]> rtime.felk.cvut.cz Git - linux-imx.git/blob - arch/powerpc/platforms/pseries/nvram.c
9f8671a44551481b25a8c5b1404dd152c9f6df02
[linux-imx.git] / arch / powerpc / platforms / pseries / nvram.c
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  */
13
14
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32
33 /*
34  * Set oops header version to distingush between old and new format header.
35  * lnx,oops-log partition max size is 4000, header version > 4000 will
36  * help in identifying new header.
37  */
38 #define OOPS_HDR_VERSION 5000
39
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT];        /* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44
45 struct err_log_info {
46         int error_type;
47         unsigned int seq_num;
48 };
49
50 struct nvram_os_partition {
51         const char *name;
52         int req_size;   /* desired size, in bytes */
53         int min_size;   /* minimum acceptable size (0 means req_size) */
54         long size;      /* size of data portion (excluding err_log_info) */
55         long index;     /* offset of data portion of partition */
56         bool os_partition; /* partition initialized by OS, not FW */
57 };
58
59 static struct nvram_os_partition rtas_log_partition = {
60         .name = "ibm,rtas-log",
61         .req_size = 2079,
62         .min_size = 1055,
63         .index = -1,
64         .os_partition = true
65 };
66
67 static struct nvram_os_partition oops_log_partition = {
68         .name = "lnx,oops-log",
69         .req_size = 4000,
70         .min_size = 2000,
71         .index = -1,
72         .os_partition = true
73 };
74
75 static const char *pseries_nvram_os_partitions[] = {
76         "ibm,rtas-log",
77         "lnx,oops-log",
78         NULL
79 };
80
81 struct oops_log_info {
82         u16 version;
83         u16 report_length;
84         u64 timestamp;
85 } __attribute__((packed));
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88                           enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91         .dump = oops_to_nvram
92 };
93
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5               /* seconds */
96 static unsigned long last_unread_rtas_event;    /* timestamp */
97
98 /*
99  * For capturing and compressing an oops or panic report...
100
101  * big_oops_buf[] holds the uncompressed text we're capturing.
102  *
103  * oops_buf[] holds the compressed text, preceded by a oops header.
104  * oops header has u16 holding the version of oops header (to differentiate
105  * between old and new format header) followed by u16 holding the length of
106  * the compressed* text (*Or uncompressed, if compression fails.) and u64
107  * holding the timestamp. oops_buf[] gets written to NVRAM.
108  *
109  * oops_log_info points to the header. oops_data points to the compressed text.
110  *
111  * +- oops_buf
112  * |                                   +- oops_data
113  * v                                   v
114  * +-----------+-----------+-----------+------------------------+
115  * | version   | length    | timestamp | text                   |
116  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
117  * +-----------+-----------+-----------+------------------------+
118  * ^
119  * +- oops_log_info
120  *
121  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122  */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136         .name = "of-config",
137         .index = -1,
138         .os_partition = false
139 };
140
141 static struct nvram_os_partition common_partition = {
142         .name = "common",
143         .index = -1,
144         .os_partition = false
145 };
146
147 static enum pstore_type_id nvram_type_ids[] = {
148         PSTORE_TYPE_DMESG,
149         PSTORE_TYPE_PPC_RTAS,
150         PSTORE_TYPE_PPC_OF,
151         PSTORE_TYPE_PPC_COMMON,
152         -1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157
158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160         unsigned int i;
161         unsigned long len;
162         int done;
163         unsigned long flags;
164         char *p = buf;
165
166
167         if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168                 return -ENODEV;
169
170         if (*index >= nvram_size)
171                 return 0;
172
173         i = *index;
174         if (i + count > nvram_size)
175                 count = nvram_size - i;
176
177         spin_lock_irqsave(&nvram_lock, flags);
178
179         for (; count != 0; count -= len) {
180                 len = count;
181                 if (len > NVRW_CNT)
182                         len = NVRW_CNT;
183                 
184                 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185                                len) != 0) || len != done) {
186                         spin_unlock_irqrestore(&nvram_lock, flags);
187                         return -EIO;
188                 }
189                 
190                 memcpy(p, nvram_buf, len);
191
192                 p += len;
193                 i += len;
194         }
195
