]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Print plane, pipe, port names as alphabetical insted of decimal
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->config.cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (!intel_using_power_well(dev_priv->dev) &&
1231             cpu_transcoder != TRANSCODER_EDP) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         assert_pipe_disabled(dev_priv, pipe);
1478
1479         /* No really, not for ILK+ */
1480         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1481
1482         /* PLL is protected by panel, make sure we can write it */
1483         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1484                 assert_panel_unlocked(dev_priv, pipe);
1485
1486         reg = DPLL(pipe);
1487         val = I915_READ(reg);
1488         val |= DPLL_VCO_ENABLE;
1489
1490         /* We do this three times for luck */
1491         I915_WRITE(reg, val);
1492         POSTING_READ(reg);
1493         udelay(150); /* wait for warmup */
1494         I915_WRITE(reg, val);
1495         POSTING_READ(reg);
1496         udelay(150); /* wait for warmup */
1497         I915_WRITE(reg, val);
1498         POSTING_READ(reg);
1499         udelay(150); /* wait for warmup */
1500 }
1501
1502 /**
1503  * intel_disable_pll - disable a PLL
1504  * @dev_priv: i915 private structure
1505  * @pipe: pipe PLL to disable
1506  *
1507  * Disable the PLL for @pipe, making sure the pipe is off first.
1508  *
1509  * Note!  This is for pre-ILK only.
1510  */
1511 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1512 {
1513         int reg;
1514         u32 val;
1515
1516         /* Don't disable pipe A or pipe A PLLs if needed */
1517         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1518                 return;
1519
1520         /* Make sure the pipe isn't still relying on us */
1521         assert_pipe_disabled(dev_priv, pipe);
1522
1523         reg = DPLL(pipe);
1524         val = I915_READ(reg);
1525         val &= ~DPLL_VCO_ENABLE;
1526         I915_WRITE(reg, val);
1527         POSTING_READ(reg);
1528 }
1529
1530 /* SBI access */
1531 static void
1532 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1533                 enum intel_sbi_destination destination)
1534 {
1535         u32 tmp;
1536
1537         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1542                 return;
1543         }
1544
1545         I915_WRITE(SBI_ADDR, (reg << 16));
1546         I915_WRITE(SBI_DATA, value);
1547
1548         if (destination == SBI_ICLK)
1549                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1550         else
1551                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1552         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1553
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1557                 return;
1558         }
1559 }
1560
1561 static u32
1562 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1563                enum intel_sbi_destination destination)
1564 {
1565         u32 value = 0;
1566         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1571                 return 0;
1572         }
1573
1574         I915_WRITE(SBI_ADDR, (reg << 16));
1575
1576         if (destination == SBI_ICLK)
1577                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1578         else
1579                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1580         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1581
1582         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1583                                 100)) {
1584                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1585                 return 0;
1586         }
1587
1588         return I915_READ(SBI_DATA);
1589 }
1590
1591 /**
1592  * ironlake_enable_pch_pll - enable PCH PLL
1593  * @dev_priv: i915 private structure
1594  * @pipe: pipe PLL to enable
1595  *
1596  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1597  * drives the transcoder clock.
1598  */
1599 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1600 {
1601         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1602         struct intel_pch_pll *pll;
1603         int reg;
1604         u32 val;
1605
1606         /* PCH PLLs only available on ILK, SNB and IVB */
1607         BUG_ON(dev_priv->info->gen < 5);
1608         pll = intel_crtc->pch_pll;
1609         if (pll == NULL)
1610                 return;
1611
1612         if (WARN_ON(pll->refcount == 0))
1613                 return;
1614
1615         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1616                       pll->pll_reg, pll->active, pll->on,
1617                       intel_crtc->base.base.id);
1618
1619         /* PCH refclock must be enabled first */
1620         assert_pch_refclk_enabled(dev_priv);
1621
1622         if (pll->active++ && pll->on) {
1623                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1624                 return;
1625         }
1626
1627         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1628
1629         reg = pll->pll_reg;
1630         val = I915_READ(reg);
1631         val |= DPLL_VCO_ENABLE;
1632         I915_WRITE(reg, val);
1633         POSTING_READ(reg);
1634         udelay(200);
1635
1636         pll->on = true;
1637 }
1638
1639 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1640 {
1641         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1642         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1643         int reg;
1644         u32 val;
1645
1646         /* PCH only available on ILK+ */
1647         BUG_ON(dev_priv->info->gen < 5);
1648         if (pll == NULL)
1649                return;
1650
1651         if (WARN_ON(pll->refcount == 0))
1652                 return;
1653
1654         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1655                       pll->pll_reg, pll->active, pll->on,
1656                       intel_crtc->base.base.id);
1657
1658         if (WARN_ON(pll->active == 0)) {
1659                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1660                 return;
1661         }
1662
1663         if (--pll->active) {
1664                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1665                 return;
1666         }
1667
1668         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1669
1670         /* Make sure transcoder isn't still depending on us */
1671         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1672
1673         reg = pll->pll_reg;
1674         val = I915_READ(reg);
1675         val &= ~DPLL_VCO_ENABLE;
1676         I915_WRITE(reg, val);
1677         POSTING_READ(reg);
1678         udelay(200);
1679
1680         pll->on = false;
1681 }
1682
1683 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1684                                            enum pipe pipe)
1685 {
1686         struct drm_device *dev = dev_priv->dev;
1687         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1688         uint32_t reg, val, pipeconf_val;
1689
1690         /* PCH only available on ILK+ */
1691         BUG_ON(dev_priv->info->gen < 5);
1692
1693         /* Make sure PCH DPLL is enabled */
1694         assert_pch_pll_enabled(dev_priv,
1695                                to_intel_crtc(crtc)->pch_pll,
1696                                to_intel_crtc(crtc));
1697
1698         /* FDI must be feeding us bits for PCH ports */
1699         assert_fdi_tx_enabled(dev_priv, pipe);
1700         assert_fdi_rx_enabled(dev_priv, pipe);
1701
1702         if (HAS_PCH_CPT(dev)) {
1703                 /* Workaround: Set the timing override bit before enabling the
1704                  * pch transcoder. */
1705                 reg = TRANS_CHICKEN2(pipe);
1706                 val = I915_READ(reg);
1707                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1708                 I915_WRITE(reg, val);
1709         }
1710
1711         reg = TRANSCONF(pipe);
1712         val = I915_READ(reg);
1713         pipeconf_val = I915_READ(PIPECONF(pipe));
1714
1715         if (HAS_PCH_IBX(dev_priv->dev)) {
1716                 /*
1717                  * make the BPC in transcoder be consistent with
1718                  * that in pipeconf reg.
1719                  */
1720                 val &= ~PIPECONF_BPC_MASK;
1721                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1722         }
1723
1724         val &= ~TRANS_INTERLACE_MASK;
1725         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1726                 if (HAS_PCH_IBX(dev_priv->dev) &&
1727                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1728                         val |= TRANS_LEGACY_INTERLACED_ILK;
1729                 else
1730                         val |= TRANS_INTERLACED;
1731         else
1732                 val |= TRANS_PROGRESSIVE;
1733
1734         I915_WRITE(reg, val | TRANS_ENABLE);
1735         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1736                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1737 }
1738
1739 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1740                                       enum transcoder cpu_transcoder)
1741 {
1742         u32 val, pipeconf_val;
1743
1744         /* PCH only available on ILK+ */
1745         BUG_ON(dev_priv->info->gen < 5);
1746
1747         /* FDI must be feeding us bits for PCH ports */
1748         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1749         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1750
1751         /* Workaround: set timing override bit. */
1752         val = I915_READ(_TRANSA_CHICKEN2);
1753         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1754         I915_WRITE(_TRANSA_CHICKEN2, val);
1755
1756         val = TRANS_ENABLE;
1757         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1758
1759         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1760             PIPECONF_INTERLACED_ILK)
1761                 val |= TRANS_INTERLACED;
1762         else
1763                 val |= TRANS_PROGRESSIVE;
1764
1765         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1766         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1767                 DRM_ERROR("Failed to enable PCH transcoder\n");
1768 }
1769
1770 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1771                                             enum pipe pipe)
1772 {
1773         struct drm_device *dev = dev_priv->dev;
1774         uint32_t reg, val;
1775
1776         /* FDI relies on the transcoder */
1777         assert_fdi_tx_disabled(dev_priv, pipe);
1778         assert_fdi_rx_disabled(dev_priv, pipe);
1779
1780         /* Ports must be off as well */
1781         assert_pch_ports_disabled(dev_priv, pipe);
1782
1783         reg = TRANSCONF(pipe);
1784         val = I915_READ(reg);
1785         val &= ~TRANS_ENABLE;
1786         I915_WRITE(reg, val);
1787         /* wait for PCH transcoder off, transcoder state */
1788         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1789                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1790
1791         if (!HAS_PCH_IBX(dev)) {
1792                 /* Workaround: Clear the timing override chicken bit again. */
1793                 reg = TRANS_CHICKEN2(pipe);
1794                 val = I915_READ(reg);
1795                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1796                 I915_WRITE(reg, val);
1797         }
1798 }
1799
1800 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1801 {
1802         u32 val;
1803
1804         val = I915_READ(_TRANSACONF);
1805         val &= ~TRANS_ENABLE;
1806         I915_WRITE(_TRANSACONF, val);
1807         /* wait for PCH transcoder off, transcoder state */
1808         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1809                 DRM_ERROR("Failed to disable PCH transcoder\n");
1810
1811         /* Workaround: clear timing override bit. */
1812         val = I915_READ(_TRANSA_CHICKEN2);
1813         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1814         I915_WRITE(_TRANSA_CHICKEN2, val);
1815 }
1816
1817 /**
1818  * intel_enable_pipe - enable a pipe, asserting requirements
1819  * @dev_priv: i915 private structure
1820  * @pipe: pipe to enable
1821  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1822  *
1823  * Enable @pipe, making sure that various hardware specific requirements
1824  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1825  *
1826  * @pipe should be %PIPE_A or %PIPE_B.
1827  *
1828  * Will wait until the pipe is actually running (i.e. first vblank) before
1829  * returning.
1830  */
1831 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1832                               bool pch_port)
1833 {
1834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835                                                                       pipe);
1836         enum pipe pch_transcoder;
1837         int reg;
1838         u32 val;
1839
1840         assert_planes_disabled(dev_priv, pipe);
1841         assert_sprites_disabled(dev_priv, pipe);
1842
1843         if (HAS_PCH_LPT(dev_priv->dev))
1844                 pch_transcoder = TRANSCODER_A;
1845         else
1846                 pch_transcoder = pipe;
1847
1848         /*
1849          * A pipe without a PLL won't actually be able to drive bits from
1850          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1851          * need the check.
1852          */
1853         if (!HAS_PCH_SPLIT(dev_priv->dev))
1854                 assert_pll_enabled(dev_priv, pipe);
1855         else {
1856                 if (pch_port) {
1857                         /* if driving the PCH, we need FDI enabled */
1858                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1859                         assert_fdi_tx_pll_enabled(dev_priv,
1860                                                   (enum pipe) cpu_transcoder);
1861                 }
1862                 /* FIXME: assert CPU port conditions for SNB+ */
1863         }
1864
1865         reg = PIPECONF(cpu_transcoder);
1866         val = I915_READ(reg);
1867         if (val & PIPECONF_ENABLE)
1868                 return;
1869
1870         I915_WRITE(reg, val | PIPECONF_ENABLE);
1871         intel_wait_for_vblank(dev_priv->dev, pipe);
1872 }
1873
1874 /**
1875  * intel_disable_pipe - disable a pipe, asserting requirements
1876  * @dev_priv: i915 private structure
1877  * @pipe: pipe to disable
1878  *
1879  * Disable @pipe, making sure that various hardware specific requirements
1880  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1881  *
1882  * @pipe should be %PIPE_A or %PIPE_B.
1883  *
1884  * Will wait until the pipe has shut down before returning.
1885  */
1886 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1887                                enum pipe pipe)
1888 {
1889         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1890                                                                       pipe);
1891         int reg;
1892         u32 val;
1893
1894         /*
1895          * Make sure planes won't keep trying to pump pixels to us,
1896          * or we might hang the display.
1897          */
1898         assert_planes_disabled(dev_priv, pipe);
1899         assert_sprites_disabled(dev_priv, pipe);
1900
1901         /* Don't disable pipe A or pipe A PLLs if needed */
1902         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1903                 return;
1904
1905         reg = PIPECONF(cpu_transcoder);
1906         val = I915_READ(reg);
1907         if ((val & PIPECONF_ENABLE) == 0)
1908                 return;
1909
1910         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1911         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1912 }
1913
1914 /*
1915  * Plane regs are double buffered, going from enabled->disabled needs a
1916  * trigger in order to latch.  The display address reg provides this.
1917  */
1918 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1919                                       enum plane plane)
1920 {
1921         if (dev_priv->info->gen >= 4)
1922                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1923         else
1924                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1925 }
1926
1927 /**
1928  * intel_enable_plane - enable a display plane on a given pipe
1929  * @dev_priv: i915 private structure
1930  * @plane: plane to enable
1931  * @pipe: pipe being fed
1932  *
1933  * Enable @plane on @pipe, making sure that @pipe is running first.
1934  */
1935 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1936                                enum plane plane, enum pipe pipe)
1937 {
1938         int reg;
1939         u32 val;
1940
1941         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1942         assert_pipe_enabled(dev_priv, pipe);
1943
1944         reg = DSPCNTR(plane);
1945         val = I915_READ(reg);
1946         if (val & DISPLAY_PLANE_ENABLE)
1947                 return;
1948
1949         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1950         intel_flush_display_plane(dev_priv, plane);
1951         intel_wait_for_vblank(dev_priv->dev, pipe);
1952 }
1953
1954 /**
1955  * intel_disable_plane - disable a display plane
1956  * @dev_priv: i915 private structure
1957  * @plane: plane to disable
1958  * @pipe: pipe consuming the data
1959  *
1960  * Disable @plane; should be an independent operation.
1961  */
1962 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1963                                 enum plane plane, enum pipe pipe)
1964 {
1965         int reg;
1966         u32 val;
1967
1968         reg = DSPCNTR(plane);
1969         val = I915_READ(reg);
1970         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1971                 return;
1972
1973         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1974         intel_flush_display_plane(dev_priv, plane);
1975         intel_wait_for_vblank(dev_priv->dev, pipe);
1976 }
1977
1978 static bool need_vtd_wa(struct drm_device *dev)
1979 {
1980 #ifdef CONFIG_INTEL_IOMMU
1981         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1982                 return true;
1983 #endif
1984         return false;
1985 }
1986
1987 int
1988 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1989                            struct drm_i915_gem_object *obj,
1990                            struct intel_ring_buffer *pipelined)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         u32 alignment;
1994         int ret;
1995
1996         switch (obj->tiling_mode) {
1997         case I915_TILING_NONE:
1998                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1999                         alignment = 128 * 1024;
2000                 else if (INTEL_INFO(dev)->gen >= 4)
2001                         alignment = 4 * 1024;
2002                 else
2003                         alignment = 64 * 1024;
2004                 break;
2005         case I915_TILING_X:
2006                 /* pin() will align the object as required by fence */
2007                 alignment = 0;
2008                 break;
2009         case I915_TILING_Y:
2010                 /* Despite that we check this in framebuffer_init userspace can
2011                  * screw us over and change the tiling after the fact. Only
2012                  * pinned buffers can't change their tiling. */
2013                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2014                 return -EINVAL;
2015         default:
2016                 BUG();
2017         }
2018
2019         /* Note that the w/a also requires 64 PTE of padding following the
2020          * bo. We currently fill all unused PTE with the shadow page and so
2021          * we should always have valid PTE following the scanout preventing
2022          * the VT-d warning.
2023          */
2024         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2025                 alignment = 256 * 1024;
2026
2027         dev_priv->mm.interruptible = false;
2028         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2029         if (ret)
2030                 goto err_interruptible;
2031
2032         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2033          * fence, whereas 965+ only requires a fence if using
2034          * framebuffer compression.  For simplicity, we always install
2035          * a fence as the cost is not that onerous.
2036          */
2037         ret = i915_gem_object_get_fence(obj);
2038         if (ret)
2039                 goto err_unpin;
2040
2041         i915_gem_object_pin_fence(obj);
2042
2043         dev_priv->mm.interruptible = true;
2044         return 0;
2045
2046 err_unpin:
2047         i915_gem_object_unpin(obj);
2048 err_interruptible:
2049         dev_priv->mm.interruptible = true;
2050         return ret;
2051 }
2052
2053 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2054 {
2055         i915_gem_object_unpin_fence(obj);
2056         i915_gem_object_unpin(obj);
2057 }
2058
2059 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2060  * is assumed to be a power-of-two. */
2061 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2062                                              unsigned int tiling_mode,
2063                                              unsigned int cpp,
2064                                              unsigned int pitch)
2065 {
2066         if (tiling_mode != I915_TILING_NONE) {
2067                 unsigned int tile_rows, tiles;
2068
2069                 tile_rows = *y / 8;
2070                 *y %= 8;
2071
2072                 tiles = *x / (512/cpp);
2073                 *x %= 512/cpp;
2074
2075                 return tile_rows * pitch * 8 + tiles * 4096;
2076         } else {
2077                 unsigned int offset;
2078
2079                 offset = *y * pitch + *x * cpp;
2080                 *y = 0;
2081                 *x = (offset & 4095) / cpp;
2082                 return offset & -4096;
2083         }
2084 }
2085
2086 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2087                              int x, int y)
2088 {
2089         struct drm_device *dev = crtc->dev;
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2092         struct intel_framebuffer *intel_fb;
2093         struct drm_i915_gem_object *obj;
2094         int plane = intel_crtc->plane;
2095         unsigned long linear_offset;
2096         u32 dspcntr;
2097         u32 reg;
2098
2099         switch (plane) {
2100         case 0:
2101         case 1:
2102                 break;
2103         default:
2104                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2105                 return -EINVAL;
2106         }
2107
2108         intel_fb = to_intel_framebuffer(fb);
2109         obj = intel_fb->obj;
2110
2111         reg = DSPCNTR(plane);
2112         dspcntr = I915_READ(reg);
2113         /* Mask out pixel format bits in case we change it */
2114         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2115         switch (fb->pixel_format) {
2116         case DRM_FORMAT_C8:
2117                 dspcntr |= DISPPLANE_8BPP;
2118                 break;
2119         case DRM_FORMAT_XRGB1555:
2120         case DRM_FORMAT_ARGB1555:
2121                 dspcntr |= DISPPLANE_BGRX555;
2122                 break;
2123         case DRM_FORMAT_RGB565:
2124                 dspcntr |= DISPPLANE_BGRX565;
2125                 break;
2126         case DRM_FORMAT_XRGB8888:
2127         case DRM_FORMAT_ARGB8888:
2128                 dspcntr |= DISPPLANE_BGRX888;
2129                 break;
2130         case DRM_FORMAT_XBGR8888:
2131         case DRM_FORMAT_ABGR8888:
2132                 dspcntr |= DISPPLANE_RGBX888;
2133                 break;
2134         case DRM_FORMAT_XRGB2101010:
2135         case DRM_FORMAT_ARGB2101010:
2136                 dspcntr |= DISPPLANE_BGRX101010;
2137                 break;
2138         case DRM_FORMAT_XBGR2101010:
2139         case DRM_FORMAT_ABGR2101010:
2140                 dspcntr |= DISPPLANE_RGBX101010;
2141                 break;
2142         default:
2143                 BUG();
2144         }
2145
2146         if (INTEL_INFO(dev)->gen >= 4) {
2147                 if (obj->tiling_mode != I915_TILING_NONE)
2148                         dspcntr |= DISPPLANE_TILED;
2149                 else
2150                         dspcntr &= ~DISPPLANE_TILED;
2151         }
2152
2153         I915_WRITE(reg, dspcntr);
2154
2155         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2156
2157         if (INTEL_INFO(dev)->gen >= 4) {
2158                 intel_crtc->dspaddr_offset =
2159                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2160                                                        fb->bits_per_pixel / 8,
2161                                                        fb->pitches[0]);
2162                 linear_offset -= intel_crtc->dspaddr_offset;
2163         } else {
2164                 intel_crtc->dspaddr_offset = linear_offset;
2165         }
2166
2167         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2168                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2169         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2170         if (INTEL_INFO(dev)->gen >= 4) {
2171                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2172                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2173                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2174                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2175         } else
2176                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2177         POSTING_READ(reg);
2178
2179         return 0;
2180 }
2181
2182 static int ironlake_update_plane(struct drm_crtc *crtc,
2183                                  struct drm_framebuffer *fb, int x, int y)
2184 {
2185         struct drm_device *dev = crtc->dev;
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188         struct intel_framebuffer *intel_fb;
2189         struct drm_i915_gem_object *obj;
2190         int plane = intel_crtc->plane;
2191         unsigned long linear_offset;
2192         u32 dspcntr;
2193         u32 reg;
2194
2195         switch (plane) {
2196         case 0:
2197         case 1:
2198         case 2:
2199                 break;
2200         default:
2201                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2202                 return -EINVAL;
2203         }
2204
2205         intel_fb = to_intel_framebuffer(fb);
2206         obj = intel_fb->obj;
2207
2208         reg = DSPCNTR(plane);
2209         dspcntr = I915_READ(reg);
2210         /* Mask out pixel format bits in case we change it */
2211         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2212         switch (fb->pixel_format) {
2213         case DRM_FORMAT_C8:
2214                 dspcntr |= DISPPLANE_8BPP;
2215                 break;
2216         case DRM_FORMAT_RGB565:
2217                 dspcntr |= DISPPLANE_BGRX565;
2218                 break;
2219         case DRM_FORMAT_XRGB8888:
2220         case DRM_FORMAT_ARGB8888:
2221                 dspcntr |= DISPPLANE_BGRX888;
2222                 break;
2223         case DRM_FORMAT_XBGR8888:
2224         case DRM_FORMAT_ABGR8888:
2225                 dspcntr |= DISPPLANE_RGBX888;
2226                 break;
2227         case DRM_FORMAT_XRGB2101010:
2228         case DRM_FORMAT_ARGB2101010:
2229                 dspcntr |= DISPPLANE_BGRX101010;
2230                 break;
2231         case DRM_FORMAT_XBGR2101010:
2232         case DRM_FORMAT_ABGR2101010:
2233                 dspcntr |= DISPPLANE_RGBX101010;
2234                 break;
2235         default:
2236                 BUG();
2237         }
2238
2239         if (obj->tiling_mode != I915_TILING_NONE)
2240                 dspcntr |= DISPPLANE_TILED;
2241         else
2242                 dspcntr &= ~DISPPLANE_TILED;
2243
2244         /* must disable */
2245         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2246
2247         I915_WRITE(reg, dspcntr);
2248
2249         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2250         intel_crtc->dspaddr_offset =
2251                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2252                                                fb->bits_per_pixel / 8,
2253                                                fb->pitches[0]);
2254         linear_offset -= intel_crtc->dspaddr_offset;
2255
2256         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2257                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2258         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2259         I915_MODIFY_DISPBASE(DSPSURF(plane),
2260                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2261         if (IS_HASWELL(dev)) {
2262                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2263         } else {
2264                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2265                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2266         }
2267         POSTING_READ(reg);
2268
2269         return 0;
2270 }
2271
2272 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2273 static int
2274 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2275                            int x, int y, enum mode_set_atomic state)
2276 {
2277         struct drm_device *dev = crtc->dev;
2278         struct drm_i915_private *dev_priv = dev->dev_private;
2279
2280         if (dev_priv->display.disable_fbc)
2281                 dev_priv->display.disable_fbc(dev);
2282         intel_increase_pllclock(crtc);
2283
2284         return dev_priv->display.update_plane(crtc, fb, x, y);
2285 }
2286
2287 void intel_display_handle_reset(struct drm_device *dev)
2288 {
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct drm_crtc *crtc;
2291
2292         /*
2293          * Flips in the rings have been nuked by the reset,
2294          * so complete all pending flips so that user space
2295          * will get its events and not get stuck.
2296          *
2297          * Also update the base address of all primary
2298          * planes to the the last fb to make sure we're
2299          * showing the correct fb after a reset.
2300          *
2301          * Need to make two loops over the crtcs so that we
2302          * don't try to grab a crtc mutex before the
2303          * pending_flip_queue really got woken up.
2304          */
2305
2306         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2307                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2308                 enum plane plane = intel_crtc->plane;
2309
2310                 intel_prepare_page_flip(dev, plane);
2311                 intel_finish_page_flip_plane(dev, plane);
2312         }
2313
2314         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2315                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2316
2317                 mutex_lock(&crtc->mutex);
2318                 if (intel_crtc->active)
2319                         dev_priv->display.update_plane(crtc, crtc->fb,
2320                                                        crtc->x, crtc->y);
2321                 mutex_unlock(&crtc->mutex);
2322         }
2323 }
2324
2325 static int
2326 intel_finish_fb(struct drm_framebuffer *old_fb)
2327 {
2328         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2329         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2330         bool was_interruptible = dev_priv->mm.interruptible;
2331         int ret;
2332
2333         /* Big Hammer, we also need to ensure that any pending
2334          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2335          * current scanout is retired before unpinning the old
2336          * framebuffer.
2337          *
2338          * This should only fail upon a hung GPU, in which case we
2339          * can safely continue.
