]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
spi: spi-davinci: Fix direction in dma_map_single()
[linux-imx.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71                                 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73                                 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76         [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113         /* required last entry */
114         {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143                                                  struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173                                int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176                                    bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178                                  struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                  "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223                      pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226
227 static const struct pci_error_handlers igb_err_handler = {
228         .error_detected = igb_io_error_detected,
229         .slot_reset = igb_io_slot_reset,
230         .resume = igb_io_resume,
231 };
232
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235 static struct pci_driver igb_driver = {
236         .name     = igb_driver_name,
237         .id_table = igb_pci_tbl,
238         .probe    = igb_probe,
239         .remove   = igb_remove,
240 #ifdef CONFIG_PM
241         .driver.pm = &igb_pm_ops,
242 #endif
243         .shutdown = igb_shutdown,
244         .sriov_configure = igb_pci_sriov_configure,
245         .err_handler = &igb_err_handler
246 };
247
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 struct igb_reg_info {
259         u32 ofs;
260         char *name;
261 };
262
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265         /* General Registers */
266         {E1000_CTRL, "CTRL"},
267         {E1000_STATUS, "STATUS"},
268         {E1000_CTRL_EXT, "CTRL_EXT"},
269
270         /* Interrupt Registers */
271         {E1000_ICR, "ICR"},
272
273         /* RX Registers */
274         {E1000_RCTL, "RCTL"},
275         {E1000_RDLEN(0), "RDLEN"},
276         {E1000_RDH(0), "RDH"},
277         {E1000_RDT(0), "RDT"},
278         {E1000_RXDCTL(0), "RXDCTL"},
279         {E1000_RDBAL(0), "RDBAL"},
280         {E1000_RDBAH(0), "RDBAH"},
281
282         /* TX Registers */
283         {E1000_TCTL, "TCTL"},
284         {E1000_TDBAL(0), "TDBAL"},
285         {E1000_TDBAH(0), "TDBAH"},
286         {E1000_TDLEN(0), "TDLEN"},
287         {E1000_TDH(0), "TDH"},
288         {E1000_TDT(0), "TDT"},
289         {E1000_TXDCTL(0), "TXDCTL"},
290         {E1000_TDFH, "TDFH"},
291         {E1000_TDFT, "TDFT"},
292         {E1000_TDFHS, "TDFHS"},
293         {E1000_TDFPC, "TDFPC"},
294
295         /* List Terminator */
296         {}
297 };
298
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302         int n = 0;
303         char rname[16];
304         u32 regs[8];
305
306         switch (reginfo->ofs) {
307         case E1000_RDLEN(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDLEN(n));
310                 break;
311         case E1000_RDH(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDH(n));
314                 break;
315         case E1000_RDT(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDT(n));
318                 break;
319         case E1000_RXDCTL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RXDCTL(n));
322                 break;
323         case E1000_RDBAL(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAL(n));
326                 break;
327         case E1000_RDBAH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAH(n));
330                 break;
331         case E1000_TDBAL(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_RDBAL(n));
334                 break;
335         case E1000_TDBAH(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDBAH(n));
338                 break;
339         case E1000_TDLEN(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDLEN(n));
342                 break;
343         case E1000_TDH(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDH(n));
346                 break;
347         case E1000_TDT(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TDT(n));
350                 break;
351         case E1000_TXDCTL(0):
352                 for (n = 0; n < 4; n++)
353                         regs[n] = rd32(E1000_TXDCTL(n));
354                 break;
355         default:
356                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357                 return;
358         }
359
360         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362                 regs[2], regs[3]);
363 }
364
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368         struct net_device *netdev = adapter->netdev;
369         struct e1000_hw *hw = &adapter->hw;
370         struct igb_reg_info *reginfo;
371         struct igb_ring *tx_ring;
372         union e1000_adv_tx_desc *tx_desc;
373         struct my_u0 { u64 a; u64 b; } *u0;
374         struct igb_ring *rx_ring;
375         union e1000_adv_rx_desc *rx_desc;
376         u32 staterr;
377         u16 i, n;
378
379         if (!netif_msg_hw(adapter))
380                 return;
381
382         /* Print netdevice Info */
383         if (netdev) {
384                 dev_info(&adapter->pdev->dev, "Net device Info\n");
385                 pr_info("Device Name     state            trans_start      "
386                         "last_rx\n");
387                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388                         netdev->state, netdev->trans_start, netdev->last_rx);
389         }
390
391         /* Print Registers */
392         dev_info(&adapter->pdev->dev, "Register Dump\n");
393         pr_info(" Register Name   Value\n");
394         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395              reginfo->name; reginfo++) {
396                 igb_regdump(hw, reginfo);
397         }
398
399         /* Print TX Ring Summary */
400         if (!netdev || !netif_running(netdev))
401                 goto exit;
402
403         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405         for (n = 0; n < adapter->num_tx_queues; n++) {
406                 struct igb_tx_buffer *buffer_info;
407                 tx_ring = adapter->tx_ring[n];
408                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
411                         (u64)dma_unmap_addr(buffer_info, dma),
412                         dma_unmap_len(buffer_info, len),
413                         buffer_info->next_to_watch,
414                         (u64)buffer_info->time_stamp);
415         }
416
417         /* Print TX Rings */
418         if (!netif_msg_tx_done(adapter))
419                 goto rx_ring_summary;
420
421         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423         /* Transmit Descriptor Formats
424          *
425          * Advanced Transmit Descriptor
426          *   +--------------------------------------------------------------+
427          * 0 |         Buffer Address [63:0]                                |
428          *   +--------------------------------------------------------------+
429          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430          *   +--------------------------------------------------------------+
431          *   63      46 45    40 39 38 36 35 32 31   24             15       0
432          */
433
434         for (n = 0; n < adapter->num_tx_queues; n++) {
435                 tx_ring = adapter->tx_ring[n];
436                 pr_info("------------------------------------\n");
437                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438                 pr_info("------------------------------------\n");
439                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440                         "[bi->dma       ] leng  ntw timestamp        "
441                         "bi->skb\n");
442
443                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444                         const char *next_desc;
445                         struct igb_tx_buffer *buffer_info;
446                         tx_desc = IGB_TX_DESC(tx_ring, i);
447                         buffer_info = &tx_ring->tx_buffer_info[i];
448                         u0 = (struct my_u0 *)tx_desc;
449                         if (i == tx_ring->next_to_use &&
450                             i == tx_ring->next_to_clean)
451                                 next_desc = " NTC/U";
452                         else if (i == tx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == tx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
460                                 " %04X  %p %016llX %p%s\n", i,
461                                 le64_to_cpu(u0->a),
462                                 le64_to_cpu(u0->b),
463                                 (u64)dma_unmap_addr(buffer_info, dma),
464                                 dma_unmap_len(buffer_info, len),
465                                 buffer_info->next_to_watch,
466                                 (u64)buffer_info->time_stamp,
467                                 buffer_info->skb, next_desc);
468
469                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
470                                 print_hex_dump(KERN_INFO, "",
471                                         DUMP_PREFIX_ADDRESS,
472                                         16, 1, buffer_info->skb->data,
473                                         dma_unmap_len(buffer_info, len),
474                                         true);
475                 }
476         }
477
478         /* Print RX Rings Summary */
479 rx_ring_summary:
480         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481         pr_info("Queue [NTU] [NTC]\n");
482         for (n = 0; n < adapter->num_rx_queues; n++) {
483                 rx_ring = adapter->rx_ring[n];
484                 pr_info(" %5d %5X %5X\n",
485                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
486         }
487
488         /* Print RX Rings */
489         if (!netif_msg_rx_status(adapter))
490                 goto exit;
491
492         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494         /* Advanced Receive Descriptor (Read) Format
495          *    63                                           1        0
496          *    +-----------------------------------------------------+
497          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498          *    +----------------------------------------------+------+
499          *  8 |       Header Buffer Address [63:1]           |  DD  |
500          *    +-----------------------------------------------------+
501          *
502          *
503          * Advanced Receive Descriptor (Write-Back) Format
504          *
505          *   63       48 47    32 31  30      21 20 17 16   4 3     0
506          *   +------------------------------------------------------+
507          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508          *   | Checksum   Ident  |   |           |    | Type | Type |
509          *   +------------------------------------------------------+
510          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511          *   +------------------------------------------------------+
512          *   63       48 47    32 31            20 19               0
513          */
514
515         for (n = 0; n < adapter->num_rx_queues; n++) {
516                 rx_ring = adapter->rx_ring[n];
517                 pr_info("------------------------------------\n");
518                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519                 pr_info("------------------------------------\n");
520                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525                 for (i = 0; i < rx_ring->count; i++) {
526                         const char *next_desc;
527                         struct igb_rx_buffer *buffer_info;
528                         buffer_info = &rx_ring->rx_buffer_info[i];
529                         rx_desc = IGB_RX_DESC(rx_ring, i);
530                         u0 = (struct my_u0 *)rx_desc;
531                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533                         if (i == rx_ring->next_to_use)
534                                 next_desc = " NTU";
535                         else if (i == rx_ring->next_to_clean)
536                                 next_desc = " NTC";
537                         else
538                                 next_desc = "";
539
540                         if (staterr & E1000_RXD_STAT_DD) {
541                                 /* Descriptor Done */
542                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543                                         "RWB", i,
544                                         le64_to_cpu(u0->a),
545                                         le64_to_cpu(u0->b),
546                                         next_desc);
547                         } else {
548                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549                                         "R  ", i,
550                                         le64_to_cpu(u0->a),
551                                         le64_to_cpu(u0->b),
552                                         (u64)buffer_info->dma,
553                                         next_desc);
554
555                                 if (netif_msg_pktdata(adapter) &&
556                                     buffer_info->dma && buffer_info->page) {
557                                         print_hex_dump(KERN_INFO, "",
558                                           DUMP_PREFIX_ADDRESS,
559                                           16, 1,
560                                           page_address(buffer_info->page) +
561                                                       buffer_info->page_offset,
562                                           IGB_RX_BUFSZ, true);
563                                 }
564                         }
565                 }
566         }
567
568 exit:
569         return;
570 }
571
572 /**
573  *  igb_get_i2c_data - Reads the I2C SDA data bit
574  *  @hw: pointer to hardware structure
575  *  @i2cctl: Current value of I2CCTL register
576  *
577  *  Returns the I2C data bit value
578  **/
579 static int igb_get_i2c_data(void *data)
580 {
581         struct igb_adapter *adapter = (struct igb_adapter *)data;
582         struct e1000_hw *hw = &adapter->hw;
583         s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587
588 /**
589  *  igb_set_i2c_data - Sets the I2C data bit
590  *  @data: pointer to hardware structure
591  *  @state: I2C data value (0 or 1) to set
592  *
593  *  Sets the I2C data bit
594  **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597         struct igb_adapter *adapter = (struct igb_adapter *)data;
598         struct e1000_hw *hw = &adapter->hw;
599         s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601         if (state)
602                 i2cctl |= E1000_I2C_DATA_OUT;
603         else
604                 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606         i2cctl &= ~E1000_I2C_DATA_OE_N;
607         i2cctl |= E1000_I2C_CLK_OE_N;
608         wr32(E1000_I2CPARAMS, i2cctl);
609         wrfl();
610
611 }
612
613 /**
614  *  igb_set_i2c_clk - Sets the I2C SCL clock
615  *  @data: pointer to hardware structure
616  *  @state: state to set clock
617  *
618  *  Sets the I2C clock line to state
619  **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622         struct igb_adapter *adapter = (struct igb_adapter *)data;
623         struct e1000_hw *hw = &adapter->hw;
624         s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626         if (state) {
627                 i2cctl |= E1000_I2C_CLK_OUT;
628                 i2cctl &= ~E1000_I2C_CLK_OE_N;
629         } else {
630                 i2cctl &= ~E1000_I2C_CLK_OUT;
631                 i2cctl &= ~E1000_I2C_CLK_OE_N;
632         }
633         wr32(E1000_I2CPARAMS, i2cctl);
634         wrfl();
635 }
636
637 /**
638  *  igb_get_i2c_clk - Gets the I2C SCL clock state
639  *  @data: pointer to hardware structure
640  *
641  *  Gets the I2C clock state
642  **/
643 static int igb_get_i2c_clk(void *data)
644 {
645         struct igb_adapter *adapter = (struct igb_adapter *)data;
646         struct e1000_hw *hw = &adapter->hw;
647         s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653         .setsda         = igb_set_i2c_data,
654         .setscl         = igb_set_i2c_clk,
655         .getsda         = igb_get_i2c_data,
656         .getscl         = igb_get_i2c_clk,
657         .udelay         = 5,
658         .timeout        = 20,
659 };
660
661 /**
662  *  igb_get_hw_dev - return device
663  *  @hw: pointer to hardware structure
664  *
665  *  used by hardware layer to print debugging information
666  **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669         struct igb_adapter *adapter = hw->back;
670         return adapter->netdev;
671 }
672
673 /**
674  *  igb_init_module - Driver Registration Routine
675  *
676  *  igb_init_module is the first routine called when the driver is
677  *  loaded. All it does is register with the PCI subsystem.
678  **/
679 static int __init igb_init_module(void)
680 {
681         int ret;
682         pr_info("%s - version %s\n",
683                igb_driver_string, igb_driver_version);
684
685         pr_info("%s\n", igb_copyright);
686
687 #ifdef CONFIG_IGB_DCA
688         dca_register_notify(&dca_notifier);
689 #endif
690         ret = pci_register_driver(&igb_driver);
691         return ret;
692 }
693
694 module_init(igb_init_module);
695
696 /**
697  *  igb_exit_module - Driver Exit Cleanup Routine
698  *
699  *  igb_exit_module is called just before the driver is removed
700  *  from memory.
701  **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705         dca_unregister_notify(&dca_notifier);
706 #endif
707         pci_unregister_driver(&igb_driver);
708 }
709
710 module_exit(igb_exit_module);
711
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714  *  igb_cache_ring_register - Descriptor ring to register mapping
715  *  @adapter: board private structure to initialize
716  *
717  *  Once we know the feature-set enabled for the device, we'll cache
718  *  the register offset the descriptor ring is assigned to.
719  **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722         int i = 0, j = 0;
723         u32 rbase_offset = adapter->vfs_allocated_count;
724
725         switch (adapter->hw.mac.type) {
726         case e1000_82576:
727                 /* The queues are allocated for virtualization such that VF 0
728                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729                  * In order to avoid collision we start at the first free queue
730                  * and continue consuming queues in the same sequence
731                  */
732                 if (adapter->vfs_allocated_count) {
733                         for (; i < adapter->rss_queues; i++)
734                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
735                                                                Q_IDX_82576(i);
736                 }
737         case e1000_82575:
738         case e1000_82580:
739         case e1000_i350:
740         case e1000_i354:
741         case e1000_i210:
742         case e1000_i211:
743         default:
744                 for (; i < adapter->num_rx_queues; i++)
745                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746                 for (; j < adapter->num_tx_queues; j++)
747                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748                 break;
749         }
750 }
751
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765                            int index, int offset)
766 {
767         u32 ivar = array_rd32(E1000_IVAR0, index);
768
769         /* clear any bits that are currently set */
770         ivar &= ~((u32)0xFF << offset);
771
772         /* write vector and valid bit */
773         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775         array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781         struct igb_adapter *adapter = q_vector->adapter;
782         struct e1000_hw *hw = &adapter->hw;
783         int rx_queue = IGB_N0_QUEUE;
784         int tx_queue = IGB_N0_QUEUE;
785         u32 msixbm = 0;
786
787         if (q_vector->rx.ring)
788                 rx_queue = q_vector->rx.ring->reg_idx;
789         if (q_vector->tx.ring)
790                 tx_queue = q_vector->tx.ring->reg_idx;
791
792         switch (hw->mac.type) {
793         case e1000_82575:
794                 /* The 82575 assigns vectors using a bitmask, which matches the
795                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796                  * or more queues to a vector, we write the appropriate bits
797                  * into the MSIXBM register for that vector.
798                  */
799                 if (rx_queue > IGB_N0_QUEUE)
800                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801                 if (tx_queue > IGB_N0_QUEUE)
802                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803                 if (!adapter->msix_entries && msix_vector == 0)
804                         msixbm |= E1000_EIMS_OTHER;
805                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806                 q_vector->eims_value = msixbm;
807                 break;
808         case e1000_82576:
809                 /* 82576 uses a table that essentially consists of 2 columns
810                  * with 8 rows.  The ordering is column-major so we use the
811                  * lower 3 bits as the row index, and the 4th bit as the
812                  * column offset.
813                  */
814                 if (rx_queue > IGB_N0_QUEUE)
815                         igb_write_ivar(hw, msix_vector,
816                                        rx_queue & 0x7,
817                                        (rx_queue & 0x8) << 1);
818                 if (tx_queue > IGB_N0_QUEUE)
819                         igb_write_ivar(hw, msix_vector,
820                                        tx_queue & 0x7,
821                                        ((tx_queue & 0x8) << 1) + 8);
822                 q_vector->eims_value = 1 << msix_vector;
823                 break;
824         case e1000_82580:
825         case e1000_i350:
826         case e1000_i354:
827         case e1000_i210:
828         case e1000_i211:
829                 /* On 82580 and newer adapters the scheme is similar to 82576
830                  * however instead of ordering column-major we have things
831                  * ordered row-major.  So we traverse the table by using
832                  * bit 0 as the column offset, and the remaining bits as the
833                  * row index.
834                  */
835                 if (rx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        rx_queue >> 1,
838                                        (rx_queue & 0x1) << 4);
839                 if (tx_queue > IGB_N0_QUEUE)
840                         igb_write_ivar(hw, msix_vector,
841                                        tx_queue >> 1,
842                                        ((tx_queue & 0x1) << 4) + 8);
843                 q_vector->eims_value = 1 << msix_vector;
844                 break;
845         default:
846                 BUG();
847                 break;
848         }
849
850         /* add q_vector eims value to global eims_enable_mask */
851         adapter->eims_enable_mask |= q_vector->eims_value;
852
853         /* configure q_vector to set itr on first interrupt */
854         q_vector->set_itr = 1;
855 }
856
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866         u32 tmp;
867         int i, vector = 0;
868         struct e1000_hw *hw = &adapter->hw;
869
870         adapter->eims_enable_mask = 0;
871
872         /* set vector for other causes, i.e. link changes */
873         switch (hw->mac.type) {
874         case e1000_82575:
875                 tmp = rd32(E1000_CTRL_EXT);
876                 /* enable MSI-X PBA support*/
877                 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879                 /* Auto-Mask interrupts upon ICR read. */
880                 tmp |= E1000_CTRL_EXT_EIAME;
881                 tmp |= E1000_CTRL_EXT_IRCA;
882
883                 wr32(E1000_CTRL_EXT, tmp);
884
885                 /* enable msix_other interrupt */
886                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887                 adapter->eims_other = E1000_EIMS_OTHER;
888
889                 break;
890
891         case e1000_82576:
892         case e1000_82580:
893         case e1000_i350:
894         case e1000_i354:
895         case e1000_i210:
896         case e1000_i211:
897                 /* Turn on MSI-X capability first, or our settings
898                  * won't stick.  And it will take days to debug.
899                  */
900                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
902                      E1000_GPIE_NSICR);
903
904                 /* enable msix_other interrupt */
905                 adapter->eims_other = 1 << vector;
906                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908                 wr32(E1000_IVAR_MISC, tmp);
909                 break;
910         default:
911                 /* do nothing, since nothing else supports MSI-X */
912                 break;
913         } /* switch (hw->mac.type) */
914
915         adapter->eims_enable_mask |= adapter->eims_other;
916
917         for (i = 0; i < adapter->num_q_vectors; i++)
918                 igb_assign_vector(adapter->q_vector[i], vector++);
919
920         wrfl();
921 }
922
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932         struct net_device *netdev = adapter->netdev;
933         struct e1000_hw *hw = &adapter->hw;
934         int i, err = 0, vector = 0, free_vector = 0;
935
936         err = request_irq(adapter->msix_entries[vector].vector,
937                           igb_msix_other, 0, netdev->name, adapter);
938         if (err)
939                 goto err_out;
940
941         for (i = 0; i < adapter->num_q_vectors; i++) {
942                 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944                 vector++;
945
946                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948                 if (q_vector->rx.ring && q_vector->tx.ring)
949                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950                                 q_vector->rx.ring->queue_index);
951                 else if (q_vector->tx.ring)
952                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953                                 q_vector->tx.ring->queue_index);
954                 else if (q_vector->rx.ring)
955                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956                                 q_vector->rx.ring->queue_index);
957                 else
958                         sprintf(q_vector->name, "%s-unused", netdev->name);
959
960                 err = request_irq(adapter->msix_entries[vector].vector,
961                                   igb_msix_ring, 0, q_vector->name,
962                                   q_vector);
963                 if (err)
964                         goto err_free;
965         }
966
967         igb_configure_msix(adapter);
968         return 0;
969
970 err_free:
971         /* free already assigned IRQs */
972         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974         vector--;
975         for (i = 0; i < vector; i++) {
976                 free_irq(adapter->msix_entries[free_vector++].vector,
977                          adapter->q_vector[i]);
978         }
979 err_out:
980         return err;
981 }
982
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985         if (adapter->msix_entries) {
986                 pci_disable_msix(adapter->pdev);
987                 kfree(adapter->msix_entries);
988                 adapter->msix_entries = NULL;
989         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990                 pci_disable_msi(adapter->pdev);
991         }
992 }
993
994 /**
995  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996  *  @adapter: board private structure to initialize
997  *  @v_idx: Index of vector to be freed
998  *
999  *  This function frees the memory allocated to the q_vector.  In addition if
1000  *  NAPI is enabled it will delete any references to the NAPI struct prior
1001  *  to freeing the q_vector.
1002  **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007         if (q_vector->tx.ring)
1008                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010         if (q_vector->rx.ring)
1011                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013         adapter->q_vector[v_idx] = NULL;
1014         netif_napi_del(&q_vector->napi);
1015
1016         /* ixgbe_get_stats64() might access the rings on this vector,
1017          * we must wait a grace period before freeing it.
1018          */
1019         kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024  *  @adapter: board private structure to initialize
1025  *
1026  *  This function frees the memory allocated to the q_vectors.  In addition if
1027  *  NAPI is enabled it will delete any references to the NAPI struct prior
1028  *  to freeing the q_vector.
1029  **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032         int v_idx = adapter->num_q_vectors;
1033
1034         adapter->num_tx_queues = 0;
1035         adapter->num_rx_queues = 0;
1036         adapter->num_q_vectors = 0;
1037
1038         while (v_idx--)
1039                 igb_free_q_vector(adapter, v_idx);
1040 }
1041
1042 /**
1043  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044  *  @adapter: board private structure to initialize
1045  *
1046  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047  *  MSI-X interrupts allocated.
1048  */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051         igb_free_q_vectors(adapter);
1052         igb_reset_interrupt_capability(adapter);
1053 }
1054
1055 /**
1056  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057  *  @adapter: board private structure to initialize
1058  *  @msix: boolean value of MSIX capability
1059  *
1060  *  Attempt to configure interrupts using the best available
1061  *  capabilities of the hardware and kernel.
1062  **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065         int err;
1066         int numvecs, i;
1067
1068         if (!msix)
1069                 goto msi_only;
1070
1071         /* Number of supported queues. */
1072         adapter->num_rx_queues = adapter->rss_queues;
1073         if (adapter->vfs_allocated_count)
1074                 adapter->num_tx_queues = 1;
1075         else
1076                 adapter->num_tx_queues = adapter->rss_queues;
1077
1078         /* start with one vector for every Rx queue */
1079         numvecs = adapter->num_rx_queues;
1080
1081         /* if Tx handler is separate add 1 for every Tx queue */
1082         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083                 numvecs += adapter->num_tx_queues;
1084
1085         /* store the number of vectors reserved for queues */
1086         adapter->num_q_vectors = numvecs;
1087
1088         /* add 1 vector for link status interrupts */
1089         numvecs++;
1090         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091                                         GFP_KERNEL);
1092
1093         if (!adapter->msix_entries)
1094                 goto msi_only;
1095
1096         for (i = 0; i < numvecs; i++)
1097                 adapter->msix_entries[i].entry = i;
1098
1099         err = pci_enable_msix(adapter->pdev,
1100                               adapter->msix_entries,
1101                               numvecs);
1102         if (err == 0)
1103                 return;
1104
1105         igb_reset_interrupt_capability(adapter);
1106
1107         /* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110         /* disable SR-IOV for non MSI-X configurations */
1111         if (adapter->vf_data) {
1112                 struct e1000_hw *hw = &adapter->hw;
1113                 /* disable iov and allow time for transactions to clear */
1114                 pci_disable_sriov(adapter->pdev);
1115                 msleep(500);
1116
1117                 kfree(adapter->vf_data);
1118                 adapter->vf_data = NULL;
1119                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120                 wrfl();
1121                 msleep(100);
1122                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123         }
1124 #endif
1125         adapter->vfs_allocated_count = 0;
1126         adapter->rss_queues = 1;
1127         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128         adapter->num_rx_queues = 1;
1129         adapter->num_tx_queues = 1;
1130         adapter->num_q_vectors = 1;
1131         if (!pci_enable_msi(adapter->pdev))
1132                 adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134
1135 static void igb_add_ring(struct igb_ring *ring,
1136                          struct igb_ring_container *head)
1137 {
1138         head->ring = ring;
1139         head->count++;
1140 }
1141
1142 /**
1143  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144  *  @adapter: board private structure to initialize
1145  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146  *  @v_idx: index of vector in adapter struct
1147  *  @txr_count: total number of Tx rings to allocate
1148  *  @txr_idx: index of first Tx ring to allocate
1149  *  @rxr_count: total number of Rx rings to allocate
1150  *  @rxr_idx: index of first Rx ring to allocate
1151  *
1152  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153  **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155                               int v_count, int v_idx,
1156                               int txr_count, int txr_idx,
1157                               int rxr_count, int rxr_idx)
1158 {
1159         struct igb_q_vector *q_vector;
1160         struct igb_ring *ring;
1161         int ring_count, size;
1162
1163         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164         if (txr_count > 1 || rxr_count > 1)
1165                 return -ENOMEM;
1166
1167         ring_count = txr_count + rxr_count;
1168         size = sizeof(struct igb_q_vector) +
1169                (sizeof(struct igb_ring) * ring_count);
1170
1171         /* allocate q_vector and rings */
1172         q_vector = kzalloc(size, GFP_KERNEL);
1173         if (!q_vector)
1174                 return -ENOMEM;
1175
1176         /* initialize NAPI */
1177         netif_napi_add(adapter->netdev, &q_vector->napi,
1178                        igb_poll, 64);
1179
1180         /* tie q_vector and adapter together */
1181         adapter->q_vector[v_idx] = q_vector;
1182         q_vector->adapter = adapter;
1183
1184         /* initialize work limits */
1185         q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187         /* initialize ITR configuration */
1188         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189         q_vector->itr_val = IGB_START_ITR;
1190
1191         /* initialize pointer to rings */
1192         ring = q_vector->ring;
1193
1194         /* intialize ITR */
1195         if (rxr_count) {
1196                 /* rx or rx/tx vector */
1197                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198                         q_vector->itr_val = adapter->rx_itr_setting;
1199         } else {
1200                 /* tx only vector */
1201                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202                         q_vector->itr_val = adapter->tx_itr_setting;
1203         }
1204
1205         if (txr_count) {
1206                 /* assign generic ring traits */
1207                 ring->dev = &adapter->pdev->dev;
1208                 ring->netdev = adapter->netdev;
1209
1210                 /* configure backlink on ring */
1211                 ring->q_vector = q_vector;
1212
1213                 /* update q_vector Tx values */
1214                 igb_add_ring(ring, &q_vector->tx);
1215
1216                 /* For 82575, context index must be unique per ring. */
1217                 if (adapter->hw.mac.type == e1000_82575)
1218                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220                 /* apply Tx specific ring traits */
1221                 ring->count = adapter->tx_ring_count;
1222                 ring->queue_index = txr_idx;
1223
1224                 /* assign ring to adapter */
1225                 adapter->tx_ring[txr_idx] = ring;
1226
1227                 /* push pointer to next ring */
1228                 ring++;
1229         }
1230
1231         if (rxr_count) {
1232                 /* assign generic ring traits */
1233                 ring->dev = &adapter->pdev->dev;
1234                 ring->netdev = adapter->netdev;
1235
1236                 /* configure backlink on ring */
1237                 ring->q_vector = q_vector;
1238
1239                 /* update q_vector Rx values */
1240                 igb_add_ring(ring, &q_vector->rx);
1241
1242                 /* set flag indicating ring supports SCTP checksum offload */
1243                 if (adapter->hw.mac.type >= e1000_82576)
1244                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246                 /*
1247                  * On i350, i354, i210, and i211, loopback VLAN packets
1248                  * have the tag byte-swapped.
