]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: capture the correct cursor registers on IVB
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1292 {
1293         u32 val;
1294         bool enabled;
1295
1296         if (HAS_PCH_LPT(dev_priv->dev)) {
1297                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1298                 return;
1299         }
1300
1301         val = I915_READ(PCH_DREF_CONTROL);
1302         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1303                             DREF_SUPERSPREAD_SOURCE_MASK));
1304         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1305 }
1306
1307 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1308                                        enum pipe pipe)
1309 {
1310         int reg;
1311         u32 val;
1312         bool enabled;
1313
1314         reg = TRANSCONF(pipe);
1315         val = I915_READ(reg);
1316         enabled = !!(val & TRANS_ENABLE);
1317         WARN(enabled,
1318              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1323                             enum pipe pipe, u32 port_sel, u32 val)
1324 {
1325         if ((val & DP_PORT_EN) == 0)
1326                 return false;
1327
1328         if (HAS_PCH_CPT(dev_priv->dev)) {
1329                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1330                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1331                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1332                         return false;
1333         } else {
1334                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & SDVO_ENABLE) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & LVDS_PORT_EN) == 0)
1360                 return false;
1361
1362         if (HAS_PCH_CPT(dev_priv->dev)) {
1363                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1364                         return false;
1365         } else {
1366                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1367                         return false;
1368         }
1369         return true;
1370 }
1371
1372 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1373                               enum pipe pipe, u32 val)
1374 {
1375         if ((val & ADPA_DAC_ENABLE) == 0)
1376                 return false;
1377         if (HAS_PCH_CPT(dev_priv->dev)) {
1378                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1388                                    enum pipe pipe, int reg, u32 port_sel)
1389 {
1390         u32 val = I915_READ(reg);
1391         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1392              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1393              reg, pipe_name(pipe));
1394
1395         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1396              && (val & DP_PIPEB_SELECT),
1397              "IBX PCH dp port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1401                                      enum pipe pipe, int reg)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1405              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1409              && (val & SDVO_PIPE_B_SELECT),
1410              "IBX PCH hdmi port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1414                                       enum pipe pipe)
1415 {
1416         int reg;
1417         u32 val;
1418
1419         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1420         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1421         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1422
1423         reg = PCH_ADPA;
1424         val = I915_READ(reg);
1425         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1426              "PCH VGA enabled on transcoder %c, should be disabled\n",
1427              pipe_name(pipe));
1428
1429         reg = PCH_LVDS;
1430         val = I915_READ(reg);
1431         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1432              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1433              pipe_name(pipe));
1434
1435         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1436         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1437         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1438 }
1439
1440 /**
1441  * intel_enable_pll - enable a PLL
1442  * @dev_priv: i915 private structure
1443  * @pipe: pipe PLL to enable
1444  *
1445  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1446  * make sure the PLL reg is writable first though, since the panel write
1447  * protect mechanism may be enabled.
1448  *
1449  * Note!  This is for pre-ILK only.
1450  *
1451  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1452  */
1453 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1454 {
1455         int reg;
1456         u32 val;
1457
1458         /* No really, not for ILK+ */
1459         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1460
1461         /* PLL is protected by panel, make sure we can write it */
1462         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1463                 assert_panel_unlocked(dev_priv, pipe);
1464
1465         reg = DPLL(pipe);
1466         val = I915_READ(reg);
1467         val |= DPLL_VCO_ENABLE;
1468
1469         /* We do this three times for luck */
1470         I915_WRITE(reg, val);
1471         POSTING_READ(reg);
1472         udelay(150); /* wait for warmup */
1473         I915_WRITE(reg, val);
1474         POSTING_READ(reg);
1475         udelay(150); /* wait for warmup */
1476         I915_WRITE(reg, val);
1477         POSTING_READ(reg);
1478         udelay(150); /* wait for warmup */
1479 }
1480
1481 /**
1482  * intel_disable_pll - disable a PLL
1483  * @dev_priv: i915 private structure
1484  * @pipe: pipe PLL to disable
1485  *
1486  * Disable the PLL for @pipe, making sure the pipe is off first.
1487  *
1488  * Note!  This is for pre-ILK only.
1489  */
1490 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1491 {
1492         int reg;
1493         u32 val;
1494
1495         /* Don't disable pipe A or pipe A PLLs if needed */
1496         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1497                 return;
1498
1499         /* Make sure the pipe isn't still relying on us */
1500         assert_pipe_disabled(dev_priv, pipe);
1501
1502         reg = DPLL(pipe);
1503         val = I915_READ(reg);
1504         val &= ~DPLL_VCO_ENABLE;
1505         I915_WRITE(reg, val);
1506         POSTING_READ(reg);
1507 }
1508
1509 /* SBI access */
1510 static void
1511 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1512                 enum intel_sbi_destination destination)
1513 {
1514         u32 tmp;
1515
1516         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1517
1518         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1519                                 100)) {
1520                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1521                 return;
1522         }
1523
1524         I915_WRITE(SBI_ADDR, (reg << 16));
1525         I915_WRITE(SBI_DATA, value);
1526
1527         if (destination == SBI_ICLK)
1528                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1529         else
1530                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1531         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1532
1533         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1534                                 100)) {
1535                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1536                 return;
1537         }
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542                enum intel_sbi_destination destination)
1543 {
1544         u32 value = 0;
1545         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1546
1547         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1548                                 100)) {
1549                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550                 return 0;
1551         }
1552
1553         I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555         if (destination == SBI_ICLK)
1556                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557         else
1558                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562                                 100)) {
1563                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564                 return 0;
1565         }
1566
1567         return I915_READ(SBI_DATA);
1568 }
1569
1570 /**
1571  * ironlake_enable_pch_pll - enable PCH PLL
1572  * @dev_priv: i915 private structure
1573  * @pipe: pipe PLL to enable
1574  *
1575  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576  * drives the transcoder clock.
1577  */
1578 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1579 {
1580         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1581         struct intel_pch_pll *pll;
1582         int reg;
1583         u32 val;
1584
1585         /* PCH PLLs only available on ILK, SNB and IVB */
1586         BUG_ON(dev_priv->info->gen < 5);
1587         pll = intel_crtc->pch_pll;
1588         if (pll == NULL)
1589                 return;
1590
1591         if (WARN_ON(pll->refcount == 0))
1592                 return;
1593
1594         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595                       pll->pll_reg, pll->active, pll->on,
1596                       intel_crtc->base.base.id);
1597
1598         /* PCH refclock must be enabled first */
1599         assert_pch_refclk_enabled(dev_priv);
1600
1601         if (pll->active++ && pll->on) {
1602                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1603                 return;
1604         }
1605
1606         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608         reg = pll->pll_reg;
1609         val = I915_READ(reg);
1610         val |= DPLL_VCO_ENABLE;
1611         I915_WRITE(reg, val);
1612         POSTING_READ(reg);
1613         udelay(200);
1614
1615         pll->on = true;
1616 }
1617
1618 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1619 {
1620         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1622         int reg;
1623         u32 val;
1624
1625         /* PCH only available on ILK+ */
1626         BUG_ON(dev_priv->info->gen < 5);
1627         if (pll == NULL)
1628                return;
1629
1630         if (WARN_ON(pll->refcount == 0))
1631                 return;
1632
1633         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634                       pll->pll_reg, pll->active, pll->on,
1635                       intel_crtc->base.base.id);
1636
1637         if (WARN_ON(pll->active == 0)) {
1638                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1639                 return;
1640         }
1641
1642         if (--pll->active) {
1643                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1644                 return;
1645         }
1646
1647         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649         /* Make sure transcoder isn't still depending on us */
1650         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1651
1652         reg = pll->pll_reg;
1653         val = I915_READ(reg);
1654         val &= ~DPLL_VCO_ENABLE;
1655         I915_WRITE(reg, val);
1656         POSTING_READ(reg);
1657         udelay(200);
1658
1659         pll->on = false;
1660 }
1661
1662 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663                                            enum pipe pipe)
1664 {
1665         struct drm_device *dev = dev_priv->dev;
1666         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1667         uint32_t reg, val, pipeconf_val;
1668
1669         /* PCH only available on ILK+ */
1670         BUG_ON(dev_priv->info->gen < 5);
1671
1672         /* Make sure PCH DPLL is enabled */
1673         assert_pch_pll_enabled(dev_priv,
1674                                to_intel_crtc(crtc)->pch_pll,
1675                                to_intel_crtc(crtc));
1676
1677         /* FDI must be feeding us bits for PCH ports */
1678         assert_fdi_tx_enabled(dev_priv, pipe);
1679         assert_fdi_rx_enabled(dev_priv, pipe);
1680
1681         if (HAS_PCH_CPT(dev)) {
1682                 /* Workaround: Set the timing override bit before enabling the
1683                  * pch transcoder. */
1684                 reg = TRANS_CHICKEN2(pipe);
1685                 val = I915_READ(reg);
1686                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687                 I915_WRITE(reg, val);
1688         }
1689
1690         reg = TRANSCONF(pipe);
1691         val = I915_READ(reg);
1692         pipeconf_val = I915_READ(PIPECONF(pipe));
1693
1694         if (HAS_PCH_IBX(dev_priv->dev)) {
1695                 /*
1696                  * make the BPC in transcoder be consistent with
1697                  * that in pipeconf reg.
1698                  */
1699                 val &= ~PIPECONF_BPC_MASK;
1700                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1701         }
1702
1703         val &= ~TRANS_INTERLACE_MASK;
1704         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1705                 if (HAS_PCH_IBX(dev_priv->dev) &&
1706                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707                         val |= TRANS_LEGACY_INTERLACED_ILK;
1708                 else
1709                         val |= TRANS_INTERLACED;
1710         else
1711                 val |= TRANS_PROGRESSIVE;
1712
1713         I915_WRITE(reg, val | TRANS_ENABLE);
1714         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716 }
1717
1718 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1719                                       enum transcoder cpu_transcoder)
1720 {
1721         u32 val, pipeconf_val;
1722
1723         /* PCH only available on ILK+ */
1724         BUG_ON(dev_priv->info->gen < 5);
1725
1726         /* FDI must be feeding us bits for PCH ports */
1727         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1728         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1729
1730         /* Workaround: set timing override bit. */
1731         val = I915_READ(_TRANSA_CHICKEN2);
1732         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1733         I915_WRITE(_TRANSA_CHICKEN2, val);
1734
1735         val = TRANS_ENABLE;
1736         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1737
1738         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739             PIPECONF_INTERLACED_ILK)
1740                 val |= TRANS_INTERLACED;
1741         else
1742                 val |= TRANS_PROGRESSIVE;
1743
1744         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1745         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746                 DRM_ERROR("Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750                                             enum pipe pipe)
1751 {
1752         struct drm_device *dev = dev_priv->dev;
1753         uint32_t reg, val;
1754
1755         /* FDI relies on the transcoder */
1756         assert_fdi_tx_disabled(dev_priv, pipe);
1757         assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759         /* Ports must be off as well */
1760         assert_pch_ports_disabled(dev_priv, pipe);
1761
1762         reg = TRANSCONF(pipe);
1763         val = I915_READ(reg);
1764         val &= ~TRANS_ENABLE;
1765         I915_WRITE(reg, val);
1766         /* wait for PCH transcoder off, transcoder state */
1767         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1768                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1769
1770         if (!HAS_PCH_IBX(dev)) {
1771                 /* Workaround: Clear the timing override chicken bit again. */
1772                 reg = TRANS_CHICKEN2(pipe);
1773                 val = I915_READ(reg);
1774                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775                 I915_WRITE(reg, val);
1776         }
1777 }
1778
1779 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1780 {
1781         u32 val;
1782
1783         val = I915_READ(_TRANSACONF);
1784         val &= ~TRANS_ENABLE;
1785         I915_WRITE(_TRANSACONF, val);
1786         /* wait for PCH transcoder off, transcoder state */
1787         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788                 DRM_ERROR("Failed to disable PCH transcoder\n");
1789
1790         /* Workaround: clear timing override bit. */
1791         val = I915_READ(_TRANSA_CHICKEN2);
1792         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1793         I915_WRITE(_TRANSA_CHICKEN2, val);
1794 }
1795
1796 /**
1797  * intel_enable_pipe - enable a pipe, asserting requirements
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe to enable
1800  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1801  *
1802  * Enable @pipe, making sure that various hardware specific requirements
1803  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804  *
1805  * @pipe should be %PIPE_A or %PIPE_B.
1806  *
1807  * Will wait until the pipe is actually running (i.e. first vblank) before
1808  * returning.
1809  */
1810 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811                               bool pch_port)
1812 {
1813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814                                                                       pipe);
1815         enum pipe pch_transcoder;
1816         int reg;
1817         u32 val;
1818
1819         if (HAS_PCH_LPT(dev_priv->dev))
1820                 pch_transcoder = TRANSCODER_A;
1821         else
1822                 pch_transcoder = pipe;
1823
1824         /*
1825          * A pipe without a PLL won't actually be able to drive bits from
1826          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1827          * need the check.
1828          */
1829         if (!HAS_PCH_SPLIT(dev_priv->dev))
1830                 assert_pll_enabled(dev_priv, pipe);
1831         else {
1832                 if (pch_port) {
1833                         /* if driving the PCH, we need FDI enabled */
1834                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835                         assert_fdi_tx_pll_enabled(dev_priv,
1836                                                   (enum pipe) cpu_transcoder);
1837                 }
1838                 /* FIXME: assert CPU port conditions for SNB+ */
1839         }
1840
1841         reg = PIPECONF(cpu_transcoder);
1842         val = I915_READ(reg);
1843         if (val & PIPECONF_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | PIPECONF_ENABLE);
1847         intel_wait_for_vblank(dev_priv->dev, pipe);
1848 }
1849
1850 /**
1851  * intel_disable_pipe - disable a pipe, asserting requirements
1852  * @dev_priv: i915 private structure
1853  * @pipe: pipe to disable
1854  *
1855  * Disable @pipe, making sure that various hardware specific requirements
1856  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1857  *
1858  * @pipe should be %PIPE_A or %PIPE_B.
1859  *
1860  * Will wait until the pipe has shut down before returning.
1861  */
1862 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1863                                enum pipe pipe)
1864 {
1865         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1866                                                                       pipe);
1867         int reg;
1868         u32 val;
1869
1870         /*
1871          * Make sure planes won't keep trying to pump pixels to us,
1872          * or we might hang the display.
1873          */
1874         assert_planes_disabled(dev_priv, pipe);
1875
1876         /* Don't disable pipe A or pipe A PLLs if needed */
1877         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1878                 return;
1879
1880         reg = PIPECONF(cpu_transcoder);
1881         val = I915_READ(reg);
1882         if ((val & PIPECONF_ENABLE) == 0)
1883                 return;
1884
1885         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1886         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1887 }
1888
1889 /*
1890  * Plane regs are double buffered, going from enabled->disabled needs a
1891  * trigger in order to latch.  The display address reg provides this.
1892  */
1893 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1894                                       enum plane plane)
1895 {
1896         if (dev_priv->info->gen >= 4)
1897                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1898         else
1899                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1900 }
1901
1902 /**
1903  * intel_enable_plane - enable a display plane on a given pipe
1904  * @dev_priv: i915 private structure
1905  * @plane: plane to enable
1906  * @pipe: pipe being fed
1907  *
1908  * Enable @plane on @pipe, making sure that @pipe is running first.
1909  */
1910 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1911                                enum plane plane, enum pipe pipe)
1912 {
1913         int reg;
1914         u32 val;
1915
1916         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1917         assert_pipe_enabled(dev_priv, pipe);
1918
1919         reg = DSPCNTR(plane);
1920         val = I915_READ(reg);
1921         if (val & DISPLAY_PLANE_ENABLE)
1922                 return;
1923
1924         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1925         intel_flush_display_plane(dev_priv, plane);
1926         intel_wait_for_vblank(dev_priv->dev, pipe);
1927 }
1928
1929 /**
1930  * intel_disable_plane - disable a display plane
1931  * @dev_priv: i915 private structure
1932  * @plane: plane to disable
1933  * @pipe: pipe consuming the data
1934  *
1935  * Disable @plane; should be an independent operation.
1936  */
1937 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1938                                 enum plane plane, enum pipe pipe)
1939 {
1940         int reg;
1941         u32 val;
1942
1943         reg = DSPCNTR(plane);
1944         val = I915_READ(reg);
1945         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1946                 return;
1947
1948         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1949         intel_flush_display_plane(dev_priv, plane);
1950         intel_wait_for_vblank(dev_priv->dev, pipe);
1951 }
1952
1953 int
1954 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1955                            struct drm_i915_gem_object *obj,
1956                            struct intel_ring_buffer *pipelined)
1957 {
1958         struct drm_i915_private *dev_priv = dev->dev_private;
1959         u32 alignment;
1960         int ret;
1961
1962         switch (obj->tiling_mode) {
1963         case I915_TILING_NONE:
1964                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1965                         alignment = 128 * 1024;
1966                 else if (INTEL_INFO(dev)->gen >= 4)
1967                         alignment = 4 * 1024;
1968                 else
1969                         alignment = 64 * 1024;
1970                 break;
1971         case I915_TILING_X:
1972                 /* pin() will align the object as required by fence */
1973                 alignment = 0;
1974                 break;
1975         case I915_TILING_Y:
1976                 /* FIXME: Is this true? */
1977                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         dev_priv->mm.interruptible = false;
1984         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1985         if (ret)
1986                 goto err_interruptible;
1987
1988         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1989          * fence, whereas 965+ only requires a fence if using
1990          * framebuffer compression.  For simplicity, we always install
1991          * a fence as the cost is not that onerous.
1992          */
1993         ret = i915_gem_object_get_fence(obj);
1994         if (ret)
1995                 goto err_unpin;
1996
1997         i915_gem_object_pin_fence(obj);
1998
1999         dev_priv->mm.interruptible = true;
2000         return 0;
2001
2002 err_unpin:
2003         i915_gem_object_unpin(obj);
2004 err_interruptible:
2005         dev_priv->mm.interruptible = true;
2006         return ret;
2007 }
2008
2009 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2010 {
2011         i915_gem_object_unpin_fence(obj);
2012         i915_gem_object_unpin(obj);
2013 }
2014
2015 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2016  * is assumed to be a power-of-two. */
2017 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2018                                                unsigned int bpp,
2019                                                unsigned int pitch)
2020 {
2021         int tile_rows, tiles;
2022
2023         tile_rows = *y / 8;
2024         *y %= 8;
2025         tiles = *x / (512/bpp);
2026         *x %= 512/bpp;
2027
2028         return tile_rows * pitch * 8 + tiles * 4096;
2029 }
2030
2031 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2032                              int x, int y)
2033 {
2034         struct drm_device *dev = crtc->dev;
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2037         struct intel_framebuffer *intel_fb;
2038         struct drm_i915_gem_object *obj;
2039         int plane = intel_crtc->plane;
2040         unsigned long linear_offset;
2041         u32 dspcntr;
2042         u32 reg;
2043
2044         switch (plane) {
2045         case 0:
2046         case 1:
2047                 break;
2048         default:
2049                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2050                 return -EINVAL;
2051         }
2052
2053         intel_fb = to_intel_framebuffer(fb);
2054         obj = intel_fb->obj;
2055
2056         reg = DSPCNTR(plane);
2057         dspcntr = I915_READ(reg);
2058         /* Mask out pixel format bits in case we change it */
2059         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2060         switch (fb->pixel_format) {
2061         case DRM_FORMAT_C8:
2062                 dspcntr |= DISPPLANE_8BPP;
2063                 break;
2064         case DRM_FORMAT_XRGB1555:
2065         case DRM_FORMAT_ARGB1555:
2066                 dspcntr |= DISPPLANE_BGRX555;
2067                 break;
2068         case DRM_FORMAT_RGB565:
2069                 dspcntr |= DISPPLANE_BGRX565;
2070                 break;
2071         case DRM_FORMAT_XRGB8888:
2072         case DRM_FORMAT_ARGB8888:
2073                 dspcntr |= DISPPLANE_BGRX888;
2074                 break;
2075         case DRM_FORMAT_XBGR8888:
2076         case DRM_FORMAT_ABGR8888:
2077                 dspcntr |= DISPPLANE_RGBX888;
2078                 break;
2079         case DRM_FORMAT_XRGB2101010:
2080         case DRM_FORMAT_ARGB2101010:
2081                 dspcntr |= DISPPLANE_BGRX101010;
2082                 break;
2083         case DRM_FORMAT_XBGR2101010:
2084         case DRM_FORMAT_ABGR2101010:
2085                 dspcntr |= DISPPLANE_RGBX101010;
2086                 break;
2087         default:
2088                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2089                 return -EINVAL;
2090         }
2091
2092         if (INTEL_INFO(dev)->gen >= 4) {
2093                 if (obj->tiling_mode != I915_TILING_NONE)
2094                         dspcntr |= DISPPLANE_TILED;
2095                 else
2096                         dspcntr &= ~DISPPLANE_TILED;
2097         }
2098
2099         I915_WRITE(reg, dspcntr);
2100
2101         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2102
2103         if (INTEL_INFO(dev)->gen >= 4) {
2104                 intel_crtc->dspaddr_offset =
2105                         intel_gen4_compute_offset_xtiled(&x, &y,
2106                                                          fb->bits_per_pixel / 8,
2107                                                          fb->pitches[0]);
2108                 linear_offset -= intel_crtc->dspaddr_offset;
2109         } else {
2110                 intel_crtc->dspaddr_offset = linear_offset;
2111         }
2112
2113         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2114                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2115         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2116         if (INTEL_INFO(dev)->gen >= 4) {
2117                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2118                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2119                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2120                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2121         } else
2122                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2123         POSTING_READ(reg);
2124
2125         return 0;
2126 }
2127
2128 static int ironlake_update_plane(struct drm_crtc *crtc,
2129                                  struct drm_framebuffer *fb, int x, int y)
2130 {
2131         struct drm_device *dev = crtc->dev;
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2134         struct intel_framebuffer *intel_fb;
2135         struct drm_i915_gem_object *obj;
2136         int plane = intel_crtc->plane;
2137         unsigned long linear_offset;
2138         u32 dspcntr;
2139         u32 reg;
2140
2141         switch (plane) {
2142         case 0:
2143         case 1:
2144         case 2:
2145                 break;
2146         default:
2147                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2148                 return -EINVAL;
2149         }
2150
2151         intel_fb = to_intel_framebuffer(fb);
2152         obj = intel_fb->obj;
2153
2154         reg = DSPCNTR(plane);
2155         dspcntr = I915_READ(reg);
2156         /* Mask out pixel format bits in case we change it */
2157         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2158         switch (fb->pixel_format) {
2159         case DRM_FORMAT_C8:
2160                 dspcntr |= DISPPLANE_8BPP;
2161                 break;
2162         case DRM_FORMAT_RGB565:
2163                 dspcntr |= DISPPLANE_BGRX565;
2164                 break;
2165         case DRM_FORMAT_XRGB8888:
2166         case DRM_FORMAT_ARGB8888:
2167                 dspcntr |= DISPPLANE_BGRX888;
2168                 break;
2169         case DRM_FORMAT_XBGR8888:
2170         case DRM_FORMAT_ABGR8888:
2171                 dspcntr |= DISPPLANE_RGBX888;
2172                 break;
2173         case DRM_FORMAT_XRGB2101010:
2174         case DRM_FORMAT_ARGB2101010:
2175                 dspcntr |= DISPPLANE_BGRX101010;
2176                 break;
2177         case DRM_FORMAT_XBGR2101010:
2178         case DRM_FORMAT_ABGR2101010:
2179                 dspcntr |= DISPPLANE_RGBX101010;
2180                 break;
2181         default:
2182                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2183                 return -EINVAL;
2184         }
2185
2186         if (obj->tiling_mode != I915_TILING_NONE)
2187                 dspcntr |= DISPPLANE_TILED;
2188         else
2189                 dspcntr &= ~DISPPLANE_TILED;
2190
2191         /* must disable */
2192         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2193
2194         I915_WRITE(reg, dspcntr);
2195
2196         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2197         intel_crtc->dspaddr_offset =
2198                 intel_gen4_compute_offset_xtiled(&x, &y,
2199                                                  fb->bits_per_pixel / 8,
2200                                                  fb->pitches[0]);
2201         linear_offset -= intel_crtc->dspaddr_offset;
2202
2203         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2204                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2205         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2206         I915_MODIFY_DISPBASE(DSPSURF(plane),
2207                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2208         if (IS_HASWELL(dev)) {
2209                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2210         } else {
2211                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2212                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2213         }
2214         POSTING_READ(reg);
2215
2216         return 0;
2217 }
2218
2219 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2220 static int
2221 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2222                            int x, int y, enum mode_set_atomic state)
2223 {
2224         struct drm_device *dev = crtc->dev;
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226
2227         if (dev_priv->display.disable_fbc)
2228                 dev_priv->display.disable_fbc(dev);
2229         intel_increase_pllclock(crtc);
2230
2231         return dev_priv->display.update_plane(crtc, fb, x, y);
2232 }
2233
2234 void intel_display_handle_reset(struct drm_device *dev)
2235 {
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct drm_crtc *crtc;
2238
2239         /*
2240          * Flips in the rings have been nuked by the reset,
2241          * so complete all pending flips so that user space
2242          * will get its events and not get stuck.
2243          *
2244          * Also update the base address of all primary
2245          * planes to the the last fb to make sure we're
2246          * showing the correct fb after a reset.
2247          *
2248          * Need to make two loops over the crtcs so that we
2249          * don't try to grab a crtc mutex before the
2250          * pending_flip_queue really got woken up.
2251          */
2252
2253         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2254                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2255                 enum plane plane = intel_crtc->plane;
2256
2257                 intel_prepare_page_flip(dev, plane);
2258                 intel_finish_page_flip_plane(dev, plane);
2259         }
2260
2261         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2262                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263
2264                 mutex_lock(&crtc->mutex);
2265                 if (intel_crtc->active)
2266                         dev_priv->display.update_plane(crtc, crtc->fb,
2267                                                        crtc->x, crtc->y);
2268                 mutex_unlock(&crtc->mutex);
2269         }
2270 }
2271
2272 static int
2273 intel_finish_fb(struct drm_framebuffer *old_fb)
2274 {
2275         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2276         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2277         bool was_interruptible = dev_priv->mm.interruptible;
2278         int ret;
2279
2280         /* Big Hammer, we also need to ensure that any pending
2281          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2282          * current scanout is retired before unpinning the old
2283          * framebuffer.
2284          *
2285          * This should only fail upon a hung GPU, in which case we
2286          * can safely continue.
