]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/cpufreq/cpufreq_conservative.c
Merge remote-tracking branch 'regulator/fix/twl' into tmp
[linux-imx.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25
26 #include "cpufreq_governor.h"
27
28 /* Conservative governor macros */
29 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
31 #define DEF_SAMPLING_DOWN_FACTOR                (1)
32 #define MAX_SAMPLING_DOWN_FACTOR                (10)
33
34 static struct dbs_data cs_dbs_data;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36
37 static struct cs_dbs_tuners cs_tuners = {
38         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
39         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
40         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
41         .ignore_nice = 0,
42         .freq_step = 5,
43 };
44
45 /*
46  * Every sampling_rate, we check, if current idle time is less than 20%
47  * (default), then we try to increase frequency Every sampling_rate *
48  * sampling_down_factor, we check, if current idle time is more than 80%, then
49  * we try to decrease frequency
50  *
51  * Any frequency increase takes it to the maximum frequency. Frequency reduction
52  * happens at minimum steps of 5% (default) of maximum frequency
53  */
54 static void cs_check_cpu(int cpu, unsigned int load)
55 {
56         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
57         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
58         unsigned int freq_target;
59
60         /*
61          * break out if we 'cannot' reduce the speed as the user might
62          * want freq_step to be zero
63          */
64         if (cs_tuners.freq_step == 0)
65                 return;
66
67         /* Check for frequency increase */
68         if (load > cs_tuners.up_threshold) {
69                 dbs_info->down_skip = 0;
70
71                 /* if we are already at full speed then break out early */
72                 if (dbs_info->requested_freq == policy->max)
73                         return;
74
75                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
76
77                 /* max freq cannot be less than 100. But who knows.... */
78                 if (unlikely(freq_target == 0))
79                         freq_target = 5;
80
81                 dbs_info->requested_freq += freq_target;
82                 if (dbs_info->requested_freq > policy->max)
83                         dbs_info->requested_freq = policy->max;
84
85                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
86                         CPUFREQ_RELATION_H);
87                 return;
88         }
89
90         /*
91          * The optimal frequency is the frequency that is the lowest that can
92          * support the current CPU usage without triggering the up policy. To be
93          * safe, we focus 10 points under the threshold.
94          */
95         if (load < (cs_tuners.down_threshold - 10)) {
96                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
97
98                 dbs_info->requested_freq -= freq_target;
99                 if (dbs_info->requested_freq < policy->min)
100                         dbs_info->requested_freq = policy->min;
101
102                 /*
103                  * if we cannot reduce the frequency anymore, break out early
104                  */
105                 if (policy->cur == policy->min)
106                         return;
107
108                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
109                                 CPUFREQ_RELATION_H);
110                 return;
111         }
112 }
113
114 static void cs_dbs_timer(struct work_struct *work)
115 {
116         struct delayed_work *dw = to_delayed_work(work);
117         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
118                         struct cs_cpu_dbs_info_s, cdbs.work.work);
119         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
120         struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
121                         cpu);
122         int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
123
124         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
125         if (need_load_eval(&core_dbs_info->cdbs, cs_tuners.sampling_rate))
126                 dbs_check_cpu(&cs_dbs_data, cpu);
127
128         schedule_delayed_work_on(smp_processor_id(), dw, delay);
129         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
130 }
131
132 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
133                 void *data)
134 {
135         struct cpufreq_freqs *freq = data;
136         struct cs_cpu_dbs_info_s *dbs_info =
137                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
138         struct cpufreq_policy *policy;
139
140         if (!dbs_info->enable)
141                 return 0;
142
143         policy = dbs_info->cdbs.cur_policy;
144
145         /*
146          * we only care if our internally tracked freq moves outside the 'valid'
147          * ranges of frequency available to us otherwise we do not change it
148         */
149         if (dbs_info->requested_freq > policy->max
150                         || dbs_info->requested_freq < policy->min)
151                 dbs_info->requested_freq = freq->new;
152
153         return 0;
154 }
155
156 /************************** sysfs interface ************************/
157 static ssize_t show_sampling_rate_min(struct kobject *kobj,
158                                       struct attribute *attr, char *buf)
159 {
160         return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
161 }
162
163 static ssize_t store_sampling_down_factor(struct kobject *a,
164                                           struct attribute *b,
165                                           const char *buf, size_t count)
166 {
167         unsigned int input;
168         int ret;
169         ret = sscanf(buf, "%u", &input);
170
171         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
172                 return -EINVAL;
173
174         cs_tuners.sampling_down_factor = input;
175         return count;
176 }
177
178 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
