]> rtime.felk.cvut.cz Git - linux-imx.git/blob - mm/vmstat.c
mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low...
[linux-imx.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24
25 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
26 {
27         int cpu;
28         int i;
29
30         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31
32         for_each_cpu(cpu, cpumask) {
33                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34
35                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36                         ret[i] += this->event[i];
37         }
38 }
39
40 /*
41  * Accumulate the vm event counters across all CPUs.
42  * The result is unavoidably approximate - it can change
43  * during and after execution of this function.
44 */
45 void all_vm_events(unsigned long *ret)
46 {
47         get_online_cpus();
48         sum_vm_events(ret, cpu_online_mask);
49         put_online_cpus();
50 }
51 EXPORT_SYMBOL_GPL(all_vm_events);
52
53 #ifdef CONFIG_HOTPLUG
54 /*
55  * Fold the foreign cpu events into our own.
56  *
57  * This is adding to the events on one processor
58  * but keeps the global counts constant.
59  */
60 void vm_events_fold_cpu(int cpu)
61 {
62         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63         int i;
64
65         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66                 count_vm_events(i, fold_state->event[i]);
67                 fold_state->event[i] = 0;
68         }
69 }
70 #endif /* CONFIG_HOTPLUG */
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 static int calculate_threshold(struct zone *zone)
85 {
86         int threshold;
87         int mem;        /* memory in 128 MB units */
88
89         /*
90          * The threshold scales with the number of processors and the amount
91          * of memory per zone. More memory means that we can defer updates for
92          * longer, more processors could lead to more contention.
93          * fls() is used to have a cheap way of logarithmic scaling.
94          *
95          * Some sample thresholds:
96          *
97          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
98          * ------------------------------------------------------------------
99          * 8            1               1       0.9-1 GB        4
100          * 16           2               2       0.9-1 GB        4
101          * 20           2               2       1-2 GB          5
102          * 24           2               2       2-4 GB          6
103          * 28           2               2       4-8 GB          7
104          * 32           2               2       8-16 GB         8
105          * 4            2               2       <128M           1
106          * 30           4               3       2-4 GB          5
107          * 48           4               3       8-16 GB         8
108          * 32           8               4       1-2 GB          4
109          * 32           8               4       0.9-1GB         4
110          * 10           16              5       <128M           1
111          * 40           16              5       900M            4
112          * 70           64              7       2-4 GB          5
113          * 84           64              7       4-8 GB          6
114          * 108          512             9       4-8 GB          6
115          * 125          1024            10      8-16 GB         8
116          * 125          1024            10      16-32 GB        9
117          */
118
119         mem = zone->present_pages >> (27 - PAGE_SHIFT);
120
121         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
122
123         /*
124          * Maximum threshold is 125
125          */
126         threshold = min(125, threshold);
127
128         return threshold;
129 }
130
131 /*
132  * Refresh the thresholds for each zone.
133  */
134 static void refresh_zone_stat_thresholds(void)
135 {
136         struct zone *zone;
137         int cpu;
138         int threshold;
139
140         for_each_populated_zone(zone) {
141                 unsigned long max_drift, tolerate_drift;
142
143                 threshold = calculate_threshold(zone);
144
145                 for_each_online_cpu(cpu)
146                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
147                                                         = threshold;
148
149                 /*
150                  * Only set percpu_drift_mark if there is a danger that
151                  * NR_FREE_PAGES reports the low watermark is ok when in fact
152                  * the min watermark could be breached by an allocation
153                  */
154                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
155                 max_drift = num_online_cpus() * threshold;
156                 if (max_drift > tolerate_drift)
157                         zone->percpu_drift_mark = high_wmark_pages(zone) +
158                                         max_drift;
159         }
160 }
161
162 /*
163  * For use when we know that interrupts are disabled.
164  */
165 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
166                                 int delta)
167 {
168         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
169
170         s8 *p = pcp->vm_stat_diff + item;
171         long x;
172
173         x = delta + *p;
174
175         if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
176                 zone_page_state_add(x, zone, item);
177                 x = 0;
178         }
179         *p = x;
180 }
181 EXPORT_SYMBOL(__mod_zone_page_state);
182
183 /*
184  * For an unknown interrupt state
185  */
186 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
187                                         int delta)
188 {
189         unsigned long flags;
190
191         local_irq_save(flags);
192         __mod_zone_page_state(zone, item, delta);
193         local_irq_restore(flags);
194 }
195 EXPORT_SYMBOL(mod_zone_page_state);
196
197 /*
198  * Optimized increment and decrement functions.