2287          */
2288         dev_priv->mm.interruptible = false;
2289         ret = i915_gem_object_finish_gpu(obj);
2290         dev_priv->mm.interruptible = was_interruptible;
2291
2292         return ret;
2293 }
2294
2295 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2296 {
2297         struct drm_device *dev = crtc->dev;
2298         struct drm_i915_master_private *master_priv;
2299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300
2301         if (!dev->primary->master)
2302                 return;
2303
2304         master_priv = dev->primary->master->driver_priv;
2305         if (!master_priv->sarea_priv)
2306                 return;
2307
2308         switch (intel_crtc->pipe) {
2309         case 0:
2310                 master_priv->sarea_priv->pipeA_x = x;
2311                 master_priv->sarea_priv->pipeA_y = y;
2312                 break;
2313         case 1:
2314                 master_priv->sarea_priv->pipeB_x = x;
2315                 master_priv->sarea_priv->pipeB_y = y;
2316                 break;
2317         default:
2318                 break;
2319         }
2320 }
2321
2322 static int
2323 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2324                     struct drm_framebuffer *fb)
2325 {
2326         struct drm_device *dev = crtc->dev;
2327         struct drm_i915_private *dev_priv = dev->dev_private;
2328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2329         struct drm_framebuffer *old_fb;
2330         int ret;
2331
2332         /* no fb bound */
2333         if (!fb) {
2334                 DRM_ERROR("No FB bound\n");
2335                 return 0;
2336         }
2337
2338         if(intel_crtc->plane > dev_priv->num_pipe) {
2339                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2340                                 intel_crtc->plane,
2341                                 dev_priv->num_pipe);
2342                 return -EINVAL;
2343         }
2344
2345         mutex_lock(&dev->struct_mutex);
2346         ret = intel_pin_and_fence_fb_obj(dev,
2347                                          to_intel_framebuffer(fb)->obj,
2348                                          NULL);
2349         if (ret != 0) {
2350                 mutex_unlock(&dev->struct_mutex);
2351                 DRM_ERROR("pin & fence failed\n");
2352                 return ret;
2353         }
2354
2355         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356         if (ret) {
2357                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358                 mutex_unlock(&dev->struct_mutex);
2359                 DRM_ERROR("failed to update base address\n");
2360                 return ret;
2361         }
2362
2363         old_fb = crtc->fb;
2364         crtc->fb = fb;
2365         crtc->x = x;
2366         crtc->y = y;
2367
2368         if (old_fb) {
2369                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2370                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2371         }
2372
2373         intel_update_fbc(dev);
2374         mutex_unlock(&dev->struct_mutex);
2375
2376         intel_crtc_update_sarea_pos(crtc, x, y);
2377
2378         return 0;
2379 }
2380
2381 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2382 {
2383         struct drm_device *dev = crtc->dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386         int pipe = intel_crtc->pipe;
2387         u32 reg, temp;
2388
2389         /* enable normal train */
2390         reg = FDI_TX_CTL(pipe);
2391         temp = I915_READ(reg);
2392         if (IS_IVYBRIDGE(dev)) {
2393                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2394                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2395         } else {
2396                 temp &= ~FDI_LINK_TRAIN_NONE;
2397                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2398         }
2399         I915_WRITE(reg, temp);
2400
2401         reg = FDI_RX_CTL(pipe);
2402         temp = I915_READ(reg);
2403         if (HAS_PCH_CPT(dev)) {
2404                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2405                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2406         } else {
2407                 temp &= ~FDI_LINK_TRAIN_NONE;
2408                 temp |= FDI_LINK_TRAIN_NONE;
2409         }
2410         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2411
2412         /* wait one idle pattern time */
2413         POSTING_READ(reg);
2414         udelay(1000);
2415
2416         /* IVB wants error correction enabled */
2417         if (IS_IVYBRIDGE(dev))
2418                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2419                            FDI_FE_ERRC_ENABLE);
2420 }
2421
2422 static void ivb_modeset_global_resources(struct drm_device *dev)
2423 {
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         struct intel_crtc *pipe_B_crtc =
2426                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2427         struct intel_crtc *pipe_C_crtc =
2428                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2429         uint32_t temp;
2430
2431         /* When everything is off disable fdi C so that we could enable fdi B
2432          * with all lanes. XXX: This misses the case where a pipe is not using
2433          * any pch resources and so doesn't need any fdi lanes. */
2434         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2435                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2436                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2437
2438                 temp = I915_READ(SOUTH_CHICKEN1);
2439                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2440                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2441                 I915_WRITE(SOUTH_CHICKEN1, temp);
2442         }
2443 }
2444
2445 /* The FDI link training functions for ILK/Ibexpeak. */
2446 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2447 {
2448         struct drm_device *dev = crtc->dev;
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2451         int pipe = intel_crtc->pipe;
2452         int plane = intel_crtc->plane;
2453         u32 reg, temp, tries;
2454
2455         /* FDI needs bits from pipe & plane first */
2456         assert_pipe_enabled(dev_priv, pipe);
2457         assert_plane_enabled(dev_priv, plane);
2458
2459         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460            for train result */
2461         reg = FDI_RX_IMR(pipe);
2462         temp = I915_READ(reg);
2463         temp &= ~FDI_RX_SYMBOL_LOCK;
2464         temp &= ~FDI_RX_BIT_LOCK;
2465         I915_WRITE(reg, temp);
2466         I915_READ(reg);
2467         udelay(150);
2468
2469         /* enable CPU FDI TX and PCH FDI RX */
2470         reg = FDI_TX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~(7 << 19);
2473         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2474         temp &= ~FDI_LINK_TRAIN_NONE;
2475         temp |= FDI_LINK_TRAIN_PATTERN_1;
2476         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2477
2478         reg = FDI_RX_CTL(pipe);
2479         temp = I915_READ(reg);
2480         temp &= ~FDI_LINK_TRAIN_NONE;
2481         temp |= FDI_LINK_TRAIN_PATTERN_1;
2482         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2483
2484         POSTING_READ(reg);
2485         udelay(150);
2486
2487         /* Ironlake workaround, enable clock pointer after FDI enable*/
2488         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2489         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2490                    FDI_RX_PHASE_SYNC_POINTER_EN);
2491
2492         reg = FDI_RX_IIR(pipe);
2493         for (tries = 0; tries < 5; tries++) {
2494                 temp = I915_READ(reg);
2495                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2496
2497                 if ((temp & FDI_RX_BIT_LOCK)) {
2498                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2499                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2500                         break;
2501                 }
2502         }
2503         if (tries == 5)
2504                 DRM_ERROR("FDI train 1 fail!\n");
2505
2506         /* Train 2 */
2507         reg = FDI_TX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         temp &= ~FDI_LINK_TRAIN_NONE;
2510         temp |= FDI_LINK_TRAIN_PATTERN_2;
2511         I915_WRITE(reg, temp);
2512
2513         reg = FDI_RX_CTL(pipe);
2514         temp = I915_READ(reg);
2515         temp &= ~FDI_LINK_TRAIN_NONE;
2516         temp |= FDI_LINK_TRAIN_PATTERN_2;
2517         I915_WRITE(reg, temp);
2518
2519         POSTING_READ(reg);
2520         udelay(150);
2521
2522         reg = FDI_RX_IIR(pipe);
2523         for (tries = 0; tries < 5; tries++) {
2524                 temp = I915_READ(reg);
2525                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526
2527                 if (temp & FDI_RX_SYMBOL_LOCK) {
2528                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2529                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2530                         break;
2531                 }
2532         }
2533         if (tries == 5)
2534                 DRM_ERROR("FDI train 2 fail!\n");
2535
2536         DRM_DEBUG_KMS("FDI train done\n");
2537
2538 }
2539
2540 static const int snb_b_fdi_train_param[] = {
2541         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2542         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2543         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2544         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2545 };
2546
2547 /* The FDI link training functions for SNB/Cougarpoint. */
2548 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2549 {
2550         struct drm_device *dev = crtc->dev;
2551         struct drm_i915_private *dev_priv = dev->dev_private;
2552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2553         int pipe = intel_crtc->pipe;
2554         u32 reg, temp, i, retry;
2555
2556         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2557            for train result */
2558         reg = FDI_RX_IMR(pipe);
2559         temp = I915_READ(reg);
2560         temp &= ~FDI_RX_SYMBOL_LOCK;
2561         temp &= ~FDI_RX_BIT_LOCK;
2562         I915_WRITE(reg, temp);
2563
2564         POSTING_READ(reg);
2565         udelay(150);
2566
2567         /* enable CPU FDI TX and PCH FDI RX */
2568         reg = FDI_TX_CTL(pipe);
2569         temp = I915_READ(reg);
2570         temp &= ~(7 << 19);
2571         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2572         temp &= ~FDI_LINK_TRAIN_NONE;
2573         temp |= FDI_LINK_TRAIN_PATTERN_1;
2574         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2575         /* SNB-B */
2576         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2577         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2578
2579         I915_WRITE(FDI_RX_MISC(pipe),
2580                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2581
2582         reg = FDI_RX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         if (HAS_PCH_CPT(dev)) {
2585                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2586                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2587         } else {
2588                 temp &= ~FDI_LINK_TRAIN_NONE;
2589                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2590         }
2591         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593         POSTING_READ(reg);
2594         udelay(150);
2595
2596         for (i = 0; i < 4; i++) {
2597                 reg = FDI_TX_CTL(pipe);
2598                 temp = I915_READ(reg);
2599                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2600                 temp |= snb_b_fdi_train_param[i];
2601                 I915_WRITE(reg, temp);
2602
2603                 POSTING_READ(reg);
2604                 udelay(500);
2605
2606                 for (retry = 0; retry < 5; retry++) {
2607                         reg = FDI_RX_IIR(pipe);
2608                         temp = I915_READ(reg);
2609                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2610                         if (temp & FDI_RX_BIT_LOCK) {
2611                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2612                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2613                                 break;
2614                         }
2615                         udelay(50);
2616                 }
2617                 if (retry < 5)
2618                         break;
2619         }
2620         if (i == 4)
2621                 DRM_ERROR("FDI train 1 fail!\n");
2622
2623         /* Train 2 */
2624         reg = FDI_TX_CTL(pipe);
2625         temp = I915_READ(reg);
2626         temp &= ~FDI_LINK_TRAIN_NONE;
2627         temp |= FDI_LINK_TRAIN_PATTERN_2;
2628         if (IS_GEN6(dev)) {
2629                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2630                 /* SNB-B */
2631                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2632         }
2633         I915_WRITE(reg, temp);
2634
2635         reg = FDI_RX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         if (HAS_PCH_CPT(dev)) {
2638                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2639                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2640         } else {
2641                 temp &= ~FDI_LINK_TRAIN_NONE;
2642                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2643         }
2644         I915_WRITE(reg, temp);
2645
2646         POSTING_READ(reg);
2647         udelay(150);
2648
2649         for (i = 0; i < 4; i++) {
2650                 reg = FDI_TX_CTL(pipe);
2651                 temp = I915_READ(reg);
2652                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2653                 temp |= snb_b_fdi_train_param[i];
2654                 I915_WRITE(reg, temp);
2655
2656                 POSTING_READ(reg);
2657                 udelay(500);
2658
2659                 for (retry = 0; retry < 5; retry++) {
2660                         reg = FDI_RX_IIR(pipe);
2661                         temp = I915_READ(reg);
2662                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2663                         if (temp & FDI_RX_SYMBOL_LOCK) {
2664                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2665                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2666                                 break;
2667                         }
2668                         udelay(50);
2669                 }
2670                 if (retry < 5)
2671                         break;
2672         }
2673         if (i == 4)
2674                 DRM_ERROR("FDI train 2 fail!\n");
2675
2676         DRM_DEBUG_KMS("FDI train done.\n");
2677 }
2678
2679 /* Manual link training for Ivy Bridge A0 parts */
2680 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2681 {
2682         struct drm_device *dev = crtc->dev;
2683         struct drm_i915_private *dev_priv = dev->dev_private;
2684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2685         int pipe = intel_crtc->pipe;
2686         u32 reg, temp, i;
2687
2688         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2689            for train result */
2690         reg = FDI_RX_IMR(pipe);
2691         temp = I915_READ(reg);
2692         temp &= ~FDI_RX_SYMBOL_LOCK;
2693         temp &= ~FDI_RX_BIT_LOCK;
2694         I915_WRITE(reg, temp);
2695
2696         POSTING_READ(reg);
2697         udelay(150);
2698
2699         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2700                       I915_READ(FDI_RX_IIR(pipe)));
2701
2702         /* enable CPU FDI TX and PCH FDI RX */
2703         reg = FDI_TX_CTL(pipe);
2704         temp = I915_READ(reg);
2705         temp &= ~(7 << 19);
2706         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2707         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2708         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2709         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2710         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2711         temp |= FDI_COMPOSITE_SYNC;
2712         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2713
2714         I915_WRITE(FDI_RX_MISC(pipe),
2715                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2716
2717         reg = FDI_RX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         temp &= ~FDI_LINK_TRAIN_AUTO;
2720         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2721         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2722         temp |= FDI_COMPOSITE_SYNC;
2723         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2724
2725         POSTING_READ(reg);
2726         udelay(150);
2727
2728         for (i = 0; i < 4; i++) {
2729                 reg = FDI_TX_CTL(pipe);
2730                 temp = I915_READ(reg);
2731                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732                 temp |= snb_b_fdi_train_param[i];
2733                 I915_WRITE(reg, temp);
2734
2735                 POSTING_READ(reg);
2736                 udelay(500);
2737
2738                 reg = FDI_RX_IIR(pipe);
2739                 temp = I915_READ(reg);
2740                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2741
2742                 if (temp & FDI_RX_BIT_LOCK ||
2743                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2744                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2745                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2746                         break;
2747                 }
2748         }
2749         if (i == 4)
2750                 DRM_ERROR("FDI train 1 fail!\n");
2751
2752         /* Train 2 */
2753         reg = FDI_TX_CTL(pipe);
2754         temp = I915_READ(reg);
2755         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2756         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2757         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2759         I915_WRITE(reg, temp);
2760
2761         reg = FDI_RX_CTL(pipe);
2762         temp = I915_READ(reg);
2763         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2764         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2765         I915_WRITE(reg, temp);
2766
2767         POSTING_READ(reg);
2768         udelay(150);
2769
2770         for (i = 0; i < 4; i++) {
2771                 reg = FDI_TX_CTL(pipe);
2772                 temp = I915_READ(reg);
2773                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2774                 temp |= snb_b_fdi_train_param[i];
2775                 I915_WRITE(reg, temp);
2776
2777                 POSTING_READ(reg);
2778                 udelay(500);
2779
2780                 reg = FDI_RX_IIR(pipe);
2781                 temp = I915_READ(reg);
2782                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2783
2784                 if (temp & FDI_RX_SYMBOL_LOCK) {
2785                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2786                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2787                         break;
2788                 }
2789         }
2790         if (i == 4)
2791                 DRM_ERROR("FDI train 2 fail!\n");
2792
2793         DRM_DEBUG_KMS("FDI train done.\n");
2794 }
2795
2796 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2797 {
2798         struct drm_device *dev = intel_crtc->base.dev;
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         int pipe = intel_crtc->pipe;
2801         u32 reg, temp;
2802
2803
2804         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~((0x7 << 19) | (0x7 << 16));
2808         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2809         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2810         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2811
2812         POSTING_READ(reg);
2813         udelay(200);
2814
2815         /* Switch from Rawclk to PCDclk */
2816         temp = I915_READ(reg);
2817         I915_WRITE(reg, temp | FDI_PCDCLK);
2818
2819         POSTING_READ(reg);
2820         udelay(200);
2821
2822         /* Enable CPU FDI TX PLL, always on for Ironlake */
2823         reg = FDI_TX_CTL(pipe);
2824         temp = I915_READ(reg);
2825         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2826                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2827
2828                 POSTING_READ(reg);
2829                 udelay(100);
2830         }
2831 }
2832
2833 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2834 {
2835         struct drm_device *dev = intel_crtc->base.dev;
2836         struct drm_i915_private *dev_priv = dev->dev_private;
2837         int pipe = intel_crtc->pipe;
2838         u32 reg, temp;
2839
2840         /* Switch from PCDclk to Rawclk */
2841         reg = FDI_RX_CTL(pipe);
2842         temp = I915_READ(reg);
2843         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2844
2845         /* Disable CPU FDI TX PLL */
2846         reg = FDI_TX_CTL(pipe);
2847         temp = I915_READ(reg);
2848         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2849
2850         POSTING_READ(reg);
2851         udelay(100);
2852
2853         reg = FDI_RX_CTL(pipe);
2854         temp = I915_READ(reg);
2855         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2856
2857         /* Wait for the clocks to turn off. */
2858         POSTING_READ(reg);
2859         udelay(100);
2860 }
2861
2862 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2863 {
2864         struct drm_device *dev = crtc->dev;
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2867         int pipe = intel_crtc->pipe;
2868         u32 reg, temp;
2869
2870         /* disable CPU FDI tx and PCH FDI rx */
2871         reg = FDI_TX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2874         POSTING_READ(reg);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         temp &= ~(0x7 << 16);
2879         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2880         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2881
2882         POSTING_READ(reg);
2883         udelay(100);
2884
2885         /* Ironlake workaround, disable clock pointer after downing FDI */
2886         if (HAS_PCH_IBX(dev)) {
2887                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2888         }
2889
2890         /* still set train pattern 1 */
2891         reg = FDI_TX_CTL(pipe);
2892         temp = I915_READ(reg);
2893         temp &= ~FDI_LINK_TRAIN_NONE;
2894         temp |= FDI_LINK_TRAIN_PATTERN_1;
2895         I915_WRITE(reg, temp);
2896
2897         reg = FDI_RX_CTL(pipe);
2898         temp = I915_READ(reg);
2899         if (HAS_PCH_CPT(dev)) {
2900                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2901                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2902         } else {
2903                 temp &= ~FDI_LINK_TRAIN_NONE;
2904                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2905         }
2906         /* BPC in FDI rx is consistent with that in PIPECONF */
2907         temp &= ~(0x07 << 16);
2908         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2909         I915_WRITE(reg, temp);
2910
2911         POSTING_READ(reg);
2912         udelay(100);
2913 }
2914
2915 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2916 {
2917         struct drm_device *dev = crtc->dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920         unsigned long flags;
2921         bool pending;
2922
2923         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2924             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2925                 return false;
2926
2927         spin_lock_irqsave(&dev->event_lock, flags);
2928         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2929         spin_unlock_irqrestore(&dev->event_lock, flags);
2930
2931         return pending;
2932 }
2933
2934 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2935 {
2936         struct drm_device *dev = crtc->dev;
2937         struct drm_i915_private *dev_priv = dev->dev_private;
2938
2939         if (crtc->fb == NULL)
2940                 return;
2941
2942         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2943
2944         wait_event(dev_priv->pending_flip_queue,
2945                    !intel_crtc_has_pending_flip(crtc));
2946
2947         mutex_lock(&dev->struct_mutex);
2948         intel_finish_fb(crtc->fb);
2949         mutex_unlock(&dev->struct_mutex);
2950 }
2951
2952 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2953 {
2954         struct drm_device *dev = crtc->dev;
2955         struct intel_encoder *intel_encoder;
2956
2957         /*
2958          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2959          * must be driven by its own crtc; no sharing is possible.
2960          */
2961         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2962                 switch (intel_encoder->type) {
2963                 case INTEL_OUTPUT_EDP:
2964                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2965                                 return false;
2966                         continue;
2967                 }
2968         }
2969
2970         return true;
2971 }
2972
2973 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2974 {
2975         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2976 }
2977
2978 /* Program iCLKIP clock to the desired frequency */
2979 static void lpt_program_iclkip(struct drm_crtc *crtc)
2980 {
2981         struct drm_device *dev = crtc->dev;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2984         u32 temp;
2985
2986         mutex_lock(&dev_priv->dpio_lock);
2987
2988         /* It is necessary to ungate the pixclk gate prior to programming
2989          * the divisors, and gate it back when it is done.
2990          */
2991         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2992
2993         /* Disable SSCCTL */
2994         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2995                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2996                                 SBI_SSCCTL_DISABLE,
2997                         SBI_ICLK);
2998
2999         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3000         if (crtc->mode.clock == 20000) {
3001                 auxdiv = 1;
3002                 divsel = 0x41;
3003                 phaseinc = 0x20;
3004         } else {
3005                 /* The iCLK virtual clock root frequency is in MHz,
3006                  * but the crtc->mode.clock in in KHz. To get the divisors,
3007                  * it is necessary to divide one by another, so we
3008                  * convert the virtual clock precision to KHz here for higher
3009                  * precision.
3010                  */
3011                 u32 iclk_virtual_root_freq = 172800 * 1000;
3012                 u32 iclk_pi_range = 64;
3013                 u32 desired_divisor, msb_divisor_value, pi_value;
3014
3015                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3016                 msb_divisor_value = desired_divisor / iclk_pi_range;
3017                 pi_value = desired_divisor % iclk_pi_range;
3018
3019                 auxdiv = 0;
3020                 divsel = msb_divisor_value - 2;
3021                 phaseinc = pi_value;
3022         }
3023
3024         /* This should not happen with any sane values */
3025         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3026                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3027         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3028                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3029
3030         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3031                         crtc->mode.clock,
3032                         auxdiv,
3033                         divsel,
3034                         phasedir,
3035                         phaseinc);
3036
3037         /* Program SSCDIVINTPHASE6 */
3038         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3039         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3040         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3041         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3042         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3043         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3044         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3045         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3046
3047         /* Program SSCAUXDIV */
3048         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3049         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3050         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3051         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3052
3053         /* Enable modulator and associated divider */
3054         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3055         temp &= ~SBI_SSCCTL_DISABLE;
3056         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3057
3058         /* Wait for initialization time */
3059         udelay(24);
3060
3061         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3062
3063         mutex_unlock(&dev_priv->dpio_lock);
3064 }
3065
3066 /*
3067  * Enable PCH resources required for PCH ports:
3068  *   - PCH PLLs
3069  *   - FDI training & RX/TX
3070  *   - update transcoder timings
3071  *   - DP transcoding bits
3072  *   - transcoder
3073  */
3074 static void ironlake_pch_enable(struct drm_crtc *crtc)
3075 {
3076         struct drm_device *dev = crtc->dev;
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3079         int pipe = intel_crtc->pipe;
3080         u32 reg, temp;
3081
3082         assert_transcoder_disabled(dev_priv, pipe);
3083
3084         /* Write the TU size bits before fdi link training, so that error
3085          * detection works. */
3086         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3087                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3088
3089         /* For PCH output, training FDI link */
3090         dev_priv->display.fdi_link_train(crtc);
3091
3092         /* XXX: pch pll's can be enabled any time before we enable the PCH
3093          * transcoder, and we actually should do this to not upset any PCH
3094          * transcoder that already use the clock when we share it.
3095          *
3096          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3097          * unconditionally resets the pll - we need that to have the right LVDS
3098          * enable sequence. */
3099         ironlake_enable_pch_pll(intel_crtc);
3100
3101         if (HAS_PCH_CPT(dev)) {
3102                 u32 sel;
3103
3104                 temp = I915_READ(PCH_DPLL_SEL);
3105                 switch (pipe) {
3106                 default:
3107                 case 0:
3108                         temp |= TRANSA_DPLL_ENABLE;
3109                         sel = TRANSA_DPLLB_SEL;
3110                         break;
3111                 case 1:
3112                         temp |= TRANSB_DPLL_ENABLE;
3113                         sel = TRANSB_DPLLB_SEL;
3114                         break;
3115                 case 2:
3116                         temp |= TRANSC_DPLL_ENABLE;
3117                         sel = TRANSC_DPLLB_SEL;
3118                         break;
3119                 }
3120                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3121                         temp |= sel;
3122                 else
3123                         temp &= ~sel;
3124                 I915_WRITE(PCH_DPLL_SEL, temp);
3125         }
3126
3127         /* set transcoder timing, panel must allow it */
3128         assert_panel_unlocked(dev_priv, pipe);
3129         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3130         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3131         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3132
3133         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3134         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3135         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3136         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3137
3138         intel_fdi_normal_train(crtc);
3139
3140         /* For PCH DP, enable TRANS_DP_CTL */
3141         if (HAS_PCH_CPT(dev) &&
3142             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3143              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3144                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3145                 reg = TRANS_DP_CTL(pipe);
3146                 temp = I915_READ(reg);
3147                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3148                           TRANS_DP_SYNC_MASK |
3149                           TRANS_DP_BPC_MASK);
3150                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3151                          TRANS_DP_ENH_FRAMING);
3152                 temp |= bpc << 9; /* same format but at 11:9 */
3153
3154                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3155                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3156                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3157                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3158
3159                 switch (intel_trans_dp_port_sel(crtc)) {
3160                 case PCH_DP_B:
3161                         temp |= TRANS_DP_PORT_SEL_B;
3162                         break;
3163                 case PCH_DP_C:
3164                         temp |= TRANS_DP_PORT_SEL_C;
3165                         break;
3166                 case PCH_DP_D:
3167                         temp |= TRANS_DP_PORT_SEL_D;
3168                         break;
3169                 default:
3170                         BUG();
3171                 }
3172
3173                 I915_WRITE(reg, temp);
3174         }
3175
3176         ironlake_enable_pch_transcoder(dev_priv, pipe);
3177 }
3178
3179 static void lpt_pch_enable(struct drm_crtc *crtc)
3180 {
3181         struct drm_device *dev = crtc->dev;
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3185
3186         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3187
3188         lpt_program_iclkip(crtc);
3189
3190         /* Set transcoder timing. */
3191         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3192         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3193         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3194
3195         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3196         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3197         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3198         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3199
3200         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3201 }
3202
3203 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3204 {
3205         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3206
3207         if (pll == NULL)
3208                 return;
3209
3210         if (pll->refcount == 0) {
3211                 WARN(1, "bad PCH PLL refcount\n");
3212                 return;
3213         }
3214
3215         --pll->refcount;
3216         intel_crtc->pch_pll = NULL;
3217 }
3218
3219 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3220 {
3221         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3222         struct intel_pch_pll *pll;
3223         int i;
3224
3225         pll = intel_crtc->pch_pll;
3226         if (pll) {
3227                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3228                               intel_crtc->base.base.id, pll->pll_reg);
3229                 goto prepare;
3230         }
3231
3232         if (HAS_PCH_IBX(dev_priv->dev)) {
3233                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3234                 i = intel_crtc->pipe;
3235                 pll = &dev_priv->pch_plls[i];
3236
3237                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3238                               intel_crtc->base.base.id, pll->pll_reg);
3239
3240                 goto found;
3241         }
3242
3243         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3244                 pll = &dev_priv->pch_plls[i];
3245
3246                 /* Only want to check enabled timings first */
3247                 if (pll->refcount == 0)
3248                         continue;
3249
3250                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3251                     fp == I915_READ(pll->fp0_reg)) {
3252                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3253                                       intel_crtc->base.base.id,
3254                                       pll->pll_reg, pll->refcount, pll->active);
3255
3256                         goto found;
3257                 }
3258         }
3259
3260         /* Ok no matching timings, maybe there's a free one? */
3261         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3262                 pll = &dev_priv->pch_plls[i];
3263                 if (pll->refcount == 0) {
3264                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3265                                       intel_crtc->base.base.id, pll->pll_reg);
3266                         goto found;
3267                 }
3268         }
3269
3270         return NULL;
3271
3272 found:
3273         intel_crtc->pch_pll = pll;
3274         pll->refcount++;
3275         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3276 prepare: /* separate function? */
3277         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3278
3279         /* Wait for the clocks to stabilize before rewriting the regs */
3280         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3281         POSTING_READ(pll->pll_reg);
3282         udelay(150);
3283
3284         I915_WRITE(pll->fp0_reg, fp);
3285         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3286         pll->on = false;
3287         return pll;
3288 }
3289
3290 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3291 {
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         int dslreg = PIPEDSL(pipe);
3294         u32 temp;
3295
3296         temp = I915_READ(dslreg);
3297         udelay(500);
3298         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3299                 if (wait_for(I915_READ(dslreg) != temp, 5))
3300                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3301         }
3302 }
3303
3304 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3305 {
3306         struct drm_device *dev = crtc->dev;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309         struct intel_encoder *encoder;
3310         int pipe = intel_crtc->pipe;
3311         int plane = intel_crtc->plane;
3312         u32 temp;
3313         bool is_pch_port;
3314
3315         WARN_ON(!crtc->enabled);
3316
3317         if (intel_crtc->active)
3318                 return;
3319
3320         intel_crtc->active = true;
3321         intel_update_watermarks(dev);
3322
3323         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3324                 temp = I915_READ(PCH_LVDS);
3325                 if ((temp & LVDS_PORT_EN) == 0)
3326                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3327         }
3328
3329         is_pch_port = ironlake_crtc_driving_pch(crtc);
3330
3331         if (is_pch_port) {
3332                 /* Note: FDI PLL enabling _must_ be done before we enable the
3333                  * cpu pipes, hence this is separate from all the other fdi/pch
3334                  * enabling. */
3335                 ironlake_fdi_pll_enable(intel_crtc);
3336         } else {
3337                 assert_fdi_tx_disabled(dev_priv, pipe);
3338                 assert_fdi_rx_disabled(dev_priv, pipe);
3339         }
3340
3341         for_each_encoder_on_crtc(dev, crtc, encoder)
3342                 if (encoder->pre_enable)
3343                         encoder->pre_enable(encoder);
3344
3345         /* Enable panel fitting for LVDS */
3346         if (dev_priv->pch_pf_size &&
3347             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3348              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3349                 /* Force use of hard-coded filter coefficients
3350                  * as some pre-programmed values are broken,
3351                  * e.g. x201.
3352                  */
3353                 if (IS_IVYBRIDGE(dev))
3354                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3355                                                  PF_PIPE_SEL_IVB(pipe));
3356                 else
3357                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3358                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3359                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3360         }
3361
3362         /*
3363          * On ILK+ LUT must be loaded before the pipe is running but with
3364          * clocks enabled
3365          */
3366         intel_crtc_load_lut(crtc);
3367
3368         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3369         intel_enable_plane(dev_priv, plane, pipe);
3370
3371         if (is_pch_port)
3372                 ironlake_pch_enable(crtc);
3373
3374         mutex_lock(&dev->struct_mutex);
3375         intel_update_fbc(dev);
3376         mutex_unlock(&dev->struct_mutex);
3377
3378         intel_crtc_update_cursor(crtc, true);
3379
3380         for_each_encoder_on_crtc(dev, crtc, encoder)
3381                 encoder->enable(encoder);
3382
3383         if (HAS_PCH_CPT(dev))
3384                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3385
3386         /*
3387          * There seems to be a race in PCH platform hw (at least on some
3388          * outputs) where an enabled pipe still completes any pageflip right
3389          * away (as if the pipe is off) instead of waiting for vblank. As soon
3390          * as the first vblank happend, everything works as expected. Hence just
3391          * wait for one vblank before returning to avoid strange things
3392          * happening.
3393          */
3394         intel_wait_for_vblank(dev, intel_crtc->pipe);
3395 }
3396
3397 static void haswell_crtc_enable(struct drm_crtc *crtc)
3398 {
3399         struct drm_device *dev = crtc->dev;
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3402         struct intel_encoder *encoder;
3403         int pipe = intel_crtc->pipe;
3404         int plane = intel_crtc->plane;
3405         bool is_pch_port;
3406
3407         WARN_ON(!crtc->enabled);
3408
3409         if (intel_crtc->active)
3410                 return;
3411
3412         intel_crtc->active = true;
3413         intel_update_watermarks(dev);
3414
3415         is_pch_port = haswell_crtc_driving_pch(crtc);
3416
3417         if (is_pch_port)
3418                 dev_priv->display.fdi_link_train(crtc);
3419
3420         for_each_encoder_on_crtc(dev, crtc, encoder)
3421                 if (encoder->pre_enable)
3422                         encoder->pre_enable(encoder);
3423
3424         intel_ddi_enable_pipe_clock(intel_crtc);
3425
3426         /* Enable panel fitting for eDP */
3427         if (dev_priv->pch_pf_size &&
3428             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3429                 /* Force use of hard-coded filter coefficients
3430                  * as some pre-programmed values are broken,
3431                  * e.g. x201.