1249                  */
1250                 if (adapter->hw.mac.type >= e1000_i350)
1251                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253                 /* apply Rx specific ring traits */
1254                 ring->count = adapter->rx_ring_count;
1255                 ring->queue_index = rxr_idx;
1256
1257                 /* assign ring to adapter */
1258                 adapter->rx_ring[rxr_idx] = ring;
1259         }
1260
1261         return 0;
1262 }
1263
1264
1265 /**
1266  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267  *  @adapter: board private structure to initialize
1268  *
1269  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270  *  return -ENOMEM.
1271  **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274         int q_vectors = adapter->num_q_vectors;
1275         int rxr_remaining = adapter->num_rx_queues;
1276         int txr_remaining = adapter->num_tx_queues;
1277         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278         int err;
1279
1280         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281                 for (; rxr_remaining; v_idx++) {
1282                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283                                                  0, 0, 1, rxr_idx);
1284
1285                         if (err)
1286                                 goto err_out;
1287
1288                         /* update counts and index */
1289                         rxr_remaining--;
1290                         rxr_idx++;
1291                 }
1292         }
1293
1294         for (; v_idx < q_vectors; v_idx++) {
1295                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298                                          tqpv, txr_idx, rqpv, rxr_idx);
1299
1300                 if (err)
1301                         goto err_out;
1302
1303                 /* update counts and index */
1304                 rxr_remaining -= rqpv;
1305                 txr_remaining -= tqpv;
1306                 rxr_idx++;
1307                 txr_idx++;
1308         }
1309
1310         return 0;
1311
1312 err_out:
1313         adapter->num_tx_queues = 0;
1314         adapter->num_rx_queues = 0;
1315         adapter->num_q_vectors = 0;
1316
1317         while (v_idx--)
1318                 igb_free_q_vector(adapter, v_idx);
1319
1320         return -ENOMEM;
1321 }
1322
1323 /**
1324  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325  *  @adapter: board private structure to initialize
1326  *  @msix: boolean value of MSIX capability
1327  *
1328  *  This function initializes the interrupts and allocates all of the queues.
1329  **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332         struct pci_dev *pdev = adapter->pdev;
1333         int err;
1334
1335         igb_set_interrupt_capability(adapter, msix);
1336
1337         err = igb_alloc_q_vectors(adapter);
1338         if (err) {
1339                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340                 goto err_alloc_q_vectors;
1341         }
1342
1343         igb_cache_ring_register(adapter);
1344
1345         return 0;
1346
1347 err_alloc_q_vectors:
1348         igb_reset_interrupt_capability(adapter);
1349         return err;
1350 }
1351
1352 /**
1353  *  igb_request_irq - initialize interrupts
1354  *  @adapter: board private structure to initialize
1355  *
1356  *  Attempts to configure interrupts using the best available
1357  *  capabilities of the hardware and kernel.
1358  **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361         struct net_device *netdev = adapter->netdev;
1362         struct pci_dev *pdev = adapter->pdev;
1363         int err = 0;
1364
1365         if (adapter->msix_entries) {
1366                 err = igb_request_msix(adapter);
1367                 if (!err)
1368                         goto request_done;
1369                 /* fall back to MSI */
1370                 igb_free_all_tx_resources(adapter);
1371                 igb_free_all_rx_resources(adapter);
1372
1373                 igb_clear_interrupt_scheme(adapter);
1374                 err = igb_init_interrupt_scheme(adapter, false);
1375                 if (err)
1376                         goto request_done;
1377
1378                 igb_setup_all_tx_resources(adapter);
1379                 igb_setup_all_rx_resources(adapter);
1380                 igb_configure(adapter);
1381         }
1382
1383         igb_assign_vector(adapter->q_vector[0], 0);
1384
1385         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1387                                   netdev->name, adapter);
1388                 if (!err)
1389                         goto request_done;
1390
1391                 /* fall back to legacy interrupts */
1392                 igb_reset_interrupt_capability(adapter);
1393                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394         }
1395
1396         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397                           netdev->name, adapter);
1398
1399         if (err)
1400                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401                         err);
1402
1403 request_done:
1404         return err;
1405 }
1406
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409         if (adapter->msix_entries) {
1410                 int vector = 0, i;
1411
1412                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414                 for (i = 0; i < adapter->num_q_vectors; i++)
1415                         free_irq(adapter->msix_entries[vector++].vector,
1416                                  adapter->q_vector[i]);
1417         } else {
1418                 free_irq(adapter->pdev->irq, adapter);
1419         }
1420 }
1421
1422 /**
1423  *  igb_irq_disable - Mask off interrupt generation on the NIC
1424  *  @adapter: board private structure
1425  **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428         struct e1000_hw *hw = &adapter->hw;
1429
1430         /* we need to be careful when disabling interrupts.  The VFs are also
1431          * mapped into these registers and so clearing the bits can cause
1432          * issues on the VF drivers so we only need to clear what we set
1433          */
1434         if (adapter->msix_entries) {
1435                 u32 regval = rd32(E1000_EIAM);
1436                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438                 regval = rd32(E1000_EIAC);
1439                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440         }
1441
1442         wr32(E1000_IAM, 0);
1443         wr32(E1000_IMC, ~0);
1444         wrfl();
1445         if (adapter->msix_entries) {
1446                 int i;
1447                 for (i = 0; i < adapter->num_q_vectors; i++)
1448                         synchronize_irq(adapter->msix_entries[i].vector);
1449         } else {
1450                 synchronize_irq(adapter->pdev->irq);
1451         }
1452 }
1453
1454 /**
1455  *  igb_irq_enable - Enable default interrupt generation settings
1456  *  @adapter: board private structure
1457  **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460         struct e1000_hw *hw = &adapter->hw;
1461
1462         if (adapter->msix_entries) {
1463                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464                 u32 regval = rd32(E1000_EIAC);
1465                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466                 regval = rd32(E1000_EIAM);
1467                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1469                 if (adapter->vfs_allocated_count) {
1470                         wr32(E1000_MBVFIMR, 0xFF);
1471                         ims |= E1000_IMS_VMMB;
1472                 }
1473                 wr32(E1000_IMS, ims);
1474         } else {
1475                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476                                 E1000_IMS_DRSTA);
1477                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478                                 E1000_IMS_DRSTA);
1479         }
1480 }
1481
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484         struct e1000_hw *hw = &adapter->hw;
1485         u16 vid = adapter->hw.mng_cookie.vlan_id;
1486         u16 old_vid = adapter->mng_vlan_id;
1487
1488         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489                 /* add VID to filter table */
1490                 igb_vfta_set(hw, vid, true);
1491                 adapter->mng_vlan_id = vid;
1492         } else {
1493                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494         }
1495
1496         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497             (vid != old_vid) &&
1498             !test_bit(old_vid, adapter->active_vlans)) {
1499                 /* remove VID from filter table */
1500                 igb_vfta_set(hw, old_vid, false);
1501         }
1502 }
1503
1504 /**
1505  *  igb_release_hw_control - release control of the h/w to f/w
1506  *  @adapter: address of board private structure
1507  *
1508  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509  *  For ASF and Pass Through versions of f/w this means that the
1510  *  driver is no longer loaded.
1511  **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514         struct e1000_hw *hw = &adapter->hw;
1515         u32 ctrl_ext;
1516
1517         /* Let firmware take over control of h/w */
1518         ctrl_ext = rd32(E1000_CTRL_EXT);
1519         wr32(E1000_CTRL_EXT,
1520                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522
1523 /**
1524  *  igb_get_hw_control - get control of the h/w from f/w
1525  *  @adapter: address of board private structure
1526  *
1527  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528  *  For ASF and Pass Through versions of f/w this means that
1529  *  the driver is loaded.
1530  **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533         struct e1000_hw *hw = &adapter->hw;
1534         u32 ctrl_ext;
1535
1536         /* Let firmware know the driver has taken over */
1537         ctrl_ext = rd32(E1000_CTRL_EXT);
1538         wr32(E1000_CTRL_EXT,
1539                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541
1542 /**
1543  *  igb_configure - configure the hardware for RX and TX
1544  *  @adapter: private board structure
1545  **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548         struct net_device *netdev = adapter->netdev;
1549         int i;
1550
1551         igb_get_hw_control(adapter);
1552         igb_set_rx_mode(netdev);
1553
1554         igb_restore_vlan(adapter);
1555
1556         igb_setup_tctl(adapter);
1557         igb_setup_mrqc(adapter);
1558         igb_setup_rctl(adapter);
1559
1560         igb_configure_tx(adapter);
1561         igb_configure_rx(adapter);
1562
1563         igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565         /* call igb_desc_unused which always leaves
1566          * at least 1 descriptor unused to make sure
1567          * next_to_use != next_to_clean
1568          */
1569         for (i = 0; i < adapter->num_rx_queues; i++) {
1570                 struct igb_ring *ring = adapter->rx_ring[i];
1571                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572         }
1573 }
1574
1575 /**
1576  *  igb_power_up_link - Power up the phy/serdes link
1577  *  @adapter: address of board private structure
1578  **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581         igb_reset_phy(&adapter->hw);
1582
1583         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584                 igb_power_up_phy_copper(&adapter->hw);
1585         else
1586                 igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588
1589 /**
1590  *  igb_power_down_link - Power down the phy/serdes link
1591  *  @adapter: address of board private structure
1592  */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596                 igb_power_down_phy_copper_82575(&adapter->hw);
1597         else
1598                 igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600
1601 /**
1602  *  igb_up - Open the interface and prepare it to handle traffic
1603  *  @adapter: board private structure
1604  **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607         struct e1000_hw *hw = &adapter->hw;
1608         int i;
1609
1610         /* hardware has been reset, we need to reload some things */
1611         igb_configure(adapter);
1612
1613         clear_bit(__IGB_DOWN, &adapter->state);
1614
1615         for (i = 0; i < adapter->num_q_vectors; i++)
1616                 napi_enable(&(adapter->q_vector[i]->napi));
1617
1618         if (adapter->msix_entries)
1619                 igb_configure_msix(adapter);
1620         else
1621                 igb_assign_vector(adapter->q_vector[0], 0);
1622
1623         /* Clear any pending interrupts. */
1624         rd32(E1000_ICR);
1625         igb_irq_enable(adapter);
1626
1627         /* notify VFs that reset has been completed */
1628         if (adapter->vfs_allocated_count) {
1629                 u32 reg_data = rd32(E1000_CTRL_EXT);
1630                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631                 wr32(E1000_CTRL_EXT, reg_data);
1632         }
1633
1634         netif_tx_start_all_queues(adapter->netdev);
1635
1636         /* start the watchdog. */
1637         hw->mac.get_link_status = 1;
1638         schedule_work(&adapter->watchdog_task);
1639
1640         return 0;
1641 }
1642
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645         struct net_device *netdev = adapter->netdev;
1646         struct e1000_hw *hw = &adapter->hw;
1647         u32 tctl, rctl;
1648         int i;
1649
1650         /* signal that we're down so the interrupt handler does not
1651          * reschedule our watchdog timer
1652          */
1653         set_bit(__IGB_DOWN, &adapter->state);
1654
1655         /* disable receives in the hardware */
1656         rctl = rd32(E1000_RCTL);
1657         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658         /* flush and sleep below */
1659
1660         netif_tx_stop_all_queues(netdev);
1661
1662         /* disable transmits in the hardware */
1663         tctl = rd32(E1000_TCTL);
1664         tctl &= ~E1000_TCTL_EN;
1665         wr32(E1000_TCTL, tctl);
1666         /* flush both disables and wait for them to finish */
1667         wrfl();
1668         msleep(10);
1669
1670         igb_irq_disable(adapter);
1671
1672         for (i = 0; i < adapter->num_q_vectors; i++) {
1673                 napi_synchronize(&(adapter->q_vector[i]->napi));
1674                 napi_disable(&(adapter->q_vector[i]->napi));
1675         }
1676
1677
1678         del_timer_sync(&adapter->watchdog_timer);
1679         del_timer_sync(&adapter->phy_info_timer);
1680
1681         netif_carrier_off(netdev);
1682
1683         /* record the stats before reset*/
1684         spin_lock(&adapter->stats64_lock);
1685         igb_update_stats(adapter, &adapter->stats64);
1686         spin_unlock(&adapter->stats64_lock);
1687
1688         adapter->link_speed = 0;
1689         adapter->link_duplex = 0;
1690
1691         if (!pci_channel_offline(adapter->pdev))
1692                 igb_reset(adapter);
1693         igb_clean_all_tx_rings(adapter);
1694         igb_clean_all_rx_rings(adapter);
1695 #ifdef CONFIG_IGB_DCA
1696
1697         /* since we reset the hardware DCA settings were cleared */
1698         igb_setup_dca(adapter);
1699 #endif
1700 }
1701
1702 void igb_reinit_locked(struct igb_adapter *adapter)
1703 {
1704         WARN_ON(in_interrupt());
1705         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706                 msleep(1);
1707         igb_down(adapter);
1708         igb_up(adapter);
1709         clear_bit(__IGB_RESETTING, &adapter->state);
1710 }
1711
1712 void igb_reset(struct igb_adapter *adapter)
1713 {
1714         struct pci_dev *pdev = adapter->pdev;
1715         struct e1000_hw *hw = &adapter->hw;
1716         struct e1000_mac_info *mac = &hw->mac;
1717         struct e1000_fc_info *fc = &hw->fc;
1718         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720         /* Repartition Pba for greater than 9k mtu
1721          * To take effect CTRL.RST is required.
1722          */
1723         switch (mac->type) {
1724         case e1000_i350:
1725         case e1000_i354:
1726         case e1000_82580:
1727                 pba = rd32(E1000_RXPBS);
1728                 pba = igb_rxpbs_adjust_82580(pba);
1729                 break;
1730         case e1000_82576:
1731                 pba = rd32(E1000_RXPBS);
1732                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1733                 break;
1734         case e1000_82575:
1735         case e1000_i210:
1736         case e1000_i211:
1737         default:
1738                 pba = E1000_PBA_34K;
1739                 break;
1740         }
1741
1742         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743             (mac->type < e1000_82576)) {
1744                 /* adjust PBA for jumbo frames */
1745                 wr32(E1000_PBA, pba);
1746
1747                 /* To maintain wire speed transmits, the Tx FIFO should be
1748                  * large enough to accommodate two full transmit packets,
1749                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1750                  * the Rx FIFO should be large enough to accommodate at least
1751                  * one full receive packet and is similarly rounded up and
1752                  * expressed in KB.
1753                  */
1754                 pba = rd32(E1000_PBA);
1755                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1756                 tx_space = pba >> 16;
1757                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1758                 pba &= 0xffff;
1759                 /* the Tx fifo also stores 16 bytes of information about the Tx
1760                  * but don't include ethernet FCS because hardware appends it
1761                  */
1762                 min_tx_space = (adapter->max_frame_size +
1763                                 sizeof(union e1000_adv_tx_desc) -
1764                                 ETH_FCS_LEN) * 2;
1765                 min_tx_space = ALIGN(min_tx_space, 1024);
1766                 min_tx_space >>= 10;
1767                 /* software strips receive CRC, so leave room for it */
1768                 min_rx_space = adapter->max_frame_size;
1769                 min_rx_space = ALIGN(min_rx_space, 1024);
1770                 min_rx_space >>= 10;
1771
1772                 /* If current Tx allocation is less than the min Tx FIFO size,
1773                  * and the min Tx FIFO size is less than the current Rx FIFO
1774                  * allocation, take space away from current Rx allocation
1775                  */
1776                 if (tx_space < min_tx_space &&
1777                     ((min_tx_space - tx_space) < pba)) {
1778                         pba = pba - (min_tx_space - tx_space);
1779
1780                         /* if short on Rx space, Rx wins and must trump Tx
1781                          * adjustment
1782                          */
1783                         if (pba < min_rx_space)
1784                                 pba = min_rx_space;
1785                 }
1786                 wr32(E1000_PBA, pba);
1787         }
1788
1789         /* flow control settings */
1790         /* The high water mark must be low enough to fit one full frame
1791          * (or the size used for early receive) above it in the Rx FIFO.
1792          * Set it to the lower of:
1793          * - 90% of the Rx FIFO size, or
1794          * - the full Rx FIFO size minus one full frame
1795          */
1796         hwm = min(((pba << 10) * 9 / 10),
1797                         ((pba << 10) - 2 * adapter->max_frame_size));
1798
1799         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1800         fc->low_water = fc->high_water - 16;
1801         fc->pause_time = 0xFFFF;
1802         fc->send_xon = 1;
1803         fc->current_mode = fc->requested_mode;
1804
1805         /* disable receive for all VFs and wait one second */
1806         if (adapter->vfs_allocated_count) {
1807                 int i;
1808                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811                 /* ping all the active vfs to let them know we are going down */
1812                 igb_ping_all_vfs(adapter);
1813
1814                 /* disable transmits and receives */
1815                 wr32(E1000_VFRE, 0);
1816                 wr32(E1000_VFTE, 0);
1817         }
1818
1819         /* Allow time for pending master requests to run */
1820         hw->mac.ops.reset_hw(hw);
1821         wr32(E1000_WUC, 0);
1822
1823         if (hw->mac.ops.init_hw(hw))
1824                 dev_err(&pdev->dev, "Hardware Error\n");
1825
1826         /* Flow control settings reset on hardware reset, so guarantee flow
1827          * control is off when forcing speed.
1828          */
1829         if (!hw->mac.autoneg)
1830                 igb_force_mac_fc(hw);
1831
1832         igb_init_dmac(adapter, pba);
1833 #ifdef CONFIG_IGB_HWMON
1834         /* Re-initialize the thermal sensor on i350 devices. */
1835         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837                         /* If present, re-initialize the external thermal sensor
1838                          * interface.
1839                          */
1840                         if (adapter->ets)
1841                                 mac->ops.init_thermal_sensor_thresh(hw);
1842                 }
1843         }
1844 #endif
1845         if (!netif_running(adapter->netdev))
1846                 igb_power_down_link(adapter);
1847
1848         igb_update_mng_vlan(adapter);
1849
1850         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853         /* Re-enable PTP, where applicable. */
1854         igb_ptp_reset(adapter);
1855
1856         igb_get_phy_info(hw);
1857 }
1858
1859 static netdev_features_t igb_fix_features(struct net_device *netdev,
1860         netdev_features_t features)
1861 {
1862         /* Since there is no support for separate Rx/Tx vlan accel
1863          * enable/disable make sure Tx flag is always in same state as Rx.
1864          */
1865         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866                 features |= NETIF_F_HW_VLAN_CTAG_TX;
1867         else
1868                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870         return features;
1871 }
1872
1873 static int igb_set_features(struct net_device *netdev,
1874         netdev_features_t features)
1875 {
1876         netdev_features_t changed = netdev->features ^ features;
1877         struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880                 igb_vlan_mode(netdev, features);
1881
1882         if (!(changed & NETIF_F_RXALL))
1883                 return 0;
1884
1885         netdev->features = features;
1886
1887         if (netif_running(netdev))
1888                 igb_reinit_locked(adapter);
1889         else
1890                 igb_reset(adapter);
1891
1892         return 0;
1893 }
1894
1895 static const struct net_device_ops igb_netdev_ops = {
1896         .ndo_open               = igb_open,
1897         .ndo_stop               = igb_close,
1898         .ndo_start_xmit         = igb_xmit_frame,
1899         .ndo_get_stats64        = igb_get_stats64,
1900         .ndo_set_rx_mode        = igb_set_rx_mode,
1901         .ndo_set_mac_address    = igb_set_mac,
1902         .ndo_change_mtu         = igb_change_mtu,
1903         .ndo_do_ioctl           = igb_ioctl,
1904         .ndo_tx_timeout         = igb_tx_timeout,
1905         .ndo_validate_addr      = eth_validate_addr,
1906         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1907         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1908         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1909         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1910         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1911         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
1912         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914         .ndo_poll_controller    = igb_netpoll,
1915 #endif
1916         .ndo_fix_features       = igb_fix_features,
1917         .ndo_set_features       = igb_set_features,
1918 };
1919
1920 /**
1921  * igb_set_fw_version - Configure version string for ethtool
1922  * @adapter: adapter struct
1923  **/
1924 void igb_set_fw_version(struct igb_adapter *adapter)
1925 {
1926         struct e1000_hw *hw = &adapter->hw;
1927         struct e1000_fw_version fw;
1928
1929         igb_get_fw_version(hw, &fw);
1930
1931         switch (hw->mac.type) {
1932         case e1000_i211:
1933                 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934                          "%2d.%2d-%d",
1935                          fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936                 break;
1937
1938         default:
1939                 /* if option is rom valid, display its version too */
1940                 if (fw.or_valid) {
1941                         snprintf(adapter->fw_version,
1942                                  sizeof(adapter->fw_version),
1943                                  "%d.%d, 0x%08x, %d.%d.%d",
1944                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
1945                                  fw.or_major, fw.or_build, fw.or_patch);
1946                 /* no option rom */
1947                 } else {
1948                         snprintf(adapter->fw_version,
1949                                  sizeof(adapter->fw_version),
1950                                  "%d.%d, 0x%08x",
1951                                  fw.eep_major, fw.eep_minor, fw.etrack_id);
1952                 }
1953                 break;
1954         }
1955         return;
1956 }
1957
1958 /**
1959  *  igb_init_i2c - Init I2C interface
1960  *  @adapter: pointer to adapter structure
1961  **/
1962 static s32 igb_init_i2c(struct igb_adapter *adapter)
1963 {
1964         s32 status = E1000_SUCCESS;
1965
1966         /* I2C interface supported on i350 devices */
1967         if (adapter->hw.mac.type != e1000_i350)
1968                 return E1000_SUCCESS;
1969
1970         /* Initialize the i2c bus which is controlled by the registers.
1971          * This bus will use the i2c_algo_bit structue that implements
1972          * the protocol through toggling of the 4 bits in the register.
1973          */
1974         adapter->i2c_adap.owner = THIS_MODULE;
1975         adapter->i2c_algo = igb_i2c_algo;
1976         adapter->i2c_algo.data = adapter;
1977         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979         strlcpy(adapter->i2c_adap.name, "igb BB",
1980                 sizeof(adapter->i2c_adap.name));
1981         status = i2c_bit_add_bus(&adapter->i2c_adap);
1982         return status;
1983 }
1984
1985 /**
1986  *  igb_probe - Device Initialization Routine
1987  *  @pdev: PCI device information struct
1988  *  @ent: entry in igb_pci_tbl
1989  *
1990  *  Returns 0 on success, negative on failure
1991  *
1992  *  igb_probe initializes an adapter identified by a pci_dev structure.
1993  *  The OS initialization, configuring of the adapter private structure,
1994  *  and a hardware reset occur.
1995  **/
1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 {
1998         struct net_device *netdev;
1999         struct igb_adapter *adapter;
2000         struct e1000_hw *hw;
2001         u16 eeprom_data = 0;
2002         s32 ret_val;
2003         static int global_quad_port_a; /* global quad port a indication */
2004         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005         unsigned long mmio_start, mmio_len;
2006         int err, pci_using_dac;
2007         u8 part_str[E1000_PBANUM_LENGTH];
2008
2009         /* Catch broken hardware that put the wrong VF device ID in
2010          * the PCIe SR-IOV capability.
2011          */
2012         if (pdev->is_virtfn) {
2013                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014                         pci_name(pdev), pdev->vendor, pdev->device);
2015                 return -EINVAL;
2016         }
2017
2018         err = pci_enable_device_mem(pdev);
2019         if (err)
2020                 return err;
2021
2022         pci_using_dac = 0;
2023         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024         if (!err) {
2025                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026                 if (!err)
2027                         pci_using_dac = 1;
2028         } else {
2029                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030                 if (err) {
2031                         err = dma_set_coherent_mask(&pdev->dev,
2032                                                     DMA_BIT_MASK(32));
2033                         if (err) {
2034                                 dev_err(&pdev->dev,
2035                                         "No usable DMA configuration, aborting\n");
2036                                 goto err_dma;
2037                         }
2038                 }
2039         }
2040
2041         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042                                            IORESOURCE_MEM),
2043                                            igb_driver_name);
2044         if (err)
2045                 goto err_pci_reg;
2046
2047         pci_enable_pcie_error_reporting(pdev);
2048
2049         pci_set_master(pdev);
2050         pci_save_state(pdev);
2051
2052         err = -ENOMEM;
2053         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054                                    IGB_MAX_TX_QUEUES);
2055         if (!netdev)
2056                 goto err_alloc_etherdev;
2057
2058         SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060         pci_set_drvdata(pdev, netdev);
2061         adapter = netdev_priv(netdev);
2062         adapter->netdev = netdev;
2063         adapter->pdev = pdev;
2064         hw = &adapter->hw;
2065         hw->back = adapter;
2066         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068         mmio_start = pci_resource_start(pdev, 0);
2069         mmio_len = pci_resource_len(pdev, 0);
2070
2071         err = -EIO;
2072         hw->hw_addr = ioremap(mmio_start, mmio_len);
2073         if (!hw->hw_addr)
2074                 goto err_ioremap;
2075
2076         netdev->netdev_ops = &igb_netdev_ops;
2077         igb_set_ethtool_ops(netdev);
2078         netdev->watchdog_timeo = 5 * HZ;
2079
2080         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082         netdev->mem_start = mmio_start;
2083         netdev->mem_end = mmio_start + mmio_len;
2084
2085         /* PCI config space info */
2086         hw->vendor_id = pdev->vendor;
2087         hw->device_id = pdev->device;
2088         hw->revision_id = pdev->revision;
2089         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090         hw->subsystem_device_id = pdev->subsystem_device;
2091
2092         /* Copy the default MAC, PHY and NVM function pointers */
2093         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096         /* Initialize skew-specific constants */
2097         err = ei->get_invariants(hw);
2098         if (err)
2099                 goto err_sw_init;
2100
2101         /* setup the private structure */
2102         err = igb_sw_init(adapter);
2103         if (err)
2104                 goto err_sw_init;
2105
2106         igb_get_bus_info_pcie(hw);
2107
2108         hw->phy.autoneg_wait_to_complete = false;
2109
2110         /* Copper options */
2111         if (hw->phy.media_type == e1000_media_type_copper) {
2112                 hw->phy.mdix = AUTO_ALL_MODES;
2113                 hw->phy.disable_polarity_correction = false;
2114                 hw->phy.ms_type = e1000_ms_hw_default;
2115         }
2116
2117         if (igb_check_reset_block(hw))
2118                 dev_info(&pdev->dev,
2119                         "PHY reset is blocked due to SOL/IDER session.\n");
2120
2121         /* features is initialized to 0 in allocation, it might have bits
2122          * set by igb_sw_init so we should use an or instead of an
2123          * assignment.