2340          */
2341         dev_priv->mm.interruptible = false;
2342         ret = i915_gem_object_finish_gpu(obj);
2343         dev_priv->mm.interruptible = was_interruptible;
2344
2345         return ret;
2346 }
2347
2348 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2349 {
2350         struct drm_device *dev = crtc->dev;
2351         struct drm_i915_master_private *master_priv;
2352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2353
2354         if (!dev->primary->master)
2355                 return;
2356
2357         master_priv = dev->primary->master->driver_priv;
2358         if (!master_priv->sarea_priv)
2359                 return;
2360
2361         switch (intel_crtc->pipe) {
2362         case 0:
2363                 master_priv->sarea_priv->pipeA_x = x;
2364                 master_priv->sarea_priv->pipeA_y = y;
2365                 break;
2366         case 1:
2367                 master_priv->sarea_priv->pipeB_x = x;
2368                 master_priv->sarea_priv->pipeB_y = y;
2369                 break;
2370         default:
2371                 break;
2372         }
2373 }
2374
2375 static int
2376 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2377                     struct drm_framebuffer *fb)
2378 {
2379         struct drm_device *dev = crtc->dev;
2380         struct drm_i915_private *dev_priv = dev->dev_private;
2381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2382         struct drm_framebuffer *old_fb;
2383         int ret;
2384
2385         /* no fb bound */
2386         if (!fb) {
2387                 DRM_ERROR("No FB bound\n");
2388                 return 0;
2389         }
2390
2391         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2392                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2393                           plane_name(intel_crtc->plane),
2394                           INTEL_INFO(dev)->num_pipes);
2395                 return -EINVAL;
2396         }
2397
2398         mutex_lock(&dev->struct_mutex);
2399         ret = intel_pin_and_fence_fb_obj(dev,
2400                                          to_intel_framebuffer(fb)->obj,
2401                                          NULL);
2402         if (ret != 0) {
2403                 mutex_unlock(&dev->struct_mutex);
2404                 DRM_ERROR("pin & fence failed\n");
2405                 return ret;
2406         }
2407
2408         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2409         if (ret) {
2410                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2411                 mutex_unlock(&dev->struct_mutex);
2412                 DRM_ERROR("failed to update base address\n");
2413                 return ret;
2414         }
2415
2416         old_fb = crtc->fb;
2417         crtc->fb = fb;
2418         crtc->x = x;
2419         crtc->y = y;
2420
2421         if (old_fb) {
2422                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2423                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2424         }
2425
2426         intel_update_fbc(dev);
2427         mutex_unlock(&dev->struct_mutex);
2428
2429         intel_crtc_update_sarea_pos(crtc, x, y);
2430
2431         return 0;
2432 }
2433
2434 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2435 {
2436         struct drm_device *dev = crtc->dev;
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2439         int pipe = intel_crtc->pipe;
2440         u32 reg, temp;
2441
2442         /* enable normal train */
2443         reg = FDI_TX_CTL(pipe);
2444         temp = I915_READ(reg);
2445         if (IS_IVYBRIDGE(dev)) {
2446                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2447                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2448         } else {
2449                 temp &= ~FDI_LINK_TRAIN_NONE;
2450                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2451         }
2452         I915_WRITE(reg, temp);
2453
2454         reg = FDI_RX_CTL(pipe);
2455         temp = I915_READ(reg);
2456         if (HAS_PCH_CPT(dev)) {
2457                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2458                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2459         } else {
2460                 temp &= ~FDI_LINK_TRAIN_NONE;
2461                 temp |= FDI_LINK_TRAIN_NONE;
2462         }
2463         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2464
2465         /* wait one idle pattern time */
2466         POSTING_READ(reg);
2467         udelay(1000);
2468
2469         /* IVB wants error correction enabled */
2470         if (IS_IVYBRIDGE(dev))
2471                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2472                            FDI_FE_ERRC_ENABLE);
2473 }
2474
2475 static void ivb_modeset_global_resources(struct drm_device *dev)
2476 {
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478         struct intel_crtc *pipe_B_crtc =
2479                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2480         struct intel_crtc *pipe_C_crtc =
2481                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2482         uint32_t temp;
2483
2484         /* When everything is off disable fdi C so that we could enable fdi B
2485          * with all lanes. XXX: This misses the case where a pipe is not using
2486          * any pch resources and so doesn't need any fdi lanes. */
2487         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2488                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2489                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2490
2491                 temp = I915_READ(SOUTH_CHICKEN1);
2492                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2493                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2494                 I915_WRITE(SOUTH_CHICKEN1, temp);
2495         }
2496 }
2497
2498 /* The FDI link training functions for ILK/Ibexpeak. */
2499 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2500 {
2501         struct drm_device *dev = crtc->dev;
2502         struct drm_i915_private *dev_priv = dev->dev_private;
2503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2504         int pipe = intel_crtc->pipe;
2505         int plane = intel_crtc->plane;
2506         u32 reg, temp, tries;
2507
2508         /* FDI needs bits from pipe & plane first */
2509         assert_pipe_enabled(dev_priv, pipe);
2510         assert_plane_enabled(dev_priv, plane);
2511
2512         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2513            for train result */
2514         reg = FDI_RX_IMR(pipe);
2515         temp = I915_READ(reg);
2516         temp &= ~FDI_RX_SYMBOL_LOCK;
2517         temp &= ~FDI_RX_BIT_LOCK;
2518         I915_WRITE(reg, temp);
2519         I915_READ(reg);
2520         udelay(150);
2521
2522         /* enable CPU FDI TX and PCH FDI RX */
2523         reg = FDI_TX_CTL(pipe);
2524         temp = I915_READ(reg);
2525         temp &= ~(7 << 19);
2526         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2527         temp &= ~FDI_LINK_TRAIN_NONE;
2528         temp |= FDI_LINK_TRAIN_PATTERN_1;
2529         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2530
2531         reg = FDI_RX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~FDI_LINK_TRAIN_NONE;
2534         temp |= FDI_LINK_TRAIN_PATTERN_1;
2535         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2536
2537         POSTING_READ(reg);
2538         udelay(150);
2539
2540         /* Ironlake workaround, enable clock pointer after FDI enable*/
2541         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2542         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2543                    FDI_RX_PHASE_SYNC_POINTER_EN);
2544
2545         reg = FDI_RX_IIR(pipe);
2546         for (tries = 0; tries < 5; tries++) {
2547                 temp = I915_READ(reg);
2548                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2549
2550                 if ((temp & FDI_RX_BIT_LOCK)) {
2551                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2552                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2553                         break;
2554                 }
2555         }
2556         if (tries == 5)
2557                 DRM_ERROR("FDI train 1 fail!\n");
2558
2559         /* Train 2 */
2560         reg = FDI_TX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         temp &= ~FDI_LINK_TRAIN_NONE;
2563         temp |= FDI_LINK_TRAIN_PATTERN_2;
2564         I915_WRITE(reg, temp);
2565
2566         reg = FDI_RX_CTL(pipe);
2567         temp = I915_READ(reg);
2568         temp &= ~FDI_LINK_TRAIN_NONE;
2569         temp |= FDI_LINK_TRAIN_PATTERN_2;
2570         I915_WRITE(reg, temp);
2571
2572         POSTING_READ(reg);
2573         udelay(150);
2574
2575         reg = FDI_RX_IIR(pipe);
2576         for (tries = 0; tries < 5; tries++) {
2577                 temp = I915_READ(reg);
2578                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579
2580                 if (temp & FDI_RX_SYMBOL_LOCK) {
2581                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2582                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2583                         break;
2584                 }
2585         }
2586         if (tries == 5)
2587                 DRM_ERROR("FDI train 2 fail!\n");
2588
2589         DRM_DEBUG_KMS("FDI train done\n");
2590
2591 }
2592
2593 static const int snb_b_fdi_train_param[] = {
2594         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2595         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2596         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2597         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2598 };
2599
2600 /* The FDI link training functions for SNB/Cougarpoint. */
2601 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2602 {
2603         struct drm_device *dev = crtc->dev;
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2606         int pipe = intel_crtc->pipe;
2607         u32 reg, temp, i, retry;
2608
2609         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2610            for train result */
2611         reg = FDI_RX_IMR(pipe);
2612         temp = I915_READ(reg);
2613         temp &= ~FDI_RX_SYMBOL_LOCK;
2614         temp &= ~FDI_RX_BIT_LOCK;
2615         I915_WRITE(reg, temp);
2616
2617         POSTING_READ(reg);
2618         udelay(150);
2619
2620         /* enable CPU FDI TX and PCH FDI RX */
2621         reg = FDI_TX_CTL(pipe);
2622         temp = I915_READ(reg);
2623         temp &= ~(7 << 19);
2624         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2625         temp &= ~FDI_LINK_TRAIN_NONE;
2626         temp |= FDI_LINK_TRAIN_PATTERN_1;
2627         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2628         /* SNB-B */
2629         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2631
2632         I915_WRITE(FDI_RX_MISC(pipe),
2633                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2634
2635         reg = FDI_RX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         if (HAS_PCH_CPT(dev)) {
2638                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2639                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2640         } else {
2641                 temp &= ~FDI_LINK_TRAIN_NONE;
2642                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2643         }
2644         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2645
2646         POSTING_READ(reg);
2647         udelay(150);
2648
2649         for (i = 0; i < 4; i++) {
2650                 reg = FDI_TX_CTL(pipe);
2651                 temp = I915_READ(reg);
2652                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2653                 temp |= snb_b_fdi_train_param[i];
2654                 I915_WRITE(reg, temp);
2655
2656                 POSTING_READ(reg);
2657                 udelay(500);
2658
2659                 for (retry = 0; retry < 5; retry++) {
2660                         reg = FDI_RX_IIR(pipe);
2661                         temp = I915_READ(reg);
2662                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2663                         if (temp & FDI_RX_BIT_LOCK) {
2664                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2665                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2666                                 break;
2667                         }
2668                         udelay(50);
2669                 }
2670                 if (retry < 5)
2671                         break;
2672         }
2673         if (i == 4)
2674                 DRM_ERROR("FDI train 1 fail!\n");
2675
2676         /* Train 2 */
2677         reg = FDI_TX_CTL(pipe);
2678         temp = I915_READ(reg);
2679         temp &= ~FDI_LINK_TRAIN_NONE;
2680         temp |= FDI_LINK_TRAIN_PATTERN_2;
2681         if (IS_GEN6(dev)) {
2682                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683                 /* SNB-B */
2684                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2685         }
2686         I915_WRITE(reg, temp);
2687
2688         reg = FDI_RX_CTL(pipe);
2689         temp = I915_READ(reg);
2690         if (HAS_PCH_CPT(dev)) {
2691                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2692                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2693         } else {
2694                 temp &= ~FDI_LINK_TRAIN_NONE;
2695                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2696         }
2697         I915_WRITE(reg, temp);
2698
2699         POSTING_READ(reg);
2700         udelay(150);
2701
2702         for (i = 0; i < 4; i++) {
2703                 reg = FDI_TX_CTL(pipe);
2704                 temp = I915_READ(reg);
2705                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2706                 temp |= snb_b_fdi_train_param[i];
2707                 I915_WRITE(reg, temp);
2708
2709                 POSTING_READ(reg);
2710                 udelay(500);
2711
2712                 for (retry = 0; retry < 5; retry++) {
2713                         reg = FDI_RX_IIR(pipe);
2714                         temp = I915_READ(reg);
2715                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2716                         if (temp & FDI_RX_SYMBOL_LOCK) {
2717                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2718                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2719                                 break;
2720                         }
2721                         udelay(50);
2722                 }
2723                 if (retry < 5)
2724                         break;
2725         }
2726         if (i == 4)
2727                 DRM_ERROR("FDI train 2 fail!\n");
2728
2729         DRM_DEBUG_KMS("FDI train done.\n");
2730 }
2731
2732 /* Manual link training for Ivy Bridge A0 parts */
2733 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2734 {
2735         struct drm_device *dev = crtc->dev;
2736         struct drm_i915_private *dev_priv = dev->dev_private;
2737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2738         int pipe = intel_crtc->pipe;
2739         u32 reg, temp, i;
2740
2741         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2742            for train result */
2743         reg = FDI_RX_IMR(pipe);
2744         temp = I915_READ(reg);
2745         temp &= ~FDI_RX_SYMBOL_LOCK;
2746         temp &= ~FDI_RX_BIT_LOCK;
2747         I915_WRITE(reg, temp);
2748
2749         POSTING_READ(reg);
2750         udelay(150);
2751
2752         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2753                       I915_READ(FDI_RX_IIR(pipe)));
2754
2755         /* enable CPU FDI TX and PCH FDI RX */
2756         reg = FDI_TX_CTL(pipe);
2757         temp = I915_READ(reg);
2758         temp &= ~(7 << 19);
2759         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2760         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2761         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2762         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2763         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2764         temp |= FDI_COMPOSITE_SYNC;
2765         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2766
2767         I915_WRITE(FDI_RX_MISC(pipe),
2768                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2769
2770         reg = FDI_RX_CTL(pipe);
2771         temp = I915_READ(reg);
2772         temp &= ~FDI_LINK_TRAIN_AUTO;
2773         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2775         temp |= FDI_COMPOSITE_SYNC;
2776         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2777
2778         POSTING_READ(reg);
2779         udelay(150);
2780
2781         for (i = 0; i < 4; i++) {
2782                 reg = FDI_TX_CTL(pipe);
2783                 temp = I915_READ(reg);
2784                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2785                 temp |= snb_b_fdi_train_param[i];
2786                 I915_WRITE(reg, temp);
2787
2788                 POSTING_READ(reg);
2789                 udelay(500);
2790
2791                 reg = FDI_RX_IIR(pipe);
2792                 temp = I915_READ(reg);
2793                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795                 if (temp & FDI_RX_BIT_LOCK ||
2796                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2797                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2798                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2799                         break;
2800                 }
2801         }
2802         if (i == 4)
2803                 DRM_ERROR("FDI train 1 fail!\n");
2804
2805         /* Train 2 */
2806         reg = FDI_TX_CTL(pipe);
2807         temp = I915_READ(reg);
2808         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2809         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2810         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2811         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2812         I915_WRITE(reg, temp);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2818         I915_WRITE(reg, temp);
2819
2820         POSTING_READ(reg);
2821         udelay(150);
2822
2823         for (i = 0; i < 4; i++) {
2824                 reg = FDI_TX_CTL(pipe);
2825                 temp = I915_READ(reg);
2826                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2827                 temp |= snb_b_fdi_train_param[i];
2828                 I915_WRITE(reg, temp);
2829
2830                 POSTING_READ(reg);
2831                 udelay(500);
2832
2833                 reg = FDI_RX_IIR(pipe);
2834                 temp = I915_READ(reg);
2835                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2836
2837                 if (temp & FDI_RX_SYMBOL_LOCK) {
2838                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2839                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2840                         break;
2841                 }
2842         }
2843         if (i == 4)
2844                 DRM_ERROR("FDI train 2 fail!\n");
2845
2846         DRM_DEBUG_KMS("FDI train done.\n");
2847 }
2848
2849 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2850 {
2851         struct drm_device *dev = intel_crtc->base.dev;
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         int pipe = intel_crtc->pipe;
2854         u32 reg, temp;
2855
2856
2857         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2858         reg = FDI_RX_CTL(pipe);
2859         temp = I915_READ(reg);
2860         temp &= ~((0x7 << 19) | (0x7 << 16));
2861         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2862         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2863         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2864
2865         POSTING_READ(reg);
2866         udelay(200);
2867
2868         /* Switch from Rawclk to PCDclk */
2869         temp = I915_READ(reg);
2870         I915_WRITE(reg, temp | FDI_PCDCLK);
2871
2872         POSTING_READ(reg);
2873         udelay(200);
2874
2875         /* Enable CPU FDI TX PLL, always on for Ironlake */
2876         reg = FDI_TX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2879                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2880
2881                 POSTING_READ(reg);
2882                 udelay(100);
2883         }
2884 }
2885
2886 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2887 {
2888         struct drm_device *dev = intel_crtc->base.dev;
2889         struct drm_i915_private *dev_priv = dev->dev_private;
2890         int pipe = intel_crtc->pipe;
2891         u32 reg, temp;
2892
2893         /* Switch from PCDclk to Rawclk */
2894         reg = FDI_RX_CTL(pipe);
2895         temp = I915_READ(reg);
2896         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2897
2898         /* Disable CPU FDI TX PLL */
2899         reg = FDI_TX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2902
2903         POSTING_READ(reg);
2904         udelay(100);
2905
2906         reg = FDI_RX_CTL(pipe);
2907         temp = I915_READ(reg);
2908         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2909
2910         /* Wait for the clocks to turn off. */
2911         POSTING_READ(reg);
2912         udelay(100);
2913 }
2914
2915 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2916 {
2917         struct drm_device *dev = crtc->dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920         int pipe = intel_crtc->pipe;
2921         u32 reg, temp;
2922
2923         /* disable CPU FDI tx and PCH FDI rx */
2924         reg = FDI_TX_CTL(pipe);
2925         temp = I915_READ(reg);
2926         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2927         POSTING_READ(reg);
2928
2929         reg = FDI_RX_CTL(pipe);
2930         temp = I915_READ(reg);
2931         temp &= ~(0x7 << 16);
2932         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2933         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2934
2935         POSTING_READ(reg);
2936         udelay(100);
2937
2938         /* Ironlake workaround, disable clock pointer after downing FDI */
2939         if (HAS_PCH_IBX(dev)) {
2940                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2941         }
2942
2943         /* still set train pattern 1 */
2944         reg = FDI_TX_CTL(pipe);
2945         temp = I915_READ(reg);
2946         temp &= ~FDI_LINK_TRAIN_NONE;
2947         temp |= FDI_LINK_TRAIN_PATTERN_1;
2948         I915_WRITE(reg, temp);
2949
2950         reg = FDI_RX_CTL(pipe);
2951         temp = I915_READ(reg);
2952         if (HAS_PCH_CPT(dev)) {
2953                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2954                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2955         } else {
2956                 temp &= ~FDI_LINK_TRAIN_NONE;
2957                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2958         }
2959         /* BPC in FDI rx is consistent with that in PIPECONF */
2960         temp &= ~(0x07 << 16);
2961         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2962         I915_WRITE(reg, temp);
2963
2964         POSTING_READ(reg);
2965         udelay(100);
2966 }
2967
2968 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2969 {
2970         struct drm_device *dev = crtc->dev;
2971         struct drm_i915_private *dev_priv = dev->dev_private;
2972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2973         unsigned long flags;
2974         bool pending;
2975
2976         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2977             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2978                 return false;
2979
2980         spin_lock_irqsave(&dev->event_lock, flags);
2981         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2982         spin_unlock_irqrestore(&dev->event_lock, flags);
2983
2984         return pending;
2985 }
2986
2987 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2988 {
2989         struct drm_device *dev = crtc->dev;
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991
2992         if (crtc->fb == NULL)
2993                 return;
2994
2995         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2996
2997         wait_event(dev_priv->pending_flip_queue,
2998                    !intel_crtc_has_pending_flip(crtc));
2999
3000         mutex_lock(&dev->struct_mutex);
3001         intel_finish_fb(crtc->fb);
3002         mutex_unlock(&dev->struct_mutex);
3003 }
3004
3005 /* Program iCLKIP clock to the desired frequency */
3006 static void lpt_program_iclkip(struct drm_crtc *crtc)
3007 {
3008         struct drm_device *dev = crtc->dev;
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3011         u32 temp;
3012
3013         mutex_lock(&dev_priv->dpio_lock);
3014
3015         /* It is necessary to ungate the pixclk gate prior to programming
3016          * the divisors, and gate it back when it is done.
3017          */
3018         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3019
3020         /* Disable SSCCTL */
3021         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3022                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3023                                 SBI_SSCCTL_DISABLE,
3024                         SBI_ICLK);
3025
3026         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3027         if (crtc->mode.clock == 20000) {
3028                 auxdiv = 1;
3029                 divsel = 0x41;
3030                 phaseinc = 0x20;
3031         } else {
3032                 /* The iCLK virtual clock root frequency is in MHz,
3033                  * but the crtc->mode.clock in in KHz. To get the divisors,
3034                  * it is necessary to divide one by another, so we
3035                  * convert the virtual clock precision to KHz here for higher
3036                  * precision.
3037                  */
3038                 u32 iclk_virtual_root_freq = 172800 * 1000;
3039                 u32 iclk_pi_range = 64;
3040                 u32 desired_divisor, msb_divisor_value, pi_value;
3041
3042                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3043                 msb_divisor_value = desired_divisor / iclk_pi_range;
3044                 pi_value = desired_divisor % iclk_pi_range;
3045
3046                 auxdiv = 0;
3047                 divsel = msb_divisor_value - 2;
3048                 phaseinc = pi_value;
3049         }
3050
3051         /* This should not happen with any sane values */
3052         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3053                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3054         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3055                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3056
3057         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3058                         crtc->mode.clock,
3059                         auxdiv,
3060                         divsel,
3061                         phasedir,
3062                         phaseinc);
3063
3064         /* Program SSCDIVINTPHASE6 */
3065         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3066         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3067         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3068         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3069         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3070         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3071         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3072         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3073
3074         /* Program SSCAUXDIV */
3075         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3076         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3077         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3078         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3079
3080         /* Enable modulator and associated divider */
3081         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3082         temp &= ~SBI_SSCCTL_DISABLE;
3083         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3084
3085         /* Wait for initialization time */
3086         udelay(24);
3087
3088         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3089
3090         mutex_unlock(&dev_priv->dpio_lock);
3091 }
3092
3093 /*
3094  * Enable PCH resources required for PCH ports:
3095  *   - PCH PLLs
3096  *   - FDI training & RX/TX
3097  *   - update transcoder timings
3098  *   - DP transcoding bits
3099  *   - transcoder
3100  */
3101 static void ironlake_pch_enable(struct drm_crtc *crtc)
3102 {
3103         struct drm_device *dev = crtc->dev;
3104         struct drm_i915_private *dev_priv = dev->dev_private;
3105         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3106         int pipe = intel_crtc->pipe;
3107         u32 reg, temp;
3108
3109         assert_transcoder_disabled(dev_priv, pipe);
3110
3111         /* Write the TU size bits before fdi link training, so that error
3112          * detection works. */
3113         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3114                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3115
3116         /* For PCH output, training FDI link */
3117         dev_priv->display.fdi_link_train(crtc);
3118
3119         /* XXX: pch pll's can be enabled any time before we enable the PCH
3120          * transcoder, and we actually should do this to not upset any PCH
3121          * transcoder that already use the clock when we share it.
3122          *
3123          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3124          * unconditionally resets the pll - we need that to have the right LVDS
3125          * enable sequence. */
3126         ironlake_enable_pch_pll(intel_crtc);
3127
3128         if (HAS_PCH_CPT(dev)) {
3129                 u32 sel;
3130
3131                 temp = I915_READ(PCH_DPLL_SEL);
3132                 switch (pipe) {
3133                 default:
3134                 case 0:
3135                         temp |= TRANSA_DPLL_ENABLE;
3136                         sel = TRANSA_DPLLB_SEL;
3137                         break;
3138                 case 1:
3139                         temp |= TRANSB_DPLL_ENABLE;
3140                         sel = TRANSB_DPLLB_SEL;
3141                         break;
3142                 case 2:
3143                         temp |= TRANSC_DPLL_ENABLE;
3144                         sel = TRANSC_DPLLB_SEL;
3145                         break;
3146                 }
3147                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3148                         temp |= sel;
3149                 else
3150                         temp &= ~sel;
3151                 I915_WRITE(PCH_DPLL_SEL, temp);
3152         }
3153
3154         /* set transcoder timing, panel must allow it */
3155         assert_panel_unlocked(dev_priv, pipe);
3156         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3157         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3158         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3159
3160         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3161         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3162         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3163         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3164
3165         intel_fdi_normal_train(crtc);
3166
3167         /* For PCH DP, enable TRANS_DP_CTL */
3168         if (HAS_PCH_CPT(dev) &&
3169             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3170              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3171                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3172                 reg = TRANS_DP_CTL(pipe);
3173                 temp = I915_READ(reg);
3174                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3175                           TRANS_DP_SYNC_MASK |
3176                           TRANS_DP_BPC_MASK);
3177                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3178                          TRANS_DP_ENH_FRAMING);
3179                 temp |= bpc << 9; /* same format but at 11:9 */
3180
3181                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3182                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3183                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3184                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3185
3186                 switch (intel_trans_dp_port_sel(crtc)) {
3187                 case PCH_DP_B:
3188                         temp |= TRANS_DP_PORT_SEL_B;
3189                         break;
3190                 case PCH_DP_C:
3191                         temp |= TRANS_DP_PORT_SEL_C;
3192                         break;
3193                 case PCH_DP_D:
3194                         temp |= TRANS_DP_PORT_SEL_D;
3195                         break;
3196                 default:
3197                         BUG();
3198                 }
3199
3200                 I915_WRITE(reg, temp);
3201         }
3202
3203         ironlake_enable_pch_transcoder(dev_priv, pipe);
3204 }
3205
3206 static void lpt_pch_enable(struct drm_crtc *crtc)
3207 {
3208         struct drm_device *dev = crtc->dev;
3209         struct drm_i915_private *dev_priv = dev->dev_private;
3210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3211         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3212
3213         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3214
3215         lpt_program_iclkip(crtc);
3216
3217         /* Set transcoder timing. */
3218         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3219         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3220         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3221
3222         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3223         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3224         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3225         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3226
3227         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3228 }
3229
3230 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3231 {
3232         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3233
3234         if (pll == NULL)
3235                 return;
3236
3237         if (pll->refcount == 0) {
3238                 WARN(1, "bad PCH PLL refcount\n");
3239                 return;
3240         }
3241
3242         --pll->refcount;
3243         intel_crtc->pch_pll = NULL;
3244 }
3245
3246 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3247 {
3248         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3249         struct intel_pch_pll *pll;
3250         int i;
3251
3252         pll = intel_crtc->pch_pll;
3253         if (pll) {
3254                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3255                               intel_crtc->base.base.id, pll->pll_reg);
3256                 goto prepare;
3257         }
3258
3259         if (HAS_PCH_IBX(dev_priv->dev)) {
3260                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3261                 i = intel_crtc->pipe;
3262                 pll = &dev_priv->pch_plls[i];
3263
3264                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3265                               intel_crtc->base.base.id, pll->pll_reg);
3266
3267                 goto found;
3268         }
3269
3270         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3271                 pll = &dev_priv->pch_plls[i];
3272
3273                 /* Only want to check enabled timings first */
3274                 if (pll->refcount == 0)
3275                         continue;
3276
3277                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3278                     fp == I915_READ(pll->fp0_reg)) {
3279                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3280                                       intel_crtc->base.base.id,
3281                                       pll->pll_reg, pll->refcount, pll->active);
3282
3283                         goto found;
3284                 }
3285         }
3286
3287         /* Ok no matching timings, maybe there's a free one? */
3288         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3289                 pll = &dev_priv->pch_plls[i];
3290                 if (pll->refcount == 0) {
3291                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3292                                       intel_crtc->base.base.id, pll->pll_reg);
3293                         goto found;
3294                 }
3295         }
3296
3297         return NULL;
3298
3299 found:
3300         intel_crtc->pch_pll = pll;
3301         pll->refcount++;
3302         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3303 prepare: /* separate function? */
3304         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3305
3306         /* Wait for the clocks to stabilize before rewriting the regs */
3307         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3308         POSTING_READ(pll->pll_reg);
3309         udelay(150);
3310
3311         I915_WRITE(pll->fp0_reg, fp);
3312         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3313         pll->on = false;
3314         return pll;
3315 }
3316
3317 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3318 {
3319         struct drm_i915_private *dev_priv = dev->dev_private;
3320         int dslreg = PIPEDSL(pipe);
3321         u32 temp;
3322
3323         temp = I915_READ(dslreg);
3324         udelay(500);
3325         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3326                 if (wait_for(I915_READ(dslreg) != temp, 5))
3327                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3328         }
3329 }
3330
3331 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3332 {
3333         struct drm_device *dev = crtc->dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336         struct intel_encoder *encoder;
3337         int pipe = intel_crtc->pipe;
3338         int plane = intel_crtc->plane;
3339         u32 temp;
3340
3341         WARN_ON(!crtc->enabled);
3342
3343         if (intel_crtc->active)
3344                 return;
3345
3346         intel_crtc->active = true;
3347         intel_update_watermarks(dev);
3348
3349         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3350                 temp = I915_READ(PCH_LVDS);
3351                 if ((temp & LVDS_PORT_EN) == 0)
3352                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3353         }
3354
3355
3356         if (intel_crtc->config.has_pch_encoder) {
3357                 /* Note: FDI PLL enabling _must_ be done before we enable the
3358                  * cpu pipes, hence this is separate from all the other fdi/pch
3359                  * enabling. */
3360                 ironlake_fdi_pll_enable(intel_crtc);
3361         } else {
3362                 assert_fdi_tx_disabled(dev_priv, pipe);
3363                 assert_fdi_rx_disabled(dev_priv, pipe);
3364         }
3365
3366         for_each_encoder_on_crtc(dev, crtc, encoder)
3367                 if (encoder->pre_enable)
3368                         encoder->pre_enable(encoder);
3369
3370         /* Enable panel fitting for LVDS */
3371         if (dev_priv->pch_pf_size &&
3372             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3373              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3374                 /* Force use of hard-coded filter coefficients
3375                  * as some pre-programmed values are broken,
3376                  * e.g. x201.
3377                  */
3378                 if (IS_IVYBRIDGE(dev))
3379                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3380                                                  PF_PIPE_SEL_IVB(pipe));
3381                 else
3382                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3383                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3384                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3385         }
3386
3387         /*
3388          * On ILK+ LUT must be loaded before the pipe is running but with
3389          * clocks enabled
3390          */
3391         intel_crtc_load_lut(crtc);
3392
3393         intel_enable_pipe(dev_priv, pipe,
3394                           intel_crtc->config.has_pch_encoder);
3395         intel_enable_plane(dev_priv, plane, pipe);
3396
3397         if (intel_crtc->config.has_pch_encoder)
3398                 ironlake_pch_enable(crtc);
3399
3400         mutex_lock(&dev->struct_mutex);
3401         intel_update_fbc(dev);
3402         mutex_unlock(&dev->struct_mutex);
3403
3404         intel_crtc_update_cursor(crtc, true);
3405
3406         for_each_encoder_on_crtc(dev, crtc, encoder)
3407                 encoder->enable(encoder);
3408
3409         if (HAS_PCH_CPT(dev))
3410                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3411
3412         /*
3413          * There seems to be a race in PCH platform hw (at least on some
3414          * outputs) where an enabled pipe still completes any pageflip right
3415          * away (as if the pipe is off) instead of waiting for vblank. As soon
3416          * as the first vblank happend, everything works as expected. Hence just
3417          * wait for one vblank before returning to avoid strange things
3418          * happening.
3419          */
3420         intel_wait_for_vblank(dev, intel_crtc->pipe);
3421 }
3422
3423 static void haswell_crtc_enable(struct drm_crtc *crtc)
3424 {
3425         struct drm_device *dev = crtc->dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3428         struct intel_encoder *encoder;
3429         int pipe = intel_crtc->pipe;
3430         int plane = intel_crtc->plane;
3431
3432         WARN_ON(!crtc->enabled);
3433
3434         if (intel_crtc->active)
3435                 return;
3436
3437         intel_crtc->active = true;
3438         intel_update_watermarks(dev);
3439
3440         if (intel_crtc->config.has_pch_encoder)
3441                 dev_priv->display.fdi_link_train(crtc);
3442
3443         for_each_encoder_on_crtc(dev, crtc, encoder)
3444                 if (encoder->pre_enable)
3445                         encoder->pre_enable(encoder);
3446
3447         intel_ddi_enable_pipe_clock(intel_crtc);
3448
3449         /* Enable panel fitting for eDP */
3450         if (dev_priv->pch_pf_size &&
3451             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3452                 /* Force use of hard-coded filter coefficients
3453                  * as some pre-programmed values are broken,
3454                  * e.g. x201.
3455                  */
3456                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3457                                          PF_PIPE_SEL_IVB(pipe));
3458                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3459                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3460         }
3461
3462         /*
3463          * On ILK+ LUT must be loaded before the pipe is running but with
3464          * clocks enabled
3465          */
3466         intel_crtc_load_lut(crtc);
3467
3468         intel_ddi_set_pipe_settings(crtc);
3469         intel_ddi_enable_transcoder_func(crtc);
3470
3471         intel_enable_pipe(dev_priv, pipe,
3472                           intel_crtc->config.has_pch_encoder);
3473         intel_enable_plane(dev_priv, plane, pipe);
3474
3475         if (intel_crtc->config.has_pch_encoder)
3476                 lpt_pch_enable(crtc);
3477
3478         mutex_lock(&dev->struct_mutex);
3479         intel_update_fbc(dev);
3480         mutex_unlock(&dev->struct_mutex);
3481
3482         intel_crtc_update_cursor(crtc, true);
3483
3484         for_each_encoder_on_crtc(dev, crtc, encoder)
3485                 encoder->enable(encoder);
3486
3487         /*
3488          * There seems to be a race in PCH platform hw (at least on some
3489          * outputs) where an enabled pipe still completes any pageflip right
3490          * away (as if the pipe is off) instead of waiting for vblank. As soon
3491          * as the first vblank happend, everything works as expected. Hence just
3492          * wait for one vblank before returning to avoid strange things
3493          * happening.