199  *
200  * These are only for a single page and therefore can take a struct page *
201  * argument instead of struct zone *. This allows the inclusion of the code
202  * generated for page_zone(page) into the optimized functions.
203  *
204  * No overflow check is necessary and therefore the differential can be
205  * incremented or decremented in place which may allow the compilers to
206  * generate better code.
207  * The increment or decrement is known and therefore one boundary check can
208  * be omitted.
209  *
210  * NOTE: These functions are very performance sensitive. Change only
211  * with care.
212  *
213  * Some processors have inc/dec instructions that are atomic vs an interrupt.
214  * However, the code must first determine the differential location in a zone
215  * based on the processor number and then inc/dec the counter. There is no
216  * guarantee without disabling preemption that the processor will not change
217  * in between and therefore the atomicity vs. interrupt cannot be exploited
218  * in a useful way here.
219  */
220 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
221 {
222         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
223         s8 *p = pcp->vm_stat_diff + item;
224
225         (*p)++;
226
227         if (unlikely(*p > pcp->stat_threshold)) {
228                 int overstep = pcp->stat_threshold / 2;
229
230                 zone_page_state_add(*p + overstep, zone, item);
231                 *p = -overstep;
232         }
233 }
234
235 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
236 {
237         __inc_zone_state(page_zone(page), item);
238 }
239 EXPORT_SYMBOL(__inc_zone_page_state);
240
241 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
242 {
243         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
244         s8 *p = pcp->vm_stat_diff + item;
245
246         (*p)--;
247
248         if (unlikely(*p < - pcp->stat_threshold)) {
249                 int overstep = pcp->stat_threshold / 2;
250
251                 zone_page_state_add(*p - overstep, zone, item);
252                 *p = overstep;
253         }
254 }
255
256 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
257 {
258         __dec_zone_state(page_zone(page), item);
259 }
260 EXPORT_SYMBOL(__dec_zone_page_state);
261
262 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
263 {
264         unsigned long flags;
265
266         local_irq_save(flags);
267         __inc_zone_state(zone, item);
268         local_irq_restore(flags);
269 }
270
271 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 {
273         unsigned long flags;
274         struct zone *zone;
275
276         zone = page_zone(page);
277         local_irq_save(flags);
278         __inc_zone_state(zone, item);
279         local_irq_restore(flags);
280 }
281 EXPORT_SYMBOL(inc_zone_page_state);
282
283 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
284 {
285         unsigned long flags;
286
287         local_irq_save(flags);
288         __dec_zone_page_state(page, item);
289         local_irq_restore(flags);
290 }
291 EXPORT_SYMBOL(dec_zone_page_state);
292
293 /*
294  * Update the zone counters for one cpu.
295  *
296  * The cpu specified must be either the current cpu or a processor that
297  * is not online. If it is the current cpu then the execution thread must
298  * be pinned to the current cpu.
299  *
300  * Note that refresh_cpu_vm_stats strives to only access
301  * node local memory. The per cpu pagesets on remote zones are placed
302  * in the memory local to the processor using that pageset. So the
303  * loop over all zones will access a series of cachelines local to
304  * the processor.
305  *
306  * The call to zone_page_state_add updates the cachelines with the
307  * statistics in the remote zone struct as well as the global cachelines
308  * with the global counters. These could cause remote node cache line
309  * bouncing and will have to be only done when necessary.
310  */
311 void refresh_cpu_vm_stats(int cpu)
312 {
313         struct zone *zone;
314         int i;
315         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
316
317         for_each_populated_zone(zone) {
318                 struct per_cpu_pageset *p;
319
320                 p = per_cpu_ptr(zone->pageset, cpu);
321
322                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
323                         if (p->vm_stat_diff[i]) {
324                                 unsigned long flags;
325                                 int v;
326
327                                 local_irq_save(flags);
328                                 v = p->vm_stat_diff[i];
329                                 p->vm_stat_diff[i] = 0;
330                                 local_irq_restore(flags);
331                                 atomic_long_add(v, &zone->vm_stat[i]);
332                                 global_diff[i] += v;
333 #ifdef CONFIG_NUMA
334                                 /* 3 seconds idle till flush */
335                                 p->expire = 3;
336 #endif
337                         }
338                 cond_resched();
339 #ifdef CONFIG_NUMA
340                 /*
341                  * Deal with draining the remote pageset of this
342                  * processor
343                  *
344                  * Check if there are pages remaining in this pageset
345                  * if not then there is nothing to expire.