196         spin_unlock_irqrestore(&nvram_lock, flags);
197         
198         *index = i;
199         return p - buf;
200 }
201
202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204         unsigned int i;
205         unsigned long len;
206         int done;
207         unsigned long flags;
208         const char *p = buf;
209
210         if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211                 return -ENODEV;
212
213         if (*index >= nvram_size)
214                 return 0;
215
216         i = *index;
217         if (i + count > nvram_size)
218                 count = nvram_size - i;
219
220         spin_lock_irqsave(&nvram_lock, flags);
221
222         for (; count != 0; count -= len) {
223                 len = count;
224                 if (len > NVRW_CNT)
225                         len = NVRW_CNT;
226
227                 memcpy(nvram_buf, p, len);
228
229                 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230                                len) != 0) || len != done) {
231                         spin_unlock_irqrestore(&nvram_lock, flags);
232                         return -EIO;
233                 }
234                 
235                 p += len;
236                 i += len;
237         }
238         spin_unlock_irqrestore(&nvram_lock, flags);
239         
240         *index = i;
241         return p - buf;
242 }
243
244 static ssize_t pSeries_nvram_get_size(void)
245 {
246         return nvram_size ? nvram_size : -ENODEV;
247 }
248
249
250 /* nvram_write_os_partition, nvram_write_error_log
251  *
252  * We need to buffer the error logs into nvram to ensure that we have
253  * the failure information to decode.  If we have a severe error there
254  * is no way to guarantee that the OS or the machine is in a state to
255  * get back to user land and write the error to disk.  For example if
256  * the SCSI device driver causes a Machine Check by writing to a bad
257  * IO address, there is no way of guaranteeing that the device driver
258  * is in any state that is would also be able to write the error data
259  * captured to disk, thus we buffer it in NVRAM for analysis on the
260  * next boot.
261  *
262  * In NVRAM the partition containing the error log buffer will looks like:
263  * Header (in bytes):
264  * +-----------+----------+--------+------------+------------------+
265  * | signature | checksum | length | name       | data             |
266  * |0          |1         |2      3|4         15|16        length-1|
267  * +-----------+----------+--------+------------+------------------+
268  *
269  * The 'data' section would look like (in bytes):
270  * +--------------+------------+-----------------------------------+
271  * | event_logged | sequence # | error log                         |
272  * |0            3|4          7|8                  error_log_size-1|
273  * +--------------+------------+-----------------------------------+
274  *
275  * event_logged: 0 if event has not been logged to syslog, 1 if it has
276  * sequence #: The unique sequence # for each event. (until it wraps)
277  * error log: The error log from event_scan
278  */
279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
280                 int length, unsigned int err_type, unsigned int error_log_cnt)
281 {
282         int rc;
283         loff_t tmp_index;
284         struct err_log_info info;
285         
286         if (part->index == -1) {
287                 return -ESPIPE;
288         }
289
290         if (length > part->size) {
291                 length = part->size;
292         }
293
294         info.error_type = err_type;
295         info.seq_num = error_log_cnt;
296
297         tmp_index = part->index;
298
299         rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
300         if (rc <= 0) {
301                 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
302                 return rc;
303         }
304
305         rc = ppc_md.nvram_write(buff, length, &tmp_index);
306         if (rc <= 0) {
307                 pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
308                 return rc;
309         }
310         
311         return 0;
312 }
313
314 int nvram_write_error_log(char * buff, int length,
315                           unsigned int err_type, unsigned int error_log_cnt)
316 {
317         int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
318                                                 err_type, error_log_cnt);
319         if (!rc) {
320                 last_unread_rtas_event = get_seconds();
321 #ifdef CONFIG_PSTORE
322                 last_rtas_event = get_seconds();
323 #endif
324         }
325
326         return rc;
327 }
328
329 /* nvram_read_partition
330  *
331  * Reads nvram partition for at most 'length'
332  */
333 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
334                         int length, unsigned int *err_type,
335                         unsigned int *error_log_cnt)
336 {
337         int rc;
338         loff_t tmp_index;
339         struct err_log_info info;
340         
341         if (part->index == -1)