3432                  */
3433                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3434                                          PF_PIPE_SEL_IVB(pipe));
3435                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3436                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3437         }
3438
3439         /*
3440          * On ILK+ LUT must be loaded before the pipe is running but with
3441          * clocks enabled
3442          */
3443         intel_crtc_load_lut(crtc);
3444
3445         intel_ddi_set_pipe_settings(crtc);
3446         intel_ddi_enable_pipe_func(crtc);
3447
3448         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3449         intel_enable_plane(dev_priv, plane, pipe);
3450
3451         if (is_pch_port)
3452                 lpt_pch_enable(crtc);
3453
3454         mutex_lock(&dev->struct_mutex);
3455         intel_update_fbc(dev);
3456         mutex_unlock(&dev->struct_mutex);
3457
3458         intel_crtc_update_cursor(crtc, true);
3459
3460         for_each_encoder_on_crtc(dev, crtc, encoder)
3461                 encoder->enable(encoder);
3462
3463         /*
3464          * There seems to be a race in PCH platform hw (at least on some
3465          * outputs) where an enabled pipe still completes any pageflip right
3466          * away (as if the pipe is off) instead of waiting for vblank. As soon
3467          * as the first vblank happend, everything works as expected. Hence just
3468          * wait for one vblank before returning to avoid strange things
3469          * happening.
3470          */
3471         intel_wait_for_vblank(dev, intel_crtc->pipe);
3472 }
3473
3474 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3475 {
3476         struct drm_device *dev = crtc->dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3479         struct intel_encoder *encoder;
3480         int pipe = intel_crtc->pipe;
3481         int plane = intel_crtc->plane;
3482         u32 reg, temp;
3483
3484
3485         if (!intel_crtc->active)
3486                 return;
3487
3488         for_each_encoder_on_crtc(dev, crtc, encoder)
3489                 encoder->disable(encoder);
3490
3491         intel_crtc_wait_for_pending_flips(crtc);
3492         drm_vblank_off(dev, pipe);
3493         intel_crtc_update_cursor(crtc, false);
3494
3495         intel_disable_plane(dev_priv, plane, pipe);
3496
3497         if (dev_priv->cfb_plane == plane)
3498                 intel_disable_fbc(dev);
3499
3500         intel_disable_pipe(dev_priv, pipe);
3501
3502         /* Disable PF */
3503         I915_WRITE(PF_CTL(pipe), 0);
3504         I915_WRITE(PF_WIN_SZ(pipe), 0);
3505
3506         for_each_encoder_on_crtc(dev, crtc, encoder)
3507                 if (encoder->post_disable)
3508                         encoder->post_disable(encoder);
3509
3510         ironlake_fdi_disable(crtc);
3511
3512         ironlake_disable_pch_transcoder(dev_priv, pipe);
3513
3514         if (HAS_PCH_CPT(dev)) {
3515                 /* disable TRANS_DP_CTL */
3516                 reg = TRANS_DP_CTL(pipe);
3517                 temp = I915_READ(reg);
3518                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3519                 temp |= TRANS_DP_PORT_SEL_NONE;
3520                 I915_WRITE(reg, temp);
3521
3522                 /* disable DPLL_SEL */
3523                 temp = I915_READ(PCH_DPLL_SEL);
3524                 switch (pipe) {
3525                 case 0:
3526                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3527                         break;
3528                 case 1:
3529                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3530                         break;
3531                 case 2:
3532                         /* C shares PLL A or B */
3533                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3534                         break;
3535                 default:
3536                         BUG(); /* wtf */
3537                 }
3538                 I915_WRITE(PCH_DPLL_SEL, temp);
3539         }
3540
3541         /* disable PCH DPLL */
3542         intel_disable_pch_pll(intel_crtc);
3543
3544         ironlake_fdi_pll_disable(intel_crtc);
3545
3546         intel_crtc->active = false;
3547         intel_update_watermarks(dev);
3548
3549         mutex_lock(&dev->struct_mutex);
3550         intel_update_fbc(dev);
3551         mutex_unlock(&dev->struct_mutex);
3552 }
3553
3554 static void haswell_crtc_disable(struct drm_crtc *crtc)
3555 {
3556         struct drm_device *dev = crtc->dev;
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559         struct intel_encoder *encoder;
3560         int pipe = intel_crtc->pipe;
3561         int plane = intel_crtc->plane;
3562         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3563         bool is_pch_port;
3564
3565         if (!intel_crtc->active)
3566                 return;
3567
3568         is_pch_port = haswell_crtc_driving_pch(crtc);
3569
3570         for_each_encoder_on_crtc(dev, crtc, encoder)
3571                 encoder->disable(encoder);
3572
3573         intel_crtc_wait_for_pending_flips(crtc);
3574         drm_vblank_off(dev, pipe);
3575         intel_crtc_update_cursor(crtc, false);
3576
3577         intel_disable_plane(dev_priv, plane, pipe);
3578
3579         if (dev_priv->cfb_plane == plane)
3580                 intel_disable_fbc(dev);
3581
3582         intel_disable_pipe(dev_priv, pipe);
3583
3584         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3585
3586         /* Disable PF */
3587         I915_WRITE(PF_CTL(pipe), 0);
3588         I915_WRITE(PF_WIN_SZ(pipe), 0);
3589
3590         intel_ddi_disable_pipe_clock(intel_crtc);
3591
3592         for_each_encoder_on_crtc(dev, crtc, encoder)
3593                 if (encoder->post_disable)
3594                         encoder->post_disable(encoder);
3595
3596         if (is_pch_port) {
3597                 lpt_disable_pch_transcoder(dev_priv);
3598                 intel_ddi_fdi_disable(crtc);
3599         }
3600
3601         intel_crtc->active = false;
3602         intel_update_watermarks(dev);
3603
3604         mutex_lock(&dev->struct_mutex);
3605         intel_update_fbc(dev);
3606         mutex_unlock(&dev->struct_mutex);
3607 }
3608
3609 static void ironlake_crtc_off(struct drm_crtc *crtc)
3610 {
3611         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3612         intel_put_pch_pll(intel_crtc);
3613 }
3614
3615 static void haswell_crtc_off(struct drm_crtc *crtc)
3616 {
3617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3618
3619         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3620          * start using it. */
3621         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3622
3623         intel_ddi_put_crtc_pll(crtc);
3624 }
3625
3626 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3627 {
3628         if (!enable && intel_crtc->overlay) {
3629                 struct drm_device *dev = intel_crtc->base.dev;
3630                 struct drm_i915_private *dev_priv = dev->dev_private;
3631
3632                 mutex_lock(&dev->struct_mutex);
3633                 dev_priv->mm.interruptible = false;
3634                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3635                 dev_priv->mm.interruptible = true;
3636                 mutex_unlock(&dev->struct_mutex);
3637         }
3638
3639         /* Let userspace switch the overlay on again. In most cases userspace
3640          * has to recompute where to put it anyway.
3641          */
3642 }
3643
3644 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3645 {
3646         struct drm_device *dev = crtc->dev;
3647         struct drm_i915_private *dev_priv = dev->dev_private;
3648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3649         struct intel_encoder *encoder;
3650         int pipe = intel_crtc->pipe;
3651         int plane = intel_crtc->plane;
3652
3653         WARN_ON(!crtc->enabled);
3654
3655         if (intel_crtc->active)
3656                 return;
3657
3658         intel_crtc->active = true;
3659         intel_update_watermarks(dev);
3660
3661         intel_enable_pll(dev_priv, pipe);
3662
3663         for_each_encoder_on_crtc(dev, crtc, encoder)
3664                 if (encoder->pre_enable)
3665                         encoder->pre_enable(encoder);
3666
3667         intel_enable_pipe(dev_priv, pipe, false);
3668         intel_enable_plane(dev_priv, plane, pipe);
3669
3670         intel_crtc_load_lut(crtc);
3671         intel_update_fbc(dev);
3672
3673         /* Give the overlay scaler a chance to enable if it's on this pipe */
3674         intel_crtc_dpms_overlay(intel_crtc, true);
3675         intel_crtc_update_cursor(crtc, true);
3676
3677         for_each_encoder_on_crtc(dev, crtc, encoder)
3678                 encoder->enable(encoder);
3679 }
3680
3681 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3682 {
3683         struct drm_device *dev = crtc->dev;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3686         struct intel_encoder *encoder;
3687         int pipe = intel_crtc->pipe;
3688         int plane = intel_crtc->plane;
3689         u32 pctl;
3690
3691
3692         if (!intel_crtc->active)
3693                 return;
3694
3695         for_each_encoder_on_crtc(dev, crtc, encoder)
3696                 encoder->disable(encoder);
3697
3698         /* Give the overlay scaler a chance to disable if it's on this pipe */
3699         intel_crtc_wait_for_pending_flips(crtc);
3700         drm_vblank_off(dev, pipe);
3701         intel_crtc_dpms_overlay(intel_crtc, false);
3702         intel_crtc_update_cursor(crtc, false);
3703
3704         if (dev_priv->cfb_plane == plane)
3705                 intel_disable_fbc(dev);
3706
3707         intel_disable_plane(dev_priv, plane, pipe);
3708         intel_disable_pipe(dev_priv, pipe);
3709
3710         /* Disable pannel fitter if it is on this pipe. */
3711         pctl = I915_READ(PFIT_CONTROL);
3712         if ((pctl & PFIT_ENABLE) &&
3713             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3714                 I915_WRITE(PFIT_CONTROL, 0);
3715
3716         intel_disable_pll(dev_priv, pipe);
3717
3718         intel_crtc->active = false;
3719         intel_update_fbc(dev);
3720         intel_update_watermarks(dev);
3721 }
3722
3723 static void i9xx_crtc_off(struct drm_crtc *crtc)
3724 {
3725 }
3726
3727 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3728                                     bool enabled)
3729 {
3730         struct drm_device *dev = crtc->dev;
3731         struct drm_i915_master_private *master_priv;
3732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3733         int pipe = intel_crtc->pipe;
3734
3735         if (!dev->primary->master)
3736                 return;
3737
3738         master_priv = dev->primary->master->driver_priv;
3739         if (!master_priv->sarea_priv)
3740                 return;
3741
3742         switch (pipe) {
3743         case 0:
3744                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3745                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3746                 break;
3747         case 1:
3748                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3749                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3750                 break;
3751         default:
3752                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3753                 break;
3754         }
3755 }
3756
3757 /**
3758  * Sets the power management mode of the pipe and plane.
3759  */
3760 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3761 {
3762         struct drm_device *dev = crtc->dev;
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764         struct intel_encoder *intel_encoder;
3765         bool enable = false;
3766
3767         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3768                 enable |= intel_encoder->connectors_active;
3769
3770         if (enable)
3771                 dev_priv->display.crtc_enable(crtc);
3772         else
3773                 dev_priv->display.crtc_disable(crtc);
3774
3775         intel_crtc_update_sarea(crtc, enable);
3776 }
3777
3778 static void intel_crtc_noop(struct drm_crtc *crtc)
3779 {
3780 }
3781
3782 static void intel_crtc_disable(struct drm_crtc *crtc)
3783 {
3784         struct drm_device *dev = crtc->dev;
3785         struct drm_connector *connector;
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788
3789         /* crtc should still be enabled when we disable it. */
3790         WARN_ON(!crtc->enabled);
3791
3792         intel_crtc->eld_vld = false;
3793         dev_priv->display.crtc_disable(crtc);
3794         intel_crtc_update_sarea(crtc, false);
3795         dev_priv->display.off(crtc);
3796
3797         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3798         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3799
3800         if (crtc->fb) {
3801                 mutex_lock(&dev->struct_mutex);
3802                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3803                 mutex_unlock(&dev->struct_mutex);
3804                 crtc->fb = NULL;
3805         }
3806
3807         /* Update computed state. */
3808         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3809                 if (!connector->encoder || !connector->encoder->crtc)
3810                         continue;
3811
3812                 if (connector->encoder->crtc != crtc)
3813                         continue;
3814
3815                 connector->dpms = DRM_MODE_DPMS_OFF;
3816                 to_intel_encoder(connector->encoder)->connectors_active = false;
3817         }
3818 }
3819
3820 void intel_modeset_disable(struct drm_device *dev)
3821 {
3822         struct drm_crtc *crtc;
3823
3824         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3825                 if (crtc->enabled)
3826                         intel_crtc_disable(crtc);
3827         }
3828 }
3829
3830 void intel_encoder_noop(struct drm_encoder *encoder)
3831 {
3832 }
3833
3834 void intel_encoder_destroy(struct drm_encoder *encoder)
3835 {
3836         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3837
3838         drm_encoder_cleanup(encoder);
3839         kfree(intel_encoder);
3840 }
3841
3842 /* Simple dpms helper for encodres with just one connector, no cloning and only
3843  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3844  * state of the entire output pipe. */
3845 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3846 {
3847         if (mode == DRM_MODE_DPMS_ON) {
3848                 encoder->connectors_active = true;
3849
3850                 intel_crtc_update_dpms(encoder->base.crtc);
3851         } else {
3852                 encoder->connectors_active = false;
3853
3854                 intel_crtc_update_dpms(encoder->base.crtc);
3855         }
3856 }
3857
3858 /* Cross check the actual hw state with our own modeset state tracking (and it's
3859  * internal consistency). */
3860 static void intel_connector_check_state(struct intel_connector *connector)
3861 {
3862         if (connector->get_hw_state(connector)) {
3863                 struct intel_encoder *encoder = connector->encoder;
3864                 struct drm_crtc *crtc;
3865                 bool encoder_enabled;
3866                 enum pipe pipe;
3867
3868                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3869                               connector->base.base.id,
3870                               drm_get_connector_name(&connector->base));
3871
3872                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3873                      "wrong connector dpms state\n");
3874                 WARN(connector->base.encoder != &encoder->base,
3875                      "active connector not linked to encoder\n");
3876                 WARN(!encoder->connectors_active,
3877                      "encoder->connectors_active not set\n");
3878
3879                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3880                 WARN(!encoder_enabled, "encoder not enabled\n");
3881                 if (WARN_ON(!encoder->base.crtc))
3882                         return;
3883
3884                 crtc = encoder->base.crtc;
3885
3886                 WARN(!crtc->enabled, "crtc not enabled\n");
3887                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3888                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3889                      "encoder active on the wrong pipe\n");
3890         }
3891 }
3892
3893 /* Even simpler default implementation, if there's really no special case to
3894  * consider. */
3895 void intel_connector_dpms(struct drm_connector *connector, int mode)
3896 {
3897         struct intel_encoder *encoder = intel_attached_encoder(connector);
3898
3899         /* All the simple cases only support two dpms states. */
3900         if (mode != DRM_MODE_DPMS_ON)
3901                 mode = DRM_MODE_DPMS_OFF;
3902
3903         if (mode == connector->dpms)
3904                 return;
3905
3906         connector->dpms = mode;
3907
3908         /* Only need to change hw state when actually enabled */
3909         if (encoder->base.crtc)
3910                 intel_encoder_dpms(encoder, mode);
3911         else
3912                 WARN_ON(encoder->connectors_active != false);
3913
3914         intel_modeset_check_state(connector->dev);
3915 }
3916
3917 /* Simple connector->get_hw_state implementation for encoders that support only
3918  * one connector and no cloning and hence the encoder state determines the state
3919  * of the connector. */
3920 bool intel_connector_get_hw_state(struct intel_connector *connector)
3921 {
3922         enum pipe pipe = 0;
3923         struct intel_encoder *encoder = connector->encoder;
3924
3925         return encoder->get_hw_state(encoder, &pipe);
3926 }
3927
3928 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3929                                   const struct drm_display_mode *mode,
3930                                   struct drm_display_mode *adjusted_mode)
3931 {
3932         struct drm_device *dev = crtc->dev;
3933
3934         if (HAS_PCH_SPLIT(dev)) {
3935                 /* FDI link clock is fixed at 2.7G */
3936                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3937                         return false;
3938         }
3939
3940         /* All interlaced capable intel hw wants timings in frames. Note though
3941          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3942          * timings, so we need to be careful not to clobber these.*/
3943         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3944                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3945
3946         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3947          * with a hsync front porch of 0.
3948          */
3949         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3950                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3951                 return false;
3952
3953         return true;
3954 }
3955
3956 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3957 {
3958         return 400000; /* FIXME */
3959 }
3960
3961 static int i945_get_display_clock_speed(struct drm_device *dev)
3962 {
3963         return 400000;
3964 }
3965
3966 static int i915_get_display_clock_speed(struct drm_device *dev)
3967 {
3968         return 333000;
3969 }
3970
3971 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3972 {
3973         return 200000;
3974 }
3975
3976 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3977 {
3978         u16 gcfgc = 0;
3979
3980         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3981
3982         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3983                 return 133000;
3984         else {
3985                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3986                 case GC_DISPLAY_CLOCK_333_MHZ:
3987                         return 333000;
3988                 default:
3989                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3990                         return 190000;
3991                 }
3992         }
3993 }
3994
3995 static int i865_get_display_clock_speed(struct drm_device *dev)
3996 {
3997         return 266000;
3998 }
3999
4000 static int i855_get_display_clock_speed(struct drm_device *dev)
4001 {
4002         u16 hpllcc = 0;
4003         /* Assume that the hardware is in the high speed state.  This
4004          * should be the default.
4005          */
4006         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4007         case GC_CLOCK_133_200:
4008         case GC_CLOCK_100_200:
4009                 return 200000;
4010         case GC_CLOCK_166_250:
4011                 return 250000;
4012         case GC_CLOCK_100_133:
4013                 return 133000;
4014         }
4015
4016         /* Shouldn't happen */
4017         return 0;
4018 }
4019
4020 static int i830_get_display_clock_speed(struct drm_device *dev)
4021 {
4022         return 133000;
4023 }
4024
4025 static void
4026 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4027 {
4028         while (*num > 0xffffff || *den > 0xffffff) {
4029                 *num >>= 1;
4030                 *den >>= 1;
4031         }
4032 }
4033
4034 void
4035 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4036                        int pixel_clock, int link_clock,
4037                        struct intel_link_m_n *m_n)
4038 {
4039         m_n->tu = 64;
4040         m_n->gmch_m = bits_per_pixel * pixel_clock;
4041         m_n->gmch_n = link_clock * nlanes * 8;
4042         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4043         m_n->link_m = pixel_clock;
4044         m_n->link_n = link_clock;
4045         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4046 }
4047
4048 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4049 {
4050         if (i915_panel_use_ssc >= 0)
4051                 return i915_panel_use_ssc != 0;
4052         return dev_priv->lvds_use_ssc
4053                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4054 }
4055
4056 /**
4057  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4058  * @crtc: CRTC structure
4059  * @mode: requested mode
4060  *
4061  * A pipe may be connected to one or more outputs.  Based on the depth of the
4062  * attached framebuffer, choose a good color depth to use on the pipe.
4063  *
4064  * If possible, match the pipe depth to the fb depth.  In some cases, this
4065  * isn't ideal, because the connected output supports a lesser or restricted
4066  * set of depths.  Resolve that here:
4067  *    LVDS typically supports only 6bpc, so clamp down in that case
4068  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4069  *    Displays may support a restricted set as well, check EDID and clamp as
4070  *      appropriate.
4071  *    DP may want to dither down to 6bpc to fit larger modes
4072  *
4073  * RETURNS:
4074  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4075  * true if they don't match).
4076  */
4077 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4078                                          struct drm_framebuffer *fb,
4079                                          unsigned int *pipe_bpp,
4080                                          struct drm_display_mode *mode)
4081 {
4082         struct drm_device *dev = crtc->dev;
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084         struct drm_connector *connector;
4085         struct intel_encoder *intel_encoder;
4086         unsigned int display_bpc = UINT_MAX, bpc;
4087
4088         /* Walk the encoders & connectors on this crtc, get min bpc */
4089         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4090
4091                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4092                         unsigned int lvds_bpc;
4093
4094                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4095                             LVDS_A3_POWER_UP)
4096                                 lvds_bpc = 8;
4097                         else
4098                                 lvds_bpc = 6;
4099
4100                         if (lvds_bpc < display_bpc) {
4101                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4102                                 display_bpc = lvds_bpc;
4103                         }
4104                         continue;
4105                 }
4106
4107                 /* Not one of the known troublemakers, check the EDID */
4108                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4109                                     head) {
4110                         if (connector->encoder != &intel_encoder->base)
4111                                 continue;
4112
4113                         /* Don't use an invalid EDID bpc value */
4114                         if (connector->display_info.bpc &&
4115                             connector->display_info.bpc < display_bpc) {
4116                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4117                                 display_bpc = connector->display_info.bpc;
4118                         }
4119                 }
4120
4121                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4122                         /* Use VBT settings if we have an eDP panel */
4123                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4124
4125                         if (edp_bpc && edp_bpc < display_bpc) {
4126                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4127                                 display_bpc = edp_bpc;
4128                         }
4129                         continue;
4130                 }
4131
4132                 /*
4133                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4134                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4135                  */
4136                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4137                         if (display_bpc > 8 && display_bpc < 12) {
4138                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4139                                 display_bpc = 12;
4140                         } else {
4141                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4142                                 display_bpc = 8;
4143                         }
4144                 }
4145         }
4146
4147         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4148                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4149                 display_bpc = 6;
4150         }
4151
4152         /*
4153          * We could just drive the pipe at the highest bpc all the time and
4154          * enable dithering as needed, but that costs bandwidth.  So choose
4155          * the minimum value that expresses the full color range of the fb but
4156          * also stays within the max display bpc discovered above.
4157          */
4158
4159         switch (fb->depth) {
4160         case 8:
4161                 bpc = 8; /* since we go through a colormap */
4162                 break;
4163         case 15:
4164         case 16:
4165                 bpc = 6; /* min is 18bpp */
4166                 break;
4167         case 24:
4168                 bpc = 8;
4169                 break;
4170         case 30:
4171                 bpc = 10;
4172                 break;
4173         case 48:
4174                 bpc = 12;
4175                 break;
4176         default:
4177                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4178                 bpc = min((unsigned int)8, display_bpc);
4179                 break;
4180         }
4181
4182         display_bpc = min(display_bpc, bpc);
4183
4184         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4185                       bpc, display_bpc);
4186
4187         *pipe_bpp = display_bpc * 3;
4188
4189         return display_bpc != bpc;
4190 }
4191
4192 static int vlv_get_refclk(struct drm_crtc *crtc)
4193 {
4194         struct drm_device *dev = crtc->dev;
4195         struct drm_i915_private *dev_priv = dev->dev_private;
4196         int refclk = 27000; /* for DP & HDMI */
4197
4198         return 100000; /* only one validated so far */
4199
4200         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4201                 refclk = 96000;
4202         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4203                 if (intel_panel_use_ssc(dev_priv))
4204                         refclk = 100000;
4205                 else
4206                         refclk = 96000;
4207         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4208                 refclk = 100000;
4209         }
4210
4211         return refclk;
4212 }
4213
4214 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4215 {
4216         struct drm_device *dev = crtc->dev;
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         int refclk;
4219
4220         if (IS_VALLEYVIEW(dev)) {
4221                 refclk = vlv_get_refclk(crtc);
4222         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4223             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4224                 refclk = dev_priv->lvds_ssc_freq * 1000;
4225                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4226                               refclk / 1000);
4227         } else if (!IS_GEN2(dev)) {
4228                 refclk = 96000;
4229         } else {
4230                 refclk = 48000;
4231         }
4232
4233         return refclk;
4234 }
4235
4236 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4237                                       intel_clock_t *clock)
4238 {
4239         /* SDVO TV has fixed PLL values depend on its clock range,
4240            this mirrors vbios setting. */
4241         if (adjusted_mode->clock >= 100000
4242             && adjusted_mode->clock < 140500) {
4243                 clock->p1 = 2;
4244                 clock->p2 = 10;
4245                 clock->n = 3;
4246                 clock->m1 = 16;
4247                 clock->m2 = 8;
4248         } else if (adjusted_mode->clock >= 140500
4249                    && adjusted_mode->clock <= 200000) {
4250                 clock->p1 = 1;
4251                 clock->p2 = 10;
4252                 clock->n = 6;
4253                 clock->m1 = 12;
4254                 clock->m2 = 8;
4255         }
4256 }
4257
4258 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4259                                      intel_clock_t *clock,
4260                                      intel_clock_t *reduced_clock)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265         int pipe = intel_crtc->pipe;
4266         u32 fp, fp2 = 0;
4267
4268         if (IS_PINEVIEW(dev)) {
4269                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4270                 if (reduced_clock)
4271                         fp2 = (1 << reduced_clock->n) << 16 |
4272                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4273         } else {
4274                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4275                 if (reduced_clock)
4276                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4277                                 reduced_clock->m2;
4278         }
4279
4280         I915_WRITE(FP0(pipe), fp);
4281
4282         intel_crtc->lowfreq_avail = false;
4283         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4284             reduced_clock && i915_powersave) {
4285                 I915_WRITE(FP1(pipe), fp2);
4286                 intel_crtc->lowfreq_avail = true;
4287         } else {
4288                 I915_WRITE(FP1(pipe), fp);
4289         }
4290 }
4291
4292 static void vlv_update_pll(struct drm_crtc *crtc,
4293                            struct drm_display_mode *mode,
4294                            struct drm_display_mode *adjusted_mode,
4295                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4296                            int num_connectors)
4297 {
4298         struct drm_device *dev = crtc->dev;
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4301         int pipe = intel_crtc->pipe;
4302         u32 dpll, mdiv, pdiv;
4303         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4304         bool is_sdvo;
4305         u32 temp;
4306
4307         mutex_lock(&dev_priv->dpio_lock);
4308
4309         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4310                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4311
4312         dpll = DPLL_VGA_MODE_DIS;
4313         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4314         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4315         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4316
4317         I915_WRITE(DPLL(pipe), dpll);
4318         POSTING_READ(DPLL(pipe));
4319
4320         bestn = clock->n;
4321         bestm1 = clock->m1;
4322         bestm2 = clock->m2;
4323         bestp1 = clock->p1;
4324         bestp2 = clock->p2;
4325
4326         /*
4327          * In Valleyview PLL and program lane counter registers are exposed
4328          * through DPIO interface
4329          */
4330         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4331         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4332         mdiv |= ((bestn << DPIO_N_SHIFT));
4333         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4334         mdiv |= (1 << DPIO_K_SHIFT);
4335         mdiv |= DPIO_ENABLE_CALIBRATION;
4336         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4337
4338         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4339
4340         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4341                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4342                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4343                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4344         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4345
4346         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4347
4348         dpll |= DPLL_VCO_ENABLE;
4349         I915_WRITE(DPLL(pipe), dpll);
4350         POSTING_READ(DPLL(pipe));
4351         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4352                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4353
4354         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4355
4356         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4357                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4358
4359         I915_WRITE(DPLL(pipe), dpll);
4360
4361         /* Wait for the clocks to stabilize. */
4362         POSTING_READ(DPLL(pipe));
4363         udelay(150);
4364
4365         temp = 0;
4366         if (is_sdvo) {
4367                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4368                 if (temp > 1)
4369                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4370                 else
4371                         temp = 0;
4372         }
4373         I915_WRITE(DPLL_MD(pipe), temp);
4374         POSTING_READ(DPLL_MD(pipe));
4375
4376         /* Now program lane control registers */
4377         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4378                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4379         {
4380                 temp = 0x1000C4;
4381                 if(pipe == 1)
4382                         temp |= (1 << 21);
4383                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4384         }
4385         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4386         {
4387                 temp = 0x1000C4;
4388                 if(pipe == 1)
4389                         temp |= (1 << 21);
4390                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4391         }
4392
4393         mutex_unlock(&dev_priv->dpio_lock);
4394 }
4395
4396 static void i9xx_update_pll(struct drm_crtc *crtc,
4397                             struct drm_display_mode *mode,
4398                             struct drm_display_mode *adjusted_mode,
4399                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4400                             int num_connectors)
4401 {
4402         struct drm_device *dev = crtc->dev;
4403         struct drm_i915_private *dev_priv = dev->dev_private;
4404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4405         struct intel_encoder *encoder;
4406         int pipe = intel_crtc->pipe;
4407         u32 dpll;
4408         bool is_sdvo;
4409
4410         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4411
4412         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4413                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4414
4415         dpll = DPLL_VGA_MODE_DIS;
4416
4417         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4418                 dpll |= DPLLB_MODE_LVDS;
4419         else
4420                 dpll |= DPLLB_MODE_DAC_SERIAL;
4421         if (is_sdvo) {
4422                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4423                 if (pixel_multiplier > 1) {
4424                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4425                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4426                 }
4427                 dpll |= DPLL_DVO_HIGH_SPEED;
4428         }
4429         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4430                 dpll |= DPLL_DVO_HIGH_SPEED;
4431
4432         /* compute bitmask from p1 value */
4433         if (IS_PINEVIEW(dev))
4434                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4435         else {
4436                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4437                 if (IS_G4X(dev) && reduced_clock)
4438                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4439         }
4440         switch (clock->p2) {
4441         case 5:
4442                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4443                 break;
4444         case 7:
4445                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4446                 break;
4447         case 10:
4448                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4449                 break;
4450         case 14:
4451                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4452                 break;
4453         }
4454         if (INTEL_INFO(dev)->gen >= 4)
4455                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4456
4457         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4458                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4459         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4460                 /* XXX: just matching BIOS for now */
4461                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4462                 dpll |= 3;
4463         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4464                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4465                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4466         else
4467                 dpll |= PLL_REF_INPUT_DREFCLK;
4468
4469         dpll |= DPLL_VCO_ENABLE;
4470         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4471         POSTING_READ(DPLL(pipe));
4472         udelay(150);
4473
4474         for_each_encoder_on_crtc(dev, crtc, encoder)
4475                 if (encoder->pre_pll_enable)
4476                         encoder->pre_pll_enable(encoder);
4477
4478         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4479                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4480
4481         I915_WRITE(DPLL(pipe), dpll);
4482
4483         /* Wait for the clocks to stabilize. */
4484         POSTING_READ(DPLL(pipe));
4485         udelay(150);
4486
4487         if (INTEL_INFO(dev)->gen >= 4) {
4488                 u32 temp = 0;
4489                 if (is_sdvo) {
4490                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4491                         if (temp > 1)
4492                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4493                         else
4494                                 temp = 0;
4495                 }
4496                 I915_WRITE(DPLL_MD(pipe), temp);
4497         } else {
4498                 /* The pixel multiplier can only be updated once the
4499                  * DPLL is enabled and the clocks are stable.
