflines automatically */
4539                 adjusted_mode->crtc_vtotal -= 1;
4540                 adjusted_mode->crtc_vblank_end -= 1;
4541                 vsyncshift = adjusted_mode->crtc_hsync_start
4542                              - adjusted_mode->crtc_htotal / 2;
4543         } else {
4544                 vsyncshift = 0;
4545         }
4546
4547         if (INTEL_INFO(dev)->gen > 3)
4548                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4549
4550         I915_WRITE(HTOTAL(cpu_transcoder),
4551                    (adjusted_mode->crtc_hdisplay - 1) |
4552                    ((adjusted_mode->crtc_htotal - 1) << 16));
4553         I915_WRITE(HBLANK(cpu_transcoder),
4554                    (adjusted_mode->crtc_hblank_start - 1) |
4555                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4556         I915_WRITE(HSYNC(cpu_transcoder),
4557                    (adjusted_mode->crtc_hsync_start - 1) |
4558                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4559
4560         I915_WRITE(VTOTAL(cpu_transcoder),
4561                    (adjusted_mode->crtc_vdisplay - 1) |
4562                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4563         I915_WRITE(VBLANK(cpu_transcoder),
4564                    (adjusted_mode->crtc_vblank_start - 1) |
4565                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4566         I915_WRITE(VSYNC(cpu_transcoder),
4567                    (adjusted_mode->crtc_vsync_start - 1) |
4568                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4569
4570         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4571          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4572          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4573          * bits. */
4574         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4575             (pipe == PIPE_B || pipe == PIPE_C))
4576                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4577
4578         /* pipesrc controls the size that is scaled from, which should
4579          * always be the user's requested size.
4580          */
4581         I915_WRITE(PIPESRC(pipe),
4582                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4583 }
4584
4585 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4586                               struct drm_display_mode *mode,
4587                               struct drm_display_mode *adjusted_mode,
4588                               int x, int y,
4589                               struct drm_framebuffer *fb)
4590 {
4591         struct drm_device *dev = crtc->dev;
4592         struct drm_i915_private *dev_priv = dev->dev_private;
4593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4594         int pipe = intel_crtc->pipe;
4595         int plane = intel_crtc->plane;
4596         int refclk, num_connectors = 0;
4597         intel_clock_t clock, reduced_clock;
4598         u32 dspcntr, pipeconf;
4599         bool ok, has_reduced_clock = false, is_sdvo = false;
4600         bool is_lvds = false, is_tv = false, is_dp = false;
4601         struct intel_encoder *encoder;
4602         const intel_limit_t *limit;
4603         int ret;
4604
4605         for_each_encoder_on_crtc(dev, crtc, encoder) {
4606                 switch (encoder->type) {
4607                 case INTEL_OUTPUT_LVDS:
4608                         is_lvds = true;
4609                         break;
4610                 case INTEL_OUTPUT_SDVO:
4611                 case INTEL_OUTPUT_HDMI:
4612                         is_sdvo = true;
4613                         if (encoder->needs_tv_clock)
4614                                 is_tv = true;
4615                         break;
4616                 case INTEL_OUTPUT_TVOUT:
4617                         is_tv = true;
4618                         break;
4619                 case INTEL_OUTPUT_DISPLAYPORT:
4620                         is_dp = true;
4621                         break;
4622                 }
4623
4624                 num_connectors++;
4625         }
4626
4627         refclk = i9xx_get_refclk(crtc, num_connectors);
4628
4629         /*
4630          * Returns a set of divisors for the desired target clock with the given
4631          * refclk, or FALSE.  The returned values represent the clock equation:
4632          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4633          */
4634         limit = intel_limit(crtc, refclk);
4635         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4636                              &clock);
4637         if (!ok) {
4638                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4639                 return -EINVAL;
4640         }
4641
4642         /* Ensure that the cursor is valid for the new mode before changing... */
4643         intel_crtc_update_cursor(crtc, true);
4644
4645         if (is_lvds && dev_priv->lvds_downclock_avail) {
4646                 /*
4647                  * Ensure we match the reduced clock's P to the target clock.
4648                  * If the clocks don't match, we can't switch the display clock
4649                  * by using the FP0/FP1. In such case we will disable the LVDS
4650                  * downclock feature.
4651                 */
4652                 has_reduced_clock = limit->find_pll(limit, crtc,
4653                                                     dev_priv->lvds_downclock,
4654                                                     refclk,
4655                                                     &clock,
4656                                                     &reduced_clock);
4657         }
4658
4659         if (is_sdvo && is_tv)
4660                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4661
4662         if (IS_GEN2(dev))
4663                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4664                                 has_reduced_clock ? &reduced_clock : NULL,
4665                                 num_connectors);
4666         else if (IS_VALLEYVIEW(dev))
4667                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4668                                 has_reduced_clock ? &reduced_clock : NULL,
4669                                 num_connectors);
4670         else
4671                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4672                                 has_reduced_clock ? &reduced_clock : NULL,
4673                                 num_connectors);
4674
4675         /* setup pipeconf */
4676         pipeconf = I915_READ(PIPECONF(pipe));
4677
4678         /* Set up the display plane register */
4679         dspcntr = DISPPLANE_GAMMA_ENABLE;
4680
4681         if (pipe == 0)
4682                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4683         else
4684                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4685
4686         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4687                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4688                  * core speed.
4689                  *
4690                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4691                  * pipe == 0 check?
4692                  */
4693                 if (mode->clock >
4694                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4695                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4696                 else
4697                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4698         }
4699
4700         /* default to 8bpc */
4701         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4702         if (is_dp) {
4703                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4704                         pipeconf |= PIPECONF_BPP_6 |
4705                                     PIPECONF_DITHER_EN |
4706                                     PIPECONF_DITHER_TYPE_SP;
4707                 }
4708         }
4709
4710         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4711                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4712                         pipeconf |= PIPECONF_BPP_6 |
4713                                         PIPECONF_ENABLE |
4714                                         I965_PIPECONF_ACTIVE;
4715                 }
4716         }
4717
4718         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4719         drm_mode_debug_printmodeline(mode);
4720
4721         if (HAS_PIPE_CXSR(dev)) {
4722                 if (intel_crtc->lowfreq_avail) {
4723                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4724                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4725                 } else {
4726                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4727                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4728                 }
4729         }
4730
4731         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4732         if (!IS_GEN2(dev) &&
4733             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4734                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4735         else
4736                 pipeconf |= PIPECONF_PROGRESSIVE;
4737
4738         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4739
4740         /* pipesrc and dspsize control the size that is scaled from,
4741          * which should always be the user's requested size.
4742          */
4743         I915_WRITE(DSPSIZE(plane),
4744                    ((mode->vdisplay - 1) << 16) |
4745                    (mode->hdisplay - 1));
4746         I915_WRITE(DSPPOS(plane), 0);
4747
4748         I915_WRITE(PIPECONF(pipe), pipeconf);
4749         POSTING_READ(PIPECONF(pipe));
4750         intel_enable_pipe(dev_priv, pipe, false);
4751
4752         intel_wait_for_vblank(dev, pipe);
4753
4754         I915_WRITE(DSPCNTR(plane), dspcntr);
4755         POSTING_READ(DSPCNTR(plane));
4756
4757         ret = intel_pipe_set_base(crtc, x, y, fb);
4758
4759         intel_update_watermarks(dev);
4760
4761         return ret;
4762 }
4763
4764 /*
4765  * Initialize reference clocks when the driver loads
4766  */
4767 void ironlake_init_pch_refclk(struct drm_device *dev)
4768 {
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         struct drm_mode_config *mode_config = &dev->mode_config;
4771         struct intel_encoder *encoder;
4772         u32 temp;
4773         bool has_lvds = false;
4774         bool has_cpu_edp = false;
4775         bool has_pch_edp = false;
4776         bool has_panel = false;
4777         bool has_ck505 = false;
4778         bool can_ssc = false;
4779
4780         /* We need to take the global config into account */
4781         list_for_each_entry(encoder, &mode_config->encoder_list,
4782                             base.head) {
4783                 switch (encoder->type) {
4784                 case INTEL_OUTPUT_LVDS:
4785                         has_panel = true;
4786                         has_lvds = true;
4787                         break;
4788                 case INTEL_OUTPUT_EDP:
4789                         has_panel = true;
4790                         if (intel_encoder_is_pch_edp(&encoder->base))
4791                                 has_pch_edp = true;
4792                         else
4793                                 has_cpu_edp = true;
4794                         break;
4795                 }
4796         }
4797
4798         if (HAS_PCH_IBX(dev)) {
4799                 has_ck505 = dev_priv->display_clock_mode;
4800                 can_ssc = has_ck505;
4801         } else {
4802                 has_ck505 = false;
4803                 can_ssc = true;
4804         }
4805
4806         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4807                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4808                       has_ck505);
4809
4810         /* Ironlake: try to setup display ref clock before DPLL
4811          * enabling. This is only under driver's control after
4812          * PCH B stepping, previous chipset stepping should be
4813          * ignoring this setting.
4814          */
4815         temp = I915_READ(PCH_DREF_CONTROL);
4816         /* Always enable nonspread source */
4817         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4818
4819         if (has_ck505)
4820                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4821         else
4822                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4823
4824         if (has_panel) {
4825                 temp &= ~DREF_SSC_SOURCE_MASK;
4826                 temp |= DREF_SSC_SOURCE_ENABLE;
4827
4828                 /* SSC must be turned on before enabling the CPU output  */
4829                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4830                         DRM_DEBUG_KMS("Using SSC on panel\n");
4831                         temp |= DREF_SSC1_ENABLE;
4832                 } else
4833                         temp &= ~DREF_SSC1_ENABLE;
4834
4835                 /* Get SSC going before enabling the outputs */
4836                 I915_WRITE(PCH_DREF_CONTROL, temp);
4837                 POSTING_READ(PCH_DREF_CONTROL);
4838                 udelay(200);
4839
4840                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4841
4842                 /* Enable CPU source on CPU attached eDP */
4843                 if (has_cpu_edp) {
4844                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4845                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4846                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4847                         }
4848                         else
4849                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4850                 } else
4851                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4852
4853                 I915_WRITE(PCH_DREF_CONTROL, temp);
4854                 POSTING_READ(PCH_DREF_CONTROL);
4855                 udelay(200);
4856         } else {
4857                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4858
4859                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4860
4861                 /* Turn off CPU output */
4862                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4863
4864                 I915_WRITE(PCH_DREF_CONTROL, temp);
4865                 POSTING_READ(PCH_DREF_CONTROL);
4866                 udelay(200);
4867
4868                 /* Turn off the SSC source */
4869                 temp &= ~DREF_SSC_SOURCE_MASK;
4870                 temp |= DREF_SSC_SOURCE_DISABLE;
4871
4872                 /* Turn off SSC1 */
4873                 temp &= ~ DREF_SSC1_ENABLE;
4874
4875                 I915_WRITE(PCH_DREF_CONTROL, temp);
4876                 POSTING_READ(PCH_DREF_CONTROL);
4877                 udelay(200);
4878         }
4879 }
4880
4881 static int ironlake_get_refclk(struct drm_crtc *crtc)
4882 {
4883         struct drm_device *dev = crtc->dev;
4884         struct drm_i915_private *dev_priv = dev->dev_private;
4885         struct intel_encoder *encoder;
4886         struct intel_encoder *edp_encoder = NULL;
4887         int num_connectors = 0;
4888         bool is_lvds = false;
4889
4890         for_each_encoder_on_crtc(dev, crtc, encoder) {
4891                 switch (encoder->type) {
4892                 case INTEL_OUTPUT_LVDS:
4893                         is_lvds = true;
4894                         break;
4895                 case INTEL_OUTPUT_EDP:
4896                         edp_encoder = encoder;
4897                         break;
4898                 }
4899                 num_connectors++;
4900         }
4901
4902         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4903                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4904                               dev_priv->lvds_ssc_freq);
4905                 return dev_priv->lvds_ssc_freq * 1000;
4906         }
4907
4908         return 120000;
4909 }
4910
4911 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4912                                   struct drm_display_mode *adjusted_mode,
4913                                   bool dither)
4914 {
4915         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4916         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4917         int pipe = intel_crtc->pipe;
4918         uint32_t val;
4919
4920         val = I915_READ(PIPECONF(pipe));
4921
4922         val &= ~PIPE_BPC_MASK;
4923         switch (intel_crtc->bpp) {
4924         case 18:
4925                 val |= PIPE_6BPC;
4926                 break;
4927         case 24:
4928                 val |= PIPE_8BPC;
4929                 break;
4930         case 30:
4931                 val |= PIPE_10BPC;
4932                 break;
4933         case 36:
4934                 val |= PIPE_12BPC;
4935                 break;
4936         default:
4937                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4938                 BUG();
4939         }
4940
4941         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4942         if (dither)
4943                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4944
4945         val &= ~PIPECONF_INTERLACE_MASK;
4946         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4947                 val |= PIPECONF_INTERLACED_ILK;
4948         else
4949                 val |= PIPECONF_PROGRESSIVE;
4950
4951         I915_WRITE(PIPECONF(pipe), val);
4952         POSTING_READ(PIPECONF(pipe));
4953 }
4954
4955 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4956                                  struct drm_display_mode *adjusted_mode,
4957                                  bool dither)
4958 {
4959         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4961         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4962         uint32_t val;
4963
4964         val = I915_READ(PIPECONF(cpu_transcoder));
4965
4966         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4967         if (dither)
4968                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4969
4970         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4971         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4972                 val |= PIPECONF_INTERLACED_ILK;
4973         else
4974                 val |= PIPECONF_PROGRESSIVE;
4975
4976         I915_WRITE(PIPECONF(cpu_transcoder), val);
4977         POSTING_READ(PIPECONF(cpu_transcoder));
4978 }
4979
4980 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4981                                     struct drm_display_mode *adjusted_mode,
4982                                     intel_clock_t *clock,
4983                                     bool *has_reduced_clock,
4984                                     intel_clock_t *reduced_clock)
4985 {
4986         struct drm_device *dev = crtc->dev;
4987         struct drm_i915_private *dev_priv = dev->dev_private;
4988         struct intel_encoder *intel_encoder;
4989         int refclk;
4990         const intel_limit_t *limit;
4991         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4992
4993         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4994                 switch (intel_encoder->type) {
4995                 case INTEL_OUTPUT_LVDS:
4996                         is_lvds = true;
4997                         break;
4998                 case INTEL_OUTPUT_SDVO:
4999                 case INTEL_OUTPUT_HDMI:
5000                         is_sdvo = true;
5001                         if (intel_encoder->needs_tv_clock)
5002                                 is_tv = true;
5003                         break;
5004                 case INTEL_OUTPUT_TVOUT:
5005                         is_tv = true;
5006                         break;
5007                 }
5008         }
5009
5010         refclk = ironlake_get_refclk(crtc);
5011
5012         /*
5013          * Returns a set of divisors for the desired target clock with the given
5014          * refclk, or FALSE.  The returned values represent the clock equation:
5015          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5016          */
5017         limit = intel_limit(crtc, refclk);
5018         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5019                               clock);
5020         if (!ret)
5021                 return false;
5022
5023         if (is_lvds && dev_priv->lvds_downclock_avail) {
5024                 /*
5025                  * Ensure we match the reduced clock's P to the target clock.
5026                  * If the clocks don't match, we can't switch the display clock
5027                  * by using the FP0/FP1. In such case we will disable the LVDS
5028                  * downclock feature.