3494          */
3495         intel_wait_for_vblank(dev, intel_crtc->pipe);
3496 }
3497
3498 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3499 {
3500         struct drm_device *dev = crtc->dev;
3501         struct drm_i915_private *dev_priv = dev->dev_private;
3502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3503         struct intel_encoder *encoder;
3504         int pipe = intel_crtc->pipe;
3505         int plane = intel_crtc->plane;
3506         u32 reg, temp;
3507
3508
3509         if (!intel_crtc->active)
3510                 return;
3511
3512         for_each_encoder_on_crtc(dev, crtc, encoder)
3513                 encoder->disable(encoder);
3514
3515         intel_crtc_wait_for_pending_flips(crtc);
3516         drm_vblank_off(dev, pipe);
3517         intel_crtc_update_cursor(crtc, false);
3518
3519         intel_disable_plane(dev_priv, plane, pipe);
3520
3521         if (dev_priv->cfb_plane == plane)
3522                 intel_disable_fbc(dev);
3523
3524         intel_disable_pipe(dev_priv, pipe);
3525
3526         /* Disable PF */
3527         I915_WRITE(PF_CTL(pipe), 0);
3528         I915_WRITE(PF_WIN_SZ(pipe), 0);
3529
3530         for_each_encoder_on_crtc(dev, crtc, encoder)
3531                 if (encoder->post_disable)
3532                         encoder->post_disable(encoder);
3533
3534         ironlake_fdi_disable(crtc);
3535
3536         ironlake_disable_pch_transcoder(dev_priv, pipe);
3537
3538         if (HAS_PCH_CPT(dev)) {
3539                 /* disable TRANS_DP_CTL */
3540                 reg = TRANS_DP_CTL(pipe);
3541                 temp = I915_READ(reg);
3542                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3543                 temp |= TRANS_DP_PORT_SEL_NONE;
3544                 I915_WRITE(reg, temp);
3545
3546                 /* disable DPLL_SEL */
3547                 temp = I915_READ(PCH_DPLL_SEL);
3548                 switch (pipe) {
3549                 case 0:
3550                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3551                         break;
3552                 case 1:
3553                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3554                         break;
3555                 case 2:
3556                         /* C shares PLL A or B */
3557                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3558                         break;
3559                 default:
3560                         BUG(); /* wtf */
3561                 }
3562                 I915_WRITE(PCH_DPLL_SEL, temp);
3563         }
3564
3565         /* disable PCH DPLL */
3566         intel_disable_pch_pll(intel_crtc);
3567
3568         ironlake_fdi_pll_disable(intel_crtc);
3569
3570         intel_crtc->active = false;
3571         intel_update_watermarks(dev);
3572
3573         mutex_lock(&dev->struct_mutex);
3574         intel_update_fbc(dev);
3575         mutex_unlock(&dev->struct_mutex);
3576 }
3577
3578 static void haswell_crtc_disable(struct drm_crtc *crtc)
3579 {
3580         struct drm_device *dev = crtc->dev;
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3583         struct intel_encoder *encoder;
3584         int pipe = intel_crtc->pipe;
3585         int plane = intel_crtc->plane;
3586         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3587
3588         if (!intel_crtc->active)
3589                 return;
3590
3591         for_each_encoder_on_crtc(dev, crtc, encoder)
3592                 encoder->disable(encoder);
3593
3594         intel_crtc_wait_for_pending_flips(crtc);
3595         drm_vblank_off(dev, pipe);
3596         intel_crtc_update_cursor(crtc, false);
3597
3598         intel_disable_plane(dev_priv, plane, pipe);
3599
3600         if (dev_priv->cfb_plane == plane)
3601                 intel_disable_fbc(dev);
3602
3603         intel_disable_pipe(dev_priv, pipe);
3604
3605         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3606
3607         /* XXX: Once we have proper panel fitter state tracking implemented with
3608          * hardware state read/check support we should switch to only disable
3609          * the panel fitter when we know it's used. */
3610         if (intel_using_power_well(dev)) {
3611                 I915_WRITE(PF_CTL(pipe), 0);
3612                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3613         }
3614
3615         intel_ddi_disable_pipe_clock(intel_crtc);
3616
3617         for_each_encoder_on_crtc(dev, crtc, encoder)
3618                 if (encoder->post_disable)
3619                         encoder->post_disable(encoder);
3620
3621         if (intel_crtc->config.has_pch_encoder) {
3622                 lpt_disable_pch_transcoder(dev_priv);
3623                 intel_ddi_fdi_disable(crtc);
3624         }
3625
3626         intel_crtc->active = false;
3627         intel_update_watermarks(dev);
3628
3629         mutex_lock(&dev->struct_mutex);
3630         intel_update_fbc(dev);
3631         mutex_unlock(&dev->struct_mutex);
3632 }
3633
3634 static void ironlake_crtc_off(struct drm_crtc *crtc)
3635 {
3636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3637         intel_put_pch_pll(intel_crtc);
3638 }
3639
3640 static void haswell_crtc_off(struct drm_crtc *crtc)
3641 {
3642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643
3644         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3645          * start using it. */
3646         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3647
3648         intel_ddi_put_crtc_pll(crtc);
3649 }
3650
3651 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3652 {
3653         if (!enable && intel_crtc->overlay) {
3654                 struct drm_device *dev = intel_crtc->base.dev;
3655                 struct drm_i915_private *dev_priv = dev->dev_private;
3656
3657                 mutex_lock(&dev->struct_mutex);
3658                 dev_priv->mm.interruptible = false;
3659                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3660                 dev_priv->mm.interruptible = true;
3661                 mutex_unlock(&dev->struct_mutex);
3662         }
3663
3664         /* Let userspace switch the overlay on again. In most cases userspace
3665          * has to recompute where to put it anyway.
3666          */
3667 }
3668
3669 /**
3670  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3671  * cursor plane briefly if not already running after enabling the display
3672  * plane.
3673  * This workaround avoids occasional blank screens when self refresh is
3674  * enabled.
3675  */
3676 static void
3677 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3678 {
3679         u32 cntl = I915_READ(CURCNTR(pipe));
3680
3681         if ((cntl & CURSOR_MODE) == 0) {
3682                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3683
3684                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3685                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3686                 intel_wait_for_vblank(dev_priv->dev, pipe);
3687                 I915_WRITE(CURCNTR(pipe), cntl);
3688                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3689                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3690         }
3691 }
3692
3693 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3694 {
3695         struct drm_device *dev = crtc->dev;
3696         struct drm_i915_private *dev_priv = dev->dev_private;
3697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698         struct intel_encoder *encoder;
3699         int pipe = intel_crtc->pipe;
3700         int plane = intel_crtc->plane;
3701
3702         WARN_ON(!crtc->enabled);
3703
3704         if (intel_crtc->active)
3705                 return;
3706
3707         intel_crtc->active = true;
3708         intel_update_watermarks(dev);
3709
3710         intel_enable_pll(dev_priv, pipe);
3711
3712         for_each_encoder_on_crtc(dev, crtc, encoder)
3713                 if (encoder->pre_enable)
3714                         encoder->pre_enable(encoder);
3715
3716         intel_enable_pipe(dev_priv, pipe, false);
3717         intel_enable_plane(dev_priv, plane, pipe);
3718         if (IS_G4X(dev))
3719                 g4x_fixup_plane(dev_priv, pipe);
3720
3721         intel_crtc_load_lut(crtc);
3722         intel_update_fbc(dev);
3723
3724         /* Give the overlay scaler a chance to enable if it's on this pipe */
3725         intel_crtc_dpms_overlay(intel_crtc, true);
3726         intel_crtc_update_cursor(crtc, true);
3727
3728         for_each_encoder_on_crtc(dev, crtc, encoder)
3729                 encoder->enable(encoder);
3730 }
3731
3732 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3733 {
3734         struct drm_device *dev = crtc->base.dev;
3735         struct drm_i915_private *dev_priv = dev->dev_private;
3736         enum pipe pipe;
3737         uint32_t pctl = I915_READ(PFIT_CONTROL);
3738
3739         assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741         if (INTEL_INFO(dev)->gen >= 4)
3742                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3743         else
3744                 pipe = PIPE_B;
3745
3746         if (pipe == crtc->pipe) {
3747                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3748                 I915_WRITE(PFIT_CONTROL, 0);
3749         }
3750 }
3751
3752 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3753 {
3754         struct drm_device *dev = crtc->dev;
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757         struct intel_encoder *encoder;
3758         int pipe = intel_crtc->pipe;
3759         int plane = intel_crtc->plane;
3760
3761         if (!intel_crtc->active)
3762                 return;
3763
3764         for_each_encoder_on_crtc(dev, crtc, encoder)
3765                 encoder->disable(encoder);
3766
3767         /* Give the overlay scaler a chance to disable if it's on this pipe */
3768         intel_crtc_wait_for_pending_flips(crtc);
3769         drm_vblank_off(dev, pipe);
3770         intel_crtc_dpms_overlay(intel_crtc, false);
3771         intel_crtc_update_cursor(crtc, false);
3772
3773         if (dev_priv->cfb_plane == plane)
3774                 intel_disable_fbc(dev);
3775
3776         intel_disable_plane(dev_priv, plane, pipe);
3777         intel_disable_pipe(dev_priv, pipe);
3778
3779         i9xx_pfit_disable(intel_crtc);
3780
3781         intel_disable_pll(dev_priv, pipe);
3782
3783         intel_crtc->active = false;
3784         intel_update_fbc(dev);
3785         intel_update_watermarks(dev);
3786 }
3787
3788 static void i9xx_crtc_off(struct drm_crtc *crtc)
3789 {
3790 }
3791
3792 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3793                                     bool enabled)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_master_private *master_priv;
3797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3798         int pipe = intel_crtc->pipe;
3799
3800         if (!dev->primary->master)
3801                 return;
3802
3803         master_priv = dev->primary->master->driver_priv;
3804         if (!master_priv->sarea_priv)
3805                 return;
3806
3807         switch (pipe) {
3808         case 0:
3809                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3810                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3811                 break;
3812         case 1:
3813                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3814                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3815                 break;
3816         default:
3817                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3818                 break;
3819         }
3820 }
3821
3822 /**
3823  * Sets the power management mode of the pipe and plane.
3824  */
3825 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3826 {
3827         struct drm_device *dev = crtc->dev;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         struct intel_encoder *intel_encoder;
3830         bool enable = false;
3831
3832         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3833                 enable |= intel_encoder->connectors_active;
3834
3835         if (enable)
3836                 dev_priv->display.crtc_enable(crtc);
3837         else
3838                 dev_priv->display.crtc_disable(crtc);
3839
3840         intel_crtc_update_sarea(crtc, enable);
3841 }
3842
3843 static void intel_crtc_disable(struct drm_crtc *crtc)
3844 {
3845         struct drm_device *dev = crtc->dev;
3846         struct drm_connector *connector;
3847         struct drm_i915_private *dev_priv = dev->dev_private;
3848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850         /* crtc should still be enabled when we disable it. */
3851         WARN_ON(!crtc->enabled);
3852
3853         intel_crtc->eld_vld = false;
3854         dev_priv->display.crtc_disable(crtc);
3855         intel_crtc_update_sarea(crtc, false);
3856         dev_priv->display.off(crtc);
3857
3858         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861         if (crtc->fb) {
3862                 mutex_lock(&dev->struct_mutex);
3863                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864                 mutex_unlock(&dev->struct_mutex);
3865                 crtc->fb = NULL;
3866         }
3867
3868         /* Update computed state. */
3869         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870                 if (!connector->encoder || !connector->encoder->crtc)
3871                         continue;
3872
3873                 if (connector->encoder->crtc != crtc)
3874                         continue;
3875
3876                 connector->dpms = DRM_MODE_DPMS_OFF;
3877                 to_intel_encoder(connector->encoder)->connectors_active = false;
3878         }
3879 }
3880
3881 void intel_modeset_disable(struct drm_device *dev)
3882 {
3883         struct drm_crtc *crtc;
3884
3885         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3886                 if (crtc->enabled)
3887                         intel_crtc_disable(crtc);
3888         }
3889 }
3890
3891 void intel_encoder_destroy(struct drm_encoder *encoder)
3892 {
3893         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3894
3895         drm_encoder_cleanup(encoder);
3896         kfree(intel_encoder);
3897 }
3898
3899 /* Simple dpms helper for encodres with just one connector, no cloning and only
3900  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3901  * state of the entire output pipe. */
3902 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3903 {
3904         if (mode == DRM_MODE_DPMS_ON) {
3905                 encoder->connectors_active = true;
3906
3907                 intel_crtc_update_dpms(encoder->base.crtc);
3908         } else {
3909                 encoder->connectors_active = false;
3910
3911                 intel_crtc_update_dpms(encoder->base.crtc);
3912         }
3913 }
3914
3915 /* Cross check the actual hw state with our own modeset state tracking (and it's
3916  * internal consistency). */
3917 static void intel_connector_check_state(struct intel_connector *connector)
3918 {
3919         if (connector->get_hw_state(connector)) {
3920                 struct intel_encoder *encoder = connector->encoder;
3921                 struct drm_crtc *crtc;
3922                 bool encoder_enabled;
3923                 enum pipe pipe;
3924
3925                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3926                               connector->base.base.id,
3927                               drm_get_connector_name(&connector->base));
3928
3929                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3930                      "wrong connector dpms state\n");
3931                 WARN(connector->base.encoder != &encoder->base,
3932                      "active connector not linked to encoder\n");
3933                 WARN(!encoder->connectors_active,
3934                      "encoder->connectors_active not set\n");
3935
3936                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3937                 WARN(!encoder_enabled, "encoder not enabled\n");
3938                 if (WARN_ON(!encoder->base.crtc))
3939                         return;
3940
3941                 crtc = encoder->base.crtc;
3942
3943                 WARN(!crtc->enabled, "crtc not enabled\n");
3944                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3945                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3946                      "encoder active on the wrong pipe\n");
3947         }
3948 }
3949
3950 /* Even simpler default implementation, if there's really no special case to
3951  * consider. */
3952 void intel_connector_dpms(struct drm_connector *connector, int mode)
3953 {
3954         struct intel_encoder *encoder = intel_attached_encoder(connector);
3955
3956         /* All the simple cases only support two dpms states. */
3957         if (mode != DRM_MODE_DPMS_ON)
3958                 mode = DRM_MODE_DPMS_OFF;
3959
3960         if (mode == connector->dpms)
3961                 return;
3962
3963         connector->dpms = mode;
3964
3965         /* Only need to change hw state when actually enabled */
3966         if (encoder->base.crtc)
3967                 intel_encoder_dpms(encoder, mode);
3968         else
3969                 WARN_ON(encoder->connectors_active != false);
3970
3971         intel_modeset_check_state(connector->dev);
3972 }
3973
3974 /* Simple connector->get_hw_state implementation for encoders that support only
3975  * one connector and no cloning and hence the encoder state determines the state
3976  * of the connector. */
3977 bool intel_connector_get_hw_state(struct intel_connector *connector)
3978 {
3979         enum pipe pipe = 0;
3980         struct intel_encoder *encoder = connector->encoder;
3981
3982         return encoder->get_hw_state(encoder, &pipe);
3983 }
3984
3985 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3986                                       struct intel_crtc_config *pipe_config)
3987 {
3988         struct drm_device *dev = crtc->dev;
3989         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3990
3991         if (HAS_PCH_SPLIT(dev)) {
3992                 /* FDI link clock is fixed at 2.7G */
3993                 if (pipe_config->requested_mode.clock * 3
3994                     > IRONLAKE_FDI_FREQ * 4)
3995                         return false;
3996         }
3997
3998         /* All interlaced capable intel hw wants timings in frames. Note though
3999          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4000          * timings, so we need to be careful not to clobber these.*/
4001         if (!pipe_config->timings_set)
4002                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4003
4004         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4005          * with a hsync front porch of 0.
4006          */
4007         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4008                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4009                 return false;
4010
4011         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4012                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4013         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4014                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4015                  * for lvds. */
4016                 pipe_config->pipe_bpp = 8*3;
4017         }
4018
4019         return true;
4020 }
4021
4022 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4023 {
4024         return 400000; /* FIXME */
4025 }
4026
4027 static int i945_get_display_clock_speed(struct drm_device *dev)
4028 {
4029         return 400000;
4030 }
4031
4032 static int i915_get_display_clock_speed(struct drm_device *dev)
4033 {
4034         return 333000;
4035 }
4036
4037 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4038 {
4039         return 200000;
4040 }
4041
4042 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4043 {
4044         u16 gcfgc = 0;
4045
4046         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4047
4048         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4049                 return 133000;
4050         else {
4051                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4052                 case GC_DISPLAY_CLOCK_333_MHZ:
4053                         return 333000;
4054                 default:
4055                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4056                         return 190000;
4057                 }
4058         }
4059 }
4060
4061 static int i865_get_display_clock_speed(struct drm_device *dev)
4062 {
4063         return 266000;
4064 }
4065
4066 static int i855_get_display_clock_speed(struct drm_device *dev)
4067 {
4068         u16 hpllcc = 0;
4069         /* Assume that the hardware is in the high speed state.  This
4070          * should be the default.
4071          */
4072         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4073         case GC_CLOCK_133_200:
4074         case GC_CLOCK_100_200:
4075                 return 200000;
4076         case GC_CLOCK_166_250:
4077                 return 250000;
4078         case GC_CLOCK_100_133:
4079                 return 133000;
4080         }
4081
4082         /* Shouldn't happen */
4083         return 0;
4084 }
4085
4086 static int i830_get_display_clock_speed(struct drm_device *dev)
4087 {
4088         return 133000;
4089 }
4090
4091 static void
4092 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4093 {
4094         while (*num > 0xffffff || *den > 0xffffff) {
4095                 *num >>= 1;
4096                 *den >>= 1;
4097         }
4098 }
4099
4100 void
4101 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4102                        int pixel_clock, int link_clock,
4103                        struct intel_link_m_n *m_n)
4104 {
4105         m_n->tu = 64;
4106         m_n->gmch_m = bits_per_pixel * pixel_clock;
4107         m_n->gmch_n = link_clock * nlanes * 8;
4108         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4109         m_n->link_m = pixel_clock;
4110         m_n->link_n = link_clock;
4111         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4112 }
4113
4114 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4115 {
4116         if (i915_panel_use_ssc >= 0)
4117                 return i915_panel_use_ssc != 0;
4118         return dev_priv->lvds_use_ssc
4119                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4120 }
4121
4122 static int vlv_get_refclk(struct drm_crtc *crtc)
4123 {
4124         struct drm_device *dev = crtc->dev;
4125         struct drm_i915_private *dev_priv = dev->dev_private;
4126         int refclk = 27000; /* for DP & HDMI */
4127
4128         return 100000; /* only one validated so far */
4129
4130         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4131                 refclk = 96000;
4132         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4133                 if (intel_panel_use_ssc(dev_priv))
4134                         refclk = 100000;
4135                 else
4136                         refclk = 96000;
4137         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4138                 refclk = 100000;
4139         }
4140
4141         return refclk;
4142 }
4143
4144 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4145 {
4146         struct drm_device *dev = crtc->dev;
4147         struct drm_i915_private *dev_priv = dev->dev_private;
4148         int refclk;
4149
4150         if (IS_VALLEYVIEW(dev)) {
4151                 refclk = vlv_get_refclk(crtc);
4152         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4153             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4154                 refclk = dev_priv->lvds_ssc_freq * 1000;
4155                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4156                               refclk / 1000);
4157         } else if (!IS_GEN2(dev)) {
4158                 refclk = 96000;
4159         } else {
4160                 refclk = 48000;
4161         }
4162
4163         return refclk;
4164 }
4165
4166 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4167 {
4168         unsigned dotclock = crtc->config.adjusted_mode.clock;
4169         struct dpll *clock = &crtc->config.dpll;
4170
4171         /* SDVO TV has fixed PLL values depend on its clock range,
4172            this mirrors vbios setting. */
4173         if (dotclock >= 100000 && dotclock < 140500) {
4174                 clock->p1 = 2;
4175                 clock->p2 = 10;
4176                 clock->n = 3;
4177                 clock->m1 = 16;
4178                 clock->m2 = 8;
4179         } else if (dotclock >= 140500 && dotclock <= 200000) {
4180                 clock->p1 = 1;
4181                 clock->p2 = 10;
4182                 clock->n = 6;
4183                 clock->m1 = 12;
4184                 clock->m2 = 8;
4185         }
4186
4187         crtc->config.clock_set = true;
4188 }
4189
4190 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4191                                      intel_clock_t *reduced_clock)
4192 {
4193         struct drm_device *dev = crtc->base.dev;
4194         struct drm_i915_private *dev_priv = dev->dev_private;
4195         int pipe = crtc->pipe;
4196         u32 fp, fp2 = 0;
4197         struct dpll *clock = &crtc->config.dpll;
4198
4199         if (IS_PINEVIEW(dev)) {
4200                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4201                 if (reduced_clock)
4202                         fp2 = (1 << reduced_clock->n) << 16 |
4203                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4204         } else {
4205                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4206                 if (reduced_clock)
4207                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4208                                 reduced_clock->m2;
4209         }
4210
4211         I915_WRITE(FP0(pipe), fp);
4212
4213         crtc->lowfreq_avail = false;
4214         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4215             reduced_clock && i915_powersave) {
4216                 I915_WRITE(FP1(pipe), fp2);
4217                 crtc->lowfreq_avail = true;
4218         } else {
4219                 I915_WRITE(FP1(pipe), fp);
4220         }
4221 }
4222
4223 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4224 {
4225         if (crtc->config.has_pch_encoder)
4226                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4227         else
4228                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4229 }
4230
4231 static void vlv_update_pll(struct intel_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->base.dev;
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235         int pipe = crtc->pipe;
4236         u32 dpll, mdiv, pdiv;
4237         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4238         bool is_sdvo;
4239         u32 temp;
4240
4241         mutex_lock(&dev_priv->dpio_lock);
4242
4243         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4244                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4245
4246         dpll = DPLL_VGA_MODE_DIS;
4247         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4248         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4249         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4250
4251         I915_WRITE(DPLL(pipe), dpll);
4252         POSTING_READ(DPLL(pipe));
4253
4254         bestn = crtc->config.dpll.n;
4255         bestm1 = crtc->config.dpll.m1;
4256         bestm2 = crtc->config.dpll.m2;
4257         bestp1 = crtc->config.dpll.p1;
4258         bestp2 = crtc->config.dpll.p2;
4259
4260         /*
4261          * In Valleyview PLL and program lane counter registers are exposed
4262          * through DPIO interface
4263          */
4264         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4265         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4266         mdiv |= ((bestn << DPIO_N_SHIFT));
4267         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4268         mdiv |= (1 << DPIO_K_SHIFT);
4269         mdiv |= DPIO_ENABLE_CALIBRATION;
4270         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4271
4272         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4273
4274         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4275                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4276                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4277                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4278         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4279
4280         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4281
4282         dpll |= DPLL_VCO_ENABLE;
4283         I915_WRITE(DPLL(pipe), dpll);
4284         POSTING_READ(DPLL(pipe));
4285         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4286                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4287
4288         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4289
4290         if (crtc->config.has_dp_encoder)
4291                 intel_dp_set_m_n(crtc);
4292
4293         I915_WRITE(DPLL(pipe), dpll);
4294
4295         /* Wait for the clocks to stabilize. */
4296         POSTING_READ(DPLL(pipe));
4297         udelay(150);
4298
4299         temp = 0;
4300         if (is_sdvo) {
4301                 temp = 0;
4302                 if (crtc->config.pixel_multiplier > 1) {
4303                         temp = (crtc->config.pixel_multiplier - 1)
4304                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4305                 }
4306         }
4307         I915_WRITE(DPLL_MD(pipe), temp);
4308         POSTING_READ(DPLL_MD(pipe));
4309
4310         /* Now program lane control registers */
4311         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4312            || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4313                 temp = 0x1000C4;
4314                 if(pipe == 1)
4315                         temp |= (1 << 21);
4316                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4317         }
4318
4319         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4320                 temp = 0x1000C4;
4321                 if(pipe == 1)
4322                         temp |= (1 << 21);
4323                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4324         }
4325
4326         mutex_unlock(&dev_priv->dpio_lock);
4327 }
4328
4329 static void i9xx_update_pll(struct intel_crtc *crtc,
4330                             intel_clock_t *reduced_clock,
4331                             int num_connectors)
4332 {
4333         struct drm_device *dev = crtc->base.dev;
4334         struct drm_i915_private *dev_priv = dev->dev_private;
4335         struct intel_encoder *encoder;
4336         int pipe = crtc->pipe;
4337         u32 dpll;
4338         bool is_sdvo;
4339         struct dpll *clock = &crtc->config.dpll;
4340
4341         i9xx_update_pll_dividers(crtc, reduced_clock);
4342
4343         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4344                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4345
4346         dpll = DPLL_VGA_MODE_DIS;
4347
4348         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4349                 dpll |= DPLLB_MODE_LVDS;
4350         else
4351                 dpll |= DPLLB_MODE_DAC_SERIAL;
4352
4353         if (is_sdvo) {
4354                 if ((crtc->config.pixel_multiplier > 1) &&
4355                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4356                         dpll |= (crtc->config.pixel_multiplier - 1)
4357                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4358                 }
4359                 dpll |= DPLL_DVO_HIGH_SPEED;
4360         }
4361         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4362                 dpll |= DPLL_DVO_HIGH_SPEED;
4363
4364         /* compute bitmask from p1 value */
4365         if (IS_PINEVIEW(dev))
4366                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4367         else {
4368                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4369                 if (IS_G4X(dev) && reduced_clock)
4370                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4371         }
4372         switch (clock->p2) {
4373         case 5:
4374                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4375                 break;
4376         case 7:
4377                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4378                 break;
4379         case 10:
4380                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4381                 break;
4382         case 14:
4383                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4384                 break;
4385         }
4386         if (INTEL_INFO(dev)->gen >= 4)
4387                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4388
4389         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4390                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4391         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4392                 /* XXX: just matching BIOS for now */
4393                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4394                 dpll |= 3;
4395         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4396                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4397                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4398         else
4399                 dpll |= PLL_REF_INPUT_DREFCLK;
4400
4401         dpll |= DPLL_VCO_ENABLE;
4402         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4403         POSTING_READ(DPLL(pipe));
4404         udelay(150);
4405
4406         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4407                 if (encoder->pre_pll_enable)
4408                         encoder->pre_pll_enable(encoder);
4409
4410         if (crtc->config.has_dp_encoder)
4411                 intel_dp_set_m_n(crtc);
4412
4413         I915_WRITE(DPLL(pipe), dpll);
4414
4415         /* Wait for the clocks to stabilize. */
4416         POSTING_READ(DPLL(pipe));
4417         udelay(150);
4418
4419         if (INTEL_INFO(dev)->gen >= 4) {
4420                 u32 temp = 0;
4421                 if (is_sdvo) {
4422                         temp = 0;
4423                         if (crtc->config.pixel_multiplier > 1) {
4424                                 temp = (crtc->config.pixel_multiplier - 1)
4425                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4426                         }
4427                 }
4428                 I915_WRITE(DPLL_MD(pipe), temp);
4429         } else {
4430                 /* The pixel multiplier can only be updated once the
4431                  * DPLL is enabled and the clocks are stable.
4432                  *
4433                  * So write it again.
4434                  */
4435                 I915_WRITE(DPLL(pipe), dpll);
4436         }
4437 }
4438
4439 static void i8xx_update_pll(struct intel_crtc *crtc,
4440                             struct drm_display_mode *adjusted_mode,
4441                             intel_clock_t *reduced_clock,
4442                             int num_connectors)
4443 {
4444         struct drm_device *dev = crtc->base.dev;
4445         struct drm_i915_private *dev_priv = dev->dev_private;
4446         struct intel_encoder *encoder;
4447         int pipe = crtc->pipe;
4448         u32 dpll;
4449         struct dpll *clock = &crtc->config.dpll;
4450
4451         i9xx_update_pll_dividers(crtc, reduced_clock);
4452
4453         dpll = DPLL_VGA_MODE_DIS;
4454
4455         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4456                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4457         } else {
4458                 if (clock->p1 == 2)
4459                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4460                 else
4461                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4462                 if (clock->p2 == 4)
4463                         dpll |= PLL_P2_DIVIDE_BY_4;
4464         }
4465
4466         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4467                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4468                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4469         else
4470                 dpll |= PLL_REF_INPUT_DREFCLK;
4471
4472         dpll |= DPLL_VCO_ENABLE;
4473         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4474         POSTING_READ(DPLL(pipe));
4475         udelay(150);
4476
4477         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4478                 if (encoder->pre_pll_enable)
4479                         encoder->pre_pll_enable(encoder);
4480
4481         I915_WRITE(DPLL(pipe), dpll);
4482
4483         /* Wait for the clocks to stabilize. */
4484         POSTING_READ(DPLL(pipe));
4485         udelay(150);
4486
4487         /* The pixel multiplier can only be updated once the
4488          * DPLL is enabled and the clocks are stable.
4489          *
4490          * So write it again.
4491          */
4492         I915_WRITE(DPLL(pipe), dpll);
4493 }
4494
4495 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4496                                    struct drm_display_mode *mode,
4497                                    struct drm_display_mode *adjusted_mode)
4498 {
4499         struct drm_device *dev = intel_crtc->base.dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         enum pipe pipe = intel_crtc->pipe;
4502         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4503         uint32_t vsyncshift;
4504
4505         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4506                 /* the chip adds 2 halflines automatically */
4507                 adjusted_mode->crtc_vtotal -= 1;
4508                 adjusted_mode->crtc_vblank_end -= 1;
4509                 vsyncshift = adjusted_mode->crtc_hsync_start
4510                              - adjusted_mode->crtc_htotal / 2;
4511         } else {
4512                 vsyncshift = 0;
4513         }
4514
4515         if (INTEL_INFO(dev)->gen > 3)
4516                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4517
4518         I915_WRITE(HTOTAL(cpu_transcoder),
4519                    (adjusted_mode->crtc_hdisplay - 1) |
4520                    ((adjusted_mode->crtc_htotal - 1) << 16));
4521         I915_WRITE(HBLANK(cpu_transcoder),
4522                    (adjusted_mode->crtc_hblank_start - 1) |
4523                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4524         I915_WRITE(HSYNC(cpu_transcoder),
4525                    (adjusted_mode->crtc_hsync_start - 1) |
4526                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4527
4528         I915_WRITE(VTOTAL(cpu_transcoder),
4529                    (adjusted_mode->crtc_vdisplay - 1) |
4530                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4531         I915_WRITE(VBLANK(cpu_transcoder),
4532                    (adjusted_mode->crtc_vblank_start - 1) |
4533                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4534         I915_WRITE(VSYNC(cpu_transcoder),
4535                    (adjusted_mode->crtc_vsync_start - 1) |
4536                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4537
4538         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4539          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4540          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4541          * bits. */
4542         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4543             (pipe == PIPE_B || pipe == PIPE_C))
4544                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4545
4546         /* pipesrc controls the size that is scaled from, which should
4547          * always be the user's requested size.