4500                  *
4501                  * So write it again.
4502                  */
4503                 I915_WRITE(DPLL(pipe), dpll);
4504         }
4505 }
4506
4507 static void i8xx_update_pll(struct drm_crtc *crtc,
4508                             struct drm_display_mode *adjusted_mode,
4509                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4510                             int num_connectors)
4511 {
4512         struct drm_device *dev = crtc->dev;
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4515         struct intel_encoder *encoder;
4516         int pipe = intel_crtc->pipe;
4517         u32 dpll;
4518
4519         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4520
4521         dpll = DPLL_VGA_MODE_DIS;
4522
4523         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4524                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4525         } else {
4526                 if (clock->p1 == 2)
4527                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4528                 else
4529                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4530                 if (clock->p2 == 4)
4531                         dpll |= PLL_P2_DIVIDE_BY_4;
4532         }
4533
4534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4535                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4536                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4537         else
4538                 dpll |= PLL_REF_INPUT_DREFCLK;
4539
4540         dpll |= DPLL_VCO_ENABLE;
4541         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4542         POSTING_READ(DPLL(pipe));
4543         udelay(150);
4544
4545         for_each_encoder_on_crtc(dev, crtc, encoder)
4546                 if (encoder->pre_pll_enable)
4547                         encoder->pre_pll_enable(encoder);
4548
4549         I915_WRITE(DPLL(pipe), dpll);
4550
4551         /* Wait for the clocks to stabilize. */
4552         POSTING_READ(DPLL(pipe));
4553         udelay(150);
4554
4555         /* The pixel multiplier can only be updated once the
4556          * DPLL is enabled and the clocks are stable.
4557          *
4558          * So write it again.
4559          */
4560         I915_WRITE(DPLL(pipe), dpll);
4561 }
4562
4563 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4564                                    struct drm_display_mode *mode,
4565                                    struct drm_display_mode *adjusted_mode)
4566 {
4567         struct drm_device *dev = intel_crtc->base.dev;
4568         struct drm_i915_private *dev_priv = dev->dev_private;
4569         enum pipe pipe = intel_crtc->pipe;
4570         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4571         uint32_t vsyncshift;
4572
4573         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4574                 /* the chip adds 2 halflines automatically */
4575                 adjusted_mode->crtc_vtotal -= 1;
4576                 adjusted_mode->crtc_vblank_end -= 1;
4577                 vsyncshift = adjusted_mode->crtc_hsync_start
4578                              - adjusted_mode->crtc_htotal / 2;
4579         } else {
4580                 vsyncshift = 0;
4581         }
4582
4583         if (INTEL_INFO(dev)->gen > 3)
4584                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4585
4586         I915_WRITE(HTOTAL(cpu_transcoder),
4587                    (adjusted_mode->crtc_hdisplay - 1) |
4588                    ((adjusted_mode->crtc_htotal - 1) << 16));
4589         I915_WRITE(HBLANK(cpu_transcoder),
4590                    (adjusted_mode->crtc_hblank_start - 1) |
4591                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4592         I915_WRITE(HSYNC(cpu_transcoder),
4593                    (adjusted_mode->crtc_hsync_start - 1) |
4594                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4595
4596         I915_WRITE(VTOTAL(cpu_transcoder),
4597                    (adjusted_mode->crtc_vdisplay - 1) |
4598                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4599         I915_WRITE(VBLANK(cpu_transcoder),
4600                    (adjusted_mode->crtc_vblank_start - 1) |
4601                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4602         I915_WRITE(VSYNC(cpu_transcoder),
4603                    (adjusted_mode->crtc_vsync_start - 1) |
4604                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4605
4606         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4607          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4608          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4609          * bits. */
4610         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4611             (pipe == PIPE_B || pipe == PIPE_C))
4612                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4613
4614         /* pipesrc controls the size that is scaled from, which should
4615          * always be the user's requested size.
4616          */
4617         I915_WRITE(PIPESRC(pipe),
4618                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4619 }
4620
4621 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4622                               struct drm_display_mode *mode,
4623                               struct drm_display_mode *adjusted_mode,
4624                               int x, int y,
4625                               struct drm_framebuffer *fb)
4626 {
4627         struct drm_device *dev = crtc->dev;
4628         struct drm_i915_private *dev_priv = dev->dev_private;
4629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4630         int pipe = intel_crtc->pipe;
4631         int plane = intel_crtc->plane;
4632         int refclk, num_connectors = 0;
4633         intel_clock_t clock, reduced_clock;
4634         u32 dspcntr, pipeconf;
4635         bool ok, has_reduced_clock = false, is_sdvo = false;
4636         bool is_lvds = false, is_tv = false, is_dp = false;
4637         struct intel_encoder *encoder;
4638         const intel_limit_t *limit;
4639         int ret;
4640
4641         for_each_encoder_on_crtc(dev, crtc, encoder) {
4642                 switch (encoder->type) {
4643                 case INTEL_OUTPUT_LVDS:
4644                         is_lvds = true;
4645                         break;
4646                 case INTEL_OUTPUT_SDVO:
4647                 case INTEL_OUTPUT_HDMI:
4648                         is_sdvo = true;
4649                         if (encoder->needs_tv_clock)
4650                                 is_tv = true;
4651                         break;
4652                 case INTEL_OUTPUT_TVOUT:
4653                         is_tv = true;
4654                         break;
4655                 case INTEL_OUTPUT_DISPLAYPORT:
4656                         is_dp = true;
4657                         break;
4658                 }
4659
4660                 num_connectors++;
4661         }
4662
4663         refclk = i9xx_get_refclk(crtc, num_connectors);
4664
4665         /*
4666          * Returns a set of divisors for the desired target clock with the given
4667          * refclk, or FALSE.  The returned values represent the clock equation:
4668          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4669          */
4670         limit = intel_limit(crtc, refclk);
4671         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4672                              &clock);
4673         if (!ok) {
4674                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4675                 return -EINVAL;
4676         }
4677
4678         /* Ensure that the cursor is valid for the new mode before changing... */
4679         intel_crtc_update_cursor(crtc, true);
4680
4681         if (is_lvds && dev_priv->lvds_downclock_avail) {
4682                 /*
4683                  * Ensure we match the reduced clock's P to the target clock.
4684                  * If the clocks don't match, we can't switch the display clock
4685                  * by using the FP0/FP1. In such case we will disable the LVDS
4686                  * downclock feature.
4687                 */
4688                 has_reduced_clock = limit->find_pll(limit, crtc,
4689                                                     dev_priv->lvds_downclock,
4690                                                     refclk,
4691                                                     &clock,
4692                                                     &reduced_clock);
4693         }
4694
4695         if (is_sdvo && is_tv)
4696                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4697
4698         if (IS_GEN2(dev))
4699                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4700                                 has_reduced_clock ? &reduced_clock : NULL,
4701                                 num_connectors);
4702         else if (IS_VALLEYVIEW(dev))
4703                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4704                                 has_reduced_clock ? &reduced_clock : NULL,
4705                                 num_connectors);
4706         else
4707                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4708                                 has_reduced_clock ? &reduced_clock : NULL,
4709                                 num_connectors);
4710
4711         /* setup pipeconf */
4712         pipeconf = I915_READ(PIPECONF(pipe));
4713
4714         /* Set up the display plane register */
4715         dspcntr = DISPPLANE_GAMMA_ENABLE;
4716
4717         if (pipe == 0)
4718                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4719         else
4720                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4721
4722         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4723                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4724                  * core speed.
4725                  *
4726                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4727                  * pipe == 0 check?
4728                  */
4729                 if (mode->clock >
4730                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4731                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4732                 else
4733                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4734         }
4735
4736         /* default to 8bpc */
4737         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4738         if (is_dp) {
4739                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4740                         pipeconf |= PIPECONF_6BPC |
4741                                     PIPECONF_DITHER_EN |
4742                                     PIPECONF_DITHER_TYPE_SP;
4743                 }
4744         }
4745
4746         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4747                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4748                         pipeconf |= PIPECONF_6BPC |
4749                                         PIPECONF_ENABLE |
4750                                         I965_PIPECONF_ACTIVE;
4751                 }
4752         }
4753
4754         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4755         drm_mode_debug_printmodeline(mode);
4756
4757         if (HAS_PIPE_CXSR(dev)) {
4758                 if (intel_crtc->lowfreq_avail) {
4759                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4760                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4761                 } else {
4762                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4763                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4764                 }
4765         }
4766
4767         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4768         if (!IS_GEN2(dev) &&
4769             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4770                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4771         else
4772                 pipeconf |= PIPECONF_PROGRESSIVE;
4773
4774         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4775
4776         /* pipesrc and dspsize control the size that is scaled from,
4777          * which should always be the user's requested size.
4778          */
4779         I915_WRITE(DSPSIZE(plane),
4780                    ((mode->vdisplay - 1) << 16) |
4781                    (mode->hdisplay - 1));
4782         I915_WRITE(DSPPOS(plane), 0);
4783
4784         I915_WRITE(PIPECONF(pipe), pipeconf);
4785         POSTING_READ(PIPECONF(pipe));
4786         intel_enable_pipe(dev_priv, pipe, false);
4787
4788         intel_wait_for_vblank(dev, pipe);
4789
4790         I915_WRITE(DSPCNTR(plane), dspcntr);
4791         POSTING_READ(DSPCNTR(plane));
4792
4793         ret = intel_pipe_set_base(crtc, x, y, fb);
4794
4795         intel_update_watermarks(dev);
4796
4797         return ret;
4798 }
4799
4800 static void ironlake_init_pch_refclk(struct drm_device *dev)
4801 {
4802         struct drm_i915_private *dev_priv = dev->dev_private;
4803         struct drm_mode_config *mode_config = &dev->mode_config;
4804         struct intel_encoder *encoder;
4805         u32 temp;
4806         bool has_lvds = false;
4807         bool has_cpu_edp = false;
4808         bool has_pch_edp = false;
4809         bool has_panel = false;
4810         bool has_ck505 = false;
4811         bool can_ssc = false;
4812
4813         /* We need to take the global config into account */
4814         list_for_each_entry(encoder, &mode_config->encoder_list,
4815                             base.head) {
4816                 switch (encoder->type) {
4817                 case INTEL_OUTPUT_LVDS:
4818                         has_panel = true;
4819                         has_lvds = true;
4820                         break;
4821                 case INTEL_OUTPUT_EDP:
4822                         has_panel = true;
4823                         if (intel_encoder_is_pch_edp(&encoder->base))
4824                                 has_pch_edp = true;
4825                         else
4826                                 has_cpu_edp = true;
4827                         break;
4828                 }
4829         }
4830
4831         if (HAS_PCH_IBX(dev)) {
4832                 has_ck505 = dev_priv->display_clock_mode;
4833                 can_ssc = has_ck505;
4834         } else {
4835                 has_ck505 = false;
4836                 can_ssc = true;
4837         }
4838
4839         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4840                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4841                       has_ck505);
4842
4843         /* Ironlake: try to setup display ref clock before DPLL
4844          * enabling. This is only under driver's control after
4845          * PCH B stepping, previous chipset stepping should be
4846          * ignoring this setting.
4847          */
4848         temp = I915_READ(PCH_DREF_CONTROL);
4849         /* Always enable nonspread source */
4850         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4851
4852         if (has_ck505)
4853                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4854         else
4855                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4856
4857         if (has_panel) {
4858                 temp &= ~DREF_SSC_SOURCE_MASK;
4859                 temp |= DREF_SSC_SOURCE_ENABLE;
4860
4861                 /* SSC must be turned on before enabling the CPU output  */
4862                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4863                         DRM_DEBUG_KMS("Using SSC on panel\n");
4864                         temp |= DREF_SSC1_ENABLE;
4865                 } else
4866                         temp &= ~DREF_SSC1_ENABLE;
4867
4868                 /* Get SSC going before enabling the outputs */
4869                 I915_WRITE(PCH_DREF_CONTROL, temp);
4870                 POSTING_READ(PCH_DREF_CONTROL);
4871                 udelay(200);
4872
4873                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4874
4875                 /* Enable CPU source on CPU attached eDP */
4876                 if (has_cpu_edp) {
4877                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4878                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4879                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4880                         }
4881                         else
4882                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4883                 } else
4884                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4885
4886                 I915_WRITE(PCH_DREF_CONTROL, temp);
4887                 POSTING_READ(PCH_DREF_CONTROL);
4888                 udelay(200);
4889         } else {
4890                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4891
4892                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4893
4894                 /* Turn off CPU output */
4895                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4896
4897                 I915_WRITE(PCH_DREF_CONTROL, temp);
4898                 POSTING_READ(PCH_DREF_CONTROL);
4899                 udelay(200);
4900
4901                 /* Turn off the SSC source */
4902                 temp &= ~DREF_SSC_SOURCE_MASK;
4903                 temp |= DREF_SSC_SOURCE_DISABLE;
4904
4905                 /* Turn off SSC1 */
4906                 temp &= ~ DREF_SSC1_ENABLE;
4907
4908                 I915_WRITE(PCH_DREF_CONTROL, temp);
4909                 POSTING_READ(PCH_DREF_CONTROL);
4910                 udelay(200);
4911         }
4912 }
4913
4914 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4915 static void lpt_init_pch_refclk(struct drm_device *dev)
4916 {
4917         struct drm_i915_private *dev_priv = dev->dev_private;
4918         struct drm_mode_config *mode_config = &dev->mode_config;
4919         struct intel_encoder *encoder;
4920         bool has_vga = false;
4921         bool is_sdv = false;
4922         u32 tmp;
4923
4924         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4925                 switch (encoder->type) {
4926                 case INTEL_OUTPUT_ANALOG:
4927                         has_vga = true;
4928                         break;
4929                 }
4930         }
4931
4932         if (!has_vga)
4933                 return;
4934
4935         mutex_lock(&dev_priv->dpio_lock);
4936
4937         /* XXX: Rip out SDV support once Haswell ships for real. */
4938         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4939                 is_sdv = true;
4940
4941         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4942         tmp &= ~SBI_SSCCTL_DISABLE;
4943         tmp |= SBI_SSCCTL_PATHALT;
4944         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4945
4946         udelay(24);
4947
4948         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4949         tmp &= ~SBI_SSCCTL_PATHALT;
4950         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4951
4952         if (!is_sdv) {
4953                 tmp = I915_READ(SOUTH_CHICKEN2);
4954                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4955                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4956
4957                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4958                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4959                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4960
4961                 tmp = I915_READ(SOUTH_CHICKEN2);
4962                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4963                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4964
4965                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4966                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4967                                        100))
4968                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4969         }
4970
4971         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4972         tmp &= ~(0xFF << 24);
4973         tmp |= (0x12 << 24);
4974         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4975
4976         if (!is_sdv) {
4977                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4978                 tmp &= ~(0x3 << 6);
4979                 tmp |= (1 << 6) | (1 << 0);
4980                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4981         }
4982
4983         if (is_sdv) {
4984                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4985                 tmp |= 0x7FFF;
4986                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4987         }
4988
4989         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4990         tmp |= (1 << 11);
4991         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4992
4993         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4994         tmp |= (1 << 11);
4995         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4996
4997         if (is_sdv) {
4998                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4999                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5000                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5001
5002                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5003                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5004                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5005
5006                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5007                 tmp |= (0x3F << 8);
5008                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5009
5010                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5011                 tmp |= (0x3F << 8);
5012                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5013         }
5014
5015         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5016         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5017         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5018
5019         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5020         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5021         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5022
5023         if (!is_sdv) {
5024                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5025                 tmp &= ~(7 << 13);
5026                 tmp |= (5 << 13);
5027                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5028
5029                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5030                 tmp &= ~(7 << 13);
5031                 tmp |= (5 << 13);
5032                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5033         }
5034
5035         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5036         tmp &= ~0xFF;
5037         tmp |= 0x1C;
5038         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5039
5040         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5041         tmp &= ~0xFF;
5042         tmp |= 0x1C;
5043         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5044
5045         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5046         tmp &= ~(0xFF << 16);
5047         tmp |= (0x1C << 16);
5048         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5049
5050         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5051         tmp &= ~(0xFF << 16);
5052         tmp |= (0x1C << 16);
5053         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5054
5055         if (!is_sdv) {
5056                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5057                 tmp |= (1 << 27);
5058                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5059
5060                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5061                 tmp |= (1 << 27);
5062                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5063
5064                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5065                 tmp &= ~(0xF << 28);
5066                 tmp |= (4 << 28);
5067                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5068
5069                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5070                 tmp &= ~(0xF << 28);
5071                 tmp |= (4 << 28);
5072                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5073         }
5074
5075         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5076         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5077         tmp |= SBI_DBUFF0_ENABLE;
5078         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5079
5080         mutex_unlock(&dev_priv->dpio_lock);
5081 }
5082
5083 /*
5084  * Initialize reference clocks when the driver loads
5085  */
5086 void intel_init_pch_refclk(struct drm_device *dev)
5087 {
5088         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5089                 ironlake_init_pch_refclk(dev);
5090         else if (HAS_PCH_LPT(dev))
5091                 lpt_init_pch_refclk(dev);
5092 }
5093
5094 static int ironlake_get_refclk(struct drm_crtc *crtc)
5095 {
5096         struct drm_device *dev = crtc->dev;
5097         struct drm_i915_private *dev_priv = dev->dev_private;
5098         struct intel_encoder *encoder;
5099         struct intel_encoder *edp_encoder = NULL;
5100         int num_connectors = 0;
5101         bool is_lvds = false;
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder) {
5104                 switch (encoder->type) {
5105                 case INTEL_OUTPUT_LVDS:
5106                         is_lvds = true;
5107                         break;
5108                 case INTEL_OUTPUT_EDP:
5109                         edp_encoder = encoder;
5110                         break;
5111                 }
5112                 num_connectors++;
5113         }
5114
5115         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5116                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5117                               dev_priv->lvds_ssc_freq);
5118                 return dev_priv->lvds_ssc_freq * 1000;
5119         }
5120
5121         return 120000;
5122 }
5123
5124 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5125                                   struct drm_display_mode *adjusted_mode,
5126                                   bool dither)
5127 {
5128         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5130         int pipe = intel_crtc->pipe;
5131         uint32_t val;
5132
5133         val = I915_READ(PIPECONF(pipe));
5134
5135         val &= ~PIPECONF_BPC_MASK;
5136         switch (intel_crtc->bpp) {
5137         case 18:
5138                 val |= PIPECONF_6BPC;
5139                 break;
5140         case 24:
5141                 val |= PIPECONF_8BPC;
5142                 break;
5143         case 30:
5144                 val |= PIPECONF_10BPC;
5145                 break;
5146         case 36:
5147                 val |= PIPECONF_12BPC;
5148                 break;
5149         default:
5150                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5151                 BUG();
5152         }
5153
5154         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5155         if (dither)
5156                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5157
5158         val &= ~PIPECONF_INTERLACE_MASK;
5159         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5160                 val |= PIPECONF_INTERLACED_ILK;
5161         else
5162                 val |= PIPECONF_PROGRESSIVE;
5163
5164         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5165                 val |= PIPECONF_COLOR_RANGE_SELECT;
5166         else
5167                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5168
5169         I915_WRITE(PIPECONF(pipe), val);
5170         POSTING_READ(PIPECONF(pipe));
5171 }
5172
5173 /*
5174  * Set up the pipe CSC unit.
5175  *
5176  * Currently only full range RGB to limited range RGB conversion
5177  * is supported, but eventually this should handle various
5178  * RGB<->YCbCr scenarios as well.
5179  */
5180 static void intel_set_pipe_csc(struct drm_crtc *crtc,
5181                                const struct drm_display_mode *adjusted_mode)
5182 {
5183         struct drm_device *dev = crtc->dev;
5184         struct drm_i915_private *dev_priv = dev->dev_private;
5185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5186         int pipe = intel_crtc->pipe;
5187         uint16_t coeff = 0x7800; /* 1.0 */
5188
5189         /*
5190          * TODO: Check what kind of values actually come out of the pipe
5191          * with these coeff/postoff values and adjust to get the best
5192          * accuracy. Perhaps we even need to take the bpc value into
5193          * consideration.
5194          */
5195
5196         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5197                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5198
5199         /*
5200          * GY/GU and RY/RU should be the other way around according
5201          * to BSpec, but reality doesn't agree. Just set them up in
5202          * a way that results in the correct picture.
5203          */
5204         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5205         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5206
5207         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5208         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5209
5210         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5211         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5212
5213         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5214         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5215         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5216
5217         if (INTEL_INFO(dev)->gen > 6) {
5218                 uint16_t postoff = 0;
5219
5220                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5221                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5222
5223                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5224                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5225                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5226
5227                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5228         } else {
5229                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5230
5231                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5232                         mode |= CSC_BLACK_SCREEN_OFFSET;
5233
5234                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5235         }
5236 }
5237
5238 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5239                                  struct drm_display_mode *adjusted_mode,
5240                                  bool dither)
5241 {
5242         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5244         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5245         uint32_t val;
5246
5247         val = I915_READ(PIPECONF(cpu_transcoder));
5248
5249         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5250         if (dither)
5251                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5252
5253         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5254         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5255                 val |= PIPECONF_INTERLACED_ILK;
5256         else
5257                 val |= PIPECONF_PROGRESSIVE;
5258
5259         I915_WRITE(PIPECONF(cpu_transcoder), val);
5260         POSTING_READ(PIPECONF(cpu_transcoder));
5261 }
5262
5263 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5264                                     struct drm_display_mode *adjusted_mode,
5265                                     intel_clock_t *clock,
5266                                     bool *has_reduced_clock,
5267                                     intel_clock_t *reduced_clock)
5268 {
5269         struct drm_device *dev = crtc->dev;
5270         struct drm_i915_private *dev_priv = dev->dev_private;
5271         struct intel_encoder *intel_encoder;
5272         int refclk;
5273         const intel_limit_t *limit;
5274         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5275
5276         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5277                 switch (intel_encoder->type) {
5278                 case INTEL_OUTPUT_LVDS:
5279                         is_lvds = true;
5280                         break;
5281                 case INTEL_OUTPUT_SDVO:
5282                 case INTEL_OUTPUT_HDMI:
5283                         is_sdvo = true;
5284                         if (intel_encoder->needs_tv_clock)
5285                                 is_tv = true;
5286                         break;
5287                 case INTEL_OUTPUT_TVOUT:
5288                         is_tv = true;
5289                         break;
5290                 }
5291         }
5292
5293         refclk = ironlake_get_refclk(crtc);
5294
5295         /*
5296          * Returns a set of divisors for the desired target clock with the given
5297          * refclk, or FALSE.  The returned values represent the clock equation:
5298          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5299          */
5300         limit = intel_limit(crtc, refclk);
5301         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5302                               clock);
5303         if (!ret)
5304                 return false;
5305
5306         if (is_lvds && dev_priv->lvds_downclock_avail) {
5307                 /*
5308                  * Ensure we match the reduced clock's P to the target clock.
5309                  * If the clocks don't match, we can't switch the display clock
5310                  * by using the FP0/FP1. In such case we will disable the LVDS
5311                  * downclock feature.
5312                 */
5313                 *has_reduced_clock = limit->find_pll(limit, crtc,
5314                                                      dev_priv->lvds_downclock,
5315                                                      refclk,
5316                                                      clock,
5317                                                      reduced_clock);
5318         }
5319
5320         if (is_sdvo && is_tv)
5321                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5322
5323         return true;
5324 }
5325
5326 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5327 {
5328         struct drm_i915_private *dev_priv = dev->dev_private;
5329         uint32_t temp;
5330
5331         temp = I915_READ(SOUTH_CHICKEN1);
5332         if (temp & FDI_BC_BIFURCATION_SELECT)
5333                 return;
5334
5335         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5336         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5337
5338         temp |= FDI_BC_BIFURCATION_SELECT;
5339         DRM_DEBUG_KMS("enabling fdi C rx\n");
5340         I915_WRITE(SOUTH_CHICKEN1, temp);
5341         POSTING_READ(SOUTH_CHICKEN1);
5342 }
5343
5344 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5345 {
5346         struct drm_device *dev = intel_crtc->base.dev;
5347         struct drm_i915_private *dev_priv = dev->dev_private;
5348         struct intel_crtc *pipe_B_crtc =
5349                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5350
5351         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5352                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5353         if (intel_crtc->fdi_lanes > 4) {
5354                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5355                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5356                 /* Clamp lanes to avoid programming the hw with bogus values. */
5357                 intel_crtc->fdi_lanes = 4;
5358
5359                 return false;
5360         }
5361
5362         if (dev_priv->num_pipe == 2)
5363                 return true;
5364
5365         switch (intel_crtc->pipe) {
5366         case PIPE_A:
5367                 return true;
5368         case PIPE_B:
5369                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5370                     intel_crtc->fdi_lanes > 2) {
5371                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5372                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5373                         /* Clamp lanes to avoid programming the hw with bogus values. */
5374                         intel_crtc->fdi_lanes = 2;
5375
5376                         return false;
5377                 }
5378
5379                 if (intel_crtc->fdi_lanes > 2)
5380                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5381                 else
5382                         cpt_enable_fdi_bc_bifurcation(dev);
5383
5384                 return true;
5385         case PIPE_C:
5386                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5387                         if (intel_crtc->fdi_lanes > 2) {
5388                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5389                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5390                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5391                                 intel_crtc->fdi_lanes = 2;
5392
5393                                 return false;
5394                         }
5395                 } else {
5396                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5397                         return false;
5398                 }
5399
5400                 cpt_enable_fdi_bc_bifurcation(dev);
5401
5402                 return true;
5403         default:
5404                 BUG();
5405         }
5406 }
5407
5408 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5409 {
5410         /*
5411          * Account for spread spectrum to avoid
5412          * oversubscribing the link. Max center spread
5413          * is 2.5%; use 5% for safety's sake.
5414          */
5415         u32 bps = target_clock * bpp * 21 / 20;
5416         return bps / (link_bw * 8) + 1;
5417 }
5418
5419 static void ironlake_set_m_n(struct drm_crtc *crtc,
5420                              struct drm_display_mode *mode,
5421                              struct drm_display_mode *adjusted_mode)
5422 {
5423         struct drm_device *dev = crtc->dev;
5424         struct drm_i915_private *dev_priv = dev->dev_private;
5425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5427         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5428         struct intel_link_m_n m_n = {0};
5429         int target_clock, pixel_multiplier, lane, link_bw;
5430         bool is_dp = false, is_cpu_edp = false;
5431
5432         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5433                 switch (intel_encoder->type) {
5434                 case INTEL_OUTPUT_DISPLAYPORT:
5435                         is_dp = true;
5436                         break;
5437                 case INTEL_OUTPUT_EDP:
5438                         is_dp = true;
5439                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5440                                 is_cpu_edp = true;
5441                         edp_encoder = intel_encoder;
5442                         break;
5443                 }
5444         }
5445
5446         /* FDI link */
5447         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5448         lane = 0;
5449         /* CPU eDP doesn't require FDI link, so just set DP M/N
5450            according to current link config */
5451         if (is_cpu_edp) {
5452                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5453         } else {
5454                 /* FDI is a binary signal running at ~2.7GHz, encoding
5455                  * each output octet as 10 bits. The actual frequency
5456                  * is stored as a divider into a 100MHz clock, and the
5457                  * mode pixel clock is stored in units of 1KHz.