5029                 */
5030                 *has_reduced_clock = limit->find_pll(limit, crtc,
5031                                                      dev_priv->lvds_downclock,
5032                                                      refclk,
5033                                                      clock,
5034                                                      reduced_clock);
5035         }
5036
5037         if (is_sdvo && is_tv)
5038                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5039
5040         return true;
5041 }
5042
5043 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5044 {
5045         struct drm_i915_private *dev_priv = dev->dev_private;
5046         uint32_t temp;
5047
5048         temp = I915_READ(SOUTH_CHICKEN1);
5049         if (temp & FDI_BC_BIFURCATION_SELECT)
5050                 return;
5051
5052         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5053         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5054
5055         temp |= FDI_BC_BIFURCATION_SELECT;
5056         DRM_DEBUG_KMS("enabling fdi C rx\n");
5057         I915_WRITE(SOUTH_CHICKEN1, temp);
5058         POSTING_READ(SOUTH_CHICKEN1);
5059 }
5060
5061 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5062 {
5063         struct drm_device *dev = intel_crtc->base.dev;
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         struct intel_crtc *pipe_B_crtc =
5066                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5067
5068         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5069                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5070         if (intel_crtc->fdi_lanes > 4) {
5071                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5072                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5073                 /* Clamp lanes to avoid programming the hw with bogus values. */
5074                 intel_crtc->fdi_lanes = 4;
5075
5076                 return false;
5077         }
5078
5079         if (dev_priv->num_pipe == 2)
5080                 return true;
5081
5082         switch (intel_crtc->pipe) {
5083         case PIPE_A:
5084                 return true;
5085         case PIPE_B:
5086                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5087                     intel_crtc->fdi_lanes > 2) {
5088                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5089                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5090                         /* Clamp lanes to avoid programming the hw with bogus values. */
5091                         intel_crtc->fdi_lanes = 2;
5092
5093                         return false;
5094                 }
5095
5096                 if (intel_crtc->fdi_lanes > 2)
5097                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5098                 else
5099                         cpt_enable_fdi_bc_bifurcation(dev);
5100
5101                 return true;
5102         case PIPE_C:
5103                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5104                         if (intel_crtc->fdi_lanes > 2) {
5105                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5106                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5107                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5108                                 intel_crtc->fdi_lanes = 2;
5109
5110                                 return false;
5111                         }
5112                 } else {
5113                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5114                         return false;
5115                 }
5116
5117                 cpt_enable_fdi_bc_bifurcation(dev);
5118
5119                 return true;
5120         default:
5121                 BUG();
5122         }
5123 }
5124
5125 static void ironlake_set_m_n(struct drm_crtc *crtc,
5126                              struct drm_display_mode *mode,
5127                              struct drm_display_mode *adjusted_mode)
5128 {
5129         struct drm_device *dev = crtc->dev;
5130         struct drm_i915_private *dev_priv = dev->dev_private;
5131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5132         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5133         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5134         struct fdi_m_n m_n = {0};
5135         int target_clock, pixel_multiplier, lane, link_bw;
5136         bool is_dp = false, is_cpu_edp = false;
5137
5138         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5139                 switch (intel_encoder->type) {
5140                 case INTEL_OUTPUT_DISPLAYPORT:
5141                         is_dp = true;
5142                         break;
5143                 case INTEL_OUTPUT_EDP:
5144                         is_dp = true;
5145                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5146                                 is_cpu_edp = true;
5147                         edp_encoder = intel_encoder;
5148                         break;
5149                 }
5150         }
5151
5152         /* FDI link */
5153         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5154         lane = 0;
5155         /* CPU eDP doesn't require FDI link, so just set DP M/N
5156            according to current link config */
5157         if (is_cpu_edp) {
5158                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5159         } else {
5160                 /* FDI is a binary signal running at ~2.7GHz, encoding
5161                  * each output octet as 10 bits. The actual frequency
5162                  * is stored as a divider into a 100MHz clock, and the
5163                  * mode pixel clock is stored in units of 1KHz.
5164                  * Hence the bw of each lane in terms of the mode signal
5165                  * is:
5166                  */
5167                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5168         }
5169
5170         /* [e]DP over FDI requires target mode clock instead of link clock. */
5171         if (edp_encoder)
5172                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5173         else if (is_dp)
5174                 target_clock = mode->clock;
5175         else
5176                 target_clock = adjusted_mode->clock;
5177
5178         if (!lane) {
5179                 /*
5180                  * Account for spread spectrum to avoid
5181                  * oversubscribing the link. Max center spread
5182                  * is 2.5%; use 5% for safety's sake.
5183                  */
5184                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5185                 lane = bps / (link_bw * 8) + 1;
5186         }
5187
5188         intel_crtc->fdi_lanes = lane;
5189
5190         if (pixel_multiplier > 1)
5191                 link_bw *= pixel_multiplier;
5192         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5193                              &m_n);
5194
5195         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5196         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5197         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5198         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5199 }
5200
5201 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5202                                       struct drm_display_mode *adjusted_mode,
5203                                       intel_clock_t *clock, u32 fp)
5204 {
5205         struct drm_crtc *crtc = &intel_crtc->base;
5206         struct drm_device *dev = crtc->dev;
5207         struct drm_i915_private *dev_priv = dev->dev_private;
5208         struct intel_encoder *intel_encoder;
5209         uint32_t dpll;
5210         int factor, pixel_multiplier, num_connectors = 0;
5211         bool is_lvds = false, is_sdvo = false, is_tv = false;
5212         bool is_dp = false, is_cpu_edp = false;
5213
5214         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5215                 switch (intel_encoder->type) {
5216                 case INTEL_OUTPUT_LVDS:
5217                         is_lvds = true;
5218                         break;
5219                 case INTEL_OUTPUT_SDVO:
5220                 case INTEL_OUTPUT_HDMI:
5221                         is_sdvo = true;
5222                         if (intel_encoder->needs_tv_clock)
5223                                 is_tv = true;
5224                         break;
5225                 case INTEL_OUTPUT_TVOUT:
5226                         is_tv = true;
5227                         break;
5228                 case INTEL_OUTPUT_DISPLAYPORT:
5229                         is_dp = true;
5230                         break;
5231                 case INTEL_OUTPUT_EDP:
5232                         is_dp = true;
5233                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5234                                 is_cpu_edp = true;
5235                         break;
5236                 }
5237
5238                 num_connectors++;
5239         }
5240
5241         /* Enable autotuning of the PLL clock (if permissible) */
5242         factor = 21;
5243         if (is_lvds) {
5244                 if ((intel_panel_use_ssc(dev_priv) &&
5245                      dev_priv->lvds_ssc_freq == 100) ||
5246                     intel_is_dual_link_lvds(dev))
5247                         factor = 25;
5248         } else if (is_sdvo && is_tv)
5249                 factor = 20;
5250
5251         if (clock->m < factor * clock->n)
5252                 fp |= FP_CB_TUNE;
5253
5254         dpll = 0;
5255
5256         if (is_lvds)
5257                 dpll |= DPLLB_MODE_LVDS;
5258         else
5259                 dpll |= DPLLB_MODE_DAC_SERIAL;
5260         if (is_sdvo) {
5261                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5262                 if (pixel_multiplier > 1) {
5263                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5264                 }
5265                 dpll |= DPLL_DVO_HIGH_SPEED;
5266         }
5267         if (is_dp && !is_cpu_edp)
5268                 dpll |= DPLL_DVO_HIGH_SPEED;
5269
5270         /* compute bitmask from p1 value */
5271         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5272         /* also FPA1 */
5273         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5274
5275         switch (clock->p2) {
5276         case 5:
5277                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5278                 break;
5279         case 7:
5280                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5281                 break;
5282         case 10:
5283                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5284                 break;
5285         case 14:
5286                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5287                 break;
5288         }
5289
5290         if (is_sdvo && is_tv)
5291                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5292         else if (is_tv)
5293                 /* XXX: just matching BIOS for now */
5294                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5295                 dpll |= 3;
5296         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5297                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5298         else
5299                 dpll |= PLL_REF_INPUT_DREFCLK;
5300
5301         return dpll;
5302 }
5303
5304 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5305                                   struct drm_display_mode *mode,
5306                                   struct drm_display_mode *adjusted_mode,
5307                                   int x, int y,
5308                                   struct drm_framebuffer *fb)
5309 {
5310         struct drm_device *dev = crtc->dev;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313         int pipe = intel_crtc->pipe;
5314         int plane = intel_crtc->plane;
5315         int num_connectors = 0;
5316         intel_clock_t clock, reduced_clock;
5317         u32 dpll, fp = 0, fp2 = 0;
5318         bool ok, has_reduced_clock = false;
5319         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5320         struct intel_encoder *encoder;
5321         int ret;
5322         bool dither, fdi_config_ok;
5323
5324         for_each_encoder_on_crtc(dev, crtc, encoder) {
5325                 switch (encoder->type) {
5326                 case INTEL_OUTPUT_LVDS:
5327                         is_lvds = true;
5328                         break;
5329                 case INTEL_OUTPUT_DISPLAYPORT:
5330                         is_dp = true;
5331                         break;
5332                 case INTEL_OUTPUT_EDP:
5333                         is_dp = true;
5334                         if (!intel_encoder_is_pch_edp(&encoder->base))
5335                                 is_cpu_edp = true;
5336                         break;
5337                 }
5338
5339                 num_connectors++;
5340         }
5341
5342         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5343              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5344
5345         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5346                                      &has_reduced_clock, &reduced_clock);
5347         if (!ok) {
5348                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5349                 return -EINVAL;
5350         }
5351
5352         /* Ensure that the cursor is valid for the new mode before changing... */
5353         intel_crtc_update_cursor(crtc, true);
5354
5355         /* determine panel color depth */
5356         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5357                                               adjusted_mode);
5358         if (is_lvds && dev_priv->lvds_dither)
5359                 dither = true;
5360
5361         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5362         if (has_reduced_clock)
5363                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5364                         reduced_clock.m2;
5365
5366         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5367
5368         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5369         drm_mode_debug_printmodeline(mode);
5370
5371         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5372         if (!is_cpu_edp) {
5373                 struct intel_pch_pll *pll;
5374
5375                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5376                 if (pll == NULL) {
5377                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5378                                          pipe);
5379                         return -EINVAL;
5380                 }
5381         } else
5382                 intel_put_pch_pll(intel_crtc);
5383
5384         if (is_dp && !is_cpu_edp) {
5385                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5386         } else {
5387                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5388                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5389                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5390                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5391                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5392         }
5393
5394         for_each_encoder_on_crtc(dev, crtc, encoder)
5395                 if (encoder->pre_pll_enable)
5396                         encoder->pre_pll_enable(encoder);
5397
5398         if (intel_crtc->pch_pll) {
5399                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5400
5401                 /* Wait for the clocks to stabilize. */
5402                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5403                 udelay(150);
5404
5405                 /* The pixel multiplier can only be updated once the
5406                  * DPLL is enabled and the clocks are stable.
5407                  *
5408                  * So write it again.
5409                  */
5410                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5411         }
5412
5413         intel_crtc->lowfreq_avail = false;
5414         if (intel_crtc->pch_pll) {
5415                 if (is_lvds && has_reduced_clock && i915_powersave) {
5416                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5417                         intel_crtc->lowfreq_avail = true;
5418                 } else {
5419                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5420                 }
5421         }
5422
5423         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5424
5425         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5426          * ironlake_check_fdi_lanes. */
5427         ironlake_set_m_n(crtc, mode, adjusted_mode);
5428
5429         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5430
5431         if (is_cpu_edp)
5432                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5433
5434         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5435
5436         intel_wait_for_vblank(dev, pipe);
5437
5438         /* Set up the display plane register */
5439         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5440         POSTING_READ(DSPCNTR(plane));
5441
5442         ret = intel_pipe_set_base(crtc, x, y, fb);
5443
5444         intel_update_watermarks(dev);
5445
5446         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5447
5448         return fdi_config_ok ? ret : -EINVAL;
5449 }
5450
5451 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5452                                  struct drm_display_mode *mode,
5453                                  struct drm_display_mode *adjusted_mode,
5454                                  int x, int y,
5455                                  struct drm_framebuffer *fb)
5456 {
5457         struct drm_device *dev = crtc->dev;
5458         struct drm_i915_private *dev_priv = dev->dev_private;
5459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5460         int pipe = intel_crtc->pipe;
5461         int plane = intel_crtc->plane;
5462         int num_connectors = 0;
5463         intel_clock_t clock, reduced_clock;
5464         u32 dpll = 0, fp = 0, fp2 = 0;
5465         bool ok, has_reduced_clock = false;
5466         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5467         struct intel_encoder *encoder;
5468         u32 temp;
5469         int ret;
5470         bool dither;
5471
5472         for_each_encoder_on_crtc(dev, crtc, encoder) {
5473                 switch (encoder->type) {
5474                 case INTEL_OUTPUT_LVDS:
5475                         is_lvds = true;
5476                         break;
5477                 case INTEL_OUTPUT_DISPLAYPORT:
5478                         is_dp = true;
5479                         break;
5480                 case INTEL_OUTPUT_EDP:
5481                         is_dp = true;
5482                         if (!intel_encoder_is_pch_edp(&encoder->base))
5483                                 is_cpu_edp = true;
5484                         break;
5485                 }
5486
5487                 num_connectors++;
5488         }
5489
5490         if (is_cpu_edp)
5491                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5492         else
5493                 intel_crtc->cpu_transcoder = pipe;
5494
5495         /* We are not sure yet this won't happen. */
5496         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5497              INTEL_PCH_TYPE(dev));
5498
5499         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5500              num_connectors, pipe_name(pipe));
5501
5502         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5503                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5504
5505         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5506
5507         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5508                 return -EINVAL;
5509
5510         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5511                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5512                                              &has_reduced_clock,
5513                                              &reduced_clock);
5514                 if (!ok) {
5515                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5516                         return -EINVAL;
5517                 }
5518         }
5519
5520         /* Ensure that the cursor is valid for the new mode before changing... */
5521         intel_crtc_update_cursor(crtc, true);
5522
5523         /* determine panel color depth */
5524         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5525                                               adjusted_mode);
5526         if (is_lvds && dev_priv->lvds_dither)
5527                 dither = true;
5528
5529         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5530         drm_mode_debug_printmodeline(mode);
5531
5532         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5533                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5534                 if (has_reduced_clock)
5535                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5536                               reduced_clock.m2;
5537
5538                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5539                                              fp);
5540
5541                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5542                  * own on pre-Haswell/LPT generation */
5543                 if (!is_cpu_edp) {
5544                         struct intel_pch_pll *pll;
5545
5546                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5547                         if (pll == NULL) {
5548                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5549                                                  pipe);
5550                                 return -EINVAL;
5551                         }
5552                 } else
5553                         intel_put_pch_pll(intel_crtc);
5554
5555                 /* The LVDS pin pair needs to be on before the DPLLs are
5556                  * enabled.  This is an exception to the general rule that
5557                  * mode_set doesn't turn things on.
5558                  */
5559                 if (is_lvds) {
5560                         temp = I915_READ(PCH_LVDS);
5561                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5562                         if (HAS_PCH_CPT(dev)) {
5563                                 temp &= ~PORT_TRANS_SEL_MASK;
5564                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5565                         } else {
5566                                 if (pipe == 1)
5567                                         temp |= LVDS_PIPEB_SELECT;
5568                                 else
5569                                         temp &= ~LVDS_PIPEB_SELECT;
5570                         }
5571
5572                         /* set the corresponsding LVDS_BORDER bit */
5573                         temp |= dev_priv->lvds_border_bits;
5574                         /* Set the B0-B3 data pairs corresponding to whether
5575                          * we're going to set the DPLLs for dual-channel mode or
5576                          * not.
5577                          */
5578                         if (clock.p2 == 7)
5579                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5580                         else
5581                                 temp &= ~(LVDS_B0B3_POWER_UP |
5582                                           LVDS_CLKB_POWER_UP);
5583
5584                         /* It would be nice to set 24 vs 18-bit mode
5585                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5586                          * look more thoroughly into how panels behave in the
5587                          * two modes.
5588                          */
5589                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5590                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5591                                 temp |= LVDS_HSYNC_POLARITY;
5592                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5593                                 temp |= LVDS_VSYNC_POLARITY;
5594                         I915_WRITE(PCH_LVDS, temp);
5595                 }
5596         }
5597
5598         if (is_dp && !is_cpu_edp) {
5599                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5600         } else {
5601                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5602                         /* For non-DP output, clear any trans DP clock recovery
5603                          * setting.*/
5604                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5605                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5606                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5607                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5608                 }
5609         }
5610
5611         intel_crtc->lowfreq_avail = false;
5612         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5613                 if (intel_crtc->pch_pll) {
5614                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5615
5616                         /* Wait for the clocks to stabilize. */
5617                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5618                         udelay(150);
5619
5620                         /* The pixel multiplier can only be updated once the
5621                          * DPLL is enabled and the clocks are stable.
5622                          *
5623                          * So write it again.