4548          */
4549         I915_WRITE(PIPESRC(pipe),
4550                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4551 }
4552
4553 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4554 {
4555         struct drm_device *dev = intel_crtc->base.dev;
4556         struct drm_i915_private *dev_priv = dev->dev_private;
4557         uint32_t pipeconf;
4558
4559         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4560
4561         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4562                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4563                  * core speed.
4564                  *
4565                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4566                  * pipe == 0 check?
4567                  */
4568                 if (intel_crtc->config.requested_mode.clock >
4569                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4570                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4571                 else
4572                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4573         }
4574
4575         /* default to 8bpc */
4576         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4577         if (intel_crtc->config.has_dp_encoder) {
4578                 if (intel_crtc->config.dither) {
4579                         pipeconf |= PIPECONF_6BPC |
4580                                     PIPECONF_DITHER_EN |
4581                                     PIPECONF_DITHER_TYPE_SP;
4582                 }
4583         }
4584
4585         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4586                                                       INTEL_OUTPUT_EDP)) {
4587                 if (intel_crtc->config.dither) {
4588                         pipeconf |= PIPECONF_6BPC |
4589                                         PIPECONF_ENABLE |
4590                                         I965_PIPECONF_ACTIVE;
4591                 }
4592         }
4593
4594         if (HAS_PIPE_CXSR(dev)) {
4595                 if (intel_crtc->lowfreq_avail) {
4596                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4597                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4598                 } else {
4599                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4600                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4601                 }
4602         }
4603
4604         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4605         if (!IS_GEN2(dev) &&
4606             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4607                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4608         else
4609                 pipeconf |= PIPECONF_PROGRESSIVE;
4610
4611         if (IS_VALLEYVIEW(dev)) {
4612                 if (intel_crtc->config.limited_color_range)
4613                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4614                 else
4615                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4616         }
4617
4618         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4619         POSTING_READ(PIPECONF(intel_crtc->pipe));
4620 }
4621
4622 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4623                               int x, int y,
4624                               struct drm_framebuffer *fb)
4625 {
4626         struct drm_device *dev = crtc->dev;
4627         struct drm_i915_private *dev_priv = dev->dev_private;
4628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4629         struct drm_display_mode *adjusted_mode =
4630                 &intel_crtc->config.adjusted_mode;
4631         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4632         int pipe = intel_crtc->pipe;
4633         int plane = intel_crtc->plane;
4634         int refclk, num_connectors = 0;
4635         intel_clock_t clock, reduced_clock;
4636         u32 dspcntr;
4637         bool ok, has_reduced_clock = false, is_sdvo = false;
4638         bool is_lvds = false, is_tv = false;
4639         struct intel_encoder *encoder;
4640         const intel_limit_t *limit;
4641         int ret;
4642
4643         for_each_encoder_on_crtc(dev, crtc, encoder) {
4644                 switch (encoder->type) {
4645                 case INTEL_OUTPUT_LVDS:
4646                         is_lvds = true;
4647                         break;
4648                 case INTEL_OUTPUT_SDVO:
4649                 case INTEL_OUTPUT_HDMI:
4650                         is_sdvo = true;
4651                         if (encoder->needs_tv_clock)
4652                                 is_tv = true;
4653                         break;
4654                 case INTEL_OUTPUT_TVOUT:
4655                         is_tv = true;
4656                         break;
4657                 }
4658
4659                 num_connectors++;
4660         }
4661
4662         refclk = i9xx_get_refclk(crtc, num_connectors);
4663
4664         /*
4665          * Returns a set of divisors for the desired target clock with the given
4666          * refclk, or FALSE.  The returned values represent the clock equation:
4667          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4668          */
4669         limit = intel_limit(crtc, refclk);
4670         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4671                              &clock);
4672         if (!ok) {
4673                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4674                 return -EINVAL;
4675         }
4676
4677         /* Ensure that the cursor is valid for the new mode before changing... */
4678         intel_crtc_update_cursor(crtc, true);
4679
4680         if (is_lvds && dev_priv->lvds_downclock_avail) {
4681                 /*
4682                  * Ensure we match the reduced clock's P to the target clock.
4683                  * If the clocks don't match, we can't switch the display clock
4684                  * by using the FP0/FP1. In such case we will disable the LVDS
4685                  * downclock feature.
4686                 */
4687                 has_reduced_clock = limit->find_pll(limit, crtc,
4688                                                     dev_priv->lvds_downclock,
4689                                                     refclk,
4690                                                     &clock,
4691                                                     &reduced_clock);
4692         }
4693         /* Compat-code for transition, will disappear. */
4694         if (!intel_crtc->config.clock_set) {
4695                 intel_crtc->config.dpll.n = clock.n;
4696                 intel_crtc->config.dpll.m1 = clock.m1;
4697                 intel_crtc->config.dpll.m2 = clock.m2;
4698                 intel_crtc->config.dpll.p1 = clock.p1;
4699                 intel_crtc->config.dpll.p2 = clock.p2;
4700         }
4701
4702         if (is_sdvo && is_tv)
4703                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4704
4705         if (IS_GEN2(dev))
4706                 i8xx_update_pll(intel_crtc, adjusted_mode,
4707                                 has_reduced_clock ? &reduced_clock : NULL,
4708                                 num_connectors);
4709         else if (IS_VALLEYVIEW(dev))
4710                 vlv_update_pll(intel_crtc);
4711         else
4712                 i9xx_update_pll(intel_crtc,
4713                                 has_reduced_clock ? &reduced_clock : NULL,
4714                                 num_connectors);
4715
4716         /* Set up the display plane register */
4717         dspcntr = DISPPLANE_GAMMA_ENABLE;
4718
4719         if (!IS_VALLEYVIEW(dev)) {
4720                 if (pipe == 0)
4721                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4722                 else
4723                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4724         }
4725
4726         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4727         drm_mode_debug_printmodeline(mode);
4728
4729         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4730
4731         /* pipesrc and dspsize control the size that is scaled from,
4732          * which should always be the user's requested size.
4733          */
4734         I915_WRITE(DSPSIZE(plane),
4735                    ((mode->vdisplay - 1) << 16) |
4736                    (mode->hdisplay - 1));
4737         I915_WRITE(DSPPOS(plane), 0);
4738
4739         i9xx_set_pipeconf(intel_crtc);
4740
4741         I915_WRITE(DSPCNTR(plane), dspcntr);
4742         POSTING_READ(DSPCNTR(plane));
4743
4744         ret = intel_pipe_set_base(crtc, x, y, fb);
4745
4746         intel_update_watermarks(dev);
4747
4748         return ret;
4749 }
4750
4751 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4752                                  struct intel_crtc_config *pipe_config)
4753 {
4754         struct drm_device *dev = crtc->base.dev;
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         uint32_t tmp;
4757
4758         tmp = I915_READ(PIPECONF(crtc->pipe));
4759         if (!(tmp & PIPECONF_ENABLE))
4760                 return false;
4761
4762         return true;
4763 }
4764
4765 static void ironlake_init_pch_refclk(struct drm_device *dev)
4766 {
4767         struct drm_i915_private *dev_priv = dev->dev_private;
4768         struct drm_mode_config *mode_config = &dev->mode_config;
4769         struct intel_encoder *encoder;
4770         u32 val, final;
4771         bool has_lvds = false;
4772         bool has_cpu_edp = false;
4773         bool has_pch_edp = false;
4774         bool has_panel = false;
4775         bool has_ck505 = false;
4776         bool can_ssc = false;
4777
4778         /* We need to take the global config into account */
4779         list_for_each_entry(encoder, &mode_config->encoder_list,
4780                             base.head) {
4781                 switch (encoder->type) {
4782                 case INTEL_OUTPUT_LVDS:
4783                         has_panel = true;
4784                         has_lvds = true;
4785                         break;
4786                 case INTEL_OUTPUT_EDP:
4787                         has_panel = true;
4788                         if (intel_encoder_is_pch_edp(&encoder->base))
4789                                 has_pch_edp = true;
4790                         else
4791                                 has_cpu_edp = true;
4792                         break;
4793                 }
4794         }
4795
4796         if (HAS_PCH_IBX(dev)) {
4797                 has_ck505 = dev_priv->display_clock_mode;
4798                 can_ssc = has_ck505;
4799         } else {
4800                 has_ck505 = false;
4801                 can_ssc = true;
4802         }
4803
4804         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4805                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4806                       has_ck505);
4807
4808         /* Ironlake: try to setup display ref clock before DPLL
4809          * enabling. This is only under driver's control after
4810          * PCH B stepping, previous chipset stepping should be
4811          * ignoring this setting.
4812          */
4813         val = I915_READ(PCH_DREF_CONTROL);
4814
4815         /* As we must carefully and slowly disable/enable each source in turn,
4816          * compute the final state we want first and check if we need to
4817          * make any changes at all.
4818          */
4819         final = val;
4820         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4821         if (has_ck505)
4822                 final |= DREF_NONSPREAD_CK505_ENABLE;
4823         else
4824                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4825
4826         final &= ~DREF_SSC_SOURCE_MASK;
4827         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4828         final &= ~DREF_SSC1_ENABLE;
4829
4830         if (has_panel) {
4831                 final |= DREF_SSC_SOURCE_ENABLE;
4832
4833                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4834                         final |= DREF_SSC1_ENABLE;
4835
4836                 if (has_cpu_edp) {
4837                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4838                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4839                         else
4840                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4841                 } else
4842                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4843         } else {
4844                 final |= DREF_SSC_SOURCE_DISABLE;
4845                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4846         }
4847
4848         if (final == val)
4849                 return;
4850
4851         /* Always enable nonspread source */
4852         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4853
4854         if (has_ck505)
4855                 val |= DREF_NONSPREAD_CK505_ENABLE;
4856         else
4857                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4858
4859         if (has_panel) {
4860                 val &= ~DREF_SSC_SOURCE_MASK;
4861                 val |= DREF_SSC_SOURCE_ENABLE;
4862
4863                 /* SSC must be turned on before enabling the CPU output  */
4864                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4865                         DRM_DEBUG_KMS("Using SSC on panel\n");
4866                         val |= DREF_SSC1_ENABLE;
4867                 } else
4868                         val &= ~DREF_SSC1_ENABLE;
4869
4870                 /* Get SSC going before enabling the outputs */
4871                 I915_WRITE(PCH_DREF_CONTROL, val);
4872                 POSTING_READ(PCH_DREF_CONTROL);
4873                 udelay(200);
4874
4875                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4876
4877                 /* Enable CPU source on CPU attached eDP */
4878                 if (has_cpu_edp) {
4879                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4880                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4881                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4882                         }
4883                         else
4884                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4885                 } else
4886                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4887
4888                 I915_WRITE(PCH_DREF_CONTROL, val);
4889                 POSTING_READ(PCH_DREF_CONTROL);
4890                 udelay(200);
4891         } else {
4892                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4893
4894                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4895
4896                 /* Turn off CPU output */
4897                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4898
4899                 I915_WRITE(PCH_DREF_CONTROL, val);
4900                 POSTING_READ(PCH_DREF_CONTROL);
4901                 udelay(200);
4902
4903                 /* Turn off the SSC source */
4904                 val &= ~DREF_SSC_SOURCE_MASK;
4905                 val |= DREF_SSC_SOURCE_DISABLE;
4906
4907                 /* Turn off SSC1 */
4908                 val &= ~DREF_SSC1_ENABLE;
4909
4910                 I915_WRITE(PCH_DREF_CONTROL, val);
4911                 POSTING_READ(PCH_DREF_CONTROL);
4912                 udelay(200);
4913         }
4914
4915         BUG_ON(val != final);
4916 }
4917
4918 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4919 static void lpt_init_pch_refclk(struct drm_device *dev)
4920 {
4921         struct drm_i915_private *dev_priv = dev->dev_private;
4922         struct drm_mode_config *mode_config = &dev->mode_config;
4923         struct intel_encoder *encoder;
4924         bool has_vga = false;
4925         bool is_sdv = false;
4926         u32 tmp;
4927
4928         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4929                 switch (encoder->type) {
4930                 case INTEL_OUTPUT_ANALOG:
4931                         has_vga = true;
4932                         break;
4933                 }
4934         }
4935
4936         if (!has_vga)
4937                 return;
4938
4939         mutex_lock(&dev_priv->dpio_lock);
4940
4941         /* XXX: Rip out SDV support once Haswell ships for real. */
4942         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4943                 is_sdv = true;
4944
4945         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4946         tmp &= ~SBI_SSCCTL_DISABLE;
4947         tmp |= SBI_SSCCTL_PATHALT;
4948         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4949
4950         udelay(24);
4951
4952         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4953         tmp &= ~SBI_SSCCTL_PATHALT;
4954         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4955
4956         if (!is_sdv) {
4957                 tmp = I915_READ(SOUTH_CHICKEN2);
4958                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4959                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4960
4961                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4962                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4963                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4964
4965                 tmp = I915_READ(SOUTH_CHICKEN2);
4966                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4967                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4968
4969                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4970                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4971                                        100))
4972                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4973         }
4974
4975         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4976         tmp &= ~(0xFF << 24);
4977         tmp |= (0x12 << 24);
4978         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4979
4980         if (is_sdv) {
4981                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4982                 tmp |= 0x7FFF;
4983                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4984         }
4985
4986         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4987         tmp |= (1 << 11);
4988         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4989
4990         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4991         tmp |= (1 << 11);
4992         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4993
4994         if (is_sdv) {
4995                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4996                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4997                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4998
4999                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5000                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5001                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5002
5003                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5004                 tmp |= (0x3F << 8);
5005                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5006
5007                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5008                 tmp |= (0x3F << 8);
5009                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5010         }
5011
5012         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5013         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5014         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5015
5016         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5017         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5018         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5019
5020         if (!is_sdv) {
5021                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5022                 tmp &= ~(7 << 13);
5023                 tmp |= (5 << 13);
5024                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5025
5026                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5027                 tmp &= ~(7 << 13);
5028                 tmp |= (5 << 13);
5029                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5030         }
5031
5032         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5033         tmp &= ~0xFF;
5034         tmp |= 0x1C;
5035         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5036
5037         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5038         tmp &= ~0xFF;
5039         tmp |= 0x1C;
5040         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5041
5042         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5043         tmp &= ~(0xFF << 16);
5044         tmp |= (0x1C << 16);
5045         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5046
5047         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5048         tmp &= ~(0xFF << 16);
5049         tmp |= (0x1C << 16);
5050         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5051
5052         if (!is_sdv) {
5053                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5054                 tmp |= (1 << 27);
5055                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5056
5057                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5058                 tmp |= (1 << 27);
5059                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5060
5061                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5062                 tmp &= ~(0xF << 28);
5063                 tmp |= (4 << 28);
5064                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5065
5066                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5067                 tmp &= ~(0xF << 28);
5068                 tmp |= (4 << 28);
5069                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5070         }
5071
5072         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5073         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5074         tmp |= SBI_DBUFF0_ENABLE;
5075         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5076
5077         mutex_unlock(&dev_priv->dpio_lock);
5078 }
5079
5080 /*
5081  * Initialize reference clocks when the driver loads
5082  */
5083 void intel_init_pch_refclk(struct drm_device *dev)
5084 {
5085         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5086                 ironlake_init_pch_refclk(dev);
5087         else if (HAS_PCH_LPT(dev))
5088                 lpt_init_pch_refclk(dev);
5089 }
5090
5091 static int ironlake_get_refclk(struct drm_crtc *crtc)
5092 {
5093         struct drm_device *dev = crtc->dev;
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         struct intel_encoder *encoder;
5096         struct intel_encoder *edp_encoder = NULL;
5097         int num_connectors = 0;
5098         bool is_lvds = false;
5099
5100         for_each_encoder_on_crtc(dev, crtc, encoder) {
5101                 switch (encoder->type) {
5102                 case INTEL_OUTPUT_LVDS:
5103                         is_lvds = true;
5104                         break;
5105                 case INTEL_OUTPUT_EDP:
5106                         edp_encoder = encoder;
5107                         break;
5108                 }
5109                 num_connectors++;
5110         }
5111
5112         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5113                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5114                               dev_priv->lvds_ssc_freq);
5115                 return dev_priv->lvds_ssc_freq * 1000;
5116         }
5117
5118         return 120000;
5119 }
5120
5121 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5122                                   struct drm_display_mode *adjusted_mode,
5123                                   bool dither)
5124 {
5125         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5127         int pipe = intel_crtc->pipe;
5128         uint32_t val;
5129
5130         val = I915_READ(PIPECONF(pipe));
5131
5132         val &= ~PIPECONF_BPC_MASK;
5133         switch (intel_crtc->config.pipe_bpp) {
5134         case 18:
5135                 val |= PIPECONF_6BPC;
5136                 break;
5137         case 24:
5138                 val |= PIPECONF_8BPC;
5139                 break;
5140         case 30:
5141                 val |= PIPECONF_10BPC;
5142                 break;
5143         case 36:
5144                 val |= PIPECONF_12BPC;
5145                 break;
5146         default:
5147                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5148                 BUG();
5149         }
5150
5151         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5152         if (dither)
5153                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5154
5155         val &= ~PIPECONF_INTERLACE_MASK;
5156         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5157                 val |= PIPECONF_INTERLACED_ILK;
5158         else
5159                 val |= PIPECONF_PROGRESSIVE;
5160
5161         if (intel_crtc->config.limited_color_range)
5162                 val |= PIPECONF_COLOR_RANGE_SELECT;
5163         else
5164                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5165
5166         I915_WRITE(PIPECONF(pipe), val);
5167         POSTING_READ(PIPECONF(pipe));
5168 }
5169
5170 /*
5171  * Set up the pipe CSC unit.
5172  *
5173  * Currently only full range RGB to limited range RGB conversion
5174  * is supported, but eventually this should handle various
5175  * RGB<->YCbCr scenarios as well.
5176  */
5177 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5178 {
5179         struct drm_device *dev = crtc->dev;
5180         struct drm_i915_private *dev_priv = dev->dev_private;
5181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5182         int pipe = intel_crtc->pipe;
5183         uint16_t coeff = 0x7800; /* 1.0 */
5184
5185         /*
5186          * TODO: Check what kind of values actually come out of the pipe
5187          * with these coeff/postoff values and adjust to get the best
5188          * accuracy. Perhaps we even need to take the bpc value into
5189          * consideration.
5190          */
5191
5192         if (intel_crtc->config.limited_color_range)
5193                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5194
5195         /*
5196          * GY/GU and RY/RU should be the other way around according
5197          * to BSpec, but reality doesn't agree. Just set them up in
5198          * a way that results in the correct picture.
5199          */
5200         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5201         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5202
5203         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5204         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5205
5206         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5207         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5208
5209         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5210         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5211         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5212
5213         if (INTEL_INFO(dev)->gen > 6) {
5214                 uint16_t postoff = 0;
5215
5216                 if (intel_crtc->config.limited_color_range)
5217                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5218
5219                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5220                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5221                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5222
5223                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5224         } else {
5225                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5226
5227                 if (intel_crtc->config.limited_color_range)
5228                         mode |= CSC_BLACK_SCREEN_OFFSET;
5229
5230                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5231         }
5232 }
5233
5234 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5235                                  struct drm_display_mode *adjusted_mode,
5236                                  bool dither)
5237 {
5238         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5241         uint32_t val;
5242
5243         val = I915_READ(PIPECONF(cpu_transcoder));
5244
5245         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5246         if (dither)
5247                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5248
5249         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5250         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5251                 val |= PIPECONF_INTERLACED_ILK;
5252         else
5253                 val |= PIPECONF_PROGRESSIVE;
5254
5255         I915_WRITE(PIPECONF(cpu_transcoder), val);
5256         POSTING_READ(PIPECONF(cpu_transcoder));
5257 }
5258
5259 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5260                                     struct drm_display_mode *adjusted_mode,
5261                                     intel_clock_t *clock,
5262                                     bool *has_reduced_clock,
5263                                     intel_clock_t *reduced_clock)
5264 {
5265         struct drm_device *dev = crtc->dev;
5266         struct drm_i915_private *dev_priv = dev->dev_private;
5267         struct intel_encoder *intel_encoder;
5268         int refclk;
5269         const intel_limit_t *limit;
5270         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5271
5272         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5273                 switch (intel_encoder->type) {
5274                 case INTEL_OUTPUT_LVDS:
5275                         is_lvds = true;
5276                         break;
5277                 case INTEL_OUTPUT_SDVO:
5278                 case INTEL_OUTPUT_HDMI:
5279                         is_sdvo = true;
5280                         if (intel_encoder->needs_tv_clock)
5281                                 is_tv = true;
5282                         break;
5283                 case INTEL_OUTPUT_TVOUT:
5284                         is_tv = true;
5285                         break;
5286                 }
5287         }
5288
5289         refclk = ironlake_get_refclk(crtc);
5290
5291         /*
5292          * Returns a set of divisors for the desired target clock with the given
5293          * refclk, or FALSE.  The returned values represent the clock equation:
5294          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5295          */
5296         limit = intel_limit(crtc, refclk);
5297         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5298                               clock);
5299         if (!ret)
5300                 return false;
5301
5302         if (is_lvds && dev_priv->lvds_downclock_avail) {
5303                 /*
5304                  * Ensure we match the reduced clock's P to the target clock.
5305                  * If the clocks don't match, we can't switch the display clock
5306                  * by using the FP0/FP1. In such case we will disable the LVDS
5307                  * downclock feature.
5308                 */
5309                 *has_reduced_clock = limit->find_pll(limit, crtc,
5310                                                      dev_priv->lvds_downclock,
5311                                                      refclk,
5312                                                      clock,
5313                                                      reduced_clock);
5314         }
5315
5316         if (is_sdvo && is_tv)
5317                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5318
5319         return true;
5320 }
5321
5322 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325         uint32_t temp;
5326
5327         temp = I915_READ(SOUTH_CHICKEN1);
5328         if (temp & FDI_BC_BIFURCATION_SELECT)
5329                 return;
5330
5331         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5332         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5333
5334         temp |= FDI_BC_BIFURCATION_SELECT;
5335         DRM_DEBUG_KMS("enabling fdi C rx\n");
5336         I915_WRITE(SOUTH_CHICKEN1, temp);
5337         POSTING_READ(SOUTH_CHICKEN1);
5338 }
5339
5340 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5341 {
5342         struct drm_device *dev = intel_crtc->base.dev;
5343         struct drm_i915_private *dev_priv = dev->dev_private;
5344         struct intel_crtc *pipe_B_crtc =
5345                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5346
5347         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5348                       pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5349         if (intel_crtc->fdi_lanes > 4) {
5350                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5351                               pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5352                 /* Clamp lanes to avoid programming the hw with bogus values. */
5353                 intel_crtc->fdi_lanes = 4;
5354
5355                 return false;
5356         }
5357
5358         if (INTEL_INFO(dev)->num_pipes == 2)
5359                 return true;
5360
5361         switch (intel_crtc->pipe) {
5362         case PIPE_A:
5363                 return true;
5364         case PIPE_B:
5365                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5366                     intel_crtc->fdi_lanes > 2) {
5367                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5368                                       pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5369                         /* Clamp lanes to avoid programming the hw with bogus values. */
5370                         intel_crtc->fdi_lanes = 2;
5371
5372                         return false;
5373                 }
5374
5375                 if (intel_crtc->fdi_lanes > 2)
5376                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5377                 else
5378                         cpt_enable_fdi_bc_bifurcation(dev);
5379
5380                 return true;
5381         case PIPE_C:
5382                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5383                         if (intel_crtc->fdi_lanes > 2) {
5384                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5385                                               pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5386                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5387                                 intel_crtc->fdi_lanes = 2;
5388
5389                                 return false;
5390                         }
5391                 } else {
5392                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5393                         return false;
5394                 }
5395
5396                 cpt_enable_fdi_bc_bifurcation(dev);
5397
5398                 return true;
5399         default:
5400                 BUG();
5401         }
5402 }
5403
5404 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5405 {
5406         /*
5407          * Account for spread spectrum to avoid
5408          * oversubscribing the link. Max center spread
5409          * is 2.5%; use 5% for safety's sake.
5410          */
5411         u32 bps = target_clock * bpp * 21 / 20;
5412         return bps / (link_bw * 8) + 1;
5413 }
5414
5415 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5416                                   struct intel_link_m_n *m_n)
5417 {
5418         struct drm_device *dev = crtc->base.dev;
5419         struct drm_i915_private *dev_priv = dev->dev_private;
5420         int pipe = crtc->pipe;
5421
5422         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5423         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5424         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5425         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5426 }
5427
5428 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5429                                   struct intel_link_m_n *m_n)
5430 {
5431         struct drm_device *dev = crtc->base.dev;
5432         struct drm_i915_private *dev_priv = dev->dev_private;
5433         int pipe = crtc->pipe;
5434         enum transcoder transcoder = crtc->config.cpu_transcoder;
5435
5436         if (INTEL_INFO(dev)->gen >= 5) {
5437                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5438                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5439                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5440                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5441         } else {
5442                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5443                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5444                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5445                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5446         }
5447 }
5448
5449 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5450 {
5451         struct drm_device *dev = crtc->dev;
5452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5453         struct drm_display_mode *adjusted_mode =
5454                 &intel_crtc->config.adjusted_mode;
5455         struct intel_link_m_n m_n = {0};
5456         int target_clock, lane, link_bw;
5457
5458         /* FDI is a binary signal running at ~2.7GHz, encoding
5459          * each output octet as 10 bits. The actual frequency
5460          * is stored as a divider into a 100MHz clock, and the
5461          * mode pixel clock is stored in units of 1KHz.
5462          * Hence the bw of each lane in terms of the mode signal
5463          * is:
5464          */
5465         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5466
5467         if (intel_crtc->config.pixel_target_clock)
5468                 target_clock = intel_crtc->config.pixel_target_clock;
5469         else
5470                 target_clock = adjusted_mode->clock;
5471
5472         lane = ironlake_get_lanes_required(target_clock, link_bw,
5473                                            intel_crtc->config.pipe_bpp);
5474
5475         intel_crtc->fdi_lanes = lane;
5476
5477         if (intel_crtc->config.pixel_multiplier > 1)
5478                 link_bw *= intel_crtc->config.pixel_multiplier;
5479         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5480                                link_bw, &m_n);
5481
5482         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5483 }
5484
5485 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5486                                       intel_clock_t *clock, u32 *fp,
5487                                       intel_clock_t *reduced_clock, u32 *fp2)
5488 {
5489         struct drm_crtc *crtc = &intel_crtc->base;
5490         struct drm_device *dev = crtc->dev;
5491         struct drm_i915_private *dev_priv = dev->dev_private;
5492         struct intel_encoder *intel_encoder;
5493         uint32_t dpll;
5494         int factor, num_connectors = 0;
5495         bool is_lvds = false, is_sdvo = false, is_tv = false;
5496
5497         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5498                 switch (intel_encoder->type) {
5499                 case INTEL_OUTPUT_LVDS:
5500                         is_lvds = true;
5501                         break;
5502                 case INTEL_OUTPUT_SDVO:
5503                 case INTEL_OUTPUT_HDMI:
5504                         is_sdvo = true;
5505                         if (intel_encoder->needs_tv_clock)
5506                                 is_tv = true;
5507                         break;
5508                 case INTEL_OUTPUT_TVOUT:
5509                         is_tv = true;
5510                         break;
5511                 }
5512
5513                 num_connectors++;
5514         }
5515
5516         /* Enable autotuning of the PLL clock (if permissible) */
5517         factor = 21;
5518         if (is_lvds) {
5519                 if ((intel_panel_use_ssc(dev_priv) &&
5520                      dev_priv->lvds_ssc_freq == 100) ||
5521                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5522                         factor = 25;
5523         } else if (is_sdvo && is_tv)
5524                 factor = 20;
5525
5526         if (clock->m < factor * clock->n)
5527                 *fp |= FP_CB_TUNE;
5528
5529         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5530                 *fp2 |= FP_CB_TUNE;
5531
5532         dpll = 0;
5533
5534         if (is_lvds)
5535                 dpll |= DPLLB_MODE_LVDS;
5536         else
5537                 dpll |= DPLLB_MODE_DAC_SERIAL;
5538         if (is_sdvo) {
5539                 if (intel_crtc->config.pixel_multiplier > 1) {
5540                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5541                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5542                 }
5543                 dpll |= DPLL_DVO_HIGH_SPEED;
5544         }
5545         if (intel_crtc->config.has_dp_encoder &&
5546             intel_crtc->config.has_pch_encoder)
5547                 dpll |= DPLL_DVO_HIGH_SPEED;
5548
5549         /* compute bitmask from p1 value */
5550         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5551         /* also FPA1 */
5552         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5553
5554         switch (clock->p2) {
5555         case 5:
5556                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5557                 break;
5558         case 7:
5559                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5560                 break;
5561         case 10:
5562                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5563                 break;
5564         case 14:
5565                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5566                 break;
5567         }
5568
5569         if (is_sdvo && is_tv)
5570                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5571         else if (is_tv)
5572                 /* XXX: just matching BIOS for now */
5573                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5574                 dpll |= 3;
5575         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5576                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5577         else
5578                 dpll |= PLL_REF_INPUT_DREFCLK;
5579
5580         return dpll;
5581 }
5582
5583 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5584                                   int x, int y,
5585                                   struct drm_framebuffer *fb)
5586 {
5587         struct drm_device *dev = crtc->dev;
5588         struct drm_i915_private *dev_priv = dev->dev_private;
5589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5590         struct drm_display_mode *adjusted_mode =
5591                 &intel_crtc->config.adjusted_mode;
5592         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5593         int pipe = intel_crtc->pipe;
5594         int plane = intel_crtc->plane;
5595         int num_connectors = 0;
5596         intel_clock_t clock, reduced_clock;
5597         u32 dpll, fp = 0, fp2 = 0;
5598         bool ok, has_reduced_clock = false;
5599         bool is_lvds = false;
5600         struct intel_encoder *encoder;
5601         int ret;
5602         bool dither, fdi_config_ok;
5603
5604         for_each_encoder_on_crtc(dev, crtc, encoder) {
5605                 switch (encoder->type) {
5606                 case INTEL_OUTPUT_LVDS:
5607                         is_lvds = true;
5608                         break;
5609                 }
5610
5611                 num_connectors++;
5612         }
5613
5614         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5615              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5616
5617         intel_crtc->config.cpu_transcoder = pipe;
5618
5619         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5620                                      &has_reduced_clock, &reduced_clock);
5621         if (!ok) {
5622                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5623                 return -EINVAL;
5624         }
5625         /* Compat-code for transition, will disappear. */
5626         if (!intel_crtc->config.clock_set) {
5627                 intel_crtc->config.dpll.n = clock.n;
5628                 intel_crtc->config.dpll.m1 = clock.m1;
5629                 intel_crtc->config.dpll.m2 = clock.m2;
5630                 intel_crtc->config.dpll.p1 = clock.p1;
5631                 intel_crtc->config.dpll.p2 = clock.p2;
5632         }
5633
5634         /* Ensure that the cursor is valid for the new mode before changing... */
5635         intel_crtc_update_cursor(crtc, true);
5636
5637         /* determine panel color depth */
5638         dither = intel_crtc->config.dither;
5639         if (is_lvds && dev_priv->lvds_dither)
5640                 dither = true;
5641
5642         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5643         if (has_reduced_clock)
5644                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5645                         reduced_clock.m2;
5646
5647         dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
5648                                      has_reduced_clock ? &fp2 : NULL);
5649
5650         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5651         drm_mode_debug_printmodeline(mode);
5652
5653         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5654         if (intel_crtc->config.has_pch_encoder) {
5655                 struct intel_pch_pll *pll;
5656
5657                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5658                 if (pll == NULL) {
5659                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5660                                          pipe_name(pipe));
5661                         return -EINVAL;
5662                 }
5663         } else
5664                 intel_put_pch_pll(intel_crtc);
5665
5666         if (intel_crtc->config.has_dp_encoder)
5667                 intel_dp_set_m_n(intel_crtc);
5668
5669         for_each_encoder_on_crtc(dev, crtc, encoder)
5670                 if (encoder->pre_pll_enable)
5671                         encoder->pre_pll_enable(encoder);
5672
5673         if (intel_crtc->pch_pll) {
5674                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5675
5676                 /* Wait for the clocks to stabilize. */
5677                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5678                 udelay(150);
5679
5680                 /* The pixel multiplier can only be updated once the
5681                  * DPLL is enabled and the clocks are stable.