346                  */
347                 if (!p->expire || !p->pcp.count)
348                         continue;
349
350                 /*
351                  * We never drain zones local to this processor.
352                  */
353                 if (zone_to_nid(zone) == numa_node_id()) {
354                         p->expire = 0;
355                         continue;
356                 }
357
358                 p->expire--;
359                 if (p->expire)
360                         continue;
361
362                 if (p->pcp.count)
363                         drain_zone_pages(zone, &p->pcp);
364 #endif
365         }
366
367         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
368                 if (global_diff[i])
369                         atomic_long_add(global_diff[i], &vm_stat[i]);
370 }
371
372 #endif
373
374 #ifdef CONFIG_NUMA
375 /*
376  * zonelist = the list of zones passed to the allocator
377  * z        = the zone from which the allocation occurred.
378  *
379  * Must be called with interrupts disabled.
380  */
381 void zone_statistics(struct zone *preferred_zone, struct zone *z)
382 {
383         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
384                 __inc_zone_state(z, NUMA_HIT);
385         } else {
386                 __inc_zone_state(z, NUMA_MISS);
387                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
388         }
389         if (z->node == numa_node_id())
390                 __inc_zone_state(z, NUMA_LOCAL);
391         else
392                 __inc_zone_state(z, NUMA_OTHER);
393 }
394 #endif
395
396 #ifdef CONFIG_COMPACTION
397 struct contig_page_info {
398         unsigned long free_pages;
399         unsigned long free_blocks_total;
400         unsigned long free_blocks_suitable;
401 };
402
403 /*
404  * Calculate the number of free pages in a zone, how many contiguous
405  * pages are free and how many are large enough to satisfy an allocation of
406  * the target size. Note that this function makes no attempt to estimate
407  * how many suitable free blocks there *might* be if MOVABLE pages were
408  * migrated. Calculating that is possible, but expensive and can be
409  * figured out from userspace
410  */
411 static void fill_contig_page_info(struct zone *zone,
412                                 unsigned int suitable_order,
413                                 struct contig_page_info *info)
414 {
415         unsigned int order;
416
417         info->free_pages = 0;
418         info->free_blocks_total = 0;
419         info->free_blocks_suitable = 0;
420
421         for (order = 0; order < MAX_ORDER; order++) {
422                 unsigned long blocks;
423
424                 /* Count number of free blocks */
425                 blocks = zone->free_area[order].nr_free;
426                 info->free_blocks_total += blocks;
427
428                 /* Count free base pages */
429                 info->free_pages += blocks << order;
430
431                 /* Count the suitable free blocks */
432                 if (order >= suitable_order)
433                         info->free_blocks_suitable += blocks <<
434                                                 (order - suitable_order);
435         }
436 }
437
438 /*
439  * A fragmentation index only makes sense if an allocation of a requested
440  * size would fail. If that is true, the fragmentation index indicates
441  * whether external fragmentation or a lack of memory was the problem.