5624                          */
5625                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5626                 }
5627
5628                 if (intel_crtc->pch_pll) {
5629                         if (is_lvds && has_reduced_clock && i915_powersave) {
5630                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5631                                 intel_crtc->lowfreq_avail = true;
5632                         } else {
5633                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5634                         }
5635                 }
5636         }
5637
5638         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5639
5640         if (!is_dp || is_cpu_edp)
5641                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5642
5643         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5644                 if (is_cpu_edp)
5645                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5646
5647         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5648
5649         /* Set up the display plane register */
5650         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5651         POSTING_READ(DSPCNTR(plane));
5652
5653         ret = intel_pipe_set_base(crtc, x, y, fb);
5654
5655         intel_update_watermarks(dev);
5656
5657         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5658
5659         return ret;
5660 }
5661
5662 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5663                                struct drm_display_mode *mode,
5664                                struct drm_display_mode *adjusted_mode,
5665                                int x, int y,
5666                                struct drm_framebuffer *fb)
5667 {
5668         struct drm_device *dev = crtc->dev;
5669         struct drm_i915_private *dev_priv = dev->dev_private;
5670         struct drm_encoder_helper_funcs *encoder_funcs;
5671         struct intel_encoder *encoder;
5672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5673         int pipe = intel_crtc->pipe;
5674         int ret;
5675
5676         drm_vblank_pre_modeset(dev, pipe);
5677
5678         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5679                                               x, y, fb);
5680         drm_vblank_post_modeset(dev, pipe);
5681
5682         if (ret != 0)
5683                 return ret;
5684
5685         for_each_encoder_on_crtc(dev, crtc, encoder) {
5686                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5687                         encoder->base.base.id,
5688                         drm_get_encoder_name(&encoder->base),
5689                         mode->base.id, mode->name);
5690                 encoder_funcs = encoder->base.helper_private;
5691                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5692         }
5693
5694         return 0;
5695 }
5696
5697 static bool intel_eld_uptodate(struct drm_connector *connector,
5698                                int reg_eldv, uint32_t bits_eldv,
5699                                int reg_elda, uint32_t bits_elda,
5700                                int reg_edid)
5701 {
5702         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5703         uint8_t *eld = connector->eld;
5704         uint32_t i;
5705
5706         i = I915_READ(reg_eldv);
5707         i &= bits_eldv;
5708
5709         if (!eld[0])
5710                 return !i;
5711
5712         if (!i)
5713                 return false;
5714
5715         i = I915_READ(reg_elda);
5716         i &= ~bits_elda;
5717         I915_WRITE(reg_elda, i);
5718
5719         for (i = 0; i < eld[2]; i++)
5720                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5721                         return false;
5722
5723         return true;
5724 }
5725
5726 static void g4x_write_eld(struct drm_connector *connector,
5727                           struct drm_crtc *crtc)
5728 {
5729         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5730         uint8_t *eld = connector->eld;
5731         uint32_t eldv;
5732         uint32_t len;
5733         uint32_t i;
5734
5735         i = I915_READ(G4X_AUD_VID_DID);
5736
5737         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5738                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5739         else
5740                 eldv = G4X_ELDV_DEVCTG;
5741
5742         if (intel_eld_uptodate(connector,
5743                                G4X_AUD_CNTL_ST, eldv,
5744                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5745                                G4X_HDMIW_HDMIEDID))
5746                 return;
5747
5748         i = I915_READ(G4X_AUD_CNTL_ST);
5749         i &= ~(eldv | G4X_ELD_ADDR);
5750         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5751         I915_WRITE(G4X_AUD_CNTL_ST, i);
5752
5753         if (!eld[0])
5754                 return;
5755
5756         len = min_t(uint8_t, eld[2], len);
5757         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5758         for (i = 0; i < len; i++)
5759                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5760
5761         i = I915_READ(G4X_AUD_CNTL_ST);
5762         i |= eldv;
5763         I915_WRITE(G4X_AUD_CNTL_ST, i);
5764 }
5765
5766 static void haswell_write_eld(struct drm_connector *connector,
5767                                      struct drm_crtc *crtc)
5768 {
5769         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5770         uint8_t *eld = connector->eld;
5771         struct drm_device *dev = crtc->dev;
5772         uint32_t eldv;
5773         uint32_t i;
5774         int len;
5775         int pipe = to_intel_crtc(crtc)->pipe;
5776         int tmp;
5777
5778         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5779         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5780         int aud_config = HSW_AUD_CFG(pipe);
5781         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5782
5783
5784         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5785
5786         /* Audio output enable */
5787         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5788         tmp = I915_READ(aud_cntrl_st2);
5789         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5790         I915_WRITE(aud_cntrl_st2, tmp);
5791
5792         /* Wait for 1 vertical blank */
5793         intel_wait_for_vblank(dev, pipe);
5794
5795         /* Set ELD valid state */
5796         tmp = I915_READ(aud_cntrl_st2);
5797         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5798         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5799         I915_WRITE(aud_cntrl_st2, tmp);
5800         tmp = I915_READ(aud_cntrl_st2);
5801         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5802
5803         /* Enable HDMI mode */
5804         tmp = I915_READ(aud_config);
5805         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5806         /* clear N_programing_enable and N_value_index */
5807         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5808         I915_WRITE(aud_config, tmp);
5809
5810         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5811
5812         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5813
5814         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5815                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5816                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5817                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5818         } else
5819                 I915_WRITE(aud_config, 0);
5820
5821         if (intel_eld_uptodate(connector,
5822                                aud_cntrl_st2, eldv,
5823                                aud_cntl_st, IBX_ELD_ADDRESS,
5824                                hdmiw_hdmiedid))
5825                 return;
5826
5827         i = I915_READ(aud_cntrl_st2);
5828         i &= ~eldv;
5829         I915_WRITE(aud_cntrl_st2, i);
5830
5831         if (!eld[0])
5832                 return;
5833
5834         i = I915_READ(aud_cntl_st);
5835         i &= ~IBX_ELD_ADDRESS;
5836         I915_WRITE(aud_cntl_st, i);
5837         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5838         DRM_DEBUG_DRIVER("port num:%d\n", i);
5839
5840         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5841         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5842         for (i = 0; i < len; i++)
5843                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5844
5845         i = I915_READ(aud_cntrl_st2);
5846         i |= eldv;
5847         I915_WRITE(aud_cntrl_st2, i);
5848
5849 }
5850
5851 static void ironlake_write_eld(struct drm_connector *connector,
5852                                      struct drm_crtc *crtc)
5853 {
5854         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5855         uint8_t *eld = connector->eld;
5856         uint32_t eldv;
5857         uint32_t i;
5858         int len;
5859         int hdmiw_hdmiedid;
5860         int aud_config;
5861         int aud_cntl_st;
5862         int aud_cntrl_st2;
5863         int pipe = to_intel_crtc(crtc)->pipe;
5864
5865         if (HAS_PCH_IBX(connector->dev)) {
5866                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5867                 aud_config = IBX_AUD_CFG(pipe);
5868                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5869                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5870         } else {
5871                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5872                 aud_config = CPT_AUD_CFG(pipe);
5873                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5874                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5875         }
5876
5877         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5878
5879         i = I915_READ(aud_cntl_st);
5880         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5881         if (!i) {
5882                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5883                 /* operate blindly on all ports */
5884                 eldv = IBX_ELD_VALIDB;
5885                 eldv |= IBX_ELD_VALIDB << 4;
5886                 eldv |= IBX_ELD_VALIDB << 8;
5887         } else {
5888                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5889                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5890         }
5891
5892         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5893                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5894                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5895                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5896         } else
5897                 I915_WRITE(aud_config, 0);
5898
5899         if (intel_eld_uptodate(connector,
5900                                aud_cntrl_st2, eldv,
5901                                aud_cntl_st, IBX_ELD_ADDRESS,
5902                                hdmiw_hdmiedid))
5903                 return;
5904
5905         i = I915_READ(aud_cntrl_st2);
5906         i &= ~eldv;
5907         I915_WRITE(aud_cntrl_st2, i);
5908
5909         if (!eld[0])
5910                 return;
5911
5912         i = I915_READ(aud_cntl_st);
5913         i &= ~IBX_ELD_ADDRESS;
5914         I915_WRITE(aud_cntl_st, i);
5915
5916         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5917         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5918         for (i = 0; i < len; i++)
5919                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5920
5921         i = I915_READ(aud_cntrl_st2);
5922         i |= eldv;
5923         I915_WRITE(aud_cntrl_st2, i);
5924 }
5925
5926 void intel_write_eld(struct drm_encoder *encoder,
5927                      struct drm_display_mode *mode)
5928 {
5929         struct drm_crtc *crtc = encoder->crtc;
5930         struct drm_connector *connector;
5931         struct drm_device *dev = encoder->dev;
5932         struct drm_i915_private *dev_priv = dev->dev_private;
5933
5934         connector = drm_select_eld(encoder, mode);
5935         if (!connector)
5936                 return;
5937
5938         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5939                          connector->base.id,
5940                          drm_get_connector_name(connector),
5941                          connector->encoder->base.id,
5942                          drm_get_encoder_name(connector->encoder));
5943
5944         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5945
5946         if (dev_priv->display.write_eld)
5947                 dev_priv->display.write_eld(connector, crtc);
5948 }
5949
5950 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5951 void intel_crtc_load_lut(struct drm_crtc *crtc)
5952 {
5953         struct drm_device *dev = crtc->dev;
5954         struct drm_i915_private *dev_priv = dev->dev_private;
5955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5956         int palreg = PALETTE(intel_crtc->pipe);
5957         int i;
5958
5959         /* The clocks have to be on to load the palette. */
5960         if (!crtc->enabled || !intel_crtc->active)
5961                 return;
5962
5963         /* use legacy palette for Ironlake */
5964         if (HAS_PCH_SPLIT(dev))
5965                 palreg = LGC_PALETTE(intel_crtc->pipe);
5966
5967         for (i = 0; i < 256; i++) {
5968                 I915_WRITE(palreg + 4 * i,
5969                            (intel_crtc->lut_r[i] << 16) |
5970                            (intel_crtc->lut_g[i] << 8) |
5971                            intel_crtc->lut_b[i]);
5972         }
5973 }
5974
5975 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5976 {
5977         struct drm_device *dev = crtc->dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5980         bool visible = base != 0;
5981         u32 cntl;
5982
5983         if (intel_crtc->cursor_visible == visible)
5984                 return;
5985
5986         cntl = I915_READ(_CURACNTR);
5987         if (visible) {
5988                 /* On these chipsets we can only modify the base whilst
5989                  * the cursor is disabled.
5990                  */
5991                 I915_WRITE(_CURABASE, base);
5992
5993                 cntl &= ~(CURSOR_FORMAT_MASK);
5994                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5995                 cntl |= CURSOR_ENABLE |
5996                         CURSOR_GAMMA_ENABLE |
5997                         CURSOR_FORMAT_ARGB;
5998         } else
5999                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6000         I915_WRITE(_CURACNTR, cntl);
6001
6002         intel_crtc->cursor_visible = visible;
6003 }
6004
6005 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6006 {
6007         struct drm_device *dev = crtc->dev;
6008         struct drm_i915_private *dev_priv = dev->dev_private;
6009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6010         int pipe = intel_crtc->pipe;
6011         bool visible = base != 0;
6012
6013         if (intel_crtc->cursor_visible != visible) {
6014                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6015                 if (base) {
6016                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6017                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6018                         cntl |= pipe << 28; /* Connect to correct pipe */
6019                 } else {
6020                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6021                         cntl |= CURSOR_MODE_DISABLE;
6022                 }
6023                 I915_WRITE(CURCNTR(pipe), cntl);
6024
6025                 intel_crtc->cursor_visible = visible;
6026         }
6027         /* and commit changes on next vblank */
6028         I915_WRITE(CURBASE(pipe), base);
6029 }
6030
6031 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6032 {
6033         struct drm_device *dev = crtc->dev;
6034         struct drm_i915_private *dev_priv = dev->dev_private;
6035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6036         int pipe = intel_crtc->pipe;
6037         bool visible = base != 0;
6038
6039         if (intel_crtc->cursor_visible != visible) {
6040                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6041                 if (base) {
6042                         cntl &= ~CURSOR_MODE;
6043                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6044                 } else {
6045                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6046                         cntl |= CURSOR_MODE_DISABLE;
6047                 }
6048                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6049
6050                 intel_crtc->cursor_visible = visible;
6051         }
6052         /* and commit changes on next vblank */
6053         I915_WRITE(CURBASE_IVB(pipe), base);
6054 }
6055
6056 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6057 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6058                                      bool on)
6059 {
6060         struct drm_device *dev = crtc->dev;
6061         struct drm_i915_private *dev_priv = dev->dev_private;
6062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6063         int pipe = intel_crtc->pipe;
6064         int x = intel_crtc->cursor_x;
6065         int y = intel_crtc->cursor_y;
6066         u32 base, pos;
6067         bool visible;
6068
6069         pos = 0;
6070
6071         if (on && crtc->enabled && crtc->fb) {
6072                 base = intel_crtc->cursor_addr;
6073                 if (x > (int) crtc->fb->width)
6074                         base = 0;
6075
6076                 if (y > (int) crtc->fb->height)
6077                         base = 0;
6078         } else
6079                 base = 0;
6080
6081         if (x < 0) {
6082                 if (x + intel_crtc->cursor_width < 0)
6083                         base = 0;
6084
6085                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6086                 x = -x;
6087         }
6088         pos |= x << CURSOR_X_SHIFT;
6089
6090         if (y < 0) {
6091                 if (y + intel_crtc->cursor_height < 0)
6092                         base = 0;
6093
6094                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6095                 y = -y;
6096         }
6097         pos |= y << CURSOR_Y_SHIFT;
6098
6099         visible = base != 0;
6100         if (!visible && !intel_crtc->cursor_visible)
6101                 return;
6102
6103         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6104                 I915_WRITE(CURPOS_IVB(pipe), pos);
6105                 ivb_update_cursor(crtc, base);
6106         } else {
6107                 I915_WRITE(CURPOS(pipe), pos);
6108                 if (IS_845G(dev) || IS_I865G(dev))
6109                         i845_update_cursor(crtc, base);
6110                 else
6111                         i9xx_update_cursor(crtc, base);
6112         }
6113 }
6114
6115 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6116                                  struct drm_file *file,
6117                                  uint32_t handle,
6118                                  uint32_t width, uint32_t height)
6119 {
6120         struct drm_device *dev = crtc->dev;
6121         struct drm_i915_private *dev_priv = dev->dev_private;
6122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6123         struct drm_i915_gem_object *obj;
6124         uint32_t addr;
6125         int ret;
6126
6127         /* if we want to turn off the cursor ignore width and height */
6128         if (!handle) {
6129                 DRM_DEBUG_KMS("cursor off\n");
6130                 addr = 0;
6131                 obj = NULL;
6132                 mutex_lock(&dev->struct_mutex);
6133                 goto finish;
6134         }
6135
6136         /* Currently we only support 64x64 cursors */
6137         if (width != 64 || height != 64) {
6138                 DRM_ERROR("we currently only support 64x64 cursors\n");
6139                 return -EINVAL;
6140         }
6141
6142         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6143         if (&obj->base == NULL)
6144                 return -ENOENT;
6145
6146         if (obj->base.size < width * height * 4) {
6147                 DRM_ERROR("buffer is to small\n");
6148                 ret = -ENOMEM;
6149                 goto fail;
6150         }
6151
6152         /* we only need to pin inside GTT if cursor is non-phy */
6153         mutex_lock(&dev->struct_mutex);
6154         if (!dev_priv->info->cursor_needs_physical) {
6155                 if (obj->tiling_mode) {
6156                         DRM_ERROR("cursor cannot be tiled\n");
6157                         ret = -EINVAL;
6158                         goto fail_locked;
6159                 }
6160
6161                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6162                 if (ret) {
6163                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6164                         goto fail_locked;
6165                 }
6166
6167                 ret = i915_gem_object_put_fence(obj);
6168                 if (ret) {
6169                         DRM_ERROR("failed to release fence for cursor");
6170                         goto fail_unpin;
6171                 }
6172
6173                 addr = obj->gtt_offset;
6174         } else {
6175                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6176                 ret = i915_gem_attach_phys_object(dev, obj,
6177                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6178                                                   align);
6179                 if (ret) {
6180                         DRM_ERROR("failed to attach phys object\n");
6181                         goto fail_locked;
6182                 }
6183                 addr = obj->phys_obj->handle->busaddr;
6184         }
6185
6186         if (IS_GEN2(dev))
6187                 I915_WRITE(CURSIZE, (height << 12) | width);
6188
6189  finish:
6190         if (intel_crtc->cursor_bo) {
6191                 if (dev_priv->info->cursor_needs_physical) {
6192                         if (intel_crtc->cursor_bo != obj)
6193                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6194                 } else
6195                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6196                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6197         }
6198
6199         mutex_unlock(&dev->struct_mutex);
6200
6201         intel_crtc->cursor_addr = addr;
6202         intel_crtc->cursor_bo = obj;
6203         intel_crtc->cursor_width = width;
6204         intel_crtc->cursor_height = height;
6205
6206         intel_crtc_update_cursor(crtc, true);
6207
6208         return 0;
6209 fail_unpin:
6210         i915_gem_object_unpin(obj);
6211 fail_locked:
6212         mutex_unlock(&dev->struct_mutex);
6213 fail:
6214         drm_gem_object_unreference_unlocked(&obj->base);
6215         return ret;
6216 }
6217
6218 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6219 {
6220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6221
6222         intel_crtc->cursor_x = x;
6223         intel_crtc->cursor_y = y;
6224
6225         intel_crtc_update_cursor(crtc, true);
6226
6227         return 0;
6228 }
6229
6230 /** Sets the color ramps on behalf of RandR */
6231 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6232                                  u16 blue, int regno)
6233 {
6234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6235
6236         intel_crtc->lut_r[regno] = red >> 8;
6237         intel_crtc->lut_g[regno] = green >> 8;
6238         intel_crtc->lut_b[regno] = blue >> 8;
6239 }
6240
6241 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6242                              u16 *blue, int regno)
6243 {
6244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245
6246         *red = intel_crtc->lut_r[regno] << 8;
6247         *green = intel_crtc->lut_g[regno] << 8;
6248         *blue = intel_crtc->lut_b[regno] << 8;
6249 }
6250
6251 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6252                                  u16 *blue, uint32_t start, uint32_t size)
6253 {
6254         int end = (start + size > 256) ? 256 : start + size, i;
6255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6256
6257         for (i = start; i < end; i++) {
6258                 intel_crtc->lut_r[i] = red[i] >> 8;
6259                 intel_crtc->lut_g[i] = green[i] >> 8;
6260                 intel_crtc->lut_b[i] = blue[i] >> 8;
6261         }
6262
6263         intel_crtc_load_lut(crtc);
6264 }
6265
6266 /**
6267  * Get a pipe with a simple mode set on it for doing load-based monitor
6268  * detection.
6269  *
6270  * It will be up to the load-detect code to adjust the pipe as appropriate for
6271  * its requirements.  The pipe will be connected to no other encoders.
6272  *
6273  * Currently this code will only succeed if there is a pipe with no encoders
6274  * configured for it.  In the future, it could choose to temporarily disable
6275  * some outputs to free up a pipe for its use.
6276  *
6277  * \return crtc, or NULL if no pipes are available.