5458                  * Hence the bw of each lane in terms of the mode signal
5459                  * is:
5460                  */
5461                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5462         }
5463
5464         /* [e]DP over FDI requires target mode clock instead of link clock. */
5465         if (edp_encoder)
5466                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5467         else if (is_dp)
5468                 target_clock = mode->clock;
5469         else
5470                 target_clock = adjusted_mode->clock;
5471
5472         if (!lane)
5473                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5474                                                    intel_crtc->bpp);
5475
5476         intel_crtc->fdi_lanes = lane;
5477
5478         if (pixel_multiplier > 1)
5479                 link_bw *= pixel_multiplier;
5480         intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5481
5482         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5483         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5484         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5485         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5486 }
5487
5488 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5489                                       struct drm_display_mode *adjusted_mode,
5490                                       intel_clock_t *clock, u32 fp)
5491 {
5492         struct drm_crtc *crtc = &intel_crtc->base;
5493         struct drm_device *dev = crtc->dev;
5494         struct drm_i915_private *dev_priv = dev->dev_private;
5495         struct intel_encoder *intel_encoder;
5496         uint32_t dpll;
5497         int factor, pixel_multiplier, num_connectors = 0;
5498         bool is_lvds = false, is_sdvo = false, is_tv = false;
5499         bool is_dp = false, is_cpu_edp = false;
5500
5501         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5502                 switch (intel_encoder->type) {
5503                 case INTEL_OUTPUT_LVDS:
5504                         is_lvds = true;
5505                         break;
5506                 case INTEL_OUTPUT_SDVO:
5507                 case INTEL_OUTPUT_HDMI:
5508                         is_sdvo = true;
5509                         if (intel_encoder->needs_tv_clock)
5510                                 is_tv = true;
5511                         break;
5512                 case INTEL_OUTPUT_TVOUT:
5513                         is_tv = true;
5514                         break;
5515                 case INTEL_OUTPUT_DISPLAYPORT:
5516                         is_dp = true;
5517                         break;
5518                 case INTEL_OUTPUT_EDP:
5519                         is_dp = true;
5520                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5521                                 is_cpu_edp = true;
5522                         break;
5523                 }
5524
5525                 num_connectors++;
5526         }
5527
5528         /* Enable autotuning of the PLL clock (if permissible) */
5529         factor = 21;
5530         if (is_lvds) {
5531                 if ((intel_panel_use_ssc(dev_priv) &&
5532                      dev_priv->lvds_ssc_freq == 100) ||
5533                     intel_is_dual_link_lvds(dev))
5534                         factor = 25;
5535         } else if (is_sdvo && is_tv)
5536                 factor = 20;
5537
5538         if (clock->m < factor * clock->n)
5539                 fp |= FP_CB_TUNE;
5540
5541         dpll = 0;
5542
5543         if (is_lvds)
5544                 dpll |= DPLLB_MODE_LVDS;
5545         else
5546                 dpll |= DPLLB_MODE_DAC_SERIAL;
5547         if (is_sdvo) {
5548                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5549                 if (pixel_multiplier > 1) {
5550                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5551                 }
5552                 dpll |= DPLL_DVO_HIGH_SPEED;
5553         }
5554         if (is_dp && !is_cpu_edp)
5555                 dpll |= DPLL_DVO_HIGH_SPEED;
5556
5557         /* compute bitmask from p1 value */
5558         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5559         /* also FPA1 */
5560         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5561
5562         switch (clock->p2) {
5563         case 5:
5564                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5565                 break;
5566         case 7:
5567                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5568                 break;
5569         case 10:
5570                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5571                 break;
5572         case 14:
5573                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5574                 break;
5575         }
5576
5577         if (is_sdvo && is_tv)
5578                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5579         else if (is_tv)
5580                 /* XXX: just matching BIOS for now */
5581                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5582                 dpll |= 3;
5583         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5584                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5585         else
5586                 dpll |= PLL_REF_INPUT_DREFCLK;
5587
5588         return dpll;
5589 }
5590
5591 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5592                                   struct drm_display_mode *mode,
5593                                   struct drm_display_mode *adjusted_mode,
5594                                   int x, int y,
5595                                   struct drm_framebuffer *fb)
5596 {
5597         struct drm_device *dev = crtc->dev;
5598         struct drm_i915_private *dev_priv = dev->dev_private;
5599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5600         int pipe = intel_crtc->pipe;
5601         int plane = intel_crtc->plane;
5602         int num_connectors = 0;
5603         intel_clock_t clock, reduced_clock;
5604         u32 dpll, fp = 0, fp2 = 0;
5605         bool ok, has_reduced_clock = false;
5606         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5607         struct intel_encoder *encoder;
5608         int ret;
5609         bool dither, fdi_config_ok;
5610
5611         for_each_encoder_on_crtc(dev, crtc, encoder) {
5612                 switch (encoder->type) {
5613                 case INTEL_OUTPUT_LVDS:
5614                         is_lvds = true;
5615                         break;
5616                 case INTEL_OUTPUT_DISPLAYPORT:
5617                         is_dp = true;
5618                         break;
5619                 case INTEL_OUTPUT_EDP:
5620                         is_dp = true;
5621                         if (!intel_encoder_is_pch_edp(&encoder->base))
5622                                 is_cpu_edp = true;
5623                         break;
5624                 }
5625
5626                 num_connectors++;
5627         }
5628
5629         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5630              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5631
5632         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5633                                      &has_reduced_clock, &reduced_clock);
5634         if (!ok) {
5635                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5636                 return -EINVAL;
5637         }
5638
5639         /* Ensure that the cursor is valid for the new mode before changing... */
5640         intel_crtc_update_cursor(crtc, true);
5641
5642         /* determine panel color depth */
5643         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5644                                               adjusted_mode);
5645         if (is_lvds && dev_priv->lvds_dither)
5646                 dither = true;
5647
5648         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5649         if (has_reduced_clock)
5650                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5651                         reduced_clock.m2;
5652
5653         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5654
5655         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5656         drm_mode_debug_printmodeline(mode);
5657
5658         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5659         if (!is_cpu_edp) {
5660                 struct intel_pch_pll *pll;
5661
5662                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5663                 if (pll == NULL) {
5664                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5665                                          pipe);
5666                         return -EINVAL;
5667                 }
5668         } else
5669                 intel_put_pch_pll(intel_crtc);
5670
5671         if (is_dp && !is_cpu_edp)
5672                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5673
5674         for_each_encoder_on_crtc(dev, crtc, encoder)
5675                 if (encoder->pre_pll_enable)
5676                         encoder->pre_pll_enable(encoder);
5677
5678         if (intel_crtc->pch_pll) {
5679                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5680
5681                 /* Wait for the clocks to stabilize. */
5682                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5683                 udelay(150);
5684
5685                 /* The pixel multiplier can only be updated once the
5686                  * DPLL is enabled and the clocks are stable.
5687                  *
5688                  * So write it again.
5689                  */
5690                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5691         }
5692
5693         intel_crtc->lowfreq_avail = false;
5694         if (intel_crtc->pch_pll) {
5695                 if (is_lvds && has_reduced_clock && i915_powersave) {
5696                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5697                         intel_crtc->lowfreq_avail = true;
5698                 } else {
5699                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5700                 }
5701         }
5702
5703         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5704
5705         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5706          * ironlake_check_fdi_lanes. */
5707         ironlake_set_m_n(crtc, mode, adjusted_mode);
5708
5709         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5710
5711         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5712
5713         intel_wait_for_vblank(dev, pipe);
5714
5715         /* Set up the display plane register */
5716         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5717         POSTING_READ(DSPCNTR(plane));
5718
5719         ret = intel_pipe_set_base(crtc, x, y, fb);
5720
5721         intel_update_watermarks(dev);
5722
5723         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5724
5725         return fdi_config_ok ? ret : -EINVAL;
5726 }
5727
5728 static void haswell_modeset_global_resources(struct drm_device *dev)
5729 {
5730         struct drm_i915_private *dev_priv = dev->dev_private;
5731         bool enable = false;
5732         struct intel_crtc *crtc;
5733         struct intel_encoder *encoder;
5734
5735         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5736                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5737                         enable = true;
5738                 /* XXX: Should check for edp transcoder here, but thanks to init
5739                  * sequence that's not yet available. Just in case desktop eDP
5740                  * on PORT D is possible on haswell, too. */
5741         }
5742
5743         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5744                             base.head) {
5745                 if (encoder->type != INTEL_OUTPUT_EDP &&
5746                     encoder->connectors_active)
5747                         enable = true;
5748         }
5749
5750         /* Even the eDP panel fitter is outside the always-on well. */
5751         if (dev_priv->pch_pf_size)
5752                 enable = true;
5753
5754         intel_set_power_well(dev, enable);
5755 }
5756
5757 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5758                                  struct drm_display_mode *mode,
5759                                  struct drm_display_mode *adjusted_mode,
5760                                  int x, int y,
5761                                  struct drm_framebuffer *fb)
5762 {
5763         struct drm_device *dev = crtc->dev;
5764         struct drm_i915_private *dev_priv = dev->dev_private;
5765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5766         int pipe = intel_crtc->pipe;
5767         int plane = intel_crtc->plane;
5768         int num_connectors = 0;
5769         bool is_dp = false, is_cpu_edp = false;
5770         struct intel_encoder *encoder;
5771         int ret;
5772         bool dither;
5773
5774         for_each_encoder_on_crtc(dev, crtc, encoder) {
5775                 switch (encoder->type) {
5776                 case INTEL_OUTPUT_DISPLAYPORT:
5777                         is_dp = true;
5778                         break;
5779                 case INTEL_OUTPUT_EDP:
5780                         is_dp = true;
5781                         if (!intel_encoder_is_pch_edp(&encoder->base))
5782                                 is_cpu_edp = true;
5783                         break;
5784                 }
5785
5786                 num_connectors++;
5787         }
5788
5789         /* We are not sure yet this won't happen. */
5790         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5791              INTEL_PCH_TYPE(dev));
5792
5793         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5794              num_connectors, pipe_name(pipe));
5795
5796         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5797                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5798
5799         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5800
5801         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5802                 return -EINVAL;
5803
5804         /* Ensure that the cursor is valid for the new mode before changing... */
5805         intel_crtc_update_cursor(crtc, true);
5806
5807         /* determine panel color depth */
5808         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5809                                               adjusted_mode);
5810
5811         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5812         drm_mode_debug_printmodeline(mode);
5813
5814         if (is_dp && !is_cpu_edp)
5815                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5816
5817         intel_crtc->lowfreq_avail = false;
5818
5819         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5820
5821         if (!is_dp || is_cpu_edp)
5822                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5823
5824         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5825
5826         intel_set_pipe_csc(crtc, adjusted_mode);
5827
5828         /* Set up the display plane register */
5829         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5830         POSTING_READ(DSPCNTR(plane));
5831
5832         ret = intel_pipe_set_base(crtc, x, y, fb);
5833
5834         intel_update_watermarks(dev);
5835
5836         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5837
5838         return ret;
5839 }
5840
5841 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5842                                struct drm_display_mode *mode,
5843                                struct drm_display_mode *adjusted_mode,
5844                                int x, int y,
5845                                struct drm_framebuffer *fb)
5846 {
5847         struct drm_device *dev = crtc->dev;
5848         struct drm_i915_private *dev_priv = dev->dev_private;
5849         struct drm_encoder_helper_funcs *encoder_funcs;
5850         struct intel_encoder *encoder;
5851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5852         int pipe = intel_crtc->pipe;
5853         int ret;
5854
5855         if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5856                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5857         else
5858                 intel_crtc->cpu_transcoder = pipe;
5859
5860         drm_vblank_pre_modeset(dev, pipe);
5861
5862         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5863                                               x, y, fb);
5864         drm_vblank_post_modeset(dev, pipe);
5865
5866         if (ret != 0)
5867                 return ret;
5868
5869         for_each_encoder_on_crtc(dev, crtc, encoder) {
5870                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5871                         encoder->base.base.id,
5872                         drm_get_encoder_name(&encoder->base),
5873                         mode->base.id, mode->name);
5874                 encoder_funcs = encoder->base.helper_private;
5875                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5876         }
5877
5878         return 0;
5879 }
5880
5881 static bool intel_eld_uptodate(struct drm_connector *connector,
5882                                int reg_eldv, uint32_t bits_eldv,
5883                                int reg_elda, uint32_t bits_elda,
5884                                int reg_edid)
5885 {
5886         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5887         uint8_t *eld = connector->eld;
5888         uint32_t i;
5889
5890         i = I915_READ(reg_eldv);
5891         i &= bits_eldv;
5892
5893         if (!eld[0])
5894                 return !i;
5895
5896         if (!i)
5897                 return false;
5898
5899         i = I915_READ(reg_elda);
5900         i &= ~bits_elda;
5901         I915_WRITE(reg_elda, i);
5902
5903         for (i = 0; i < eld[2]; i++)
5904                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5905                         return false;
5906
5907         return true;
5908 }
5909
5910 static void g4x_write_eld(struct drm_connector *connector,
5911                           struct drm_crtc *crtc)
5912 {
5913         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5914         uint8_t *eld = connector->eld;
5915         uint32_t eldv;
5916         uint32_t len;
5917         uint32_t i;
5918
5919         i = I915_READ(G4X_AUD_VID_DID);
5920
5921         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5922                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5923         else
5924                 eldv = G4X_ELDV_DEVCTG;
5925
5926         if (intel_eld_uptodate(connector,
5927                                G4X_AUD_CNTL_ST, eldv,
5928                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5929                                G4X_HDMIW_HDMIEDID))
5930                 return;
5931
5932         i = I915_READ(G4X_AUD_CNTL_ST);
5933         i &= ~(eldv | G4X_ELD_ADDR);
5934         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5935         I915_WRITE(G4X_AUD_CNTL_ST, i);
5936
5937         if (!eld[0])
5938                 return;
5939
5940         len = min_t(uint8_t, eld[2], len);
5941         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5942         for (i = 0; i < len; i++)
5943                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5944
5945         i = I915_READ(G4X_AUD_CNTL_ST);
5946         i |= eldv;
5947         I915_WRITE(G4X_AUD_CNTL_ST, i);
5948 }
5949
5950 static void haswell_write_eld(struct drm_connector *connector,
5951                                      struct drm_crtc *crtc)
5952 {
5953         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5954         uint8_t *eld = connector->eld;
5955         struct drm_device *dev = crtc->dev;
5956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5957         uint32_t eldv;
5958         uint32_t i;
5959         int len;
5960         int pipe = to_intel_crtc(crtc)->pipe;
5961         int tmp;
5962
5963         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5964         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5965         int aud_config = HSW_AUD_CFG(pipe);
5966         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5967
5968
5969         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5970
5971         /* Audio output enable */
5972         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5973         tmp = I915_READ(aud_cntrl_st2);
5974         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5975         I915_WRITE(aud_cntrl_st2, tmp);
5976
5977         /* Wait for 1 vertical blank */
5978         intel_wait_for_vblank(dev, pipe);
5979
5980         /* Set ELD valid state */
5981         tmp = I915_READ(aud_cntrl_st2);
5982         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5983         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5984         I915_WRITE(aud_cntrl_st2, tmp);
5985         tmp = I915_READ(aud_cntrl_st2);
5986         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5987
5988         /* Enable HDMI mode */
5989         tmp = I915_READ(aud_config);
5990         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5991         /* clear N_programing_enable and N_value_index */
5992         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5993         I915_WRITE(aud_config, tmp);
5994
5995         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5996
5997         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5998         intel_crtc->eld_vld = true;
5999
6000         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6001                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6002                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6003                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6004         } else
6005                 I915_WRITE(aud_config, 0);
6006
6007         if (intel_eld_uptodate(connector,
6008                                aud_cntrl_st2, eldv,
6009                                aud_cntl_st, IBX_ELD_ADDRESS,
6010                                hdmiw_hdmiedid))
6011                 return;
6012
6013         i = I915_READ(aud_cntrl_st2);
6014         i &= ~eldv;
6015         I915_WRITE(aud_cntrl_st2, i);
6016
6017         if (!eld[0])
6018                 return;
6019
6020         i = I915_READ(aud_cntl_st);
6021         i &= ~IBX_ELD_ADDRESS;
6022         I915_WRITE(aud_cntl_st, i);
6023         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6024         DRM_DEBUG_DRIVER("port num:%d\n", i);
6025
6026         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6027         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6028         for (i = 0; i < len; i++)
6029                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6030
6031         i = I915_READ(aud_cntrl_st2);
6032         i |= eldv;
6033         I915_WRITE(aud_cntrl_st2, i);
6034
6035 }
6036
6037 static void ironlake_write_eld(struct drm_connector *connector,
6038                                      struct drm_crtc *crtc)
6039 {
6040         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6041         uint8_t *eld = connector->eld;
6042         uint32_t eldv;
6043         uint32_t i;
6044         int len;
6045         int hdmiw_hdmiedid;
6046         int aud_config;
6047         int aud_cntl_st;
6048         int aud_cntrl_st2;
6049         int pipe = to_intel_crtc(crtc)->pipe;
6050
6051         if (HAS_PCH_IBX(connector->dev)) {
6052                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6053                 aud_config = IBX_AUD_CFG(pipe);
6054                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6055                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6056         } else {
6057                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6058                 aud_config = CPT_AUD_CFG(pipe);
6059                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6060                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6061         }
6062
6063         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6064
6065         i = I915_READ(aud_cntl_st);
6066         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6067         if (!i) {
6068                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6069                 /* operate blindly on all ports */
6070                 eldv = IBX_ELD_VALIDB;
6071                 eldv |= IBX_ELD_VALIDB << 4;
6072                 eldv |= IBX_ELD_VALIDB << 8;
6073         } else {
6074                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6075                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6076         }
6077
6078         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6079                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6080                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6081                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6082         } else
6083                 I915_WRITE(aud_config, 0);
6084
6085         if (intel_eld_uptodate(connector,
6086                                aud_cntrl_st2, eldv,
6087                                aud_cntl_st, IBX_ELD_ADDRESS,
6088                                hdmiw_hdmiedid))
6089                 return;
6090
6091         i = I915_READ(aud_cntrl_st2);
6092         i &= ~eldv;
6093         I915_WRITE(aud_cntrl_st2, i);
6094
6095         if (!eld[0])
6096                 return;
6097
6098         i = I915_READ(aud_cntl_st);
6099         i &= ~IBX_ELD_ADDRESS;
6100         I915_WRITE(aud_cntl_st, i);
6101
6102         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6103         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6104         for (i = 0; i < len; i++)
6105                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6106
6107         i = I915_READ(aud_cntrl_st2);
6108         i |= eldv;
6109         I915_WRITE(aud_cntrl_st2, i);
6110 }
6111
6112 void intel_write_eld(struct drm_encoder *encoder,
6113                      struct drm_display_mode *mode)
6114 {
6115         struct drm_crtc *crtc = encoder->crtc;
6116         struct drm_connector *connector;
6117         struct drm_device *dev = encoder->dev;
6118         struct drm_i915_private *dev_priv = dev->dev_private;
6119
6120         connector = drm_select_eld(encoder, mode);
6121         if (!connector)
6122                 return;
6123
6124         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6125                          connector->base.id,
6126                          drm_get_connector_name(connector),
6127                          connector->encoder->base.id,
6128                          drm_get_encoder_name(connector->encoder));
6129
6130         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6131
6132         if (dev_priv->display.write_eld)
6133                 dev_priv->display.write_eld(connector, crtc);
6134 }
6135
6136 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6137 void intel_crtc_load_lut(struct drm_crtc *crtc)
6138 {
6139         struct drm_device *dev = crtc->dev;
6140         struct drm_i915_private *dev_priv = dev->dev_private;
6141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142         int palreg = PALETTE(intel_crtc->pipe);
6143         int i;
6144
6145         /* The clocks have to be on to load the palette. */
6146         if (!crtc->enabled || !intel_crtc->active)
6147                 return;
6148
6149         /* use legacy palette for Ironlake */
6150         if (HAS_PCH_SPLIT(dev))
6151                 palreg = LGC_PALETTE(intel_crtc->pipe);
6152
6153         for (i = 0; i < 256; i++) {
6154                 I915_WRITE(palreg + 4 * i,
6155                            (intel_crtc->lut_r[i] << 16) |
6156                            (intel_crtc->lut_g[i] << 8) |
6157                            intel_crtc->lut_b[i]);
6158         }
6159 }
6160
6161 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6162 {
6163         struct drm_device *dev = crtc->dev;
6164         struct drm_i915_private *dev_priv = dev->dev_private;
6165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6166         bool visible = base != 0;
6167         u32 cntl;
6168
6169         if (intel_crtc->cursor_visible == visible)
6170                 return;
6171
6172         cntl = I915_READ(_CURACNTR);
6173         if (visible) {
6174                 /* On these chipsets we can only modify the base whilst
6175                  * the cursor is disabled.
6176                  */
6177                 I915_WRITE(_CURABASE, base);
6178
6179                 cntl &= ~(CURSOR_FORMAT_MASK);
6180                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6181                 cntl |= CURSOR_ENABLE |
6182                         CURSOR_GAMMA_ENABLE |
6183                         CURSOR_FORMAT_ARGB;
6184         } else
6185                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6186         I915_WRITE(_CURACNTR, cntl);
6187
6188         intel_crtc->cursor_visible = visible;
6189 }
6190
6191 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6192 {
6193         struct drm_device *dev = crtc->dev;
6194         struct drm_i915_private *dev_priv = dev->dev_private;
6195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196         int pipe = intel_crtc->pipe;
6197         bool visible = base != 0;
6198
6199         if (intel_crtc->cursor_visible != visible) {
6200                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6201                 if (base) {
6202                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6203                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6204                         cntl |= pipe << 28; /* Connect to correct pipe */
6205                 } else {
6206                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6207                         cntl |= CURSOR_MODE_DISABLE;
6208                 }
6209                 I915_WRITE(CURCNTR(pipe), cntl);
6210
6211                 intel_crtc->cursor_visible = visible;
6212         }
6213         /* and commit changes on next vblank */
6214         I915_WRITE(CURBASE(pipe), base);
6215 }
6216
6217 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6218 {
6219         struct drm_device *dev = crtc->dev;
6220         struct drm_i915_private *dev_priv = dev->dev_private;
6221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6222         int pipe = intel_crtc->pipe;
6223         bool visible = base != 0;
6224
6225         if (intel_crtc->cursor_visible != visible) {
6226                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6227                 if (base) {
6228                         cntl &= ~CURSOR_MODE;
6229                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6230                 } else {
6231                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6232                         cntl |= CURSOR_MODE_DISABLE;
6233                 }
6234                 if (IS_HASWELL(dev))
6235                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6236                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6237
6238                 intel_crtc->cursor_visible = visible;
6239         }
6240         /* and commit changes on next vblank */
6241         I915_WRITE(CURBASE_IVB(pipe), base);
6242 }
6243
6244 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6245 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6246                                      bool on)
6247 {
6248         struct drm_device *dev = crtc->dev;
6249         struct drm_i915_private *dev_priv = dev->dev_private;
6250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251         int pipe = intel_crtc->pipe;
6252         int x = intel_crtc->cursor_x;
6253         int y = intel_crtc->cursor_y;
6254         u32 base, pos;
6255         bool visible;
6256
6257         pos = 0;
6258
6259         if (on && crtc->enabled && crtc->fb) {
6260                 base = intel_crtc->cursor_addr;
6261                 if (x > (int) crtc->fb->width)
6262                         base = 0;
6263
6264                 if (y > (int) crtc->fb->height)
6265                         base = 0;
6266         } else
6267                 base = 0;
6268
6269         if (x < 0) {
6270                 if (x + intel_crtc->cursor_width < 0)
6271                         base = 0;
6272
6273                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6274                 x = -x;
6275         }
6276         pos |= x << CURSOR_X_SHIFT;
6277
6278         if (y < 0) {
6279                 if (y + intel_crtc->cursor_height < 0)
6280                         base = 0;
6281
6282                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6283                 y = -y;
6284         }
6285         pos |= y << CURSOR_Y_SHIFT;
6286
6287         visible = base != 0;
6288         if (!visible && !intel_crtc->cursor_visible)
6289                 return;
6290
6291         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6292                 I915_WRITE(CURPOS_IVB(pipe), pos);
6293                 ivb_update_cursor(crtc, base);
6294         } else {
6295                 I915_WRITE(CURPOS(pipe), pos);
6296                 if (IS_845G(dev) || IS_I865G(dev))
6297                         i845_update_cursor(crtc, base);
6298                 else
6299                         i9xx_update_cursor(crtc, base);
6300         }
6301 }
6302
6303 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6304                                  struct drm_file *file,
6305                                  uint32_t handle,
6306                                  uint32_t width, uint32_t height)
6307 {
6308         struct drm_device *dev = crtc->dev;
6309         struct drm_i915_private *dev_priv = dev->dev_private;
6310         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6311         struct drm_i915_gem_object *obj;
6312         uint32_t addr;
6313         int ret;
6314
6315         /* if we want to turn off the cursor ignore width and height */
6316         if (!handle) {
6317                 DRM_DEBUG_KMS("cursor off\n");
6318                 addr = 0;
6319                 obj = NULL;
6320                 mutex_lock(&dev->struct_mutex);
6321                 goto finish;
6322         }
6323
6324         /* Currently we only support 64x64 cursors */
6325         if (width != 64 || height != 64) {
6326                 DRM_ERROR("we currently only support 64x64 cursors\n");
6327                 return -EINVAL;
6328         }
6329
6330         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6331         if (&obj->base == NULL)
6332                 return -ENOENT;
6333
6334         if (obj->base.size < width * height * 4) {
6335                 DRM_ERROR("buffer is to small\n");
6336                 ret = -ENOMEM;
6337                 goto fail;
6338         }
6339
6340         /* we only need to pin inside GTT if cursor is non-phy */
6341         mutex_lock(&dev->struct_mutex);
6342         if (!dev_priv->info->cursor_needs_physical) {
6343                 if (obj->tiling_mode) {
6344                         DRM_ERROR("cursor cannot be tiled\n");
6345                         ret = -EINVAL;
6346                         goto fail_locked;
6347                 }
6348
6349                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6350                 if (ret) {
6351                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6352                         goto fail_locked;
6353                 }
6354
6355                 ret = i915_gem_object_put_fence(obj);
6356                 if (ret) {
6357                         DRM_ERROR("failed to release fence for cursor");
6358                         goto fail_unpin;
6359                 }
6360
6361                 addr = obj->gtt_offset;
6362         } else {
6363                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6364                 ret = i915_gem_attach_phys_object(dev, obj,
6365                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6366                                                   align);
6367                 if (ret) {
6368                         DRM_ERROR("failed to attach phys object\n");
6369                         goto fail_locked;
6370                 }
6371                 addr = obj->phys_obj->handle->busaddr;
6372         }
6373
6374         if (IS_GEN2(dev))
6375                 I915_WRITE(CURSIZE, (height << 12) | width);
6376
6377  finish:
6378         if (intel_crtc->cursor_bo) {
6379                 if (dev_priv->info->cursor_needs_physical) {
6380                         if (intel_crtc->cursor_bo != obj)
6381                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6382                 } else
6383                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6384                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6385         }
6386
6387         mutex_unlock(&dev->struct_mutex);
6388
6389         intel_crtc->cursor_addr = addr;
6390         intel_crtc->cursor_bo = obj;
6391         intel_crtc->cursor_width = width;
6392         intel_crtc->cursor_height = height;
6393
6394         intel_crtc_update_cursor(crtc, true);
6395
6396         return 0;
6397 fail_unpin:
6398         i915_gem_object_unpin(obj);
6399 fail_locked:
6400         mutex_unlock(&dev->struct_mutex);
6401 fail:
6402         drm_gem_object_unreference_unlocked(&obj->base);
6403         return ret;
6404 }
6405
6406 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6407 {
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409
6410         intel_crtc->cursor_x = x;
6411         intel_crtc->cursor_y = y;
6412
6413         intel_crtc_update_cursor(crtc, true);
6414
6415         return 0;
6416 }
6417
6418 /** Sets the color ramps on behalf of RandR */
6419 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6420                                  u16 blue, int regno)
6421 {
6422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6423
6424         intel_crtc->lut_r[regno] = red >> 8;
6425         intel_crtc->lut_g[regno] = green >> 8;
6426         intel_crtc->lut_b[regno] = blue >> 8;
6427 }
6428
6429 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6430                              u16 *blue, int regno)
6431 {
6432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6433
6434         *red = intel_crtc->lut_r[regno] << 8;
6435         *green = intel_crtc->lut_g[regno] << 8;
6436         *blue = intel_crtc->lut_b[regno] << 8;
6437 }
6438
6439 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6440                                  u16 *blue, uint32_t start, uint32_t size)
6441 {
6442         int end = (start + size > 256) ? 256 : start + size, i;
6443         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6444
6445         for (i = start; i < end; i++) {
6446                 intel_crtc->lut_r[i] = red[i] >> 8;
6447                 intel_crtc->lut_g[i] = green[i] >> 8;
6448                 intel_crtc->lut_b[i] = blue[i] >> 8;
6449         }
6450
6451         intel_crtc_load_lut(crtc);
6452 }
6453
6454 /* VESA 640x480x72Hz mode to set on the pipe */
6455 static struct drm_display_mode load_detect_mode = {
6456         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6457                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6458 };
6459
6460 static struct drm_framebuffer *
6461 intel_framebuffer_create(struct drm_device *dev,
6462                          struct drm_mode_fb_cmd2 *mode_cmd,
6463                          struct drm_i915_gem_object *obj)
6464 {
6465         struct intel_framebuffer *intel_fb;
6466         int ret;
6467
6468         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6469         if (!intel_fb) {
6470                 drm_gem_object_unreference_unlocked(&obj->base);
6471                 return ERR_PTR(-ENOMEM);
6472         }
6473
6474         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6475         if (ret) {
6476                 drm_gem_object_unreference_unlocked(&obj->base);
6477                 kfree(intel_fb);
6478                 return ERR_PTR(ret);
6479         }
6480
6481         return &intel_fb->base;
6482 }
6483
6484 static u32
6485 intel_framebuffer_pitch_for_width(int width, int bpp)
6486 {
6487         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6488         return ALIGN(pitch, 64);
6489 }
6490
6491 static u32
6492 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6493 {
6494         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6495         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6496 }
6497
6498 static struct drm_framebuffer *
6499 intel_framebuffer_create_for_mode(struct drm_device *dev,
6500                                   struct drm_display_mode *mode,
6501                                   int depth, int bpp)
6502 {
6503         struct drm_i915_gem_object *obj;
6504         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6505
6506         obj = i915_gem_alloc_object(dev,
6507                                     intel_framebuffer_size_for_mode(mode, bpp));
6508         if (obj == NULL)
6509                 return ERR_PTR(-ENOMEM);
6510
6511         mode_cmd.width = mode->hdisplay;
6512         mode_cmd.height = mode->vdisplay;
6513         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6514                                                                 bpp);
6515         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6516
6517         return intel_framebuffer_create(dev, &mode_cmd, obj);
6518 }
6519
6520 static struct drm_framebuffer *
6521 mode_fits_in_fbdev(struct drm_device *dev,
6522                    struct drm_display_mode *mode)
6523 {
6524         struct drm_i915_private *dev_priv = dev->dev_private;
6525         struct drm_i915_gem_object *obj;
6526         struct drm_framebuffer *fb;
6527
6528         if (dev_priv->fbdev == NULL)
6529                 return NULL;
6530
6531         obj = dev_priv->fbdev->ifb.obj;
6532         if (obj == NULL)
6533                 return NULL;
6534
6535         fb = &dev_priv->fbdev->ifb.base;
6536         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6537                                                                fb->bits_per_pixel))
6538                 return NULL;
6539
6540         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6541                 return NULL;
6542
6543         return fb;
6544 }
6545
6546 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6547                                 struct drm_display_mode *mode,
6548                                 struct intel_load_detect_pipe *old)
6549 {
6550         struct intel_crtc *intel_crtc;
6551         struct intel_encoder *intel_encoder =
6552                 intel_attached_encoder(connector);
6553         struct drm_crtc *possible_crtc;
6554         struct drm_encoder *encoder = &intel_encoder->base;
6555         struct drm_crtc *crtc = NULL;
6556         struct drm_device *dev = encoder->dev;
6557         struct drm_framebuffer *fb;
6558         int i = -1;
6559
6560         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6561                       connector->base.id, drm_get_connector_name(connector),
6562                       encoder->base.id, drm_get_encoder_name(encoder));
6563
6564         /*
6565          * Algorithm gets a little messy:
6566          *
6567          *   - if the connector already has an assigned crtc, use it (but make
6568          *     sure it's on first)
6569          *
6570          *   - try to find the first unused crtc that can drive this connector,
6571          *     and use that if we find one
6572          */
6573
6574         /* See if we already have a CRTC for this connector */
6575         if (encoder->crtc) {
6576                 crtc = encoder->crtc;
6577
6578                 mutex_lock(&crtc->mutex);
6579
6580                 old->dpms_mode = connector->dpms;
6581                 old->load_detect_temp = false;
6582
6583                 /* Make sure the crtc and connector are running */
6584                 if (connector->dpms != DRM_MODE_DPMS_ON)
6585                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6586
6587                 return true;
6588         }
6589
6590         /* Find an unused one (if possible) */
6591         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6592                 i++;
6593                 if (!(encoder->possible_crtcs & (1 << i)))
6594                         continue;
6595                 if (!possible_crtc->enabled) {
6596                         crtc = possible_crtc;
6597                         break;
6598                 }
6599         }
6600
6601         /*
6602          * If we didn't find an unused CRTC, don't use any.