442  * The value can be used to determine if page reclaim or compaction
443  * should be used
444  */
445 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
446 {
447         unsigned long requested = 1UL << order;
448
449         if (!info->free_blocks_total)
450                 return 0;
451
452         /* Fragmentation index only makes sense when a request would fail */
453         if (info->free_blocks_suitable)
454                 return -1000;
455
456         /*
457          * Index is between 0 and 1 so return within 3 decimal places
458          *
459          * 0 => allocation would fail due to lack of memory
460          * 1 => allocation would fail due to fragmentation
461          */
462         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
463 }
464
465 /* Same as __fragmentation index but allocs contig_page_info on stack */
466 int fragmentation_index(struct zone *zone, unsigned int order)
467 {
468         struct contig_page_info info;
469
470         fill_contig_page_info(zone, order, &info);
471         return __fragmentation_index(order, &info);
472 }
473 #endif
474
475 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
476 #include <linux/proc_fs.h>
477 #include <linux/seq_file.h>
478
479 static char * const migratetype_names[MIGRATE_TYPES] = {
480         "Unmovable",
481         "Reclaimable",
482         "Movable",
483         "Reserve",
484         "Isolate",
485 };
486
487 static void *frag_start(struct seq_file *m, loff_t *pos)
488 {
489         pg_data_t *pgdat;
490         loff_t node = *pos;
491         for (pgdat = first_online_pgdat();
492              pgdat && node;
493              pgdat = next_online_pgdat(pgdat))
494                 --node;
495
496         return pgdat;
497 }
498
499 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
500 {
501         pg_data_t *pgdat = (pg_data_t *)arg;
502
503         (*pos)++;
504         return next_online_pgdat(pgdat);
505 }
506
507 static void frag_stop(struct seq_file *m, void *arg)
508 {
509 }
510
511 /* Walk all the zones in a node and print using a callback */
512 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
513                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
514 {
515         struct zone *zone;
516         struct zone *node_zones = pgdat->node_zones;
517         unsigned long flags;
518
519         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
520                 if (!populated_zone(zone))
521                         continue;
522
523                 spin_lock_irqsave(&zone->lock, flags);
524                 print(m, pgdat, zone);
525                 spin_unlock_irqrestore(&zone->lock, flags);
526         }
527 }
528 #endif
529
530 #ifdef CONFIG_PROC_FS
531 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
532                                                 struct zone *zone)
533 {
534         int order;
535
536         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
537         for (order = 0; order < MAX_ORDER; ++order)
538                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
539         seq_putc(m, '\n');
540 }
541
542 /*
543  * This walks the free areas for each zone.
544  */
545 static int frag_show(struct seq_file *m, void *arg)
546 {
547         pg_data_t *pgdat = (pg_data_t *)arg;
548         walk_zones_in_node(m, pgdat, frag_show_print);
549         return 0;
550 }
551
552 static void pagetypeinfo_showfree_print(struct seq_file *m,
553                                         pg_data_t *pgdat, struct zone *zone)
554 {
555         int order, mtype;
556
557         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
558                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
559                                         pgdat->node_id,
560                                         zone->name,
561                                         migratetype_names[mtype]);
562                 for (order = 0; order < MAX_ORDER; ++order) {
563                         unsigned long freecount = 0;
564                         struct free_area *area;
565                         struct list_head *curr;
566
567                         area = &(zone->free_area[order]);
568
569                         list_for_each(curr, &area->free_list[mtype])
570                                 freecount++;
571                         seq_printf(m, "%6lu ", freecount);
572                 }
573                 seq_putc(m, '\n');
574         }
575 }
576
577 /* Print out the free pages at each order for each migatetype */
578 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
579 {
580         int order;
581         pg_data_t *pgdat = (pg_data_t *)arg;
582
583         /* Print header */
584         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
585         for (order = 0; order < MAX_ORDER; ++order)
586                 seq_printf(m, "%6d ", order);
587         seq_putc(m, '\n');
588
589         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
590
591         return 0;
592 }
593
594 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
595                                         pg_data_t *pgdat, struct zone *zone)
596 {
597         int mtype;
598         unsigned long pfn;
599         unsigned long start_pfn = zone->zone_start_pfn;
600         unsigned long end_pfn = start_pfn + zone->spanned_pages;
601         unsigned long count[MIGRATE_TYPES] = { 0, };
602
603         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
604                 struct page *page;
605
606                 if (!pfn_valid(pfn))
607                         continue;
608
609                 page = pfn_to_page(pfn);
610
611                 /* Watch for unexpected holes punched in the memmap */
612                 if (!memmap_valid_within(pfn, page, zone))
613                         continue;
614
615                 mtype = get_pageblock_migratetype(page);
616
617                 if (mtype < MIGRATE_TYPES)
618                         count[mtype]++;
619         }
620
621         /* Print counts */
622         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
623         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
624                 seq_printf(m, "%12lu ", count[mtype]);
625         seq_putc(m, '\n');
626 }
627
628 /* Print out the free pages at each order for each migratetype */
629 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
630 {
631         int mtype;
632         pg_data_t *pgdat = (pg_data_t *)arg;
633
634         seq_printf(m, "\n%-23s", "Number of blocks type ");
635         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
636                 seq_printf(m, "%12s ", migratetype_names[mtype]);
637         seq_putc(m, '\n');
638         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
639
640         return 0;
641 }
642
643 /*
644  * This prints out statistics in relation to grouping pages by mobility.
645  * It is expensive to collect so do not constantly read the file.