6278  */
6279
6280 /* VESA 640x480x72Hz mode to set on the pipe */
6281 static struct drm_display_mode load_detect_mode = {
6282         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6283                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6284 };
6285
6286 static struct drm_framebuffer *
6287 intel_framebuffer_create(struct drm_device *dev,
6288                          struct drm_mode_fb_cmd2 *mode_cmd,
6289                          struct drm_i915_gem_object *obj)
6290 {
6291         struct intel_framebuffer *intel_fb;
6292         int ret;
6293
6294         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6295         if (!intel_fb) {
6296                 drm_gem_object_unreference_unlocked(&obj->base);
6297                 return ERR_PTR(-ENOMEM);
6298         }
6299
6300         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6301         if (ret) {
6302                 drm_gem_object_unreference_unlocked(&obj->base);
6303                 kfree(intel_fb);
6304                 return ERR_PTR(ret);
6305         }
6306
6307         return &intel_fb->base;
6308 }
6309
6310 static u32
6311 intel_framebuffer_pitch_for_width(int width, int bpp)
6312 {
6313         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6314         return ALIGN(pitch, 64);
6315 }
6316
6317 static u32
6318 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6319 {
6320         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6321         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6322 }
6323
6324 static struct drm_framebuffer *
6325 intel_framebuffer_create_for_mode(struct drm_device *dev,
6326                                   struct drm_display_mode *mode,
6327                                   int depth, int bpp)
6328 {
6329         struct drm_i915_gem_object *obj;
6330         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6331
6332         obj = i915_gem_alloc_object(dev,
6333                                     intel_framebuffer_size_for_mode(mode, bpp));
6334         if (obj == NULL)
6335                 return ERR_PTR(-ENOMEM);
6336
6337         mode_cmd.width = mode->hdisplay;
6338         mode_cmd.height = mode->vdisplay;
6339         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6340                                                                 bpp);
6341         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6342
6343         return intel_framebuffer_create(dev, &mode_cmd, obj);
6344 }
6345
6346 static struct drm_framebuffer *
6347 mode_fits_in_fbdev(struct drm_device *dev,
6348                    struct drm_display_mode *mode)
6349 {
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         struct drm_i915_gem_object *obj;
6352         struct drm_framebuffer *fb;
6353
6354         if (dev_priv->fbdev == NULL)
6355                 return NULL;
6356
6357         obj = dev_priv->fbdev->ifb.obj;
6358         if (obj == NULL)
6359                 return NULL;
6360
6361         fb = &dev_priv->fbdev->ifb.base;
6362         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6363                                                                fb->bits_per_pixel))
6364                 return NULL;
6365
6366         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6367                 return NULL;
6368
6369         return fb;
6370 }
6371
6372 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6373                                 struct drm_display_mode *mode,
6374                                 struct intel_load_detect_pipe *old)
6375 {
6376         struct intel_crtc *intel_crtc;
6377         struct intel_encoder *intel_encoder =
6378                 intel_attached_encoder(connector);
6379         struct drm_crtc *possible_crtc;
6380         struct drm_encoder *encoder = &intel_encoder->base;
6381         struct drm_crtc *crtc = NULL;
6382         struct drm_device *dev = encoder->dev;
6383         struct drm_framebuffer *fb;
6384         int i = -1;
6385
6386         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6387                       connector->base.id, drm_get_connector_name(connector),
6388                       encoder->base.id, drm_get_encoder_name(encoder));
6389
6390         /*
6391          * Algorithm gets a little messy:
6392          *
6393          *   - if the connector already has an assigned crtc, use it (but make
6394          *     sure it's on first)
6395          *
6396          *   - try to find the first unused crtc that can drive this connector,
6397          *     and use that if we find one
6398          */
6399
6400         /* See if we already have a CRTC for this connector */
6401         if (encoder->crtc) {
6402                 crtc = encoder->crtc;
6403
6404                 old->dpms_mode = connector->dpms;
6405                 old->load_detect_temp = false;
6406
6407                 /* Make sure the crtc and connector are running */
6408                 if (connector->dpms != DRM_MODE_DPMS_ON)
6409                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6410
6411                 return true;
6412         }
6413
6414         /* Find an unused one (if possible) */
6415         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6416                 i++;
6417                 if (!(encoder->possible_crtcs & (1 << i)))
6418                         continue;
6419                 if (!possible_crtc->enabled) {
6420                         crtc = possible_crtc;
6421                         break;
6422                 }
6423         }
6424
6425         /*
6426          * If we didn't find an unused CRTC, don't use any.
6427          */
6428         if (!crtc) {
6429                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6430                 return false;
6431         }
6432
6433         intel_encoder->new_crtc = to_intel_crtc(crtc);
6434         to_intel_connector(connector)->new_encoder = intel_encoder;
6435
6436         intel_crtc = to_intel_crtc(crtc);
6437         old->dpms_mode = connector->dpms;
6438         old->load_detect_temp = true;
6439         old->release_fb = NULL;
6440
6441         if (!mode)
6442                 mode = &load_detect_mode;
6443
6444         /* We need a framebuffer large enough to accommodate all accesses
6445          * that the plane may generate whilst we perform load detection.
6446          * We can not rely on the fbcon either being present (we get called
6447          * during its initialisation to detect all boot displays, or it may
6448          * not even exist) or that it is large enough to satisfy the
6449          * requested mode.
6450          */
6451         fb = mode_fits_in_fbdev(dev, mode);
6452         if (fb == NULL) {
6453                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6454                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6455                 old->release_fb = fb;
6456         } else
6457                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6458         if (IS_ERR(fb)) {
6459                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6460                 return false;
6461         }
6462
6463         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6464                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6465                 if (old->release_fb)
6466                         old->release_fb->funcs->destroy(old->release_fb);
6467                 return false;
6468         }
6469
6470         /* let the connector get through one full cycle before testing */
6471         intel_wait_for_vblank(dev, intel_crtc->pipe);
6472         return true;
6473 }
6474
6475 void intel_release_load_detect_pipe(struct drm_connector *connector,
6476                                     struct intel_load_detect_pipe *old)
6477 {
6478         struct intel_encoder *intel_encoder =
6479                 intel_attached_encoder(connector);
6480         struct drm_encoder *encoder = &intel_encoder->base;
6481
6482         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6483                       connector->base.id, drm_get_connector_name(connector),
6484                       encoder->base.id, drm_get_encoder_name(encoder));
6485
6486         if (old->load_detect_temp) {
6487                 struct drm_crtc *crtc = encoder->crtc;
6488
6489                 to_intel_connector(connector)->new_encoder = NULL;
6490                 intel_encoder->new_crtc = NULL;
6491                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6492
6493                 if (old->release_fb)
6494                         old->release_fb->funcs->destroy(old->release_fb);
6495
6496                 return;
6497         }
6498
6499         /* Switch crtc and encoder back off if necessary */
6500         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6501                 connector->funcs->dpms(connector, old->dpms_mode);
6502 }
6503
6504 /* Returns the clock of the currently programmed mode of the given pipe. */
6505 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6506 {
6507         struct drm_i915_private *dev_priv = dev->dev_private;
6508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6509         int pipe = intel_crtc->pipe;
6510         u32 dpll = I915_READ(DPLL(pipe));
6511         u32 fp;
6512         intel_clock_t clock;
6513
6514         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6515                 fp = I915_READ(FP0(pipe));
6516         else
6517                 fp = I915_READ(FP1(pipe));
6518
6519         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6520         if (IS_PINEVIEW(dev)) {
6521                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6522                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6523         } else {
6524                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6525                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6526         }
6527
6528         if (!IS_GEN2(dev)) {
6529                 if (IS_PINEVIEW(dev))
6530                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6531                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6532                 else
6533                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6534                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6535
6536                 switch (dpll & DPLL_MODE_MASK) {
6537                 case DPLLB_MODE_DAC_SERIAL:
6538                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6539                                 5 : 10;
6540                         break;
6541                 case DPLLB_MODE_LVDS:
6542                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6543                                 7 : 14;
6544                         break;
6545                 default:
6546                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6547                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6548                         return 0;
6549                 }
6550
6551                 /* XXX: Handle the 100Mhz refclk */
6552                 intel_clock(dev, 96000, &clock);
6553         } else {
6554                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6555
6556                 if (is_lvds) {
6557                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6558                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6559                         clock.p2 = 14;
6560
6561                         if ((dpll & PLL_REF_INPUT_MASK) ==
6562                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6563                                 /* XXX: might not be 66MHz */
6564                                 intel_clock(dev, 66000, &clock);
6565                         } else
6566                                 intel_clock(dev, 48000, &clock);
6567                 } else {
6568                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6569                                 clock.p1 = 2;
6570                         else {
6571                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6572                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6573                         }
6574                         if (dpll & PLL_P2_DIVIDE_BY_4)
6575                                 clock.p2 = 4;
6576                         else
6577                                 clock.p2 = 2;
6578
6579                         intel_clock(dev, 48000, &clock);
6580                 }
6581         }
6582
6583         /* XXX: It would be nice to validate the clocks, but we can't reuse
6584          * i830PllIsValid() because it relies on the xf86_config connector
6585          * configuration being accurate, which it isn't necessarily.
6586          */
6587
6588         return clock.dot;
6589 }
6590
6591 /** Returns the currently programmed mode of the given pipe. */
6592 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6593                                              struct drm_crtc *crtc)
6594 {
6595         struct drm_i915_private *dev_priv = dev->dev_private;
6596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6597         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6598         struct drm_display_mode *mode;
6599         int htot = I915_READ(HTOTAL(cpu_transcoder));
6600         int hsync = I915_READ(HSYNC(cpu_transcoder));
6601         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6602         int vsync = I915_READ(VSYNC(cpu_transcoder));
6603
6604         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6605         if (!mode)
6606                 return NULL;
6607
6608         mode->clock = intel_crtc_clock_get(dev, crtc);
6609         mode->hdisplay = (htot & 0xffff) + 1;
6610         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6611         mode->hsync_start = (hsync & 0xffff) + 1;
6612         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6613         mode->vdisplay = (vtot & 0xffff) + 1;
6614         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6615         mode->vsync_start = (vsync & 0xffff) + 1;
6616         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6617
6618         drm_mode_set_name(mode);
6619
6620         return mode;
6621 }
6622
6623 static void intel_increase_pllclock(struct drm_crtc *crtc)
6624 {
6625         struct drm_device *dev = crtc->dev;
6626         drm_i915_private_t *dev_priv = dev->dev_private;
6627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6628         int pipe = intel_crtc->pipe;
6629         int dpll_reg = DPLL(pipe);
6630         int dpll;
6631
6632         if (HAS_PCH_SPLIT(dev))
6633                 return;
6634
6635         if (!dev_priv->lvds_downclock_avail)
6636                 return;
6637
6638         dpll = I915_READ(dpll_reg);
6639         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6640                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6641
6642                 assert_panel_unlocked(dev_priv, pipe);
6643
6644                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6645                 I915_WRITE(dpll_reg, dpll);
6646                 intel_wait_for_vblank(dev, pipe);
6647
6648                 dpll = I915_READ(dpll_reg);
6649                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6650                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6651         }
6652 }
6653
6654 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6655 {
6656         struct drm_device *dev = crtc->dev;
6657         drm_i915_private_t *dev_priv = dev->dev_private;
6658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6659
6660         if (HAS_PCH_SPLIT(dev))
6661                 return;
6662
6663         if (!dev_priv->lvds_downclock_avail)
6664                 return;
6665
6666         /*
6667          * Since this is called by a timer, we should never get here in
6668          * the manual case.
6669          */
6670         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6671                 int pipe = intel_crtc->pipe;
6672                 int dpll_reg = DPLL(pipe);
6673                 int dpll;
6674
6675                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6676
6677                 assert_panel_unlocked(dev_priv, pipe);
6678
6679                 dpll = I915_READ(dpll_reg);
6680                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6681                 I915_WRITE(dpll_reg, dpll);
6682                 intel_wait_for_vblank(dev, pipe);
6683                 dpll = I915_READ(dpll_reg);
6684                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6685                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6686         }
6687
6688 }
6689
6690 void intel_mark_busy(struct drm_device *dev)
6691 {
6692         i915_update_gfx_val(dev->dev_private);
6693 }
6694
6695 void intel_mark_idle(struct drm_device *dev)
6696 {
6697 }
6698
6699 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6700 {
6701         struct drm_device *dev = obj->base.dev;
6702         struct drm_crtc *crtc;
6703
6704         if (!i915_powersave)
6705                 return;
6706
6707         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6708                 if (!crtc->fb)
6709                         continue;
6710
6711                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6712                         intel_increase_pllclock(crtc);
6713         }
6714 }
6715
6716 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6717 {
6718         struct drm_device *dev = obj->base.dev;
6719         struct drm_crtc *crtc;
6720
6721         if (!i915_powersave)
6722                 return;
6723
6724         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6725                 if (!crtc->fb)
6726                         continue;
6727
6728                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6729                         intel_decrease_pllclock(crtc);
6730         }
6731 }
6732
6733 static void intel_crtc_destroy(struct drm_crtc *crtc)
6734 {
6735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6736         struct drm_device *dev = crtc->dev;
6737         struct intel_unpin_work *work;
6738         unsigned long flags;
6739
6740         spin_lock_irqsave(&dev->event_lock, flags);
6741         work = intel_crtc->unpin_work;
6742         intel_crtc->unpin_work = NULL;
6743         spin_unlock_irqrestore(&dev->event_lock, flags);
6744
6745         if (work) {
6746                 cancel_work_sync(&work->work);
6747                 kfree(work);
6748         }
6749
6750         drm_crtc_cleanup(crtc);
6751
6752         kfree(intel_crtc);
6753 }
6754
6755 static void intel_unpin_work_fn(struct work_struct *__work)
6756 {
6757         struct intel_unpin_work *work =
6758                 container_of(__work, struct intel_unpin_work, work);
6759         struct drm_device *dev = work->crtc->dev;
6760
6761         mutex_lock(&dev->struct_mutex);
6762         intel_unpin_fb_obj(work->old_fb_obj);
6763         drm_gem_object_unreference(&work->pending_flip_obj->base);
6764         drm_gem_object_unreference(&work->old_fb_obj->base);
6765
6766         intel_update_fbc(dev);
6767         mutex_unlock(&dev->struct_mutex);
6768
6769         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6770         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6771
6772         kfree(work);
6773 }
6774
6775 static void do_intel_finish_page_flip(struct drm_device *dev,
6776                                       struct drm_crtc *crtc)
6777 {
6778         drm_i915_private_t *dev_priv = dev->dev_private;
6779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6780         struct intel_unpin_work *work;
6781         struct drm_i915_gem_object *obj;
6782         unsigned long flags;
6783
6784         /* Ignore early vblank irqs */
6785         if (intel_crtc == NULL)
6786                 return;
6787
6788         spin_lock_irqsave(&dev->event_lock, flags);
6789         work = intel_crtc->unpin_work;
6790         if (work == NULL || !work->pending) {
6791                 spin_unlock_irqrestore(&dev->event_lock, flags);
6792                 return;
6793         }
6794
6795         intel_crtc->unpin_work = NULL;
6796
6797         if (work->event)
6798                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6799
6800         drm_vblank_put(dev, intel_crtc->pipe);
6801
6802         spin_unlock_irqrestore(&dev->event_lock, flags);
6803
6804         obj = work->old_fb_obj;
6805
6806         wake_up(&dev_priv->pending_flip_queue);
6807
6808         queue_work(dev_priv->wq, &work->work);
6809
6810         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6811 }
6812
6813 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6814 {
6815         drm_i915_private_t *dev_priv = dev->dev_private;
6816         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6817
6818         do_intel_finish_page_flip(dev, crtc);
6819 }
6820
6821 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6822 {
6823         drm_i915_private_t *dev_priv = dev->dev_private;
6824         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6825
6826         do_intel_finish_page_flip(dev, crtc);
6827 }
6828
6829 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6830 {
6831         drm_i915_private_t *dev_priv = dev->dev_private;
6832         struct intel_crtc *intel_crtc =
6833                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6834         unsigned long flags;
6835
6836         spin_lock_irqsave(&dev->event_lock, flags);
6837         if (intel_crtc->unpin_work) {
6838                 if ((++intel_crtc->unpin_work->pending) > 1)
6839                         DRM_ERROR("Prepared flip multiple times\n");
6840         } else {
6841                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6842         }
6843         spin_unlock_irqrestore(&dev->event_lock, flags);
6844 }
6845
6846 static int intel_gen2_queue_flip(struct drm_device *dev,
6847                                  struct drm_crtc *crtc,
6848                                  struct drm_framebuffer *fb,
6849                                  struct drm_i915_gem_object *obj)
6850 {
6851         struct drm_i915_private *dev_priv = dev->dev_private;
6852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6853         u32 flip_mask;
6854         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6855         int ret;
6856
6857         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6858         if (ret)
6859                 goto err;
6860
6861         ret = intel_ring_begin(ring, 6);
6862         if (ret)
6863                 goto err_unpin;
6864
6865         /* Can't queue multiple flips, so wait for the previous
6866          * one to finish before executing the next.