6603          */
6604         if (!crtc) {
6605                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6606                 return false;
6607         }
6608
6609         mutex_lock(&crtc->mutex);
6610         intel_encoder->new_crtc = to_intel_crtc(crtc);
6611         to_intel_connector(connector)->new_encoder = intel_encoder;
6612
6613         intel_crtc = to_intel_crtc(crtc);
6614         old->dpms_mode = connector->dpms;
6615         old->load_detect_temp = true;
6616         old->release_fb = NULL;
6617
6618         if (!mode)
6619                 mode = &load_detect_mode;
6620
6621         /* We need a framebuffer large enough to accommodate all accesses
6622          * that the plane may generate whilst we perform load detection.
6623          * We can not rely on the fbcon either being present (we get called
6624          * during its initialisation to detect all boot displays, or it may
6625          * not even exist) or that it is large enough to satisfy the
6626          * requested mode.
6627          */
6628         fb = mode_fits_in_fbdev(dev, mode);
6629         if (fb == NULL) {
6630                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6631                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6632                 old->release_fb = fb;
6633         } else
6634                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6635         if (IS_ERR(fb)) {
6636                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6637                 mutex_unlock(&crtc->mutex);
6638                 return false;
6639         }
6640
6641         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6642                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6643                 if (old->release_fb)
6644                         old->release_fb->funcs->destroy(old->release_fb);
6645                 mutex_unlock(&crtc->mutex);
6646                 return false;
6647         }
6648
6649         /* let the connector get through one full cycle before testing */
6650         intel_wait_for_vblank(dev, intel_crtc->pipe);
6651         return true;
6652 }
6653
6654 void intel_release_load_detect_pipe(struct drm_connector *connector,
6655                                     struct intel_load_detect_pipe *old)
6656 {
6657         struct intel_encoder *intel_encoder =
6658                 intel_attached_encoder(connector);
6659         struct drm_encoder *encoder = &intel_encoder->base;
6660         struct drm_crtc *crtc = encoder->crtc;
6661
6662         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6663                       connector->base.id, drm_get_connector_name(connector),
6664                       encoder->base.id, drm_get_encoder_name(encoder));
6665
6666         if (old->load_detect_temp) {
6667                 to_intel_connector(connector)->new_encoder = NULL;
6668                 intel_encoder->new_crtc = NULL;
6669                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6670
6671                 if (old->release_fb) {
6672                         drm_framebuffer_unregister_private(old->release_fb);
6673                         drm_framebuffer_unreference(old->release_fb);
6674                 }
6675
6676                 mutex_unlock(&crtc->mutex);
6677                 return;
6678         }
6679
6680         /* Switch crtc and encoder back off if necessary */
6681         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6682                 connector->funcs->dpms(connector, old->dpms_mode);
6683
6684         mutex_unlock(&crtc->mutex);
6685 }
6686
6687 /* Returns the clock of the currently programmed mode of the given pipe. */
6688 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6689 {
6690         struct drm_i915_private *dev_priv = dev->dev_private;
6691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6692         int pipe = intel_crtc->pipe;
6693         u32 dpll = I915_READ(DPLL(pipe));
6694         u32 fp;
6695         intel_clock_t clock;
6696
6697         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6698                 fp = I915_READ(FP0(pipe));
6699         else
6700                 fp = I915_READ(FP1(pipe));
6701
6702         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6703         if (IS_PINEVIEW(dev)) {
6704                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6705                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6706         } else {
6707                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6708                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6709         }
6710
6711         if (!IS_GEN2(dev)) {
6712                 if (IS_PINEVIEW(dev))
6713                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6714                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6715                 else
6716                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6717                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6718
6719                 switch (dpll & DPLL_MODE_MASK) {
6720                 case DPLLB_MODE_DAC_SERIAL:
6721                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6722                                 5 : 10;
6723                         break;
6724                 case DPLLB_MODE_LVDS:
6725                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6726                                 7 : 14;
6727                         break;
6728                 default:
6729                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6730                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6731                         return 0;
6732                 }
6733
6734                 /* XXX: Handle the 100Mhz refclk */
6735                 intel_clock(dev, 96000, &clock);
6736         } else {
6737                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6738
6739                 if (is_lvds) {
6740                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6741                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6742                         clock.p2 = 14;
6743
6744                         if ((dpll & PLL_REF_INPUT_MASK) ==
6745                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6746                                 /* XXX: might not be 66MHz */
6747                                 intel_clock(dev, 66000, &clock);
6748                         } else
6749                                 intel_clock(dev, 48000, &clock);
6750                 } else {
6751                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6752                                 clock.p1 = 2;
6753                         else {
6754                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6755                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6756                         }
6757                         if (dpll & PLL_P2_DIVIDE_BY_4)
6758                                 clock.p2 = 4;
6759                         else
6760                                 clock.p2 = 2;
6761
6762                         intel_clock(dev, 48000, &clock);
6763                 }
6764         }
6765
6766         /* XXX: It would be nice to validate the clocks, but we can't reuse
6767          * i830PllIsValid() because it relies on the xf86_config connector
6768          * configuration being accurate, which it isn't necessarily.
6769          */
6770
6771         return clock.dot;
6772 }
6773
6774 /** Returns the currently programmed mode of the given pipe. */
6775 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6776                                              struct drm_crtc *crtc)
6777 {
6778         struct drm_i915_private *dev_priv = dev->dev_private;
6779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6780         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6781         struct drm_display_mode *mode;
6782         int htot = I915_READ(HTOTAL(cpu_transcoder));
6783         int hsync = I915_READ(HSYNC(cpu_transcoder));
6784         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6785         int vsync = I915_READ(VSYNC(cpu_transcoder));
6786
6787         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6788         if (!mode)
6789                 return NULL;
6790
6791         mode->clock = intel_crtc_clock_get(dev, crtc);
6792         mode->hdisplay = (htot & 0xffff) + 1;
6793         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6794         mode->hsync_start = (hsync & 0xffff) + 1;
6795         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6796         mode->vdisplay = (vtot & 0xffff) + 1;
6797         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6798         mode->vsync_start = (vsync & 0xffff) + 1;
6799         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6800
6801         drm_mode_set_name(mode);
6802
6803         return mode;
6804 }
6805
6806 static void intel_increase_pllclock(struct drm_crtc *crtc)
6807 {
6808         struct drm_device *dev = crtc->dev;
6809         drm_i915_private_t *dev_priv = dev->dev_private;
6810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6811         int pipe = intel_crtc->pipe;
6812         int dpll_reg = DPLL(pipe);
6813         int dpll;
6814
6815         if (HAS_PCH_SPLIT(dev))
6816                 return;
6817
6818         if (!dev_priv->lvds_downclock_avail)
6819                 return;
6820
6821         dpll = I915_READ(dpll_reg);
6822         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6823                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6824
6825                 assert_panel_unlocked(dev_priv, pipe);
6826
6827                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6828                 I915_WRITE(dpll_reg, dpll);
6829                 intel_wait_for_vblank(dev, pipe);
6830
6831                 dpll = I915_READ(dpll_reg);
6832                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6833                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6834         }
6835 }
6836
6837 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6838 {
6839         struct drm_device *dev = crtc->dev;
6840         drm_i915_private_t *dev_priv = dev->dev_private;
6841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842
6843         if (HAS_PCH_SPLIT(dev))
6844                 return;
6845
6846         if (!dev_priv->lvds_downclock_avail)
6847                 return;
6848
6849         /*
6850          * Since this is called by a timer, we should never get here in
6851          * the manual case.
6852          */
6853         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6854                 int pipe = intel_crtc->pipe;
6855                 int dpll_reg = DPLL(pipe);
6856                 int dpll;
6857
6858                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6859
6860                 assert_panel_unlocked(dev_priv, pipe);
6861
6862                 dpll = I915_READ(dpll_reg);
6863                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6864                 I915_WRITE(dpll_reg, dpll);
6865                 intel_wait_for_vblank(dev, pipe);
6866                 dpll = I915_READ(dpll_reg);
6867                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6868                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6869         }
6870
6871 }
6872
6873 void intel_mark_busy(struct drm_device *dev)
6874 {
6875         i915_update_gfx_val(dev->dev_private);
6876 }
6877
6878 void intel_mark_idle(struct drm_device *dev)
6879 {
6880         struct drm_crtc *crtc;
6881
6882         if (!i915_powersave)
6883                 return;
6884
6885         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6886                 if (!crtc->fb)
6887                         continue;
6888
6889                 intel_decrease_pllclock(crtc);
6890         }
6891 }
6892
6893 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6894 {
6895         struct drm_device *dev = obj->base.dev;
6896         struct drm_crtc *crtc;
6897
6898         if (!i915_powersave)
6899                 return;
6900
6901         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6902                 if (!crtc->fb)
6903                         continue;
6904
6905                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6906                         intel_increase_pllclock(crtc);
6907         }
6908 }
6909
6910 static void intel_crtc_destroy(struct drm_crtc *crtc)
6911 {
6912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6913         struct drm_device *dev = crtc->dev;
6914         struct intel_unpin_work *work;
6915         unsigned long flags;
6916
6917         spin_lock_irqsave(&dev->event_lock, flags);
6918         work = intel_crtc->unpin_work;
6919         intel_crtc->unpin_work = NULL;
6920         spin_unlock_irqrestore(&dev->event_lock, flags);
6921
6922         if (work) {
6923                 cancel_work_sync(&work->work);
6924                 kfree(work);
6925         }
6926
6927         drm_crtc_cleanup(crtc);
6928
6929         kfree(intel_crtc);
6930 }
6931
6932 static void intel_unpin_work_fn(struct work_struct *__work)
6933 {
6934         struct intel_unpin_work *work =
6935                 container_of(__work, struct intel_unpin_work, work);
6936         struct drm_device *dev = work->crtc->dev;
6937
6938         mutex_lock(&dev->struct_mutex);
6939         intel_unpin_fb_obj(work->old_fb_obj);
6940         drm_gem_object_unreference(&work->pending_flip_obj->base);
6941         drm_gem_object_unreference(&work->old_fb_obj->base);
6942
6943         intel_update_fbc(dev);
6944         mutex_unlock(&dev->struct_mutex);
6945
6946         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6947         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6948
6949         kfree(work);
6950 }
6951
6952 static void do_intel_finish_page_flip(struct drm_device *dev,
6953                                       struct drm_crtc *crtc)
6954 {
6955         drm_i915_private_t *dev_priv = dev->dev_private;
6956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6957         struct intel_unpin_work *work;
6958         unsigned long flags;
6959
6960         /* Ignore early vblank irqs */
6961         if (intel_crtc == NULL)
6962                 return;
6963
6964         spin_lock_irqsave(&dev->event_lock, flags);
6965         work = intel_crtc->unpin_work;
6966
6967         /* Ensure we don't miss a work->pending update ... */
6968         smp_rmb();
6969
6970         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6971                 spin_unlock_irqrestore(&dev->event_lock, flags);
6972                 return;
6973         }
6974
6975         /* and that the unpin work is consistent wrt ->pending. */
6976         smp_rmb();
6977
6978         intel_crtc->unpin_work = NULL;
6979
6980         if (work->event)
6981                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6982
6983         drm_vblank_put(dev, intel_crtc->pipe);
6984
6985         spin_unlock_irqrestore(&dev->event_lock, flags);
6986
6987         wake_up_all(&dev_priv->pending_flip_queue);
6988
6989         queue_work(dev_priv->wq, &work->work);
6990
6991         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6992 }
6993
6994 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6995 {
6996         drm_i915_private_t *dev_priv = dev->dev_private;
6997         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6998
6999         do_intel_finish_page_flip(dev, crtc);
7000 }
7001
7002 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7003 {
7004         drm_i915_private_t *dev_priv = dev->dev_private;
7005         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7006
7007         do_intel_finish_page_flip(dev, crtc);
7008 }
7009
7010 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7011 {
7012         drm_i915_private_t *dev_priv = dev->dev_private;
7013         struct intel_crtc *intel_crtc =
7014                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7015         unsigned long flags;
7016
7017         /* NB: An MMIO update of the plane base pointer will also
7018          * generate a page-flip completion irq, i.e. every modeset
7019          * is also accompanied by a spurious intel_prepare_page_flip().
7020          */
7021         spin_lock_irqsave(&dev->event_lock, flags);
7022         if (intel_crtc->unpin_work)
7023                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7024         spin_unlock_irqrestore(&dev->event_lock, flags);
7025 }
7026
7027 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7028 {
7029         /* Ensure that the work item is consistent when activating it ... */
7030         smp_wmb();
7031         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7032         /* and that it is marked active as soon as the irq could fire. */
7033         smp_wmb();
7034 }
7035
7036 static int intel_gen2_queue_flip(struct drm_device *dev,
7037                                  struct drm_crtc *crtc,
7038                                  struct drm_framebuffer *fb,
7039                                  struct drm_i915_gem_object *obj)
7040 {
7041         struct drm_i915_private *dev_priv = dev->dev_private;
7042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7043         u32 flip_mask;
7044         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7045         int ret;
7046
7047         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7048         if (ret)
7049                 goto err;
7050
7051         ret = intel_ring_begin(ring, 6);
7052         if (ret)
7053                 goto err_unpin;
7054
7055         /* Can't queue multiple flips, so wait for the previous
7056          * one to finish before executing the next.
7057          */
7058         if (intel_crtc->plane)
7059                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7060         else
7061                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7062         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7063         intel_ring_emit(ring, MI_NOOP);
7064         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7065                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7066         intel_ring_emit(ring, fb->pitches[0]);
7067         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7068         intel_ring_emit(ring, 0); /* aux display base address, unused */
7069
7070         intel_mark_page_flip_active(intel_crtc);
7071         intel_ring_advance(ring);
7072         return 0;
7073
7074 err_unpin:
7075         intel_unpin_fb_obj(obj);
7076 err:
7077         return ret;
7078 }
7079
7080 static int intel_gen3_queue_flip(struct drm_device *dev,
7081                                  struct drm_crtc *crtc,
7082                                  struct drm_framebuffer *fb,
7083                                  struct drm_i915_gem_object *obj)
7084 {
7085         struct drm_i915_private *dev_priv = dev->dev_private;
7086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7087         u32 flip_mask;
7088         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7089         int ret;
7090
7091         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7092         if (ret)
7093                 goto err;
7094
7095         ret = intel_ring_begin(ring, 6);
7096         if (ret)
7097                 goto err_unpin;
7098
7099         if (intel_crtc->plane)
7100                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7101         else
7102                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7103         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7104         intel_ring_emit(ring, MI_NOOP);
7105         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7106                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7107         intel_ring_emit(ring, fb->pitches[0]);
7108         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7109         intel_ring_emit(ring, MI_NOOP);
7110
7111         intel_mark_page_flip_active(intel_crtc);
7112         intel_ring_advance(ring);
7113         return 0;
7114
7115 err_unpin:
7116         intel_unpin_fb_obj(obj);
7117 err:
7118         return ret;
7119 }
7120
7121 static int intel_gen4_queue_flip(struct drm_device *dev,
7122                                  struct drm_crtc *crtc,
7123                                  struct drm_framebuffer *fb,
7124                                  struct drm_i915_gem_object *obj)
7125 {
7126         struct drm_i915_private *dev_priv = dev->dev_private;
7127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7128         uint32_t pf, pipesrc;
7129         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7130         int ret;
7131
7132         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7133         if (ret)
7134                 goto err;
7135
7136         ret = intel_ring_begin(ring, 4);
7137         if (ret)
7138                 goto err_unpin;
7139
7140         /* i965+ uses the linear or tiled offsets from the
7141          * Display Registers (which do not change across a page-flip)
7142          * so we need only reprogram the base address.
7143          */
7144         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7145                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7146         intel_ring_emit(ring, fb->pitches[0]);
7147         intel_ring_emit(ring,
7148                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7149                         obj->tiling_mode);
7150
7151         /* XXX Enabling the panel-fitter across page-flip is so far
7152          * untested on non-native modes, so ignore it for now.
7153          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7154          */
7155         pf = 0;
7156         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7157         intel_ring_emit(ring, pf | pipesrc);
7158
7159         intel_mark_page_flip_active(intel_crtc);
7160         intel_ring_advance(ring);
7161         return 0;
7162
7163 err_unpin:
7164         intel_unpin_fb_obj(obj);
7165 err:
7166         return ret;
7167 }
7168
7169 static int intel_gen6_queue_flip(struct drm_device *dev,
7170                                  struct drm_crtc *crtc,
7171                                  struct drm_framebuffer *fb,
7172                                  struct drm_i915_gem_object *obj)
7173 {
7174         struct drm_i915_private *dev_priv = dev->dev_private;
7175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7176         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7177         uint32_t pf, pipesrc;
7178         int ret;
7179
7180         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7181         if (ret)
7182                 goto err;
7183
7184         ret = intel_ring_begin(ring, 4);
7185         if (ret)
7186                 goto err_unpin;
7187
7188         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7189                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7190         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7191         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7192
7193         /* Contrary to the suggestions in the documentation,
7194          * "Enable Panel Fitter" does not seem to be required when page
7195          * flipping with a non-native mode, and worse causes a normal
7196          * modeset to fail.
7197          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7198          */
7199         pf = 0;
7200         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7201         intel_ring_emit(ring, pf | pipesrc);
7202
7203         intel_mark_page_flip_active(intel_crtc);
7204         intel_ring_advance(ring);
7205         return 0;
7206
7207 err_unpin:
7208         intel_unpin_fb_obj(obj);
7209 err:
7210         return ret;
7211 }
7212
7213 /*
7214  * On gen7 we currently use the blit ring because (in early silicon at least)
7215  * the render ring doesn't give us interrpts for page flip completion, which
7216  * means clients will hang after the first flip is queued.  Fortunately the
7217  * blit ring generates interrupts properly, so use it instead.
7218  */
7219 static int intel_gen7_queue_flip(struct drm_device *dev,
7220                                  struct drm_crtc *crtc,
7221                                  struct drm_framebuffer *fb,
7222                                  struct drm_i915_gem_object *obj)
7223 {
7224         struct drm_i915_private *dev_priv = dev->dev_private;
7225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7226         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7227         uint32_t plane_bit = 0;
7228         int ret;
7229
7230         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7231         if (ret)
7232                 goto err;
7233
7234         switch(intel_crtc->plane) {
7235         case PLANE_A:
7236                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7237                 break;
7238         case PLANE_B:
7239                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7240                 break;
7241         case PLANE_C:
7242                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7243                 break;
7244         default:
7245                 WARN_ONCE(1, "unknown plane in flip command\n");
7246                 ret = -ENODEV;
7247                 goto err_unpin;
7248         }
7249
7250         ret = intel_ring_begin(ring, 4);
7251         if (ret)
7252                 goto err_unpin;
7253
7254         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7255         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7256         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7257         intel_ring_emit(ring, (MI_NOOP));
7258
7259         intel_mark_page_flip_active(intel_crtc);
7260         intel_ring_advance(ring);
7261         return 0;
7262
7263 err_unpin:
7264         intel_unpin_fb_obj(obj);
7265 err:
7266         return ret;
7267 }
7268
7269 static int intel_default_queue_flip(struct drm_device *dev,
7270                                     struct drm_crtc *crtc,
7271                                     struct drm_framebuffer *fb,
7272                                     struct drm_i915_gem_object *obj)
7273 {
7274         return -ENODEV;
7275 }
7276
7277 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7278                                 struct drm_framebuffer *fb,
7279                                 struct drm_pending_vblank_event *event)
7280 {
7281         struct drm_device *dev = crtc->dev;
7282         struct drm_i915_private *dev_priv = dev->dev_private;
7283         struct intel_framebuffer *intel_fb;
7284         struct drm_i915_gem_object *obj;
7285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7286         struct intel_unpin_work *work;
7287         unsigned long flags;
7288         int ret;
7289
7290         /* Can't change pixel format via MI display flips. */
7291         if (fb->pixel_format != crtc->fb->pixel_format)
7292                 return -EINVAL;
7293
7294         /*
7295          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7296          * Note that pitch changes could also affect these register.
7297          */
7298         if (INTEL_INFO(dev)->gen > 3 &&
7299             (fb->offsets[0] != crtc->fb->offsets[0] ||
7300              fb->pitches[0] != crtc->fb->pitches[0]))
7301                 return -EINVAL;
7302
7303         work = kzalloc(sizeof *work, GFP_KERNEL);
7304         if (work == NULL)
7305                 return -ENOMEM;
7306
7307         work->event = event;
7308         work->crtc = crtc;
7309         intel_fb = to_intel_framebuffer(crtc->fb);
7310         work->old_fb_obj = intel_fb->obj;
7311         INIT_WORK(&work->work, intel_unpin_work_fn);
7312
7313         ret = drm_vblank_get(dev, intel_crtc->pipe);
7314         if (ret)
7315                 goto free_work;
7316
7317         /* We borrow the event spin lock for protecting unpin_work */
7318         spin_lock_irqsave(&dev->event_lock, flags);
7319         if (intel_crtc->unpin_work) {
7320                 spin_unlock_irqrestore(&dev->event_lock, flags);
7321                 kfree(work);
7322                 drm_vblank_put(dev, intel_crtc->pipe);
7323
7324                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7325                 return -EBUSY;
7326         }
7327         intel_crtc->unpin_work = work;
7328         spin_unlock_irqrestore(&dev->event_lock, flags);
7329
7330         intel_fb = to_intel_framebuffer(fb);
7331         obj = intel_fb->obj;
7332
7333         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7334                 flush_workqueue(dev_priv->wq);
7335
7336         ret = i915_mutex_lock_interruptible(dev);
7337         if (ret)
7338                 goto cleanup;
7339
7340         /* Reference the objects for the scheduled work. */
7341         drm_gem_object_reference(&work->old_fb_obj->base);
7342         drm_gem_object_reference(&obj->base);
7343
7344         crtc->fb = fb;
7345
7346         work->pending_flip_obj = obj;
7347
7348         work->enable_stall_check = true;
7349
7350         atomic_inc(&intel_crtc->unpin_work_count);
7351         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7352
7353         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7354         if (ret)
7355                 goto cleanup_pending;
7356
7357         intel_disable_fbc(dev);
7358         intel_mark_fb_busy(obj);
7359         mutex_unlock(&dev->struct_mutex);
7360
7361         trace_i915_flip_request(intel_crtc->plane, obj);
7362
7363         return 0;
7364
7365 cleanup_pending:
7366         atomic_dec(&intel_crtc->unpin_work_count);
7367         drm_gem_object_unreference(&work->old_fb_obj->base);
7368         drm_gem_object_unreference(&obj->base);
7369         mutex_unlock(&dev->struct_mutex);
7370
7371 cleanup:
7372         spin_lock_irqsave(&dev->event_lock, flags);
7373         intel_crtc->unpin_work = NULL;
7374         spin_unlock_irqrestore(&dev->event_lock, flags);
7375
7376         drm_vblank_put(dev, intel_crtc->pipe);
7377 free_work:
7378         kfree(work);
7379
7380         return ret;
7381 }
7382
7383 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7384         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7385         .load_lut = intel_crtc_load_lut,
7386         .disable = intel_crtc_noop,
7387 };
7388
7389 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7390 {
7391         struct intel_encoder *other_encoder;
7392         struct drm_crtc *crtc = &encoder->new_crtc->base;
7393
7394         if (WARN_ON(!crtc))
7395                 return false;
7396
7397         list_for_each_entry(other_encoder,
7398                             &crtc->dev->mode_config.encoder_list,
7399                             base.head) {
7400
7401                 if (&other_encoder->new_crtc->base != crtc ||
7402                     encoder == other_encoder)
7403                         continue;
7404                 else
7405                         return true;
7406         }
7407
7408         return false;
7409 }
7410
7411 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7412                                   struct drm_crtc *crtc)
7413 {
7414         struct drm_device *dev;
7415         struct drm_crtc *tmp;
7416         int crtc_mask = 1;
7417
7418         WARN(!crtc, "checking null crtc?\n");
7419
7420         dev = crtc->dev;
7421
7422         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7423                 if (tmp == crtc)
7424                         break;
7425                 crtc_mask <<= 1;
7426         }
7427
7428         if (encoder->possible_crtcs & crtc_mask)
7429                 return true;
7430         return false;
7431 }
7432
7433 /**
7434  * intel_modeset_update_staged_output_state
7435  *
7436  * Updates the staged output configuration state, e.g. after we've read out the
7437  * current hw state.
7438  */
7439 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7440 {
7441         struct intel_encoder *encoder;
7442         struct intel_connector *connector;
7443
7444         list_for_each_entry(connector, &dev->mode_config.connector_list,
7445                             base.head) {
7446                 connector->new_encoder =
7447                         to_intel_encoder(connector->base.encoder);
7448         }
7449
7450         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7451                             base.head) {
7452                 encoder->new_crtc =
7453                         to_intel_crtc(encoder->base.crtc);
7454         }
7455 }
7456
7457 /**
7458  * intel_modeset_commit_output_state
7459  *
7460  * This function copies the stage display pipe configuration to the real one.