5682                  *
5683                  * So write it again.
5684                  */
5685                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5686         }
5687
5688         intel_crtc->lowfreq_avail = false;
5689         if (intel_crtc->pch_pll) {
5690                 if (is_lvds && has_reduced_clock && i915_powersave) {
5691                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5692                         intel_crtc->lowfreq_avail = true;
5693                 } else {
5694                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5695                 }
5696         }
5697
5698         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5699
5700         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5701          * ironlake_check_fdi_lanes. */
5702         intel_crtc->fdi_lanes = 0;
5703         if (intel_crtc->config.has_pch_encoder)
5704                 ironlake_fdi_set_m_n(crtc);
5705
5706         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5707
5708         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5709
5710         /* Set up the display plane register */
5711         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5712         POSTING_READ(DSPCNTR(plane));
5713
5714         ret = intel_pipe_set_base(crtc, x, y, fb);
5715
5716         intel_update_watermarks(dev);
5717
5718         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5719
5720         return fdi_config_ok ? ret : -EINVAL;
5721 }
5722
5723 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5724                                      struct intel_crtc_config *pipe_config)
5725 {
5726         struct drm_device *dev = crtc->base.dev;
5727         struct drm_i915_private *dev_priv = dev->dev_private;
5728         uint32_t tmp;
5729
5730         tmp = I915_READ(PIPECONF(crtc->pipe));
5731         if (!(tmp & PIPECONF_ENABLE))
5732                 return false;
5733
5734         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5735                 pipe_config->has_pch_encoder = true;
5736
5737         return true;
5738 }
5739
5740 static void haswell_modeset_global_resources(struct drm_device *dev)
5741 {
5742         struct drm_i915_private *dev_priv = dev->dev_private;
5743         bool enable = false;
5744         struct intel_crtc *crtc;
5745         struct intel_encoder *encoder;
5746
5747         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5748                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5749                         enable = true;
5750                 /* XXX: Should check for edp transcoder here, but thanks to init
5751                  * sequence that's not yet available. Just in case desktop eDP
5752                  * on PORT D is possible on haswell, too. */
5753         }
5754
5755         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5756                             base.head) {
5757                 if (encoder->type != INTEL_OUTPUT_EDP &&
5758                     encoder->connectors_active)
5759                         enable = true;
5760         }
5761
5762         /* Even the eDP panel fitter is outside the always-on well. */
5763         if (dev_priv->pch_pf_size)
5764                 enable = true;
5765
5766         intel_set_power_well(dev, enable);
5767 }
5768
5769 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5770                                  int x, int y,
5771                                  struct drm_framebuffer *fb)
5772 {
5773         struct drm_device *dev = crtc->dev;
5774         struct drm_i915_private *dev_priv = dev->dev_private;
5775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5776         struct drm_display_mode *adjusted_mode =
5777                 &intel_crtc->config.adjusted_mode;
5778         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5779         int pipe = intel_crtc->pipe;
5780         int plane = intel_crtc->plane;
5781         int num_connectors = 0;
5782         bool is_cpu_edp = false;
5783         struct intel_encoder *encoder;
5784         int ret;
5785         bool dither;
5786
5787         for_each_encoder_on_crtc(dev, crtc, encoder) {
5788                 switch (encoder->type) {
5789                 case INTEL_OUTPUT_EDP:
5790                         if (!intel_encoder_is_pch_edp(&encoder->base))
5791                                 is_cpu_edp = true;
5792                         break;
5793                 }
5794
5795                 num_connectors++;
5796         }
5797
5798         if (is_cpu_edp)
5799                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5800         else
5801                 intel_crtc->config.cpu_transcoder = pipe;
5802
5803         /* We are not sure yet this won't happen. */
5804         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5805              INTEL_PCH_TYPE(dev));
5806
5807         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5808              num_connectors, pipe_name(pipe));
5809
5810         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5811                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5812
5813         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5814
5815         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5816                 return -EINVAL;
5817
5818         /* Ensure that the cursor is valid for the new mode before changing... */
5819         intel_crtc_update_cursor(crtc, true);
5820
5821         /* determine panel color depth */
5822         dither = intel_crtc->config.dither;
5823
5824         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5825         drm_mode_debug_printmodeline(mode);
5826
5827         if (intel_crtc->config.has_dp_encoder)
5828                 intel_dp_set_m_n(intel_crtc);
5829
5830         intel_crtc->lowfreq_avail = false;
5831
5832         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5833
5834         if (intel_crtc->config.has_pch_encoder)
5835                 ironlake_fdi_set_m_n(crtc);
5836
5837         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5838
5839         intel_set_pipe_csc(crtc);
5840
5841         /* Set up the display plane register */
5842         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5843         POSTING_READ(DSPCNTR(plane));
5844
5845         ret = intel_pipe_set_base(crtc, x, y, fb);
5846
5847         intel_update_watermarks(dev);
5848
5849         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5850
5851         return ret;
5852 }
5853
5854 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5855                                     struct intel_crtc_config *pipe_config)
5856 {
5857         struct drm_device *dev = crtc->base.dev;
5858         struct drm_i915_private *dev_priv = dev->dev_private;
5859         uint32_t tmp;
5860
5861         tmp = I915_READ(PIPECONF(crtc->config.cpu_transcoder));
5862         if (!(tmp & PIPECONF_ENABLE))
5863                 return false;
5864
5865         /*
5866          * aswell has only FDI/PCH transcoder A. It is which is connected to
5867          * DDI E. So just check whether this pipe is wired to DDI E and whether
5868          * the PCH transcoder is on.
5869          */
5870         tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5871         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5872             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5873                 pipe_config->has_pch_encoder = true;
5874
5875
5876         return true;
5877 }
5878
5879 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5880                                int x, int y,
5881                                struct drm_framebuffer *fb)
5882 {
5883         struct drm_device *dev = crtc->dev;
5884         struct drm_i915_private *dev_priv = dev->dev_private;
5885         struct drm_encoder_helper_funcs *encoder_funcs;
5886         struct intel_encoder *encoder;
5887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5888         struct drm_display_mode *adjusted_mode =
5889                 &intel_crtc->config.adjusted_mode;
5890         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5891         int pipe = intel_crtc->pipe;
5892         int ret;
5893
5894         drm_vblank_pre_modeset(dev, pipe);
5895
5896         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5897
5898         drm_vblank_post_modeset(dev, pipe);
5899
5900         if (ret != 0)
5901                 return ret;
5902
5903         for_each_encoder_on_crtc(dev, crtc, encoder) {
5904                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5905                         encoder->base.base.id,
5906                         drm_get_encoder_name(&encoder->base),
5907                         mode->base.id, mode->name);
5908                 if (encoder->mode_set) {
5909                         encoder->mode_set(encoder);
5910                 } else {
5911                         encoder_funcs = encoder->base.helper_private;
5912                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5913                 }
5914         }
5915
5916         return 0;
5917 }
5918
5919 static bool intel_eld_uptodate(struct drm_connector *connector,
5920                                int reg_eldv, uint32_t bits_eldv,
5921                                int reg_elda, uint32_t bits_elda,
5922                                int reg_edid)
5923 {
5924         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5925         uint8_t *eld = connector->eld;
5926         uint32_t i;
5927
5928         i = I915_READ(reg_eldv);
5929         i &= bits_eldv;
5930
5931         if (!eld[0])
5932                 return !i;
5933
5934         if (!i)
5935                 return false;
5936
5937         i = I915_READ(reg_elda);
5938         i &= ~bits_elda;
5939         I915_WRITE(reg_elda, i);
5940
5941         for (i = 0; i < eld[2]; i++)
5942                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5943                         return false;
5944
5945         return true;
5946 }
5947
5948 static void g4x_write_eld(struct drm_connector *connector,
5949                           struct drm_crtc *crtc)
5950 {
5951         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5952         uint8_t *eld = connector->eld;
5953         uint32_t eldv;
5954         uint32_t len;
5955         uint32_t i;
5956
5957         i = I915_READ(G4X_AUD_VID_DID);
5958
5959         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5960                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5961         else
5962                 eldv = G4X_ELDV_DEVCTG;
5963
5964         if (intel_eld_uptodate(connector,
5965                                G4X_AUD_CNTL_ST, eldv,
5966                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5967                                G4X_HDMIW_HDMIEDID))
5968                 return;
5969
5970         i = I915_READ(G4X_AUD_CNTL_ST);
5971         i &= ~(eldv | G4X_ELD_ADDR);
5972         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5973         I915_WRITE(G4X_AUD_CNTL_ST, i);
5974
5975         if (!eld[0])
5976                 return;
5977
5978         len = min_t(uint8_t, eld[2], len);
5979         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5980         for (i = 0; i < len; i++)
5981                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5982
5983         i = I915_READ(G4X_AUD_CNTL_ST);
5984         i |= eldv;
5985         I915_WRITE(G4X_AUD_CNTL_ST, i);
5986 }
5987
5988 static void haswell_write_eld(struct drm_connector *connector,
5989                                      struct drm_crtc *crtc)
5990 {
5991         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5992         uint8_t *eld = connector->eld;
5993         struct drm_device *dev = crtc->dev;
5994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5995         uint32_t eldv;
5996         uint32_t i;
5997         int len;
5998         int pipe = to_intel_crtc(crtc)->pipe;
5999         int tmp;
6000
6001         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6002         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6003         int aud_config = HSW_AUD_CFG(pipe);
6004         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6005
6006
6007         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6008
6009         /* Audio output enable */
6010         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6011         tmp = I915_READ(aud_cntrl_st2);
6012         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6013         I915_WRITE(aud_cntrl_st2, tmp);
6014
6015         /* Wait for 1 vertical blank */
6016         intel_wait_for_vblank(dev, pipe);
6017
6018         /* Set ELD valid state */
6019         tmp = I915_READ(aud_cntrl_st2);
6020         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6021         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6022         I915_WRITE(aud_cntrl_st2, tmp);
6023         tmp = I915_READ(aud_cntrl_st2);
6024         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6025
6026         /* Enable HDMI mode */
6027         tmp = I915_READ(aud_config);
6028         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6029         /* clear N_programing_enable and N_value_index */
6030         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6031         I915_WRITE(aud_config, tmp);
6032
6033         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6034
6035         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6036         intel_crtc->eld_vld = true;
6037
6038         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6039                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6040                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6041                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6042         } else
6043                 I915_WRITE(aud_config, 0);
6044
6045         if (intel_eld_uptodate(connector,
6046                                aud_cntrl_st2, eldv,
6047                                aud_cntl_st, IBX_ELD_ADDRESS,
6048                                hdmiw_hdmiedid))
6049                 return;
6050
6051         i = I915_READ(aud_cntrl_st2);
6052         i &= ~eldv;
6053         I915_WRITE(aud_cntrl_st2, i);
6054
6055         if (!eld[0])
6056                 return;
6057
6058         i = I915_READ(aud_cntl_st);
6059         i &= ~IBX_ELD_ADDRESS;
6060         I915_WRITE(aud_cntl_st, i);
6061         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6062         DRM_DEBUG_DRIVER("port num:%d\n", i);
6063
6064         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6065         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6066         for (i = 0; i < len; i++)
6067                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6068
6069         i = I915_READ(aud_cntrl_st2);
6070         i |= eldv;
6071         I915_WRITE(aud_cntrl_st2, i);
6072
6073 }
6074
6075 static void ironlake_write_eld(struct drm_connector *connector,
6076                                      struct drm_crtc *crtc)
6077 {
6078         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6079         uint8_t *eld = connector->eld;
6080         uint32_t eldv;
6081         uint32_t i;
6082         int len;
6083         int hdmiw_hdmiedid;
6084         int aud_config;
6085         int aud_cntl_st;
6086         int aud_cntrl_st2;
6087         int pipe = to_intel_crtc(crtc)->pipe;
6088
6089         if (HAS_PCH_IBX(connector->dev)) {
6090                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6091                 aud_config = IBX_AUD_CFG(pipe);
6092                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6093                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6094         } else {
6095                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6096                 aud_config = CPT_AUD_CFG(pipe);
6097                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6098                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6099         }
6100
6101         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6102
6103         i = I915_READ(aud_cntl_st);
6104         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6105         if (!i) {
6106                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6107                 /* operate blindly on all ports */
6108                 eldv = IBX_ELD_VALIDB;
6109                 eldv |= IBX_ELD_VALIDB << 4;
6110                 eldv |= IBX_ELD_VALIDB << 8;
6111         } else {
6112                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6113                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6114         }
6115
6116         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6117                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6118                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6119                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6120         } else
6121                 I915_WRITE(aud_config, 0);
6122
6123         if (intel_eld_uptodate(connector,
6124                                aud_cntrl_st2, eldv,
6125                                aud_cntl_st, IBX_ELD_ADDRESS,
6126                                hdmiw_hdmiedid))
6127                 return;
6128
6129         i = I915_READ(aud_cntrl_st2);
6130         i &= ~eldv;
6131         I915_WRITE(aud_cntrl_st2, i);
6132
6133         if (!eld[0])
6134                 return;
6135
6136         i = I915_READ(aud_cntl_st);
6137         i &= ~IBX_ELD_ADDRESS;
6138         I915_WRITE(aud_cntl_st, i);
6139
6140         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6141         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6142         for (i = 0; i < len; i++)
6143                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6144
6145         i = I915_READ(aud_cntrl_st2);
6146         i |= eldv;
6147         I915_WRITE(aud_cntrl_st2, i);
6148 }
6149
6150 void intel_write_eld(struct drm_encoder *encoder,
6151                      struct drm_display_mode *mode)
6152 {
6153         struct drm_crtc *crtc = encoder->crtc;
6154         struct drm_connector *connector;
6155         struct drm_device *dev = encoder->dev;
6156         struct drm_i915_private *dev_priv = dev->dev_private;
6157
6158         connector = drm_select_eld(encoder, mode);
6159         if (!connector)
6160                 return;
6161
6162         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6163                          connector->base.id,
6164                          drm_get_connector_name(connector),
6165                          connector->encoder->base.id,
6166                          drm_get_encoder_name(connector->encoder));
6167
6168         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6169
6170         if (dev_priv->display.write_eld)
6171                 dev_priv->display.write_eld(connector, crtc);
6172 }
6173
6174 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6175 void intel_crtc_load_lut(struct drm_crtc *crtc)
6176 {
6177         struct drm_device *dev = crtc->dev;
6178         struct drm_i915_private *dev_priv = dev->dev_private;
6179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6180         int palreg = PALETTE(intel_crtc->pipe);
6181         int i;
6182
6183         /* The clocks have to be on to load the palette. */
6184         if (!crtc->enabled || !intel_crtc->active)
6185                 return;
6186
6187         /* use legacy palette for Ironlake */
6188         if (HAS_PCH_SPLIT(dev))
6189                 palreg = LGC_PALETTE(intel_crtc->pipe);
6190
6191         for (i = 0; i < 256; i++) {
6192                 I915_WRITE(palreg + 4 * i,
6193                            (intel_crtc->lut_r[i] << 16) |
6194                            (intel_crtc->lut_g[i] << 8) |
6195                            intel_crtc->lut_b[i]);
6196         }
6197 }
6198
6199 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6200 {
6201         struct drm_device *dev = crtc->dev;
6202         struct drm_i915_private *dev_priv = dev->dev_private;
6203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6204         bool visible = base != 0;
6205         u32 cntl;
6206
6207         if (intel_crtc->cursor_visible == visible)
6208                 return;
6209
6210         cntl = I915_READ(_CURACNTR);
6211         if (visible) {
6212                 /* On these chipsets we can only modify the base whilst
6213                  * the cursor is disabled.
6214                  */
6215                 I915_WRITE(_CURABASE, base);
6216
6217                 cntl &= ~(CURSOR_FORMAT_MASK);
6218                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6219                 cntl |= CURSOR_ENABLE |
6220                         CURSOR_GAMMA_ENABLE |
6221                         CURSOR_FORMAT_ARGB;
6222         } else
6223                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6224         I915_WRITE(_CURACNTR, cntl);
6225
6226         intel_crtc->cursor_visible = visible;
6227 }
6228
6229 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6230 {
6231         struct drm_device *dev = crtc->dev;
6232         struct drm_i915_private *dev_priv = dev->dev_private;
6233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6234         int pipe = intel_crtc->pipe;
6235         bool visible = base != 0;
6236
6237         if (intel_crtc->cursor_visible != visible) {
6238                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6239                 if (base) {
6240                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6241                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6242                         cntl |= pipe << 28; /* Connect to correct pipe */
6243                 } else {
6244                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6245                         cntl |= CURSOR_MODE_DISABLE;
6246                 }
6247                 I915_WRITE(CURCNTR(pipe), cntl);
6248
6249                 intel_crtc->cursor_visible = visible;
6250         }
6251         /* and commit changes on next vblank */
6252         I915_WRITE(CURBASE(pipe), base);
6253 }
6254
6255 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6256 {
6257         struct drm_device *dev = crtc->dev;
6258         struct drm_i915_private *dev_priv = dev->dev_private;
6259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6260         int pipe = intel_crtc->pipe;
6261         bool visible = base != 0;
6262
6263         if (intel_crtc->cursor_visible != visible) {
6264                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6265                 if (base) {
6266                         cntl &= ~CURSOR_MODE;
6267                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6268                 } else {
6269                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6270                         cntl |= CURSOR_MODE_DISABLE;
6271                 }
6272                 if (IS_HASWELL(dev))
6273                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6274                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6275
6276                 intel_crtc->cursor_visible = visible;
6277         }
6278         /* and commit changes on next vblank */
6279         I915_WRITE(CURBASE_IVB(pipe), base);
6280 }
6281
6282 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6283 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6284                                      bool on)
6285 {
6286         struct drm_device *dev = crtc->dev;
6287         struct drm_i915_private *dev_priv = dev->dev_private;
6288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6289         int pipe = intel_crtc->pipe;
6290         int x = intel_crtc->cursor_x;
6291         int y = intel_crtc->cursor_y;
6292         u32 base, pos;
6293         bool visible;
6294
6295         pos = 0;
6296
6297         if (on && crtc->enabled && crtc->fb) {
6298                 base = intel_crtc->cursor_addr;
6299                 if (x > (int) crtc->fb->width)
6300                         base = 0;
6301
6302                 if (y > (int) crtc->fb->height)
6303                         base = 0;
6304         } else
6305                 base = 0;
6306
6307         if (x < 0) {
6308                 if (x + intel_crtc->cursor_width < 0)
6309                         base = 0;
6310
6311                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6312                 x = -x;
6313         }
6314         pos |= x << CURSOR_X_SHIFT;
6315
6316         if (y < 0) {
6317                 if (y + intel_crtc->cursor_height < 0)
6318                         base = 0;
6319
6320                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6321                 y = -y;
6322         }
6323         pos |= y << CURSOR_Y_SHIFT;
6324
6325         visible = base != 0;
6326         if (!visible && !intel_crtc->cursor_visible)
6327                 return;
6328
6329         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6330                 I915_WRITE(CURPOS_IVB(pipe), pos);
6331                 ivb_update_cursor(crtc, base);
6332         } else {
6333                 I915_WRITE(CURPOS(pipe), pos);
6334                 if (IS_845G(dev) || IS_I865G(dev))
6335                         i845_update_cursor(crtc, base);
6336                 else
6337                         i9xx_update_cursor(crtc, base);
6338         }
6339 }
6340
6341 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6342                                  struct drm_file *file,
6343                                  uint32_t handle,
6344                                  uint32_t width, uint32_t height)
6345 {
6346         struct drm_device *dev = crtc->dev;
6347         struct drm_i915_private *dev_priv = dev->dev_private;
6348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6349         struct drm_i915_gem_object *obj;
6350         uint32_t addr;
6351         int ret;
6352
6353         /* if we want to turn off the cursor ignore width and height */
6354         if (!handle) {
6355                 DRM_DEBUG_KMS("cursor off\n");
6356                 addr = 0;
6357                 obj = NULL;
6358                 mutex_lock(&dev->struct_mutex);
6359                 goto finish;
6360         }
6361
6362         /* Currently we only support 64x64 cursors */
6363         if (width != 64 || height != 64) {
6364                 DRM_ERROR("we currently only support 64x64 cursors\n");
6365                 return -EINVAL;
6366         }
6367
6368         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6369         if (&obj->base == NULL)
6370                 return -ENOENT;
6371
6372         if (obj->base.size < width * height * 4) {
6373                 DRM_ERROR("buffer is to small\n");
6374                 ret = -ENOMEM;
6375                 goto fail;
6376         }
6377
6378         /* we only need to pin inside GTT if cursor is non-phy */
6379         mutex_lock(&dev->struct_mutex);
6380         if (!dev_priv->info->cursor_needs_physical) {
6381                 unsigned alignment;
6382
6383                 if (obj->tiling_mode) {
6384                         DRM_ERROR("cursor cannot be tiled\n");
6385                         ret = -EINVAL;
6386                         goto fail_locked;
6387                 }
6388
6389                 /* Note that the w/a also requires 2 PTE of padding following
6390                  * the bo. We currently fill all unused PTE with the shadow
6391                  * page and so we should always have valid PTE following the
6392                  * cursor preventing the VT-d warning.
6393                  */
6394                 alignment = 0;
6395                 if (need_vtd_wa(dev))
6396                         alignment = 64*1024;
6397
6398                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6399                 if (ret) {
6400                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6401                         goto fail_locked;
6402                 }
6403
6404                 ret = i915_gem_object_put_fence(obj);
6405                 if (ret) {
6406                         DRM_ERROR("failed to release fence for cursor");
6407                         goto fail_unpin;
6408                 }
6409
6410                 addr = obj->gtt_offset;
6411         } else {
6412                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6413                 ret = i915_gem_attach_phys_object(dev, obj,
6414                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6415                                                   align);
6416                 if (ret) {
6417                         DRM_ERROR("failed to attach phys object\n");
6418                         goto fail_locked;
6419                 }
6420                 addr = obj->phys_obj->handle->busaddr;
6421         }
6422
6423         if (IS_GEN2(dev))
6424                 I915_WRITE(CURSIZE, (height << 12) | width);
6425
6426  finish:
6427         if (intel_crtc->cursor_bo) {
6428                 if (dev_priv->info->cursor_needs_physical) {
6429                         if (intel_crtc->cursor_bo != obj)
6430                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6431                 } else
6432                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6433                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6434         }
6435
6436         mutex_unlock(&dev->struct_mutex);
6437
6438         intel_crtc->cursor_addr = addr;
6439         intel_crtc->cursor_bo = obj;
6440         intel_crtc->cursor_width = width;
6441         intel_crtc->cursor_height = height;
6442
6443         intel_crtc_update_cursor(crtc, true);
6444
6445         return 0;
6446 fail_unpin:
6447         i915_gem_object_unpin(obj);
6448 fail_locked:
6449         mutex_unlock(&dev->struct_mutex);
6450 fail:
6451         drm_gem_object_unreference_unlocked(&obj->base);
6452         return ret;
6453 }
6454
6455 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6456 {
6457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6458
6459         intel_crtc->cursor_x = x;
6460         intel_crtc->cursor_y = y;
6461
6462         intel_crtc_update_cursor(crtc, true);
6463
6464         return 0;
6465 }
6466
6467 /** Sets the color ramps on behalf of RandR */
6468 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6469                                  u16 blue, int regno)
6470 {
6471         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6472
6473         intel_crtc->lut_r[regno] = red >> 8;
6474         intel_crtc->lut_g[regno] = green >> 8;
6475         intel_crtc->lut_b[regno] = blue >> 8;
6476 }
6477
6478 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6479                              u16 *blue, int regno)
6480 {
6481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6482
6483         *red = intel_crtc->lut_r[regno] << 8;
6484         *green = intel_crtc->lut_g[regno] << 8;
6485         *blue = intel_crtc->lut_b[regno] << 8;
6486 }
6487
6488 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6489                                  u16 *blue, uint32_t start, uint32_t size)
6490 {
6491         int end = (start + size > 256) ? 256 : start + size, i;
6492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6493
6494         for (i = start; i < end; i++) {
6495                 intel_crtc->lut_r[i] = red[i] >> 8;
6496                 intel_crtc->lut_g[i] = green[i] >> 8;
6497                 intel_crtc->lut_b[i] = blue[i] >> 8;
6498         }
6499
6500         intel_crtc_load_lut(crtc);
6501 }
6502
6503 /* VESA 640x480x72Hz mode to set on the pipe */
6504 static struct drm_display_mode load_detect_mode = {
6505         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6506                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6507 };
6508
6509 static struct drm_framebuffer *
6510 intel_framebuffer_create(struct drm_device *dev,
6511                          struct drm_mode_fb_cmd2 *mode_cmd,
6512                          struct drm_i915_gem_object *obj)
6513 {
6514         struct intel_framebuffer *intel_fb;
6515         int ret;
6516
6517         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6518         if (!intel_fb) {
6519                 drm_gem_object_unreference_unlocked(&obj->base);
6520                 return ERR_PTR(-ENOMEM);
6521         }
6522
6523         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6524         if (ret) {
6525                 drm_gem_object_unreference_unlocked(&obj->base);
6526                 kfree(intel_fb);
6527                 return ERR_PTR(ret);
6528         }
6529
6530         return &intel_fb->base;
6531 }
6532
6533 static u32
6534 intel_framebuffer_pitch_for_width(int width, int bpp)
6535 {
6536         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6537         return ALIGN(pitch, 64);
6538 }
6539
6540 static u32
6541 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6542 {
6543         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6544         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6545 }
6546
6547 static struct drm_framebuffer *
6548 intel_framebuffer_create_for_mode(struct drm_device *dev,
6549                                   struct drm_display_mode *mode,
6550                                   int depth, int bpp)
6551 {
6552         struct drm_i915_gem_object *obj;
6553         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6554
6555         obj = i915_gem_alloc_object(dev,
6556                                     intel_framebuffer_size_for_mode(mode, bpp));
6557         if (obj == NULL)
6558                 return ERR_PTR(-ENOMEM);
6559
6560         mode_cmd.width = mode->hdisplay;
6561         mode_cmd.height = mode->vdisplay;
6562         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6563                                                                 bpp);
6564         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6565
6566         return intel_framebuffer_create(dev, &mode_cmd, obj);
6567 }
6568
6569 static struct drm_framebuffer *
6570 mode_fits_in_fbdev(struct drm_device *dev,
6571                    struct drm_display_mode *mode)
6572 {
6573         struct drm_i915_private *dev_priv = dev->dev_private;
6574         struct drm_i915_gem_object *obj;
6575         struct drm_framebuffer *fb;
6576
6577         if (dev_priv->fbdev == NULL)
6578                 return NULL;
6579
6580         obj = dev_priv->fbdev->ifb.obj;
6581         if (obj == NULL)
6582                 return NULL;
6583
6584         fb = &dev_priv->fbdev->ifb.base;
6585         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6586                                                                fb->bits_per_pixel))
6587                 return NULL;
6588
6589         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6590                 return NULL;
6591
6592         return fb;
6593 }
6594
6595 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6596                                 struct drm_display_mode *mode,
6597                                 struct intel_load_detect_pipe *old)
6598 {
6599         struct intel_crtc *intel_crtc;
6600         struct intel_encoder *intel_encoder =
6601                 intel_attached_encoder(connector);
6602         struct drm_crtc *possible_crtc;
6603         struct drm_encoder *encoder = &intel_encoder->base;
6604         struct drm_crtc *crtc = NULL;
6605         struct drm_device *dev = encoder->dev;
6606         struct drm_framebuffer *fb;
6607         int i = -1;
6608
6609         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6610                       connector->base.id, drm_get_connector_name(connector),
6611                       encoder->base.id, drm_get_encoder_name(encoder));
6612
6613         /*
6614          * Algorithm gets a little messy:
6615          *
6616          *   - if the connector already has an assigned crtc, use it (but make
6617          *     sure it's on first)
6618          *
6619          *   - try to find the first unused crtc that can drive this connector,
6620          *     and use that if we find one
6621          */
6622
6623         /* See if we already have a CRTC for this connector */
6624         if (encoder->crtc) {
6625                 crtc = encoder->crtc;
6626
6627                 mutex_lock(&crtc->mutex);
6628
6629                 old->dpms_mode = connector->dpms;
6630                 old->load_detect_temp = false;
6631
6632                 /* Make sure the crtc and connector are running */
6633                 if (connector->dpms != DRM_MODE_DPMS_ON)
6634                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6635
6636                 return true;
6637         }
6638
6639         /* Find an unused one (if possible) */
6640         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6641                 i++;
6642                 if (!(encoder->possible_crtcs & (1 << i)))
6643                         continue;
6644                 if (!possible_crtc->enabled) {
6645                         crtc = possible_crtc;
6646                         break;
6647                 }
6648         }
6649
6650         /*
6651          * If we didn't find an unused CRTC, don't use any.