646  */
647 static int pagetypeinfo_show(struct seq_file *m, void *arg)
648 {
649         pg_data_t *pgdat = (pg_data_t *)arg;
650
651         /* check memoryless node */
652         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
653                 return 0;
654
655         seq_printf(m, "Page block order: %d\n", pageblock_order);
656         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
657         seq_putc(m, '\n');
658         pagetypeinfo_showfree(m, pgdat);
659         pagetypeinfo_showblockcount(m, pgdat);
660
661         return 0;
662 }
663
664 static const struct seq_operations fragmentation_op = {
665         .start  = frag_start,
666         .next   = frag_next,
667         .stop   = frag_stop,
668         .show   = frag_show,
669 };
670
671 static int fragmentation_open(struct inode *inode, struct file *file)
672 {
673         return seq_open(file, &fragmentation_op);
674 }
675
676 static const struct file_operations fragmentation_file_operations = {
677         .open           = fragmentation_open,
678         .read           = seq_read,
679         .llseek         = seq_lseek,
680         .release        = seq_release,
681 };
682
683 static const struct seq_operations pagetypeinfo_op = {
684         .start  = frag_start,
685         .next   = frag_next,
686         .stop   = frag_stop,
687         .show   = pagetypeinfo_show,
688 };
689
690 static int pagetypeinfo_open(struct inode *inode, struct file *file)
691 {
692         return seq_open(file, &pagetypeinfo_op);
693 }
694
695 static const struct file_operations pagetypeinfo_file_ops = {
696         .open           = pagetypeinfo_open,
697         .read           = seq_read,
698         .llseek         = seq_lseek,
699         .release        = seq_release,
700 };
701
702 #ifdef CONFIG_ZONE_DMA
703 #define TEXT_FOR_DMA(xx) xx "_dma",
704 #else
705 #define TEXT_FOR_DMA(xx)
706 #endif
707
708 #ifdef CONFIG_ZONE_DMA32
709 #define TEXT_FOR_DMA32(xx) xx "_dma32",
710 #else
711 #define TEXT_FOR_DMA32(xx)
712 #endif
713
714 #ifdef CONFIG_HIGHMEM
715 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
716 #else
717 #define TEXT_FOR_HIGHMEM(xx)
718 #endif
719
720 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
721                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
722
723 static const char * const vmstat_text[] = {
724         /* Zoned VM counters */
725         "nr_free_pages",
726         "nr_inactive_anon",
727         "nr_active_anon",
728         "nr_inactive_file",
729         "nr_active_file",
730         "nr_unevictable",
731         "nr_mlock",
732         "nr_anon_pages",
733         "nr_mapped",
734         "nr_file_pages",
735         "nr_dirty",
736         "nr_writeback",
737         "nr_slab_reclaimable",
738         "nr_slab_unreclaimable",
739         "nr_page_table_pages",
740         "nr_kernel_stack",
741         "nr_unstable",
742         "nr_bounce",
743         "nr_vmscan_write",
744         "nr_writeback_temp",
745         "nr_isolated_anon",
746         "nr_isolated_file",
747         "nr_shmem",
748 #ifdef CONFIG_NUMA
749         "numa_hit",
750         "numa_miss",
751         "numa_foreign",
752         "numa_interleave",
753         "numa_local",
754         "numa_other",
755 #endif
756
757 #ifdef CONFIG_VM_EVENT_COUNTERS
758         "pgpgin",
759         "pgpgout",
760         "pswpin",
761         "pswpout",
762
763         TEXTS_FOR_ZONES("pgalloc")
764
765         "pgfree",
766         "pgactivate",
767         "pgdeactivate",
768
769         "pgfault",
770         "pgmajfault",
771
772         TEXTS_FOR_ZONES("pgrefill")
773         TEXTS_FOR_ZONES("pgsteal")
774         TEXTS_FOR_ZONES("pgscan_kswapd")
775         TEXTS_FOR_ZONES("pgscan_direct")
776
777 #ifdef CONFIG_NUMA
778         "zone_reclaim_failed",
779 #endif
780         "pginodesteal",
781         "slabs_scanned",
782         "kswapd_steal",
783         "kswapd_inodesteal",
784         "kswapd_low_wmark_hit_quickly",
785         "kswapd_high_wmark_hit_quickly",
786         "kswapd_skip_congestion_wait",
787         "pageoutrun",
788         "allocstall",
789
790         "pgrotated",
791
792 #ifdef CONFIG_COMPACTION
793         "compact_blocks_moved",
794         "compact_pages_moved",
795         "compact_pagemigrate_failed",
796         "compact_stall",
797         "compact_fail",
798         "compact_success",
799 #endif
800
801 #ifdef CONFIG_HUGETLB_PAGE
802         "htlb_buddy_alloc_success",
803         "htlb_buddy_alloc_fail",
804 #endif
805         "unevictable_pgs_culled",
806         "unevictable_pgs_scanned",
807         "unevictable_pgs_rescued",
808         "unevictable_pgs_mlocked",
809         "unevictable_pgs_munlocked",