2124          */
2125         netdev->features |= NETIF_F_SG |
2126                             NETIF_F_IP_CSUM |
2127                             NETIF_F_IPV6_CSUM |
2128                             NETIF_F_TSO |
2129                             NETIF_F_TSO6 |
2130                             NETIF_F_RXHASH |
2131                             NETIF_F_RXCSUM |
2132                             NETIF_F_HW_VLAN_CTAG_RX |
2133                             NETIF_F_HW_VLAN_CTAG_TX;
2134
2135         /* copy netdev features into list of user selectable features */
2136         netdev->hw_features |= netdev->features;
2137         netdev->hw_features |= NETIF_F_RXALL;
2138
2139         /* set this bit last since it cannot be part of hw_features */
2140         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142         netdev->vlan_features |= NETIF_F_TSO |
2143                                  NETIF_F_TSO6 |
2144                                  NETIF_F_IP_CSUM |
2145                                  NETIF_F_IPV6_CSUM |
2146                                  NETIF_F_SG;
2147
2148         netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150         if (pci_using_dac) {
2151                 netdev->features |= NETIF_F_HIGHDMA;
2152                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2153         }
2154
2155         if (hw->mac.type >= e1000_82576) {
2156                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157                 netdev->features |= NETIF_F_SCTP_CSUM;
2158         }
2159
2160         netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164         /* before reading the NVM, reset the controller to put the device in a
2165          * known good starting state
2166          */
2167         hw->mac.ops.reset_hw(hw);
2168
2169         /* make sure the NVM is good , i211 parts have special NVM that
2170          * doesn't contain a checksum
2171          */
2172         if (hw->mac.type != e1000_i211) {
2173                 if (hw->nvm.ops.validate(hw) < 0) {
2174                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175                         err = -EIO;
2176                         goto err_eeprom;
2177                 }
2178         }
2179
2180         /* copy the MAC address out of the NVM */
2181         if (hw->mac.ops.read_mac_addr(hw))
2182                 dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186         if (!is_valid_ether_addr(netdev->dev_addr)) {
2187                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2188                 err = -EIO;
2189                 goto err_eeprom;
2190         }
2191
2192         /* get firmware version for ethtool -i */
2193         igb_set_fw_version(adapter);
2194
2195         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196                     (unsigned long) adapter);
2197         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198                     (unsigned long) adapter);
2199
2200         INIT_WORK(&adapter->reset_task, igb_reset_task);
2201         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203         /* Initialize link properties that are user-changeable */
2204         adapter->fc_autoneg = true;
2205         hw->mac.autoneg = true;
2206         hw->phy.autoneg_advertised = 0x2f;
2207
2208         hw->fc.requested_mode = e1000_fc_default;
2209         hw->fc.current_mode = e1000_fc_default;
2210
2211         igb_validate_mdi_setting(hw);
2212
2213         /* By default, support wake on port A */
2214         if (hw->bus.func == 0)
2215                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217         /* Check the NVM for wake support on non-port A ports */
2218         if (hw->mac.type >= e1000_82580)
2219                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221                                  &eeprom_data);
2222         else if (hw->bus.func == 1)
2223                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225         if (eeprom_data & IGB_EEPROM_APME)
2226                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228         /* now that we have the eeprom settings, apply the special cases where
2229          * the eeprom may be wrong or the board simply won't support wake on
2230          * lan on a particular port
2231          */
2232         switch (pdev->device) {
2233         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235                 break;
2236         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237         case E1000_DEV_ID_82576_FIBER:
2238         case E1000_DEV_ID_82576_SERDES:
2239                 /* Wake events only supported on port A for dual fiber
2240                  * regardless of eeprom setting
2241                  */
2242                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244                 break;
2245         case E1000_DEV_ID_82576_QUAD_COPPER:
2246         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247                 /* if quad port adapter, disable WoL on all but port A */
2248                 if (global_quad_port_a != 0)
2249                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250                 else
2251                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252                 /* Reset for multiple quad port adapters */
2253                 if (++global_quad_port_a == 4)
2254                         global_quad_port_a = 0;
2255                 break;
2256         default:
2257                 /* If the device can't wake, don't set software support */
2258                 if (!device_can_wakeup(&adapter->pdev->dev))
2259                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260         }
2261
2262         /* initialize the wol settings based on the eeprom settings */
2263         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264                 adapter->wol |= E1000_WUFC_MAG;
2265
2266         /* Some vendors want WoL disabled by default, but still supported */
2267         if ((hw->mac.type == e1000_i350) &&
2268             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270                 adapter->wol = 0;
2271         }
2272
2273         device_set_wakeup_enable(&adapter->pdev->dev,
2274                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276         /* reset the hardware with the new settings */
2277         igb_reset(adapter);
2278
2279         /* Init the I2C interface */
2280         err = igb_init_i2c(adapter);
2281         if (err) {
2282                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2283                 goto err_eeprom;
2284         }
2285
2286         /* let the f/w know that the h/w is now under the control of the
2287          * driver. */
2288         igb_get_hw_control(adapter);
2289
2290         strcpy(netdev->name, "eth%d");
2291         err = register_netdev(netdev);
2292         if (err)
2293                 goto err_register;
2294
2295         /* carrier off reporting is important to ethtool even BEFORE open */
2296         netif_carrier_off(netdev);
2297
2298 #ifdef CONFIG_IGB_DCA
2299         if (dca_add_requester(&pdev->dev) == 0) {
2300                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301                 dev_info(&pdev->dev, "DCA enabled\n");
2302                 igb_setup_dca(adapter);
2303         }
2304
2305 #endif
2306 #ifdef CONFIG_IGB_HWMON
2307         /* Initialize the thermal sensor on i350 devices. */
2308         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309                 u16 ets_word;
2310
2311                 /* Read the NVM to determine if this i350 device supports an
2312                  * external thermal sensor.
2313                  */
2314                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316                         adapter->ets = true;
2317                 else
2318                         adapter->ets = false;
2319                 if (igb_sysfs_init(adapter))
2320                         dev_err(&pdev->dev,
2321                                 "failed to allocate sysfs resources\n");
2322         } else {
2323                 adapter->ets = false;
2324         }
2325 #endif
2326         /* do hw tstamp init after resetting */
2327         igb_ptp_init(adapter);
2328
2329         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330         /* print bus type/speed/width info, not applicable to i354 */
2331         if (hw->mac.type != e1000_i354) {
2332                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333                          netdev->name,
2334                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336                            "unknown"),
2337                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338                           "Width x4" :
2339                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340                           "Width x2" :
2341                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342                           "Width x1" : "unknown"), netdev->dev_addr);
2343         }
2344
2345         ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346         if (ret_val)
2347                 strcpy(part_str, "Unknown");
2348         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349         dev_info(&pdev->dev,
2350                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351                 adapter->msix_entries ? "MSI-X" :
2352                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353                 adapter->num_rx_queues, adapter->num_tx_queues);
2354         switch (hw->mac.type) {
2355         case e1000_i350:
2356         case e1000_i210:
2357         case e1000_i211:
2358                 igb_set_eee_i350(hw);
2359                 break;
2360         case e1000_i354:
2361                 if (hw->phy.media_type == e1000_media_type_copper) {
2362                         if ((rd32(E1000_CTRL_EXT) &
2363                             E1000_CTRL_EXT_LINK_MODE_SGMII))
2364                                 igb_set_eee_i354(hw);
2365                 }
2366                 break;
2367         default:
2368                 break;
2369         }
2370
2371         pm_runtime_put_noidle(&pdev->dev);
2372         return 0;
2373
2374 err_register:
2375         igb_release_hw_control(adapter);
2376         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 err_eeprom:
2378         if (!igb_check_reset_block(hw))
2379                 igb_reset_phy(hw);
2380
2381         if (hw->flash_address)
2382                 iounmap(hw->flash_address);
2383 err_sw_init:
2384         igb_clear_interrupt_scheme(adapter);
2385         iounmap(hw->hw_addr);
2386 err_ioremap:
2387         free_netdev(netdev);
2388 err_alloc_etherdev:
2389         pci_release_selected_regions(pdev,
2390                                      pci_select_bars(pdev, IORESOURCE_MEM));
2391 err_pci_reg:
2392 err_dma:
2393         pci_disable_device(pdev);
2394         return err;
2395 }
2396
2397 #ifdef CONFIG_PCI_IOV
2398 static int  igb_disable_sriov(struct pci_dev *pdev)
2399 {
2400         struct net_device *netdev = pci_get_drvdata(pdev);
2401         struct igb_adapter *adapter = netdev_priv(netdev);
2402         struct e1000_hw *hw = &adapter->hw;
2403
2404         /* reclaim resources allocated to VFs */
2405         if (adapter->vf_data) {
2406                 /* disable iov and allow time for transactions to clear */
2407                 if (pci_vfs_assigned(pdev)) {
2408                         dev_warn(&pdev->dev,
2409                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410                         return -EPERM;
2411                 } else {
2412                         pci_disable_sriov(pdev);
2413                         msleep(500);
2414                 }
2415
2416                 kfree(adapter->vf_data);
2417                 adapter->vf_data = NULL;
2418                 adapter->vfs_allocated_count = 0;
2419                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420                 wrfl();
2421                 msleep(100);
2422                 dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2425                 adapter->flags |= IGB_FLAG_DMAC;
2426         }
2427
2428         return 0;
2429 }
2430
2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432 {
2433         struct net_device *netdev = pci_get_drvdata(pdev);
2434         struct igb_adapter *adapter = netdev_priv(netdev);
2435         int old_vfs = pci_num_vf(pdev);
2436         int err = 0;
2437         int i;
2438
2439         if (!num_vfs)
2440                 goto out;
2441         else if (old_vfs && old_vfs == num_vfs)
2442                 goto out;
2443         else if (old_vfs && old_vfs != num_vfs)
2444                 err = igb_disable_sriov(pdev);
2445
2446         if (err)
2447                 goto out;
2448
2449         if (num_vfs > 7) {
2450                 err = -EPERM;
2451                 goto out;
2452         }
2453
2454         adapter->vfs_allocated_count = num_vfs;
2455
2456         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459         /* if allocation failed then we do not support SR-IOV */
2460         if (!adapter->vf_data) {
2461                 adapter->vfs_allocated_count = 0;
2462                 dev_err(&pdev->dev,
2463                         "Unable to allocate memory for VF Data Storage\n");
2464                 err = -ENOMEM;
2465                 goto out;
2466         }
2467
2468         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469         if (err)
2470                 goto err_out;
2471
2472         dev_info(&pdev->dev, "%d VFs allocated\n",
2473                  adapter->vfs_allocated_count);
2474         for (i = 0; i < adapter->vfs_allocated_count; i++)
2475                 igb_vf_configure(adapter, i);
2476
2477         /* DMA Coalescing is not supported in IOV mode. */
2478         adapter->flags &= ~IGB_FLAG_DMAC;
2479         goto out;
2480
2481 err_out:
2482         kfree(adapter->vf_data);
2483         adapter->vf_data = NULL;
2484         adapter->vfs_allocated_count = 0;
2485 out:
2486         return err;
2487 }
2488
2489 #endif
2490 /**
2491  *  igb_remove_i2c - Cleanup  I2C interface
2492  *  @adapter: pointer to adapter structure
2493  **/
2494 static void igb_remove_i2c(struct igb_adapter *adapter)
2495 {
2496         /* free the adapter bus structure */
2497         i2c_del_adapter(&adapter->i2c_adap);
2498 }
2499
2500 /**
2501  *  igb_remove - Device Removal Routine
2502  *  @pdev: PCI device information struct
2503  *
2504  *  igb_remove is called by the PCI subsystem to alert the driver
2505  *  that it should release a PCI device.  The could be caused by a
2506  *  Hot-Plug event, or because the driver is going to be removed from
2507  *  memory.
2508  **/
2509 static void igb_remove(struct pci_dev *pdev)
2510 {
2511         struct net_device *netdev = pci_get_drvdata(pdev);
2512         struct igb_adapter *adapter = netdev_priv(netdev);
2513         struct e1000_hw *hw = &adapter->hw;
2514
2515         pm_runtime_get_noresume(&pdev->dev);
2516 #ifdef CONFIG_IGB_HWMON
2517         igb_sysfs_exit(adapter);
2518 #endif
2519         igb_remove_i2c(adapter);
2520         igb_ptp_stop(adapter);
2521         /* The watchdog timer may be rescheduled, so explicitly
2522          * disable watchdog from being rescheduled.
2523          */
2524         set_bit(__IGB_DOWN, &adapter->state);
2525         del_timer_sync(&adapter->watchdog_timer);
2526         del_timer_sync(&adapter->phy_info_timer);
2527
2528         cancel_work_sync(&adapter->reset_task);
2529         cancel_work_sync(&adapter->watchdog_task);
2530
2531 #ifdef CONFIG_IGB_DCA
2532         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533                 dev_info(&pdev->dev, "DCA disabled\n");
2534                 dca_remove_requester(&pdev->dev);
2535                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537         }
2538 #endif
2539
2540         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541          * would have already happened in close and is redundant.
2542          */
2543         igb_release_hw_control(adapter);
2544
2545         unregister_netdev(netdev);
2546
2547         igb_clear_interrupt_scheme(adapter);
2548
2549 #ifdef CONFIG_PCI_IOV
2550         igb_disable_sriov(pdev);
2551 #endif
2552
2553         iounmap(hw->hw_addr);
2554         if (hw->flash_address)
2555                 iounmap(hw->flash_address);
2556         pci_release_selected_regions(pdev,
2557                                      pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559         kfree(adapter->shadow_vfta);
2560         free_netdev(netdev);
2561
2562         pci_disable_pcie_error_reporting(pdev);
2563
2564         pci_disable_device(pdev);
2565 }
2566
2567 /**
2568  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569  *  @adapter: board private structure to initialize
2570  *
2571  *  This function initializes the vf specific data storage and then attempts to
2572  *  allocate the VFs.  The reason for ordering it this way is because it is much
2573  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2574  *  the memory for the VFs.
2575  **/
2576 static void igb_probe_vfs(struct igb_adapter *adapter)
2577 {
2578 #ifdef CONFIG_PCI_IOV
2579         struct pci_dev *pdev = adapter->pdev;
2580         struct e1000_hw *hw = &adapter->hw;
2581
2582         /* Virtualization features not supported on i210 family. */
2583         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584                 return;
2585
2586         pci_sriov_set_totalvfs(pdev, 7);
2587         igb_enable_sriov(pdev, max_vfs);
2588
2589 #endif /* CONFIG_PCI_IOV */
2590 }
2591
2592 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 {
2594         struct e1000_hw *hw = &adapter->hw;
2595         u32 max_rss_queues;
2596
2597         /* Determine the maximum number of RSS queues supported. */
2598         switch (hw->mac.type) {
2599         case e1000_i211:
2600                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601                 break;
2602         case e1000_82575:
2603         case e1000_i210:
2604                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605                 break;
2606         case e1000_i350:
2607                 /* I350 cannot do RSS and SR-IOV at the same time */
2608                 if (!!adapter->vfs_allocated_count) {
2609                         max_rss_queues = 1;
2610                         break;
2611                 }
2612                 /* fall through */
2613         case e1000_82576:
2614                 if (!!adapter->vfs_allocated_count) {
2615                         max_rss_queues = 2;
2616                         break;
2617                 }
2618                 /* fall through */
2619         case e1000_82580:
2620         case e1000_i354:
2621         default:
2622                 max_rss_queues = IGB_MAX_RX_QUEUES;
2623                 break;
2624         }
2625
2626         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628         /* Determine if we need to pair queues. */
2629         switch (hw->mac.type) {
2630         case e1000_82575:
2631         case e1000_i211:
2632                 /* Device supports enough interrupts without queue pairing. */
2633                 break;
2634         case e1000_82576:
2635                 /* If VFs are going to be allocated with RSS queues then we
2636                  * should pair the queues in order to conserve interrupts due
2637                  * to limited supply.
2638                  */
2639                 if ((adapter->rss_queues > 1) &&
2640                     (adapter->vfs_allocated_count > 6))
2641                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642                 /* fall through */
2643         case e1000_82580:
2644         case e1000_i350:
2645         case e1000_i354:
2646         case e1000_i210:
2647         default:
2648                 /* If rss_queues > half of max_rss_queues, pair the queues in
2649                  * order to conserve interrupts due to limited supply.
2650                  */
2651                 if (adapter->rss_queues > (max_rss_queues / 2))
2652                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653                 break;
2654         }
2655 }
2656
2657 /**
2658  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2659  *  @adapter: board private structure to initialize
2660  *
2661  *  igb_sw_init initializes the Adapter private data structure.
2662  *  Fields are initialized based on PCI device information and
2663  *  OS network device settings (MTU size).
2664  **/
2665 static int igb_sw_init(struct igb_adapter *adapter)
2666 {
2667         struct e1000_hw *hw = &adapter->hw;
2668         struct net_device *netdev = adapter->netdev;
2669         struct pci_dev *pdev = adapter->pdev;
2670
2671         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673         /* set default ring sizes */
2674         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677         /* set default ITR values */
2678         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681         /* set default work limits */
2682         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685                                   VLAN_HLEN;
2686         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688         spin_lock_init(&adapter->stats64_lock);
2689 #ifdef CONFIG_PCI_IOV
2690         switch (hw->mac.type) {
2691         case e1000_82576:
2692         case e1000_i350:
2693                 if (max_vfs > 7) {
2694                         dev_warn(&pdev->dev,
2695                                  "Maximum of 7 VFs per PF, using max\n");
2696                         max_vfs = adapter->vfs_allocated_count = 7;
2697                 } else
2698                         adapter->vfs_allocated_count = max_vfs;
2699                 if (adapter->vfs_allocated_count)
2700                         dev_warn(&pdev->dev,
2701                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702                 break;
2703         default:
2704                 break;
2705         }
2706 #endif /* CONFIG_PCI_IOV */
2707
2708         igb_init_queue_configuration(adapter);
2709
2710         /* Setup and initialize a copy of the hw vlan table array */
2711         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712                                        GFP_ATOMIC);
2713
2714         /* This call may decrease the number of queues */
2715         if (igb_init_interrupt_scheme(adapter, true)) {
2716                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717                 return -ENOMEM;
2718         }
2719
2720         igb_probe_vfs(adapter);
2721
2722         /* Explicitly disable IRQ since the NIC can be in any state. */
2723         igb_irq_disable(adapter);
2724
2725         if (hw->mac.type >= e1000_i350)
2726                 adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728         set_bit(__IGB_DOWN, &adapter->state);
2729         return 0;
2730 }
2731
2732 /**
2733  *  igb_open - Called when a network interface is made active
2734  *  @netdev: network interface device structure
2735  *
2736  *  Returns 0 on success, negative value on failure
2737  *
2738  *  The open entry point is called when a network interface is made
2739  *  active by the system (IFF_UP).  At this point all resources needed
2740  *  for transmit and receive operations are allocated, the interrupt
2741  *  handler is registered with the OS, the watchdog timer is started,
2742  *  and the stack is notified that the interface is ready.
2743  **/
2744 static int __igb_open(struct net_device *netdev, bool resuming)
2745 {
2746         struct igb_adapter *adapter = netdev_priv(netdev);
2747         struct e1000_hw *hw = &adapter->hw;
2748         struct pci_dev *pdev = adapter->pdev;
2749         int err;
2750         int i;
2751
2752         /* disallow open during test */
2753         if (test_bit(__IGB_TESTING, &adapter->state)) {
2754                 WARN_ON(resuming);
2755                 return -EBUSY;
2756         }
2757
2758         if (!resuming)
2759                 pm_runtime_get_sync(&pdev->dev);
2760
2761         netif_carrier_off(netdev);
2762
2763         /* allocate transmit descriptors */
2764         err = igb_setup_all_tx_resources(adapter);
2765         if (err)
2766                 goto err_setup_tx;
2767
2768         /* allocate receive descriptors */
2769         err = igb_setup_all_rx_resources(adapter);
2770         if (err)
2771                 goto err_setup_rx;
2772
2773         igb_power_up_link(adapter);
2774
2775         /* before we allocate an interrupt, we must be ready to handle it.
2776          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777          * as soon as we call pci_request_irq, so we have to setup our
2778          * clean_rx handler before we do so.
2779          */
2780         igb_configure(adapter);
2781
2782         err = igb_request_irq(adapter);
2783         if (err)
2784                 goto err_req_irq;
2785
2786         /* Notify the stack of the actual queue counts. */
2787         err = netif_set_real_num_tx_queues(adapter->netdev,
2788                                            adapter->num_tx_queues);
2789         if (err)
2790                 goto err_set_queues;
2791
2792         err = netif_set_real_num_rx_queues(adapter->netdev,
2793                                            adapter->num_rx_queues);
2794         if (err)
2795                 goto err_set_queues;
2796
2797         /* From here on the code is the same as igb_up() */
2798         clear_bit(__IGB_DOWN, &adapter->state);
2799
2800         for (i = 0; i < adapter->num_q_vectors; i++)
2801                 napi_enable(&(adapter->q_vector[i]->napi));
2802
2803         /* Clear any pending interrupts. */
2804         rd32(E1000_ICR);
2805
2806         igb_irq_enable(adapter);
2807
2808         /* notify VFs that reset has been completed */
2809         if (adapter->vfs_allocated_count) {
2810                 u32 reg_data = rd32(E1000_CTRL_EXT);
2811                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2812                 wr32(E1000_CTRL_EXT, reg_data);
2813         }
2814
2815         netif_tx_start_all_queues(netdev);
2816
2817         if (!resuming)
2818                 pm_runtime_put(&pdev->dev);
2819
2820         /* start the watchdog. */
2821         hw->mac.get_link_status = 1;
2822         schedule_work(&adapter->watchdog_task);
2823
2824         return 0;
2825
2826 err_set_queues:
2827         igb_free_irq(adapter);
2828 err_req_irq:
2829         igb_release_hw_control(adapter);
2830         igb_power_down_link(adapter);
2831         igb_free_all_rx_resources(adapter);
2832 err_setup_rx:
2833         igb_free_all_tx_resources(adapter);
2834 err_setup_tx:
2835         igb_reset(adapter);
2836         if (!resuming)
2837                 pm_runtime_put(&pdev->dev);
2838
2839         return err;
2840 }
2841
2842 static int igb_open(struct net_device *netdev)
2843 {
2844         return __igb_open(netdev, false);
2845 }
2846
2847 /**
2848  *  igb_close - Disables a network interface
2849  *  @netdev: network interface device structure
2850  *
2851  *  Returns 0, this is not allowed to fail
2852  *
2853  *  The close entry point is called when an interface is de-activated
2854  *  by the OS.  The hardware is still under the driver's control, but
2855  *  needs to be disabled.  A global MAC reset is issued to stop the
2856  *  hardware, and all transmit and receive resources are freed.
2857  **/
2858 static int __igb_close(struct net_device *netdev, bool suspending)
2859 {
2860         struct igb_adapter *adapter = netdev_priv(netdev);
2861         struct pci_dev *pdev = adapter->pdev;
2862
2863         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865         if (!suspending)
2866                 pm_runtime_get_sync(&pdev->dev);
2867
2868         igb_down(adapter);
2869         igb_free_irq(adapter);
2870
2871         igb_free_all_tx_resources(adapter);
2872         igb_free_all_rx_resources(adapter);
2873
2874         if (!suspending)
2875                 pm_runtime_put_sync(&pdev->dev);
2876         return 0;
2877 }
2878
2879 static int igb_close(struct net_device *netdev)
2880 {
2881         return __igb_close(netdev, false);
2882 }
2883
2884 /**
2885  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887  *
2888  *  Return 0 on success, negative on failure
2889  **/
2890 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891 {
2892         struct device *dev = tx_ring->dev;
2893         int size;
2894
2895         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897         tx_ring->tx_buffer_info = vzalloc(size);
2898         if (!tx_ring->tx_buffer_info)
2899                 goto err;
2900
2901         /* round up to nearest 4K */
2902         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903         tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906                                            &tx_ring->dma, GFP_KERNEL);
2907         if (!tx_ring->desc)
2908                 goto err;
2909
2910         tx_ring->next_to_use = 0;
2911         tx_ring->next_to_clean = 0;
2912
2913         return 0;
2914
2915 err:
2916         vfree(tx_ring->tx_buffer_info);
2917         tx_ring->tx_buffer_info = NULL;
2918         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919         return -ENOMEM;
2920 }
2921
2922 /**
2923  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924  *                               (Descriptors) for all queues
2925  *  @adapter: board private structure
2926  *
2927  *  Return 0 on success, negative on failure
2928  **/
2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930 {
2931         struct pci_dev *pdev = adapter->pdev;
2932         int i, err = 0;
2933
2934         for (i = 0; i < adapter->num_tx_queues; i++) {
2935                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936                 if (err) {
2937                         dev_err(&pdev->dev,
2938                                 "Allocation for Tx Queue %u failed\n", i);
2939                         for (i--; i >= 0; i--)
2940                                 igb_free_tx_resources(adapter->tx_ring[i]);
2941                         break;
2942                 }
2943         }
2944
2945         return err;
2946 }
2947
2948 /**
2949  *  igb_setup_tctl - configure the transmit control registers
2950  *  @adapter: Board private structure
2951  **/
2952 void igb_setup_tctl(struct igb_adapter *adapter)
2953 {
2954         struct e1000_hw *hw = &adapter->hw;
2955         u32 tctl;
2956
2957         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958         wr32(E1000_TXDCTL(0), 0);
2959
2960         /* Program the Transmit Control Register */
2961         tctl = rd32(E1000_TCTL);
2962         tctl &= ~E1000_TCTL_CT;
2963         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966         igb_config_collision_dist(hw);
2967
2968         /* Enable transmits */
2969         tctl |= E1000_TCTL_EN;
2970
2971         wr32(E1000_TCTL, tctl);
2972 }
2973
2974 /**
2975  *  igb_configure_tx_ring - Configure transmit ring after Reset
2976  *  @adapter: board private structure
2977  *  @ring: tx ring to configure
2978  *
2979  *  Configure a transmit ring after a reset.
2980  **/
2981 void igb_configure_tx_ring(struct igb_adapter *adapter,
2982                            struct igb_ring *ring)
2983 {
2984         struct e1000_hw *hw = &adapter->hw;
2985         u32 txdctl = 0;
2986         u64 tdba = ring->dma;
2987         int reg_idx = ring->reg_idx;
2988
2989         /* disable the queue */
2990         wr32(E1000_TXDCTL(reg_idx), 0);
2991         wrfl();
2992         mdelay(10);
2993
2994         wr32(E1000_TDLEN(reg_idx),
2995              ring->count * sizeof(union e1000_adv_tx_desc));
2996         wr32(E1000_TDBAL(reg_idx),
2997              tdba & 0x00000000ffffffffULL);
2998         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001         wr32(E1000_TDH(reg_idx), 0);
3002         writel(0, ring->tail);
3003
3004         txdctl |= IGB_TX_PTHRESH;
3005         txdctl |= IGB_TX_HTHRESH << 8;
3006         txdctl |= IGB_TX_WTHRESH << 16;
3007
3008         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009         wr32(E1000_TXDCTL(reg_idx), txdctl);
3010 }
3011
3012 /**
3013  *  igb_configure_tx - Configure transmit Unit after Reset
3014  *  @adapter: board private structure
3015  *
3016  *  Configure the Tx unit of the MAC after a reset.
3017  **/
3018 static void igb_configure_tx(struct igb_adapter *adapter)
3019 {
3020         int i;
3021
3022         for (i = 0; i < adapter->num_tx_queues; i++)
3023                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 }
3025
3026 /**
3027  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029  *
3030  *  Returns 0 on success, negative on failure
3031  **/
3032 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033 {
3034         struct device *dev = rx_ring->dev;
3035         int size;
3036
3037         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039         rx_ring->rx_buffer_info = vzalloc(size);
3040         if (!rx_ring->rx_buffer_info)
3041                 goto err;
3042
3043         /* Round up to nearest 4K */
3044         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045         rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048                                            &rx_ring->dma, GFP_KERNEL);
3049         if (!rx_ring->desc)
3050                 goto err;
3051
3052         rx_ring->next_to_alloc = 0;
3053         rx_ring->next_to_clean = 0;
3054         rx_ring->next_to_use = 0;
3055
3056         return 0;
3057
3058 err:
3059         vfree(rx_ring->rx_buffer_info);
3060         rx_ring->rx_buffer_info = NULL;
3061         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062         return -ENOMEM;
3063 }
3064
3065 /**
3066  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067  *                               (Descriptors) for all queues
3068  *  @adapter: board private structure
3069  *
3070  *  Return 0 on success, negative on failure
3071  **/
3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073 {
3074         struct pci_dev *pdev = adapter->pdev;
3075         int i, err = 0;
3076
3077         for (i = 0; i < adapter->num_rx_queues; i++) {
3078                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079                 if (err) {
3080                         dev_err(&pdev->dev,
3081                                 "Allocation for Rx Queue %u failed\n", i);
3082                         for (i--; i >= 0; i--)
3083                                 igb_free_rx_resources(adapter->rx_ring[i]);
3084                         break;
3085                 }
3086         }
3087
3088         return err;
3089 }
3090
3091 /**
3092  *  igb_setup_mrqc - configure the multiple receive queue control registers
3093  *  @adapter: Board private structure
3094  **/
3095 static void igb_setup_mrqc(struct igb_adapter *adapter)
3096 {
3097         struct e1000_hw *hw = &adapter->hw;
3098         u32 mrqc, rxcsum;
3099         u32 j, num_rx_queues, shift = 0;
3100         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103                                         0xFA01ACBE };
3104
3105         /* Fill out hash function seeds */
3106         for (j = 0; j < 10; j++)
3107                 wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109         num_rx_queues = adapter->rss_queues;
3110
3111         switch (hw->mac.type) {
3112         case e1000_82575:
3113                 shift = 6;
3114                 break;
3115         case e1000_82576:
3116                 /* 82576 supports 2 RSS queues for SR-IOV */
3117                 if (adapter->vfs_allocated_count) {
3118                         shift = 3;
3119                         num_rx_queues = 2;
3120                 }
3121                 break;
3122         default:
3123                 break;
3124         }
3125
3126         /* Populate the indirection table 4 entries at a time.  To do this
3127          * we are generating the results for n and n+2 and then interleaving
3128          * those with the results with n+1 and n+3.
3129          */
3130         for (j = 0; j < 32; j++) {
3131                 /* first pass generates n and n+2 */
3132                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133                 u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135                 /* second pass generates n+1 and n+3 */
3136                 base += 0x00010001 * num_rx_queues;
3137                 reta |= (base & 0x07800780) << (1 + shift);
3138
3139                 wr32(E1000_RETA(j), reta);
3140         }
3141
3142         /* Disable raw packet checksumming so that RSS hash is placed in
3143          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3144          * offloads as they are enabled by default
3145          */
3146         rxcsum = rd32(E1000_RXCSUM);
3147         rxcsum |= E1000_RXCSUM_PCSD;
3148
3149         if (adapter->hw.mac.type >= e1000_82576)
3150                 /* Enable Receive Checksum Offload for SCTP */
3151                 rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154         wr32(E1000_RXCSUM, rxcsum);
3155
3156         /* Generate RSS hash based on packet types, TCP/UDP
3157          * port numbers and/or IPv4/v6 src and dst addresses
3158          */
3159         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161                E1000_MRQC_RSS_FIELD_IPV6 |
3162                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170         /* If VMDq is enabled then we set the appropriate mode for that, else
3171          * we default to RSS so that an RSS hash is calculated per packet even
3172          * if we are only using one queue
3173          */
3174         if (adapter->vfs_allocated_count) {
3175                 if (hw->mac.type > e1000_82575) {
3176                         /* Set the default pool for the PF's first queue */
3177                         u32 vtctl = rd32(E1000_VT_CTL);
3178                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3180                         vtctl |= adapter->vfs_allocated_count <<
3181                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182                         wr32(E1000_VT_CTL, vtctl);
3183                 }
3184                 if (adapter->rss_queues > 1)
3185                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186                 else
3187                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188         } else {
3189                 if (hw->mac.type != e1000_i211)
3190                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191         }
3192         igb_vmm_control(adapter);
3193
3194         wr32(E1000_MRQC, mrqc);
3195 }
3196
3197 /**
3198  *  igb_setup_rctl - configure the receive control registers
3199  *  @adapter: Board private structure
3200  **/
3201 void igb_setup_rctl(struct igb_adapter *adapter)
3202 {
3203         struct e1000_hw *hw = &adapter->hw;
3204         u32 rctl;
3205
3206         rctl = rd32(E1000_RCTL);
3207
3208         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214         /* enable stripping of CRC. It's unlikely this will break BMC
3215          * redirection as it did with e1000. Newer features require
3216          * that the HW strips the CRC.
