]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: turn the eDP DDI panel on/off
[linux-imx.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         return intel_dp->base.type == INTEL_OUTPUT_EDP;
51 }
52
53 /**
54  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55  * @intel_dp: DP struct
56  *
57  * Returns true if the given DP struct corresponds to a PCH DP port attached
58  * to an eDP panel, false otherwise.  Helpful for determining whether we
59  * may need FDI resources for a given DP output or not.
60  */
61 static bool is_pch_edp(struct intel_dp *intel_dp)
62 {
63         return intel_dp->is_pch_edp;
64 }
65
66 /**
67  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68  * @intel_dp: DP struct
69  *
70  * Returns true if the given DP struct corresponds to a CPU eDP port.
71  */
72 static bool is_cpu_edp(struct intel_dp *intel_dp)
73 {
74         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
75 }
76
77 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
78 {
79         return container_of(intel_attached_encoder(connector),
80                             struct intel_dp, base);
81 }
82
83 /**
84  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
85  * @encoder: DRM encoder
86  *
87  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
88  * by intel_display.c.
89  */
90 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
91 {
92         struct intel_dp *intel_dp;
93
94         if (!encoder)
95                 return false;
96
97         intel_dp = enc_to_intel_dp(encoder);
98
99         return is_pch_edp(intel_dp);
100 }
101
102 static void intel_dp_link_down(struct intel_dp *intel_dp);
103
104 void
105 intel_edp_link_config(struct intel_encoder *intel_encoder,
106                        int *lane_num, int *link_bw)
107 {
108         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
109
110         *lane_num = intel_dp->lane_count;
111         *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
112 }
113
114 int
115 intel_edp_target_clock(struct intel_encoder *intel_encoder,
116                        struct drm_display_mode *mode)
117 {
118         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119         struct intel_connector *intel_connector = intel_dp->attached_connector;
120
121         if (intel_connector->panel.fixed_mode)
122                 return intel_connector->panel.fixed_mode->clock;
123         else
124                 return mode->clock;
125 }
126
127 static int
128 intel_dp_max_link_bw(struct intel_dp *intel_dp)
129 {
130         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
131
132         switch (max_link_bw) {
133         case DP_LINK_BW_1_62:
134         case DP_LINK_BW_2_7:
135                 break;
136         default:
137                 max_link_bw = DP_LINK_BW_1_62;
138                 break;
139         }
140         return max_link_bw;
141 }
142
143 static int
144 intel_dp_link_clock(uint8_t link_bw)
145 {
146         if (link_bw == DP_LINK_BW_2_7)
147                 return 270000;
148         else
149                 return 162000;
150 }
151
152 /*
153  * The units on the numbers in the next two are... bizarre.  Examples will
154  * make it clearer; this one parallels an example in the eDP spec.
155  *
156  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
157  *
158  *     270000 * 1 * 8 / 10 == 216000
159  *
160  * The actual data capacity of that configuration is 2.16Gbit/s, so the
161  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
162  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
163  * 119000.  At 18bpp that's 2142000 kilobits per second.
164  *
165  * Thus the strange-looking division by 10 in intel_dp_link_required, to
166  * get the result in decakilobits instead of kilobits.
167  */
168
169 static int
170 intel_dp_link_required(int pixel_clock, int bpp)
171 {
172         return (pixel_clock * bpp + 9) / 10;
173 }
174
175 static int
176 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
177 {
178         return (max_link_clock * max_lanes * 8) / 10;
179 }
180
181 static bool
182 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
183                           struct drm_display_mode *mode,
184                           bool adjust_mode)
185 {
186         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
187         int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188         int max_rate, mode_rate;
189
190         mode_rate = intel_dp_link_required(mode->clock, 24);
191         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193         if (mode_rate > max_rate) {
194                 mode_rate = intel_dp_link_required(mode->clock, 18);
195                 if (mode_rate > max_rate)
196                         return false;
197
198                 if (adjust_mode)
199                         mode->private_flags
200                                 |= INTEL_MODE_DP_FORCE_6BPC;
201
202                 return true;
203         }
204
205         return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210                     struct drm_display_mode *mode)
211 {
212         struct intel_dp *intel_dp = intel_attached_dp(connector);
213         struct intel_connector *intel_connector = to_intel_connector(connector);
214         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216         if (is_edp(intel_dp) && fixed_mode) {
217                 if (mode->hdisplay > fixed_mode->hdisplay)
218                         return MODE_PANEL;
219
220                 if (mode->vdisplay > fixed_mode->vdisplay)
221                         return MODE_PANEL;