810         "unevictable_pgs_cleared",
811         "unevictable_pgs_stranded",
812         "unevictable_pgs_mlockfreed",
813 #endif
814 };
815
816 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
817                                                         struct zone *zone)
818 {
819         int i;
820         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
821         seq_printf(m,
822                    "\n  pages free     %lu"
823                    "\n        min      %lu"
824                    "\n        low      %lu"
825                    "\n        high     %lu"
826                    "\n        scanned  %lu"
827                    "\n        spanned  %lu"
828                    "\n        present  %lu",
829                    zone_nr_free_pages(zone),
830                    min_wmark_pages(zone),
831                    low_wmark_pages(zone),
832                    high_wmark_pages(zone),
833                    zone->pages_scanned,
834                    zone->spanned_pages,
835                    zone->present_pages);
836
837         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
838                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
839                                 zone_page_state(zone, i));
840
841         seq_printf(m,
842                    "\n        protection: (%lu",
843                    zone->lowmem_reserve[0]);
844         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
845                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
846         seq_printf(m,
847                    ")"
848                    "\n  pagesets");
849         for_each_online_cpu(i) {
850                 struct per_cpu_pageset *pageset;
851
852                 pageset = per_cpu_ptr(zone->pageset, i);
853                 seq_printf(m,
854                            "\n    cpu: %i"
855                            "\n              count: %i"
856                            "\n              high:  %i"
857                            "\n              batch: %i",
858                            i,
859                            pageset->pcp.count,
860                            pageset->pcp.high,
861                            pageset->pcp.batch);
862 #ifdef CONFIG_SMP
863                 seq_printf(m, "\n  vm stats threshold: %d",
864                                 pageset->stat_threshold);
865 #endif
866         }
867         seq_printf(m,
868                    "\n  all_unreclaimable: %u"
869                    "\n  prev_priority:     %i"
870                    "\n  start_pfn:         %lu"
871                    "\n  inactive_ratio:    %u",
872                    zone->all_unreclaimable,
873                    zone->prev_priority,
874                    zone->zone_start_pfn,
875                    zone->inactive_ratio);
876         seq_putc(m, '\n');
877 }
878
879 /*
880  * Output information about zones in @pgdat.
881  */
882 static int zoneinfo_show(struct seq_file *m, void *arg)
883 {
884         pg_data_t *pgdat = (pg_data_t *)arg;
885         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
886         return 0;
887 }
888
889 static const struct seq_operations zoneinfo_op = {
890         .start  = frag_start, /* iterate over all zones. The same as in
891                                * fragmentation. */
892         .next   = frag_next,
893         .stop   = frag_stop,
894         .show   = zoneinfo_show,
895 };
896
897 static int zoneinfo_open(struct inode *inode, struct file *file)
898 {
899         return seq_open(file, &zoneinfo_op);
900 }
901
902 static const struct file_operations proc_zoneinfo_file_operations = {
903         .open           = zoneinfo_open,
904         .read           = seq_read,
905         .llseek         = seq_lseek,
906         .release        = seq_release,
907 };
908
909 static void *vmstat_start(struct seq_file *m, loff_t *pos)
910 {
911         unsigned long *v;
912 #ifdef CONFIG_VM_EVENT_COUNTERS
913         unsigned long *e;
914 #endif
915         int i;
916
917         if (*pos >= ARRAY_SIZE(vmstat_text))
918                 return NULL;
919
920 #ifdef CONFIG_VM_EVENT_COUNTERS
921         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
922                         + sizeof(struct vm_event_state), GFP_KERNEL);
923 #else
924         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
925                         GFP_KERNEL);
926 #endif
927         m->private = v;
928         if (!v)
929                 return ERR_PTR(-ENOMEM);
930         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
931                 v[i] = global_page_state(i);
932 #ifdef CONFIG_VM_EVENT_COUNTERS
933         e = v + NR_VM_ZONE_STAT_ITEMS;
934         all_vm_events(e);