3217          */
3218         rctl |= E1000_RCTL_SECRC;
3219
3220         /* disable store bad packets and clear size bits. */
3221         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223         /* enable LPE to prevent packets larger than max_frame_size */
3224         rctl |= E1000_RCTL_LPE;
3225
3226         /* disable queue 0 to prevent tail write w/o re-config */
3227         wr32(E1000_RXDCTL(0), 0);
3228
3229         /* Attention!!!  For SR-IOV PF driver operations you must enable
3230          * queue drop for all VF and PF queues to prevent head of line blocking
3231          * if an un-trusted VF does not provide descriptors to hardware.
3232          */
3233         if (adapter->vfs_allocated_count) {
3234                 /* set all queue drop enable bits */
3235                 wr32(E1000_QDE, ALL_QUEUES);
3236         }
3237
3238         /* This is useful for sniffing bad packets. */
3239         if (adapter->netdev->features & NETIF_F_RXALL) {
3240                 /* UPE and MPE will be handled by normal PROMISC logic
3241                  * in e1000e_set_rx_mode
3242                  */
3243                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248                           E1000_RCTL_DPF | /* Allow filtered pause */
3249                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251                  * and that breaks VLANs.
3252                  */
3253         }
3254
3255         wr32(E1000_RCTL, rctl);
3256 }
3257
3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259                                    int vfn)
3260 {
3261         struct e1000_hw *hw = &adapter->hw;
3262         u32 vmolr;
3263
3264         /* if it isn't the PF check to see if VFs are enabled and
3265          * increase the size to support vlan tags
3266          */
3267         if (vfn < adapter->vfs_allocated_count &&
3268             adapter->vf_data[vfn].vlans_enabled)
3269                 size += VLAN_TAG_SIZE;
3270
3271         vmolr = rd32(E1000_VMOLR(vfn));
3272         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273         vmolr |= size | E1000_VMOLR_LPE;
3274         wr32(E1000_VMOLR(vfn), vmolr);
3275
3276         return 0;
3277 }
3278
3279 /**
3280  *  igb_rlpml_set - set maximum receive packet size
3281  *  @adapter: board private structure
3282  *
3283  *  Configure maximum receivable packet size.
3284  **/
3285 static void igb_rlpml_set(struct igb_adapter *adapter)
3286 {
3287         u32 max_frame_size = adapter->max_frame_size;
3288         struct e1000_hw *hw = &adapter->hw;
3289         u16 pf_id = adapter->vfs_allocated_count;
3290
3291         if (pf_id) {
3292                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294                  * to our max jumbo frame size, in case we need to enable
3295                  * jumbo frames on one of the rings later.
3296                  * This will not pass over-length frames into the default
3297                  * queue because it's gated by the VMOLR.RLPML.
3298                  */
3299                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300         }
3301
3302         wr32(E1000_RLPML, max_frame_size);
3303 }
3304
3305 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306                                  int vfn, bool aupe)
3307 {
3308         struct e1000_hw *hw = &adapter->hw;
3309         u32 vmolr;
3310
3311         /* This register exists only on 82576 and newer so if we are older then
3312          * we should exit and do nothing
3313          */
3314         if (hw->mac.type < e1000_82576)
3315                 return;
3316
3317         vmolr = rd32(E1000_VMOLR(vfn));
3318         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319         if (aupe)
3320                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321         else
3322                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324         /* clear all bits that might not be set */
3325         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330          * multicast packets
3331          */
3332         if (vfn <= adapter->vfs_allocated_count)
3333                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335         wr32(E1000_VMOLR(vfn), vmolr);
3336 }
3337
3338 /**
3339  *  igb_configure_rx_ring - Configure a receive ring after Reset
3340  *  @adapter: board private structure
3341  *  @ring: receive ring to be configured
3342  *
3343  *  Configure the Rx unit of the MAC after a reset.
3344  **/
3345 void igb_configure_rx_ring(struct igb_adapter *adapter,
3346                            struct igb_ring *ring)
3347 {
3348         struct e1000_hw *hw = &adapter->hw;
3349         u64 rdba = ring->dma;
3350         int reg_idx = ring->reg_idx;
3351         u32 srrctl = 0, rxdctl = 0;
3352
3353         /* disable the queue */
3354         wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356         /* Set DMA base address registers */
3357         wr32(E1000_RDBAL(reg_idx),
3358              rdba & 0x00000000ffffffffULL);
3359         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360         wr32(E1000_RDLEN(reg_idx),
3361              ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363         /* initialize head and tail */
3364         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365         wr32(E1000_RDH(reg_idx), 0);
3366         writel(0, ring->tail);
3367
3368         /* set descriptor configuration */
3369         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372         if (hw->mac.type >= e1000_82580)
3373                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3374         /* Only set Drop Enable if we are supporting multiple queues */
3375         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376                 srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378         wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380         /* set filtering for VMDQ pools */
3381         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383         rxdctl |= IGB_RX_PTHRESH;
3384         rxdctl |= IGB_RX_HTHRESH << 8;
3385         rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387         /* enable receive descriptor fetching */
3388         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390 }
3391
3392 /**
3393  *  igb_configure_rx - Configure receive Unit after Reset
3394  *  @adapter: board private structure
3395  *
3396  *  Configure the Rx unit of the MAC after a reset.
3397  **/
3398 static void igb_configure_rx(struct igb_adapter *adapter)
3399 {
3400         int i;
3401
3402         /* set UTA to appropriate mode */
3403         igb_set_uta(adapter);
3404
3405         /* set the correct pool for the PF default MAC address in entry 0 */
3406         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407                          adapter->vfs_allocated_count);
3408
3409         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3410          * the Base and Length of the Rx Descriptor Ring
3411          */
3412         for (i = 0; i < adapter->num_rx_queues; i++)
3413                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 }
3415
3416 /**
3417  *  igb_free_tx_resources - Free Tx Resources per Queue
3418  *  @tx_ring: Tx descriptor ring for a specific queue
3419  *
3420  *  Free all transmit software resources
3421  **/
3422 void igb_free_tx_resources(struct igb_ring *tx_ring)
3423 {
3424         igb_clean_tx_ring(tx_ring);
3425
3426         vfree(tx_ring->tx_buffer_info);
3427         tx_ring->tx_buffer_info = NULL;
3428
3429         /* if not set, then don't free */
3430         if (!tx_ring->desc)
3431                 return;
3432
3433         dma_free_coherent(tx_ring->dev, tx_ring->size,
3434                           tx_ring->desc, tx_ring->dma);
3435
3436         tx_ring->desc = NULL;
3437 }
3438
3439 /**
3440  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3441  *  @adapter: board private structure
3442  *
3443  *  Free all transmit software resources
3444  **/
3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446 {
3447         int i;
3448
3449         for (i = 0; i < adapter->num_tx_queues; i++)
3450                 igb_free_tx_resources(adapter->tx_ring[i]);
3451 }
3452
3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454                                     struct igb_tx_buffer *tx_buffer)
3455 {
3456         if (tx_buffer->skb) {
3457                 dev_kfree_skb_any(tx_buffer->skb);
3458                 if (dma_unmap_len(tx_buffer, len))
3459                         dma_unmap_single(ring->dev,
3460                                          dma_unmap_addr(tx_buffer, dma),
3461                                          dma_unmap_len(tx_buffer, len),
3462                                          DMA_TO_DEVICE);
3463         } else if (dma_unmap_len(tx_buffer, len)) {
3464                 dma_unmap_page(ring->dev,
3465                                dma_unmap_addr(tx_buffer, dma),
3466                                dma_unmap_len(tx_buffer, len),
3467                                DMA_TO_DEVICE);
3468         }
3469         tx_buffer->next_to_watch = NULL;
3470         tx_buffer->skb = NULL;
3471         dma_unmap_len_set(tx_buffer, len, 0);
3472         /* buffer_info must be completely set up in the transmit path */
3473 }
3474
3475 /**
3476  *  igb_clean_tx_ring - Free Tx Buffers
3477  *  @tx_ring: ring to be cleaned
3478  **/
3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480 {
3481         struct igb_tx_buffer *buffer_info;
3482         unsigned long size;
3483         u16 i;
3484
3485         if (!tx_ring->tx_buffer_info)
3486                 return;
3487         /* Free all the Tx ring sk_buffs */
3488
3489         for (i = 0; i < tx_ring->count; i++) {
3490                 buffer_info = &tx_ring->tx_buffer_info[i];
3491                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492         }
3493
3494         netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497         memset(tx_ring->tx_buffer_info, 0, size);
3498
3499         /* Zero out the descriptor ring */
3500         memset(tx_ring->desc, 0, tx_ring->size);
3501
3502         tx_ring->next_to_use = 0;
3503         tx_ring->next_to_clean = 0;
3504 }
3505
3506 /**
3507  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508  *  @adapter: board private structure
3509  **/
3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511 {
3512         int i;
3513
3514         for (i = 0; i < adapter->num_tx_queues; i++)
3515                 igb_clean_tx_ring(adapter->tx_ring[i]);
3516 }
3517
3518 /**
3519  *  igb_free_rx_resources - Free Rx Resources
3520  *  @rx_ring: ring to clean the resources from
3521  *
3522  *  Free all receive software resources
3523  **/
3524 void igb_free_rx_resources(struct igb_ring *rx_ring)
3525 {
3526         igb_clean_rx_ring(rx_ring);
3527
3528         vfree(rx_ring->rx_buffer_info);
3529         rx_ring->rx_buffer_info = NULL;
3530
3531         /* if not set, then don't free */
3532         if (!rx_ring->desc)
3533                 return;
3534
3535         dma_free_coherent(rx_ring->dev, rx_ring->size,
3536                           rx_ring->desc, rx_ring->dma);
3537
3538         rx_ring->desc = NULL;
3539 }
3540
3541 /**
3542  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3543  *  @adapter: board private structure
3544  *
3545  *  Free all receive software resources
3546  **/
3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548 {
3549         int i;
3550
3551         for (i = 0; i < adapter->num_rx_queues; i++)
3552                 igb_free_rx_resources(adapter->rx_ring[i]);
3553 }
3554
3555 /**
3556  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3557  *  @rx_ring: ring to free buffers from
3558  **/
3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 {
3561         unsigned long size;
3562         u16 i;
3563
3564         if (rx_ring->skb)
3565                 dev_kfree_skb(rx_ring->skb);
3566         rx_ring->skb = NULL;
3567
3568         if (!rx_ring->rx_buffer_info)
3569                 return;
3570
3571         /* Free all the Rx ring sk_buffs */
3572         for (i = 0; i < rx_ring->count; i++) {
3573                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575                 if (!buffer_info->page)
3576                         continue;
3577
3578                 dma_unmap_page(rx_ring->dev,
3579                                buffer_info->dma,
3580                                PAGE_SIZE,
3581                                DMA_FROM_DEVICE);
3582                 __free_page(buffer_info->page);
3583
3584                 buffer_info->page = NULL;
3585         }
3586
3587         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588         memset(rx_ring->rx_buffer_info, 0, size);
3589
3590         /* Zero out the descriptor ring */
3591         memset(rx_ring->desc, 0, rx_ring->size);
3592
3593         rx_ring->next_to_alloc = 0;
3594         rx_ring->next_to_clean = 0;
3595         rx_ring->next_to_use = 0;
3596 }
3597
3598 /**
3599  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600  *  @adapter: board private structure
3601  **/
3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603 {
3604         int i;
3605
3606         for (i = 0; i < adapter->num_rx_queues; i++)
3607                 igb_clean_rx_ring(adapter->rx_ring[i]);
3608 }
3609
3610 /**
3611  *  igb_set_mac - Change the Ethernet Address of the NIC
3612  *  @netdev: network interface device structure
3613  *  @p: pointer to an address structure
3614  *
3615  *  Returns 0 on success, negative on failure
3616  **/
3617 static int igb_set_mac(struct net_device *netdev, void *p)
3618 {
3619         struct igb_adapter *adapter = netdev_priv(netdev);
3620         struct e1000_hw *hw = &adapter->hw;
3621         struct sockaddr *addr = p;
3622
3623         if (!is_valid_ether_addr(addr->sa_data))
3624                 return -EADDRNOTAVAIL;
3625
3626         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629         /* set the correct pool for the new PF MAC address in entry 0 */
3630         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631                          adapter->vfs_allocated_count);
3632
3633         return 0;
3634 }
3635
3636 /**
3637  *  igb_write_mc_addr_list - write multicast addresses to MTA
3638  *  @netdev: network interface device structure
3639  *
3640  *  Writes multicast address list to the MTA hash table.
3641  *  Returns: -ENOMEM on failure
3642  *           0 on no addresses written
3643  *           X on writing X addresses to MTA
3644  **/
3645 static int igb_write_mc_addr_list(struct net_device *netdev)
3646 {
3647         struct igb_adapter *adapter = netdev_priv(netdev);
3648         struct e1000_hw *hw = &adapter->hw;
3649         struct netdev_hw_addr *ha;
3650         u8  *mta_list;
3651         int i;
3652
3653         if (netdev_mc_empty(netdev)) {
3654                 /* nothing to program, so clear mc list */
3655                 igb_update_mc_addr_list(hw, NULL, 0);
3656                 igb_restore_vf_multicasts(adapter);
3657                 return 0;
3658         }
3659
3660         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661         if (!mta_list)
3662                 return -ENOMEM;
3663
3664         /* The shared function expects a packed array of only addresses. */
3665         i = 0;
3666         netdev_for_each_mc_addr(ha, netdev)
3667                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669         igb_update_mc_addr_list(hw, mta_list, i);
3670         kfree(mta_list);
3671
3672         return netdev_mc_count(netdev);
3673 }
3674
3675 /**
3676  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3677  *  @netdev: network interface device structure
3678  *
3679  *  Writes unicast address list to the RAR table.
3680  *  Returns: -ENOMEM on failure/insufficient address space
3681  *           0 on no addresses written
3682  *           X on writing X addresses to the RAR table
3683  **/
3684 static int igb_write_uc_addr_list(struct net_device *netdev)
3685 {
3686         struct igb_adapter *adapter = netdev_priv(netdev);
3687         struct e1000_hw *hw = &adapter->hw;
3688         unsigned int vfn = adapter->vfs_allocated_count;
3689         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690         int count = 0;
3691
3692         /* return ENOMEM indicating insufficient memory for addresses */
3693         if (netdev_uc_count(netdev) > rar_entries)
3694                 return -ENOMEM;
3695
3696         if (!netdev_uc_empty(netdev) && rar_entries) {
3697                 struct netdev_hw_addr *ha;
3698
3699                 netdev_for_each_uc_addr(ha, netdev) {
3700                         if (!rar_entries)
3701                                 break;
3702                         igb_rar_set_qsel(adapter, ha->addr,
3703                                          rar_entries--,
3704                                          vfn);
3705                         count++;
3706                 }
3707         }
3708         /* write the addresses in reverse order to avoid write combining */
3709         for (; rar_entries > 0 ; rar_entries--) {
3710                 wr32(E1000_RAH(rar_entries), 0);
3711                 wr32(E1000_RAL(rar_entries), 0);
3712         }
3713         wrfl();
3714
3715         return count;
3716 }
3717
3718 /**
3719  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720  *  @netdev: network interface device structure
3721  *
3722  *  The set_rx_mode entry point is called whenever the unicast or multicast
3723  *  address lists or the network interface flags are updated.  This routine is
3724  *  responsible for configuring the hardware for proper unicast, multicast,
3725  *  promiscuous mode, and all-multi behavior.
3726  **/
3727 static void igb_set_rx_mode(struct net_device *netdev)
3728 {
3729         struct igb_adapter *adapter = netdev_priv(netdev);
3730         struct e1000_hw *hw = &adapter->hw;
3731         unsigned int vfn = adapter->vfs_allocated_count;
3732         u32 rctl, vmolr = 0;
3733         int count;
3734
3735         /* Check for Promiscuous and All Multicast modes */
3736         rctl = rd32(E1000_RCTL);
3737
3738         /* clear the effected bits */
3739         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741         if (netdev->flags & IFF_PROMISC) {
3742                 u32 mrqc = rd32(E1000_MRQC);
3743                 /* retain VLAN HW filtering if in VT mode */
3744                 if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3745                         rctl |= E1000_RCTL_VFE;
3746                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3747                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3748         } else {
3749                 if (netdev->flags & IFF_ALLMULTI) {
3750                         rctl |= E1000_RCTL_MPE;
3751                         vmolr |= E1000_VMOLR_MPME;
3752                 } else {
3753                         /* Write addresses to the MTA, if the attempt fails
3754                          * then we should just turn on promiscuous mode so
3755                          * that we can at least receive multicast traffic
3756                          */
3757                         count = igb_write_mc_addr_list(netdev);
3758                         if (count < 0) {
3759                                 rctl |= E1000_RCTL_MPE;
3760                                 vmolr |= E1000_VMOLR_MPME;
3761                         } else if (count) {
3762                                 vmolr |= E1000_VMOLR_ROMPE;
3763                         }
3764                 }
3765                 /* Write addresses to available RAR registers, if there is not
3766                  * sufficient space to store all the addresses then enable
3767                  * unicast promiscuous mode
3768                  */
3769                 count = igb_write_uc_addr_list(netdev);
3770                 if (count < 0) {
3771                         rctl |= E1000_RCTL_UPE;
3772                         vmolr |= E1000_VMOLR_ROPE;
3773                 }
3774                 rctl |= E1000_RCTL_VFE;
3775         }
3776         wr32(E1000_RCTL, rctl);
3777
3778         /* In order to support SR-IOV and eventually VMDq it is necessary to set
3779          * the VMOLR to enable the appropriate modes.  Without this workaround
3780          * we will have issues with VLAN tag stripping not being done for frames
3781          * that are only arriving because we are the default pool
3782          */
3783         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3784                 return;
3785
3786         vmolr |= rd32(E1000_VMOLR(vfn)) &
3787                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3788         wr32(E1000_VMOLR(vfn), vmolr);
3789         igb_restore_vf_multicasts(adapter);
3790 }
3791
3792 static void igb_check_wvbr(struct igb_adapter *adapter)
3793 {
3794         struct e1000_hw *hw = &adapter->hw;
3795         u32 wvbr = 0;
3796
3797         switch (hw->mac.type) {
3798         case e1000_82576:
3799         case e1000_i350:
3800                 if (!(wvbr = rd32(E1000_WVBR)))
3801                         return;
3802                 break;
3803         default:
3804                 break;
3805         }
3806
3807         adapter->wvbr |= wvbr;
3808 }
3809
3810 #define IGB_STAGGERED_QUEUE_OFFSET 8
3811
3812 static void igb_spoof_check(struct igb_adapter *adapter)
3813 {
3814         int j;
3815
3816         if (!adapter->wvbr)
3817                 return;
3818
3819         for(j = 0; j < adapter->vfs_allocated_count; j++) {
3820                 if (adapter->wvbr & (1 << j) ||
3821                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3822                         dev_warn(&adapter->pdev->dev,
3823                                 "Spoof event(s) detected on VF %d\n", j);
3824                         adapter->wvbr &=
3825                                 ~((1 << j) |
3826                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3827                 }
3828         }
3829 }
3830
3831 /* Need to wait a few seconds after link up to get diagnostic information from
3832  * the phy
3833  */
3834 static void igb_update_phy_info(unsigned long data)
3835 {
3836         struct igb_adapter *adapter = (struct igb_adapter *) data;
3837         igb_get_phy_info(&adapter->hw);
3838 }
3839
3840 /**
3841  *  igb_has_link - check shared code for link and determine up/down
3842  *  @adapter: pointer to driver private info
3843  **/
3844 bool igb_has_link(struct igb_adapter *adapter)
3845 {
3846         struct e1000_hw *hw = &adapter->hw;
3847         bool link_active = false;
3848         s32 ret_val = 0;
3849
3850         /* get_link_status is set on LSC (link status) interrupt or
3851          * rx sequence error interrupt.  get_link_status will stay
3852          * false until the e1000_check_for_link establishes link
3853          * for copper adapters ONLY
3854          */
3855         switch (hw->phy.media_type) {
3856         case e1000_media_type_copper:
3857                 if (hw->mac.get_link_status) {
3858                         ret_val = hw->mac.ops.check_for_link(hw);
3859                         link_active = !hw->mac.get_link_status;
3860                 } else {
3861                         link_active = true;
3862                 }
3863                 break;
3864         case e1000_media_type_internal_serdes:
3865                 ret_val = hw->mac.ops.check_for_link(hw);
3866                 link_active = hw->mac.serdes_has_link;
3867                 break;
3868         default:
3869         case e1000_media_type_unknown:
3870                 break;
3871         }
3872
3873         return link_active;
3874 }
3875
3876 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3877 {
3878         bool ret = false;
3879         u32 ctrl_ext, thstat;
3880
3881         /* check for thermal sensor event on i350 copper only */
3882         if (hw->mac.type == e1000_i350) {
3883                 thstat = rd32(E1000_THSTAT);
3884                 ctrl_ext = rd32(E1000_CTRL_EXT);
3885
3886                 if ((hw->phy.media_type == e1000_media_type_copper) &&
3887                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3888                         ret = !!(thstat & event);
3889         }
3890
3891         return ret;
3892 }
3893
3894 /**
3895  *  igb_watchdog - Timer Call-back
3896  *  @data: pointer to adapter cast into an unsigned long
3897  **/
3898 static void igb_watchdog(unsigned long data)
3899 {
3900         struct igb_adapter *adapter = (struct igb_adapter *)data;
3901         /* Do the rest outside of interrupt context */
3902         schedule_work(&adapter->watchdog_task);
3903 }
3904
3905 static void igb_watchdog_task(struct work_struct *work)
3906 {
3907         struct igb_adapter *adapter = container_of(work,
3908                                                    struct igb_adapter,
3909                                                    watchdog_task);
3910         struct e1000_hw *hw = &adapter->hw;
3911         struct e1000_phy_info *phy = &hw->phy;
3912         struct net_device *netdev = adapter->netdev;
3913         u32 link;
3914         int i;
3915
3916         link = igb_has_link(adapter);
3917         if (link) {
3918                 /* Cancel scheduled suspend requests. */
3919                 pm_runtime_resume(netdev->dev.parent);
3920
3921                 if (!netif_carrier_ok(netdev)) {
3922                         u32 ctrl;
3923                         hw->mac.ops.get_speed_and_duplex(hw,
3924                                                          &adapter->link_speed,
3925                                                          &adapter->link_duplex);
3926
3927                         ctrl = rd32(E1000_CTRL);
3928                         /* Links status message must follow this format */
3929                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3930                                "Duplex, Flow Control: %s\n",
3931                                netdev->name,
3932                                adapter->link_speed,
3933                                adapter->link_duplex == FULL_DUPLEX ?
3934                                "Full" : "Half",
3935                                (ctrl & E1000_CTRL_TFCE) &&
3936                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3937                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3938                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3939
3940                         /* check if SmartSpeed worked */
3941                         igb_check_downshift(hw);
3942                         if (phy->speed_downgraded)
3943                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3944
3945                         /* check for thermal sensor event */
3946                         if (igb_thermal_sensor_event(hw,
3947                             E1000_THSTAT_LINK_THROTTLE)) {
3948                                 netdev_info(netdev, "The network adapter link "
3949                                             "speed was downshifted because it "
3950                                             "overheated\n");
3951                         }
3952
3953                         /* adjust timeout factor according to speed/duplex */
3954                         adapter->tx_timeout_factor = 1;
3955                         switch (adapter->link_speed) {
3956                         case SPEED_10:
3957                                 adapter->tx_timeout_factor = 14;
3958                                 break;
3959                         case SPEED_100:
3960                                 /* maybe add some timeout factor ? */
3961                                 break;
3962                         }
3963
3964                         netif_carrier_on(netdev);
3965
3966                         igb_ping_all_vfs(adapter);
3967                         igb_check_vf_rate_limit(adapter);
3968
3969                         /* link state has changed, schedule phy info update */
3970                         if (!test_bit(__IGB_DOWN, &adapter->state))
3971                                 mod_timer(&adapter->phy_info_timer,
3972                                           round_jiffies(jiffies + 2 * HZ));
3973                 }
3974         } else {
3975                 if (netif_carrier_ok(netdev)) {
3976                         adapter->link_speed = 0;
3977                         adapter->link_duplex = 0;
3978
3979                         /* check for thermal sensor event */
3980                         if (igb_thermal_sensor_event(hw,
3981                             E1000_THSTAT_PWR_DOWN)) {
3982                                 netdev_err(netdev, "The network adapter was "
3983                                            "stopped because it overheated\n");
3984                         }
3985
3986                         /* Links status message must follow this format */
3987                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3988                                netdev->name);
3989                         netif_carrier_off(netdev);
3990
3991                         igb_ping_all_vfs(adapter);
3992
3993                         /* link state has changed, schedule phy info update */
3994                         if (!test_bit(__IGB_DOWN, &adapter->state))
3995                                 mod_timer(&adapter->phy_info_timer,
3996                                           round_jiffies(jiffies + 2 * HZ));
3997
3998                         pm_schedule_suspend(netdev->dev.parent,
3999                                             MSEC_PER_SEC * 5);
4000                 }
4001         }
4002
4003         spin_lock(&adapter->stats64_lock);
4004         igb_update_stats(adapter, &adapter->stats64);
4005         spin_unlock(&adapter->stats64_lock);
4006
4007         for (i = 0; i < adapter->num_tx_queues; i++) {
4008                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4009                 if (!netif_carrier_ok(netdev)) {
4010                         /* We've lost link, so the controller stops DMA,
4011                          * but we've got queued Tx work that's never going
4012                          * to get done, so reset controller to flush Tx.
4013                          * (Do the reset outside of interrupt context).
4014                          */
4015                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4016                                 adapter->tx_timeout_count++;
4017                                 schedule_work(&adapter->reset_task);
4018                                 /* return immediately since reset is imminent */
4019                                 return;
4020                         }
4021                 }
4022
4023                 /* Force detection of hung controller every watchdog period */
4024                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4025         }
4026
4027         /* Cause software interrupt to ensure Rx ring is cleaned */
4028         if (adapter->msix_entries) {
4029                 u32 eics = 0;
4030                 for (i = 0; i < adapter->num_q_vectors; i++)
4031                         eics |= adapter->q_vector[i]->eims_value;
4032                 wr32(E1000_EICS, eics);
4033         } else {
4034                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4035         }
4036
4037         igb_spoof_check(adapter);
4038         igb_ptp_rx_hang(adapter);
4039
4040         /* Reset the timer */
4041         if (!test_bit(__IGB_DOWN, &adapter->state))
4042                 mod_timer(&adapter->watchdog_timer,
4043                           round_jiffies(jiffies + 2 * HZ));
4044 }
4045
4046 enum latency_range {
4047         lowest_latency = 0,
4048         low_latency = 1,
4049         bulk_latency = 2,
4050         latency_invalid = 255
4051 };
4052
4053 /**
4054  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4055  *  @q_vector: pointer to q_vector
4056  *
4057  *  Stores a new ITR value based on strictly on packet size.  This
4058  *  algorithm is less sophisticated than that used in igb_update_itr,
4059  *  due to the difficulty of synchronizing statistics across multiple
4060  *  receive rings.  The divisors and thresholds used by this function
4061  *  were determined based on theoretical maximum wire speed and testing
4062  *  data, in order to minimize response time while increasing bulk
4063  *  throughput.
4064  *  This functionality is controlled by the InterruptThrottleRate module
4065  *  parameter (see igb_param.c)
4066  *  NOTE:  This function is called only when operating in a multiqueue
4067  *         receive environment.
4068  **/
4069 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4070 {
4071         int new_val = q_vector->itr_val;
4072         int avg_wire_size = 0;
4073         struct igb_adapter *adapter = q_vector->adapter;
4074         unsigned int packets;
4075
4076         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4077          * ints/sec - ITR timer value of 120 ticks.