6867          */
6868         if (intel_crtc->plane)
6869                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6870         else
6871                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6872         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6873         intel_ring_emit(ring, MI_NOOP);
6874         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6875                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6876         intel_ring_emit(ring, fb->pitches[0]);
6877         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6878         intel_ring_emit(ring, 0); /* aux display base address, unused */
6879         intel_ring_advance(ring);
6880         return 0;
6881
6882 err_unpin:
6883         intel_unpin_fb_obj(obj);
6884 err:
6885         return ret;
6886 }
6887
6888 static int intel_gen3_queue_flip(struct drm_device *dev,
6889                                  struct drm_crtc *crtc,
6890                                  struct drm_framebuffer *fb,
6891                                  struct drm_i915_gem_object *obj)
6892 {
6893         struct drm_i915_private *dev_priv = dev->dev_private;
6894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895         u32 flip_mask;
6896         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6897         int ret;
6898
6899         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6900         if (ret)
6901                 goto err;
6902
6903         ret = intel_ring_begin(ring, 6);
6904         if (ret)
6905                 goto err_unpin;
6906
6907         if (intel_crtc->plane)
6908                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6909         else
6910                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6911         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6912         intel_ring_emit(ring, MI_NOOP);
6913         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6914                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6915         intel_ring_emit(ring, fb->pitches[0]);
6916         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6917         intel_ring_emit(ring, MI_NOOP);
6918
6919         intel_ring_advance(ring);
6920         return 0;
6921
6922 err_unpin:
6923         intel_unpin_fb_obj(obj);
6924 err:
6925         return ret;
6926 }
6927
6928 static int intel_gen4_queue_flip(struct drm_device *dev,
6929                                  struct drm_crtc *crtc,
6930                                  struct drm_framebuffer *fb,
6931                                  struct drm_i915_gem_object *obj)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         uint32_t pf, pipesrc;
6936         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6937         int ret;
6938
6939         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6940         if (ret)
6941                 goto err;
6942
6943         ret = intel_ring_begin(ring, 4);
6944         if (ret)
6945                 goto err_unpin;
6946
6947         /* i965+ uses the linear or tiled offsets from the
6948          * Display Registers (which do not change across a page-flip)
6949          * so we need only reprogram the base address.
6950          */
6951         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6952                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6953         intel_ring_emit(ring, fb->pitches[0]);
6954         intel_ring_emit(ring,
6955                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6956                         obj->tiling_mode);
6957
6958         /* XXX Enabling the panel-fitter across page-flip is so far
6959          * untested on non-native modes, so ignore it for now.
6960          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6961          */
6962         pf = 0;
6963         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6964         intel_ring_emit(ring, pf | pipesrc);
6965         intel_ring_advance(ring);
6966         return 0;
6967
6968 err_unpin:
6969         intel_unpin_fb_obj(obj);
6970 err:
6971         return ret;
6972 }
6973
6974 static int intel_gen6_queue_flip(struct drm_device *dev,
6975                                  struct drm_crtc *crtc,
6976                                  struct drm_framebuffer *fb,
6977                                  struct drm_i915_gem_object *obj)
6978 {
6979         struct drm_i915_private *dev_priv = dev->dev_private;
6980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6981         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6982         uint32_t pf, pipesrc;
6983         int ret;
6984
6985         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6986         if (ret)
6987                 goto err;
6988
6989         ret = intel_ring_begin(ring, 4);
6990         if (ret)
6991                 goto err_unpin;
6992
6993         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6994                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6995         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6996         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6997
6998         /* Contrary to the suggestions in the documentation,
6999          * "Enable Panel Fitter" does not seem to be required when page
7000          * flipping with a non-native mode, and worse causes a normal
7001          * modeset to fail.
7002          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7003          */
7004         pf = 0;
7005         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7006         intel_ring_emit(ring, pf | pipesrc);
7007         intel_ring_advance(ring);
7008         return 0;
7009
7010 err_unpin:
7011         intel_unpin_fb_obj(obj);
7012 err:
7013         return ret;
7014 }
7015
7016 /*
7017  * On gen7 we currently use the blit ring because (in early silicon at least)
7018  * the render ring doesn't give us interrpts for page flip completion, which
7019  * means clients will hang after the first flip is queued.  Fortunately the
7020  * blit ring generates interrupts properly, so use it instead.
7021  */
7022 static int intel_gen7_queue_flip(struct drm_device *dev,
7023                                  struct drm_crtc *crtc,
7024                                  struct drm_framebuffer *fb,
7025                                  struct drm_i915_gem_object *obj)
7026 {
7027         struct drm_i915_private *dev_priv = dev->dev_private;
7028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7029         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7030         uint32_t plane_bit = 0;
7031         int ret;
7032
7033         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7034         if (ret)
7035                 goto err;
7036
7037         switch(intel_crtc->plane) {
7038         case PLANE_A:
7039                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7040                 break;
7041         case PLANE_B:
7042                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7043                 break;
7044         case PLANE_C:
7045                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7046                 break;
7047         default:
7048                 WARN_ONCE(1, "unknown plane in flip command\n");
7049                 ret = -ENODEV;
7050                 goto err_unpin;
7051         }
7052
7053         ret = intel_ring_begin(ring, 4);
7054         if (ret)
7055                 goto err_unpin;
7056
7057         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7058         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7059         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7060         intel_ring_emit(ring, (MI_NOOP));
7061         intel_ring_advance(ring);
7062         return 0;
7063
7064 err_unpin:
7065         intel_unpin_fb_obj(obj);
7066 err:
7067         return ret;
7068 }
7069
7070 static int intel_default_queue_flip(struct drm_device *dev,
7071                                     struct drm_crtc *crtc,
7072                                     struct drm_framebuffer *fb,
7073                                     struct drm_i915_gem_object *obj)
7074 {
7075         return -ENODEV;
7076 }
7077
7078 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7079                                 struct drm_framebuffer *fb,
7080                                 struct drm_pending_vblank_event *event)
7081 {
7082         struct drm_device *dev = crtc->dev;
7083         struct drm_i915_private *dev_priv = dev->dev_private;
7084         struct intel_framebuffer *intel_fb;
7085         struct drm_i915_gem_object *obj;
7086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7087         struct intel_unpin_work *work;
7088         unsigned long flags;
7089         int ret;
7090
7091         /* Can't change pixel format via MI display flips. */
7092         if (fb->pixel_format != crtc->fb->pixel_format)
7093                 return -EINVAL;
7094
7095         /*
7096          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7097          * Note that pitch changes could also affect these register.
7098          */
7099         if (INTEL_INFO(dev)->gen > 3 &&
7100             (fb->offsets[0] != crtc->fb->offsets[0] ||
7101              fb->pitches[0] != crtc->fb->pitches[0]))
7102                 return -EINVAL;
7103
7104         work = kzalloc(sizeof *work, GFP_KERNEL);
7105         if (work == NULL)
7106                 return -ENOMEM;
7107
7108         work->event = event;
7109         work->crtc = crtc;
7110         intel_fb = to_intel_framebuffer(crtc->fb);
7111         work->old_fb_obj = intel_fb->obj;
7112         INIT_WORK(&work->work, intel_unpin_work_fn);
7113
7114         ret = drm_vblank_get(dev, intel_crtc->pipe);
7115         if (ret)
7116                 goto free_work;
7117
7118         /* We borrow the event spin lock for protecting unpin_work */
7119         spin_lock_irqsave(&dev->event_lock, flags);
7120         if (intel_crtc->unpin_work) {
7121                 spin_unlock_irqrestore(&dev->event_lock, flags);
7122                 kfree(work);
7123                 drm_vblank_put(dev, intel_crtc->pipe);
7124
7125                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7126                 return -EBUSY;
7127         }
7128         intel_crtc->unpin_work = work;
7129         spin_unlock_irqrestore(&dev->event_lock, flags);
7130
7131         intel_fb = to_intel_framebuffer(fb);
7132         obj = intel_fb->obj;
7133
7134         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7135                 flush_workqueue(dev_priv->wq);
7136
7137         ret = i915_mutex_lock_interruptible(dev);
7138         if (ret)
7139                 goto cleanup;
7140
7141         /* Reference the objects for the scheduled work. */
7142         drm_gem_object_reference(&work->old_fb_obj->base);
7143         drm_gem_object_reference(&obj->base);
7144
7145         crtc->fb = fb;
7146
7147         work->pending_flip_obj = obj;
7148
7149         work->enable_stall_check = true;
7150
7151         atomic_inc(&intel_crtc->unpin_work_count);
7152
7153         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7154         if (ret)
7155                 goto cleanup_pending;
7156
7157         intel_disable_fbc(dev);
7158         intel_mark_fb_busy(obj);
7159         mutex_unlock(&dev->struct_mutex);
7160
7161         trace_i915_flip_request(intel_crtc->plane, obj);
7162
7163         return 0;
7164
7165 cleanup_pending:
7166         atomic_dec(&intel_crtc->unpin_work_count);
7167         drm_gem_object_unreference(&work->old_fb_obj->base);
7168         drm_gem_object_unreference(&obj->base);
7169         mutex_unlock(&dev->struct_mutex);
7170
7171 cleanup:
7172         spin_lock_irqsave(&dev->event_lock, flags);
7173         intel_crtc->unpin_work = NULL;
7174         spin_unlock_irqrestore(&dev->event_lock, flags);
7175
7176         drm_vblank_put(dev, intel_crtc->pipe);
7177 free_work:
7178         kfree(work);
7179
7180         return ret;
7181 }
7182
7183 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7184         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7185         .load_lut = intel_crtc_load_lut,
7186         .disable = intel_crtc_noop,
7187 };
7188
7189 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7190 {
7191         struct intel_encoder *other_encoder;
7192         struct drm_crtc *crtc = &encoder->new_crtc->base;
7193
7194         if (WARN_ON(!crtc))
7195                 return false;
7196
7197         list_for_each_entry(other_encoder,
7198                             &crtc->dev->mode_config.encoder_list,
7199                             base.head) {
7200
7201                 if (&other_encoder->new_crtc->base != crtc ||
7202                     encoder == other_encoder)
7203                         continue;
7204                 else
7205                         return true;
7206         }
7207
7208         return false;
7209 }
7210
7211 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7212                                   struct drm_crtc *crtc)
7213 {
7214         struct drm_device *dev;
7215         struct drm_crtc *tmp;
7216         int crtc_mask = 1;
7217
7218         WARN(!crtc, "checking null crtc?\n");
7219
7220         dev = crtc->dev;
7221
7222         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7223                 if (tmp == crtc)
7224                         break;
7225                 crtc_mask <<= 1;
7226         }
7227
7228         if (encoder->possible_crtcs & crtc_mask)
7229                 return true;
7230         return false;
7231 }
7232
7233 /**
7234  * intel_modeset_update_staged_output_state
7235  *
7236  * Updates the staged output configuration state, e.g. after we've read out the
7237  * current hw state.
7238  */
7239 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7240 {
7241         struct intel_encoder *encoder;
7242         struct intel_connector *connector;
7243
7244         list_for_each_entry(connector, &dev->mode_config.connector_list,
7245                             base.head) {
7246                 connector->new_encoder =
7247                         to_intel_encoder(connector->base.encoder);
7248         }
7249
7250         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7251                             base.head) {
7252                 encoder->new_crtc =
7253                         to_intel_crtc(encoder->base.crtc);
7254         }
7255 }
7256
7257 /**
7258  * intel_modeset_commit_output_state
7259  *
7260  * This function copies the stage display pipe configuration to the real one.
7261  */
7262 static void intel_modeset_commit_output_state(struct drm_device *dev)
7263 {
7264         struct intel_encoder *encoder;
7265         struct intel_connector *connector;
7266
7267         list_for_each_entry(connector, &dev->mode_config.connector_list,
7268                             base.head) {
7269                 connector->base.encoder = &connector->new_encoder->base;
7270         }
7271
7272         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7273                             base.head) {
7274                 encoder->base.crtc = &encoder->new_crtc->base;
7275         }
7276 }
7277
7278 static struct drm_display_mode *
7279 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7280                             struct drm_display_mode *mode)
7281 {
7282         struct drm_device *dev = crtc->dev;
7283         struct drm_display_mode *adjusted_mode;
7284         struct drm_encoder_helper_funcs *encoder_funcs;
7285         struct intel_encoder *encoder;
7286
7287         adjusted_mode = drm_mode_duplicate(dev, mode);
7288         if (!adjusted_mode)
7289                 return ERR_PTR(-ENOMEM);
7290
7291         /* Pass our mode to the connectors and the CRTC to give them a chance to
7292          * adjust it according to limitations or connector properties, and also
7293          * a chance to reject the mode entirely.
7294          */
7295         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7296                             base.head) {
7297
7298                 if (&encoder->new_crtc->base != crtc)
7299                         continue;
7300                 encoder_funcs = encoder->base.helper_private;
7301                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7302                                                 adjusted_mode))) {
7303                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7304                         goto fail;
7305                 }
7306         }
7307
7308         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7309                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7310                 goto fail;
7311         }
7312         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7313
7314         return adjusted_mode;
7315 fail:
7316         drm_mode_destroy(dev, adjusted_mode);
7317         return ERR_PTR(-EINVAL);
7318 }
7319
7320 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7321  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7322 static void
7323 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7324                              unsigned *prepare_pipes, unsigned *disable_pipes)
7325 {
7326         struct intel_crtc *intel_crtc;
7327         struct drm_device *dev = crtc->dev;
7328         struct intel_encoder *encoder;
7329         struct intel_connector *connector;
7330         struct drm_crtc *tmp_crtc;
7331
7332         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7333
7334         /* Check which crtcs have changed outputs connected to them, these need
7335          * to be part of the prepare_pipes mask. We don't (yet) support global
7336          * modeset across multiple crtcs, so modeset_pipes will only have one
7337          * bit set at most. */
7338         list_for_each_entry(connector, &dev->mode_config.connector_list,
7339                             base.head) {
7340                 if (connector->base.encoder == &connector->new_encoder->base)
7341                         continue;
7342
7343                 if (connector->base.encoder) {
7344                         tmp_crtc = connector->base.encoder->crtc;
7345
7346                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7347                 }
7348
7349                 if (connector->new_encoder)
7350                         *prepare_pipes |=
7351                                 1 << connector->new_encoder->new_crtc->pipe;
7352         }
7353
7354         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7355                             base.head) {
7356                 if (encoder->base.crtc == &encoder->new_crtc->base)
7357                         continue;
7358
7359                 if (encoder->base.crtc) {
7360                         tmp_crtc = encoder->base.crtc;
7361
7362                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7363                 }
7364
7365                 if (encoder->new_crtc)
7366                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7367         }
7368
7369         /* Check for any pipes that will be fully disabled ... */
7370         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7371                             base.head) {
7372                 bool used = false;
7373
7374                 /* Don't try to disable disabled crtcs. */
7375                 if (!intel_crtc->base.enabled)
7376                         continue;
7377
7378                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7379                                     base.head) {
7380                         if (encoder->new_crtc == intel_crtc)
7381                                 used = true;
7382                 }
7383
7384                 if (!used)
7385                         *disable_pipes |= 1 << intel_crtc->pipe;
7386         }
7387
7388
7389         /* set_mode is also used to update properties on life display pipes. */
7390         intel_crtc = to_intel_crtc(crtc);
7391         if (crtc->enabled)
7392                 *prepare_pipes |= 1 << intel_crtc->pipe;
7393
7394         /* We only support modeset on one single crtc, hence we need to do that
7395          * only for the passed in crtc iff we change anything else than just
7396          * disable crtcs.
7397          *
7398          * This is actually not true, to be fully compatible with the old crtc
7399          * helper we automatically disable _any_ output (i.e. doesn't need to be
7400          * connected to the crtc we're modesetting on) if it's disconnected.