342                 return -1;
343
344         if (length > part->size)
345                 length = part->size;
346
347         tmp_index = part->index;
348
349         if (part->os_partition) {
350                 rc = ppc_md.nvram_read((char *)&info,
351                                         sizeof(struct err_log_info),
352                                         &tmp_index);
353                 if (rc <= 0) {
354                         pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
355                                                                         rc);
356                         return rc;
357                 }
358         }
359
360         rc = ppc_md.nvram_read(buff, length, &tmp_index);
361         if (rc <= 0) {
362                 pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
363                 return rc;
364         }
365
366         if (part->os_partition) {
367                 *error_log_cnt = info.seq_num;
368                 *err_type = info.error_type;
369         }
370
371         return 0;
372 }
373
374 /* nvram_read_error_log
375  *
376  * Reads nvram for error log for at most 'length'
377  */
378 int nvram_read_error_log(char *buff, int length,
379                         unsigned int *err_type, unsigned int *error_log_cnt)
380 {
381         return nvram_read_partition(&rtas_log_partition, buff, length,
382                                                 err_type, error_log_cnt);
383 }
384
385 /* This doesn't actually zero anything, but it sets the event_logged
386  * word to tell that this event is safely in syslog.
387  */
388 int nvram_clear_error_log(void)
389 {
390         loff_t tmp_index;
391         int clear_word = ERR_FLAG_ALREADY_LOGGED;
392         int rc;
393
394         if (rtas_log_partition.index == -1)
395                 return -1;
396
397         tmp_index = rtas_log_partition.index;
398         
399         rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
400         if (rc <= 0) {
401                 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
402                 return rc;
403         }
404         last_unread_rtas_event = 0;
405
406         return 0;
407 }
408
409 /* pseries_nvram_init_os_partition
410  *
411  * This sets up a partition with an "OS" signature.
412  *
413  * The general strategy is the following:
414  * 1.) If a partition with the indicated name already exists...
415  *      - If it's large enough, use it.
416  *      - Otherwise, recycle it and keep going.
417  * 2.) Search for a free partition that is large enough.
418  * 3.) If there's not a free partition large enough, recycle any obsolete
419  * OS partitions and try again.
420  * 4.) Will first try getting a chunk that will satisfy the requested size.
421  * 5.) If a chunk of the requested size cannot be allocated, then try finding
422  * a chunk that will satisfy the minum needed.
423  *
424  * Returns 0 on success, else -1.
425  */
426 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
427                                                                         *part)
428 {
429         loff_t p;
430         int size;
431
432         /* Scan nvram for partitions */
433         nvram_scan_partitions();
434
435         /* Look for ours */
436         p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
437
438         /* Found one but too small, remove it */
439         if (p && size < part->min_size) {
440                 pr_info("nvram: Found too small %s partition,"
441                                         " removing it...\n", part->name);
442                 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
443                 p = 0;
444         }
445
446         /* Create one if we didn't find */
447         if (!p) {
448                 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
449                                         part->req_size, part->min_size);
450                 if (p == -ENOSPC) {
451                         pr_info("nvram: No room to create %s partition, "
452                                 "deleting any obsolete OS partitions...\n",
453                                 part->name);
454                         nvram_remove_partition(NULL, NVRAM_SIG_OS,
455                                                 pseries_nvram_os_partitions);
456                         p = nvram_create_partition(part->name, NVRAM_SIG_OS,
457                                         part->req_size, part->min_size);
458                 }
459         }
460
461         if (p <= 0) {
462                 pr_err("nvram: Failed to find or create %s"
463                        " partition, err %d\n", part->name, (int)p);
464                 return -1;
465         }
466
467         part->index = p;
468         part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
469         
470         return 0;
471 }
472
473 /*
474  * Are we using the ibm,rtas-log for oops/panic reports?  And if so,
475  * would logging this oops/panic overwrite an RTAS event that rtas_errd
476  * hasn't had a chance to read and process?  Return 1 if so, else 0.