4078          */
4079         if (adapter->link_speed != SPEED_1000) {
4080                 new_val = IGB_4K_ITR;
4081                 goto set_itr_val;
4082         }
4083
4084         packets = q_vector->rx.total_packets;
4085         if (packets)
4086                 avg_wire_size = q_vector->rx.total_bytes / packets;
4087
4088         packets = q_vector->tx.total_packets;
4089         if (packets)
4090                 avg_wire_size = max_t(u32, avg_wire_size,
4091                                       q_vector->tx.total_bytes / packets);
4092
4093         /* if avg_wire_size isn't set no work was done */
4094         if (!avg_wire_size)
4095                 goto clear_counts;
4096
4097         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4098         avg_wire_size += 24;
4099
4100         /* Don't starve jumbo frames */
4101         avg_wire_size = min(avg_wire_size, 3000);
4102
4103         /* Give a little boost to mid-size frames */
4104         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4105                 new_val = avg_wire_size / 3;
4106         else
4107                 new_val = avg_wire_size / 2;
4108
4109         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4110         if (new_val < IGB_20K_ITR &&
4111             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4112              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4113                 new_val = IGB_20K_ITR;
4114
4115 set_itr_val:
4116         if (new_val != q_vector->itr_val) {
4117                 q_vector->itr_val = new_val;
4118                 q_vector->set_itr = 1;
4119         }
4120 clear_counts:
4121         q_vector->rx.total_bytes = 0;
4122         q_vector->rx.total_packets = 0;
4123         q_vector->tx.total_bytes = 0;
4124         q_vector->tx.total_packets = 0;
4125 }
4126
4127 /**
4128  *  igb_update_itr - update the dynamic ITR value based on statistics
4129  *  @q_vector: pointer to q_vector
4130  *  @ring_container: ring info to update the itr for
4131  *
4132  *  Stores a new ITR value based on packets and byte
4133  *  counts during the last interrupt.  The advantage of per interrupt
4134  *  computation is faster updates and more accurate ITR for the current
4135  *  traffic pattern.  Constants in this function were computed
4136  *  based on theoretical maximum wire speed and thresholds were set based
4137  *  on testing data as well as attempting to minimize response time
4138  *  while increasing bulk throughput.
4139  *  this functionality is controlled by the InterruptThrottleRate module
4140  *  parameter (see igb_param.c)
4141  *  NOTE:  These calculations are only valid when operating in a single-
4142  *         queue environment.
4143  **/
4144 static void igb_update_itr(struct igb_q_vector *q_vector,
4145                            struct igb_ring_container *ring_container)
4146 {
4147         unsigned int packets = ring_container->total_packets;
4148         unsigned int bytes = ring_container->total_bytes;
4149         u8 itrval = ring_container->itr;
4150
4151         /* no packets, exit with status unchanged */
4152         if (packets == 0)
4153                 return;
4154
4155         switch (itrval) {
4156         case lowest_latency:
4157                 /* handle TSO and jumbo frames */
4158                 if (bytes/packets > 8000)
4159                         itrval = bulk_latency;
4160                 else if ((packets < 5) && (bytes > 512))
4161                         itrval = low_latency;
4162                 break;
4163         case low_latency:  /* 50 usec aka 20000 ints/s */
4164                 if (bytes > 10000) {
4165                         /* this if handles the TSO accounting */
4166                         if (bytes/packets > 8000) {
4167                                 itrval = bulk_latency;
4168                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4169                                 itrval = bulk_latency;
4170                         } else if ((packets > 35)) {
4171                                 itrval = lowest_latency;
4172                         }
4173                 } else if (bytes/packets > 2000) {
4174                         itrval = bulk_latency;
4175                 } else if (packets <= 2 && bytes < 512) {
4176                         itrval = lowest_latency;
4177                 }
4178                 break;
4179         case bulk_latency: /* 250 usec aka 4000 ints/s */
4180                 if (bytes > 25000) {
4181                         if (packets > 35)
4182                                 itrval = low_latency;
4183                 } else if (bytes < 1500) {
4184                         itrval = low_latency;
4185                 }
4186                 break;
4187         }
4188
4189         /* clear work counters since we have the values we need */
4190         ring_container->total_bytes = 0;
4191         ring_container->total_packets = 0;
4192
4193         /* write updated itr to ring container */
4194         ring_container->itr = itrval;
4195 }
4196
4197 static void igb_set_itr(struct igb_q_vector *q_vector)
4198 {
4199         struct igb_adapter *adapter = q_vector->adapter;
4200         u32 new_itr = q_vector->itr_val;
4201         u8 current_itr = 0;
4202
4203         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4204         if (adapter->link_speed != SPEED_1000) {
4205                 current_itr = 0;
4206                 new_itr = IGB_4K_ITR;
4207                 goto set_itr_now;
4208         }
4209
4210         igb_update_itr(q_vector, &q_vector->tx);
4211         igb_update_itr(q_vector, &q_vector->rx);
4212
4213         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4214
4215         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4216         if (current_itr == lowest_latency &&
4217             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4218              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4219                 current_itr = low_latency;
4220
4221         switch (current_itr) {
4222         /* counts and packets in update_itr are dependent on these numbers */
4223         case lowest_latency:
4224                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4225                 break;
4226         case low_latency:
4227                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4228                 break;
4229         case bulk_latency:
4230                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4231                 break;
4232         default:
4233                 break;
4234         }
4235
4236 set_itr_now:
4237         if (new_itr != q_vector->itr_val) {
4238                 /* this attempts to bias the interrupt rate towards Bulk
4239                  * by adding intermediate steps when interrupt rate is
4240                  * increasing
4241                  */
4242                 new_itr = new_itr > q_vector->itr_val ?
4243                           max((new_itr * q_vector->itr_val) /
4244                           (new_itr + (q_vector->itr_val >> 2)),
4245                           new_itr) : new_itr;
4246                 /* Don't write the value here; it resets the adapter's
4247                  * internal timer, and causes us to delay far longer than
4248                  * we should between interrupts.  Instead, we write the ITR
4249                  * value at the beginning of the next interrupt so the timing
4250                  * ends up being correct.
4251                  */
4252                 q_vector->itr_val = new_itr;
4253                 q_vector->set_itr = 1;
4254         }
4255 }
4256
4257 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4258                             u32 type_tucmd, u32 mss_l4len_idx)
4259 {
4260         struct e1000_adv_tx_context_desc *context_desc;
4261         u16 i = tx_ring->next_to_use;
4262
4263         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4264
4265         i++;
4266         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4267
4268         /* set bits to identify this as an advanced context descriptor */
4269         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4270
4271         /* For 82575, context index must be unique per ring. */
4272         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4273                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4274
4275         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4276         context_desc->seqnum_seed       = 0;
4277         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4278         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4279 }
4280
4281 static int igb_tso(struct igb_ring *tx_ring,
4282                    struct igb_tx_buffer *first,
4283                    u8 *hdr_len)
4284 {
4285         struct sk_buff *skb = first->skb;
4286         u32 vlan_macip_lens, type_tucmd;
4287         u32 mss_l4len_idx, l4len;
4288
4289         if (skb->ip_summed != CHECKSUM_PARTIAL)
4290                 return 0;
4291
4292         if (!skb_is_gso(skb))
4293                 return 0;
4294
4295         if (skb_header_cloned(skb)) {
4296                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4297                 if (err)
4298                         return err;
4299         }
4300
4301         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4302         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4303
4304         if (first->protocol == __constant_htons(ETH_P_IP)) {
4305                 struct iphdr *iph = ip_hdr(skb);
4306                 iph->tot_len = 0;
4307                 iph->check = 0;
4308                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4309                                                          iph->daddr, 0,
4310                                                          IPPROTO_TCP,
4311                                                          0);
4312                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4313                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4314                                    IGB_TX_FLAGS_CSUM |
4315                                    IGB_TX_FLAGS_IPV4;
4316         } else if (skb_is_gso_v6(skb)) {
4317                 ipv6_hdr(skb)->payload_len = 0;
4318                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4319                                                        &ipv6_hdr(skb)->daddr,
4320                                                        0, IPPROTO_TCP, 0);
4321                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4322                                    IGB_TX_FLAGS_CSUM;
4323         }
4324
4325         /* compute header lengths */
4326         l4len = tcp_hdrlen(skb);
4327         *hdr_len = skb_transport_offset(skb) + l4len;
4328
4329         /* update gso size and bytecount with header size */
4330         first->gso_segs = skb_shinfo(skb)->gso_segs;
4331         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4332
4333         /* MSS L4LEN IDX */
4334         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4335         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4336
4337         /* VLAN MACLEN IPLEN */
4338         vlan_macip_lens = skb_network_header_len(skb);
4339         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4340         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4341
4342         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4343
4344         return 1;
4345 }
4346
4347 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4348 {
4349         struct sk_buff *skb = first->skb;
4350         u32 vlan_macip_lens = 0;
4351         u32 mss_l4len_idx = 0;
4352         u32 type_tucmd = 0;
4353
4354         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4355                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4356                         return;
4357         } else {
4358                 u8 l4_hdr = 0;
4359                 switch (first->protocol) {
4360                 case __constant_htons(ETH_P_IP):
4361                         vlan_macip_lens |= skb_network_header_len(skb);
4362                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4363                         l4_hdr = ip_hdr(skb)->protocol;
4364                         break;
4365                 case __constant_htons(ETH_P_IPV6):
4366                         vlan_macip_lens |= skb_network_header_len(skb);
4367                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4368                         break;
4369                 default:
4370                         if (unlikely(net_ratelimit())) {
4371                                 dev_warn(tx_ring->dev,
4372                                          "partial checksum but proto=%x!\n",
4373                                          first->protocol);
4374                         }
4375                         break;
4376                 }
4377
4378                 switch (l4_hdr) {
4379                 case IPPROTO_TCP:
4380                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4381                         mss_l4len_idx = tcp_hdrlen(skb) <<
4382                                         E1000_ADVTXD_L4LEN_SHIFT;
4383                         break;
4384                 case IPPROTO_SCTP:
4385                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4386                         mss_l4len_idx = sizeof(struct sctphdr) <<
4387                                         E1000_ADVTXD_L4LEN_SHIFT;
4388                         break;
4389                 case IPPROTO_UDP:
4390                         mss_l4len_idx = sizeof(struct udphdr) <<
4391                                         E1000_ADVTXD_L4LEN_SHIFT;
4392                         break;
4393                 default:
4394                         if (unlikely(net_ratelimit())) {
4395                                 dev_warn(tx_ring->dev,
4396                                          "partial checksum but l4 proto=%x!\n",
4397                                          l4_hdr);
4398                         }
4399                         break;
4400                 }
4401
4402                 /* update TX checksum flag */
4403                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4404         }
4405
4406         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4407         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4408
4409         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4410 }
4411
4412 #define IGB_SET_FLAG(_input, _flag, _result) \
4413         ((_flag <= _result) ? \
4414          ((u32)(_input & _flag) * (_result / _flag)) : \
4415          ((u32)(_input & _flag) / (_flag / _result)))
4416
4417 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4418 {
4419         /* set type for advanced descriptor with frame checksum insertion */
4420         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4421                        E1000_ADVTXD_DCMD_DEXT |
4422                        E1000_ADVTXD_DCMD_IFCS;
4423
4424         /* set HW vlan bit if vlan is present */
4425         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4426                                  (E1000_ADVTXD_DCMD_VLE));
4427
4428         /* set segmentation bits for TSO */
4429         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4430                                  (E1000_ADVTXD_DCMD_TSE));
4431
4432         /* set timestamp bit if present */
4433         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4434                                  (E1000_ADVTXD_MAC_TSTAMP));
4435
4436         /* insert frame checksum */
4437         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4438
4439         return cmd_type;
4440 }
4441
4442 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4443                                  union e1000_adv_tx_desc *tx_desc,
4444                                  u32 tx_flags, unsigned int paylen)
4445 {
4446         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4447
4448         /* 82575 requires a unique index per ring */
4449         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4450                 olinfo_status |= tx_ring->reg_idx << 4;
4451
4452         /* insert L4 checksum */
4453         olinfo_status |= IGB_SET_FLAG(tx_flags,
4454                                       IGB_TX_FLAGS_CSUM,
4455                                       (E1000_TXD_POPTS_TXSM << 8));
4456
4457         /* insert IPv4 checksum */
4458         olinfo_status |= IGB_SET_FLAG(tx_flags,
4459                                       IGB_TX_FLAGS_IPV4,
4460                                       (E1000_TXD_POPTS_IXSM << 8));
4461
4462         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4463 }
4464
4465 static void igb_tx_map(struct igb_ring *tx_ring,
4466                        struct igb_tx_buffer *first,
4467                        const u8 hdr_len)
4468 {
4469         struct sk_buff *skb = first->skb;
4470         struct igb_tx_buffer *tx_buffer;
4471         union e1000_adv_tx_desc *tx_desc;
4472         struct skb_frag_struct *frag;
4473         dma_addr_t dma;
4474         unsigned int data_len, size;
4475         u32 tx_flags = first->tx_flags;
4476         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4477         u16 i = tx_ring->next_to_use;
4478
4479         tx_desc = IGB_TX_DESC(tx_ring, i);
4480
4481         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4482
4483         size = skb_headlen(skb);
4484         data_len = skb->data_len;
4485
4486         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4487
4488         tx_buffer = first;
4489
4490         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4491                 if (dma_mapping_error(tx_ring->dev, dma))
4492                         goto dma_error;
4493
4494                 /* record length, and DMA address */
4495                 dma_unmap_len_set(tx_buffer, len, size);
4496                 dma_unmap_addr_set(tx_buffer, dma, dma);
4497
4498                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4499
4500                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4501                         tx_desc->read.cmd_type_len =
4502                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4503
4504                         i++;
4505                         tx_desc++;
4506                         if (i == tx_ring->count) {
4507                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4508                                 i = 0;
4509                         }
4510                         tx_desc->read.olinfo_status = 0;
4511
4512                         dma += IGB_MAX_DATA_PER_TXD;
4513                         size -= IGB_MAX_DATA_PER_TXD;
4514
4515                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4516                 }
4517
4518                 if (likely(!data_len))
4519                         break;
4520
4521                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4522
4523                 i++;
4524                 tx_desc++;
4525                 if (i == tx_ring->count) {
4526                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4527                         i = 0;
4528                 }
4529                 tx_desc->read.olinfo_status = 0;
4530
4531                 size = skb_frag_size(frag);
4532                 data_len -= size;
4533
4534                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4535                                        size, DMA_TO_DEVICE);
4536
4537                 tx_buffer = &tx_ring->tx_buffer_info[i];
4538         }
4539
4540         /* write last descriptor with RS and EOP bits */
4541         cmd_type |= size | IGB_TXD_DCMD;
4542         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4543
4544         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4545
4546         /* set the timestamp */
4547         first->time_stamp = jiffies;
4548
4549         /* Force memory writes to complete before letting h/w know there
4550          * are new descriptors to fetch.  (Only applicable for weak-ordered
4551          * memory model archs, such as IA-64).
4552          *
4553          * We also need this memory barrier to make certain all of the
4554          * status bits have been updated before next_to_watch is written.
4555          */
4556         wmb();
4557
4558         /* set next_to_watch value indicating a packet is present */
4559         first->next_to_watch = tx_desc;
4560
4561         i++;
4562         if (i == tx_ring->count)
4563                 i = 0;
4564
4565         tx_ring->next_to_use = i;
4566
4567         writel(i, tx_ring->tail);
4568
4569         /* we need this if more than one processor can write to our tail
4570          * at a time, it synchronizes IO on IA64/Altix systems
4571          */
4572         mmiowb();
4573
4574         return;
4575
4576 dma_error:
4577         dev_err(tx_ring->dev, "TX DMA map failed\n");
4578
4579         /* clear dma mappings for failed tx_buffer_info map */
4580         for (;;) {
4581                 tx_buffer = &tx_ring->tx_buffer_info[i];
4582                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4583                 if (tx_buffer == first)
4584                         break;
4585                 if (i == 0)
4586                         i = tx_ring->count;
4587                 i--;
4588         }
4589
4590         tx_ring->next_to_use = i;
4591 }
4592
4593 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4594 {
4595         struct net_device *netdev = tx_ring->netdev;
4596
4597         netif_stop_subqueue(netdev, tx_ring->queue_index);
4598
4599         /* Herbert's original patch had:
4600          *  smp_mb__after_netif_stop_queue();
4601          * but since that doesn't exist yet, just open code it.
4602          */
4603         smp_mb();
4604
4605         /* We need to check again in a case another CPU has just
4606          * made room available.
4607          */
4608         if (igb_desc_unused(tx_ring) < size)
4609                 return -EBUSY;
4610
4611         /* A reprieve! */
4612         netif_wake_subqueue(netdev, tx_ring->queue_index);
4613
4614         u64_stats_update_begin(&tx_ring->tx_syncp2);
4615         tx_ring->tx_stats.restart_queue2++;
4616         u64_stats_update_end(&tx_ring->tx_syncp2);
4617
4618         return 0;
4619 }
4620
4621 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4622 {
4623         if (igb_desc_unused(tx_ring) >= size)
4624                 return 0;
4625         return __igb_maybe_stop_tx(tx_ring, size);
4626 }
4627
4628 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4629                                 struct igb_ring *tx_ring)
4630 {
4631         struct igb_tx_buffer *first;
4632         int tso;
4633         u32 tx_flags = 0;
4634         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4635         __be16 protocol = vlan_get_protocol(skb);
4636         u8 hdr_len = 0;
4637
4638         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4639          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4640          *       + 2 desc gap to keep tail from touching head,
4641          *       + 1 desc for context descriptor,
4642          * otherwise try next time
4643          */
4644         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4645                 unsigned short f;
4646                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4647                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4648         } else {
4649                 count += skb_shinfo(skb)->nr_frags;
4650         }
4651
4652         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4653                 /* this is a hard error */
4654                 return NETDEV_TX_BUSY;
4655         }
4656
4657         /* record the location of the first descriptor for this packet */
4658         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4659         first->skb = skb;
4660         first->bytecount = skb->len;
4661         first->gso_segs = 1;
4662
4663         skb_tx_timestamp(skb);
4664
4665         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4666                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4667
4668                 if (!(adapter->ptp_tx_skb)) {
4669                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4670                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4671
4672                         adapter->ptp_tx_skb = skb_get(skb);
4673                         adapter->ptp_tx_start = jiffies;
4674                         if (adapter->hw.mac.type == e1000_82576)
4675                                 schedule_work(&adapter->ptp_tx_work);
4676                 }
4677         }
4678
4679         if (vlan_tx_tag_present(skb)) {
4680                 tx_flags |= IGB_TX_FLAGS_VLAN;
4681                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4682         }
4683
4684         /* record initial flags and protocol */
4685         first->tx_flags = tx_flags;
4686         first->protocol = protocol;
4687
4688         tso = igb_tso(tx_ring, first, &hdr_len);
4689         if (tso < 0)
4690                 goto out_drop;
4691         else if (!tso)
4692                 igb_tx_csum(tx_ring, first);
4693
4694         igb_tx_map(tx_ring, first, hdr_len);
4695
4696         /* Make sure there is space in the ring for the next send. */
4697         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4698
4699         return NETDEV_TX_OK;
4700
4701 out_drop:
4702         igb_unmap_and_free_tx_resource(tx_ring, first);
4703
4704         return NETDEV_TX_OK;
4705 }
4706
4707 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4708                                                     struct sk_buff *skb)
4709 {
4710         unsigned int r_idx = skb->queue_mapping;
4711
4712         if (r_idx >= adapter->num_tx_queues)
4713                 r_idx = r_idx % adapter->num_tx_queues;
4714
4715         return adapter->tx_ring[r_idx];
4716 }
4717
4718 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4719                                   struct net_device *netdev)
4720 {
4721         struct igb_adapter *adapter = netdev_priv(netdev);
4722
4723         if (test_bit(__IGB_DOWN, &adapter->state)) {
4724                 dev_kfree_skb_any(skb);
4725                 return NETDEV_TX_OK;
4726         }
4727
4728         if (skb->len <= 0) {
4729                 dev_kfree_skb_any(skb);
4730                 return NETDEV_TX_OK;
4731         }
4732
4733         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4734          * in order to meet this minimum size requirement.
4735          */
4736         if (unlikely(skb->len < 17)) {
4737                 if (skb_pad(skb, 17 - skb->len))
4738                         return NETDEV_TX_OK;
4739                 skb->len = 17;
4740                 skb_set_tail_pointer(skb, 17);
4741         }
4742
4743         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4744 }
4745
4746 /**
4747  *  igb_tx_timeout - Respond to a Tx Hang
4748  *  @netdev: network interface device structure
4749  **/
4750 static void igb_tx_timeout(struct net_device *netdev)
4751 {
4752         struct igb_adapter *adapter = netdev_priv(netdev);
4753         struct e1000_hw *hw = &adapter->hw;
4754
4755         /* Do the reset outside of interrupt context */
4756         adapter->tx_timeout_count++;
4757
4758         if (hw->mac.type >= e1000_82580)
4759                 hw->dev_spec._82575.global_device_reset = true;
4760
4761         schedule_work(&adapter->reset_task);
4762         wr32(E1000_EICS,
4763              (adapter->eims_enable_mask & ~adapter->eims_other));
4764 }
4765
4766 static void igb_reset_task(struct work_struct *work)
4767 {
4768         struct igb_adapter *adapter;
4769         adapter = container_of(work, struct igb_adapter, reset_task);
4770
4771         igb_dump(adapter);
4772         netdev_err(adapter->netdev, "Reset adapter\n");
4773         igb_reinit_locked(adapter);
4774 }
4775
4776 /**
4777  *  igb_get_stats64 - Get System Network Statistics
4778  *  @netdev: network interface device structure
4779  *  @stats: rtnl_link_stats64 pointer
4780  **/
4781 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4782                                                 struct rtnl_link_stats64 *stats)
4783 {
4784         struct igb_adapter *adapter = netdev_priv(netdev);
4785
4786         spin_lock(&adapter->stats64_lock);
4787         igb_update_stats(adapter, &adapter->stats64);
4788         memcpy(stats, &adapter->stats64, sizeof(*stats));
4789         spin_unlock(&adapter->stats64_lock);
4790
4791         return stats;
4792 }
4793
4794 /**
4795  *  igb_change_mtu - Change the Maximum Transfer Unit
4796  *  @netdev: network interface device structure
4797  *  @new_mtu: new value for maximum frame size
4798  *
4799  *  Returns 0 on success, negative on failure
4800  **/
4801 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4802 {
4803         struct igb_adapter *adapter = netdev_priv(netdev);
4804         struct pci_dev *pdev = adapter->pdev;
4805         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4806
4807         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4808                 dev_err(&pdev->dev, "Invalid MTU setting\n");
4809                 return -EINVAL;
4810         }
4811
4812 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4813         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4814                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4815                 return -EINVAL;
4816         }
4817
4818         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4819                 msleep(1);
4820
4821         /* igb_down has a dependency on max_frame_size */
4822         adapter->max_frame_size = max_frame;
4823
4824         if (netif_running(netdev))
4825                 igb_down(adapter);
4826
4827         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4828                  netdev->mtu, new_mtu);
4829         netdev->mtu = new_mtu;
4830
4831         if (netif_running(netdev))
4832                 igb_up(adapter);
4833         else
4834                 igb_reset(adapter);
4835
4836         clear_bit(__IGB_RESETTING, &adapter->state);
4837
4838         return 0;
4839 }
4840
4841 /**
4842  *  igb_update_stats - Update the board statistics counters
4843  *  @adapter: board private structure
4844  **/
4845 void igb_update_stats(struct igb_adapter *adapter,
4846                       struct rtnl_link_stats64 *net_stats)
4847 {
4848         struct e1000_hw *hw = &adapter->hw;
4849         struct pci_dev *pdev = adapter->pdev;
4850         u32 reg, mpc;
4851         u16 phy_tmp;
4852         int i;
4853         u64 bytes, packets;
4854         unsigned int start;
4855         u64 _bytes, _packets;
4856
4857 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4858
4859         /* Prevent stats update while adapter is being reset, or if the pci
4860          * connection is down.
4861          */
4862         if (adapter->link_speed == 0)
4863                 return;
4864         if (pci_channel_offline(pdev))
4865                 return;
4866
4867         bytes = 0;
4868         packets = 0;
4869         for (i = 0; i < adapter->num_rx_queues; i++) {
4870                 u32 rqdpc = rd32(E1000_RQDPC(i));
4871                 struct igb_ring *ring = adapter->rx_ring[i];
4872
4873                 if (rqdpc) {
4874                         ring->rx_stats.drops += rqdpc;
4875                         net_stats->rx_fifo_errors += rqdpc;
4876                 }
4877
4878                 do {
4879                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4880                         _bytes = ring->rx_stats.bytes;
4881                         _packets = ring->rx_stats.packets;
4882                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4883                 bytes += _bytes;
4884                 packets += _packets;
4885         }
4886
4887         net_stats->rx_bytes = bytes;
4888         net_stats->rx_packets = packets;
4889
4890         bytes = 0;
4891         packets = 0;
4892         for (i = 0; i < adapter->num_tx_queues; i++) {
4893                 struct igb_ring *ring = adapter->tx_ring[i];
4894                 do {
4895                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4896                         _bytes = ring->tx_stats.bytes;
4897                         _packets = ring->tx_stats.packets;
4898                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4899                 bytes += _bytes;
4900                 packets += _packets;
4901         }
4902         net_stats->tx_bytes = bytes;
4903         net_stats->tx_packets = packets;
4904
4905         /* read stats registers */
4906         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4907         adapter->stats.gprc += rd32(E1000_GPRC);
4908         adapter->stats.gorc += rd32(E1000_GORCL);
4909         rd32(E1000_GORCH); /* clear GORCL */
4910         adapter->stats.bprc += rd32(E1000_BPRC);
4911         adapter->stats.mprc += rd32(E1000_MPRC);
4912         adapter->stats.roc += rd32(E1000_ROC);
4913
4914         adapter->stats.prc64 += rd32(E1000_PRC64);
4915         adapter->stats.prc127 += rd32(E1000_PRC127);
4916         adapter->stats.prc255 += rd32(E1000_PRC255);
4917         adapter->stats.prc511 += rd32(E1000_PRC511);
4918         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4919         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4920         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4921         adapter->stats.sec += rd32(E1000_SEC);
4922
4923         mpc = rd32(E1000_MPC);
4924         adapter->stats.mpc += mpc;
4925         net_stats->rx_fifo_errors += mpc;
4926         adapter->stats.scc += rd32(E1000_SCC);
4927         adapter->stats.ecol += rd32(E1000_ECOL);
4928         adapter->stats.mcc += rd32(E1000_MCC);
4929         adapter->stats.latecol += rd32(E1000_LATECOL);
4930         adapter->stats.dc += rd32(E1000_DC);
4931         adapter->stats.rlec += rd32(E1000_RLEC);
4932         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4933         adapter->stats.xontxc += rd32(E1000_XONTXC);
4934         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4935         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4936         adapter->stats.fcruc += rd32(E1000_FCRUC);
4937         adapter->stats.gptc += rd32(E1000_GPTC);
4938         adapter->stats.gotc += rd32(E1000_GOTCL);
4939         rd32(E1000_GOTCH); /* clear GOTCL */
4940         adapter->stats.rnbc += rd32(E1000_RNBC);
4941         adapter->stats.ruc += rd32(E1000_RUC);
4942         adapter->stats.rfc += rd32(E1000_RFC);
4943         adapter->stats.rjc += rd32(E1000_RJC);
4944         adapter->stats.tor += rd32(E1000_TORH);
4945         adapter->stats.tot += rd32(E1000_TOTH);
4946         adapter->stats.tpr += rd32(E1000_TPR);
4947
4948         adapter->stats.ptc64 += rd32(E1000_PTC64);
4949         adapter->stats.ptc127 += rd32(E1000_PTC127);
4950         adapter->stats.ptc255 += rd32(E1000_PTC255);
4951         adapter->stats.ptc511 += rd32(E1000_PTC511);
4952         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4953         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4954
4955         adapter->stats.mptc += rd32(E1000_MPTC);
4956         adapter->stats.bptc += rd32(E1000_BPTC);
4957
4958         adapter->stats.tpt += rd32(E1000_TPT);
4959         adapter->stats.colc += rd32(E1000_COLC);
4960
4961         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4962         /* read internal phy specific stats */
4963         reg = rd32(E1000_CTRL_EXT);
4964         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4965                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4966
4967                 /* this stat has invalid values on i210/i211 */
4968                 if ((hw->mac.type != e1000_i210) &&
4969                     (hw->mac.type != e1000_i211))
4970                         adapter->stats.tncrs += rd32(E1000_TNCRS);
4971         }
4972
4973         adapter->stats.tsctc += rd32(E1000_TSCTC);
4974         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4975
4976         adapter->stats.iac += rd32(E1000_IAC);
4977         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4978         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4979         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4980         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4981         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4982         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4983         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4984         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4985
4986         /* Fill out the OS statistics structure */
4987         net_stats->multicast = adapter->stats.mprc;
4988         net_stats->collisions = adapter->stats.colc;
4989
4990         /* Rx Errors */
4991
4992         /* RLEC on some newer hardware can be incorrect so build
4993          * our own version based on RUC and ROC
4994          */
4995         net_stats->rx_errors = adapter->stats.rxerrc +
4996                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4997                 adapter->stats.ruc + adapter->stats.roc +
4998                 adapter->stats.cexterr;
4999         net_stats->rx_length_errors = adapter->stats.ruc +
5000                                       adapter->stats.roc;
5001         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5002         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5003         net_stats->rx_missed_errors = adapter->stats.mpc;
5004
5005         /* Tx Errors */
5006         net_stats->tx_errors = adapter->stats.ecol +
5007                                adapter->stats.latecol;
5008         net_stats->tx_aborted_errors = adapter->stats.ecol;
5009         net_stats->tx_window_errors = adapter->stats.latecol;
5010         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5011
5012         /* Tx Dropped needs to be maintained elsewhere */
5013
5014         /* Phy Stats */
5015         if (hw->phy.media_type == e1000_media_type_copper) {
5016                 if ((adapter->link_speed == SPEED_1000) &&
5017                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5018                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5019                         adapter->phy_stats.idle_errors += phy_tmp;
5020                 }
5021         }
5022
5023         /* Management Stats */
5024         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5025         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5026         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5027
5028         /* OS2BMC Stats */
5029         reg = rd32(E1000_MANC);
5030         if (reg & E1000_MANC_EN_BMC2OS) {
5031                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5032                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5033                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5034                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5035         }
5036 }
5037
5038 static irqreturn_t igb_msix_other(int irq, void *data)
5039 {
5040         struct igb_adapter *adapter = data;
5041         struct e1000_hw *hw = &adapter->hw;
5042         u32 icr = rd32(E1000_ICR);
5043         /* reading ICR causes bit 31 of EICR to be cleared */
5044
5045         if (icr & E1000_ICR_DRSTA)
5046                 schedule_work(&adapter->reset_task);
5047
5048         if (icr & E1000_ICR_DOUTSYNC) {
5049                 /* HW is reporting DMA is out of sync */
5050                 adapter->stats.doosync++;
5051                 /* The DMA Out of Sync is also indication of a spoof event
5052                  * in IOV mode. Check the Wrong VM Behavior register to
5053                  * see if it is really a spoof event.