7401          * Which is a rather nutty api (since changed the output configuration
7402          * without userspace's explicit request can lead to confusion), but
7403          * alas. Hence we currently need to modeset on all pipes we prepare. */
7404         if (*prepare_pipes)
7405                 *modeset_pipes = *prepare_pipes;
7406
7407         /* ... and mask these out. */
7408         *modeset_pipes &= ~(*disable_pipes);
7409         *prepare_pipes &= ~(*disable_pipes);
7410 }
7411
7412 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7413 {
7414         struct drm_encoder *encoder;
7415         struct drm_device *dev = crtc->dev;
7416
7417         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7418                 if (encoder->crtc == crtc)
7419                         return true;
7420
7421         return false;
7422 }
7423
7424 static void
7425 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7426 {
7427         struct intel_encoder *intel_encoder;
7428         struct intel_crtc *intel_crtc;
7429         struct drm_connector *connector;
7430
7431         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7432                             base.head) {
7433                 if (!intel_encoder->base.crtc)
7434                         continue;
7435
7436                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7437
7438                 if (prepare_pipes & (1 << intel_crtc->pipe))
7439                         intel_encoder->connectors_active = false;
7440         }
7441
7442         intel_modeset_commit_output_state(dev);
7443
7444         /* Update computed state. */
7445         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7446                             base.head) {
7447                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7448         }
7449
7450         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7451                 if (!connector->encoder || !connector->encoder->crtc)
7452                         continue;
7453
7454                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7455
7456                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7457                         struct drm_property *dpms_property =
7458                                 dev->mode_config.dpms_property;
7459
7460                         connector->dpms = DRM_MODE_DPMS_ON;
7461                         drm_object_property_set_value(&connector->base,
7462                                                          dpms_property,
7463                                                          DRM_MODE_DPMS_ON);
7464
7465                         intel_encoder = to_intel_encoder(connector->encoder);
7466                         intel_encoder->connectors_active = true;
7467                 }
7468         }
7469
7470 }
7471
7472 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7473         list_for_each_entry((intel_crtc), \
7474                             &(dev)->mode_config.crtc_list, \
7475                             base.head) \
7476                 if (mask & (1 <<(intel_crtc)->pipe)) \
7477
7478 void
7479 intel_modeset_check_state(struct drm_device *dev)
7480 {
7481         struct intel_crtc *crtc;
7482         struct intel_encoder *encoder;
7483         struct intel_connector *connector;
7484
7485         list_for_each_entry(connector, &dev->mode_config.connector_list,
7486                             base.head) {
7487                 /* This also checks the encoder/connector hw state with the
7488                  * ->get_hw_state callbacks. */
7489                 intel_connector_check_state(connector);
7490
7491                 WARN(&connector->new_encoder->base != connector->base.encoder,
7492                      "connector's staged encoder doesn't match current encoder\n");
7493         }
7494
7495         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7496                             base.head) {
7497                 bool enabled = false;
7498                 bool active = false;
7499                 enum pipe pipe, tracked_pipe;
7500
7501                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7502                               encoder->base.base.id,
7503                               drm_get_encoder_name(&encoder->base));
7504
7505                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7506                      "encoder's stage crtc doesn't match current crtc\n");
7507                 WARN(encoder->connectors_active && !encoder->base.crtc,
7508                      "encoder's active_connectors set, but no crtc\n");
7509
7510                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7511                                     base.head) {
7512                         if (connector->base.encoder != &encoder->base)
7513                                 continue;
7514                         enabled = true;
7515                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7516                                 active = true;
7517                 }
7518                 WARN(!!encoder->base.crtc != enabled,
7519                      "encoder's enabled state mismatch "
7520                      "(expected %i, found %i)\n",
7521                      !!encoder->base.crtc, enabled);
7522                 WARN(active && !encoder->base.crtc,
7523                      "active encoder with no crtc\n");
7524
7525                 WARN(encoder->connectors_active != active,
7526                      "encoder's computed active state doesn't match tracked active state "
7527                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7528
7529                 active = encoder->get_hw_state(encoder, &pipe);
7530                 WARN(active != encoder->connectors_active,
7531                      "encoder's hw state doesn't match sw tracking "
7532                      "(expected %i, found %i)\n",
7533                      encoder->connectors_active, active);
7534
7535                 if (!encoder->base.crtc)
7536                         continue;
7537
7538                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7539                 WARN(active && pipe != tracked_pipe,
7540                      "active encoder's pipe doesn't match"
7541                      "(expected %i, found %i)\n",
7542                      tracked_pipe, pipe);
7543
7544         }
7545
7546         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7547                             base.head) {
7548                 bool enabled = false;
7549                 bool active = false;
7550
7551                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7552                               crtc->base.base.id);
7553
7554                 WARN(crtc->active && !crtc->base.enabled,
7555                      "active crtc, but not enabled in sw tracking\n");
7556
7557                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7558                                     base.head) {
7559                         if (encoder->base.crtc != &crtc->base)
7560                                 continue;
7561                         enabled = true;
7562                         if (encoder->connectors_active)
7563                                 active = true;
7564                 }
7565                 WARN(active != crtc->active,
7566                      "crtc's computed active state doesn't match tracked active state "
7567                      "(expected %i, found %i)\n", active, crtc->active);
7568                 WARN(enabled != crtc->base.enabled,
7569                      "crtc's computed enabled state doesn't match tracked enabled state "
7570                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7571
7572                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7573         }
7574 }
7575
7576 bool intel_set_mode(struct drm_crtc *crtc,
7577                     struct drm_display_mode *mode,
7578                     int x, int y, struct drm_framebuffer *fb)
7579 {
7580         struct drm_device *dev = crtc->dev;
7581         drm_i915_private_t *dev_priv = dev->dev_private;
7582         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7583         struct intel_crtc *intel_crtc;
7584         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7585         bool ret = true;
7586
7587         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7588                                      &prepare_pipes, &disable_pipes);
7589
7590         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7591                       modeset_pipes, prepare_pipes, disable_pipes);
7592
7593         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7594                 intel_crtc_disable(&intel_crtc->base);
7595
7596         saved_hwmode = crtc->hwmode;
7597         saved_mode = crtc->mode;
7598
7599         /* Hack: Because we don't (yet) support global modeset on multiple
7600          * crtcs, we don't keep track of the new mode for more than one crtc.
7601          * Hence simply check whether any bit is set in modeset_pipes in all the
7602          * pieces of code that are not yet converted to deal with mutliple crtcs
7603          * changing their mode at the same time. */
7604         adjusted_mode = NULL;
7605         if (modeset_pipes) {
7606                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7607                 if (IS_ERR(adjusted_mode)) {
7608                         return false;
7609                 }
7610         }
7611
7612         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7613                 if (intel_crtc->base.enabled)
7614                         dev_priv->display.crtc_disable(&intel_crtc->base);
7615         }
7616
7617         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7618          * to set it here already despite that we pass it down the callchain.
7619          */
7620         if (modeset_pipes)
7621                 crtc->mode = *mode;
7622
7623         /* Only after disabling all output pipelines that will be changed can we
7624          * update the the output configuration. */
7625         intel_modeset_update_state(dev, prepare_pipes);
7626
7627         if (dev_priv->display.modeset_global_resources)
7628                 dev_priv->display.modeset_global_resources(dev);
7629
7630         /* Set up the DPLL and any encoders state that needs to adjust or depend
7631          * on the DPLL.
7632          */
7633         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7634                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7635                                            mode, adjusted_mode,
7636                                            x, y, fb);
7637                 if (!ret)
7638                     goto done;
7639         }
7640
7641         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7642         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7643                 dev_priv->display.crtc_enable(&intel_crtc->base);
7644
7645         if (modeset_pipes) {
7646                 /* Store real post-adjustment hardware mode. */
7647                 crtc->hwmode = *adjusted_mode;
7648
7649                 /* Calculate and store various constants which
7650                  * are later needed by vblank and swap-completion
7651                  * timestamping. They are derived from true hwmode.
7652                  */
7653                 drm_calc_timestamping_constants(crtc);
7654         }
7655
7656         /* FIXME: add subpixel order */
7657 done:
7658         drm_mode_destroy(dev, adjusted_mode);
7659         if (!ret && crtc->enabled) {
7660                 crtc->hwmode = saved_hwmode;
7661                 crtc->mode = saved_mode;
7662         } else {
7663                 intel_modeset_check_state(dev);
7664         }
7665
7666         return ret;
7667 }
7668
7669 #undef for_each_intel_crtc_masked
7670
7671 static void intel_set_config_free(struct intel_set_config *config)
7672 {
7673         if (!config)
7674                 return;
7675
7676         kfree(config->save_connector_encoders);
7677         kfree(config->save_encoder_crtcs);
7678         kfree(config);
7679 }
7680
7681 static int intel_set_config_save_state(struct drm_device *dev,
7682                                        struct intel_set_config *config)
7683 {
7684         struct drm_encoder *encoder;
7685         struct drm_connector *connector;
7686         int count;
7687
7688         config->save_encoder_crtcs =
7689                 kcalloc(dev->mode_config.num_encoder,
7690                         sizeof(struct drm_crtc *), GFP_KERNEL);
7691         if (!config->save_encoder_crtcs)
7692                 return -ENOMEM;
7693
7694         config->save_connector_encoders =
7695                 kcalloc(dev->mode_config.num_connector,
7696                         sizeof(struct drm_encoder *), GFP_KERNEL);
7697         if (!config->save_connector_encoders)
7698                 return -ENOMEM;
7699
7700         /* Copy data. Note that driver private data is not affected.
7701          * Should anything bad happen only the expected state is
7702          * restored, not the drivers personal bookkeeping.
7703          */
7704         count = 0;
7705         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7706                 config->save_encoder_crtcs[count++] = encoder->crtc;
7707         }
7708
7709         count = 0;
7710         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7711                 config->save_connector_encoders[count++] = connector->encoder;
7712         }
7713
7714         return 0;
7715 }
7716
7717 static void intel_set_config_restore_state(struct drm_device *dev,
7718                                            struct intel_set_config *config)
7719 {
7720         struct intel_encoder *encoder;
7721         struct intel_connector *connector;
7722         int count;
7723
7724         count = 0;
7725         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7726                 encoder->new_crtc =
7727                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7728         }
7729
7730         count = 0;
7731         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7732                 connector->new_encoder =
7733                         to_intel_encoder(config->save_connector_encoders[count++]);
7734         }
7735 }
7736
7737 static void
7738 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7739                                       struct intel_set_config *config)
7740 {
7741
7742         /* We should be able to check here if the fb has the same properties
7743          * and then just flip_or_move it */
7744         if (set->crtc->fb != set->fb) {
7745                 /* If we have no fb then treat it as a full mode set */
7746                 if (set->crtc->fb == NULL) {
7747                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7748                         config->mode_changed = true;
7749                 } else if (set->fb == NULL) {
7750                         config->mode_changed = true;
7751                 } else if (set->fb->depth != set->crtc->fb->depth) {
7752                         config->mode_changed = true;
7753                 } else if (set->fb->bits_per_pixel !=
7754                            set->crtc->fb->bits_per_pixel) {
7755                         config->mode_changed = true;
7756                 } else
7757                         config->fb_changed = true;
7758         }
7759
7760         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7761                 config->fb_changed = true;
7762
7763         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7764                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7765                 drm_mode_debug_printmodeline(&set->crtc->mode);
7766                 drm_mode_debug_printmodeline(set->mode);
7767                 config->mode_changed = true;
7768         }
7769 }
7770
7771 static int
7772 intel_modeset_stage_output_state(struct drm_device *dev,
7773                                  struct drm_mode_set *set,
7774                                  struct intel_set_config *config)
7775 {
7776         struct drm_crtc *new_crtc;
7777         struct intel_connector *connector;
7778         struct intel_encoder *encoder;
7779         int count, ro;
7780
7781         /* The upper layers ensure that we either disabl a crtc or have a list
7782          * of connectors. For paranoia, double-check this. */
7783         WARN_ON(!set->fb && (set->num_connectors != 0));
7784         WARN_ON(set->fb && (set->num_connectors == 0));
7785
7786         count = 0;
7787         list_for_each_entry(connector, &dev->mode_config.connector_list,
7788                             base.head) {
7789                 /* Otherwise traverse passed in connector list and get encoders
7790                  * for them. */
7791                 for (ro = 0; ro < set->num_connectors; ro++) {
7792                         if (set->connectors[ro] == &connector->base) {
7793                                 connector->new_encoder = connector->encoder;
7794                                 break;
7795                         }
7796                 }
7797
7798                 /* If we disable the crtc, disable all its connectors. Also, if
7799                  * the connector is on the changing crtc but not on the new
7800                  * connector list, disable it. */
7801                 if ((!set->fb || ro == set->num_connectors) &&
7802                     connector->base.encoder &&
7803                     connector->base.encoder->crtc == set->crtc) {
7804                         connector->new_encoder = NULL;
7805
7806                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7807                                 connector->base.base.id,
7808                                 drm_get_connector_name(&connector->base));
7809                 }
7810
7811
7812                 if (&connector->new_encoder->base != connector->base.encoder) {
7813                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7814                         config->mode_changed = true;
7815                 }
7816
7817                 /* Disable all disconnected encoders. */
7818                 if (connector->base.status == connector_status_disconnected)
7819                         connector->new_encoder = NULL;
7820         }
7821         /* connector->new_encoder is now updated for all connectors. */
7822
7823         /* Update crtc of enabled connectors. */
7824         count = 0;
7825         list_for_each_entry(connector, &dev->mode_config.connector_list,
7826                             base.head) {
7827                 if (!connector->new_encoder)
7828                         continue;
7829
7830                 new_crtc = connector->new_encoder->base.crtc;
7831
7832                 for (ro = 0; ro < set->num_connectors; ro++) {
7833                         if (set->connectors[ro] == &connector->base)
7834                                 new_crtc = set->crtc;
7835                 }
7836
7837                 /* Make sure the new CRTC will work with the encoder */
7838                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7839                                            new_crtc)) {
7840                         return -EINVAL;
7841                 }
7842                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7843
7844                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7845                         connector->base.base.id,
7846                         drm_get_connector_name(&connector->base),
7847                         new_crtc->base.id);
7848         }
7849
7850         /* Check for any encoders that needs to be disabled. */
7851         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7852                             base.head) {
7853                 list_for_each_entry(connector,
7854                                     &dev->mode_config.connector_list,
7855                                     base.head) {
7856                         if (connector->new_encoder == encoder) {
7857                                 WARN_ON(!connector->new_encoder->new_crtc);
7858
7859                                 goto next_encoder;
7860                         }
7861                 }
7862                 encoder->new_crtc = NULL;
7863 next_encoder:
7864                 /* Only now check for crtc changes so we don't miss encoders
7865                  * that will be disabled. */
7866                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7867                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7868                         config->mode_changed = true;
7869                 }
7870         }
7871         /* Now we've also updated encoder->new_crtc for all encoders. */
7872
7873         return 0;
7874 }
7875
7876 static int intel_crtc_set_config(struct drm_mode_set *set)
7877 {
7878         struct drm_device *dev;
7879         struct drm_mode_set save_set;
7880         struct intel_set_config *config;
7881         int ret;
7882
7883         BUG_ON(!set);
7884         BUG_ON(!set->crtc);
7885         BUG_ON(!set->crtc->helper_private);
7886
7887         if (!set->mode)
7888                 set->fb = NULL;
7889
7890         /* The fb helper likes to play gross jokes with ->mode_set_config.