477  *
478  * We assume that if rtas_errd hasn't read the RTAS event in
479  * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
480  */
481 static int clobbering_unread_rtas_event(void)
482 {
483         return (oops_log_partition.index == rtas_log_partition.index
484                 && last_unread_rtas_event
485                 && get_seconds() - last_unread_rtas_event <=
486                                                 NVRAM_RTAS_READ_TIMEOUT);
487 }
488
489 /* Derived from logfs_compress() */
490 static int nvram_compress(const void *in, void *out, size_t inlen,
491                                                         size_t outlen)
492 {
493         int err, ret;
494
495         ret = -EIO;
496         err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
497                                                 MEM_LEVEL, Z_DEFAULT_STRATEGY);
498         if (err != Z_OK)
499                 goto error;
500
501         stream.next_in = in;
502         stream.avail_in = inlen;
503         stream.total_in = 0;
504         stream.next_out = out;
505         stream.avail_out = outlen;
506         stream.total_out = 0;
507
508         err = zlib_deflate(&stream, Z_FINISH);
509         if (err != Z_STREAM_END)
510                 goto error;
511
512         err = zlib_deflateEnd(&stream);
513         if (err != Z_OK)
514                 goto error;
515
516         if (stream.total_out >= stream.total_in)
517                 goto error;
518
519         ret = stream.total_out;
520 error:
521         return ret;
522 }
523
524 /* Compress the text from big_oops_buf into oops_buf. */
525 static int zip_oops(size_t text_len)
526 {
527         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
528         int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
529                                                                 oops_data_sz);
530         if (zipped_len < 0) {
531                 pr_err("nvram: compression failed; returned %d\n", zipped_len);
532                 pr_err("nvram: logging uncompressed oops/panic report\n");
533                 return -1;
534         }
535         oops_hdr->version = OOPS_HDR_VERSION;
536         oops_hdr->report_length = (u16) zipped_len;
537         oops_hdr->timestamp = get_seconds();
538         return 0;
539 }
540
541 #ifdef CONFIG_PSTORE
542 /* Derived from logfs_uncompress */
543 int nvram_decompress(void *in, void *out, size_t inlen, size_t outlen)
544 {
545         int err, ret;
546
547         ret = -EIO;
548         err = zlib_inflateInit(&stream);
549         if (err != Z_OK)
550                 goto error;
551
552         stream.next_in = in;
553         stream.avail_in = inlen;
554         stream.total_in = 0;
555         stream.next_out = out;
556         stream.avail_out = outlen;
557         stream.total_out = 0;
558
559         err = zlib_inflate(&stream, Z_FINISH);
560         if (err != Z_STREAM_END)
561                 goto error;
562
563         err = zlib_inflateEnd(&stream);
564         if (err != Z_OK)
565                 goto error;
566
567         ret = stream.total_out;
568 error:
569         return ret;
570 }
571
572 static int unzip_oops(char *oops_buf, char *big_buf)
573 {
574         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
575         u64 timestamp = oops_hdr->timestamp;
576         char *big_oops_data = NULL;
577         char *oops_data_buf = NULL;
578         size_t big_oops_data_sz;
579         int unzipped_len;
580
581         big_oops_data = big_buf + sizeof(struct oops_log_info);
582         big_oops_data_sz = big_oops_buf_sz - sizeof(struct oops_log_info);
583         oops_data_buf = oops_buf + sizeof(struct oops_log_info);
584
585         unzipped_len = nvram_decompress(oops_data_buf, big_oops_data,
586                                         oops_hdr->report_length,
587                                         big_oops_data_sz);
588
589         if (unzipped_len < 0) {
590                 pr_err("nvram: decompression failed; returned %d\n",
591                                                                 unzipped_len);
592                 return -1;
593         }
594         oops_hdr = (struct oops_log_info *)big_buf;
595         oops_hdr->version = OOPS_HDR_VERSION;
596         oops_hdr->report_length = (u16) unzipped_len;
597         oops_hdr->timestamp = timestamp;
598         return 0;
599 }
600
601 static int nvram_pstore_open(struct pstore_info *psi)
602 {
603         /* Reset the iterator to start reading partitions again */
604         read_type = -1;
605         return 0;
606 }
607
608 /**
609  * nvram_pstore_write - pstore write callback for nvram
610  * @type:               Type of message logged
611  * @reason:             reason behind dump (oops/panic)
612  * @id:                 identifier to indicate the write performed
613  * @part:               pstore writes data to registered buffer in parts,
614  *                      part number will indicate the same.