5054                  */
5055                 igb_check_wvbr(adapter);
5056         }
5057
5058         /* Check for a mailbox event */
5059         if (icr & E1000_ICR_VMMB)
5060                 igb_msg_task(adapter);
5061
5062         if (icr & E1000_ICR_LSC) {
5063                 hw->mac.get_link_status = 1;
5064                 /* guard against interrupt when we're going down */
5065                 if (!test_bit(__IGB_DOWN, &adapter->state))
5066                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5067         }
5068
5069         if (icr & E1000_ICR_TS) {
5070                 u32 tsicr = rd32(E1000_TSICR);
5071
5072                 if (tsicr & E1000_TSICR_TXTS) {
5073                         /* acknowledge the interrupt */
5074                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5075                         /* retrieve hardware timestamp */
5076                         schedule_work(&adapter->ptp_tx_work);
5077                 }
5078         }
5079
5080         wr32(E1000_EIMS, adapter->eims_other);
5081
5082         return IRQ_HANDLED;
5083 }
5084
5085 static void igb_write_itr(struct igb_q_vector *q_vector)
5086 {
5087         struct igb_adapter *adapter = q_vector->adapter;
5088         u32 itr_val = q_vector->itr_val & 0x7FFC;
5089
5090         if (!q_vector->set_itr)
5091                 return;
5092
5093         if (!itr_val)
5094                 itr_val = 0x4;
5095
5096         if (adapter->hw.mac.type == e1000_82575)
5097                 itr_val |= itr_val << 16;
5098         else
5099                 itr_val |= E1000_EITR_CNT_IGNR;
5100
5101         writel(itr_val, q_vector->itr_register);
5102         q_vector->set_itr = 0;
5103 }
5104
5105 static irqreturn_t igb_msix_ring(int irq, void *data)
5106 {
5107         struct igb_q_vector *q_vector = data;
5108
5109         /* Write the ITR value calculated from the previous interrupt. */
5110         igb_write_itr(q_vector);
5111
5112         napi_schedule(&q_vector->napi);
5113
5114         return IRQ_HANDLED;
5115 }
5116
5117 #ifdef CONFIG_IGB_DCA
5118 static void igb_update_tx_dca(struct igb_adapter *adapter,
5119                               struct igb_ring *tx_ring,
5120                               int cpu)
5121 {
5122         struct e1000_hw *hw = &adapter->hw;
5123         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5124
5125         if (hw->mac.type != e1000_82575)
5126                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5127
5128         /* We can enable relaxed ordering for reads, but not writes when
5129          * DCA is enabled.  This is due to a known issue in some chipsets
5130          * which will cause the DCA tag to be cleared.
5131          */
5132         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5133                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5134                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5135
5136         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5137 }
5138
5139 static void igb_update_rx_dca(struct igb_adapter *adapter,
5140                               struct igb_ring *rx_ring,
5141                               int cpu)
5142 {
5143         struct e1000_hw *hw = &adapter->hw;
5144         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5145
5146         if (hw->mac.type != e1000_82575)
5147                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5148
5149         /* We can enable relaxed ordering for reads, but not writes when
5150          * DCA is enabled.  This is due to a known issue in some chipsets
5151          * which will cause the DCA tag to be cleared.
5152          */
5153         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5154                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5155
5156         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5157 }
5158
5159 static void igb_update_dca(struct igb_q_vector *q_vector)
5160 {
5161         struct igb_adapter *adapter = q_vector->adapter;
5162         int cpu = get_cpu();
5163
5164         if (q_vector->cpu == cpu)
5165                 goto out_no_update;
5166
5167         if (q_vector->tx.ring)
5168                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5169
5170         if (q_vector->rx.ring)
5171                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5172
5173         q_vector->cpu = cpu;
5174 out_no_update:
5175         put_cpu();
5176 }
5177
5178 static void igb_setup_dca(struct igb_adapter *adapter)
5179 {
5180         struct e1000_hw *hw = &adapter->hw;
5181         int i;
5182
5183         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5184                 return;
5185
5186         /* Always use CB2 mode, difference is masked in the CB driver. */
5187         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5188
5189         for (i = 0; i < adapter->num_q_vectors; i++) {
5190                 adapter->q_vector[i]->cpu = -1;
5191                 igb_update_dca(adapter->q_vector[i]);
5192         }
5193 }
5194
5195 static int __igb_notify_dca(struct device *dev, void *data)
5196 {
5197         struct net_device *netdev = dev_get_drvdata(dev);
5198         struct igb_adapter *adapter = netdev_priv(netdev);
5199         struct pci_dev *pdev = adapter->pdev;
5200         struct e1000_hw *hw = &adapter->hw;
5201         unsigned long event = *(unsigned long *)data;
5202
5203         switch (event) {
5204         case DCA_PROVIDER_ADD:
5205                 /* if already enabled, don't do it again */
5206                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5207                         break;
5208                 if (dca_add_requester(dev) == 0) {
5209                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5210                         dev_info(&pdev->dev, "DCA enabled\n");
5211                         igb_setup_dca(adapter);
5212                         break;
5213                 }
5214                 /* Fall Through since DCA is disabled. */
5215         case DCA_PROVIDER_REMOVE:
5216                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5217                         /* without this a class_device is left
5218                          * hanging around in the sysfs model
5219                          */
5220                         dca_remove_requester(dev);
5221                         dev_info(&pdev->dev, "DCA disabled\n");
5222                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5223                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5224                 }
5225                 break;
5226         }
5227
5228         return 0;
5229 }
5230
5231 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5232                           void *p)
5233 {
5234         int ret_val;
5235
5236         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5237                                          __igb_notify_dca);
5238
5239         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5240 }
5241 #endif /* CONFIG_IGB_DCA */
5242
5243 #ifdef CONFIG_PCI_IOV
5244 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5245 {
5246         unsigned char mac_addr[ETH_ALEN];
5247
5248         eth_zero_addr(mac_addr);
5249         igb_set_vf_mac(adapter, vf, mac_addr);
5250
5251         /* By default spoof check is enabled for all VFs */
5252         adapter->vf_data[vf].spoofchk_enabled = true;
5253
5254         return 0;
5255 }
5256
5257 #endif
5258 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5259 {
5260         struct e1000_hw *hw = &adapter->hw;
5261         u32 ping;
5262         int i;
5263
5264         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5265                 ping = E1000_PF_CONTROL_MSG;
5266                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5267                         ping |= E1000_VT_MSGTYPE_CTS;
5268                 igb_write_mbx(hw, &ping, 1, i);
5269         }
5270 }
5271
5272 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5273 {
5274         struct e1000_hw *hw = &adapter->hw;
5275         u32 vmolr = rd32(E1000_VMOLR(vf));
5276         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5277
5278         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5279                             IGB_VF_FLAG_MULTI_PROMISC);
5280         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5281
5282         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5283                 vmolr |= E1000_VMOLR_MPME;
5284                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5285                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5286         } else {
5287                 /* if we have hashes and we are clearing a multicast promisc
5288                  * flag we need to write the hashes to the MTA as this step
5289                  * was previously skipped
5290                  */
5291                 if (vf_data->num_vf_mc_hashes > 30) {
5292                         vmolr |= E1000_VMOLR_MPME;
5293                 } else if (vf_data->num_vf_mc_hashes) {
5294                         int j;
5295                         vmolr |= E1000_VMOLR_ROMPE;
5296                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5297                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5298                 }
5299         }
5300
5301         wr32(E1000_VMOLR(vf), vmolr);
5302
5303         /* there are flags left unprocessed, likely not supported */
5304         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5305                 return -EINVAL;
5306
5307         return 0;
5308 }
5309
5310 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5311                                   u32 *msgbuf, u32 vf)
5312 {
5313         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5314         u16 *hash_list = (u16 *)&msgbuf[1];
5315         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5316         int i;
5317
5318         /* salt away the number of multicast addresses assigned
5319          * to this VF for later use to restore when the PF multi cast
5320          * list changes
5321          */
5322         vf_data->num_vf_mc_hashes = n;
5323
5324         /* only up to 30 hash values supported */
5325         if (n > 30)
5326                 n = 30;
5327
5328         /* store the hashes for later use */
5329         for (i = 0; i < n; i++)
5330                 vf_data->vf_mc_hashes[i] = hash_list[i];
5331
5332         /* Flush and reset the mta with the new values */
5333         igb_set_rx_mode(adapter->netdev);
5334
5335         return 0;
5336 }
5337
5338 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5339 {
5340         struct e1000_hw *hw = &adapter->hw;
5341         struct vf_data_storage *vf_data;
5342         int i, j;
5343
5344         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5345                 u32 vmolr = rd32(E1000_VMOLR(i));
5346                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5347
5348                 vf_data = &adapter->vf_data[i];
5349
5350                 if ((vf_data->num_vf_mc_hashes > 30) ||
5351                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5352                         vmolr |= E1000_VMOLR_MPME;
5353                 } else if (vf_data->num_vf_mc_hashes) {
5354                         vmolr |= E1000_VMOLR_ROMPE;
5355                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5356                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5357                 }
5358                 wr32(E1000_VMOLR(i), vmolr);
5359         }
5360 }
5361
5362 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5363 {
5364         struct e1000_hw *hw = &adapter->hw;
5365         u32 pool_mask, reg, vid;
5366         int i;
5367
5368         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5369
5370         /* Find the vlan filter for this id */
5371         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5372                 reg = rd32(E1000_VLVF(i));
5373
5374                 /* remove the vf from the pool */
5375                 reg &= ~pool_mask;
5376
5377                 /* if pool is empty then remove entry from vfta */
5378                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5379                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5380                         reg = 0;
5381                         vid = reg & E1000_VLVF_VLANID_MASK;
5382                         igb_vfta_set(hw, vid, false);
5383                 }
5384
5385                 wr32(E1000_VLVF(i), reg);
5386         }
5387
5388         adapter->vf_data[vf].vlans_enabled = 0;
5389 }
5390
5391 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5392 {
5393         struct e1000_hw *hw = &adapter->hw;
5394         u32 reg, i;
5395
5396         /* The vlvf table only exists on 82576 hardware and newer */
5397         if (hw->mac.type < e1000_82576)
5398                 return -1;
5399
5400         /* we only need to do this if VMDq is enabled */
5401         if (!adapter->vfs_allocated_count)
5402                 return -1;
5403
5404         /* Find the vlan filter for this id */
5405         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5406                 reg = rd32(E1000_VLVF(i));
5407                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5408                     vid == (reg & E1000_VLVF_VLANID_MASK))
5409                         break;
5410         }
5411
5412         if (add) {
5413                 if (i == E1000_VLVF_ARRAY_SIZE) {
5414                         /* Did not find a matching VLAN ID entry that was
5415                          * enabled.  Search for a free filter entry, i.e.
5416                          * one without the enable bit set
5417                          */
5418                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5419                                 reg = rd32(E1000_VLVF(i));
5420                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5421                                         break;
5422                         }
5423                 }
5424                 if (i < E1000_VLVF_ARRAY_SIZE) {
5425                         /* Found an enabled/available entry */
5426                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5427
5428                         /* if !enabled we need to set this up in vfta */
5429                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5430                                 /* add VID to filter table */
5431                                 igb_vfta_set(hw, vid, true);
5432                                 reg |= E1000_VLVF_VLANID_ENABLE;
5433                         }
5434                         reg &= ~E1000_VLVF_VLANID_MASK;
5435                         reg |= vid;
5436                         wr32(E1000_VLVF(i), reg);
5437
5438                         /* do not modify RLPML for PF devices */
5439                         if (vf >= adapter->vfs_allocated_count)
5440                                 return 0;
5441
5442                         if (!adapter->vf_data[vf].vlans_enabled) {
5443                                 u32 size;
5444                                 reg = rd32(E1000_VMOLR(vf));
5445                                 size = reg & E1000_VMOLR_RLPML_MASK;
5446                                 size += 4;
5447                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5448                                 reg |= size;
5449                                 wr32(E1000_VMOLR(vf), reg);
5450                         }
5451
5452                         adapter->vf_data[vf].vlans_enabled++;
5453                 }
5454         } else {
5455                 if (i < E1000_VLVF_ARRAY_SIZE) {
5456                         /* remove vf from the pool */
5457                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5458                         /* if pool is empty then remove entry from vfta */
5459                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5460                                 reg = 0;
5461                                 igb_vfta_set(hw, vid, false);
5462                         }
5463                         wr32(E1000_VLVF(i), reg);
5464
5465                         /* do not modify RLPML for PF devices */
5466                         if (vf >= adapter->vfs_allocated_count)
5467                                 return 0;
5468
5469                         adapter->vf_data[vf].vlans_enabled--;
5470                         if (!adapter->vf_data[vf].vlans_enabled) {
5471                                 u32 size;
5472                                 reg = rd32(E1000_VMOLR(vf));
5473                                 size = reg & E1000_VMOLR_RLPML_MASK;
5474                                 size -= 4;
5475                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5476                                 reg |= size;
5477                                 wr32(E1000_VMOLR(vf), reg);
5478                         }
5479                 }
5480         }
5481         return 0;
5482 }
5483
5484 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5485 {
5486         struct e1000_hw *hw = &adapter->hw;
5487
5488         if (vid)
5489                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5490         else
5491                 wr32(E1000_VMVIR(vf), 0);
5492 }
5493
5494 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5495                                int vf, u16 vlan, u8 qos)
5496 {
5497         int err = 0;
5498         struct igb_adapter *adapter = netdev_priv(netdev);
5499
5500         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5501                 return -EINVAL;
5502         if (vlan || qos) {
5503                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5504                 if (err)
5505                         goto out;
5506                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5507                 igb_set_vmolr(adapter, vf, !vlan);
5508                 adapter->vf_data[vf].pf_vlan = vlan;
5509                 adapter->vf_data[vf].pf_qos = qos;
5510                 dev_info(&adapter->pdev->dev,
5511                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5512                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5513                         dev_warn(&adapter->pdev->dev,
5514                                  "The VF VLAN has been set, but the PF device is not up.\n");
5515                         dev_warn(&adapter->pdev->dev,
5516                                  "Bring the PF device up before attempting to use the VF device.\n");
5517                 }
5518         } else {
5519                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5520                              false, vf);
5521                 igb_set_vmvir(adapter, vlan, vf);
5522                 igb_set_vmolr(adapter, vf, true);
5523                 adapter->vf_data[vf].pf_vlan = 0;
5524                 adapter->vf_data[vf].pf_qos = 0;
5525         }
5526 out:
5527         return err;
5528 }
5529
5530 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5531 {
5532         struct e1000_hw *hw = &adapter->hw;
5533         int i;
5534         u32 reg;
5535
5536         /* Find the vlan filter for this id */
5537         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5538                 reg = rd32(E1000_VLVF(i));
5539                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5540                     vid == (reg & E1000_VLVF_VLANID_MASK))
5541                         break;
5542         }
5543
5544         if (i >= E1000_VLVF_ARRAY_SIZE)
5545                 i = -1;
5546
5547         return i;
5548 }
5549
5550 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5551 {
5552         struct e1000_hw *hw = &adapter->hw;
5553         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5554         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5555         int err = 0;
5556
5557         /* If in promiscuous mode we need to make sure the PF also has
5558          * the VLAN filter set.
5559          */
5560         if (add && (adapter->netdev->flags & IFF_PROMISC))
5561                 err = igb_vlvf_set(adapter, vid, add,
5562                                    adapter->vfs_allocated_count);
5563         if (err)
5564                 goto out;
5565
5566         err = igb_vlvf_set(adapter, vid, add, vf);
5567
5568         if (err)
5569                 goto out;
5570
5571         /* Go through all the checks to see if the VLAN filter should
5572          * be wiped completely.
5573          */
5574         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5575                 u32 vlvf, bits;
5576
5577                 int regndx = igb_find_vlvf_entry(adapter, vid);
5578                 if (regndx < 0)
5579                         goto out;
5580                 /* See if any other pools are set for this VLAN filter
5581                  * entry other than the PF.
5582                  */
5583                 vlvf = bits = rd32(E1000_VLVF(regndx));
5584                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5585                               adapter->vfs_allocated_count);
5586                 /* If the filter was removed then ensure PF pool bit
5587                  * is cleared if the PF only added itself to the pool
5588                  * because the PF is in promiscuous mode.
5589                  */
5590                 if ((vlvf & VLAN_VID_MASK) == vid &&
5591                     !test_bit(vid, adapter->active_vlans) &&
5592                     !bits)
5593                         igb_vlvf_set(adapter, vid, add,
5594                                      adapter->vfs_allocated_count);
5595         }
5596
5597 out:
5598         return err;
5599 }
5600
5601 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5602 {
5603         /* clear flags - except flag that indicates PF has set the MAC */
5604         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5605         adapter->vf_data[vf].last_nack = jiffies;
5606
5607         /* reset offloads to defaults */
5608         igb_set_vmolr(adapter, vf, true);
5609
5610         /* reset vlans for device */
5611         igb_clear_vf_vfta(adapter, vf);
5612         if (adapter->vf_data[vf].pf_vlan)
5613                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5614                                     adapter->vf_data[vf].pf_vlan,
5615                                     adapter->vf_data[vf].pf_qos);
5616         else
5617                 igb_clear_vf_vfta(adapter, vf);
5618
5619         /* reset multicast table array for vf */
5620         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5621
5622         /* Flush and reset the mta with the new values */
5623         igb_set_rx_mode(adapter->netdev);
5624 }
5625
5626 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5627 {
5628         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5629
5630         /* clear mac address as we were hotplug removed/added */
5631         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5632                 eth_zero_addr(vf_mac);
5633
5634         /* process remaining reset events */
5635         igb_vf_reset(adapter, vf);
5636 }
5637
5638 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5639 {
5640         struct e1000_hw *hw = &adapter->hw;
5641         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5642         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5643         u32 reg, msgbuf[3];
5644         u8 *addr = (u8 *)(&msgbuf[1]);
5645
5646         /* process all the same items cleared in a function level reset */
5647         igb_vf_reset(adapter, vf);
5648
5649         /* set vf mac address */
5650         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5651
5652         /* enable transmit and receive for vf */
5653         reg = rd32(E1000_VFTE);
5654         wr32(E1000_VFTE, reg | (1 << vf));
5655         reg = rd32(E1000_VFRE);
5656         wr32(E1000_VFRE, reg | (1 << vf));
5657
5658         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5659
5660         /* reply to reset with ack and vf mac address */
5661         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5662         memcpy(addr, vf_mac, 6);
5663         igb_write_mbx(hw, msgbuf, 3, vf);
5664 }
5665
5666 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5667 {
5668         /* The VF MAC Address is stored in a packed array of bytes
5669          * starting at the second 32 bit word of the msg array
5670          */
5671         unsigned char *addr = (char *)&msg[1];
5672         int err = -1;
5673
5674         if (is_valid_ether_addr(addr))
5675                 err = igb_set_vf_mac(adapter, vf, addr);
5676
5677         return err;
5678 }
5679
5680 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5681 {
5682         struct e1000_hw *hw = &adapter->hw;
5683         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5684         u32 msg = E1000_VT_MSGTYPE_NACK;
5685
5686         /* if device isn't clear to send it shouldn't be reading either */
5687         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5688             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5689                 igb_write_mbx(hw, &msg, 1, vf);
5690                 vf_data->last_nack = jiffies;
5691         }
5692 }
5693
5694 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5695 {
5696         struct pci_dev *pdev = adapter->pdev;
5697         u32 msgbuf[E1000_VFMAILBOX_SIZE];
5698         struct e1000_hw *hw = &adapter->hw;
5699         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5700         s32 retval;
5701
5702         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5703
5704         if (retval) {
5705                 /* if receive failed revoke VF CTS stats and restart init */
5706                 dev_err(&pdev->dev, "Error receiving message from VF\n");
5707                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5708                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5709                         return;
5710                 goto out;
5711         }
5712
5713         /* this is a message we already processed, do nothing */
5714         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5715                 return;
5716
5717         /* until the vf completes a reset it should not be
5718          * allowed to start any configuration.
5719          */
5720         if (msgbuf[0] == E1000_VF_RESET) {
5721                 igb_vf_reset_msg(adapter, vf);
5722                 return;
5723         }
5724
5725         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5726                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5727                         return;
5728                 retval = -1;
5729                 goto out;
5730         }
5731
5732         switch ((msgbuf[0] & 0xFFFF)) {
5733         case E1000_VF_SET_MAC_ADDR:
5734                 retval = -EINVAL;
5735                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5736                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5737                 else
5738                         dev_warn(&pdev->dev,
5739                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5740                                  vf);
5741                 break;
5742         case E1000_VF_SET_PROMISC:
5743                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5744                 break;
5745         case E1000_VF_SET_MULTICAST:
5746                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5747                 break;
5748         case E1000_VF_SET_LPE:
5749                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5750                 break;
5751         case E1000_VF_SET_VLAN:
5752                 retval = -1;
5753                 if (vf_data->pf_vlan)
5754                         dev_warn(&pdev->dev,
5755                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5756                                  vf);
5757                 else
5758                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5759                 break;
5760         default:
5761                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5762                 retval = -1;
5763                 break;
5764         }
5765
5766         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5767 out:
5768         /* notify the VF of the results of what it sent us */
5769         if (retval)
5770                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5771         else
5772                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5773
5774         igb_write_mbx(hw, msgbuf, 1, vf);
5775 }
5776
5777 static void igb_msg_task(struct igb_adapter *adapter)
5778 {
5779         struct e1000_hw *hw = &adapter->hw;
5780         u32 vf;
5781
5782         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5783                 /* process any reset requests */
5784                 if (!igb_check_for_rst(hw, vf))
5785                         igb_vf_reset_event(adapter, vf);
5786
5787                 /* process any messages pending */
5788                 if (!igb_check_for_msg(hw, vf))
5789                         igb_rcv_msg_from_vf(adapter, vf);
5790
5791                 /* process any acks */
5792                 if (!igb_check_for_ack(hw, vf))
5793                         igb_rcv_ack_from_vf(adapter, vf);
5794         }
5795 }
5796
5797 /**
5798  *  igb_set_uta - Set unicast filter table address
5799  *  @adapter: board private structure
5800  *
5801  *  The unicast table address is a register array of 32-bit registers.