7891          * Unfortunately the crtc helper doesn't do much at all for this case,
7892          * so we have to cope with this madness until the fb helper is fixed up. */
7893         if (set->fb && set->num_connectors == 0)
7894                 return 0;
7895
7896         if (set->fb) {
7897                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7898                                 set->crtc->base.id, set->fb->base.id,
7899                                 (int)set->num_connectors, set->x, set->y);
7900         } else {
7901                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7902         }
7903
7904         dev = set->crtc->dev;
7905
7906         ret = -ENOMEM;
7907         config = kzalloc(sizeof(*config), GFP_KERNEL);
7908         if (!config)
7909                 goto out_config;
7910
7911         ret = intel_set_config_save_state(dev, config);
7912         if (ret)
7913                 goto out_config;
7914
7915         save_set.crtc = set->crtc;
7916         save_set.mode = &set->crtc->mode;
7917         save_set.x = set->crtc->x;
7918         save_set.y = set->crtc->y;
7919         save_set.fb = set->crtc->fb;
7920
7921         /* Compute whether we need a full modeset, only an fb base update or no
7922          * change at all. In the future we might also check whether only the
7923          * mode changed, e.g. for LVDS where we only change the panel fitter in
7924          * such cases. */
7925         intel_set_config_compute_mode_changes(set, config);
7926
7927         ret = intel_modeset_stage_output_state(dev, set, config);
7928         if (ret)
7929                 goto fail;
7930
7931         if (config->mode_changed) {
7932                 if (set->mode) {
7933                         DRM_DEBUG_KMS("attempting to set mode from"
7934                                         " userspace\n");
7935                         drm_mode_debug_printmodeline(set->mode);
7936                 }
7937
7938                 if (!intel_set_mode(set->crtc, set->mode,
7939                                     set->x, set->y, set->fb)) {
7940                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7941                                   set->crtc->base.id);
7942                         ret = -EINVAL;
7943                         goto fail;
7944                 }
7945         } else if (config->fb_changed) {
7946                 ret = intel_pipe_set_base(set->crtc,
7947                                           set->x, set->y, set->fb);
7948         }
7949
7950         intel_set_config_free(config);
7951
7952         return 0;
7953
7954 fail:
7955         intel_set_config_restore_state(dev, config);
7956
7957         /* Try to restore the config */
7958         if (config->mode_changed &&
7959             !intel_set_mode(save_set.crtc, save_set.mode,
7960                             save_set.x, save_set.y, save_set.fb))
7961                 DRM_ERROR("failed to restore config after modeset failure\n");
7962
7963 out_config:
7964         intel_set_config_free(config);
7965         return ret;
7966 }
7967
7968 static const struct drm_crtc_funcs intel_crtc_funcs = {
7969         .cursor_set = intel_crtc_cursor_set,
7970         .cursor_move = intel_crtc_cursor_move,
7971         .gamma_set = intel_crtc_gamma_set,
7972         .set_config = intel_crtc_set_config,
7973         .destroy = intel_crtc_destroy,
7974         .page_flip = intel_crtc_page_flip,
7975 };
7976
7977 static void intel_cpu_pll_init(struct drm_device *dev)
7978 {
7979         if (HAS_DDI(dev))
7980                 intel_ddi_pll_init(dev);
7981 }
7982
7983 static void intel_pch_pll_init(struct drm_device *dev)
7984 {
7985         drm_i915_private_t *dev_priv = dev->dev_private;
7986         int i;
7987
7988         if (dev_priv->num_pch_pll == 0) {
7989                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7990                 return;
7991         }
7992
7993         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7994                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7995                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7996                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7997         }
7998 }
7999
8000 static void intel_crtc_init(struct drm_device *dev, int pipe)
8001 {
8002         drm_i915_private_t *dev_priv = dev->dev_private;
8003         struct intel_crtc *intel_crtc;
8004         int i;
8005
8006         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8007         if (intel_crtc == NULL)
8008                 return;
8009
8010         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8011
8012         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8013         for (i = 0; i < 256; i++) {
8014                 intel_crtc->lut_r[i] = i;
8015                 intel_crtc->lut_g[i] = i;
8016                 intel_crtc->lut_b[i] = i;
8017         }
8018
8019         /* Swap pipes & planes for FBC on pre-965 */
8020         intel_crtc->pipe = pipe;
8021         intel_crtc->plane = pipe;
8022         intel_crtc->cpu_transcoder = pipe;
8023         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8024                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8025                 intel_crtc->plane = !pipe;
8026         }
8027
8028         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8029                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8030         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8031         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8032
8033         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8034
8035         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8036 }
8037
8038 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8039                                 struct drm_file *file)
8040 {
8041         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8042         struct drm_mode_object *drmmode_obj;
8043         struct intel_crtc *crtc;
8044
8045         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8046                 return -ENODEV;
8047
8048         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8049                         DRM_MODE_OBJECT_CRTC);
8050
8051         if (!drmmode_obj) {
8052                 DRM_ERROR("no such CRTC id\n");
8053                 return -EINVAL;
8054         }
8055
8056         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8057         pipe_from_crtc_id->pipe = crtc->pipe;
8058
8059         return 0;
8060 }
8061
8062 static int intel_encoder_clones(struct intel_encoder *encoder)
8063 {
8064         struct drm_device *dev = encoder->base.dev;
8065         struct intel_encoder *source_encoder;
8066         int index_mask = 0;
8067         int entry = 0;
8068
8069         list_for_each_entry(source_encoder,
8070                             &dev->mode_config.encoder_list, base.head) {
8071
8072                 if (encoder == source_encoder)
8073                         index_mask |= (1 << entry);
8074
8075                 /* Intel hw has only one MUX where enocoders could be cloned. */
8076                 if (encoder->cloneable && source_encoder->cloneable)
8077                         index_mask |= (1 << entry);
8078
8079                 entry++;
8080         }
8081
8082         return index_mask;
8083 }
8084
8085 static bool has_edp_a(struct drm_device *dev)
8086 {
8087         struct drm_i915_private *dev_priv = dev->dev_private;
8088
8089         if (!IS_MOBILE(dev))
8090                 return false;
8091
8092         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8093                 return false;
8094
8095         if (IS_GEN5(dev) &&
8096             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8097                 return false;
8098
8099         return true;
8100 }
8101
8102 static void intel_setup_outputs(struct drm_device *dev)
8103 {
8104         struct drm_i915_private *dev_priv = dev->dev_private;
8105         struct intel_encoder *encoder;
8106         bool dpd_is_edp = false;
8107         bool has_lvds;
8108
8109         has_lvds = intel_lvds_init(dev);
8110         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8111                 /* disable the panel fitter on everything but LVDS */
8112                 I915_WRITE(PFIT_CONTROL, 0);
8113         }
8114
8115         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8116                 intel_crt_init(dev);
8117
8118         if (HAS_DDI(dev)) {
8119                 int found;
8120
8121                 /* Haswell uses DDI functions to detect digital outputs */
8122                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8123                 /* DDI A only supports eDP */
8124                 if (found)
8125                         intel_ddi_init(dev, PORT_A);
8126
8127                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8128                  * register */
8129                 found = I915_READ(SFUSE_STRAP);
8130
8131                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8132                         intel_ddi_init(dev, PORT_B);
8133                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8134                         intel_ddi_init(dev, PORT_C);
8135                 if (found & SFUSE_STRAP_DDID_DETECTED)
8136                         intel_ddi_init(dev, PORT_D);
8137         } else if (HAS_PCH_SPLIT(dev)) {
8138                 int found;
8139                 dpd_is_edp = intel_dpd_is_edp(dev);
8140
8141                 if (has_edp_a(dev))
8142                         intel_dp_init(dev, DP_A, PORT_A);
8143
8144                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8145                         /* PCH SDVOB multiplex with HDMIB */
8146                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8147                         if (!found)
8148                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8149                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8150                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8151                 }
8152
8153                 if (I915_READ(HDMIC) & PORT_DETECTED)
8154                         intel_hdmi_init(dev, HDMIC, PORT_C);
8155
8156                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8157                         intel_hdmi_init(dev, HDMID, PORT_D);
8158
8159                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8160                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8161
8162                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8163                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8164         } else if (IS_VALLEYVIEW(dev)) {
8165                 int found;
8166
8167                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8168                 if (I915_READ(DP_C) & DP_DETECTED)
8169                         intel_dp_init(dev, DP_C, PORT_C);
8170
8171                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8172                         /* SDVOB multiplex with HDMIB */
8173                         found = intel_sdvo_init(dev, SDVOB, true);
8174                         if (!found)
8175                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8176                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8177                                 intel_dp_init(dev, DP_B, PORT_B);
8178                 }
8179
8180                 if (I915_READ(SDVOC) & PORT_DETECTED)
8181                         intel_hdmi_init(dev, SDVOC, PORT_C);
8182
8183         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8184                 bool found = false;
8185
8186                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8187                         DRM_DEBUG_KMS("probing SDVOB\n");
8188                         found = intel_sdvo_init(dev, SDVOB, true);
8189                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8190                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8191                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8192                         }
8193
8194                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8195                                 DRM_DEBUG_KMS("probing DP_B\n");
8196                                 intel_dp_init(dev, DP_B, PORT_B);
8197                         }
8198                 }
8199
8200                 /* Before G4X SDVOC doesn't have its own detect register */
8201
8202                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8203                         DRM_DEBUG_KMS("probing SDVOC\n");
8204                         found = intel_sdvo_init(dev, SDVOC, false);
8205                 }
8206
8207                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8208
8209                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8210                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8211                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8212                         }
8213                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8214                                 DRM_DEBUG_KMS("probing DP_C\n");
8215                                 intel_dp_init(dev, DP_C, PORT_C);
8216                         }
8217                 }
8218
8219                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8220                     (I915_READ(DP_D) & DP_DETECTED)) {
8221                         DRM_DEBUG_KMS("probing DP_D\n");
8222                         intel_dp_init(dev, DP_D, PORT_D);
8223                 }
8224         } else if (IS_GEN2(dev))
8225                 intel_dvo_init(dev);
8226
8227         if (SUPPORTS_TV(dev))
8228                 intel_tv_init(dev);
8229
8230         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8231                 encoder->base.possible_crtcs = encoder->crtc_mask;
8232                 encoder->base.possible_clones =
8233                         intel_encoder_clones(encoder);
8234         }
8235
8236         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8237                 ironlake_init_pch_refclk(dev);
8238
8239         drm_helper_move_panel_connectors_to_head(dev);
8240 }
8241
8242 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8243 {
8244         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8245
8246         drm_framebuffer_cleanup(fb);
8247         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8248
8249         kfree(intel_fb);
8250 }
8251
8252 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8253                                                 struct drm_file *file,
8254                                                 unsigned int *handle)
8255 {
8256         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8257         struct drm_i915_gem_object *obj = intel_fb->obj;
8258
8259         return drm_gem_handle_create(file, &obj->base, handle);
8260 }
8261
8262 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8263         .destroy = intel_user_framebuffer_destroy,
8264         .create_handle = intel_user_framebuffer_create_handle,
8265 };
8266
8267 int intel_framebuffer_init(struct drm_device *dev,
8268                            struct intel_framebuffer *intel_fb,
8269                            struct drm_mode_fb_cmd2 *mode_cmd,
8270                            struct drm_i915_gem_object *obj)
8271 {
8272         int ret;
8273
8274         if (obj->tiling_mode == I915_TILING_Y)
8275                 return -EINVAL;
8276
8277         if (mode_cmd->pitches[0] & 63)
8278                 return -EINVAL;
8279
8280         /* FIXME <= Gen4 stride limits are bit unclear */
8281         if (mode_cmd->pitches[0] > 32768)
8282                 return -EINVAL;
8283
8284         if (obj->tiling_mode != I915_TILING_NONE &&
8285             mode_cmd->pitches[0] != obj->stride)
8286                 return -EINVAL;
8287
8288         /* Reject formats not supported by any plane early. */
8289         switch (mode_cmd->pixel_format) {
8290         case DRM_FORMAT_C8:
8291         case DRM_FORMAT_RGB565:
8292         case DRM_FORMAT_XRGB8888:
8293         case DRM_FORMAT_ARGB8888:
8294                 break;
8295         case DRM_FORMAT_XRGB1555:
8296         case DRM_FORMAT_ARGB1555:
8297                 if (INTEL_INFO(dev)->gen > 3)
8298                         return -EINVAL;
8299                 break;
8300         case DRM_FORMAT_XBGR8888:
8301         case DRM_FORMAT_ABGR8888:
8302         case DRM_FORMAT_XRGB2101010:
8303         case DRM_FORMAT_ARGB2101010:
8304         case DRM_FORMAT_XBGR2101010:
8305         case DRM_FORMAT_ABGR2101010:
8306                 if (INTEL_INFO(dev)->gen < 4)
8307                         return -EINVAL;
8308                 break;
8309         case DRM_FORMAT_YUYV:
8310         case DRM_FORMAT_UYVY:
8311         case DRM_FORMAT_YVYU:
8312         case DRM_FORMAT_VYUY:
8313                 if (INTEL_INFO(dev)->gen < 6)
8314                         return -EINVAL;
8315                 break;
8316         default:
8317                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8318                 return -EINVAL;
8319         }
8320
8321         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8322         if (mode_cmd->offsets[0] != 0)
8323                 return -EINVAL;
8324
8325         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8326         if (ret) {
8327                 DRM_ERROR("framebuffer init failed %d\n", ret);
8328                 return ret;
8329         }
8330
8331         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8332         intel_fb->obj = obj;
8333         return 0;
8334 }
8335
8336 static struct drm_framebuffer *
8337 intel_user_framebuffer_create(struct drm_device *dev,
8338                               struct drm_file *filp,
8339                               struct drm_mode_fb_cmd2 *mode_cmd)
8340 {
8341         struct drm_i915_gem_object *obj;
8342
8343         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8344                                                 mode_cmd->handles[0]));
8345         if (&obj->base == NULL)
8346                 return ERR_PTR(-ENOENT);
8347
8348         return intel_framebuffer_create(dev, mode_cmd, obj);
8349 }
8350
8351 static const struct drm_mode_config_funcs intel_mode_funcs = {
8352         .fb_create = intel_user_framebuffer_create,
8353         .output_poll_changed = intel_fb_output_poll_changed,
8354 };
8355
8356 /* Set up chip specific display functions */
8357 static void intel_init_display(struct drm_device *dev)
8358 {
8359         struct drm_i915_private *dev_priv = dev->dev_private;
8360
8361         /* We always want a DPMS function */
8362         if (HAS_DDI(dev)) {
8363                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8364                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8365                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8366                 dev_priv->display.off = haswell_crtc_off;
8367                 dev_priv->display.update_plane = ironlake_update_plane;
8368         } else if (HAS_PCH_SPLIT(dev)) {
8369                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8370                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8371                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8372                 dev_priv->display.off = ironlake_crtc_off;
8373                 dev_priv->display.update_plane = ironlake_update_plane;
8374         } else {
8375                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8376                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8377                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8378                 dev_priv->display.off = i9xx_crtc_off;
8379                 dev_priv->display.update_plane = i9xx_update_plane;
8380         }
8381
8382         /* Returns the core display clock speed */
8383         if (IS_VALLEYVIEW(dev))
8384                 dev_priv->display.get_display_clock_speed =
8385                         valleyview_get_display_clock_speed;
8386         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8387                 dev_priv->display.get_display_clock_speed =
8388                         i945_get_display_clock_speed;
8389         else if (IS_I915G(dev))
8390                 dev_priv->display.get_display_clock_speed =
8391                         i915_get_display_clock_speed;
8392         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8393                 dev_priv->display.get_display_clock_speed =
8394                         i9xx_misc_get_display_clock_speed;
8395         else if (IS_I915GM(dev))
8396                 dev_priv->display.get_display_clock_speed =
8397                         i915gm_get_display_clock_speed;
8398         else if (IS_I865G(dev))
8399                 dev_priv->display.get_display_clock_speed =
8400                         i865_get_display_clock_speed;
8401         else if (IS_I85X(dev))
8402                 dev_priv->display.get_display_clock_speed =
8403                         i855_get_display_clock_speed;
8404         else /* 852, 830 */
8405                 dev_priv->display.get_display_clock_speed =
8406                         i830_get_display_clock_speed;
8407
8408         if (HAS_PCH_SPLIT(dev)) {
8409                 if (IS_GEN5(dev)) {
8410                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8411                         dev_priv->display.write_eld = ironlake_write_eld;
8412                 } else if (IS_GEN6(dev)) {
8413                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8414                         dev_priv->display.write_eld = ironlake_write_eld;
8415                 } else if (IS_IVYBRIDGE(dev)) {
8416                         /* FIXME: detect B0+ stepping and use auto training */
8417                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8418                         dev_priv->display.write_eld = ironlake_write_eld;
8419                         dev_priv->display.modeset_global_resources =
8420                                 ivb_modeset_global_resources;
8421                 } else if (IS_HASWELL(dev)) {
8422                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8423                         dev_priv->display.write_eld = haswell_write_eld;
8424                 } else
8425                         dev_priv->display.update_wm = NULL;
8426         } else if (IS_G4X(dev)) {
8427                 dev_priv->display.write_eld = g4x_write_eld;
8428         }
8429
8430         /* Default just returns -ENODEV to indicate unsupported */
8431         dev_priv->display.queue_flip = intel_default_queue_flip;
8432
8433         switch (INTEL_INFO(dev)->gen) {
8434         case 2:
8435                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8436                 break;
8437
8438         case 3:
8439                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8440                 break;
8441
8442         case 4:
8443         case 5:
8444                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8445                 break;
8446
8447         case 6:
8448                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8449                 break;
8450         case 7:
8451                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8452                 break;
8453         }
8454 }
8455
8456 /*
8457  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8458  * resume, or other times.  This quirk makes sure that's the case for
8459  * affected systems.
8460  */
8461 static void quirk_pipea_force(struct drm_device *dev)
8462 {
8463         struct drm_i915_private *dev_priv = dev->dev_private;
8464
8465         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8466         DRM_INFO("applying pipe a force quirk\n");
8467 }
8468
8469 /*
8470  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8471  */
8472 static void quirk_ssc_force_disable(struct drm_device *dev)
8473 {
8474         struct drm_i915_private *dev_priv = dev->dev_private;
8475         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8476         DRM_INFO("applying lvds SSC disable quirk\n");
8477 }
8478
8479 /*
8480  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8481  * brightness value
8482  */
8483 static void quirk_invert_brightness(struct drm_device *dev)
8484 {
8485         struct drm_i915_private *dev_priv = dev->dev_private;
8486         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8487         DRM_INFO("applying inverted panel brightness quirk\n");
8488 }
8489
8490 struct intel_quirk {
8491         int device;
8492         int subsystem_vendor;
8493         int subsystem_device;
8494         void (*hook)(struct drm_device *dev);
8495 };
8496
8497 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8498 struct intel_dmi_quirk {
8499         void (*hook)(struct drm_device *dev);
8500         const struct dmi_system_id (*dmi_id_list)[];
8501 };
8502
8503 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8504 {
8505         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8506         return 1;
8507 }
8508
8509 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8510         {
8511                 .dmi_id_list = &(const struct dmi_system_id[]) {
8512                         {
8513                                 .callback = intel_dmi_reverse_brightness,
8514                                 .ident = "NCR Corporation",
8515                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8516                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8517                                 },
8518                         },
8519                         { }  /* terminating entry */
8520                 },
8521                 .hook = quirk_invert_brightness,
8522         },
8523 };
8524
8525 static struct intel_quirk intel_quirks[] = {
8526         /* HP Mini needs pipe A force quirk (LP: #322104) */
8527         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8528
8529         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8530         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8531
8532         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8533         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8534
8535         /* 830/845 need to leave pipe A & dpll A up */
8536         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8537         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8538
8539         /* Lenovo U160 cannot use SSC on LVDS */
8540         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8541
8542         /* Sony Vaio Y cannot use SSC on LVDS */
8543         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8544
8545         /* Acer Aspire 5734Z must invert backlight brightness */
8546         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8547 };
8548
8549 static void intel_init_quirks(struct drm_device *dev)
8550 {
8551         struct pci_dev *d = dev->pdev;
8552         int i;
8553
8554         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8555                 struct intel_quirk *q = &intel_quirks[i];
8556
8557                 if (d->device == q->device &&
8558                     (d->subsystem_vendor == q->subsystem_vendor ||
8559                      q->subsystem_vendor == PCI_ANY_ID) &&
8560                     (d->subsystem_device == q->subsystem_device ||
8561                      q->subsystem_device == PCI_ANY_ID))
8562                         q->hook(dev);
8563         }
8564         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8565                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8566                         intel_dmi_quirks[i].hook(dev);
8567         }
8568 }
8569
8570 /* Disable the VGA plane that we never use */
8571 static void i915_disable_vga(struct drm_device *dev)
8572 {
8573         struct drm_i915_private *dev_priv = dev->dev_private;
8574         u8 sr1;
8575         u32 vga_reg;
8576
8577         if (HAS_PCH_SPLIT(dev))
8578                 vga_reg = CPU_VGACNTRL;
8579         else
8580                 vga_reg = VGACNTRL;
8581
8582         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8583         outb(SR01, VGA_SR_INDEX);
8584         sr1 = inb(VGA_SR_DATA);
8585         outb(sr1 | 1<<5, VGA_SR_DATA);
8586         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8587         udelay(300);
8588
8589         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8590         POSTING_READ(vga_reg);
8591 }
8592
8593 void intel_modeset_init_hw(struct drm_device *dev)
8594 {
8595         /* We attempt to init the necessary power wells early in the initialization
8596          * time, so the subsystems that expect power to be enabled can work.