6652          */
6653         if (!crtc) {
6654                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6655                 return false;
6656         }
6657
6658         mutex_lock(&crtc->mutex);
6659         intel_encoder->new_crtc = to_intel_crtc(crtc);
6660         to_intel_connector(connector)->new_encoder = intel_encoder;
6661
6662         intel_crtc = to_intel_crtc(crtc);
6663         old->dpms_mode = connector->dpms;
6664         old->load_detect_temp = true;
6665         old->release_fb = NULL;
6666
6667         if (!mode)
6668                 mode = &load_detect_mode;
6669
6670         /* We need a framebuffer large enough to accommodate all accesses
6671          * that the plane may generate whilst we perform load detection.
6672          * We can not rely on the fbcon either being present (we get called
6673          * during its initialisation to detect all boot displays, or it may
6674          * not even exist) or that it is large enough to satisfy the
6675          * requested mode.
6676          */
6677         fb = mode_fits_in_fbdev(dev, mode);
6678         if (fb == NULL) {
6679                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6680                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6681                 old->release_fb = fb;
6682         } else
6683                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6684         if (IS_ERR(fb)) {
6685                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6686                 mutex_unlock(&crtc->mutex);
6687                 return false;
6688         }
6689
6690         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6691                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6692                 if (old->release_fb)
6693                         old->release_fb->funcs->destroy(old->release_fb);
6694                 mutex_unlock(&crtc->mutex);
6695                 return false;
6696         }
6697
6698         /* let the connector get through one full cycle before testing */
6699         intel_wait_for_vblank(dev, intel_crtc->pipe);
6700         return true;
6701 }
6702
6703 void intel_release_load_detect_pipe(struct drm_connector *connector,
6704                                     struct intel_load_detect_pipe *old)
6705 {
6706         struct intel_encoder *intel_encoder =
6707                 intel_attached_encoder(connector);
6708         struct drm_encoder *encoder = &intel_encoder->base;
6709         struct drm_crtc *crtc = encoder->crtc;
6710
6711         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6712                       connector->base.id, drm_get_connector_name(connector),
6713                       encoder->base.id, drm_get_encoder_name(encoder));
6714
6715         if (old->load_detect_temp) {
6716                 to_intel_connector(connector)->new_encoder = NULL;
6717                 intel_encoder->new_crtc = NULL;
6718                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6719
6720                 if (old->release_fb) {
6721                         drm_framebuffer_unregister_private(old->release_fb);
6722                         drm_framebuffer_unreference(old->release_fb);
6723                 }
6724
6725                 mutex_unlock(&crtc->mutex);
6726                 return;
6727         }
6728
6729         /* Switch crtc and encoder back off if necessary */
6730         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6731                 connector->funcs->dpms(connector, old->dpms_mode);
6732
6733         mutex_unlock(&crtc->mutex);
6734 }
6735
6736 /* Returns the clock of the currently programmed mode of the given pipe. */
6737 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6738 {
6739         struct drm_i915_private *dev_priv = dev->dev_private;
6740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6741         int pipe = intel_crtc->pipe;
6742         u32 dpll = I915_READ(DPLL(pipe));
6743         u32 fp;
6744         intel_clock_t clock;
6745
6746         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6747                 fp = I915_READ(FP0(pipe));
6748         else
6749                 fp = I915_READ(FP1(pipe));
6750
6751         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6752         if (IS_PINEVIEW(dev)) {
6753                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6754                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6755         } else {
6756                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6757                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6758         }
6759
6760         if (!IS_GEN2(dev)) {
6761                 if (IS_PINEVIEW(dev))
6762                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6763                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6764                 else
6765                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6766                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6767
6768                 switch (dpll & DPLL_MODE_MASK) {
6769                 case DPLLB_MODE_DAC_SERIAL:
6770                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6771                                 5 : 10;
6772                         break;
6773                 case DPLLB_MODE_LVDS:
6774                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6775                                 7 : 14;
6776                         break;
6777                 default:
6778                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6779                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6780                         return 0;
6781                 }
6782
6783                 /* XXX: Handle the 100Mhz refclk */
6784                 intel_clock(dev, 96000, &clock);
6785         } else {
6786                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6787
6788                 if (is_lvds) {
6789                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6790                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6791                         clock.p2 = 14;
6792
6793                         if ((dpll & PLL_REF_INPUT_MASK) ==
6794                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6795                                 /* XXX: might not be 66MHz */
6796                                 intel_clock(dev, 66000, &clock);
6797                         } else
6798                                 intel_clock(dev, 48000, &clock);
6799                 } else {
6800                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6801                                 clock.p1 = 2;
6802                         else {
6803                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6804                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6805                         }
6806                         if (dpll & PLL_P2_DIVIDE_BY_4)
6807                                 clock.p2 = 4;
6808                         else
6809                                 clock.p2 = 2;
6810
6811                         intel_clock(dev, 48000, &clock);
6812                 }
6813         }
6814
6815         /* XXX: It would be nice to validate the clocks, but we can't reuse
6816          * i830PllIsValid() because it relies on the xf86_config connector
6817          * configuration being accurate, which it isn't necessarily.
6818          */
6819
6820         return clock.dot;
6821 }
6822
6823 /** Returns the currently programmed mode of the given pipe. */
6824 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6825                                              struct drm_crtc *crtc)
6826 {
6827         struct drm_i915_private *dev_priv = dev->dev_private;
6828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6829         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6830         struct drm_display_mode *mode;
6831         int htot = I915_READ(HTOTAL(cpu_transcoder));
6832         int hsync = I915_READ(HSYNC(cpu_transcoder));
6833         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6834         int vsync = I915_READ(VSYNC(cpu_transcoder));
6835
6836         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6837         if (!mode)
6838                 return NULL;
6839
6840         mode->clock = intel_crtc_clock_get(dev, crtc);
6841         mode->hdisplay = (htot & 0xffff) + 1;
6842         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6843         mode->hsync_start = (hsync & 0xffff) + 1;
6844         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6845         mode->vdisplay = (vtot & 0xffff) + 1;
6846         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6847         mode->vsync_start = (vsync & 0xffff) + 1;
6848         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6849
6850         drm_mode_set_name(mode);
6851
6852         return mode;
6853 }
6854
6855 static void intel_increase_pllclock(struct drm_crtc *crtc)
6856 {
6857         struct drm_device *dev = crtc->dev;
6858         drm_i915_private_t *dev_priv = dev->dev_private;
6859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6860         int pipe = intel_crtc->pipe;
6861         int dpll_reg = DPLL(pipe);
6862         int dpll;
6863
6864         if (HAS_PCH_SPLIT(dev))
6865                 return;
6866
6867         if (!dev_priv->lvds_downclock_avail)
6868                 return;
6869
6870         dpll = I915_READ(dpll_reg);
6871         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6872                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6873
6874                 assert_panel_unlocked(dev_priv, pipe);
6875
6876                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6877                 I915_WRITE(dpll_reg, dpll);
6878                 intel_wait_for_vblank(dev, pipe);
6879
6880                 dpll = I915_READ(dpll_reg);
6881                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6882                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6883         }
6884 }
6885
6886 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6887 {
6888         struct drm_device *dev = crtc->dev;
6889         drm_i915_private_t *dev_priv = dev->dev_private;
6890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6891
6892         if (HAS_PCH_SPLIT(dev))
6893                 return;
6894
6895         if (!dev_priv->lvds_downclock_avail)
6896                 return;
6897
6898         /*
6899          * Since this is called by a timer, we should never get here in
6900          * the manual case.
6901          */
6902         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6903                 int pipe = intel_crtc->pipe;
6904                 int dpll_reg = DPLL(pipe);
6905                 int dpll;
6906
6907                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6908
6909                 assert_panel_unlocked(dev_priv, pipe);
6910
6911                 dpll = I915_READ(dpll_reg);
6912                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6913                 I915_WRITE(dpll_reg, dpll);
6914                 intel_wait_for_vblank(dev, pipe);
6915                 dpll = I915_READ(dpll_reg);
6916                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6917                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6918         }
6919
6920 }
6921
6922 void intel_mark_busy(struct drm_device *dev)
6923 {
6924         i915_update_gfx_val(dev->dev_private);
6925 }
6926
6927 void intel_mark_idle(struct drm_device *dev)
6928 {
6929         struct drm_crtc *crtc;
6930
6931         if (!i915_powersave)
6932                 return;
6933
6934         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6935                 if (!crtc->fb)
6936                         continue;
6937
6938                 intel_decrease_pllclock(crtc);
6939         }
6940 }
6941
6942 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6943 {
6944         struct drm_device *dev = obj->base.dev;
6945         struct drm_crtc *crtc;
6946
6947         if (!i915_powersave)
6948                 return;
6949
6950         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6951                 if (!crtc->fb)
6952                         continue;
6953
6954                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6955                         intel_increase_pllclock(crtc);
6956         }
6957 }
6958
6959 static void intel_crtc_destroy(struct drm_crtc *crtc)
6960 {
6961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6962         struct drm_device *dev = crtc->dev;
6963         struct intel_unpin_work *work;
6964         unsigned long flags;
6965
6966         spin_lock_irqsave(&dev->event_lock, flags);
6967         work = intel_crtc->unpin_work;
6968         intel_crtc->unpin_work = NULL;
6969         spin_unlock_irqrestore(&dev->event_lock, flags);
6970
6971         if (work) {
6972                 cancel_work_sync(&work->work);
6973                 kfree(work);
6974         }
6975
6976         drm_crtc_cleanup(crtc);
6977
6978         kfree(intel_crtc);
6979 }
6980
6981 static void intel_unpin_work_fn(struct work_struct *__work)
6982 {
6983         struct intel_unpin_work *work =
6984                 container_of(__work, struct intel_unpin_work, work);
6985         struct drm_device *dev = work->crtc->dev;
6986
6987         mutex_lock(&dev->struct_mutex);
6988         intel_unpin_fb_obj(work->old_fb_obj);
6989         drm_gem_object_unreference(&work->pending_flip_obj->base);
6990         drm_gem_object_unreference(&work->old_fb_obj->base);
6991
6992         intel_update_fbc(dev);
6993         mutex_unlock(&dev->struct_mutex);
6994
6995         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6996         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6997
6998         kfree(work);
6999 }
7000
7001 static void do_intel_finish_page_flip(struct drm_device *dev,
7002                                       struct drm_crtc *crtc)
7003 {
7004         drm_i915_private_t *dev_priv = dev->dev_private;
7005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7006         struct intel_unpin_work *work;
7007         unsigned long flags;
7008
7009         /* Ignore early vblank irqs */
7010         if (intel_crtc == NULL)
7011                 return;
7012
7013         spin_lock_irqsave(&dev->event_lock, flags);
7014         work = intel_crtc->unpin_work;
7015
7016         /* Ensure we don't miss a work->pending update ... */
7017         smp_rmb();
7018
7019         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7020                 spin_unlock_irqrestore(&dev->event_lock, flags);
7021                 return;
7022         }
7023
7024         /* and that the unpin work is consistent wrt ->pending. */
7025         smp_rmb();
7026
7027         intel_crtc->unpin_work = NULL;
7028
7029         if (work->event)
7030                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7031
7032         drm_vblank_put(dev, intel_crtc->pipe);
7033
7034         spin_unlock_irqrestore(&dev->event_lock, flags);
7035
7036         wake_up_all(&dev_priv->pending_flip_queue);
7037
7038         queue_work(dev_priv->wq, &work->work);
7039
7040         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7041 }
7042
7043 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7044 {
7045         drm_i915_private_t *dev_priv = dev->dev_private;
7046         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7047
7048         do_intel_finish_page_flip(dev, crtc);
7049 }
7050
7051 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7052 {
7053         drm_i915_private_t *dev_priv = dev->dev_private;
7054         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7055
7056         do_intel_finish_page_flip(dev, crtc);
7057 }
7058
7059 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7060 {
7061         drm_i915_private_t *dev_priv = dev->dev_private;
7062         struct intel_crtc *intel_crtc =
7063                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7064         unsigned long flags;
7065
7066         /* NB: An MMIO update of the plane base pointer will also
7067          * generate a page-flip completion irq, i.e. every modeset
7068          * is also accompanied by a spurious intel_prepare_page_flip().
7069          */
7070         spin_lock_irqsave(&dev->event_lock, flags);
7071         if (intel_crtc->unpin_work)
7072                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7073         spin_unlock_irqrestore(&dev->event_lock, flags);
7074 }
7075
7076 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7077 {
7078         /* Ensure that the work item is consistent when activating it ... */
7079         smp_wmb();
7080         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7081         /* and that it is marked active as soon as the irq could fire. */
7082         smp_wmb();
7083 }
7084
7085 static int intel_gen2_queue_flip(struct drm_device *dev,
7086                                  struct drm_crtc *crtc,
7087                                  struct drm_framebuffer *fb,
7088                                  struct drm_i915_gem_object *obj)
7089 {
7090         struct drm_i915_private *dev_priv = dev->dev_private;
7091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7092         u32 flip_mask;
7093         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7094         int ret;
7095
7096         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7097         if (ret)
7098                 goto err;
7099
7100         ret = intel_ring_begin(ring, 6);
7101         if (ret)
7102                 goto err_unpin;
7103
7104         /* Can't queue multiple flips, so wait for the previous
7105          * one to finish before executing the next.
7106          */
7107         if (intel_crtc->plane)
7108                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7109         else
7110                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7111         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7112         intel_ring_emit(ring, MI_NOOP);
7113         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7114                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7115         intel_ring_emit(ring, fb->pitches[0]);
7116         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7117         intel_ring_emit(ring, 0); /* aux display base address, unused */
7118
7119         intel_mark_page_flip_active(intel_crtc);
7120         intel_ring_advance(ring);
7121         return 0;
7122
7123 err_unpin:
7124         intel_unpin_fb_obj(obj);
7125 err:
7126         return ret;
7127 }
7128
7129 static int intel_gen3_queue_flip(struct drm_device *dev,
7130                                  struct drm_crtc *crtc,
7131                                  struct drm_framebuffer *fb,
7132                                  struct drm_i915_gem_object *obj)
7133 {
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7136         u32 flip_mask;
7137         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7138         int ret;
7139
7140         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7141         if (ret)
7142                 goto err;
7143
7144         ret = intel_ring_begin(ring, 6);
7145         if (ret)
7146                 goto err_unpin;
7147
7148         if (intel_crtc->plane)
7149                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7150         else
7151                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7152         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7153         intel_ring_emit(ring, MI_NOOP);
7154         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7155                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7156         intel_ring_emit(ring, fb->pitches[0]);
7157         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7158         intel_ring_emit(ring, MI_NOOP);
7159
7160         intel_mark_page_flip_active(intel_crtc);
7161         intel_ring_advance(ring);
7162         return 0;
7163
7164 err_unpin:
7165         intel_unpin_fb_obj(obj);
7166 err:
7167         return ret;
7168 }
7169
7170 static int intel_gen4_queue_flip(struct drm_device *dev,
7171                                  struct drm_crtc *crtc,
7172                                  struct drm_framebuffer *fb,
7173                                  struct drm_i915_gem_object *obj)
7174 {
7175         struct drm_i915_private *dev_priv = dev->dev_private;
7176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7177         uint32_t pf, pipesrc;
7178         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7179         int ret;
7180
7181         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7182         if (ret)
7183                 goto err;
7184
7185         ret = intel_ring_begin(ring, 4);
7186         if (ret)
7187                 goto err_unpin;
7188
7189         /* i965+ uses the linear or tiled offsets from the
7190          * Display Registers (which do not change across a page-flip)
7191          * so we need only reprogram the base address.
7192          */
7193         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7194                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7195         intel_ring_emit(ring, fb->pitches[0]);
7196         intel_ring_emit(ring,
7197                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7198                         obj->tiling_mode);
7199
7200         /* XXX Enabling the panel-fitter across page-flip is so far
7201          * untested on non-native modes, so ignore it for now.
7202          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7203          */
7204         pf = 0;
7205         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7206         intel_ring_emit(ring, pf | pipesrc);
7207
7208         intel_mark_page_flip_active(intel_crtc);
7209         intel_ring_advance(ring);
7210         return 0;
7211
7212 err_unpin:
7213         intel_unpin_fb_obj(obj);
7214 err:
7215         return ret;
7216 }
7217
7218 static int intel_gen6_queue_flip(struct drm_device *dev,
7219                                  struct drm_crtc *crtc,
7220                                  struct drm_framebuffer *fb,
7221                                  struct drm_i915_gem_object *obj)
7222 {
7223         struct drm_i915_private *dev_priv = dev->dev_private;
7224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7225         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7226         uint32_t pf, pipesrc;
7227         int ret;
7228
7229         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7230         if (ret)
7231                 goto err;
7232
7233         ret = intel_ring_begin(ring, 4);
7234         if (ret)
7235                 goto err_unpin;
7236
7237         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7238                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7239         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7240         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7241
7242         /* Contrary to the suggestions in the documentation,
7243          * "Enable Panel Fitter" does not seem to be required when page
7244          * flipping with a non-native mode, and worse causes a normal
7245          * modeset to fail.
7246          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7247          */
7248         pf = 0;
7249         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7250         intel_ring_emit(ring, pf | pipesrc);
7251
7252         intel_mark_page_flip_active(intel_crtc);
7253         intel_ring_advance(ring);
7254         return 0;
7255
7256 err_unpin:
7257         intel_unpin_fb_obj(obj);
7258 err:
7259         return ret;
7260 }
7261
7262 /*
7263  * On gen7 we currently use the blit ring because (in early silicon at least)
7264  * the render ring doesn't give us interrpts for page flip completion, which
7265  * means clients will hang after the first flip is queued.  Fortunately the
7266  * blit ring generates interrupts properly, so use it instead.
7267  */
7268 static int intel_gen7_queue_flip(struct drm_device *dev,
7269                                  struct drm_crtc *crtc,
7270                                  struct drm_framebuffer *fb,
7271                                  struct drm_i915_gem_object *obj)
7272 {
7273         struct drm_i915_private *dev_priv = dev->dev_private;
7274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7275         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7276         uint32_t plane_bit = 0;
7277         int ret;
7278
7279         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7280         if (ret)
7281                 goto err;
7282
7283         switch(intel_crtc->plane) {
7284         case PLANE_A:
7285                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7286                 break;
7287         case PLANE_B:
7288                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7289                 break;
7290         case PLANE_C:
7291                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7292                 break;
7293         default:
7294                 WARN_ONCE(1, "unknown plane in flip command\n");
7295                 ret = -ENODEV;
7296                 goto err_unpin;
7297         }
7298
7299         ret = intel_ring_begin(ring, 4);
7300         if (ret)
7301                 goto err_unpin;
7302
7303         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7304         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7305         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7306         intel_ring_emit(ring, (MI_NOOP));
7307
7308         intel_mark_page_flip_active(intel_crtc);
7309         intel_ring_advance(ring);
7310         return 0;
7311
7312 err_unpin:
7313         intel_unpin_fb_obj(obj);
7314 err:
7315         return ret;
7316 }
7317
7318 static int intel_default_queue_flip(struct drm_device *dev,
7319                                     struct drm_crtc *crtc,
7320                                     struct drm_framebuffer *fb,
7321                                     struct drm_i915_gem_object *obj)
7322 {
7323         return -ENODEV;
7324 }
7325
7326 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7327                                 struct drm_framebuffer *fb,
7328                                 struct drm_pending_vblank_event *event)
7329 {
7330         struct drm_device *dev = crtc->dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         struct drm_framebuffer *old_fb = crtc->fb;
7333         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7335         struct intel_unpin_work *work;
7336         unsigned long flags;
7337         int ret;
7338
7339         /* Can't change pixel format via MI display flips. */
7340         if (fb->pixel_format != crtc->fb->pixel_format)
7341                 return -EINVAL;
7342
7343         /*
7344          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7345          * Note that pitch changes could also affect these register.
7346          */
7347         if (INTEL_INFO(dev)->gen > 3 &&
7348             (fb->offsets[0] != crtc->fb->offsets[0] ||
7349              fb->pitches[0] != crtc->fb->pitches[0]))
7350                 return -EINVAL;
7351
7352         work = kzalloc(sizeof *work, GFP_KERNEL);
7353         if (work == NULL)
7354                 return -ENOMEM;
7355
7356         work->event = event;
7357         work->crtc = crtc;
7358         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7359         INIT_WORK(&work->work, intel_unpin_work_fn);
7360
7361         ret = drm_vblank_get(dev, intel_crtc->pipe);
7362         if (ret)
7363                 goto free_work;
7364
7365         /* We borrow the event spin lock for protecting unpin_work */
7366         spin_lock_irqsave(&dev->event_lock, flags);
7367         if (intel_crtc->unpin_work) {
7368                 spin_unlock_irqrestore(&dev->event_lock, flags);
7369                 kfree(work);
7370                 drm_vblank_put(dev, intel_crtc->pipe);
7371
7372                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7373                 return -EBUSY;
7374         }
7375         intel_crtc->unpin_work = work;
7376         spin_unlock_irqrestore(&dev->event_lock, flags);
7377
7378         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7379                 flush_workqueue(dev_priv->wq);
7380
7381         ret = i915_mutex_lock_interruptible(dev);
7382         if (ret)
7383                 goto cleanup;
7384
7385         /* Reference the objects for the scheduled work. */
7386         drm_gem_object_reference(&work->old_fb_obj->base);
7387         drm_gem_object_reference(&obj->base);
7388
7389         crtc->fb = fb;
7390
7391         work->pending_flip_obj = obj;
7392
7393         work->enable_stall_check = true;
7394
7395         atomic_inc(&intel_crtc->unpin_work_count);
7396         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7397
7398         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7399         if (ret)
7400                 goto cleanup_pending;
7401
7402         intel_disable_fbc(dev);
7403         intel_mark_fb_busy(obj);
7404         mutex_unlock(&dev->struct_mutex);
7405
7406         trace_i915_flip_request(intel_crtc->plane, obj);
7407
7408         return 0;
7409
7410 cleanup_pending:
7411         atomic_dec(&intel_crtc->unpin_work_count);
7412         crtc->fb = old_fb;
7413         drm_gem_object_unreference(&work->old_fb_obj->base);
7414         drm_gem_object_unreference(&obj->base);
7415         mutex_unlock(&dev->struct_mutex);
7416
7417 cleanup:
7418         spin_lock_irqsave(&dev->event_lock, flags);
7419         intel_crtc->unpin_work = NULL;
7420         spin_unlock_irqrestore(&dev->event_lock, flags);
7421
7422         drm_vblank_put(dev, intel_crtc->pipe);
7423 free_work:
7424         kfree(work);
7425
7426         return ret;
7427 }
7428
7429 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7430         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7431         .load_lut = intel_crtc_load_lut,
7432 };
7433
7434 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7435 {
7436         struct intel_encoder *other_encoder;
7437         struct drm_crtc *crtc = &encoder->new_crtc->base;
7438
7439         if (WARN_ON(!crtc))
7440                 return false;
7441
7442         list_for_each_entry(other_encoder,
7443                             &crtc->dev->mode_config.encoder_list,
7444                             base.head) {
7445
7446                 if (&other_encoder->new_crtc->base != crtc ||
7447                     encoder == other_encoder)
7448                         continue;
7449                 else
7450                         return true;
7451         }
7452
7453         return false;
7454 }
7455
7456 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7457                                   struct drm_crtc *crtc)
7458 {
7459         struct drm_device *dev;
7460         struct drm_crtc *tmp;
7461         int crtc_mask = 1;
7462
7463         WARN(!crtc, "checking null crtc?\n");
7464
7465         dev = crtc->dev;
7466
7467         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7468                 if (tmp == crtc)
7469                         break;
7470                 crtc_mask <<= 1;
7471         }
7472
7473         if (encoder->possible_crtcs & crtc_mask)
7474                 return true;
7475         return false;
7476 }
7477
7478 /**
7479  * intel_modeset_update_staged_output_state
7480  *
7481  * Updates the staged output configuration state, e.g. after we've read out the
7482  * current hw state.
7483  */
7484 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7485 {
7486         struct intel_encoder *encoder;
7487         struct intel_connector *connector;
7488
7489         list_for_each_entry(connector, &dev->mode_config.connector_list,
7490                             base.head) {
7491                 connector->new_encoder =
7492                         to_intel_encoder(connector->base.encoder);
7493         }
7494
7495         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7496                             base.head) {
7497                 encoder->new_crtc =
7498                         to_intel_crtc(encoder->base.crtc);
7499         }
7500 }
7501
7502 /**
7503  * intel_modeset_commit_output_state
7504  *
7505  * This function copies the stage display pipe configuration to the real one.
7506  */
7507 static void intel_modeset_commit_output_state(struct drm_device *dev)
7508 {
7509         struct intel_encoder *encoder;
7510         struct intel_connector *connector;
7511
7512         list_for_each_entry(connector, &dev->mode_config.connector_list,
7513                             base.head) {
7514                 connector->base.encoder = &connector->new_encoder->base;
7515         }
7516
7517         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7518                             base.head) {
7519                 encoder->base.crtc = &encoder->new_crtc->base;
7520         }
7521 }
7522
7523 static int
7524 pipe_config_set_bpp(struct drm_crtc *crtc,
7525                     struct drm_framebuffer *fb,
7526                     struct intel_crtc_config *pipe_config)
7527 {
7528         struct drm_device *dev = crtc->dev;
7529         struct drm_connector *connector;
7530         int bpp;
7531
7532         switch (fb->pixel_format) {
7533         case DRM_FORMAT_C8:
7534                 bpp = 8*3; /* since we go through a colormap */
7535                 break;
7536         case DRM_FORMAT_XRGB1555:
7537         case DRM_FORMAT_ARGB1555:
7538                 /* checked in intel_framebuffer_init already */
7539                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7540                         return -EINVAL;
7541         case DRM_FORMAT_RGB565:
7542                 bpp = 6*3; /* min is 18bpp */
7543                 break;
7544         case DRM_FORMAT_XBGR8888:
7545         case DRM_FORMAT_ABGR8888:
7546                 /* checked in intel_framebuffer_init already */
7547                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7548                         return -EINVAL;
7549         case DRM_FORMAT_XRGB8888:
7550         case DRM_FORMAT_ARGB8888:
7551                 bpp = 8*3;
7552                 break;
7553         case DRM_FORMAT_XRGB2101010:
7554         case DRM_FORMAT_ARGB2101010:
7555         case DRM_FORMAT_XBGR2101010:
7556         case DRM_FORMAT_ABGR2101010:
7557                 /* checked in intel_framebuffer_init already */
7558                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7559                         return -EINVAL;
7560                 bpp = 10*3;
7561                 break;
7562         /* TODO: gen4+ supports 16 bpc floating point, too. */
7563         default:
7564                 DRM_DEBUG_KMS("unsupported depth\n");
7565                 return -EINVAL;
7566         }
7567
7568         pipe_config->pipe_bpp = bpp;
7569
7570         /* Clamp display bpp to EDID value */
7571         list_for_each_entry(connector, &dev->mode_config.connector_list,
7572                             head) {
7573                 if (connector->encoder && connector->encoder->crtc != crtc)
7574                         continue;
7575
7576                 /* Don't use an invalid EDID bpc value */
7577                 if (connector->display_info.bpc &&
7578                     connector->display_info.bpc * 3 < bpp) {
7579                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7580                                       bpp, connector->display_info.bpc*3);
7581                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7582                 }
7583         }
7584
7585         return bpp;
7586 }
7587
7588 static struct intel_crtc_config *
7589 intel_modeset_pipe_config(struct drm_crtc *crtc,
7590                           struct drm_framebuffer *fb,
7591                           struct drm_display_mode *mode)
7592 {
7593         struct drm_device *dev = crtc->dev;
7594         struct drm_encoder_helper_funcs *encoder_funcs;
7595         struct intel_encoder *encoder;
7596         struct intel_crtc_config *pipe_config;
7597         int plane_bpp;
7598
7599         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7600         if (!pipe_config)
7601                 return ERR_PTR(-ENOMEM);
7602
7603         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7604         drm_mode_copy(&pipe_config->requested_mode, mode);
7605
7606         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7607         if (plane_bpp < 0)
7608                 goto fail;
7609
7610         /* Pass our mode to the connectors and the CRTC to give them a chance to
7611          * adjust it according to limitations or connector properties, and also
7612          * a chance to reject the mode entirely.