5802  *  The table is meant to be used in a way similar to how the MTA is used
5803  *  however due to certain limitations in the hardware it is necessary to
5804  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5805  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5806  **/
5807 static void igb_set_uta(struct igb_adapter *adapter)
5808 {
5809         struct e1000_hw *hw = &adapter->hw;
5810         int i;
5811
5812         /* The UTA table only exists on 82576 hardware and newer */
5813         if (hw->mac.type < e1000_82576)
5814                 return;
5815
5816         /* we only need to do this if VMDq is enabled */
5817         if (!adapter->vfs_allocated_count)
5818                 return;
5819
5820         for (i = 0; i < hw->mac.uta_reg_count; i++)
5821                 array_wr32(E1000_UTA, i, ~0);
5822 }
5823
5824 /**
5825  *  igb_intr_msi - Interrupt Handler
5826  *  @irq: interrupt number
5827  *  @data: pointer to a network interface device structure
5828  **/
5829 static irqreturn_t igb_intr_msi(int irq, void *data)
5830 {
5831         struct igb_adapter *adapter = data;
5832         struct igb_q_vector *q_vector = adapter->q_vector[0];
5833         struct e1000_hw *hw = &adapter->hw;
5834         /* read ICR disables interrupts using IAM */
5835         u32 icr = rd32(E1000_ICR);
5836
5837         igb_write_itr(q_vector);
5838
5839         if (icr & E1000_ICR_DRSTA)
5840                 schedule_work(&adapter->reset_task);
5841
5842         if (icr & E1000_ICR_DOUTSYNC) {
5843                 /* HW is reporting DMA is out of sync */
5844                 adapter->stats.doosync++;
5845         }
5846
5847         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5848                 hw->mac.get_link_status = 1;
5849                 if (!test_bit(__IGB_DOWN, &adapter->state))
5850                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5851         }
5852
5853         if (icr & E1000_ICR_TS) {
5854                 u32 tsicr = rd32(E1000_TSICR);
5855
5856                 if (tsicr & E1000_TSICR_TXTS) {
5857                         /* acknowledge the interrupt */
5858                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5859                         /* retrieve hardware timestamp */
5860                         schedule_work(&adapter->ptp_tx_work);
5861                 }
5862         }
5863
5864         napi_schedule(&q_vector->napi);
5865
5866         return IRQ_HANDLED;
5867 }
5868
5869 /**
5870  *  igb_intr - Legacy Interrupt Handler
5871  *  @irq: interrupt number
5872  *  @data: pointer to a network interface device structure
5873  **/
5874 static irqreturn_t igb_intr(int irq, void *data)
5875 {
5876         struct igb_adapter *adapter = data;
5877         struct igb_q_vector *q_vector = adapter->q_vector[0];
5878         struct e1000_hw *hw = &adapter->hw;
5879         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5880          * need for the IMC write
5881          */
5882         u32 icr = rd32(E1000_ICR);
5883
5884         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5885          * not set, then the adapter didn't send an interrupt
5886          */
5887         if (!(icr & E1000_ICR_INT_ASSERTED))
5888                 return IRQ_NONE;
5889
5890         igb_write_itr(q_vector);
5891
5892         if (icr & E1000_ICR_DRSTA)
5893                 schedule_work(&adapter->reset_task);
5894
5895         if (icr & E1000_ICR_DOUTSYNC) {
5896                 /* HW is reporting DMA is out of sync */
5897                 adapter->stats.doosync++;
5898         }
5899
5900         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5901                 hw->mac.get_link_status = 1;
5902                 /* guard against interrupt when we're going down */
5903                 if (!test_bit(__IGB_DOWN, &adapter->state))
5904                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5905         }
5906
5907         if (icr & E1000_ICR_TS) {
5908                 u32 tsicr = rd32(E1000_TSICR);
5909
5910                 if (tsicr & E1000_TSICR_TXTS) {
5911                         /* acknowledge the interrupt */
5912                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5913                         /* retrieve hardware timestamp */
5914                         schedule_work(&adapter->ptp_tx_work);
5915                 }
5916         }
5917
5918         napi_schedule(&q_vector->napi);
5919
5920         return IRQ_HANDLED;
5921 }
5922
5923 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5924 {
5925         struct igb_adapter *adapter = q_vector->adapter;
5926         struct e1000_hw *hw = &adapter->hw;
5927
5928         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5929             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5930                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5931                         igb_set_itr(q_vector);
5932                 else
5933                         igb_update_ring_itr(q_vector);
5934         }
5935
5936         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5937                 if (adapter->msix_entries)
5938                         wr32(E1000_EIMS, q_vector->eims_value);
5939                 else
5940                         igb_irq_enable(adapter);
5941         }
5942 }
5943
5944 /**
5945  *  igb_poll - NAPI Rx polling callback
5946  *  @napi: napi polling structure
5947  *  @budget: count of how many packets we should handle
5948  **/
5949 static int igb_poll(struct napi_struct *napi, int budget)
5950 {
5951         struct igb_q_vector *q_vector = container_of(napi,
5952                                                      struct igb_q_vector,
5953                                                      napi);
5954         bool clean_complete = true;
5955
5956 #ifdef CONFIG_IGB_DCA
5957         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5958                 igb_update_dca(q_vector);
5959 #endif
5960         if (q_vector->tx.ring)
5961                 clean_complete = igb_clean_tx_irq(q_vector);
5962
5963         if (q_vector->rx.ring)
5964                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5965
5966         /* If all work not completed, return budget and keep polling */
5967         if (!clean_complete)
5968                 return budget;
5969
5970         /* If not enough Rx work done, exit the polling mode */
5971         napi_complete(napi);
5972         igb_ring_irq_enable(q_vector);
5973
5974         return 0;
5975 }
5976
5977 /**
5978  *  igb_clean_tx_irq - Reclaim resources after transmit completes
5979  *  @q_vector: pointer to q_vector containing needed info
5980  *
5981  *  returns true if ring is completely cleaned
5982  **/
5983 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5984 {
5985         struct igb_adapter *adapter = q_vector->adapter;
5986         struct igb_ring *tx_ring = q_vector->tx.ring;
5987         struct igb_tx_buffer *tx_buffer;
5988         union e1000_adv_tx_desc *tx_desc;
5989         unsigned int total_bytes = 0, total_packets = 0;
5990         unsigned int budget = q_vector->tx.work_limit;
5991         unsigned int i = tx_ring->next_to_clean;
5992
5993         if (test_bit(__IGB_DOWN, &adapter->state))
5994                 return true;
5995
5996         tx_buffer = &tx_ring->tx_buffer_info[i];
5997         tx_desc = IGB_TX_DESC(tx_ring, i);
5998         i -= tx_ring->count;
5999
6000         do {
6001                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6002
6003                 /* if next_to_watch is not set then there is no work pending */
6004                 if (!eop_desc)
6005                         break;
6006
6007                 /* prevent any other reads prior to eop_desc */
6008                 read_barrier_depends();
6009
6010                 /* if DD is not set pending work has not been completed */
6011                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6012                         break;
6013
6014                 /* clear next_to_watch to prevent false hangs */
6015                 tx_buffer->next_to_watch = NULL;
6016
6017                 /* update the statistics for this packet */
6018                 total_bytes += tx_buffer->bytecount;
6019                 total_packets += tx_buffer->gso_segs;
6020
6021                 /* free the skb */
6022                 dev_kfree_skb_any(tx_buffer->skb);
6023
6024                 /* unmap skb header data */
6025                 dma_unmap_single(tx_ring->dev,
6026                                  dma_unmap_addr(tx_buffer, dma),
6027                                  dma_unmap_len(tx_buffer, len),
6028                                  DMA_TO_DEVICE);
6029
6030                 /* clear tx_buffer data */
6031                 tx_buffer->skb = NULL;
6032                 dma_unmap_len_set(tx_buffer, len, 0);
6033
6034                 /* clear last DMA location and unmap remaining buffers */
6035                 while (tx_desc != eop_desc) {
6036                         tx_buffer++;
6037                         tx_desc++;
6038                         i++;
6039                         if (unlikely(!i)) {
6040                                 i -= tx_ring->count;
6041                                 tx_buffer = tx_ring->tx_buffer_info;
6042                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6043                         }
6044
6045                         /* unmap any remaining paged data */
6046                         if (dma_unmap_len(tx_buffer, len)) {
6047                                 dma_unmap_page(tx_ring->dev,
6048                                                dma_unmap_addr(tx_buffer, dma),
6049                                                dma_unmap_len(tx_buffer, len),
6050                                                DMA_TO_DEVICE);
6051                                 dma_unmap_len_set(tx_buffer, len, 0);
6052                         }
6053                 }
6054
6055                 /* move us one more past the eop_desc for start of next pkt */
6056                 tx_buffer++;
6057                 tx_desc++;
6058                 i++;
6059                 if (unlikely(!i)) {
6060                         i -= tx_ring->count;
6061                         tx_buffer = tx_ring->tx_buffer_info;
6062                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6063                 }
6064
6065                 /* issue prefetch for next Tx descriptor */
6066                 prefetch(tx_desc);
6067
6068                 /* update budget accounting */
6069                 budget--;
6070         } while (likely(budget));
6071
6072         netdev_tx_completed_queue(txring_txq(tx_ring),
6073                                   total_packets, total_bytes);
6074         i += tx_ring->count;
6075         tx_ring->next_to_clean = i;
6076         u64_stats_update_begin(&tx_ring->tx_syncp);
6077         tx_ring->tx_stats.bytes += total_bytes;
6078         tx_ring->tx_stats.packets += total_packets;
6079         u64_stats_update_end(&tx_ring->tx_syncp);
6080         q_vector->tx.total_bytes += total_bytes;
6081         q_vector->tx.total_packets += total_packets;
6082
6083         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6084                 struct e1000_hw *hw = &adapter->hw;
6085
6086                 /* Detect a transmit hang in hardware, this serializes the
6087                  * check with the clearing of time_stamp and movement of i
6088                  */
6089                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6090                 if (tx_buffer->next_to_watch &&
6091                     time_after(jiffies, tx_buffer->time_stamp +
6092                                (adapter->tx_timeout_factor * HZ)) &&
6093                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6094
6095                         /* detected Tx unit hang */
6096                         dev_err(tx_ring->dev,
6097                                 "Detected Tx Unit Hang\n"
6098                                 "  Tx Queue             <%d>\n"
6099                                 "  TDH                  <%x>\n"
6100                                 "  TDT                  <%x>\n"
6101                                 "  next_to_use          <%x>\n"
6102                                 "  next_to_clean        <%x>\n"
6103                                 "buffer_info[next_to_clean]\n"
6104                                 "  time_stamp           <%lx>\n"
6105                                 "  next_to_watch        <%p>\n"
6106                                 "  jiffies              <%lx>\n"
6107                                 "  desc.status          <%x>\n",
6108                                 tx_ring->queue_index,
6109                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6110                                 readl(tx_ring->tail),
6111                                 tx_ring->next_to_use,
6112                                 tx_ring->next_to_clean,
6113                                 tx_buffer->time_stamp,
6114                                 tx_buffer->next_to_watch,
6115                                 jiffies,
6116                                 tx_buffer->next_to_watch->wb.status);
6117                         netif_stop_subqueue(tx_ring->netdev,
6118                                             tx_ring->queue_index);
6119
6120                         /* we are about to reset, no point in enabling stuff */
6121                         return true;
6122                 }
6123         }
6124
6125 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6126         if (unlikely(total_packets &&
6127             netif_carrier_ok(tx_ring->netdev) &&
6128             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6129                 /* Make sure that anybody stopping the queue after this
6130                  * sees the new next_to_clean.
6131                  */
6132                 smp_mb();
6133                 if (__netif_subqueue_stopped(tx_ring->netdev,
6134                                              tx_ring->queue_index) &&
6135                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6136                         netif_wake_subqueue(tx_ring->netdev,
6137                                             tx_ring->queue_index);
6138
6139                         u64_stats_update_begin(&tx_ring->tx_syncp);
6140                         tx_ring->tx_stats.restart_queue++;
6141                         u64_stats_update_end(&tx_ring->tx_syncp);
6142                 }
6143         }
6144
6145         return !!budget;
6146 }
6147
6148 /**
6149  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6150  *  @rx_ring: rx descriptor ring to store buffers on
6151  *  @old_buff: donor buffer to have page reused
6152  *
6153  *  Synchronizes page for reuse by the adapter
6154  **/
6155 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6156                               struct igb_rx_buffer *old_buff)
6157 {
6158         struct igb_rx_buffer *new_buff;
6159         u16 nta = rx_ring->next_to_alloc;
6160
6161         new_buff = &rx_ring->rx_buffer_info[nta];
6162
6163         /* update, and store next to alloc */
6164         nta++;
6165         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6166
6167         /* transfer page from old buffer to new buffer */
6168         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6169
6170         /* sync the buffer for use by the device */
6171         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6172                                          old_buff->page_offset,
6173                                          IGB_RX_BUFSZ,
6174                                          DMA_FROM_DEVICE);
6175 }
6176
6177 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6178                                   struct page *page,
6179                                   unsigned int truesize)
6180 {
6181         /* avoid re-using remote pages */
6182         if (unlikely(page_to_nid(page) != numa_node_id()))
6183                 return false;
6184
6185 #if (PAGE_SIZE < 8192)
6186         /* if we are only owner of page we can reuse it */
6187         if (unlikely(page_count(page) != 1))
6188                 return false;
6189
6190         /* flip page offset to other buffer */
6191         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6192
6193         /* since we are the only owner of the page and we need to
6194          * increment it, just set the value to 2 in order to avoid
6195          * an unnecessary locked operation
6196          */
6197         atomic_set(&page->_count, 2);
6198 #else
6199         /* move offset up to the next cache line */
6200         rx_buffer->page_offset += truesize;
6201
6202         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6203                 return false;
6204
6205         /* bump ref count on page before it is given to the stack */
6206         get_page(page);
6207 #endif
6208
6209         return true;
6210 }
6211
6212 /**
6213  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6214  *  @rx_ring: rx descriptor ring to transact packets on
6215  *  @rx_buffer: buffer containing page to add
6216  *  @rx_desc: descriptor containing length of buffer written by hardware
6217  *  @skb: sk_buff to place the data into
6218  *
6219  *  This function will add the data contained in rx_buffer->page to the skb.
6220  *  This is done either through a direct copy if the data in the buffer is
6221  *  less than the skb header size, otherwise it will just attach the page as
6222  *  a frag to the skb.
6223  *
6224  *  The function will then update the page offset if necessary and return
6225  *  true if the buffer can be reused by the adapter.
6226  **/
6227 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6228                             struct igb_rx_buffer *rx_buffer,
6229                             union e1000_adv_rx_desc *rx_desc,
6230                             struct sk_buff *skb)
6231 {
6232         struct page *page = rx_buffer->page;
6233         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6234 #if (PAGE_SIZE < 8192)
6235         unsigned int truesize = IGB_RX_BUFSZ;
6236 #else
6237         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6238 #endif
6239
6240         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6241                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6242
6243                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6244                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6245                         va += IGB_TS_HDR_LEN;
6246                         size -= IGB_TS_HDR_LEN;
6247                 }
6248
6249                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6250
6251                 /* we can reuse buffer as-is, just make sure it is local */
6252                 if (likely(page_to_nid(page) == numa_node_id()))
6253                         return true;
6254
6255                 /* this page cannot be reused so discard it */
6256                 put_page(page);
6257                 return false;
6258         }
6259
6260         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6261                         rx_buffer->page_offset, size, truesize);
6262
6263         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6264 }
6265
6266 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6267                                            union e1000_adv_rx_desc *rx_desc,
6268                                            struct sk_buff *skb)
6269 {
6270         struct igb_rx_buffer *rx_buffer;
6271         struct page *page;
6272
6273         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6274
6275         page = rx_buffer->page;
6276         prefetchw(page);
6277
6278         if (likely(!skb)) {
6279                 void *page_addr = page_address(page) +
6280                                   rx_buffer->page_offset;
6281
6282                 /* prefetch first cache line of first page */
6283                 prefetch(page_addr);
6284 #if L1_CACHE_BYTES < 128
6285                 prefetch(page_addr + L1_CACHE_BYTES);
6286 #endif
6287
6288                 /* allocate a skb to store the frags */
6289                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6290                                                 IGB_RX_HDR_LEN);
6291                 if (unlikely(!skb)) {
6292                         rx_ring->rx_stats.alloc_failed++;
6293                         return NULL;
6294                 }
6295
6296                 /* we will be copying header into skb->data in
6297                  * pskb_may_pull so it is in our interest to prefetch
6298                  * it now to avoid a possible cache miss
6299                  */
6300                 prefetchw(skb->data);
6301         }
6302
6303         /* we are reusing so sync this buffer for CPU use */
6304         dma_sync_single_range_for_cpu(rx_ring->dev,
6305                                       rx_buffer->dma,
6306                                       rx_buffer->page_offset,
6307                                       IGB_RX_BUFSZ,
6308                                       DMA_FROM_DEVICE);
6309
6310         /* pull page into skb */
6311         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6312                 /* hand second half of page back to the ring */
6313                 igb_reuse_rx_page(rx_ring, rx_buffer);
6314         } else {
6315                 /* we are not reusing the buffer so unmap it */
6316                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6317                                PAGE_SIZE, DMA_FROM_DEVICE);
6318         }
6319
6320         /* clear contents of rx_buffer */
6321         rx_buffer->page = NULL;
6322
6323         return skb;
6324 }
6325
6326 static inline void igb_rx_checksum(struct igb_ring *ring,
6327                                    union e1000_adv_rx_desc *rx_desc,
6328                                    struct sk_buff *skb)
6329 {
6330         skb_checksum_none_assert(skb);
6331
6332         /* Ignore Checksum bit is set */
6333         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6334                 return;
6335
6336         /* Rx checksum disabled via ethtool */
6337         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6338                 return;
6339
6340         /* TCP/UDP checksum error bit is set */
6341         if (igb_test_staterr(rx_desc,
6342                              E1000_RXDEXT_STATERR_TCPE |
6343                              E1000_RXDEXT_STATERR_IPE)) {
6344                 /* work around errata with sctp packets where the TCPE aka
6345                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6346                  * packets, (aka let the stack check the crc32c)
6347                  */
6348                 if (!((skb->len == 60) &&
6349                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6350                         u64_stats_update_begin(&ring->rx_syncp);
6351                         ring->rx_stats.csum_err++;
6352                         u64_stats_update_end(&ring->rx_syncp);
6353                 }
6354                 /* let the stack verify checksum errors */
6355                 return;
6356         }
6357         /* It must be a TCP or UDP packet with a valid checksum */
6358         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6359                                       E1000_RXD_STAT_UDPCS))
6360                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6361
6362         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6363                 le32_to_cpu(rx_desc->wb.upper.status_error));
6364 }
6365
6366 static inline void igb_rx_hash(struct igb_ring *ring,
6367                                union e1000_adv_rx_desc *rx_desc,
6368                                struct sk_buff *skb)
6369 {
6370         if (ring->netdev->features & NETIF_F_RXHASH)
6371                 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6372 }
6373
6374 /**
6375  *  igb_is_non_eop - process handling of non-EOP buffers
6376  *  @rx_ring: Rx ring being processed
6377  *  @rx_desc: Rx descriptor for current buffer
6378  *  @skb: current socket buffer containing buffer in progress
6379  *
6380  *  This function updates next to clean.  If the buffer is an EOP buffer
6381  *  this function exits returning false, otherwise it will place the
6382  *  sk_buff in the next buffer to be chained and return true indicating
6383  *  that this is in fact a non-EOP buffer.
6384  **/
6385 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6386                            union e1000_adv_rx_desc *rx_desc)
6387 {
6388         u32 ntc = rx_ring->next_to_clean + 1;
6389
6390         /* fetch, update, and store next to clean */
6391         ntc = (ntc < rx_ring->count) ? ntc : 0;
6392         rx_ring->next_to_clean = ntc;
6393
6394         prefetch(IGB_RX_DESC(rx_ring, ntc));
6395
6396         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6397                 return false;
6398
6399         return true;
6400 }
6401
6402 /**
6403  *  igb_get_headlen - determine size of header for LRO/GRO
6404  *  @data: pointer to the start of the headers
6405  *  @max_len: total length of section to find headers in
6406  *
6407  *  This function is meant to determine the length of headers that will
6408  *  be recognized by hardware for LRO, and GRO offloads.  The main
6409  *  motivation of doing this is to only perform one pull for IPv4 TCP
6410  *  packets so that we can do basic things like calculating the gso_size
6411  *  based on the average data per packet.
6412  **/
6413 static unsigned int igb_get_headlen(unsigned char *data,
6414                                     unsigned int max_len)
6415 {
6416         union {
6417                 unsigned char *network;
6418                 /* l2 headers */
6419                 struct ethhdr *eth;
6420                 struct vlan_hdr *vlan;
6421                 /* l3 headers */
6422                 struct iphdr *ipv4;
6423                 struct ipv6hdr *ipv6;
6424         } hdr;
6425         __be16 protocol;
6426         u8 nexthdr = 0; /* default to not TCP */
6427         u8 hlen;
6428
6429         /* this should never happen, but better safe than sorry */
6430         if (max_len < ETH_HLEN)
6431                 return max_len;
6432
6433         /* initialize network frame pointer */
6434         hdr.network = data;
6435
6436         /* set first protocol and move network header forward */
6437         protocol = hdr.eth->h_proto;
6438         hdr.network += ETH_HLEN;
6439
6440         /* handle any vlan tag if present */
6441         if (protocol == __constant_htons(ETH_P_8021Q)) {
6442                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6443                         return max_len;
6444
6445                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6446                 hdr.network += VLAN_HLEN;
6447         }
6448
6449         /* handle L3 protocols */
6450         if (protocol == __constant_htons(ETH_P_IP)) {
6451                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6452                         return max_len;
6453
6454                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6455                 hlen = (hdr.network[0] & 0x0F) << 2;
6456
6457                 /* verify hlen meets minimum size requirements */
6458                 if (hlen < sizeof(struct iphdr))
6459                         return hdr.network - data;
6460
6461                 /* record next protocol if header is present */
6462                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6463                         nexthdr = hdr.ipv4->protocol;
6464         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6465                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6466                         return max_len;
6467
6468                 /* record next protocol */
6469                 nexthdr = hdr.ipv6->nexthdr;
6470                 hlen = sizeof(struct ipv6hdr);
6471         } else {
6472                 return hdr.network - data;
6473         }
6474
6475         /* relocate pointer to start of L4 header */
6476         hdr.network += hlen;
6477
6478         /* finally sort out TCP */
6479         if (nexthdr == IPPROTO_TCP) {
6480                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6481                         return max_len;
6482
6483                 /* access doff as a u8 to avoid unaligned access on ia64 */
6484                 hlen = (hdr.network[12] & 0xF0) >> 2;
6485
6486                 /* verify hlen meets minimum size requirements */
6487                 if (hlen < sizeof(struct tcphdr))
6488                         return hdr.network - data;
6489
6490                 hdr.network += hlen;
6491         } else if (nexthdr == IPPROTO_UDP) {
6492                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6493                         return max_len;
6494
6495                 hdr.network += sizeof(struct udphdr);
6496         }
6497
6498         /* If everything has gone correctly hdr.network should be the
6499          * data section of the packet and will be the end of the header.
6500          * If not then it probably represents the end of the last recognized
6501          * header.
6502          */
6503         if ((hdr.network - data) < max_len)
6504                 return hdr.network - data;
6505         else
6506                 return max_len;
6507 }
6508
6509 /**
6510  *  igb_pull_tail - igb specific version of skb_pull_tail
6511  *  @rx_ring: rx descriptor ring packet is being transacted on
6512  *  @rx_desc: pointer to the EOP Rx descriptor
6513  *  @skb: pointer to current skb being adjusted
6514  *
6515  *  This function is an igb specific version of __pskb_pull_tail.  The
6516  *  main difference between this version and the original function is that
6517  *  this function can make several assumptions about the state of things
6518  *  that allow for significant optimizations versus the standard function.
6519  *  As a result we can do things like drop a frag and maintain an accurate
6520  *  truesize for the skb.
6521  */
6522 static void igb_pull_tail(struct igb_ring *rx_ring,
6523                           union e1000_adv_rx_desc *rx_desc,
6524                           struct sk_buff *skb)
6525 {
6526         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6527         unsigned char *va;
6528         unsigned int pull_len;
6529
6530         /* it is valid to use page_address instead of kmap since we are
6531          * working with pages allocated out of the lomem pool per
6532          * alloc_page(GFP_ATOMIC)
6533          */
6534         va = skb_frag_address(frag);
6535
6536         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6537                 /* retrieve timestamp from buffer */
6538                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6539
6540                 /* update pointers to remove timestamp header */
6541                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6542                 frag->page_offset += IGB_TS_HDR_LEN;
6543                 skb->data_len -= IGB_TS_HDR_LEN;
6544                 skb->len -= IGB_TS_HDR_LEN;
6545
6546                 /* move va to start of packet data */
6547                 va += IGB_TS_HDR_LEN;
6548         }
6549
6550         /* we need the header to contain the greater of either ETH_HLEN or
6551          * 60 bytes if the skb->len is less than 60 for skb_pad.
6552          */
6553         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6554
6555         /* align pull length to size of long to optimize memcpy performance */
6556         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6557
6558         /* update all of the pointers */
6559         skb_frag_size_sub(frag, pull_len);
6560         frag->page_offset += pull_len;
6561         skb->data_len -= pull_len;
6562         skb->tail += pull_len;
6563 }
6564
6565 /**
6566  *  igb_cleanup_headers - Correct corrupted or empty headers
6567  *  @rx_ring: rx descriptor ring packet is being transacted on
6568  *  @rx_desc: pointer to the EOP Rx descriptor
6569  *  @skb: pointer to current skb being fixed
6570  *
6571  *  Address the case where we are pulling data in on pages only
6572  *  and as such no data is present in the skb header.
6573  *
6574  *  In addition if skb is not at least 60 bytes we need to pad it so that
6575  *  it is large enough to qualify as a valid Ethernet frame.
6576  *
6577  *  Returns true if an error was encountered and skb was freed.
6578  **/
6579 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6580                                 union e1000_adv_rx_desc *rx_desc,
6581                                 struct sk_buff *skb)
6582 {
6583         if (unlikely((igb_test_staterr(rx_desc,
6584                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6585                 struct net_device *netdev = rx_ring->netdev;
6586                 if (!(netdev->features & NETIF_F_RXALL)) {
6587                         dev_kfree_skb_any(skb);
6588                         return true;
6589                 }
6590         }
6591
6592         /* place header in linear portion of buffer */
6593         if (skb_is_nonlinear(skb))
6594                 igb_pull_tail(rx_ring, rx_desc, skb);
6595
6596         /* if skb_pad returns an error the skb was freed */
6597         if (unlikely(skb->len < 60)) {
6598                 int pad_len = 60 - skb->len;
6599
6600                 if (skb_pad(skb, pad_len))
6601                         return true;
6602                 __skb_put(skb, pad_len);
6603         }
6604
6605         return false;
6606 }
6607
6608 /**
6609  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6610  *  @rx_ring: rx descriptor ring packet is being transacted on
6611  *  @rx_desc: pointer to the EOP Rx descriptor
6612  *  @skb: pointer to current skb being populated
6613  *
6614  *  This function checks the ring, descriptor, and packet information in
6615  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6616  *  other fields within the skb.
6617  **/
6618 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6619                                    union e1000_adv_rx_desc *rx_desc,
6620                                    struct sk_buff *skb)
6621 {
6622         struct net_device *dev = rx_ring->netdev;
6623
6624         igb_rx_hash(rx_ring, rx_desc, skb);
6625
6626         igb_rx_checksum(rx_ring, rx_desc, skb);
6627
6628         igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6629
6630         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6631             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6632                 u16 vid;
6633                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6634                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6635                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6636                 else
6637                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6638
6639                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6640         }
6641
6642         skb_record_rx_queue(skb, rx_ring->queue_index);
6643
6644         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6645 }
6646
6647 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6648 {
6649         struct igb_ring *rx_ring = q_vector->rx.ring;
6650         struct sk_buff *skb = rx_ring->skb;
6651         unsigned int total_bytes = 0, total_packets = 0;
6652         u16 cleaned_count = igb_desc_unused(rx_ring);
6653
6654         do {
6655                 union e1000_adv_rx_desc *rx_desc;
6656
6657                 /* return some buffers to hardware, one at a time is too slow */
6658                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6659                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6660                         cleaned_count = 0;
6661                 }
6662
6663                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6664
6665                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6666                         break;
6667
6668                 /* This memory barrier is needed to keep us from reading
6669                  * any other fields out of the rx_desc until we know the
6670                  * RXD_STAT_DD bit is set
6671                  */
6672                 rmb();
6673
6674                 /* retrieve a buffer from the ring */
6675                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6676
6677                 /* exit if we failed to retrieve a buffer */
6678                 if (!skb)
6679                         break;
6680
6681                 cleaned_count++;
6682
6683                 /* fetch next buffer in frame if non-eop */
6684                 if (igb_is_non_eop(rx_ring, rx_desc))
6685                         continue;
6686
6687                 /* verify the packet layout is correct */
6688                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6689                         skb = NULL;
6690                         continue;
6691                 }
6692
6693                 /* probably a little skewed due to removing CRC */
6694                 total_bytes += skb->len;
6695
6696                 /* populate checksum, timestamp, VLAN, and protocol */
6697                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6698
6699                 napi_gro_receive(&q_vector->napi, skb);
6700
6701                 /* reset skb pointer */
6702                 skb = NULL;
6703
6704                 /* update budget accounting */
6705                 total_packets++;
6706         } while (likely(total_packets < budget));
6707
6708         /* place incomplete frames back on ring for completion */
6709         rx_ring->skb = skb;
6710
6711         u64_stats_update_begin(&rx_ring->rx_syncp);
6712         rx_ring->rx_stats.packets += total_packets;
6713         rx_ring->rx_stats.bytes += total_bytes;
6714         u64_stats_update_end(&rx_ring->rx_syncp);
6715         q_vector->rx.total_packets += total_packets;
6716         q_vector->rx.total_bytes += total_bytes;
6717
6718         if (cleaned_count)
6719                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6720
6721         return (total_packets < budget);
6722 }
6723
6724 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6725                                   struct igb_rx_buffer *bi)
6726 {
6727         struct page *page = bi->page;
6728         dma_addr_t dma;
6729
6730         /* since we are recycling buffers we should seldom need to alloc */
6731         if (likely(page))
6732                 return true;
6733
6734         /* alloc new page for storage */
6735         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6736         if (unlikely(!page)) {
6737                 rx_ring->rx_stats.alloc_failed++;
6738                 return false;
6739         }
6740
6741         /* map page for use */
6742         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6743
6744         /* if mapping failed free memory back to system since
6745          * there isn't much point in holding memory we can't use
6746          */
6747         if (dma_mapping_error(rx_ring->dev, dma)) {
6748                 __free_page(page);
6749
6750                 rx_ring->rx_stats.alloc_failed++;
6751                 return false;
6752         }
6753
6754         bi->dma = dma;
6755         bi->page = page;
6756         bi->page_offset = 0;
6757
6758         return true;
6759 }
6760
6761 /**
6762  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6763  *  @adapter: address of board private structure
6764  **/
6765 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6766 {
6767         union e1000_adv_rx_desc *rx_desc;
6768         struct igb_rx_buffer *bi;
6769         u16 i = rx_ring->next_to_use;
6770
6771         /* nothing to do */
6772         if (!cleaned_count)
6773                 return;
6774
6775         rx_desc = IGB_RX_DESC(rx_ring, i);
6776         bi = &rx_ring->rx_buffer_info[i];
6777         i -= rx_ring->count;
6778
6779         do {
6780                 if (!igb_alloc_mapped_page(rx_ring, bi))
6781                         break;
6782
6783                 /* Refresh the desc even if buffer_addrs didn't change
6784                  * because each write-back erases this info.
6785                  */
6786                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6787
6788                 rx_desc++;
6789                 bi++;
6790                 i++;
6791                 if (unlikely(!i)) {
6792                         rx_desc = IGB_RX_DESC(rx_ring, 0);
6793                         bi = rx_ring->rx_buffer_info;
6794                         i -= rx_ring->count;
6795                 }
6796
6797                 /* clear the hdr_addr for the next_to_use descriptor */
6798                 rx_desc->read.hdr_addr = 0;
6799
6800                 cleaned_count--;
6801         } while (cleaned_count);
6802
6803         i += rx_ring->count;
6804
6805         if (rx_ring->next_to_use != i) {
6806                 /* record the next descriptor to use */
6807                 rx_ring->next_to_use = i;
6808
6809                 /* update next to alloc since we have filled the ring */
6810                 rx_ring->next_to_alloc = i;
6811
6812                 /* Force memory writes to complete before letting h/w
6813                  * know there are new descriptors to fetch.  (Only
6814                  * applicable for weak-ordered memory model archs,
6815                  * such as IA-64).