7461  */
7462 static void intel_modeset_commit_output_state(struct drm_device *dev)
7463 {
7464         struct intel_encoder *encoder;
7465         struct intel_connector *connector;
7466
7467         list_for_each_entry(connector, &dev->mode_config.connector_list,
7468                             base.head) {
7469                 connector->base.encoder = &connector->new_encoder->base;
7470         }
7471
7472         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7473                             base.head) {
7474                 encoder->base.crtc = &encoder->new_crtc->base;
7475         }
7476 }
7477
7478 static struct drm_display_mode *
7479 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7480                             struct drm_display_mode *mode)
7481 {
7482         struct drm_device *dev = crtc->dev;
7483         struct drm_display_mode *adjusted_mode;
7484         struct drm_encoder_helper_funcs *encoder_funcs;
7485         struct intel_encoder *encoder;
7486
7487         adjusted_mode = drm_mode_duplicate(dev, mode);
7488         if (!adjusted_mode)
7489                 return ERR_PTR(-ENOMEM);
7490
7491         /* Pass our mode to the connectors and the CRTC to give them a chance to
7492          * adjust it according to limitations or connector properties, and also
7493          * a chance to reject the mode entirely.
7494          */
7495         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7496                             base.head) {
7497
7498                 if (&encoder->new_crtc->base != crtc)
7499                         continue;
7500                 encoder_funcs = encoder->base.helper_private;
7501                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7502                                                 adjusted_mode))) {
7503                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7504                         goto fail;
7505                 }
7506         }
7507
7508         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7509                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7510                 goto fail;
7511         }
7512         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7513
7514         return adjusted_mode;
7515 fail:
7516         drm_mode_destroy(dev, adjusted_mode);
7517         return ERR_PTR(-EINVAL);
7518 }
7519
7520 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7521  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7522 static void
7523 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7524                              unsigned *prepare_pipes, unsigned *disable_pipes)
7525 {
7526         struct intel_crtc *intel_crtc;
7527         struct drm_device *dev = crtc->dev;
7528         struct intel_encoder *encoder;
7529         struct intel_connector *connector;
7530         struct drm_crtc *tmp_crtc;
7531
7532         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7533
7534         /* Check which crtcs have changed outputs connected to them, these need
7535          * to be part of the prepare_pipes mask. We don't (yet) support global
7536          * modeset across multiple crtcs, so modeset_pipes will only have one
7537          * bit set at most. */
7538         list_for_each_entry(connector, &dev->mode_config.connector_list,
7539                             base.head) {
7540                 if (connector->base.encoder == &connector->new_encoder->base)
7541                         continue;
7542
7543                 if (connector->base.encoder) {
7544                         tmp_crtc = connector->base.encoder->crtc;
7545
7546                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7547                 }
7548
7549                 if (connector->new_encoder)
7550                         *prepare_pipes |=
7551                                 1 << connector->new_encoder->new_crtc->pipe;
7552         }
7553
7554         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7555                             base.head) {
7556                 if (encoder->base.crtc == &encoder->new_crtc->base)
7557                         continue;
7558
7559                 if (encoder->base.crtc) {
7560                         tmp_crtc = encoder->base.crtc;
7561
7562                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7563                 }
7564
7565                 if (encoder->new_crtc)
7566                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7567         }
7568
7569         /* Check for any pipes that will be fully disabled ... */
7570         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7571                             base.head) {
7572                 bool used = false;
7573
7574                 /* Don't try to disable disabled crtcs. */
7575                 if (!intel_crtc->base.enabled)
7576                         continue;
7577
7578                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7579                                     base.head) {
7580                         if (encoder->new_crtc == intel_crtc)
7581                                 used = true;
7582                 }
7583
7584                 if (!used)
7585                         *disable_pipes |= 1 << intel_crtc->pipe;
7586         }
7587
7588
7589         /* set_mode is also used to update properties on life display pipes. */
7590         intel_crtc = to_intel_crtc(crtc);
7591         if (crtc->enabled)
7592                 *prepare_pipes |= 1 << intel_crtc->pipe;
7593
7594         /* We only support modeset on one single crtc, hence we need to do that
7595          * only for the passed in crtc iff we change anything else than just
7596          * disable crtcs.
7597          *
7598          * This is actually not true, to be fully compatible with the old crtc
7599          * helper we automatically disable _any_ output (i.e. doesn't need to be
7600          * connected to the crtc we're modesetting on) if it's disconnected.
7601          * Which is a rather nutty api (since changed the output configuration
7602          * without userspace's explicit request can lead to confusion), but
7603          * alas. Hence we currently need to modeset on all pipes we prepare. */
7604         if (*prepare_pipes)
7605                 *modeset_pipes = *prepare_pipes;
7606
7607         /* ... and mask these out. */
7608         *modeset_pipes &= ~(*disable_pipes);
7609         *prepare_pipes &= ~(*disable_pipes);
7610 }
7611
7612 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7613 {
7614         struct drm_encoder *encoder;
7615         struct drm_device *dev = crtc->dev;
7616
7617         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7618                 if (encoder->crtc == crtc)
7619                         return true;
7620
7621         return false;
7622 }
7623
7624 static void
7625 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7626 {
7627         struct intel_encoder *intel_encoder;
7628         struct intel_crtc *intel_crtc;
7629         struct drm_connector *connector;
7630
7631         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7632                             base.head) {
7633                 if (!intel_encoder->base.crtc)
7634                         continue;
7635
7636                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7637
7638                 if (prepare_pipes & (1 << intel_crtc->pipe))
7639                         intel_encoder->connectors_active = false;
7640         }
7641
7642         intel_modeset_commit_output_state(dev);
7643
7644         /* Update computed state. */
7645         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7646                             base.head) {
7647                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7648         }
7649
7650         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7651                 if (!connector->encoder || !connector->encoder->crtc)
7652                         continue;
7653
7654                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7655
7656                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7657                         struct drm_property *dpms_property =
7658                                 dev->mode_config.dpms_property;
7659
7660                         connector->dpms = DRM_MODE_DPMS_ON;
7661                         drm_object_property_set_value(&connector->base,
7662                                                          dpms_property,
7663                                                          DRM_MODE_DPMS_ON);
7664
7665                         intel_encoder = to_intel_encoder(connector->encoder);
7666                         intel_encoder->connectors_active = true;
7667                 }
7668         }
7669
7670 }
7671
7672 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7673         list_for_each_entry((intel_crtc), \
7674                             &(dev)->mode_config.crtc_list, \
7675                             base.head) \
7676                 if (mask & (1 <<(intel_crtc)->pipe)) \
7677
7678 void
7679 intel_modeset_check_state(struct drm_device *dev)
7680 {
7681         struct intel_crtc *crtc;
7682         struct intel_encoder *encoder;
7683         struct intel_connector *connector;
7684
7685         list_for_each_entry(connector, &dev->mode_config.connector_list,
7686                             base.head) {
7687                 /* This also checks the encoder/connector hw state with the
7688                  * ->get_hw_state callbacks. */
7689                 intel_connector_check_state(connector);
7690
7691                 WARN(&connector->new_encoder->base != connector->base.encoder,
7692                      "connector's staged encoder doesn't match current encoder\n");
7693         }
7694
7695         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7696                             base.head) {
7697                 bool enabled = false;
7698                 bool active = false;
7699                 enum pipe pipe, tracked_pipe;
7700
7701                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7702                               encoder->base.base.id,
7703                               drm_get_encoder_name(&encoder->base));
7704
7705                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7706                      "encoder's stage crtc doesn't match current crtc\n");
7707                 WARN(encoder->connectors_active && !encoder->base.crtc,
7708                      "encoder's active_connectors set, but no crtc\n");
7709
7710                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7711                                     base.head) {
7712                         if (connector->base.encoder != &encoder->base)
7713                                 continue;
7714                         enabled = true;
7715                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7716                                 active = true;
7717                 }
7718                 WARN(!!encoder->base.crtc != enabled,
7719                      "encoder's enabled state mismatch "
7720                      "(expected %i, found %i)\n",
7721                      !!encoder->base.crtc, enabled);
7722                 WARN(active && !encoder->base.crtc,
7723                      "active encoder with no crtc\n");
7724
7725                 WARN(encoder->connectors_active != active,
7726                      "encoder's computed active state doesn't match tracked active state "
7727                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7728
7729                 active = encoder->get_hw_state(encoder, &pipe);
7730                 WARN(active != encoder->connectors_active,
7731                      "encoder's hw state doesn't match sw tracking "
7732                      "(expected %i, found %i)\n",
7733                      encoder->connectors_active, active);
7734
7735                 if (!encoder->base.crtc)
7736                         continue;
7737
7738                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7739                 WARN(active && pipe != tracked_pipe,
7740                      "active encoder's pipe doesn't match"
7741                      "(expected %i, found %i)\n",
7742                      tracked_pipe, pipe);
7743
7744         }
7745
7746         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7747                             base.head) {
7748                 bool enabled = false;
7749                 bool active = false;
7750
7751                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7752                               crtc->base.base.id);
7753
7754                 WARN(crtc->active && !crtc->base.enabled,
7755                      "active crtc, but not enabled in sw tracking\n");
7756
7757                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7758                                     base.head) {
7759                         if (encoder->base.crtc != &crtc->base)
7760                                 continue;
7761                         enabled = true;
7762                         if (encoder->connectors_active)
7763                                 active = true;
7764                 }
7765                 WARN(active != crtc->active,
7766                      "crtc's computed active state doesn't match tracked active state "
7767                      "(expected %i, found %i)\n", active, crtc->active);
7768                 WARN(enabled != crtc->base.enabled,
7769                      "crtc's computed enabled state doesn't match tracked enabled state "
7770                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7771
7772                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7773         }
7774 }
7775
7776 int intel_set_mode(struct drm_crtc *crtc,
7777                    struct drm_display_mode *mode,
7778                    int x, int y, struct drm_framebuffer *fb)
7779 {
7780         struct drm_device *dev = crtc->dev;
7781         drm_i915_private_t *dev_priv = dev->dev_private;
7782         struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7783         struct intel_crtc *intel_crtc;
7784         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7785         int ret = 0;
7786
7787         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7788         if (!saved_mode)
7789                 return -ENOMEM;
7790         saved_hwmode = saved_mode + 1;
7791
7792         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7793                                      &prepare_pipes, &disable_pipes);
7794
7795         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7796                       modeset_pipes, prepare_pipes, disable_pipes);
7797
7798         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7799                 intel_crtc_disable(&intel_crtc->base);
7800
7801         *saved_hwmode = crtc->hwmode;
7802         *saved_mode = crtc->mode;
7803
7804         /* Hack: Because we don't (yet) support global modeset on multiple
7805          * crtcs, we don't keep track of the new mode for more than one crtc.
7806          * Hence simply check whether any bit is set in modeset_pipes in all the
7807          * pieces of code that are not yet converted to deal with mutliple crtcs
7808          * changing their mode at the same time. */
7809         adjusted_mode = NULL;
7810         if (modeset_pipes) {
7811                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7812                 if (IS_ERR(adjusted_mode)) {
7813                         ret = PTR_ERR(adjusted_mode);
7814                         goto out;
7815                 }
7816         }
7817
7818         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7819                 if (intel_crtc->base.enabled)
7820                         dev_priv->display.crtc_disable(&intel_crtc->base);
7821         }
7822
7823         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7824          * to set it here already despite that we pass it down the callchain.
7825          */
7826         if (modeset_pipes)
7827                 crtc->mode = *mode;
7828
7829         /* Only after disabling all output pipelines that will be changed can we
7830          * update the the output configuration. */
7831         intel_modeset_update_state(dev, prepare_pipes);
7832
7833         if (dev_priv->display.modeset_global_resources)
7834                 dev_priv->display.modeset_global_resources(dev);
7835
7836         /* Set up the DPLL and any encoders state that needs to adjust or depend
7837          * on the DPLL.
7838          */
7839         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7840                 ret = intel_crtc_mode_set(&intel_crtc->base,
7841                                           mode, adjusted_mode,
7842                                           x, y, fb);
7843                 if (ret)
7844                         goto done;
7845         }
7846
7847         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7848         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7849                 dev_priv->display.crtc_enable(&intel_crtc->base);
7850
7851         if (modeset_pipes) {
7852                 /* Store real post-adjustment hardware mode. */
7853                 crtc->hwmode = *adjusted_mode;
7854
7855                 /* Calculate and store various constants which
7856                  * are later needed by vblank and swap-completion
7857                  * timestamping. They are derived from true hwmode.
7858                  */
7859                 drm_calc_timestamping_constants(crtc);
7860         }
7861
7862         /* FIXME: add subpixel order */
7863 done:
7864         drm_mode_destroy(dev, adjusted_mode);
7865         if (ret && crtc->enabled) {
7866                 crtc->hwmode = *saved_hwmode;
7867                 crtc->mode = *saved_mode;
7868         } else {
7869                 intel_modeset_check_state(dev);
7870         }
7871
7872 out:
7873         kfree(saved_mode);
7874         return ret;
7875 }
7876
7877 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7878 {
7879         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7880 }
7881
7882 #undef for_each_intel_crtc_masked
7883
7884 static void intel_set_config_free(struct intel_set_config *config)
7885 {
7886         if (!config)
7887                 return;
7888
7889         kfree(config->save_connector_encoders);
7890         kfree(config->save_encoder_crtcs);
7891         kfree(config);
7892 }
7893
7894 static int intel_set_config_save_state(struct drm_device *dev,
7895                                        struct intel_set_config *config)
7896 {
7897         struct drm_encoder *encoder;
7898         struct drm_connector *connector;
7899         int count;
7900
7901         config->save_encoder_crtcs =
7902                 kcalloc(dev->mode_config.num_encoder,
7903                         sizeof(struct drm_crtc *), GFP_KERNEL);
7904         if (!config->save_encoder_crtcs)
7905                 return -ENOMEM;
7906
7907         config->save_connector_encoders =
7908                 kcalloc(dev->mode_config.num_connector,
7909                         sizeof(struct drm_encoder *), GFP_KERNEL);
7910         if (!config->save_connector_encoders)
7911                 return -ENOMEM;
7912
7913         /* Copy data. Note that driver private data is not affected.
7914          * Should anything bad happen only the expected state is
7915          * restored, not the drivers personal bookkeeping.
7916          */
7917         count = 0;
7918         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7919                 config->save_encoder_crtcs[count++] = encoder->crtc;
7920         }
7921
7922         count = 0;
7923         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7924                 config->save_connector_encoders[count++] = connector->encoder;
7925         }
7926
7927         return 0;
7928 }
7929
7930 static void intel_set_config_restore_state(struct drm_device *dev,
7931                                            struct intel_set_config *config)
7932 {
7933         struct intel_encoder *encoder;
7934         struct intel_connector *connector;
7935         int count;
7936
7937         count = 0;
7938         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7939                 encoder->new_crtc =
7940                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7941         }
7942
7943         count = 0;
7944         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7945                 connector->new_encoder =
7946                         to_intel_encoder(config->save_connector_encoders[count++]);
7947         }
7948 }
7949
7950 static void
7951 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7952                                       struct intel_set_config *config)
7953 {
7954
7955         /* We should be able to check here if the fb has the same properties
7956          * and then just flip_or_move it */
7957         if (set->crtc->fb != set->fb) {
7958                 /* If we have no fb then treat it as a full mode set */
7959                 if (set->crtc->fb == NULL) {
7960                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7961                         config->mode_changed = true;
7962                 } else if (set->fb == NULL) {
7963                         config->mode_changed = true;
7964                 } else if (set->fb->depth != set->crtc->fb->depth) {
7965                         config->mode_changed = true;
7966                 } else if (set->fb->bits_per_pixel !=
7967                            set->crtc->fb->bits_per_pixel) {
7968                         config->mode_changed = true;
7969                 } else
7970                         config->fb_changed = true;
7971         }
7972
7973         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7974                 config->fb_changed = true;
7975
7976         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7977                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7978                 drm_mode_debug_printmodeline(&set->crtc->mode);
7979                 drm_mode_debug_printmodeline(set->mode);
7980                 config->mode_changed = true;
7981         }
7982 }
7983
7984 static int
7985 intel_modeset_stage_output_state(struct drm_device *dev,
7986                                  struct drm_mode_set *set,
7987                                  struct intel_set_config *config)
7988 {
7989         struct drm_crtc *new_crtc;
7990         struct intel_connector *connector;
7991         struct intel_encoder *encoder;
7992         int count, ro;
7993
7994         /* The upper layers ensure that we either disable a crtc or have a list
7995          * of connectors. For paranoia, double-check this. */
7996         WARN_ON(!set->fb && (set->num_connectors != 0));
7997         WARN_ON(set->fb && (set->num_connectors == 0));
7998
7999         count = 0;
8000         list_for_each_entry(connector, &dev->mode_config.connector_list,
8001                             base.head) {
8002                 /* Otherwise traverse passed in connector list and get encoders
8003                  * for them. */
8004                 for (ro = 0; ro < set->num_connectors; ro++) {
8005                         if (set->connectors[ro] == &connector->base) {
8006                                 connector->new_encoder = connector->encoder;
8007                                 break;
8008                         }
8009                 }
8010
8011                 /* If we disable the crtc, disable all its connectors. Also, if
8012                  * the connector is on the changing crtc but not on the new
8013                  * connector list, disable it. */
8014                 if ((!set->fb || ro == set->num_connectors) &&
8015                     connector->base.encoder &&
8016                     connector->base.encoder->crtc == set->crtc) {
8017                         connector->new_encoder = NULL;
8018
8019                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8020                                 connector->base.base.id,
8021                                 drm_get_connector_name(&connector->base));
8022                 }
8023
8024
8025                 if (&connector->new_encoder->base != connector->base.encoder) {
8026                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8027                         config->mode_changed = true;
8028                 }
8029         }
8030         /* connector->new_encoder is now updated for all connectors. */
8031
8032         /* Update crtc of enabled connectors. */
8033         count = 0;
8034         list_for_each_entry(connector, &dev->mode_config.connector_list,
8035                             base.head) {
8036                 if (!connector->new_encoder)
8037                         continue;
8038
8039                 new_crtc = connector->new_encoder->base.crtc;
8040
8041                 for (ro = 0; ro < set->num_connectors; ro++) {
8042                         if (set->connectors[ro] == &connector->base)
8043                                 new_crtc = set->crtc;
8044                 }
8045
8046                 /* Make sure the new CRTC will work with the encoder */
8047                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8048                                            new_crtc)) {
8049                         return -EINVAL;
8050                 }
8051                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8052
8053                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8054                         connector->base.base.id,
8055                         drm_get_connector_name(&connector->base),
8056                         new_crtc->base.id);
8057         }
8058
8059         /* Check for any encoders that needs to be disabled. */
8060         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8061                             base.head) {
8062                 list_for_each_entry(connector,
8063                                     &dev->mode_config.connector_list,
8064                                     base.head) {
8065                         if (connector->new_encoder == encoder) {
8066                                 WARN_ON(!connector->new_encoder->new_crtc);
8067
8068                                 goto next_encoder;
8069                         }
8070                 }
8071                 encoder->new_crtc = NULL;
8072 next_encoder:
8073                 /* Only now check for crtc changes so we don't miss encoders
8074                  * that will be disabled. */
8075                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8076                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8077                         config->mode_changed = true;
8078                 }
8079         }
8080         /* Now we've also updated encoder->new_crtc for all encoders. */
8081
8082         return 0;
8083 }
8084
8085 static int intel_crtc_set_config(struct drm_mode_set *set)
8086 {
8087         struct drm_device *dev;
8088         struct drm_mode_set save_set;
8089         struct intel_set_config *config;
8090         int ret;
8091
8092         BUG_ON(!set);
8093         BUG_ON(!set->crtc);
8094         BUG_ON(!set->crtc->helper_private);
8095
8096         if (!set->mode)
8097                 set->fb = NULL;
8098
8099         /* The fb helper likes to play gross jokes with ->mode_set_config.
8100          * Unfortunately the crtc helper doesn't do much at all for this case,
8101          * so we have to cope with this madness until the fb helper is fixed up. */
8102         if (set->fb && set->num_connectors == 0)
8103                 return 0;
8104
8105         if (set->fb) {
8106                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8107                                 set->crtc->base.id, set->fb->base.id,
8108                                 (int)set->num_connectors, set->x, set->y);
8109         } else {
8110                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8111         }
8112
8113         dev = set->crtc->dev;
8114
8115         ret = -ENOMEM;
8116         config = kzalloc(sizeof(*config), GFP_KERNEL);
8117         if (!config)
8118                 goto out_config;
8119
8120         ret = intel_set_config_save_state(dev, config);
8121         if (ret)
8122                 goto out_config;
8123
8124         save_set.crtc = set->crtc;
8125         save_set.mode = &set->crtc->mode;
8126         save_set.x = set->crtc->x;
8127         save_set.y = set->crtc->y;
8128         save_set.fb = set->crtc->fb;
8129
8130         /* Compute whether we need a full modeset, only an fb base update or no
8131          * change at all. In the future we might also check whether only the
8132          * mode changed, e.g. for LVDS where we only change the panel fitter in
8133          * such cases. */
8134         intel_set_config_compute_mode_changes(set, config);
8135
8136         ret = intel_modeset_stage_output_state(dev, set, config);
8137         if (ret)
8138                 goto fail;
8139
8140         if (config->mode_changed) {
8141                 if (set->mode) {
8142                         DRM_DEBUG_KMS("attempting to set mode from"
8143                                         " userspace\n");
8144                         drm_mode_debug_printmodeline(set->mode);
8145                 }
8146
8147                 ret = intel_set_mode(set->crtc, set->mode,
8148                                      set->x, set->y, set->fb);
8149                 if (ret) {
8150                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8151                                   set->crtc->base.id, ret);
8152                         goto fail;
8153                 }
8154         } else if (config->fb_changed) {
8155                 intel_crtc_wait_for_pending_flips(set->crtc);
8156
8157                 ret = intel_pipe_set_base(set->crtc,
8158                                           set->x, set->y, set->fb);
8159         }
8160
8161         intel_set_config_free(config);
8162
8163         return 0;
8164
8165 fail:
8166         intel_set_config_restore_state(dev, config);
8167
8168         /* Try to restore the config */
8169         if (config->mode_changed &&
8170             intel_set_mode(save_set.crtc, save_set.mode,
8171                            save_set.x, save_set.y, save_set.fb))
8172                 DRM_ERROR("failed to restore config after modeset failure\n");
8173
8174 out_config:
8175         intel_set_config_free(config);
8176         return ret;
8177 }
8178
8179 static const struct drm_crtc_funcs intel_crtc_funcs = {
8180         .cursor_set = intel_crtc_cursor_set,
8181         .cursor_move = intel_crtc_cursor_move,
8182         .gamma_set = intel_crtc_gamma_set,
8183         .set_config = intel_crtc_set_config,
8184         .destroy = intel_crtc_destroy,
8185         .page_flip = intel_crtc_page_flip,
8186 };
8187
8188 static void intel_cpu_pll_init(struct drm_device *dev)
8189 {
8190         if (HAS_DDI(dev))
8191                 intel_ddi_pll_init(dev);
8192 }
8193
8194 static void intel_pch_pll_init(struct drm_device *dev)
8195 {
8196         drm_i915_private_t *dev_priv = dev->dev_private;
8197         int i;
8198
8199         if (dev_priv->num_pch_pll == 0) {
8200                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8201                 return;
8202         }
8203
8204         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8205                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8206                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8207                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8208         }
8209 }
8210
8211 static void intel_crtc_init(struct drm_device *dev, int pipe)
8212 {
8213         drm_i915_private_t *dev_priv = dev->dev_private;
8214         struct intel_crtc *intel_crtc;
8215         int i;
8216
8217         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8218         if (intel_crtc == NULL)
8219                 return;
8220
8221         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8222
8223         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8224         for (i = 0; i < 256; i++) {
8225                 intel_crtc->lut_r[i] = i;
8226                 intel_crtc->lut_g[i] = i;
8227                 intel_crtc->lut_b[i] = i;
8228         }
8229
8230         /* Swap pipes & planes for FBC on pre-965 */
8231         intel_crtc->pipe = pipe;
8232         intel_crtc->plane = pipe;
8233         intel_crtc->cpu_transcoder = pipe;
8234         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8235                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8236                 intel_crtc->plane = !pipe;
8237         }
8238
8239         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8240                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8241         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8242         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8243
8244         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8245
8246         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8247 }
8248
8249 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8250                                 struct drm_file *file)
8251 {
8252         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8253         struct drm_mode_object *drmmode_obj;
8254         struct intel_crtc *crtc;
8255
8256         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8257                 return -ENODEV;
8258
8259         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8260                         DRM_MODE_OBJECT_CRTC);
8261
8262         if (!drmmode_obj) {
8263                 DRM_ERROR("no such CRTC id\n");
8264                 return -EINVAL;
8265         }
8266
8267         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8268         pipe_from_crtc_id->pipe = crtc->pipe;
8269
8270         return 0;
8271 }
8272
8273 static int intel_encoder_clones(struct intel_encoder *encoder)
8274 {
8275         struct drm_device *dev = encoder->base.dev;
8276         struct intel_encoder *source_encoder;
8277         int index_mask = 0;
8278         int entry = 0;
8279
8280         list_for_each_entry(source_encoder,
8281                             &dev->mode_config.encoder_list, base.head) {
8282
8283                 if (encoder == source_encoder)
8284                         index_mask |= (1 << entry);
8285
8286                 /* Intel hw has only one MUX where enocoders could be cloned. */
8287                 if (encoder->cloneable && source_encoder->cloneable)
8288                         index_mask |= (1 << entry);
8289
8290                 entry++;
8291         }
8292
8293         return index_mask;
8294 }
8295
8296 static bool has_edp_a(struct drm_device *dev)
8297 {
8298         struct drm_i915_private *dev_priv = dev->dev_private;
8299
8300         if (!IS_MOBILE(dev))
8301                 return false;
8302
8303         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8304                 return false;
8305
8306         if (IS_GEN5(dev) &&
8307             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8308                 return false;
8309
8310         return true;
8311 }
8312
8313 static void intel_setup_outputs(struct drm_device *dev)
8314 {
8315         struct drm_i915_private *dev_priv = dev->dev_private;
8316         struct intel_encoder *encoder;
8317         bool dpd_is_edp = false;
8318         bool has_lvds;
8319
8320         has_lvds = intel_lvds_init(dev);
8321         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8322                 /* disable the panel fitter on everything but LVDS */
8323                 I915_WRITE(PFIT_CONTROL, 0);
8324         }
8325
8326         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8327                 intel_crt_init(dev);
8328
8329         if (HAS_DDI(dev)) {
8330                 int found;
8331
8332                 /* Haswell uses DDI functions to detect digital outputs */
8333                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8334                 /* DDI A only supports eDP */
8335                 if (found)
8336                         intel_ddi_init(dev, PORT_A);
8337
8338                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8339                  * register */
8340                 found = I915_READ(SFUSE_STRAP);
8341
8342                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8343                         intel_ddi_init(dev, PORT_B);
8344                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8345                         intel_ddi_init(dev, PORT_C);
8346                 if (found & SFUSE_STRAP_DDID_DETECTED)
8347                         intel_ddi_init(dev, PORT_D);
8348         } else if (HAS_PCH_SPLIT(dev)) {
8349                 int found;
8350                 dpd_is_edp = intel_dpd_is_edp(dev);
8351
8352                 if (has_edp_a(dev))
8353                         intel_dp_init(dev, DP_A, PORT_A);
8354
8355                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8356                         /* PCH SDVOB multiplex with HDMIB */
8357                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8358                         if (!found)
8359                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8360                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8361                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8362                 }
8363
8364                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8365                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8366
8367                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8368                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8369
8370                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8371                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8372
8373                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8374                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8375         } else if (IS_VALLEYVIEW(dev)) {
8376                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8377                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8378                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8379
8380                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8381                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8382                                         PORT_B);
8383                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8384                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8385                 }
8386
8387                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
8388                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
8389                                         PORT_C);
8390
8391         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8392                 bool found = false;
8393
8394                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8395                         DRM_DEBUG_KMS("probing SDVOB\n");
8396                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8397                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8398                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8399                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8400                         }
8401
8402                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8403                                 DRM_DEBUG_KMS("probing DP_B\n");
8404                                 intel_dp_init(dev, DP_B, PORT_B);
8405                         }
8406                 }
8407
8408                 /* Before G4X SDVOC doesn't have its own detect register */
8409
8410                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8411                         DRM_DEBUG_KMS("probing SDVOC\n");
8412                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8413                 }
8414
8415                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8416
8417                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8418                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8419                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8420                         }
8421                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8422                                 DRM_DEBUG_KMS("probing DP_C\n");
8423                                 intel_dp_init(dev, DP_C, PORT_C);
8424                         }
8425                 }
8426
8427                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8428                     (I915_READ(DP_D) & DP_DETECTED)) {
8429                         DRM_DEBUG_KMS("probing DP_D\n");
8430                         intel_dp_init(dev, DP_D, PORT_D);
8431                 }
8432         } else if (IS_GEN2(dev))
8433                 intel_dvo_init(dev);
8434
8435         if (SUPPORTS_TV(dev))
8436                 intel_tv_init(dev);
8437
8438         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8439                 encoder->base.possible_crtcs = encoder->crtc_mask;
8440                 encoder->base.possible_clones =
8441                         intel_encoder_clones(encoder);
8442         }
8443
8444         intel_init_pch_refclk(dev);
8445
8446         drm_helper_move_panel_connectors_to_head(dev);
8447 }
8448
8449 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8450 {
8451         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8452
8453         drm_framebuffer_cleanup(fb);
8454         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8455
8456         kfree(intel_fb);
8457 }
8458
8459 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8460                                                 struct drm_file *file,
8461                                                 unsigned int *handle)
8462 {
8463         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8464         struct drm_i915_gem_object *obj = intel_fb->obj;
8465
8466         return drm_gem_handle_create(file, &obj->base, handle);
8467 }
8468
8469 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8470         .destroy = intel_user_framebuffer_destroy,
8471         .create_handle = intel_user_framebuffer_create_handle,
8472 };
8473
8474 int intel_framebuffer_init(struct drm_device *dev,
8475                            struct intel_framebuffer *intel_fb,
8476                            struct drm_mode_fb_cmd2 *mode_cmd,
8477                            struct drm_i915_gem_object *obj)
8478 {
8479         int ret;
8480
8481         if (obj->tiling_mode == I915_TILING_Y) {
8482                 DRM_DEBUG("hardware does not support tiling Y\n");
8483                 return -EINVAL;
8484         }
8485
8486         if (mode_cmd->pitches[0] & 63) {
8487                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8488                           mode_cmd->pitches[0]);
8489                 return -EINVAL;
8490         }
8491
8492         /* FIXME <= Gen4 stride limits are bit unclear */
8493         if (mode_cmd->pitches[0] > 32768) {
8494                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8495                           mode_cmd->pitches[0]);
8496                 return -EINVAL;
8497         }
8498
8499         if (obj->tiling_mode != I915_TILING_NONE &&
8500             mode_cmd->pitches[0] != obj->stride) {
8501                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8502                           mode_cmd->pitches[0], obj->stride);
8503                 return -EINVAL;
8504         }
8505
8506         /* Reject formats not supported by any plane early. */
8507         switch (mode_cmd->pixel_format) {
8508         case DRM_FORMAT_C8:
8509         case DRM_FORMAT_RGB565:
8510         case DRM_FORMAT_XRGB8888:
8511         case DRM_FORMAT_ARGB8888:
8512                 break;
8513         case DRM_FORMAT_XRGB1555:
8514         case DRM_FORMAT_ARGB1555:
8515                 if (INTEL_INFO(dev)->gen > 3) {
8516                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8517                         return -EINVAL;
8518                 }
8519                 break;
8520         case DRM_FORMAT_XBGR8888:
8521         case DRM_FORMAT_ABGR8888:
8522         case DRM_FORMAT_XRGB2101010:
8523         case DRM_FORMAT_ARGB2101010:
8524         case DRM_FORMAT_XBGR2101010:
8525         case DRM_FORMAT_ABGR2101010:
8526                 if (INTEL_INFO(dev)->gen < 4) {
8527                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8528                         return -EINVAL;
8529                 }
8530                 break;
8531         case DRM_FORMAT_YUYV:
8532         case DRM_FORMAT_UYVY:
8533         case DRM_FORMAT_YVYU:
8534         case DRM_FORMAT_VYUY:
8535                 if (INTEL_INFO(dev)->gen < 5) {
8536                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8537                         return -EINVAL;
8538                 }
8539                 break;
8540         default:
8541                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8542                 return -EINVAL;
8543         }
8544
8545         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8546         if (mode_cmd->offsets[0] != 0)
8547                 return -EINVAL;
8548
8549         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8550         intel_fb->obj = obj;
8551
8552         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8553         if (ret) {
8554                 DRM_ERROR("framebuffer init failed %d\n", ret);
8555                 return ret;
8556         }
8557
8558         return 0;
8559 }
8560
8561 static struct drm_framebuffer *
8562 intel_user_framebuffer_create(struct drm_device *dev,
8563                               struct drm_file *filp,
8564                               struct drm_mode_fb_cmd2 *mode_cmd)
8565 {
8566         struct drm_i915_gem_object *obj;
8567
8568         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8569                                                 mode_cmd->handles[0]));
8570         if (&obj->base == NULL)
8571                 return ERR_PTR(-ENOENT);
8572
8573         return intel_framebuffer_create(dev, mode_cmd, obj);
8574 }
8575
8576 static const struct drm_mode_config_funcs intel_mode_funcs = {
8577         .fb_create = intel_user_framebuffer_create,
8578         .output_poll_changed = intel_fb_output_poll_changed,
8579 };
8580
8581 /* Set up chip specific display functions */
8582 static void intel_init_display(struct drm_device *dev)
8583 {
8584         struct drm_i915_private *dev_priv = dev->dev_private;
8585
8586         /* We always want a DPMS function */
8587         if (HAS_DDI(dev)) {
8588                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8589                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8590                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8591                 dev_priv->display.off = haswell_crtc_off;
8592                 dev_priv->display.update_plane = ironlake_update_plane;
8593         } else if (HAS_PCH_SPLIT(dev)) {
8594                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8595                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8596                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8597                 dev_priv->display.off = ironlake_crtc_off;
8598                 dev_priv->display.update_plane = ironlake_update_plane;
8599         } else {
8600                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8601                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8602                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8603                 dev_priv->display.off = i9xx_crtc_off;
8604                 dev_priv->display.update_plane = i9xx_update_plane;
8605         }
8606
8607         /* Returns the core display clock speed */
8608         if (IS_VALLEYVIEW(dev))
8609                 dev_priv->display.get_display_clock_speed =
8610                         valleyview_get_display_clock_speed;
8611         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8612                 dev_priv->display.get_display_clock_speed =
8613                         i945_get_display_clock_speed;
8614         else if (IS_I915G(dev))
8615                 dev_priv->display.get_display_clock_speed =
8616                         i915_get_display_clock_speed;
8617         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8618                 dev_priv->display.get_display_clock_speed =
8619                         i9xx_misc_get_display_clock_speed;
8620         else if (IS_I915GM(dev))
8621                 dev_priv->display.get_display_clock_speed =
8622                         i915gm_get_display_clock_speed;
8623         else if (IS_I865G(dev))
8624                 dev_priv->display.get_display_clock_speed =
8625                         i865_get_display_clock_speed;
8626         else if (IS_I85X(dev))
8627                 dev_priv->display.get_display_clock_speed =
8628                         i855_get_display_clock_speed;
8629         else /* 852, 830 */
8630                 dev_priv->display.get_display_clock_speed =
8631                         i830_get_display_clock_speed;
8632
8633         if (HAS_PCH_SPLIT(dev)) {
8634                 if (IS_GEN5(dev)) {
8635                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8636                         dev_priv->display.write_eld = ironlake_write_eld;
8637                 } else if (IS_GEN6(dev)) {
8638                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8639                         dev_priv->display.write_eld = ironlake_write_eld;
8640                 } else if (IS_IVYBRIDGE(dev)) {
8641                         /* FIXME: detect B0+ stepping and use auto training */
8642                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8643                         dev_priv->display.write_eld = ironlake_write_eld;
8644                         dev_priv->display.modeset_global_resources =
8645                                 ivb_modeset_global_resources;
8646                 } else if (IS_HASWELL(dev)) {
8647                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8648                         dev_priv->display.write_eld = haswell_write_eld;
8649                         dev_priv->display.modeset_global_resources =
8650                                 haswell_modeset_global_resources;
8651                 }
8652         } else if (IS_G4X(dev)) {
8653                 dev_priv->display.write_eld = g4x_write_eld;
8654         }
8655
8656         /* Default just returns -ENODEV to indicate unsupported */
8657         dev_priv->display.queue_flip = intel_default_queue_flip;
8658
8659         switch (INTEL_INFO(dev)->gen) {
8660         case 2:
8661                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8662                 break;
8663
8664         case 3:
8665                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8666                 break;
8667
8668         case 4:
8669         case 5:
8670                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8671                 break;
8672
8673         case 6:
8674                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8675                 break;
8676         case 7:
8677                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8678                 break;
8679         }
8680 }
8681
8682 /*
8683  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8684  * resume, or other times.  This quirk makes sure that's the case for
8685  * affected systems.