8597          */
8598         intel_init_power_wells(dev);
8599
8600         intel_prepare_ddi(dev);
8601
8602         intel_init_clock_gating(dev);
8603
8604         mutex_lock(&dev->struct_mutex);
8605         intel_enable_gt_powersave(dev);
8606         mutex_unlock(&dev->struct_mutex);
8607 }
8608
8609 void intel_modeset_init(struct drm_device *dev)
8610 {
8611         struct drm_i915_private *dev_priv = dev->dev_private;
8612         int i, ret;
8613
8614         drm_mode_config_init(dev);
8615
8616         dev->mode_config.min_width = 0;
8617         dev->mode_config.min_height = 0;
8618
8619         dev->mode_config.preferred_depth = 24;
8620         dev->mode_config.prefer_shadow = 1;
8621
8622         dev->mode_config.funcs = &intel_mode_funcs;
8623
8624         intel_init_quirks(dev);
8625
8626         intel_init_pm(dev);
8627
8628         intel_init_display(dev);
8629
8630         if (IS_GEN2(dev)) {
8631                 dev->mode_config.max_width = 2048;
8632                 dev->mode_config.max_height = 2048;
8633         } else if (IS_GEN3(dev)) {
8634                 dev->mode_config.max_width = 4096;
8635                 dev->mode_config.max_height = 4096;
8636         } else {
8637                 dev->mode_config.max_width = 8192;
8638                 dev->mode_config.max_height = 8192;
8639         }
8640         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8641
8642         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8643                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8644
8645         for (i = 0; i < dev_priv->num_pipe; i++) {
8646                 intel_crtc_init(dev, i);
8647                 ret = intel_plane_init(dev, i);
8648                 if (ret)
8649                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8650         }
8651
8652         intel_cpu_pll_init(dev);
8653         intel_pch_pll_init(dev);
8654
8655         /* Just disable it once at startup */
8656         i915_disable_vga(dev);
8657         intel_setup_outputs(dev);
8658 }
8659
8660 static void
8661 intel_connector_break_all_links(struct intel_connector *connector)
8662 {
8663         connector->base.dpms = DRM_MODE_DPMS_OFF;
8664         connector->base.encoder = NULL;
8665         connector->encoder->connectors_active = false;
8666         connector->encoder->base.crtc = NULL;
8667 }
8668
8669 static void intel_enable_pipe_a(struct drm_device *dev)
8670 {
8671         struct intel_connector *connector;
8672         struct drm_connector *crt = NULL;
8673         struct intel_load_detect_pipe load_detect_temp;
8674
8675         /* We can't just switch on the pipe A, we need to set things up with a
8676          * proper mode and output configuration. As a gross hack, enable pipe A
8677          * by enabling the load detect pipe once. */
8678         list_for_each_entry(connector,
8679                             &dev->mode_config.connector_list,
8680                             base.head) {
8681                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8682                         crt = &connector->base;
8683                         break;
8684                 }
8685         }
8686
8687         if (!crt)
8688                 return;
8689
8690         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8691                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8692
8693
8694 }
8695
8696 static bool
8697 intel_check_plane_mapping(struct intel_crtc *crtc)
8698 {
8699         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8700         u32 reg, val;
8701
8702         if (dev_priv->num_pipe == 1)
8703                 return true;
8704
8705         reg = DSPCNTR(!crtc->plane);
8706         val = I915_READ(reg);
8707
8708         if ((val & DISPLAY_PLANE_ENABLE) &&
8709             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8710                 return false;
8711
8712         return true;
8713 }
8714
8715 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8716 {
8717         struct drm_device *dev = crtc->base.dev;
8718         struct drm_i915_private *dev_priv = dev->dev_private;
8719         u32 reg;
8720
8721         /* Clear any frame start delays used for debugging left by the BIOS */
8722         reg = PIPECONF(crtc->cpu_transcoder);
8723         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8724
8725         /* We need to sanitize the plane -> pipe mapping first because this will
8726          * disable the crtc (and hence change the state) if it is wrong. Note
8727          * that gen4+ has a fixed plane -> pipe mapping.  */
8728         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8729                 struct intel_connector *connector;
8730                 bool plane;
8731
8732                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8733                               crtc->base.base.id);
8734
8735                 /* Pipe has the wrong plane attached and the plane is active.
8736                  * Temporarily change the plane mapping and disable everything
8737                  * ...  */
8738                 plane = crtc->plane;
8739                 crtc->plane = !plane;
8740                 dev_priv->display.crtc_disable(&crtc->base);
8741                 crtc->plane = plane;
8742
8743                 /* ... and break all links. */
8744                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8745                                     base.head) {
8746                         if (connector->encoder->base.crtc != &crtc->base)
8747                                 continue;
8748
8749                         intel_connector_break_all_links(connector);
8750                 }
8751
8752                 WARN_ON(crtc->active);
8753                 crtc->base.enabled = false;
8754         }
8755
8756         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8757             crtc->pipe == PIPE_A && !crtc->active) {
8758                 /* BIOS forgot to enable pipe A, this mostly happens after
8759                  * resume. Force-enable the pipe to fix this, the update_dpms
8760                  * call below we restore the pipe to the right state, but leave
8761                  * the required bits on. */
8762                 intel_enable_pipe_a(dev);
8763         }
8764
8765         /* Adjust the state of the output pipe according to whether we
8766          * have active connectors/encoders. */
8767         intel_crtc_update_dpms(&crtc->base);
8768
8769         if (crtc->active != crtc->base.enabled) {
8770                 struct intel_encoder *encoder;
8771
8772                 /* This can happen either due to bugs in the get_hw_state
8773                  * functions or because the pipe is force-enabled due to the
8774                  * pipe A quirk. */
8775                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8776                               crtc->base.base.id,
8777                               crtc->base.enabled ? "enabled" : "disabled",
8778                               crtc->active ? "enabled" : "disabled");
8779
8780                 crtc->base.enabled = crtc->active;
8781
8782                 /* Because we only establish the connector -> encoder ->
8783                  * crtc links if something is active, this means the
8784                  * crtc is now deactivated. Break the links. connector
8785                  * -> encoder links are only establish when things are
8786                  *  actually up, hence no need to break them. */
8787                 WARN_ON(crtc->active);
8788
8789                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8790                         WARN_ON(encoder->connectors_active);
8791                         encoder->base.crtc = NULL;
8792                 }
8793         }
8794 }
8795
8796 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8797 {
8798         struct intel_connector *connector;
8799         struct drm_device *dev = encoder->base.dev;
8800
8801         /* We need to check both for a crtc link (meaning that the
8802          * encoder is active and trying to read from a pipe) and the
8803          * pipe itself being active. */
8804         bool has_active_crtc = encoder->base.crtc &&
8805                 to_intel_crtc(encoder->base.crtc)->active;
8806
8807         if (encoder->connectors_active && !has_active_crtc) {
8808                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8809                               encoder->base.base.id,
8810                               drm_get_encoder_name(&encoder->base));
8811
8812                 /* Connector is active, but has no active pipe. This is
8813                  * fallout from our resume register restoring. Disable
8814                  * the encoder manually again. */
8815                 if (encoder->base.crtc) {
8816                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8817                                       encoder->base.base.id,
8818                                       drm_get_encoder_name(&encoder->base));
8819                         encoder->disable(encoder);
8820                 }
8821
8822                 /* Inconsistent output/port/pipe state happens presumably due to
8823                  * a bug in one of the get_hw_state functions. Or someplace else
8824                  * in our code, like the register restore mess on resume. Clamp
8825                  * things to off as a safer default. */
8826                 list_for_each_entry(connector,
8827                                     &dev->mode_config.connector_list,
8828                                     base.head) {
8829                         if (connector->encoder != encoder)
8830                                 continue;
8831
8832                         intel_connector_break_all_links(connector);
8833                 }
8834         }
8835         /* Enabled encoders without active connectors will be fixed in
8836          * the crtc fixup. */
8837 }
8838
8839 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8840  * and i915 state tracking structures. */
8841 void intel_modeset_setup_hw_state(struct drm_device *dev,
8842                                   bool force_restore)
8843 {
8844         struct drm_i915_private *dev_priv = dev->dev_private;
8845         enum pipe pipe;
8846         u32 tmp;
8847         struct intel_crtc *crtc;
8848         struct intel_encoder *encoder;
8849         struct intel_connector *connector;
8850
8851         if (HAS_DDI(dev)) {
8852                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8853
8854                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8855                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8856                         case TRANS_DDI_EDP_INPUT_A_ON:
8857                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8858                                 pipe = PIPE_A;
8859                                 break;
8860                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8861                                 pipe = PIPE_B;
8862                                 break;
8863                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8864                                 pipe = PIPE_C;
8865                                 break;
8866                         }
8867
8868                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8869                         crtc->cpu_transcoder = TRANSCODER_EDP;
8870
8871                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8872                                       pipe_name(pipe));
8873                 }
8874         }
8875
8876         for_each_pipe(pipe) {
8877                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8878
8879                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8880                 if (tmp & PIPECONF_ENABLE)
8881                         crtc->active = true;
8882                 else
8883                         crtc->active = false;
8884
8885                 crtc->base.enabled = crtc->active;
8886
8887                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8888                               crtc->base.base.id,
8889                               crtc->active ? "enabled" : "disabled");
8890         }
8891
8892         if (HAS_DDI(dev))
8893                 intel_ddi_setup_hw_pll_state(dev);
8894
8895         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8896                             base.head) {
8897                 pipe = 0;
8898
8899                 if (encoder->get_hw_state(encoder, &pipe)) {
8900                         encoder->base.crtc =
8901                                 dev_priv->pipe_to_crtc_mapping[pipe];
8902                 } else {
8903                         encoder->base.crtc = NULL;
8904                 }
8905
8906                 encoder->connectors_active = false;
8907                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8908                               encoder->base.base.id,
8909                               drm_get_encoder_name(&encoder->base),
8910                               encoder->base.crtc ? "enabled" : "disabled",
8911                               pipe);
8912         }
8913
8914         list_for_each_entry(connector, &dev->mode_config.connector_list,
8915                             base.head) {
8916                 if (connector->get_hw_state(connector)) {
8917                         connector->base.dpms = DRM_MODE_DPMS_ON;
8918                         connector->encoder->connectors_active = true;
8919                         connector->base.encoder = &connector->encoder->base;
8920                 } else {
8921                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8922                         connector->base.encoder = NULL;
8923                 }
8924                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8925                               connector->base.base.id,
8926                               drm_get_connector_name(&connector->base),
8927                               connector->base.encoder ? "enabled" : "disabled");
8928         }
8929
8930         /* HW state is read out, now we need to sanitize this mess. */
8931         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8932                             base.head) {
8933                 intel_sanitize_encoder(encoder);
8934         }
8935
8936         for_each_pipe(pipe) {
8937                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8938                 intel_sanitize_crtc(crtc);
8939         }
8940
8941         if (force_restore) {
8942                 for_each_pipe(pipe) {
8943                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8944                         intel_set_mode(&crtc->base, &crtc->base.mode,
8945                                        crtc->base.x, crtc->base.y, crtc->base.fb);
8946                 }
8947         } else {
8948                 intel_modeset_update_staged_output_state(dev);
8949         }
8950
8951         intel_modeset_check_state(dev);
8952
8953         drm_mode_config_reset(dev);
8954 }
8955
8956 void intel_modeset_gem_init(struct drm_device *dev)
8957 {
8958         intel_modeset_init_hw(dev);
8959
8960         intel_setup_overlay(dev);
8961
8962         intel_modeset_setup_hw_state(dev, false);
8963 }
8964
8965 void intel_modeset_cleanup(struct drm_device *dev)
8966 {
8967         struct drm_i915_private *dev_priv = dev->dev_private;
8968         struct drm_crtc *crtc;
8969         struct intel_crtc *intel_crtc;
8970
8971         drm_kms_helper_poll_fini(dev);
8972         mutex_lock(&dev->struct_mutex);
8973
8974         intel_unregister_dsm_handler();
8975
8976
8977         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8978                 /* Skip inactive CRTCs */
8979                 if (!crtc->fb)
8980                         continue;
8981
8982                 intel_crtc = to_intel_crtc(crtc);
8983                 intel_increase_pllclock(crtc);
8984         }
8985
8986         intel_disable_fbc(dev);
8987
8988         intel_disable_gt_powersave(dev);
8989
8990         ironlake_teardown_rc6(dev);
8991
8992         if (IS_VALLEYVIEW(dev))
8993                 vlv_init_dpio(dev);
8994
8995         mutex_unlock(&dev->struct_mutex);
8996
8997         /* Disable the irq before mode object teardown, for the irq might
8998          * enqueue unpin/hotplug work. */
8999         drm_irq_uninstall(dev);
9000         cancel_work_sync(&dev_priv->hotplug_work);
9001         cancel_work_sync(&dev_priv->rps.work);
9002
9003         /* flush any delayed tasks or pending work */
9004         flush_scheduled_work();
9005
9006         drm_mode_config_cleanup(dev);
9007 }
9008
9009 /*
9010  * Return which encoder is currently attached for connector.
9011  */
9012 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9013 {
9014         return &intel_attached_encoder(connector)->base;
9015 }
9016
9017 void intel_connector_attach_encoder(struct intel_connector *connector,
9018                                     struct intel_encoder *encoder)
9019 {
9020         connector->encoder = encoder;
9021         drm_mode_connector_attach_encoder(&connector->base,
9022                                           &encoder->base);
9023 }
9024
9025 /*
9026  * set vga decode state - true == enable VGA decode
9027  */
9028 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9029 {
9030         struct drm_i915_private *dev_priv = dev->dev_private;
9031         u16 gmch_ctrl;
9032
9033         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9034         if (state)
9035                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9036         else
9037                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9038         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9039         return 0;
9040 }
9041
9042 #ifdef CONFIG_DEBUG_FS
9043 #include <linux/seq_file.h>
9044
9045 struct intel_display_error_state {
9046         struct intel_cursor_error_state {
9047                 u32 control;
9048                 u32 position;
9049                 u32 base;
9050                 u32 size;
9051         } cursor[I915_MAX_PIPES];
9052
9053         struct intel_pipe_error_state {
9054                 u32 conf;
9055                 u32 source;
9056
9057                 u32 htotal;
9058                 u32 hblank;
9059                 u32 hsync;
9060                 u32 vtotal;
9061                 u32 vblank;
9062                 u32 vsync;
9063         } pipe[I915_MAX_PIPES];
9064
9065         struct intel_plane_error_state {
9066                 u32 control;
9067                 u32 stride;
9068                 u32 size;
9069                 u32 pos;
9070                 u32 addr;
9071                 u32 surface;
9072                 u32 tile_offset;
9073         } plane[I915_MAX_PIPES];
9074 };
9075
9076 struct intel_display_error_state *
9077 intel_display_capture_error_state(struct drm_device *dev)
9078 {
9079         drm_i915_private_t *dev_priv = dev->dev_private;
9080         struct intel_display_error_state *error;
9081         enum transcoder cpu_transcoder;
9082         int i;
9083
9084         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9085         if (error == NULL)
9086                 return NULL;
9087
9088         for_each_pipe(i) {
9089                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9090
9091                 error->cursor[i].control = I915_READ(CURCNTR(i));
9092                 error->cursor[i].position = I915_READ(CURPOS(i));
9093                 error->cursor[i].base = I915_READ(CURBASE(i));
9094
9095                 error->plane[i].control = I915_READ(DSPCNTR(i));
9096                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9097                 error->plane[i].size = I915_READ(DSPSIZE(i));
9098                 error->plane[i].pos = I915_READ(DSPPOS(i));
9099                 error->plane[i].addr = I915_READ(DSPADDR(i));
9100                 if (INTEL_INFO(dev)->gen >= 4) {
9101                         error->plane[i].surface = I915_READ(DSPSURF(i));
9102                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9103                 }
9104
9105                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9106                 error->pipe[i].source = I915_READ(PIPESRC(i));
9107                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9108                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9109                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9110                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9111                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9112                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9113         }
9114
9115         return error;
9116 }
9117
9118 void
9119 intel_display_print_error_state(struct seq_file *m,
9120                                 struct drm_device *dev,
9121                                 struct intel_display_error_state *error)
9122 {
9123         drm_i915_private_t *dev_priv = dev->dev_private;
9124         int i;
9125
9126         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9127         for_each_pipe(i) {
9128                 seq_printf(m, "Pipe [%d]:\n", i);
9129                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9130                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9131                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9132                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9133                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9134                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9135                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9136                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9137
9138                 seq_printf(m, "Plane [%d]:\n", i);
9139                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9140                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9141                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9142                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9143                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9144                 if (INTEL_INFO(dev)->gen >= 4) {
9145                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9146                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9147                 }
9148
9149                 seq_printf(m, "Cursor [%d]:\n", i);
9150                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9151                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9152                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9153         }
9154 }
9155 #endif