7613          */
7614         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7615                             base.head) {
7616
7617                 if (&encoder->new_crtc->base != crtc)
7618                         continue;
7619
7620                 if (encoder->compute_config) {
7621                         if (!(encoder->compute_config(encoder, pipe_config))) {
7622                                 DRM_DEBUG_KMS("Encoder config failure\n");
7623                                 goto fail;
7624                         }
7625
7626                         continue;
7627                 }
7628
7629                 encoder_funcs = encoder->base.helper_private;
7630                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7631                                                 &pipe_config->requested_mode,
7632                                                 &pipe_config->adjusted_mode))) {
7633                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7634                         goto fail;
7635                 }
7636         }
7637
7638         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7639                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7640                 goto fail;
7641         }
7642         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7643
7644         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7645         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7646                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7647
7648         return pipe_config;
7649 fail:
7650         kfree(pipe_config);
7651         return ERR_PTR(-EINVAL);
7652 }
7653
7654 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7655  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7656 static void
7657 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7658                              unsigned *prepare_pipes, unsigned *disable_pipes)
7659 {
7660         struct intel_crtc *intel_crtc;
7661         struct drm_device *dev = crtc->dev;
7662         struct intel_encoder *encoder;
7663         struct intel_connector *connector;
7664         struct drm_crtc *tmp_crtc;
7665
7666         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7667
7668         /* Check which crtcs have changed outputs connected to them, these need
7669          * to be part of the prepare_pipes mask. We don't (yet) support global
7670          * modeset across multiple crtcs, so modeset_pipes will only have one
7671          * bit set at most. */
7672         list_for_each_entry(connector, &dev->mode_config.connector_list,
7673                             base.head) {
7674                 if (connector->base.encoder == &connector->new_encoder->base)
7675                         continue;
7676
7677                 if (connector->base.encoder) {
7678                         tmp_crtc = connector->base.encoder->crtc;
7679
7680                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7681                 }
7682
7683                 if (connector->new_encoder)
7684                         *prepare_pipes |=
7685                                 1 << connector->new_encoder->new_crtc->pipe;
7686         }
7687
7688         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7689                             base.head) {
7690                 if (encoder->base.crtc == &encoder->new_crtc->base)
7691                         continue;
7692
7693                 if (encoder->base.crtc) {
7694                         tmp_crtc = encoder->base.crtc;
7695
7696                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7697                 }
7698
7699                 if (encoder->new_crtc)
7700                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7701         }
7702
7703         /* Check for any pipes that will be fully disabled ... */
7704         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7705                             base.head) {
7706                 bool used = false;
7707
7708                 /* Don't try to disable disabled crtcs. */
7709                 if (!intel_crtc->base.enabled)
7710                         continue;
7711
7712                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7713                                     base.head) {
7714                         if (encoder->new_crtc == intel_crtc)
7715                                 used = true;
7716                 }
7717
7718                 if (!used)
7719                         *disable_pipes |= 1 << intel_crtc->pipe;
7720         }
7721
7722
7723         /* set_mode is also used to update properties on life display pipes. */
7724         intel_crtc = to_intel_crtc(crtc);
7725         if (crtc->enabled)
7726                 *prepare_pipes |= 1 << intel_crtc->pipe;
7727
7728         /*
7729          * For simplicity do a full modeset on any pipe where the output routing
7730          * changed. We could be more clever, but that would require us to be
7731          * more careful with calling the relevant encoder->mode_set functions.
7732          */
7733         if (*prepare_pipes)
7734                 *modeset_pipes = *prepare_pipes;
7735
7736         /* ... and mask these out. */
7737         *modeset_pipes &= ~(*disable_pipes);
7738         *prepare_pipes &= ~(*disable_pipes);
7739
7740         /*
7741          * HACK: We don't (yet) fully support global modesets. intel_set_config
7742          * obies this rule, but the modeset restore mode of
7743          * intel_modeset_setup_hw_state does not.
7744          */
7745         *modeset_pipes &= 1 << intel_crtc->pipe;
7746         *prepare_pipes &= 1 << intel_crtc->pipe;
7747
7748         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7749                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7750 }
7751
7752 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7753 {
7754         struct drm_encoder *encoder;
7755         struct drm_device *dev = crtc->dev;
7756
7757         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7758                 if (encoder->crtc == crtc)
7759                         return true;
7760
7761         return false;
7762 }
7763
7764 static void
7765 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7766 {
7767         struct intel_encoder *intel_encoder;
7768         struct intel_crtc *intel_crtc;
7769         struct drm_connector *connector;
7770
7771         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7772                             base.head) {
7773                 if (!intel_encoder->base.crtc)
7774                         continue;
7775
7776                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7777
7778                 if (prepare_pipes & (1 << intel_crtc->pipe))
7779                         intel_encoder->connectors_active = false;
7780         }
7781
7782         intel_modeset_commit_output_state(dev);
7783
7784         /* Update computed state. */
7785         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7786                             base.head) {
7787                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7788         }
7789
7790         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7791                 if (!connector->encoder || !connector->encoder->crtc)
7792                         continue;
7793
7794                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7795
7796                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7797                         struct drm_property *dpms_property =
7798                                 dev->mode_config.dpms_property;
7799
7800                         connector->dpms = DRM_MODE_DPMS_ON;
7801                         drm_object_property_set_value(&connector->base,
7802                                                          dpms_property,
7803                                                          DRM_MODE_DPMS_ON);
7804
7805                         intel_encoder = to_intel_encoder(connector->encoder);
7806                         intel_encoder->connectors_active = true;
7807                 }
7808         }
7809
7810 }
7811
7812 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7813         list_for_each_entry((intel_crtc), \
7814                             &(dev)->mode_config.crtc_list, \
7815                             base.head) \
7816                 if (mask & (1 <<(intel_crtc)->pipe)) \
7817
7818 static bool
7819 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7820                           struct intel_crtc_config *pipe_config)
7821 {
7822         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7823                 DRM_ERROR("mismatch in has_pch_encoder "
7824                           "(expected %i, found %i)\n",
7825                           current_config->has_pch_encoder,
7826                           pipe_config->has_pch_encoder);
7827                 return false;
7828         }
7829
7830         return true;
7831 }
7832
7833 void
7834 intel_modeset_check_state(struct drm_device *dev)
7835 {
7836         drm_i915_private_t *dev_priv = dev->dev_private;
7837         struct intel_crtc *crtc;
7838         struct intel_encoder *encoder;
7839         struct intel_connector *connector;
7840         struct intel_crtc_config pipe_config;
7841
7842         list_for_each_entry(connector, &dev->mode_config.connector_list,
7843                             base.head) {
7844                 /* This also checks the encoder/connector hw state with the
7845                  * ->get_hw_state callbacks. */
7846                 intel_connector_check_state(connector);
7847
7848                 WARN(&connector->new_encoder->base != connector->base.encoder,
7849                      "connector's staged encoder doesn't match current encoder\n");
7850         }
7851
7852         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7853                             base.head) {
7854                 bool enabled = false;
7855                 bool active = false;
7856                 enum pipe pipe, tracked_pipe;
7857
7858                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7859                               encoder->base.base.id,
7860                               drm_get_encoder_name(&encoder->base));
7861
7862                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7863                      "encoder's stage crtc doesn't match current crtc\n");
7864                 WARN(encoder->connectors_active && !encoder->base.crtc,
7865                      "encoder's active_connectors set, but no crtc\n");
7866
7867                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7868                                     base.head) {
7869                         if (connector->base.encoder != &encoder->base)
7870                                 continue;
7871                         enabled = true;
7872                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7873                                 active = true;
7874                 }
7875                 WARN(!!encoder->base.crtc != enabled,
7876                      "encoder's enabled state mismatch "
7877                      "(expected %i, found %i)\n",
7878                      !!encoder->base.crtc, enabled);
7879                 WARN(active && !encoder->base.crtc,
7880                      "active encoder with no crtc\n");
7881
7882                 WARN(encoder->connectors_active != active,
7883                      "encoder's computed active state doesn't match tracked active state "
7884                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7885
7886                 active = encoder->get_hw_state(encoder, &pipe);
7887                 WARN(active != encoder->connectors_active,
7888                      "encoder's hw state doesn't match sw tracking "
7889                      "(expected %i, found %i)\n",
7890                      encoder->connectors_active, active);
7891
7892                 if (!encoder->base.crtc)
7893                         continue;
7894
7895                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7896                 WARN(active && pipe != tracked_pipe,
7897                      "active encoder's pipe doesn't match"
7898                      "(expected %i, found %i)\n",
7899                      tracked_pipe, pipe);
7900
7901         }
7902
7903         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7904                             base.head) {
7905                 bool enabled = false;
7906                 bool active = false;
7907
7908                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7909                               crtc->base.base.id);
7910
7911                 WARN(crtc->active && !crtc->base.enabled,
7912                      "active crtc, but not enabled in sw tracking\n");
7913
7914                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7915                                     base.head) {
7916                         if (encoder->base.crtc != &crtc->base)
7917                                 continue;
7918                         enabled = true;
7919                         if (encoder->connectors_active)
7920                                 active = true;
7921                 }
7922                 WARN(active != crtc->active,
7923                      "crtc's computed active state doesn't match tracked active state "
7924                      "(expected %i, found %i)\n", active, crtc->active);
7925                 WARN(enabled != crtc->base.enabled,
7926                      "crtc's computed enabled state doesn't match tracked enabled state "
7927                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7928
7929                 memset(&pipe_config, 0, sizeof(pipe_config));
7930                 active = dev_priv->display.get_pipe_config(crtc,
7931                                                            &pipe_config);
7932                 WARN(crtc->active != active,
7933                      "crtc active state doesn't match with hw state "
7934                      "(expected %i, found %i)\n", crtc->active, active);
7935
7936                 WARN(active &&
7937                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
7938                      "pipe state doesn't match!\n");
7939         }
7940 }
7941
7942 static int __intel_set_mode(struct drm_crtc *crtc,
7943                             struct drm_display_mode *mode,
7944                             int x, int y, struct drm_framebuffer *fb)
7945 {
7946         struct drm_device *dev = crtc->dev;
7947         drm_i915_private_t *dev_priv = dev->dev_private;
7948         struct drm_display_mode *saved_mode, *saved_hwmode;
7949         struct intel_crtc_config *pipe_config = NULL;
7950         struct intel_crtc *intel_crtc;
7951         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7952         int ret = 0;
7953
7954         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7955         if (!saved_mode)
7956                 return -ENOMEM;
7957         saved_hwmode = saved_mode + 1;
7958
7959         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7960                                      &prepare_pipes, &disable_pipes);
7961
7962         *saved_hwmode = crtc->hwmode;
7963         *saved_mode = crtc->mode;
7964
7965         /* Hack: Because we don't (yet) support global modeset on multiple
7966          * crtcs, we don't keep track of the new mode for more than one crtc.
7967          * Hence simply check whether any bit is set in modeset_pipes in all the
7968          * pieces of code that are not yet converted to deal with mutliple crtcs
7969          * changing their mode at the same time. */
7970         if (modeset_pipes) {
7971                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7972                 if (IS_ERR(pipe_config)) {
7973                         ret = PTR_ERR(pipe_config);
7974                         pipe_config = NULL;
7975
7976                         goto out;
7977                 }
7978         }
7979
7980         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7981                 intel_crtc_disable(&intel_crtc->base);
7982
7983         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7984                 if (intel_crtc->base.enabled)
7985                         dev_priv->display.crtc_disable(&intel_crtc->base);
7986         }
7987
7988         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7989          * to set it here already despite that we pass it down the callchain.
7990          */
7991         if (modeset_pipes) {
7992                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
7993                 crtc->mode = *mode;
7994                 /* mode_set/enable/disable functions rely on a correct pipe
7995                  * config. */
7996                 to_intel_crtc(crtc)->config = *pipe_config;
7997                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
7998         }
7999
8000         /* Only after disabling all output pipelines that will be changed can we
8001          * update the the output configuration. */
8002         intel_modeset_update_state(dev, prepare_pipes);
8003
8004         if (dev_priv->display.modeset_global_resources)
8005                 dev_priv->display.modeset_global_resources(dev);
8006
8007         /* Set up the DPLL and any encoders state that needs to adjust or depend
8008          * on the DPLL.
8009          */
8010         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8011                 ret = intel_crtc_mode_set(&intel_crtc->base,
8012                                           x, y, fb);
8013                 if (ret)
8014                         goto done;
8015         }
8016
8017         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8018         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8019                 dev_priv->display.crtc_enable(&intel_crtc->base);
8020
8021         if (modeset_pipes) {
8022                 /* Store real post-adjustment hardware mode. */
8023                 crtc->hwmode = pipe_config->adjusted_mode;
8024
8025                 /* Calculate and store various constants which
8026                  * are later needed by vblank and swap-completion
8027                  * timestamping. They are derived from true hwmode.
8028                  */
8029                 drm_calc_timestamping_constants(crtc);
8030         }
8031
8032         /* FIXME: add subpixel order */
8033 done:
8034         if (ret && crtc->enabled) {
8035                 crtc->hwmode = *saved_hwmode;
8036                 crtc->mode = *saved_mode;
8037         }
8038
8039 out:
8040         kfree(pipe_config);
8041         kfree(saved_mode);
8042         return ret;
8043 }
8044
8045 int intel_set_mode(struct drm_crtc *crtc,
8046                      struct drm_display_mode *mode,
8047                      int x, int y, struct drm_framebuffer *fb)
8048 {
8049         int ret;
8050
8051         ret = __intel_set_mode(crtc, mode, x, y, fb);
8052
8053         if (ret == 0)
8054                 intel_modeset_check_state(crtc->dev);
8055
8056         return ret;
8057 }
8058
8059 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8060 {
8061         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8062 }
8063
8064 #undef for_each_intel_crtc_masked
8065
8066 static void intel_set_config_free(struct intel_set_config *config)
8067 {
8068         if (!config)
8069                 return;
8070
8071         kfree(config->save_connector_encoders);
8072         kfree(config->save_encoder_crtcs);
8073         kfree(config);
8074 }
8075
8076 static int intel_set_config_save_state(struct drm_device *dev,
8077                                        struct intel_set_config *config)
8078 {
8079         struct drm_encoder *encoder;
8080         struct drm_connector *connector;
8081         int count;
8082
8083         config->save_encoder_crtcs =
8084                 kcalloc(dev->mode_config.num_encoder,
8085                         sizeof(struct drm_crtc *), GFP_KERNEL);
8086         if (!config->save_encoder_crtcs)
8087                 return -ENOMEM;
8088
8089         config->save_connector_encoders =
8090                 kcalloc(dev->mode_config.num_connector,
8091                         sizeof(struct drm_encoder *), GFP_KERNEL);
8092         if (!config->save_connector_encoders)
8093                 return -ENOMEM;
8094
8095         /* Copy data. Note that driver private data is not affected.
8096          * Should anything bad happen only the expected state is
8097          * restored, not the drivers personal bookkeeping.
8098          */
8099         count = 0;
8100         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8101                 config->save_encoder_crtcs[count++] = encoder->crtc;
8102         }
8103
8104         count = 0;
8105         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8106                 config->save_connector_encoders[count++] = connector->encoder;
8107         }
8108
8109         return 0;
8110 }
8111
8112 static void intel_set_config_restore_state(struct drm_device *dev,
8113                                            struct intel_set_config *config)
8114 {
8115         struct intel_encoder *encoder;
8116         struct intel_connector *connector;
8117         int count;
8118
8119         count = 0;
8120         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8121                 encoder->new_crtc =
8122                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8123         }
8124
8125         count = 0;
8126         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8127                 connector->new_encoder =
8128                         to_intel_encoder(config->save_connector_encoders[count++]);
8129         }
8130 }
8131
8132 static void
8133 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8134                                       struct intel_set_config *config)
8135 {
8136
8137         /* We should be able to check here if the fb has the same properties
8138          * and then just flip_or_move it */
8139         if (set->crtc->fb != set->fb) {
8140                 /* If we have no fb then treat it as a full mode set */
8141                 if (set->crtc->fb == NULL) {
8142                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8143                         config->mode_changed = true;
8144                 } else if (set->fb == NULL) {
8145                         config->mode_changed = true;
8146                 } else if (set->fb->pixel_format !=
8147                            set->crtc->fb->pixel_format) {
8148                         config->mode_changed = true;
8149                 } else
8150                         config->fb_changed = true;
8151         }
8152
8153         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8154                 config->fb_changed = true;
8155
8156         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8157                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8158                 drm_mode_debug_printmodeline(&set->crtc->mode);
8159                 drm_mode_debug_printmodeline(set->mode);
8160                 config->mode_changed = true;
8161         }
8162 }
8163
8164 static int
8165 intel_modeset_stage_output_state(struct drm_device *dev,
8166                                  struct drm_mode_set *set,
8167                                  struct intel_set_config *config)
8168 {
8169         struct drm_crtc *new_crtc;
8170         struct intel_connector *connector;
8171         struct intel_encoder *encoder;
8172         int count, ro;
8173
8174         /* The upper layers ensure that we either disable a crtc or have a list
8175          * of connectors. For paranoia, double-check this. */
8176         WARN_ON(!set->fb && (set->num_connectors != 0));
8177         WARN_ON(set->fb && (set->num_connectors == 0));
8178
8179         count = 0;
8180         list_for_each_entry(connector, &dev->mode_config.connector_list,
8181                             base.head) {
8182                 /* Otherwise traverse passed in connector list and get encoders
8183                  * for them. */
8184                 for (ro = 0; ro < set->num_connectors; ro++) {
8185                         if (set->connectors[ro] == &connector->base) {
8186                                 connector->new_encoder = connector->encoder;
8187                                 break;
8188                         }
8189                 }
8190
8191                 /* If we disable the crtc, disable all its connectors. Also, if
8192                  * the connector is on the changing crtc but not on the new
8193                  * connector list, disable it. */
8194                 if ((!set->fb || ro == set->num_connectors) &&
8195                     connector->base.encoder &&
8196                     connector->base.encoder->crtc == set->crtc) {
8197                         connector->new_encoder = NULL;
8198
8199                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8200                                 connector->base.base.id,
8201                                 drm_get_connector_name(&connector->base));
8202                 }
8203
8204
8205                 if (&connector->new_encoder->base != connector->base.encoder) {
8206                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8207                         config->mode_changed = true;
8208                 }
8209         }
8210         /* connector->new_encoder is now updated for all connectors. */
8211
8212         /* Update crtc of enabled connectors. */
8213         count = 0;
8214         list_for_each_entry(connector, &dev->mode_config.connector_list,
8215                             base.head) {
8216                 if (!connector->new_encoder)
8217                         continue;
8218
8219                 new_crtc = connector->new_encoder->base.crtc;
8220
8221                 for (ro = 0; ro < set->num_connectors; ro++) {
8222                         if (set->connectors[ro] == &connector->base)
8223                                 new_crtc = set->crtc;
8224                 }
8225
8226                 /* Make sure the new CRTC will work with the encoder */
8227                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8228                                            new_crtc)) {
8229                         return -EINVAL;
8230                 }
8231                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8232
8233                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8234                         connector->base.base.id,
8235                         drm_get_connector_name(&connector->base),
8236                         new_crtc->base.id);
8237         }
8238
8239         /* Check for any encoders that needs to be disabled. */
8240         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8241                             base.head) {
8242                 list_for_each_entry(connector,
8243                                     &dev->mode_config.connector_list,
8244                                     base.head) {
8245                         if (connector->new_encoder == encoder) {
8246                                 WARN_ON(!connector->new_encoder->new_crtc);
8247
8248                                 goto next_encoder;
8249                         }
8250                 }
8251                 encoder->new_crtc = NULL;
8252 next_encoder:
8253                 /* Only now check for crtc changes so we don't miss encoders
8254                  * that will be disabled. */
8255                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8256                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8257                         config->mode_changed = true;
8258                 }
8259         }
8260         /* Now we've also updated encoder->new_crtc for all encoders. */
8261
8262         return 0;
8263 }
8264
8265 static int intel_crtc_set_config(struct drm_mode_set *set)
8266 {
8267         struct drm_device *dev;
8268         struct drm_mode_set save_set;
8269         struct intel_set_config *config;
8270         int ret;
8271
8272         BUG_ON(!set);
8273         BUG_ON(!set->crtc);
8274         BUG_ON(!set->crtc->helper_private);
8275
8276         /* Enforce sane interface api - has been abused by the fb helper. */
8277         BUG_ON(!set->mode && set->fb);
8278         BUG_ON(set->fb && set->num_connectors == 0);
8279
8280         if (set->fb) {
8281                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8282                                 set->crtc->base.id, set->fb->base.id,
8283                                 (int)set->num_connectors, set->x, set->y);
8284         } else {
8285                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8286         }
8287
8288         dev = set->crtc->dev;
8289
8290         ret = -ENOMEM;
8291         config = kzalloc(sizeof(*config), GFP_KERNEL);
8292         if (!config)
8293                 goto out_config;
8294
8295         ret = intel_set_config_save_state(dev, config);
8296         if (ret)
8297                 goto out_config;
8298
8299         save_set.crtc = set->crtc;
8300         save_set.mode = &set->crtc->mode;
8301         save_set.x = set->crtc->x;
8302         save_set.y = set->crtc->y;
8303         save_set.fb = set->crtc->fb;
8304
8305         /* Compute whether we need a full modeset, only an fb base update or no
8306          * change at all. In the future we might also check whether only the
8307          * mode changed, e.g. for LVDS where we only change the panel fitter in
8308          * such cases. */
8309         intel_set_config_compute_mode_changes(set, config);
8310
8311         ret = intel_modeset_stage_output_state(dev, set, config);
8312         if (ret)
8313                 goto fail;
8314
8315         if (config->mode_changed) {
8316                 if (set->mode) {
8317                         DRM_DEBUG_KMS("attempting to set mode from"
8318                                         " userspace\n");
8319                         drm_mode_debug_printmodeline(set->mode);
8320                 }
8321
8322                 ret = intel_set_mode(set->crtc, set->mode,
8323                                      set->x, set->y, set->fb);
8324                 if (ret) {
8325                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8326                                   set->crtc->base.id, ret);
8327                         goto fail;
8328                 }
8329         } else if (config->fb_changed) {
8330                 intel_crtc_wait_for_pending_flips(set->crtc);
8331
8332                 ret = intel_pipe_set_base(set->crtc,
8333                                           set->x, set->y, set->fb);
8334         }
8335
8336         intel_set_config_free(config);
8337
8338         return 0;
8339
8340 fail:
8341         intel_set_config_restore_state(dev, config);
8342
8343         /* Try to restore the config */
8344         if (config->mode_changed &&
8345             intel_set_mode(save_set.crtc, save_set.mode,
8346                            save_set.x, save_set.y, save_set.fb))
8347                 DRM_ERROR("failed to restore config after modeset failure\n");
8348
8349 out_config:
8350         intel_set_config_free(config);
8351         return ret;
8352 }
8353
8354 static const struct drm_crtc_funcs intel_crtc_funcs = {
8355         .cursor_set = intel_crtc_cursor_set,
8356         .cursor_move = intel_crtc_cursor_move,
8357         .gamma_set = intel_crtc_gamma_set,
8358         .set_config = intel_crtc_set_config,
8359         .destroy = intel_crtc_destroy,
8360         .page_flip = intel_crtc_page_flip,
8361 };
8362
8363 static void intel_cpu_pll_init(struct drm_device *dev)
8364 {
8365         if (HAS_DDI(dev))
8366                 intel_ddi_pll_init(dev);
8367 }
8368
8369 static void intel_pch_pll_init(struct drm_device *dev)
8370 {
8371         drm_i915_private_t *dev_priv = dev->dev_private;
8372         int i;
8373
8374         if (dev_priv->num_pch_pll == 0) {
8375                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8376                 return;
8377         }
8378
8379         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8380                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8381                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8382                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8383         }
8384 }
8385
8386 static void intel_crtc_init(struct drm_device *dev, int pipe)
8387 {
8388         drm_i915_private_t *dev_priv = dev->dev_private;
8389         struct intel_crtc *intel_crtc;
8390         int i;
8391
8392         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8393         if (intel_crtc == NULL)
8394                 return;
8395
8396         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8397
8398         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8399         for (i = 0; i < 256; i++) {
8400                 intel_crtc->lut_r[i] = i;
8401                 intel_crtc->lut_g[i] = i;
8402                 intel_crtc->lut_b[i] = i;
8403         }
8404
8405         /* Swap pipes & planes for FBC on pre-965 */
8406         intel_crtc->pipe = pipe;
8407         intel_crtc->plane = pipe;
8408         intel_crtc->config.cpu_transcoder = pipe;
8409         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8410                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8411                 intel_crtc->plane = !pipe;
8412         }
8413
8414         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8415                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8416         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8417         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8418
8419         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8420 }
8421
8422 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8423                                 struct drm_file *file)
8424 {
8425         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8426         struct drm_mode_object *drmmode_obj;
8427         struct intel_crtc *crtc;
8428
8429         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8430                 return -ENODEV;
8431
8432         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8433                         DRM_MODE_OBJECT_CRTC);
8434
8435         if (!drmmode_obj) {
8436                 DRM_ERROR("no such CRTC id\n");
8437                 return -EINVAL;
8438         }
8439
8440         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8441         pipe_from_crtc_id->pipe = crtc->pipe;
8442
8443         return 0;
8444 }
8445
8446 static int intel_encoder_clones(struct intel_encoder *encoder)
8447 {
8448         struct drm_device *dev = encoder->base.dev;
8449         struct intel_encoder *source_encoder;
8450         int index_mask = 0;
8451         int entry = 0;
8452
8453         list_for_each_entry(source_encoder,
8454                             &dev->mode_config.encoder_list, base.head) {
8455
8456                 if (encoder == source_encoder)
8457                         index_mask |= (1 << entry);
8458
8459                 /* Intel hw has only one MUX where enocoders could be cloned. */
8460                 if (encoder->cloneable && source_encoder->cloneable)
8461                         index_mask |= (1 << entry);
8462
8463                 entry++;
8464         }
8465
8466         return index_mask;
8467 }
8468
8469 static bool has_edp_a(struct drm_device *dev)
8470 {
8471         struct drm_i915_private *dev_priv = dev->dev_private;
8472
8473         if (!IS_MOBILE(dev))
8474                 return false;
8475
8476         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8477                 return false;
8478
8479         if (IS_GEN5(dev) &&
8480             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8481                 return false;
8482
8483         return true;
8484 }
8485
8486 static void intel_setup_outputs(struct drm_device *dev)
8487 {
8488         struct drm_i915_private *dev_priv = dev->dev_private;
8489         struct intel_encoder *encoder;
8490         bool dpd_is_edp = false;
8491         bool has_lvds;
8492
8493         has_lvds = intel_lvds_init(dev);
8494         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8495                 /* disable the panel fitter on everything but LVDS */
8496                 I915_WRITE(PFIT_CONTROL, 0);
8497         }
8498
8499         if (!IS_ULT(dev))
8500                 intel_crt_init(dev);
8501
8502         if (HAS_DDI(dev)) {
8503                 int found;
8504
8505                 /* Haswell uses DDI functions to detect digital outputs */
8506                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8507                 /* DDI A only supports eDP */
8508                 if (found)
8509                         intel_ddi_init(dev, PORT_A);
8510
8511                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8512                  * register */
8513                 found = I915_READ(SFUSE_STRAP);
8514
8515                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8516                         intel_ddi_init(dev, PORT_B);
8517                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8518                         intel_ddi_init(dev, PORT_C);
8519                 if (found & SFUSE_STRAP_DDID_DETECTED)
8520                         intel_ddi_init(dev, PORT_D);
8521         } else if (HAS_PCH_SPLIT(dev)) {
8522                 int found;
8523                 dpd_is_edp = intel_dpd_is_edp(dev);
8524
8525                 if (has_edp_a(dev))
8526                         intel_dp_init(dev, DP_A, PORT_A);
8527
8528                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8529                         /* PCH SDVOB multiplex with HDMIB */
8530                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8531                         if (!found)
8532                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8533                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8534                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8535                 }
8536
8537                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8538                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8539
8540                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8541                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8542
8543                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8544                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8545
8546                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8547                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8548         } else if (IS_VALLEYVIEW(dev)) {
8549                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8550                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8551                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8552
8553                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8554                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8555                                         PORT_B);
8556                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8557                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8558                 }
8559         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8560                 bool found = false;
8561
8562                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8563                         DRM_DEBUG_KMS("probing SDVOB\n");
8564                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8565                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8566                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8567                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8568                         }
8569
8570                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8571                                 DRM_DEBUG_KMS("probing DP_B\n");
8572                                 intel_dp_init(dev, DP_B, PORT_B);
8573                         }
8574                 }
8575
8576                 /* Before G4X SDVOC doesn't have its own detect register */
8577
8578                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8579                         DRM_DEBUG_KMS("probing SDVOC\n");
8580                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8581                 }
8582
8583                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8584
8585                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8586                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8587                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8588                         }
8589                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8590                                 DRM_DEBUG_KMS("probing DP_C\n");
8591                                 intel_dp_init(dev, DP_C, PORT_C);
8592                         }
8593                 }
8594
8595                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8596                     (I915_READ(DP_D) & DP_DETECTED)) {
8597                         DRM_DEBUG_KMS("probing DP_D\n");
8598                         intel_dp_init(dev, DP_D, PORT_D);
8599                 }
8600         } else if (IS_GEN2(dev))
8601                 intel_dvo_init(dev);
8602
8603         if (SUPPORTS_TV(dev))
8604                 intel_tv_init(dev);
8605
8606         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8607                 encoder->base.possible_crtcs = encoder->crtc_mask;
8608                 encoder->base.possible_clones =
8609                         intel_encoder_clones(encoder);
8610         }
8611
8612         intel_init_pch_refclk(dev);
8613
8614         drm_helper_move_panel_connectors_to_head(dev);
8615 }
8616
8617 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8618 {
8619         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8620
8621         drm_framebuffer_cleanup(fb);
8622         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8623
8624         kfree(intel_fb);
8625 }
8626
8627 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8628                                                 struct drm_file *file,
8629                                                 unsigned int *handle)
8630 {
8631         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8632         struct drm_i915_gem_object *obj = intel_fb->obj;
8633
8634         return drm_gem_handle_create(file, &obj->base, handle);
8635 }
8636
8637 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8638         .destroy = intel_user_framebuffer_destroy,
8639         .create_handle = intel_user_framebuffer_create_handle,
8640 };
8641
8642 int intel_framebuffer_init(struct drm_device *dev,
8643                            struct intel_framebuffer *intel_fb,
8644                            struct drm_mode_fb_cmd2 *mode_cmd,
8645                            struct drm_i915_gem_object *obj)
8646 {
8647         int ret;
8648
8649         if (obj->tiling_mode == I915_TILING_Y) {
8650                 DRM_DEBUG("hardware does not support tiling Y\n");
8651                 return -EINVAL;
8652         }
8653
8654         if (mode_cmd->pitches[0] & 63) {
8655                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8656                           mode_cmd->pitches[0]);
8657                 return -EINVAL;
8658         }
8659
8660         /* FIXME <= Gen4 stride limits are bit unclear */
8661         if (mode_cmd->pitches[0] > 32768) {
8662                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8663                           mode_cmd->pitches[0]);
8664                 return -EINVAL;
8665         }
8666
8667         if (obj->tiling_mode != I915_TILING_NONE &&
8668             mode_cmd->pitches[0] != obj->stride) {
8669                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8670                           mode_cmd->pitches[0], obj->stride);
8671                 return -EINVAL;
8672         }
8673
8674         /* Reject formats not supported by any plane early. */
8675         switch (mode_cmd->pixel_format) {
8676         case DRM_FORMAT_C8:
8677         case DRM_FORMAT_RGB565:
8678         case DRM_FORMAT_XRGB8888:
8679         case DRM_FORMAT_ARGB8888:
8680                 break;
8681         case DRM_FORMAT_XRGB1555:
8682         case DRM_FORMAT_ARGB1555:
8683                 if (INTEL_INFO(dev)->gen > 3) {
8684                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8685                         return -EINVAL;
8686                 }
8687                 break;
8688         case DRM_FORMAT_XBGR8888:
8689         case DRM_FORMAT_ABGR8888:
8690         case DRM_FORMAT_XRGB2101010:
8691         case DRM_FORMAT_ARGB2101010:
8692         case DRM_FORMAT_XBGR2101010:
8693         case DRM_FORMAT_ABGR2101010:
8694                 if (INTEL_INFO(dev)->gen < 4) {
8695                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8696                         return -EINVAL;
8697                 }
8698                 break;
8699         case DRM_FORMAT_YUYV:
8700         case DRM_FORMAT_UYVY:
8701         case DRM_FORMAT_YVYU:
8702         case DRM_FORMAT_VYUY:
8703                 if (INTEL_INFO(dev)->gen < 5) {
8704                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8705                         return -EINVAL;
8706                 }
8707                 break;
8708         default:
8709                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8710                 return -EINVAL;
8711         }
8712
8713         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8714         if (mode_cmd->offsets[0] != 0)
8715                 return -EINVAL;
8716
8717         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8718         intel_fb->obj = obj;
8719
8720         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8721         if (ret) {
8722                 DRM_ERROR("framebuffer init failed %d\n", ret);
8723                 return ret;
8724         }
8725
8726         return 0;
8727 }
8728
8729 static struct drm_framebuffer *
8730 intel_user_framebuffer_create(struct drm_device *dev,
8731                               struct drm_file *filp,
8732                               struct drm_mode_fb_cmd2 *mode_cmd)
8733 {
8734         struct drm_i915_gem_object *obj;
8735
8736         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8737                                                 mode_cmd->handles[0]));
8738         if (&obj->base == NULL)
8739                 return ERR_PTR(-ENOENT);
8740
8741         return intel_framebuffer_create(dev, mode_cmd, obj);
8742 }
8743
8744 static const struct drm_mode_config_funcs intel_mode_funcs = {
8745         .fb_create = intel_user_framebuffer_create,
8746         .output_poll_changed = intel_fb_output_poll_changed,
8747 };
8748
8749 /* Set up chip specific display functions */
8750 static void intel_init_display(struct drm_device *dev)
8751 {
8752         struct drm_i915_private *dev_priv = dev->dev_private;
8753
8754         if (HAS_DDI(dev)) {
8755                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8756                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8757                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8758                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8759                 dev_priv->display.off = haswell_crtc_off;
8760                 dev_priv->display.update_plane = ironlake_update_plane;
8761         } else if (HAS_PCH_SPLIT(dev)) {
8762                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8763                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8764                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8765                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8766                 dev_priv->display.off = ironlake_crtc_off;
8767                 dev_priv->display.update_plane = ironlake_update_plane;
8768         } else {
8769                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8770                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8771                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8772                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8773                 dev_priv->display.off = i9xx_crtc_off;
8774                 dev_priv->display.update_plane = i9xx_update_plane;
8775         }
8776
8777         /* Returns the core display clock speed */
8778         if (IS_VALLEYVIEW(dev))
8779                 dev_priv->display.get_display_clock_speed =
8780                         valleyview_get_display_clock_speed;
8781         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8782                 dev_priv->display.get_display_clock_speed =
8783                         i945_get_display_clock_speed;
8784         else if (IS_I915G(dev))
8785                 dev_priv->display.get_display_clock_speed =
8786                         i915_get_display_clock_speed;
8787         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8788                 dev_priv->display.get_display_clock_speed =
8789                         i9xx_misc_get_display_clock_speed;
8790         else if (IS_I915GM(dev))
8791                 dev_priv->display.get_display_clock_speed =
8792                         i915gm_get_display_clock_speed;
8793         else if (IS_I865G(dev))
8794                 dev_priv->display.get_display_clock_speed =
8795                         i865_get_display_clock_speed;
8796         else if (IS_I85X(dev))
8797                 dev_priv->display.get_display_clock_speed =
8798                         i855_get_display_clock_speed;
8799         else /* 852, 830 */
8800                 dev_priv->display.get_display_clock_speed =
8801                         i830_get_display_clock_speed;
8802
8803         if (HAS_PCH_SPLIT(dev)) {
8804                 if (IS_GEN5(dev)) {
8805                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8806                         dev_priv->display.write_eld = ironlake_write_eld;
8807                 } else if (IS_GEN6(dev)) {
8808                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8809                         dev_priv->display.write_eld = ironlake_write_eld;
8810                 } else if (IS_IVYBRIDGE(dev)) {
8811                         /* FIXME: detect B0+ stepping and use auto training */
8812                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8813                         dev_priv->display.write_eld = ironlake_write_eld;
8814                         dev_priv->display.modeset_global_resources =
8815                                 ivb_modeset_global_resources;
8816                 } else if (IS_HASWELL(dev)) {
8817                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8818                         dev_priv->display.write_eld = haswell_write_eld;
8819                         dev_priv->display.modeset_global_resources =
8820                                 haswell_modeset_global_resources;
8821                 }
8822         } else if (IS_G4X(dev)) {
8823                 dev_priv->display.write_eld = g4x_write_eld;
8824         }
8825
8826         /* Default just returns -ENODEV to indicate unsupported */
8827         dev_priv->display.queue_flip = intel_default_queue_flip;
8828
8829         switch (INTEL_INFO(dev)->gen) {
8830         case 2:
8831                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8832                 break;
8833
8834         case 3:
8835                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8836                 break;
8837
8838         case 4:
8839         case 5:
8840                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8841                 break;
8842
8843         case 6:
8844                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8845                 break;
8846         case 7:
8847                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8848                 break;
8849         }
8850 }
8851
8852 /*
8853  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8854  * resume, or other times.  This quirk makes sure that's the case for
8855  * affected systems.