8686  */
8687 static void quirk_pipea_force(struct drm_device *dev)
8688 {
8689         struct drm_i915_private *dev_priv = dev->dev_private;
8690
8691         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8692         DRM_INFO("applying pipe a force quirk\n");
8693 }
8694
8695 /*
8696  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8697  */
8698 static void quirk_ssc_force_disable(struct drm_device *dev)
8699 {
8700         struct drm_i915_private *dev_priv = dev->dev_private;
8701         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8702         DRM_INFO("applying lvds SSC disable quirk\n");
8703 }
8704
8705 /*
8706  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8707  * brightness value
8708  */
8709 static void quirk_invert_brightness(struct drm_device *dev)
8710 {
8711         struct drm_i915_private *dev_priv = dev->dev_private;
8712         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8713         DRM_INFO("applying inverted panel brightness quirk\n");
8714 }
8715
8716 struct intel_quirk {
8717         int device;
8718         int subsystem_vendor;
8719         int subsystem_device;
8720         void (*hook)(struct drm_device *dev);
8721 };
8722
8723 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8724 struct intel_dmi_quirk {
8725         void (*hook)(struct drm_device *dev);
8726         const struct dmi_system_id (*dmi_id_list)[];
8727 };
8728
8729 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8730 {
8731         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8732         return 1;
8733 }
8734
8735 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8736         {
8737                 .dmi_id_list = &(const struct dmi_system_id[]) {
8738                         {
8739                                 .callback = intel_dmi_reverse_brightness,
8740                                 .ident = "NCR Corporation",
8741                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8742                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8743                                 },
8744                         },
8745                         { }  /* terminating entry */
8746                 },
8747                 .hook = quirk_invert_brightness,
8748         },
8749 };
8750
8751 static struct intel_quirk intel_quirks[] = {
8752         /* HP Mini needs pipe A force quirk (LP: #322104) */
8753         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8754
8755         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8756         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8757
8758         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8759         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8760
8761         /* 830/845 need to leave pipe A & dpll A up */
8762         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8763         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8764
8765         /* Lenovo U160 cannot use SSC on LVDS */
8766         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8767
8768         /* Sony Vaio Y cannot use SSC on LVDS */
8769         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8770
8771         /* Acer Aspire 5734Z must invert backlight brightness */
8772         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8773
8774         /* Acer/eMachines G725 */
8775         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8776
8777         /* Acer/eMachines e725 */
8778         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8779
8780         /* Acer/Packard Bell NCL20 */
8781         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8782
8783         /* Acer Aspire 4736Z */
8784         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8785 };
8786
8787 static void intel_init_quirks(struct drm_device *dev)
8788 {
8789         struct pci_dev *d = dev->pdev;
8790         int i;
8791
8792         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8793                 struct intel_quirk *q = &intel_quirks[i];
8794
8795                 if (d->device == q->device &&
8796                     (d->subsystem_vendor == q->subsystem_vendor ||
8797                      q->subsystem_vendor == PCI_ANY_ID) &&
8798                     (d->subsystem_device == q->subsystem_device ||
8799                      q->subsystem_device == PCI_ANY_ID))
8800                         q->hook(dev);
8801         }
8802         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8803                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8804                         intel_dmi_quirks[i].hook(dev);
8805         }
8806 }
8807
8808 /* Disable the VGA plane that we never use */
8809 static void i915_disable_vga(struct drm_device *dev)
8810 {
8811         struct drm_i915_private *dev_priv = dev->dev_private;
8812         u8 sr1;
8813         u32 vga_reg = i915_vgacntrl_reg(dev);
8814
8815         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8816         outb(SR01, VGA_SR_INDEX);
8817         sr1 = inb(VGA_SR_DATA);
8818         outb(sr1 | 1<<5, VGA_SR_DATA);
8819         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8820         udelay(300);
8821
8822         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8823         POSTING_READ(vga_reg);
8824 }
8825
8826 void intel_modeset_init_hw(struct drm_device *dev)
8827 {
8828         intel_init_power_well(dev);
8829
8830         intel_prepare_ddi(dev);
8831
8832         intel_init_clock_gating(dev);
8833
8834         mutex_lock(&dev->struct_mutex);
8835         intel_enable_gt_powersave(dev);
8836         mutex_unlock(&dev->struct_mutex);
8837 }
8838
8839 void intel_modeset_init(struct drm_device *dev)
8840 {
8841         struct drm_i915_private *dev_priv = dev->dev_private;
8842         int i, ret;
8843
8844         drm_mode_config_init(dev);
8845
8846         dev->mode_config.min_width = 0;
8847         dev->mode_config.min_height = 0;
8848
8849         dev->mode_config.preferred_depth = 24;
8850         dev->mode_config.prefer_shadow = 1;
8851
8852         dev->mode_config.funcs = &intel_mode_funcs;
8853
8854         intel_init_quirks(dev);
8855
8856         intel_init_pm(dev);
8857
8858         intel_init_display(dev);
8859
8860         if (IS_GEN2(dev)) {
8861                 dev->mode_config.max_width = 2048;
8862                 dev->mode_config.max_height = 2048;
8863         } else if (IS_GEN3(dev)) {
8864                 dev->mode_config.max_width = 4096;
8865                 dev->mode_config.max_height = 4096;
8866         } else {
8867                 dev->mode_config.max_width = 8192;
8868                 dev->mode_config.max_height = 8192;
8869         }
8870         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8871
8872         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8873                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8874
8875         for (i = 0; i < dev_priv->num_pipe; i++) {
8876                 intel_crtc_init(dev, i);
8877                 ret = intel_plane_init(dev, i);
8878                 if (ret)
8879                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8880         }
8881
8882         intel_cpu_pll_init(dev);
8883         intel_pch_pll_init(dev);
8884
8885         /* Just disable it once at startup */
8886         i915_disable_vga(dev);
8887         intel_setup_outputs(dev);
8888
8889         /* Just in case the BIOS is doing something questionable. */
8890         intel_disable_fbc(dev);
8891 }
8892
8893 static void
8894 intel_connector_break_all_links(struct intel_connector *connector)
8895 {
8896         connector->base.dpms = DRM_MODE_DPMS_OFF;
8897         connector->base.encoder = NULL;
8898         connector->encoder->connectors_active = false;
8899         connector->encoder->base.crtc = NULL;
8900 }
8901
8902 static void intel_enable_pipe_a(struct drm_device *dev)
8903 {
8904         struct intel_connector *connector;
8905         struct drm_connector *crt = NULL;
8906         struct intel_load_detect_pipe load_detect_temp;
8907
8908         /* We can't just switch on the pipe A, we need to set things up with a
8909          * proper mode and output configuration. As a gross hack, enable pipe A
8910          * by enabling the load detect pipe once. */
8911         list_for_each_entry(connector,
8912                             &dev->mode_config.connector_list,
8913                             base.head) {
8914                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8915                         crt = &connector->base;
8916                         break;
8917                 }
8918         }
8919
8920         if (!crt)
8921                 return;
8922
8923         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8924                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8925
8926
8927 }
8928
8929 static bool
8930 intel_check_plane_mapping(struct intel_crtc *crtc)
8931 {
8932         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8933         u32 reg, val;
8934
8935         if (dev_priv->num_pipe == 1)
8936                 return true;
8937
8938         reg = DSPCNTR(!crtc->plane);
8939         val = I915_READ(reg);
8940
8941         if ((val & DISPLAY_PLANE_ENABLE) &&
8942             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8943                 return false;
8944
8945         return true;
8946 }
8947
8948 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8949 {
8950         struct drm_device *dev = crtc->base.dev;
8951         struct drm_i915_private *dev_priv = dev->dev_private;
8952         u32 reg;
8953
8954         /* Clear any frame start delays used for debugging left by the BIOS */
8955         reg = PIPECONF(crtc->cpu_transcoder);
8956         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8957
8958         /* We need to sanitize the plane -> pipe mapping first because this will
8959          * disable the crtc (and hence change the state) if it is wrong. Note
8960          * that gen4+ has a fixed plane -> pipe mapping.  */
8961         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8962                 struct intel_connector *connector;
8963                 bool plane;
8964
8965                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8966                               crtc->base.base.id);
8967
8968                 /* Pipe has the wrong plane attached and the plane is active.
8969                  * Temporarily change the plane mapping and disable everything
8970                  * ...  */
8971                 plane = crtc->plane;
8972                 crtc->plane = !plane;
8973                 dev_priv->display.crtc_disable(&crtc->base);
8974                 crtc->plane = plane;
8975
8976                 /* ... and break all links. */
8977                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8978                                     base.head) {
8979                         if (connector->encoder->base.crtc != &crtc->base)
8980                                 continue;
8981
8982                         intel_connector_break_all_links(connector);
8983                 }
8984
8985                 WARN_ON(crtc->active);
8986                 crtc->base.enabled = false;
8987         }
8988
8989         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8990             crtc->pipe == PIPE_A && !crtc->active) {
8991                 /* BIOS forgot to enable pipe A, this mostly happens after
8992                  * resume. Force-enable the pipe to fix this, the update_dpms
8993                  * call below we restore the pipe to the right state, but leave
8994                  * the required bits on. */
8995                 intel_enable_pipe_a(dev);
8996         }
8997
8998         /* Adjust the state of the output pipe according to whether we
8999          * have active connectors/encoders. */
9000         intel_crtc_update_dpms(&crtc->base);
9001
9002         if (crtc->active != crtc->base.enabled) {
9003                 struct intel_encoder *encoder;
9004
9005                 /* This can happen either due to bugs in the get_hw_state
9006                  * functions or because the pipe is force-enabled due to the
9007                  * pipe A quirk. */
9008                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9009                               crtc->base.base.id,
9010                               crtc->base.enabled ? "enabled" : "disabled",
9011                               crtc->active ? "enabled" : "disabled");
9012
9013                 crtc->base.enabled = crtc->active;
9014
9015                 /* Because we only establish the connector -> encoder ->
9016                  * crtc links if something is active, this means the
9017                  * crtc is now deactivated. Break the links. connector
9018                  * -> encoder links are only establish when things are
9019                  *  actually up, hence no need to break them. */
9020                 WARN_ON(crtc->active);
9021
9022                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9023                         WARN_ON(encoder->connectors_active);
9024                         encoder->base.crtc = NULL;
9025                 }
9026         }
9027 }
9028
9029 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9030 {
9031         struct intel_connector *connector;
9032         struct drm_device *dev = encoder->base.dev;
9033
9034         /* We need to check both for a crtc link (meaning that the
9035          * encoder is active and trying to read from a pipe) and the
9036          * pipe itself being active. */
9037         bool has_active_crtc = encoder->base.crtc &&
9038                 to_intel_crtc(encoder->base.crtc)->active;
9039
9040         if (encoder->connectors_active && !has_active_crtc) {
9041                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9042                               encoder->base.base.id,
9043                               drm_get_encoder_name(&encoder->base));
9044
9045                 /* Connector is active, but has no active pipe. This is
9046                  * fallout from our resume register restoring. Disable
9047                  * the encoder manually again. */
9048                 if (encoder->base.crtc) {
9049                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9050                                       encoder->base.base.id,
9051                                       drm_get_encoder_name(&encoder->base));
9052                         encoder->disable(encoder);
9053                 }
9054
9055                 /* Inconsistent output/port/pipe state happens presumably due to
9056                  * a bug in one of the get_hw_state functions. Or someplace else
9057                  * in our code, like the register restore mess on resume. Clamp
9058                  * things to off as a safer default. */
9059                 list_for_each_entry(connector,
9060                                     &dev->mode_config.connector_list,
9061                                     base.head) {
9062                         if (connector->encoder != encoder)
9063                                 continue;
9064
9065                         intel_connector_break_all_links(connector);
9066                 }
9067         }
9068         /* Enabled encoders without active connectors will be fixed in
9069          * the crtc fixup. */
9070 }
9071
9072 void i915_redisable_vga(struct drm_device *dev)
9073 {
9074         struct drm_i915_private *dev_priv = dev->dev_private;
9075         u32 vga_reg = i915_vgacntrl_reg(dev);
9076
9077         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9078                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9079                 i915_disable_vga(dev);
9080         }
9081 }
9082
9083 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9084  * and i915 state tracking structures. */
9085 void intel_modeset_setup_hw_state(struct drm_device *dev,
9086                                   bool force_restore)
9087 {
9088         struct drm_i915_private *dev_priv = dev->dev_private;
9089         enum pipe pipe;
9090         u32 tmp;
9091         struct intel_crtc *crtc;
9092         struct intel_encoder *encoder;
9093         struct intel_connector *connector;
9094
9095         if (HAS_DDI(dev)) {
9096                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9097
9098                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9099                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9100                         case TRANS_DDI_EDP_INPUT_A_ON:
9101                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9102                                 pipe = PIPE_A;
9103                                 break;
9104                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9105                                 pipe = PIPE_B;
9106                                 break;
9107                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9108                                 pipe = PIPE_C;
9109                                 break;
9110                         }
9111
9112                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9113                         crtc->cpu_transcoder = TRANSCODER_EDP;
9114
9115                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9116                                       pipe_name(pipe));
9117                 }
9118         }
9119
9120         for_each_pipe(pipe) {
9121                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9122
9123                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9124                 if (tmp & PIPECONF_ENABLE)
9125                         crtc->active = true;
9126                 else
9127                         crtc->active = false;
9128
9129                 crtc->base.enabled = crtc->active;
9130
9131                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9132                               crtc->base.base.id,
9133                               crtc->active ? "enabled" : "disabled");
9134         }
9135
9136         if (HAS_DDI(dev))
9137                 intel_ddi_setup_hw_pll_state(dev);
9138
9139         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9140                             base.head) {
9141                 pipe = 0;
9142
9143                 if (encoder->get_hw_state(encoder, &pipe)) {
9144                         encoder->base.crtc =
9145                                 dev_priv->pipe_to_crtc_mapping[pipe];
9146                 } else {
9147                         encoder->base.crtc = NULL;
9148                 }
9149
9150                 encoder->connectors_active = false;
9151                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9152                               encoder->base.base.id,
9153                               drm_get_encoder_name(&encoder->base),
9154                               encoder->base.crtc ? "enabled" : "disabled",
9155                               pipe);
9156         }
9157
9158         list_for_each_entry(connector, &dev->mode_config.connector_list,
9159                             base.head) {
9160                 if (connector->get_hw_state(connector)) {
9161                         connector->base.dpms = DRM_MODE_DPMS_ON;
9162                         connector->encoder->connectors_active = true;
9163                         connector->base.encoder = &connector->encoder->base;
9164                 } else {
9165                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9166                         connector->base.encoder = NULL;
9167                 }
9168                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9169                               connector->base.base.id,
9170                               drm_get_connector_name(&connector->base),
9171                               connector->base.encoder ? "enabled" : "disabled");
9172         }
9173
9174         /* HW state is read out, now we need to sanitize this mess. */
9175         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9176                             base.head) {
9177                 intel_sanitize_encoder(encoder);
9178         }
9179
9180         for_each_pipe(pipe) {
9181                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9182                 intel_sanitize_crtc(crtc);
9183         }
9184
9185         if (force_restore) {
9186                 for_each_pipe(pipe) {
9187                         intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
9188                 }
9189
9190                 i915_redisable_vga(dev);
9191         } else {
9192                 intel_modeset_update_staged_output_state(dev);
9193         }
9194
9195         intel_modeset_check_state(dev);
9196
9197         drm_mode_config_reset(dev);
9198 }
9199
9200 void intel_modeset_gem_init(struct drm_device *dev)
9201 {
9202         intel_modeset_init_hw(dev);
9203
9204         intel_setup_overlay(dev);
9205
9206         intel_modeset_setup_hw_state(dev, false);
9207 }
9208
9209 void intel_modeset_cleanup(struct drm_device *dev)
9210 {
9211         struct drm_i915_private *dev_priv = dev->dev_private;
9212         struct drm_crtc *crtc;
9213         struct intel_crtc *intel_crtc;
9214
9215         drm_kms_helper_poll_fini(dev);
9216         mutex_lock(&dev->struct_mutex);
9217
9218         intel_unregister_dsm_handler();
9219
9220
9221         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9222                 /* Skip inactive CRTCs */
9223                 if (!crtc->fb)
9224                         continue;
9225
9226                 intel_crtc = to_intel_crtc(crtc);
9227                 intel_increase_pllclock(crtc);
9228         }
9229
9230         intel_disable_fbc(dev);
9231
9232         intel_disable_gt_powersave(dev);
9233
9234         ironlake_teardown_rc6(dev);
9235
9236         if (IS_VALLEYVIEW(dev))
9237                 vlv_init_dpio(dev);
9238
9239         mutex_unlock(&dev->struct_mutex);
9240
9241         /* Disable the irq before mode object teardown, for the irq might
9242          * enqueue unpin/hotplug work. */
9243         drm_irq_uninstall(dev);
9244         cancel_work_sync(&dev_priv->hotplug_work);
9245         cancel_work_sync(&dev_priv->rps.work);
9246
9247         /* flush any delayed tasks or pending work */
9248         flush_scheduled_work();
9249
9250         drm_mode_config_cleanup(dev);
9251
9252         intel_cleanup_overlay(dev);
9253 }
9254
9255 /*
9256  * Return which encoder is currently attached for connector.
9257  */
9258 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9259 {
9260         return &intel_attached_encoder(connector)->base;
9261 }
9262
9263 void intel_connector_attach_encoder(struct intel_connector *connector,
9264                                     struct intel_encoder *encoder)
9265 {
9266         connector->encoder = encoder;
9267         drm_mode_connector_attach_encoder(&connector->base,
9268                                           &encoder->base);
9269 }
9270
9271 /*
9272  * set vga decode state - true == enable VGA decode
9273  */
9274 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9275 {
9276         struct drm_i915_private *dev_priv = dev->dev_private;
9277         u16 gmch_ctrl;
9278
9279         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9280         if (state)
9281                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9282         else
9283                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9284         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9285         return 0;
9286 }
9287
9288 #ifdef CONFIG_DEBUG_FS
9289 #include <linux/seq_file.h>
9290
9291 struct intel_display_error_state {
9292         struct intel_cursor_error_state {
9293                 u32 control;
9294                 u32 position;
9295                 u32 base;
9296                 u32 size;
9297         } cursor[I915_MAX_PIPES];
9298
9299         struct intel_pipe_error_state {
9300                 u32 conf;
9301                 u32 source;
9302
9303                 u32 htotal;
9304                 u32 hblank;
9305                 u32 hsync;
9306                 u32 vtotal;
9307                 u32 vblank;
9308                 u32 vsync;
9309         } pipe[I915_MAX_PIPES];
9310
9311         struct intel_plane_error_state {
9312                 u32 control;
9313                 u32 stride;
9314                 u32 size;
9315                 u32 pos;
9316                 u32 addr;
9317                 u32 surface;
9318                 u32 tile_offset;
9319         } plane[I915_MAX_PIPES];
9320 };
9321
9322 struct intel_display_error_state *
9323 intel_display_capture_error_state(struct drm_device *dev)
9324 {
9325         drm_i915_private_t *dev_priv = dev->dev_private;
9326         struct intel_display_error_state *error;
9327         enum transcoder cpu_transcoder;
9328         int i;
9329
9330         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9331         if (error == NULL)
9332                 return NULL;
9333
9334         for_each_pipe(i) {
9335                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9336
9337                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9338                         error->cursor[i].control = I915_READ(CURCNTR(i));
9339                         error->cursor[i].position = I915_READ(CURPOS(i));
9340                         error->cursor[i].base = I915_READ(CURBASE(i));
9341                 } else {
9342                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9343                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9344                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9345                 }
9346
9347                 error->plane[i].control = I915_READ(DSPCNTR(i));
9348                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9349                 error->plane[i].size = I915_READ(DSPSIZE(i));
9350                 error->plane[i].pos = I915_READ(DSPPOS(i));
9351                 error->plane[i].addr = I915_READ(DSPADDR(i));
9352                 if (INTEL_INFO(dev)->gen >= 4) {
9353                         error->plane[i].surface = I915_READ(DSPSURF(i));
9354                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9355                 }
9356
9357                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9358                 error->pipe[i].source = I915_READ(PIPESRC(i));
9359                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9360                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9361                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9362                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9363                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9364                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9365         }
9366
9367         return error;
9368 }
9369
9370 void
9371 intel_display_print_error_state(struct seq_file *m,
9372                                 struct drm_device *dev,
9373                                 struct intel_display_error_state *error)
9374 {
9375         drm_i915_private_t *dev_priv = dev->dev_private;
9376         int i;
9377
9378         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9379         for_each_pipe(i) {
9380                 seq_printf(m, "Pipe [%d]:\n", i);
9381                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9382                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9383                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9384                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9385                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9386                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9387                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9388                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9389
9390                 seq_printf(m, "Plane [%d]:\n", i);
9391                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9392                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9393                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9394                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9395                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9396                 if (INTEL_INFO(dev)->gen >= 4) {
9397                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9398                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9399                 }
9400
9401                 seq_printf(m, "Cursor [%d]:\n", i);
9402                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9403                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9404                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9405         }
9406 }
9407 #endif