935         e[PGPGIN] /= 2;         /* sectors -> kbytes */
936         e[PGPGOUT] /= 2;
937 #endif
938         return v + *pos;
939 }
940
941 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
942 {
943         (*pos)++;
944         if (*pos >= ARRAY_SIZE(vmstat_text))
945                 return NULL;
946         return (unsigned long *)m->private + *pos;
947 }
948
949 static int vmstat_show(struct seq_file *m, void *arg)
950 {
951         unsigned long *l = arg;
952         unsigned long off = l - (unsigned long *)m->private;
953
954         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
955         return 0;
956 }
957
958 static void vmstat_stop(struct seq_file *m, void *arg)
959 {
960         kfree(m->private);
961         m->private = NULL;
962 }
963
964 static const struct seq_operations vmstat_op = {
965         .start  = vmstat_start,
966         .next   = vmstat_next,
967         .stop   = vmstat_stop,
968         .show   = vmstat_show,
969 };
970
971 static int vmstat_open(struct inode *inode, struct file *file)
972 {
973         return seq_open(file, &vmstat_op);
974 }
975
976 static const struct file_operations proc_vmstat_file_operations = {
977         .open           = vmstat_open,
978         .read           = seq_read,
979         .llseek         = seq_lseek,
980         .release        = seq_release,
981 };
982 #endif /* CONFIG_PROC_FS */
983
984 #ifdef CONFIG_SMP
985 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
986 int sysctl_stat_interval __read_mostly = HZ;
987
988 static void vmstat_update(struct work_struct *w)
989 {
990         refresh_cpu_vm_stats(smp_processor_id());
991         schedule_delayed_work(&__get_cpu_var(vmstat_work),
992                 round_jiffies_relative(sysctl_stat_interval));
993 }
994
995 static void __cpuinit start_cpu_timer(int cpu)
996 {
997         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
998
999         INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1000         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1001 }
1002
1003 /*
1004  * Use the cpu notifier to insure that the thresholds are recalculated
1005  * when necessary.
1006  */
1007 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1008                 unsigned long action,
1009                 void *hcpu)
1010 {
1011         long cpu = (long)hcpu;
1012
1013         switch (action) {
1014         case CPU_ONLINE:
1015         case CPU_ONLINE_FROZEN:
1016                 start_cpu_timer(cpu);
1017                 node_set_state(cpu_to_node(cpu), N_CPU);
1018                 break;
1019         case CPU_DOWN_PREPARE:
1020         case CPU_DOWN_PREPARE_FROZEN:
1021                 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1022                 per_cpu(vmstat_work, cpu).work.func = NULL;
1023                 break;
1024         case CPU_DOWN_FAILED:
1025         case CPU_DOWN_FAILED_FROZEN:
1026                 start_cpu_timer(cpu);
1027                 break;
1028         case CPU_DEAD:
1029         case CPU_DEAD_FROZEN:
1030                 refresh_zone_stat_thresholds();
1031                 break;
1032         default:
1033                 break;
1034         }
1035         return NOTIFY_OK;
1036 }
1037
1038 static struct notifier_block __cpuinitdata vmstat_notifier =
1039         { &vmstat_cpuup_callback, NULL, 0 };
1040 #endif
1041
1042 static int __init setup_vmstat(void)
1043 {
1044 #ifdef CONFIG_SMP
1045         int cpu;
1046
1047         refresh_zone_stat_thresholds();
1048         register_cpu_notifier(&vmstat_notifier);
1049
1050         for_each_online_cpu(cpu)
1051                 start_cpu_timer(cpu);
1052 #endif
1053 #ifdef CONFIG_PROC_FS
1054         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1055         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1056         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1057         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1058 #endif
1059         return 0;
1060 }
1061 module_init(setup_vmstat)
1062
1063 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1064 #include <linux/debugfs.h>
1065
1066 static struct dentry *extfrag_debug_root;
1067
1068 /*
1069  * Return an index indicating how much of the available free memory is
1070  * unusable for an allocation of the requested size.
1071  */
1072 static int unusable_free_index(unsigned int order,
1073                                 struct contig_page_info *info)
1074 {
1075         /* No free memory is interpreted as all free memory is unusable */
1076         if (info->free_pages == 0)
1077                 return 1000;
1078
1079         /*
1080          * Index should be a value between 0 and 1. Return a value to 3
1081          * decimal places.