6816                  */
6817                 wmb();
6818                 writel(i, rx_ring->tail);
6819         }
6820 }
6821
6822 /**
6823  * igb_mii_ioctl -
6824  * @netdev:
6825  * @ifreq:
6826  * @cmd:
6827  **/
6828 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6829 {
6830         struct igb_adapter *adapter = netdev_priv(netdev);
6831         struct mii_ioctl_data *data = if_mii(ifr);
6832
6833         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6834                 return -EOPNOTSUPP;
6835
6836         switch (cmd) {
6837         case SIOCGMIIPHY:
6838                 data->phy_id = adapter->hw.phy.addr;
6839                 break;
6840         case SIOCGMIIREG:
6841                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6842                                      &data->val_out))
6843                         return -EIO;
6844                 break;
6845         case SIOCSMIIREG:
6846         default:
6847                 return -EOPNOTSUPP;
6848         }
6849         return 0;
6850 }
6851
6852 /**
6853  * igb_ioctl -
6854  * @netdev:
6855  * @ifreq:
6856  * @cmd:
6857  **/
6858 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6859 {
6860         switch (cmd) {
6861         case SIOCGMIIPHY:
6862         case SIOCGMIIREG:
6863         case SIOCSMIIREG:
6864                 return igb_mii_ioctl(netdev, ifr, cmd);
6865         case SIOCSHWTSTAMP:
6866                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6867         default:
6868                 return -EOPNOTSUPP;
6869         }
6870 }
6871
6872 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6873 {
6874         struct igb_adapter *adapter = hw->back;
6875
6876         if (pcie_capability_read_word(adapter->pdev, reg, value))
6877                 return -E1000_ERR_CONFIG;
6878
6879         return 0;
6880 }
6881
6882 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6883 {
6884         struct igb_adapter *adapter = hw->back;
6885
6886         if (pcie_capability_write_word(adapter->pdev, reg, *value))
6887                 return -E1000_ERR_CONFIG;
6888
6889         return 0;
6890 }
6891
6892 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6893 {
6894         struct igb_adapter *adapter = netdev_priv(netdev);
6895         struct e1000_hw *hw = &adapter->hw;
6896         u32 ctrl, rctl;
6897         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6898
6899         if (enable) {
6900                 /* enable VLAN tag insert/strip */
6901                 ctrl = rd32(E1000_CTRL);
6902                 ctrl |= E1000_CTRL_VME;
6903                 wr32(E1000_CTRL, ctrl);
6904
6905                 /* Disable CFI check */
6906                 rctl = rd32(E1000_RCTL);
6907                 rctl &= ~E1000_RCTL_CFIEN;
6908                 wr32(E1000_RCTL, rctl);
6909         } else {
6910                 /* disable VLAN tag insert/strip */
6911                 ctrl = rd32(E1000_CTRL);
6912                 ctrl &= ~E1000_CTRL_VME;
6913                 wr32(E1000_CTRL, ctrl);
6914         }
6915
6916         igb_rlpml_set(adapter);
6917 }
6918
6919 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6920                                __be16 proto, u16 vid)
6921 {
6922         struct igb_adapter *adapter = netdev_priv(netdev);
6923         struct e1000_hw *hw = &adapter->hw;
6924         int pf_id = adapter->vfs_allocated_count;
6925
6926         /* attempt to add filter to vlvf array */
6927         igb_vlvf_set(adapter, vid, true, pf_id);
6928
6929         /* add the filter since PF can receive vlans w/o entry in vlvf */
6930         igb_vfta_set(hw, vid, true);
6931
6932         set_bit(vid, adapter->active_vlans);
6933
6934         return 0;
6935 }
6936
6937 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6938                                 __be16 proto, u16 vid)
6939 {
6940         struct igb_adapter *adapter = netdev_priv(netdev);
6941         struct e1000_hw *hw = &adapter->hw;
6942         int pf_id = adapter->vfs_allocated_count;
6943         s32 err;
6944
6945         /* remove vlan from VLVF table array */
6946         err = igb_vlvf_set(adapter, vid, false, pf_id);
6947
6948         /* if vid was not present in VLVF just remove it from table */
6949         if (err)
6950                 igb_vfta_set(hw, vid, false);
6951
6952         clear_bit(vid, adapter->active_vlans);
6953
6954         return 0;
6955 }
6956
6957 static void igb_restore_vlan(struct igb_adapter *adapter)
6958 {
6959         u16 vid;
6960
6961         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6962
6963         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6964                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6965 }
6966
6967 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6968 {
6969         struct pci_dev *pdev = adapter->pdev;
6970         struct e1000_mac_info *mac = &adapter->hw.mac;
6971
6972         mac->autoneg = 0;
6973
6974         /* Make sure dplx is at most 1 bit and lsb of speed is not set
6975          * for the switch() below to work
6976          */
6977         if ((spd & 1) || (dplx & ~1))
6978                 goto err_inval;
6979
6980         /* Fiber NIC's only allow 1000 gbps Full duplex
6981          * and 100Mbps Full duplex for 100baseFx sfp
6982          */
6983         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6984                 switch (spd + dplx) {
6985                 case SPEED_10 + DUPLEX_HALF:
6986                 case SPEED_10 + DUPLEX_FULL:
6987                 case SPEED_100 + DUPLEX_HALF:
6988                         goto err_inval;
6989                 default:
6990                         break;
6991                 }
6992         }
6993
6994         switch (spd + dplx) {
6995         case SPEED_10 + DUPLEX_HALF:
6996                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6997                 break;
6998         case SPEED_10 + DUPLEX_FULL:
6999                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7000                 break;
7001         case SPEED_100 + DUPLEX_HALF:
7002                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7003                 break;
7004         case SPEED_100 + DUPLEX_FULL:
7005                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7006                 break;
7007         case SPEED_1000 + DUPLEX_FULL:
7008                 mac->autoneg = 1;
7009                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7010                 break;
7011         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7012         default:
7013                 goto err_inval;
7014         }
7015
7016         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7017         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7018
7019         return 0;
7020
7021 err_inval:
7022         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7023         return -EINVAL;
7024 }
7025
7026 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7027                           bool runtime)
7028 {
7029         struct net_device *netdev = pci_get_drvdata(pdev);
7030         struct igb_adapter *adapter = netdev_priv(netdev);
7031         struct e1000_hw *hw = &adapter->hw;
7032         u32 ctrl, rctl, status;
7033         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7034 #ifdef CONFIG_PM
7035         int retval = 0;
7036 #endif
7037
7038         netif_device_detach(netdev);
7039
7040         if (netif_running(netdev))
7041                 __igb_close(netdev, true);
7042
7043         igb_clear_interrupt_scheme(adapter);
7044
7045 #ifdef CONFIG_PM
7046         retval = pci_save_state(pdev);
7047         if (retval)
7048                 return retval;
7049 #endif
7050
7051         status = rd32(E1000_STATUS);
7052         if (status & E1000_STATUS_LU)
7053                 wufc &= ~E1000_WUFC_LNKC;
7054
7055         if (wufc) {
7056                 igb_setup_rctl(adapter);
7057                 igb_set_rx_mode(netdev);
7058
7059                 /* turn on all-multi mode if wake on multicast is enabled */
7060                 if (wufc & E1000_WUFC_MC) {
7061                         rctl = rd32(E1000_RCTL);
7062                         rctl |= E1000_RCTL_MPE;
7063                         wr32(E1000_RCTL, rctl);
7064                 }
7065
7066                 ctrl = rd32(E1000_CTRL);
7067                 /* advertise wake from D3Cold */
7068                 #define E1000_CTRL_ADVD3WUC 0x00100000
7069                 /* phy power management enable */
7070                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7071                 ctrl |= E1000_CTRL_ADVD3WUC;
7072                 wr32(E1000_CTRL, ctrl);
7073
7074                 /* Allow time for pending master requests to run */
7075                 igb_disable_pcie_master(hw);
7076
7077                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7078                 wr32(E1000_WUFC, wufc);
7079         } else {
7080                 wr32(E1000_WUC, 0);
7081                 wr32(E1000_WUFC, 0);
7082         }
7083
7084         *enable_wake = wufc || adapter->en_mng_pt;
7085         if (!*enable_wake)
7086                 igb_power_down_link(adapter);
7087         else
7088                 igb_power_up_link(adapter);
7089
7090         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7091          * would have already happened in close and is redundant.
7092          */
7093         igb_release_hw_control(adapter);
7094
7095         pci_disable_device(pdev);
7096
7097         return 0;
7098 }
7099
7100 #ifdef CONFIG_PM
7101 #ifdef CONFIG_PM_SLEEP
7102 static int igb_suspend(struct device *dev)
7103 {
7104         int retval;
7105         bool wake;
7106         struct pci_dev *pdev = to_pci_dev(dev);
7107
7108         retval = __igb_shutdown(pdev, &wake, 0);
7109         if (retval)
7110                 return retval;
7111
7112         if (wake) {
7113                 pci_prepare_to_sleep(pdev);
7114         } else {
7115                 pci_wake_from_d3(pdev, false);
7116                 pci_set_power_state(pdev, PCI_D3hot);
7117         }
7118
7119         return 0;
7120 }
7121 #endif /* CONFIG_PM_SLEEP */
7122
7123 static int igb_resume(struct device *dev)
7124 {
7125         struct pci_dev *pdev = to_pci_dev(dev);
7126         struct net_device *netdev = pci_get_drvdata(pdev);
7127         struct igb_adapter *adapter = netdev_priv(netdev);
7128         struct e1000_hw *hw = &adapter->hw;
7129         u32 err;
7130
7131         pci_set_power_state(pdev, PCI_D0);
7132         pci_restore_state(pdev);
7133         pci_save_state(pdev);
7134
7135         err = pci_enable_device_mem(pdev);
7136         if (err) {
7137                 dev_err(&pdev->dev,
7138                         "igb: Cannot enable PCI device from suspend\n");
7139                 return err;
7140         }
7141         pci_set_master(pdev);
7142
7143         pci_enable_wake(pdev, PCI_D3hot, 0);
7144         pci_enable_wake(pdev, PCI_D3cold, 0);
7145
7146         if (igb_init_interrupt_scheme(adapter, true)) {
7147                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7148                 return -ENOMEM;
7149         }
7150
7151         igb_reset(adapter);
7152
7153         /* let the f/w know that the h/w is now under the control of the
7154          * driver.
7155          */
7156         igb_get_hw_control(adapter);
7157
7158         wr32(E1000_WUS, ~0);
7159
7160         if (netdev->flags & IFF_UP) {
7161                 rtnl_lock();
7162                 err = __igb_open(netdev, true);
7163                 rtnl_unlock();
7164                 if (err)
7165                         return err;
7166         }
7167
7168         netif_device_attach(netdev);
7169         return 0;
7170 }
7171
7172 #ifdef CONFIG_PM_RUNTIME
7173 static int igb_runtime_idle(struct device *dev)
7174 {
7175         struct pci_dev *pdev = to_pci_dev(dev);
7176         struct net_device *netdev = pci_get_drvdata(pdev);
7177         struct igb_adapter *adapter = netdev_priv(netdev);
7178
7179         if (!igb_has_link(adapter))
7180                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7181
7182         return -EBUSY;
7183 }
7184
7185 static int igb_runtime_suspend(struct device *dev)
7186 {
7187         struct pci_dev *pdev = to_pci_dev(dev);
7188         int retval;
7189         bool wake;
7190
7191         retval = __igb_shutdown(pdev, &wake, 1);
7192         if (retval)
7193                 return retval;
7194
7195         if (wake) {
7196                 pci_prepare_to_sleep(pdev);
7197         } else {
7198                 pci_wake_from_d3(pdev, false);
7199                 pci_set_power_state(pdev, PCI_D3hot);
7200         }
7201
7202         return 0;
7203 }
7204
7205 static int igb_runtime_resume(struct device *dev)
7206 {
7207         return igb_resume(dev);
7208 }
7209 #endif /* CONFIG_PM_RUNTIME */
7210 #endif
7211
7212 static void igb_shutdown(struct pci_dev *pdev)
7213 {
7214         bool wake;
7215
7216         __igb_shutdown(pdev, &wake, 0);
7217
7218         if (system_state == SYSTEM_POWER_OFF) {
7219                 pci_wake_from_d3(pdev, wake);
7220                 pci_set_power_state(pdev, PCI_D3hot);
7221         }
7222 }
7223
7224 #ifdef CONFIG_PCI_IOV
7225 static int igb_sriov_reinit(struct pci_dev *dev)
7226 {
7227         struct net_device *netdev = pci_get_drvdata(dev);
7228         struct igb_adapter *adapter = netdev_priv(netdev);
7229         struct pci_dev *pdev = adapter->pdev;
7230
7231         rtnl_lock();
7232
7233         if (netif_running(netdev))
7234                 igb_close(netdev);
7235
7236         igb_clear_interrupt_scheme(adapter);
7237
7238         igb_init_queue_configuration(adapter);
7239
7240         if (igb_init_interrupt_scheme(adapter, true)) {
7241                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7242                 return -ENOMEM;
7243         }
7244
7245         if (netif_running(netdev))
7246                 igb_open(netdev);
7247
7248         rtnl_unlock();
7249
7250         return 0;
7251 }
7252
7253 static int igb_pci_disable_sriov(struct pci_dev *dev)
7254 {
7255         int err = igb_disable_sriov(dev);
7256
7257         if (!err)
7258                 err = igb_sriov_reinit(dev);
7259
7260         return err;
7261 }
7262
7263 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7264 {
7265         int err = igb_enable_sriov(dev, num_vfs);
7266
7267         if (err)
7268                 goto out;
7269
7270         err = igb_sriov_reinit(dev);
7271         if (!err)
7272                 return num_vfs;
7273
7274 out:
7275         return err;
7276 }
7277
7278 #endif
7279 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7280 {
7281 #ifdef CONFIG_PCI_IOV
7282         if (num_vfs == 0)
7283                 return igb_pci_disable_sriov(dev);
7284         else
7285                 return igb_pci_enable_sriov(dev, num_vfs);
7286 #endif
7287         return 0;
7288 }
7289
7290 #ifdef CONFIG_NET_POLL_CONTROLLER
7291 /* Polling 'interrupt' - used by things like netconsole to send skbs
7292  * without having to re-enable interrupts. It's not called while
7293  * the interrupt routine is executing.
7294  */
7295 static void igb_netpoll(struct net_device *netdev)
7296 {
7297         struct igb_adapter *adapter = netdev_priv(netdev);
7298         struct e1000_hw *hw = &adapter->hw;
7299         struct igb_q_vector *q_vector;
7300         int i;
7301
7302         for (i = 0; i < adapter->num_q_vectors; i++) {
7303                 q_vector = adapter->q_vector[i];
7304                 if (adapter->msix_entries)
7305                         wr32(E1000_EIMC, q_vector->eims_value);
7306                 else
7307                         igb_irq_disable(adapter);
7308                 napi_schedule(&q_vector->napi);
7309         }
7310 }
7311 #endif /* CONFIG_NET_POLL_CONTROLLER */
7312
7313 /**
7314  *  igb_io_error_detected - called when PCI error is detected
7315  *  @pdev: Pointer to PCI device
7316  *  @state: The current pci connection state
7317  *
7318  *  This function is called after a PCI bus error affecting
7319  *  this device has been detected.
7320  **/
7321 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7322                                               pci_channel_state_t state)
7323 {
7324         struct net_device *netdev = pci_get_drvdata(pdev);
7325         struct igb_adapter *adapter = netdev_priv(netdev);
7326
7327         netif_device_detach(netdev);
7328
7329         if (state == pci_channel_io_perm_failure)
7330                 return PCI_ERS_RESULT_DISCONNECT;
7331
7332         if (netif_running(netdev))
7333                 igb_down(adapter);
7334         pci_disable_device(pdev);
7335
7336         /* Request a slot slot reset. */
7337         return PCI_ERS_RESULT_NEED_RESET;
7338 }
7339
7340 /**
7341  *  igb_io_slot_reset - called after the pci bus has been reset.
7342  *  @pdev: Pointer to PCI device
7343  *
7344  *  Restart the card from scratch, as if from a cold-boot. Implementation
7345  *  resembles the first-half of the igb_resume routine.
7346  **/
7347 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7348 {
7349         struct net_device *netdev = pci_get_drvdata(pdev);
7350         struct igb_adapter *adapter = netdev_priv(netdev);
7351         struct e1000_hw *hw = &adapter->hw;
7352         pci_ers_result_t result;
7353         int err;
7354
7355         if (pci_enable_device_mem(pdev)) {
7356                 dev_err(&pdev->dev,
7357                         "Cannot re-enable PCI device after reset.\n");
7358                 result = PCI_ERS_RESULT_DISCONNECT;
7359         } else {
7360                 pci_set_master(pdev);
7361                 pci_restore_state(pdev);
7362                 pci_save_state(pdev);
7363
7364                 pci_enable_wake(pdev, PCI_D3hot, 0);
7365                 pci_enable_wake(pdev, PCI_D3cold, 0);
7366
7367                 igb_reset(adapter);
7368                 wr32(E1000_WUS, ~0);
7369                 result = PCI_ERS_RESULT_RECOVERED;
7370         }
7371
7372         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7373         if (err) {
7374                 dev_err(&pdev->dev,
7375                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7376                         err);
7377                 /* non-fatal, continue */
7378         }
7379
7380         return result;
7381 }
7382
7383 /**
7384  *  igb_io_resume - called when traffic can start flowing again.
7385  *  @pdev: Pointer to PCI device
7386  *
7387  *  This callback is called when the error recovery driver tells us that
7388  *  its OK to resume normal operation. Implementation resembles the
7389  *  second-half of the igb_resume routine.
7390  */
7391 static void igb_io_resume(struct pci_dev *pdev)
7392 {
7393         struct net_device *netdev = pci_get_drvdata(pdev);
7394         struct igb_adapter *adapter = netdev_priv(netdev);
7395
7396         if (netif_running(netdev)) {
7397                 if (igb_up(adapter)) {
7398                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7399                         return;
7400                 }
7401         }
7402
7403         netif_device_attach(netdev);
7404
7405         /* let the f/w know that the h/w is now under the control of the
7406          * driver.
7407          */
7408         igb_get_hw_control(adapter);
7409 }
7410
7411 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7412                              u8 qsel)
7413 {
7414         u32 rar_low, rar_high;
7415         struct e1000_hw *hw = &adapter->hw;
7416
7417         /* HW expects these in little endian so we reverse the byte order
7418          * from network order (big endian) to little endian
7419          */
7420         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7421                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7422         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7423
7424         /* Indicate to hardware the Address is Valid. */
7425         rar_high |= E1000_RAH_AV;
7426
7427         if (hw->mac.type == e1000_82575)
7428                 rar_high |= E1000_RAH_POOL_1 * qsel;
7429         else
7430                 rar_high |= E1000_RAH_POOL_1 << qsel;
7431
7432         wr32(E1000_RAL(index), rar_low);
7433         wrfl();
7434         wr32(E1000_RAH(index), rar_high);
7435         wrfl();
7436 }
7437
7438 static int igb_set_vf_mac(struct igb_adapter *adapter,
7439                           int vf, unsigned char *mac_addr)
7440 {
7441         struct e1000_hw *hw = &adapter->hw;
7442         /* VF MAC addresses start at end of receive addresses and moves
7443          * towards the first, as a result a collision should not be possible
7444          */
7445         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7446
7447         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7448
7449         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7450
7451         return 0;
7452 }
7453
7454 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7455 {
7456         struct igb_adapter *adapter = netdev_priv(netdev);
7457         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7458                 return -EINVAL;
7459         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7460         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7461         dev_info(&adapter->pdev->dev,
7462                  "Reload the VF driver to make this change effective.");
7463         if (test_bit(__IGB_DOWN, &adapter->state)) {
7464                 dev_warn(&adapter->pdev->dev,
7465                          "The VF MAC address has been set, but the PF device is not up.\n");
7466                 dev_warn(&adapter->pdev->dev,
7467                          "Bring the PF device up before attempting to use the VF device.\n");
7468         }
7469         return igb_set_vf_mac(adapter, vf, mac);
7470 }
7471
7472 static int igb_link_mbps(int internal_link_speed)
7473 {
7474         switch (internal_link_speed) {
7475         case SPEED_100:
7476                 return 100;
7477         case SPEED_1000:
7478                 return 1000;
7479         default:
7480                 return 0;
7481         }
7482 }
7483
7484 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7485                                   int link_speed)
7486 {
7487         int rf_dec, rf_int;
7488         u32 bcnrc_val;
7489
7490         if (tx_rate != 0) {
7491                 /* Calculate the rate factor values to set */
7492                 rf_int = link_speed / tx_rate;
7493                 rf_dec = (link_speed - (rf_int * tx_rate));
7494                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7495                          tx_rate;
7496
7497                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7498                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7499                               E1000_RTTBCNRC_RF_INT_MASK);
7500                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7501         } else {
7502                 bcnrc_val = 0;
7503         }
7504
7505         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7506         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7507          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7508          */
7509         wr32(E1000_RTTBCNRM, 0x14);
7510         wr32(E1000_RTTBCNRC, bcnrc_val);
7511 }
7512
7513 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7514 {
7515         int actual_link_speed, i;
7516         bool reset_rate = false;
7517
7518         /* VF TX rate limit was not set or not supported */
7519         if ((adapter->vf_rate_link_speed == 0) ||
7520             (adapter->hw.mac.type != e1000_82576))
7521                 return;
7522
7523         actual_link_speed = igb_link_mbps(adapter->link_speed);
7524         if (actual_link_speed != adapter->vf_rate_link_speed) {
7525                 reset_rate = true;
7526                 adapter->vf_rate_link_speed = 0;
7527                 dev_info(&adapter->pdev->dev,
7528                          "Link speed has been changed. VF Transmit rate is disabled\n");
7529         }
7530
7531         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7532                 if (reset_rate)
7533                         adapter->vf_data[i].tx_rate = 0;
7534
7535                 igb_set_vf_rate_limit(&adapter->hw, i,
7536                                       adapter->vf_data[i].tx_rate,
7537                                       actual_link_speed);
7538         }
7539 }
7540
7541 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7542 {
7543         struct igb_adapter *adapter = netdev_priv(netdev);
7544         struct e1000_hw *hw = &adapter->hw;
7545         int actual_link_speed;
7546
7547         if (hw->mac.type != e1000_82576)
7548                 return -EOPNOTSUPP;
7549
7550         actual_link_speed = igb_link_mbps(adapter->link_speed);
7551         if ((vf >= adapter->vfs_allocated_count) ||
7552             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7553             (tx_rate < 0) || (tx_rate > actual_link_speed))
7554                 return -EINVAL;
7555
7556         adapter->vf_rate_link_speed = actual_link_speed;
7557         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7558         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7559
7560         return 0;
7561 }
7562
7563 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7564                                    bool setting)
7565 {
7566         struct igb_adapter *adapter = netdev_priv(netdev);
7567         struct e1000_hw *hw = &adapter->hw;
7568         u32 reg_val, reg_offset;
7569
7570         if (!adapter->vfs_allocated_count)
7571                 return -EOPNOTSUPP;
7572
7573         if (vf >= adapter->vfs_allocated_count)
7574                 return -EINVAL;
7575
7576         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7577         reg_val = rd32(reg_offset);
7578         if (setting)
7579                 reg_val |= ((1 << vf) |
7580                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581         else
7582                 reg_val &= ~((1 << vf) |
7583                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7584         wr32(reg_offset, reg_val);
7585
7586         adapter->vf_data[vf].spoofchk_enabled = setting;
7587         return E1000_SUCCESS;
7588 }
7589
7590 static int igb_ndo_get_vf_config(struct net_device *netdev,
7591                                  int vf, struct ifla_vf_info *ivi)
7592 {
7593         struct igb_adapter *adapter = netdev_priv(netdev);
7594         if (vf >= adapter->vfs_allocated_count)
7595                 return -EINVAL;
7596         ivi->vf = vf;
7597         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7598         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7599         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7600         ivi->qos = adapter->vf_data[vf].pf_qos;
7601         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7602         return 0;
7603 }
7604
7605 static void igb_vmm_control(struct igb_adapter *adapter)
7606 {
7607         struct e1000_hw *hw = &adapter->hw;
7608         u32 reg;
7609
7610         switch (hw->mac.type) {
7611         case e1000_82575:
7612         case e1000_i210:
7613         case e1000_i211:
7614         case e1000_i354:
7615         default:
7616                 /* replication is not supported for 82575 */
7617                 return;
7618         case e1000_82576:
7619                 /* notify HW that the MAC is adding vlan tags */
7620                 reg = rd32(E1000_DTXCTL);
7621                 reg |= E1000_DTXCTL_VLAN_ADDED;
7622                 wr32(E1000_DTXCTL, reg);
7623         case e1000_82580:
7624                 /* enable replication vlan tag stripping */
7625                 reg = rd32(E1000_RPLOLR);
7626                 reg |= E1000_RPLOLR_STRVLAN;
7627                 wr32(E1000_RPLOLR, reg);
7628         case e1000_i350:
7629                 /* none of the above registers are supported by i350 */
7630                 break;
7631         }
7632
7633         if (adapter->vfs_allocated_count) {
7634                 igb_vmdq_set_loopback_pf(hw, true);
7635                 igb_vmdq_set_replication_pf(hw, true);
7636                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7637                                               adapter->vfs_allocated_count);
7638         } else {
7639                 igb_vmdq_set_loopback_pf(hw, false);
7640                 igb_vmdq_set_replication_pf(hw, false);
7641         }
7642 }
7643
7644 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7645 {
7646         struct e1000_hw *hw = &adapter->hw;
7647         u32 dmac_thr;
7648         u16 hwm;
7649
7650         if (hw->mac.type > e1000_82580) {
7651                 if (adapter->flags & IGB_FLAG_DMAC) {
7652                         u32 reg;
7653
7654                         /* force threshold to 0. */
7655                         wr32(E1000_DMCTXTH, 0);
7656
7657                         /* DMA Coalescing high water mark needs to be greater
7658                          * than the Rx threshold. Set hwm to PBA - max frame
7659                          * size in 16B units, capping it at PBA - 6KB.
7660                          */
7661                         hwm = 64 * pba - adapter->max_frame_size / 16;
7662                         if (hwm < 64 * (pba - 6))
7663                                 hwm = 64 * (pba - 6);
7664                         reg = rd32(E1000_FCRTC);
7665                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7666                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7667                                 & E1000_FCRTC_RTH_COAL_MASK);
7668                         wr32(E1000_FCRTC, reg);
7669
7670                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7671                          * frame size, capping it at PBA - 10KB.
7672                          */
7673                         dmac_thr = pba - adapter->max_frame_size / 512;
7674                         if (dmac_thr < pba - 10)
7675                                 dmac_thr = pba - 10;
7676                         reg = rd32(E1000_DMACR);
7677                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7678                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7679                                 & E1000_DMACR_DMACTHR_MASK);
7680
7681                         /* transition to L0x or L1 if available..*/
7682                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7683
7684                         /* watchdog timer= +-1000 usec in 32usec intervals */
7685                         reg |= (1000 >> 5);
7686
7687                         /* Disable BMC-to-OS Watchdog Enable */
7688                         if (hw->mac.type != e1000_i354)
7689                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7690
7691                         wr32(E1000_DMACR, reg);
7692
7693                         /* no lower threshold to disable
7694                          * coalescing(smart fifb)-UTRESH=0
7695                          */
7696                         wr32(E1000_DMCRTRH, 0);
7697
7698                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7699
7700                         wr32(E1000_DMCTLX, reg);
7701
7702                         /* free space in tx packet buffer to wake from
7703                          * DMA coal
7704                          */
7705                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7706                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7707
7708                         /* make low power state decision controlled
7709                          * by DMA coal
7710                          */
7711                         reg = rd32(E1000_PCIEMISC);
7712                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7713                         wr32(E1000_PCIEMISC, reg);
7714                 } /* endif adapter->dmac is not disabled */
7715         } else if (hw->mac.type == e1000_82580) {
7716                 u32 reg = rd32(E1000_PCIEMISC);
7717                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7718                 wr32(E1000_DMACR, 0);
7719         }
7720 }
7721
7722 /**
7723  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7724  *  @hw: pointer to hardware structure
7725  *  @byte_offset: byte offset to read
7726  *  @dev_addr: device address
7727  *  @data: value read
7728  *
7729  *  Performs byte read operation over I2C interface at
7730  *  a specified device address.
7731  **/
7732 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7733                       u8 dev_addr, u8 *data)
7734 {
7735         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7736         struct i2c_client *this_client = adapter->i2c_client;
7737         s32 status;
7738         u16 swfw_mask = 0;
7739
7740         if (!this_client)
7741                 return E1000_ERR_I2C;
7742
7743         swfw_mask = E1000_SWFW_PHY0_SM;
7744
7745         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7746             != E1000_SUCCESS)
7747                 return E1000_ERR_SWFW_SYNC;
7748
7749         status = i2c_smbus_read_byte_data(this_client, byte_offset);
7750         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7751
7752         if (status < 0)
7753                 return E1000_ERR_I2C;
7754         else {
7755                 *data = status;
7756                 return E1000_SUCCESS;
7757         }
7758 }
7759
7760 /**
7761  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7762  *  @hw: pointer to hardware structure
7763  *  @byte_offset: byte offset to write
7764  *  @dev_addr: device address
7765  *  @data: value to write
7766  *
7767  *  Performs byte write operation over I2C interface at
7768  *  a specified device address.
7769  **/
7770 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7771                        u8 dev_addr, u8 data)
7772 {
7773         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7774         struct i2c_client *this_client = adapter->i2c_client;
7775         s32 status;
7776         u16 swfw_mask = E1000_SWFW_PHY0_SM;
7777
7778         if (!this_client)
7779                 return E1000_ERR_I2C;
7780
7781         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7782                 return E1000_ERR_SWFW_SYNC;
7783         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7784         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7785
7786         if (status)
7787                 return E1000_ERR_I2C;
7788         else
7789                 return E1000_SUCCESS;
7790
7791 }
7792 /* igb_main.c */