615  * @count:              Indicates oops count
616  * @hsize:              Size of header added by pstore
617  * @size:               number of bytes written to the registered buffer
618  * @psi:                registered pstore_info structure
619  *
620  * Called by pstore_dump() when an oops or panic report is logged in the
621  * printk buffer.
622  * Returns 0 on successful write.
623  */
624 static int nvram_pstore_write(enum pstore_type_id type,
625                                 enum kmsg_dump_reason reason,
626                                 u64 *id, unsigned int part, int count,
627                                 size_t hsize, size_t size,
628                                 struct pstore_info *psi)
629 {
630         int rc;
631         unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
632         struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
633
634         /* part 1 has the recent messages from printk buffer */
635         if (part > 1 || type != PSTORE_TYPE_DMESG ||
636                                 clobbering_unread_rtas_event())
637                 return -1;
638
639         oops_hdr->version = OOPS_HDR_VERSION;
640         oops_hdr->report_length = (u16) size;
641         oops_hdr->timestamp = get_seconds();
642
643         if (big_oops_buf) {
644                 rc = zip_oops(size);
645                 /*
646                  * If compression fails copy recent log messages from
647                  * big_oops_buf to oops_data.
648                  */
649                 if (rc != 0) {
650                         size_t diff = size - oops_data_sz + hsize;
651
652                         if (size > oops_data_sz) {
653                                 memcpy(oops_data, big_oops_buf, hsize);
654                                 memcpy(oops_data + hsize, big_oops_buf + diff,
655                                         oops_data_sz - hsize);
656
657                                 oops_hdr->report_length = (u16) oops_data_sz;
658                         } else
659                                 memcpy(oops_data, big_oops_buf, size);
660                 } else
661                         err_type = ERR_TYPE_KERNEL_PANIC_GZ;
662         }
663
664         rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
665                 (int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
666                 count);
667
668         if (rc != 0)
669                 return rc;
670
671         *id = part;
672         return 0;
673 }
674
675 /*
676  * Reads the oops/panic report, rtas, of-config and common partition.
677  * Returns the length of the data we read from each partition.
678  * Returns 0 if we've been called before.
679  */
680 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
681                                 int *count, struct timespec *time, char **buf,
682                                 struct pstore_info *psi)
683 {
684         struct oops_log_info *oops_hdr;
685         unsigned int err_type, id_no, size = 0;
686         struct nvram_os_partition *part = NULL;
687         char *buff = NULL, *big_buff = NULL;
688         int rc, sig = 0;
689         loff_t p;
690
691 read_partition:
692         read_type++;
693
694         switch (nvram_type_ids[read_type]) {
695         case PSTORE_TYPE_DMESG:
696                 part = &oops_log_partition;
697                 *type = PSTORE_TYPE_DMESG;
698                 break;
699         case PSTORE_TYPE_PPC_RTAS:
700                 part = &rtas_log_partition;
701                 *type = PSTORE_TYPE_PPC_RTAS;
702                 time->tv_sec = last_rtas_event;
703                 time->tv_nsec = 0;
704                 break;
705         case PSTORE_TYPE_PPC_OF:
706                 sig = NVRAM_SIG_OF;
707                 part = &of_config_partition;
708                 *type = PSTORE_TYPE_PPC_OF;
709                 *id = PSTORE_TYPE_PPC_OF;
710                 time->tv_sec = 0;
711                 time->tv_nsec = 0;
712                 break;
713         case PSTORE_TYPE_PPC_COMMON:
714                 sig = NVRAM_SIG_SYS;
715                 part = &common_partition;
716                 *type = PSTORE_TYPE_PPC_COMMON;
717                 *id = PSTORE_TYPE_PPC_COMMON;
718                 time->tv_sec = 0;
719                 time->tv_nsec = 0;
720                 break;