1082          *
1083          * 0 => no fragmentation
1084          * 1 => high fragmentation
1085          */
1086         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1087
1088 }
1089
1090 static void unusable_show_print(struct seq_file *m,
1091                                         pg_data_t *pgdat, struct zone *zone)
1092 {
1093         unsigned int order;
1094         int index;
1095         struct contig_page_info info;
1096
1097         seq_printf(m, "Node %d, zone %8s ",
1098                                 pgdat->node_id,
1099                                 zone->name);
1100         for (order = 0; order < MAX_ORDER; ++order) {
1101                 fill_contig_page_info(zone, order, &info);
1102                 index = unusable_free_index(order, &info);
1103                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1104         }
1105
1106         seq_putc(m, '\n');
1107 }
1108
1109 /*
1110  * Display unusable free space index
1111  *
1112  * The unusable free space index measures how much of the available free
1113  * memory cannot be used to satisfy an allocation of a given size and is a
1114  * value between 0 and 1. The higher the value, the more of free memory is
1115  * unusable and by implication, the worse the external fragmentation is. This
1116  * can be expressed as a percentage by multiplying by 100.
1117  */
1118 static int unusable_show(struct seq_file *m, void *arg)
1119 {
1120         pg_data_t *pgdat = (pg_data_t *)arg;
1121
1122         /* check memoryless node */
1123         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1124                 return 0;
1125
1126         walk_zones_in_node(m, pgdat, unusable_show_print);
1127
1128         return 0;
1129 }
1130
1131 static const struct seq_operations unusable_op = {
1132         .start  = frag_start,
1133         .next   = frag_next,
1134         .stop   = frag_stop,
1135         .show   = unusable_show,
1136 };
1137
1138 static int unusable_open(struct inode *inode, struct file *file)
1139 {
1140         return seq_open(file, &unusable_op);
1141 }
1142
1143 static const struct file_operations unusable_file_ops = {
1144         .open           = unusable_open,
1145         .read           = seq_read,
1146         .llseek         = seq_lseek,
1147         .release        = seq_release,
1148 };
1149
1150 static void extfrag_show_print(struct seq_file *m,
1151                                         pg_data_t *pgdat, struct zone *zone)
1152 {
1153         unsigned int order;
1154         int index;
1155
1156         /* Alloc on stack as interrupts are disabled for zone walk */
1157         struct contig_page_info info;
1158
1159         seq_printf(m, "Node %d, zone %8s ",
1160                                 pgdat->node_id,
1161                                 zone->name);
1162         for (order = 0; order < MAX_ORDER; ++order) {
1163                 fill_contig_page_info(zone, order, &info);
1164                 index = __fragmentation_index(order, &info);
1165                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1166         }
1167
1168         seq_putc(m, '\n');
1169 }
1170
1171 /*
1172  * Display fragmentation index for orders that allocations would fail for
1173  */
1174 static int extfrag_show(struct seq_file *m, void *arg)
1175 {
1176         pg_data_t *pgdat = (pg_data_t *)arg;
1177
1178         walk_zones_in_node(m, pgdat, extfrag_show_print);
1179
1180         return 0;
1181 }
1182
1183 static const struct seq_operations extfrag_op = {
1184         .start  = frag_start,
1185         .next   = frag_next,
1186         .stop   = frag_stop,
1187         .show   = extfrag_show,
1188 };
1189
1190 static int extfrag_open(struct inode *inode, struct file *file)
1191 {
1192         return seq_open(file, &extfrag_op);
1193 }
1194
1195 static const struct file_operations extfrag_file_ops = {
1196         .open           = extfrag_open,
1197         .read           = seq_read,
1198         .llseek         = seq_lseek,
1199         .release        = seq_release,
1200 };
1201
1202 static int __init extfrag_debug_init(void)
1203 {
1204         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1205         if (!extfrag_debug_root)
1206                 return -ENOMEM;
1207
1208         if (!debugfs_create_file("unusable_index", 0444,
1209                         extfrag_debug_root, NULL, &unusable_file_ops))
1210                 return -ENOMEM;
1211
1212         if (!debugfs_create_file("extfrag_index", 0444,
1213                         extfrag_debug_root, NULL, &extfrag_file_ops))
1214                 return -ENOMEM;
1215
1216         return 0;
1217 }
1218
1219 module_init(extfrag_debug_init);
1220 #endif