8856  */
8857 static void quirk_pipea_force(struct drm_device *dev)
8858 {
8859         struct drm_i915_private *dev_priv = dev->dev_private;
8860
8861         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8862         DRM_INFO("applying pipe a force quirk\n");
8863 }
8864
8865 /*
8866  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8867  */
8868 static void quirk_ssc_force_disable(struct drm_device *dev)
8869 {
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8872         DRM_INFO("applying lvds SSC disable quirk\n");
8873 }
8874
8875 /*
8876  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8877  * brightness value
8878  */
8879 static void quirk_invert_brightness(struct drm_device *dev)
8880 {
8881         struct drm_i915_private *dev_priv = dev->dev_private;
8882         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8883         DRM_INFO("applying inverted panel brightness quirk\n");
8884 }
8885
8886 struct intel_quirk {
8887         int device;
8888         int subsystem_vendor;
8889         int subsystem_device;
8890         void (*hook)(struct drm_device *dev);
8891 };
8892
8893 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8894 struct intel_dmi_quirk {
8895         void (*hook)(struct drm_device *dev);
8896         const struct dmi_system_id (*dmi_id_list)[];
8897 };
8898
8899 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8900 {
8901         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8902         return 1;
8903 }
8904
8905 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8906         {
8907                 .dmi_id_list = &(const struct dmi_system_id[]) {
8908                         {
8909                                 .callback = intel_dmi_reverse_brightness,
8910                                 .ident = "NCR Corporation",
8911                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8912                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8913                                 },
8914                         },
8915                         { }  /* terminating entry */
8916                 },
8917                 .hook = quirk_invert_brightness,
8918         },
8919 };
8920
8921 static struct intel_quirk intel_quirks[] = {
8922         /* HP Mini needs pipe A force quirk (LP: #322104) */
8923         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8924
8925         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8926         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8927
8928         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8929         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8930
8931         /* 830/845 need to leave pipe A & dpll A up */
8932         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8933         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8934
8935         /* Lenovo U160 cannot use SSC on LVDS */
8936         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8937
8938         /* Sony Vaio Y cannot use SSC on LVDS */
8939         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8940
8941         /* Acer Aspire 5734Z must invert backlight brightness */
8942         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8943
8944         /* Acer/eMachines G725 */
8945         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8946
8947         /* Acer/eMachines e725 */
8948         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8949
8950         /* Acer/Packard Bell NCL20 */
8951         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8952
8953         /* Acer Aspire 4736Z */
8954         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8955 };
8956
8957 static void intel_init_quirks(struct drm_device *dev)
8958 {
8959         struct pci_dev *d = dev->pdev;
8960         int i;
8961
8962         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8963                 struct intel_quirk *q = &intel_quirks[i];
8964
8965                 if (d->device == q->device &&
8966                     (d->subsystem_vendor == q->subsystem_vendor ||
8967                      q->subsystem_vendor == PCI_ANY_ID) &&
8968                     (d->subsystem_device == q->subsystem_device ||
8969                      q->subsystem_device == PCI_ANY_ID))
8970                         q->hook(dev);
8971         }
8972         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8973                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8974                         intel_dmi_quirks[i].hook(dev);
8975         }
8976 }
8977
8978 /* Disable the VGA plane that we never use */
8979 static void i915_disable_vga(struct drm_device *dev)
8980 {
8981         struct drm_i915_private *dev_priv = dev->dev_private;
8982         u8 sr1;
8983         u32 vga_reg = i915_vgacntrl_reg(dev);
8984
8985         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8986         outb(SR01, VGA_SR_INDEX);
8987         sr1 = inb(VGA_SR_DATA);
8988         outb(sr1 | 1<<5, VGA_SR_DATA);
8989         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8990         udelay(300);
8991
8992         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8993         POSTING_READ(vga_reg);
8994 }
8995
8996 void intel_modeset_init_hw(struct drm_device *dev)
8997 {
8998         intel_init_power_well(dev);
8999
9000         intel_prepare_ddi(dev);
9001
9002         intel_init_clock_gating(dev);
9003
9004         mutex_lock(&dev->struct_mutex);
9005         intel_enable_gt_powersave(dev);
9006         mutex_unlock(&dev->struct_mutex);
9007 }
9008
9009 void intel_modeset_init(struct drm_device *dev)
9010 {
9011         struct drm_i915_private *dev_priv = dev->dev_private;
9012         int i, j, ret;
9013
9014         drm_mode_config_init(dev);
9015
9016         dev->mode_config.min_width = 0;
9017         dev->mode_config.min_height = 0;
9018
9019         dev->mode_config.preferred_depth = 24;
9020         dev->mode_config.prefer_shadow = 1;
9021
9022         dev->mode_config.funcs = &intel_mode_funcs;
9023
9024         intel_init_quirks(dev);
9025
9026         intel_init_pm(dev);
9027
9028         if (INTEL_INFO(dev)->num_pipes == 0)
9029                 return;
9030
9031         intel_init_display(dev);
9032
9033         if (IS_GEN2(dev)) {
9034                 dev->mode_config.max_width = 2048;
9035                 dev->mode_config.max_height = 2048;
9036         } else if (IS_GEN3(dev)) {
9037                 dev->mode_config.max_width = 4096;
9038                 dev->mode_config.max_height = 4096;
9039         } else {
9040                 dev->mode_config.max_width = 8192;
9041                 dev->mode_config.max_height = 8192;
9042         }
9043         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9044
9045         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9046                       INTEL_INFO(dev)->num_pipes,
9047                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9048
9049         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9050                 intel_crtc_init(dev, i);
9051                 for (j = 0; j < dev_priv->num_plane; j++) {
9052                         ret = intel_plane_init(dev, i, j);
9053                         if (ret)
9054                                 DRM_DEBUG_KMS("pipe %c plane %d init failed: %d\n",
9055                                               pipe_name(i), j, ret);
9056                 }
9057         }
9058
9059         intel_cpu_pll_init(dev);
9060         intel_pch_pll_init(dev);
9061
9062         /* Just disable it once at startup */
9063         i915_disable_vga(dev);
9064         intel_setup_outputs(dev);
9065
9066         /* Just in case the BIOS is doing something questionable. */
9067         intel_disable_fbc(dev);
9068 }
9069
9070 static void
9071 intel_connector_break_all_links(struct intel_connector *connector)
9072 {
9073         connector->base.dpms = DRM_MODE_DPMS_OFF;
9074         connector->base.encoder = NULL;
9075         connector->encoder->connectors_active = false;
9076         connector->encoder->base.crtc = NULL;
9077 }
9078
9079 static void intel_enable_pipe_a(struct drm_device *dev)
9080 {
9081         struct intel_connector *connector;
9082         struct drm_connector *crt = NULL;
9083         struct intel_load_detect_pipe load_detect_temp;
9084
9085         /* We can't just switch on the pipe A, we need to set things up with a
9086          * proper mode and output configuration. As a gross hack, enable pipe A
9087          * by enabling the load detect pipe once. */
9088         list_for_each_entry(connector,
9089                             &dev->mode_config.connector_list,
9090                             base.head) {
9091                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9092                         crt = &connector->base;
9093                         break;
9094                 }
9095         }
9096
9097         if (!crt)
9098                 return;
9099
9100         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9101                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9102
9103
9104 }
9105
9106 static bool
9107 intel_check_plane_mapping(struct intel_crtc *crtc)
9108 {
9109         struct drm_device *dev = crtc->base.dev;
9110         struct drm_i915_private *dev_priv = dev->dev_private;
9111         u32 reg, val;
9112
9113         if (INTEL_INFO(dev)->num_pipes == 1)
9114                 return true;
9115
9116         reg = DSPCNTR(!crtc->plane);
9117         val = I915_READ(reg);
9118
9119         if ((val & DISPLAY_PLANE_ENABLE) &&
9120             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9121                 return false;
9122
9123         return true;
9124 }
9125
9126 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9127 {
9128         struct drm_device *dev = crtc->base.dev;
9129         struct drm_i915_private *dev_priv = dev->dev_private;
9130         u32 reg;
9131
9132         /* Clear any frame start delays used for debugging left by the BIOS */
9133         reg = PIPECONF(crtc->config.cpu_transcoder);
9134         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9135
9136         /* We need to sanitize the plane -> pipe mapping first because this will
9137          * disable the crtc (and hence change the state) if it is wrong. Note
9138          * that gen4+ has a fixed plane -> pipe mapping.  */
9139         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9140                 struct intel_connector *connector;
9141                 bool plane;
9142
9143                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9144                               crtc->base.base.id);
9145
9146                 /* Pipe has the wrong plane attached and the plane is active.
9147                  * Temporarily change the plane mapping and disable everything
9148                  * ...  */
9149                 plane = crtc->plane;
9150                 crtc->plane = !plane;
9151                 dev_priv->display.crtc_disable(&crtc->base);
9152                 crtc->plane = plane;
9153
9154                 /* ... and break all links. */
9155                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9156                                     base.head) {
9157                         if (connector->encoder->base.crtc != &crtc->base)
9158                                 continue;
9159
9160                         intel_connector_break_all_links(connector);
9161                 }
9162
9163                 WARN_ON(crtc->active);
9164                 crtc->base.enabled = false;
9165         }
9166
9167         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9168             crtc->pipe == PIPE_A && !crtc->active) {
9169                 /* BIOS forgot to enable pipe A, this mostly happens after
9170                  * resume. Force-enable the pipe to fix this, the update_dpms
9171                  * call below we restore the pipe to the right state, but leave
9172                  * the required bits on. */
9173                 intel_enable_pipe_a(dev);
9174         }
9175
9176         /* Adjust the state of the output pipe according to whether we
9177          * have active connectors/encoders. */
9178         intel_crtc_update_dpms(&crtc->base);
9179
9180         if (crtc->active != crtc->base.enabled) {
9181                 struct intel_encoder *encoder;
9182
9183                 /* This can happen either due to bugs in the get_hw_state
9184                  * functions or because the pipe is force-enabled due to the
9185                  * pipe A quirk. */
9186                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9187                               crtc->base.base.id,
9188                               crtc->base.enabled ? "enabled" : "disabled",
9189                               crtc->active ? "enabled" : "disabled");
9190
9191                 crtc->base.enabled = crtc->active;
9192
9193                 /* Because we only establish the connector -> encoder ->
9194                  * crtc links if something is active, this means the
9195                  * crtc is now deactivated. Break the links. connector
9196                  * -> encoder links are only establish when things are
9197                  *  actually up, hence no need to break them. */
9198                 WARN_ON(crtc->active);
9199
9200                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9201                         WARN_ON(encoder->connectors_active);
9202                         encoder->base.crtc = NULL;
9203                 }
9204         }
9205 }
9206
9207 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9208 {
9209         struct intel_connector *connector;
9210         struct drm_device *dev = encoder->base.dev;
9211
9212         /* We need to check both for a crtc link (meaning that the
9213          * encoder is active and trying to read from a pipe) and the
9214          * pipe itself being active. */
9215         bool has_active_crtc = encoder->base.crtc &&
9216                 to_intel_crtc(encoder->base.crtc)->active;
9217
9218         if (encoder->connectors_active && !has_active_crtc) {
9219                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9220                               encoder->base.base.id,
9221                               drm_get_encoder_name(&encoder->base));
9222
9223                 /* Connector is active, but has no active pipe. This is
9224                  * fallout from our resume register restoring. Disable
9225                  * the encoder manually again. */
9226                 if (encoder->base.crtc) {
9227                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9228                                       encoder->base.base.id,
9229                                       drm_get_encoder_name(&encoder->base));
9230                         encoder->disable(encoder);
9231                 }
9232
9233                 /* Inconsistent output/port/pipe state happens presumably due to
9234                  * a bug in one of the get_hw_state functions. Or someplace else
9235                  * in our code, like the register restore mess on resume. Clamp
9236                  * things to off as a safer default. */
9237                 list_for_each_entry(connector,
9238                                     &dev->mode_config.connector_list,
9239                                     base.head) {
9240                         if (connector->encoder != encoder)
9241                                 continue;
9242
9243                         intel_connector_break_all_links(connector);
9244                 }
9245         }
9246         /* Enabled encoders without active connectors will be fixed in
9247          * the crtc fixup. */
9248 }
9249
9250 void i915_redisable_vga(struct drm_device *dev)
9251 {
9252         struct drm_i915_private *dev_priv = dev->dev_private;
9253         u32 vga_reg = i915_vgacntrl_reg(dev);
9254
9255         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9256                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9257                 i915_disable_vga(dev);
9258         }
9259 }
9260
9261 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9262  * and i915 state tracking structures. */
9263 void intel_modeset_setup_hw_state(struct drm_device *dev,
9264                                   bool force_restore)
9265 {
9266         struct drm_i915_private *dev_priv = dev->dev_private;
9267         enum pipe pipe;
9268         u32 tmp;
9269         struct drm_plane *plane;
9270         struct intel_crtc *crtc;
9271         struct intel_encoder *encoder;
9272         struct intel_connector *connector;
9273
9274         if (HAS_DDI(dev)) {
9275                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9276
9277                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9278                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9279                         case TRANS_DDI_EDP_INPUT_A_ON:
9280                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9281                                 pipe = PIPE_A;
9282                                 break;
9283                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9284                                 pipe = PIPE_B;
9285                                 break;
9286                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9287                                 pipe = PIPE_C;
9288                                 break;
9289                         default:
9290                                 /* A bogus value has been programmed, disable
9291                                  * the transcoder */
9292                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9293                                 intel_ddi_disable_transcoder_func(dev_priv,
9294                                                 TRANSCODER_EDP);
9295                                 goto setup_pipes;
9296                         }
9297
9298                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9299                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9300
9301                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9302                                       pipe_name(pipe));
9303                 }
9304         }
9305
9306 setup_pipes:
9307         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9308                             base.head) {
9309                 enum transcoder tmp = crtc->config.cpu_transcoder;
9310                 memset(&crtc->config, 0, sizeof(crtc->config));
9311                 crtc->config.cpu_transcoder = tmp;
9312
9313                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9314                                                                  &crtc->config);
9315
9316                 crtc->base.enabled = crtc->active;
9317
9318                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9319                               crtc->base.base.id,
9320                               crtc->active ? "enabled" : "disabled");
9321         }
9322
9323         if (HAS_DDI(dev))
9324                 intel_ddi_setup_hw_pll_state(dev);
9325
9326         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9327                             base.head) {
9328                 pipe = 0;
9329
9330                 if (encoder->get_hw_state(encoder, &pipe)) {
9331                         encoder->base.crtc =
9332                                 dev_priv->pipe_to_crtc_mapping[pipe];
9333                 } else {
9334                         encoder->base.crtc = NULL;
9335                 }
9336
9337                 encoder->connectors_active = false;
9338                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9339                               encoder->base.base.id,
9340                               drm_get_encoder_name(&encoder->base),
9341                               encoder->base.crtc ? "enabled" : "disabled",
9342                               pipe);
9343         }
9344
9345         list_for_each_entry(connector, &dev->mode_config.connector_list,
9346                             base.head) {
9347                 if (connector->get_hw_state(connector)) {
9348                         connector->base.dpms = DRM_MODE_DPMS_ON;
9349                         connector->encoder->connectors_active = true;
9350                         connector->base.encoder = &connector->encoder->base;
9351                 } else {
9352                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9353                         connector->base.encoder = NULL;
9354                 }
9355                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9356                               connector->base.base.id,
9357                               drm_get_connector_name(&connector->base),
9358                               connector->base.encoder ? "enabled" : "disabled");
9359         }
9360
9361         /* HW state is read out, now we need to sanitize this mess. */
9362         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9363                             base.head) {
9364                 intel_sanitize_encoder(encoder);
9365         }
9366
9367         for_each_pipe(pipe) {
9368                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9369                 intel_sanitize_crtc(crtc);
9370         }
9371
9372         if (force_restore) {
9373                 /*
9374                  * We need to use raw interfaces for restoring state to avoid
9375                  * checking (bogus) intermediate states.
9376                  */
9377                 for_each_pipe(pipe) {
9378                         struct drm_crtc *crtc =
9379                                 dev_priv->pipe_to_crtc_mapping[pipe];
9380
9381                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9382                                          crtc->fb);
9383                 }
9384                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9385                         intel_plane_restore(plane);
9386
9387                 i915_redisable_vga(dev);
9388         } else {
9389                 intel_modeset_update_staged_output_state(dev);
9390         }
9391
9392         intel_modeset_check_state(dev);
9393
9394         drm_mode_config_reset(dev);
9395 }
9396
9397 void intel_modeset_gem_init(struct drm_device *dev)
9398 {
9399         intel_modeset_init_hw(dev);
9400
9401         intel_setup_overlay(dev);
9402
9403         intel_modeset_setup_hw_state(dev, false);
9404 }
9405
9406 void intel_modeset_cleanup(struct drm_device *dev)
9407 {
9408         struct drm_i915_private *dev_priv = dev->dev_private;
9409         struct drm_crtc *crtc;
9410         struct intel_crtc *intel_crtc;
9411
9412         drm_kms_helper_poll_fini(dev);
9413         mutex_lock(&dev->struct_mutex);
9414
9415         intel_unregister_dsm_handler();
9416
9417
9418         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9419                 /* Skip inactive CRTCs */
9420                 if (!crtc->fb)
9421                         continue;
9422
9423                 intel_crtc = to_intel_crtc(crtc);
9424                 intel_increase_pllclock(crtc);
9425         }
9426
9427         intel_disable_fbc(dev);
9428
9429         intel_disable_gt_powersave(dev);
9430
9431         ironlake_teardown_rc6(dev);
9432
9433         if (IS_VALLEYVIEW(dev))
9434                 vlv_init_dpio(dev);
9435
9436         mutex_unlock(&dev->struct_mutex);
9437
9438         /* Disable the irq before mode object teardown, for the irq might
9439          * enqueue unpin/hotplug work. */
9440         drm_irq_uninstall(dev);
9441         cancel_work_sync(&dev_priv->hotplug_work);
9442         cancel_work_sync(&dev_priv->rps.work);
9443
9444         /* flush any delayed tasks or pending work */
9445         flush_scheduled_work();
9446
9447         /* destroy backlight, if any, before the connectors */
9448         intel_panel_destroy_backlight(dev);
9449
9450         drm_mode_config_cleanup(dev);
9451
9452         intel_cleanup_overlay(dev);
9453 }
9454
9455 /*
9456  * Return which encoder is currently attached for connector.
9457  */
9458 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9459 {
9460         return &intel_attached_encoder(connector)->base;
9461 }
9462
9463 void intel_connector_attach_encoder(struct intel_connector *connector,
9464                                     struct intel_encoder *encoder)
9465 {
9466         connector->encoder = encoder;
9467         drm_mode_connector_attach_encoder(&connector->base,
9468                                           &encoder->base);
9469 }
9470
9471 /*
9472  * set vga decode state - true == enable VGA decode
9473  */
9474 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9475 {
9476         struct drm_i915_private *dev_priv = dev->dev_private;
9477         u16 gmch_ctrl;
9478
9479         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9480         if (state)
9481                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9482         else
9483                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9484         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9485         return 0;
9486 }
9487
9488 #ifdef CONFIG_DEBUG_FS
9489 #include <linux/seq_file.h>
9490
9491 struct intel_display_error_state {
9492         struct intel_cursor_error_state {
9493                 u32 control;
9494                 u32 position;
9495                 u32 base;
9496                 u32 size;
9497         } cursor[I915_MAX_PIPES];
9498
9499         struct intel_pipe_error_state {
9500                 u32 conf;
9501                 u32 source;
9502
9503                 u32 htotal;
9504                 u32 hblank;
9505                 u32 hsync;
9506                 u32 vtotal;
9507                 u32 vblank;
9508                 u32 vsync;
9509         } pipe[I915_MAX_PIPES];
9510
9511         struct intel_plane_error_state {
9512                 u32 control;
9513                 u32 stride;
9514                 u32 size;
9515                 u32 pos;
9516                 u32 addr;
9517                 u32 surface;
9518                 u32 tile_offset;
9519         } plane[I915_MAX_PIPES];
9520 };
9521
9522 struct intel_display_error_state *
9523 intel_display_capture_error_state(struct drm_device *dev)
9524 {
9525         drm_i915_private_t *dev_priv = dev->dev_private;
9526         struct intel_display_error_state *error;
9527         enum transcoder cpu_transcoder;
9528         int i;
9529
9530         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9531         if (error == NULL)
9532                 return NULL;
9533
9534         for_each_pipe(i) {
9535                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9536
9537                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9538                         error->cursor[i].control = I915_READ(CURCNTR(i));
9539                         error->cursor[i].position = I915_READ(CURPOS(i));
9540                         error->cursor[i].base = I915_READ(CURBASE(i));
9541                 } else {
9542                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9543                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9544                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9545                 }
9546
9547                 error->plane[i].control = I915_READ(DSPCNTR(i));
9548                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9549                 if (INTEL_INFO(dev)->gen <= 3) {
9550                         error->plane[i].size = I915_READ(DSPSIZE(i));
9551                         error->plane[i].pos = I915_READ(DSPPOS(i));
9552                 }
9553                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9554                         error->plane[i].addr = I915_READ(DSPADDR(i));
9555                 if (INTEL_INFO(dev)->gen >= 4) {
9556                         error->plane[i].surface = I915_READ(DSPSURF(i));
9557                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9558                 }
9559
9560                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9561                 error->pipe[i].source = I915_READ(PIPESRC(i));
9562                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9563                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9564                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9565                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9566                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9567                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9568         }
9569
9570         return error;
9571 }
9572
9573 void
9574 intel_display_print_error_state(struct seq_file *m,
9575                                 struct drm_device *dev,
9576                                 struct intel_display_error_state *error)
9577 {
9578         int i;
9579
9580         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9581         for_each_pipe(i) {
9582                 seq_printf(m, "Pipe [%d]:\n", i);
9583                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9584                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9585                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9586                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9587                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9588                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9589                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9590                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9591
9592                 seq_printf(m, "Plane [%d]:\n", i);
9593                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9594                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9595                 if (INTEL_INFO(dev)->gen <= 3) {
9596                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9597                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9598                 }
9599                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9600                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9601                 if (INTEL_INFO(dev)->gen >= 4) {
9602                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9603                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9604                 }
9605
9606                 seq_printf(m, "Cursor [%d]:\n", i);
9607                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9608                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9609                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9610         }
9611 }
9612 #endif