721         default:
722                 return 0;
723         }
724
725         if (!part->os_partition) {
726                 p = nvram_find_partition(part->name, sig, &size);
727                 if (p <= 0) {
728                         pr_err("nvram: Failed to find partition %s, "
729                                 "err %d\n", part->name, (int)p);
730                         return 0;
731                 }
732                 part->index = p;
733                 part->size = size;
734         }
735
736         buff = kmalloc(part->size, GFP_KERNEL);
737
738         if (!buff)
739                 return -ENOMEM;
740
741         if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
742                 kfree(buff);
743                 return 0;
744         }
745
746         *count = 0;
747
748         if (part->os_partition)
749                 *id = id_no;
750
751         if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
752                 oops_hdr = (struct oops_log_info *)buff;
753                 *buf = buff + sizeof(*oops_hdr);
754
755                 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) {
756                         big_buff = kmalloc(big_oops_buf_sz, GFP_KERNEL);
757                         if (!big_buff)
758                                 return -ENOMEM;
759
760                         rc = unzip_oops(buff, big_buff);
761
762                         if (rc != 0) {
763                                 kfree(buff);
764                                 kfree(big_buff);
765                                 goto read_partition;
766                         }
767
768                         oops_hdr = (struct oops_log_info *)big_buff;
769                         *buf = big_buff + sizeof(*oops_hdr);
770                         kfree(buff);
771                 }
772
773                 time->tv_sec = oops_hdr->timestamp;
774                 time->tv_nsec = 0;
775                 return oops_hdr->report_length;
776         }
777
778         *buf = buff;
779         return part->size;
780 }
781
782 static struct pstore_info nvram_pstore_info = {
783         .owner = THIS_MODULE,
784         .name = "nvram",
785         .open = nvram_pstore_open,
786         .read = nvram_pstore_read,
787         .write = nvram_pstore_write,
788 };
789
790 static int nvram_pstore_init(void)
791 {
792         int rc = 0;
793
794         if (big_oops_buf) {
795                 nvram_pstore_info.buf = big_oops_buf;
796                 nvram_pstore_info.bufsize = big_oops_buf_sz;
797         } else {
798                 nvram_pstore_info.buf = oops_data;
799                 nvram_pstore_info.bufsize = oops_data_sz;
800         }
801
802         rc = pstore_register(&nvram_pstore_info);
803         if (rc != 0)
804                 pr_err("nvram: pstore_register() failed, defaults to "
805                                 "kmsg_dump; returned %d\n", rc);
806
807         return rc;
808 }
809 #else
810 static int nvram_pstore_init(void)
811 {
812         return -1;
813 }
814 #endif
815
816 static void __init nvram_init_oops_partition(int rtas_partition_exists)
817 {
818         int rc;
819
820         rc = pseries_nvram_init_os_partition(&oops_log_partition);
821         if (rc != 0) {
822                 if (!rtas_partition_exists)
823                         return;
824                 pr_notice("nvram: Using %s partition to log both"
825                         " RTAS errors and oops/panic reports\n",
826                         rtas_log_partition.name);
827                 memcpy(&oops_log_partition, &rtas_log_partition,
828                                                 sizeof(rtas_log_partition));
829         }
830         oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
831         if (!oops_buf) {
832                 pr_err("nvram: No memory for %s partition\n",
833                                                 oops_log_partition.name);
834                 return;
835         }
836         oops_data = oops_buf + sizeof(struct oops_log_info);
837         oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
838
839         /*
840          * Figure compression (preceded by elimination of each line's <n>
841          * severity prefix) will reduce the oops/panic report to at most
842          * 45% of its original size.