179                                    const char *buf, size_t count)
180 {
181         unsigned int input;
182         int ret;
183         ret = sscanf(buf, "%u", &input);
184
185         if (ret != 1)
186                 return -EINVAL;
187
188         cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
189         return count;
190 }
191
192 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
193                                   const char *buf, size_t count)
194 {
195         unsigned int input;
196         int ret;
197         ret = sscanf(buf, "%u", &input);
198
199         if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
200                 return -EINVAL;
201
202         cs_tuners.up_threshold = input;
203         return count;
204 }
205
206 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
207                                     const char *buf, size_t count)
208 {
209         unsigned int input;
210         int ret;
211         ret = sscanf(buf, "%u", &input);
212
213         /* cannot be lower than 11 otherwise freq will not fall */
214         if (ret != 1 || input < 11 || input > 100 ||
215                         input >= cs_tuners.up_threshold)
216                 return -EINVAL;
217
218         cs_tuners.down_threshold = input;
219         return count;
220 }
221
222 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
223                                       const char *buf, size_t count)
224 {
225         unsigned int input, j;
226         int ret;
227
228         ret = sscanf(buf, "%u", &input);
229         if (ret != 1)
230                 return -EINVAL;
231
232         if (input > 1)
233                 input = 1;
234
235         if (input == cs_tuners.ignore_nice) /* nothing to do */
236                 return count;
237
238         cs_tuners.ignore_nice = input;
239
240         /* we need to re-evaluate prev_cpu_idle */
241         for_each_online_cpu(j) {
242                 struct cs_cpu_dbs_info_s *dbs_info;
243                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
244                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
245                                                 &dbs_info->cdbs.prev_cpu_wall);
246                 if (cs_tuners.ignore_nice)
247                         dbs_info->cdbs.prev_cpu_nice =
248                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
249         }
250         return count;
251 }
252
253 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
254                                const char *buf, size_t count)
255 {
256         unsigned int input;
257         int ret;
258         ret = sscanf(buf, "%u", &input);
259
260         if (ret != 1)
261                 return -EINVAL;
262
263         if (input > 100)
264                 input = 100;
265
266         /*
267          * no need to test here if freq_step is zero as the user might actually
268          * want this, they would be crazy though :)
269          */
270         cs_tuners.freq_step = input;
271         return count;
272 }
273
274 show_one(cs, sampling_rate, sampling_rate);
275 show_one(cs, sampling_down_factor, sampling_down_factor);
276 show_one(cs, up_threshold, up_threshold);
277 show_one(cs, down_threshold, down_threshold);
278 show_one(cs, ignore_nice_load, ignore_nice);
279 show_one(cs, freq_step, freq_step);
280
281 define_one_global_rw(sampling_rate);
282 define_one_global_rw(sampling_down_factor);
283 define_one_global_rw(up_threshold);
284 define_one_global_rw(down_threshold);
285 define_one_global_rw(ignore_nice_load);
286 define_one_global_rw(freq_step);
287 define_one_global_ro(sampling_rate_min);
288
289 static struct attribute *dbs_attributes[] = {
290         &sampling_rate_min.attr,
291         &sampling_rate.attr,
292         &sampling_down_factor.attr,
293         &up_threshold.attr,
294         &down_threshold.attr,
295         &ignore_nice_load.attr,
296         &freq_step.attr,
297         NULL
298 };
299
300 static struct attribute_group cs_attr_group = {
301         .attrs = dbs_attributes,
302         .name = "conservative",
303 };
304
305 /************************** sysfs end ************************/
306
307 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
308
309 static struct notifier_block cs_cpufreq_notifier_block = {
310         .notifier_call = dbs_cpufreq_notifier,
311 };
312
313 static struct cs_ops cs_ops = {
314         .notifier_block = &cs_cpufreq_notifier_block,
315 };
316
317 static struct dbs_data cs_dbs_data = {
318         .governor = GOV_CONSERVATIVE,
319         .attr_group = &cs_attr_group,
320         .tuners = &cs_tuners,
321         .get_cpu_cdbs = get_cpu_cdbs,
322         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
323         .gov_dbs_timer = cs_dbs_timer,
324         .gov_check_cpu = cs_check_cpu,
325         .gov_ops = &cs_ops,
326 };
327
328 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
329                                    unsigned int event)
330 {
331         return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
332 }
333
334 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
335 static
336 #endif
337 struct cpufreq_governor cpufreq_gov_conservative = {
338         .name                   = "conservative",
339         .governor               = cs_cpufreq_governor_dbs,
340         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
341         .owner                  = THIS_MODULE,
342 };
343
344 static int __init cpufreq_gov_dbs_init(void)
345 {
346         mutex_init(&cs_dbs_data.mutex);
347         return cpufreq_register_governor(&cpufreq_gov_conservative);
348 }
349
350 static void __exit cpufreq_gov_dbs_exit(void)
351 {
352         cpufreq_unregister_governor(&cpufreq_gov_conservative);
353 }
354
355 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
356 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
357                 "Low Latency Frequency Transition capable processors "
358                 "optimised for use in a battery environment");
359 MODULE_LICENSE("GPL");
360
361 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
362 fs_initcall(cpufreq_gov_dbs_init);
363 #else
364 module_init(cpufreq_gov_dbs_init);
365 #endif
366 module_exit(cpufreq_gov_dbs_exit);