843          */
844         big_oops_buf_sz = (oops_data_sz * 100) / 45;
845         big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
846         if (big_oops_buf) {
847                 stream.workspace = kmalloc(zlib_deflate_workspacesize(
848                                 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
849                 if (!stream.workspace) {
850                         pr_err("nvram: No memory for compression workspace; "
851                                 "skipping compression of %s partition data\n",
852                                 oops_log_partition.name);
853                         kfree(big_oops_buf);
854                         big_oops_buf = NULL;
855                 }
856         } else {
857                 pr_err("No memory for uncompressed %s data; "
858                         "skipping compression\n", oops_log_partition.name);
859                 stream.workspace = NULL;
860         }
861
862         rc = nvram_pstore_init();
863
864         if (!rc)
865                 return;
866
867         rc = kmsg_dump_register(&nvram_kmsg_dumper);
868         if (rc != 0) {
869                 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
870                 kfree(oops_buf);
871                 kfree(big_oops_buf);
872                 kfree(stream.workspace);
873         }
874 }
875
876 static int __init pseries_nvram_init_log_partitions(void)
877 {
878         int rc;
879
880         rc = pseries_nvram_init_os_partition(&rtas_log_partition);
881         nvram_init_oops_partition(rc == 0);
882         return 0;
883 }
884 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
885
886 int __init pSeries_nvram_init(void)
887 {
888         struct device_node *nvram;
889         const unsigned int *nbytes_p;
890         unsigned int proplen;
891
892         nvram = of_find_node_by_type(NULL, "nvram");
893         if (nvram == NULL)
894                 return -ENODEV;
895
896         nbytes_p = of_get_property(nvram, "#bytes", &proplen);
897         if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
898                 of_node_put(nvram);
899                 return -EIO;
900         }
901
902         nvram_size = *nbytes_p;
903
904         nvram_fetch = rtas_token("nvram-fetch");
905         nvram_store = rtas_token("nvram-store");
906         printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
907         of_node_put(nvram);
908
909         ppc_md.nvram_read       = pSeries_nvram_read;
910         ppc_md.nvram_write      = pSeries_nvram_write;
911         ppc_md.nvram_size       = pSeries_nvram_get_size;
912
913         return 0;
914 }
915
916
917 /*
918  * This is our kmsg_dump callback, called after an oops or panic report
919  * has been written to the printk buffer.  We want to capture as much
920  * of the printk buffer as possible.  First, capture as much as we can
921  * that we think will compress sufficiently to fit in the lnx,oops-log
922  * partition.  If that's too much, go back and capture uncompressed text.
923  */
924 static void oops_to_nvram(struct kmsg_dumper *dumper,
925                           enum kmsg_dump_reason reason)
926 {
927         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
928         static unsigned int oops_count = 0;
929         static bool panicking = false;
930         static DEFINE_SPINLOCK(lock);
931         unsigned long flags;
932         size_t text_len;
933         unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
934         int rc = -1;
935
936         switch (reason) {
937         case KMSG_DUMP_RESTART:
938         case KMSG_DUMP_HALT:
939         case KMSG_DUMP_POWEROFF:
940                 /* These are almost always orderly shutdowns. */
941                 return;
942         case KMSG_DUMP_OOPS:
943                 break;
944         case KMSG_DUMP_PANIC:
945                 panicking = true;
946                 break;
947         case KMSG_DUMP_EMERG:
948                 if (panicking)
949                         /* Panic report already captured. */
950                         return;
951                 break;
952         default:
953                 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
954                                                 __FUNCTION__, (int) reason);
955                 return;
956         }
957
958         if (clobbering_unread_rtas_event())
959                 return;
960
961         if (!spin_trylock_irqsave(&lock, flags))
962                 return;
963
964         if (big_oops_buf) {
965                 kmsg_dump_get_buffer(dumper, false,
966                                      big_oops_buf, big_oops_buf_sz, &text_len);
967                 rc = zip_oops(text_len);
968         }
969         if (rc != 0) {
970                 kmsg_dump_rewind(dumper);
971                 kmsg_dump_get_buffer(dumper, false,
972                                      oops_data, oops_data_sz, &text_len);
973                 err_type = ERR_TYPE_KERNEL_PANIC;
974                 oops_hdr->version = OOPS_HDR_VERSION;
975                 oops_hdr->report_length = (u16) text_len;
976                 oops_hdr->timestamp = get_seconds();
977         }
978
979         (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
980                 (int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
981                 ++oops_count);
982
983         spin_unlock_irqrestore(&lock, flags);
984 }