222         }
223
224         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239         int     i;
240         uint32_t v = 0;
241
242         if (src_bytes > 4)
243                 src_bytes = 4;
244         for (i = 0; i < src_bytes; i++)
245                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246         return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252         int i;
253         if (dst_bytes > 4)
254                 dst_bytes = 4;
255         for (i = 0; i < dst_bytes; i++)
256                 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         uint32_t clkcfg;
265
266         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267         if (IS_VALLEYVIEW(dev))
268                 return 200;
269
270         clkcfg = I915_READ(CLKCFG);
271         switch (clkcfg & CLKCFG_FSB_MASK) {
272         case CLKCFG_FSB_400:
273                 return 100;
274         case CLKCFG_FSB_533:
275                 return 133;
276         case CLKCFG_FSB_667:
277                 return 166;
278         case CLKCFG_FSB_800:
279                 return 200;
280         case CLKCFG_FSB_1067:
281                 return 266;
282         case CLKCFG_FSB_1333:
283                 return 333;
284         /* these two are just a guess; one of them might be right */
285         case CLKCFG_FSB_1600:
286         case CLKCFG_FSB_1600_ALT:
287                 return 400;
288         default:
289                 return 133;
290         }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295         struct drm_device *dev = intel_dp->base.base.dev;
296         struct drm_i915_private *dev_priv = dev->dev_private;
297
298         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303         struct drm_device *dev = intel_dp->base.base.dev;
304         struct drm_i915_private *dev_priv = dev->dev_private;
305
306         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp->base.base.dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         if (!is_edp(intel_dp))
316                 return;
317         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320                               I915_READ(PCH_PP_STATUS),
321                               I915_READ(PCH_PP_CONTROL));
322         }
323 }
324
325 static int
326 intel_dp_aux_ch(struct intel_dp *intel_dp,
327                 uint8_t *send, int send_bytes,
328                 uint8_t *recv, int recv_size)
329 {
330         uint32_t output_reg = intel_dp->output_reg;
331         struct drm_device *dev = intel_dp->base.base.dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333         uint32_t ch_ctl = output_reg + 0x10;
334         uint32_t ch_data = ch_ctl + 4;
335         int i;
336         int recv_bytes;
337         uint32_t status;
338         uint32_t aux_clock_divider;
339         int try, precharge;
340
341         if (IS_HASWELL(dev)) {
342                 switch (intel_dp->port) {
343                 case PORT_A:
344                         ch_ctl = DPA_AUX_CH_CTL;
345                         ch_data = DPA_AUX_CH_DATA1;
346                         break;
347                 case PORT_B:
348                         ch_ctl = PCH_DPB_AUX_CH_CTL;
349                         ch_data = PCH_DPB_AUX_CH_DATA1;
350                         break;
351                 case PORT_C:
352                         ch_ctl = PCH_DPC_AUX_CH_CTL;
353                         ch_data = PCH_DPC_AUX_CH_DATA1;
354                         break;
355                 case PORT_D:
356                         ch_ctl = PCH_DPD_AUX_CH_CTL;
357                         ch_data = PCH_DPD_AUX_CH_DATA1;
358                         break;
359                 default:
360                         BUG();
361                 }
362         }
363
364         intel_dp_check_edp(intel_dp);
365         /* The clock divider is based off the hrawclk,
366          * and would like to run at 2MHz. So, take the
367          * hrawclk value and divide by 2 and use that
368          *
369          * Note that PCH attached eDP panels should use a 125MHz input
370          * clock divider.
371          */
372         if (is_cpu_edp(intel_dp)) {
373                 if (IS_HASWELL(dev))
374                         aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
375                 else if (IS_VALLEYVIEW(dev))
376                         aux_clock_divider = 100;
377                 else if (IS_GEN6(dev) || IS_GEN7(dev))
378                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
379                 else
380                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
381         } else if (HAS_PCH_SPLIT(dev))
382                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
383         else
384                 aux_clock_divider = intel_hrawclk(dev) / 2;
385
386         if (IS_GEN6(dev))
387                 precharge = 3;
388         else
389                 precharge = 5;
390
391         /* Try to wait for any previous AUX channel activity */
392         for (try = 0; try < 3; try++) {
393                 status = I915_READ(ch_ctl);
394                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395                         break;
396                 msleep(1);
397         }
398
399         if (try == 3) {
400                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
401                      I915_READ(ch_ctl));
402                 return -EBUSY;
403         }
404
405         /* Must try at least 3 times according to DP spec */
406         for (try = 0; try < 5; try++) {
407                 /* Load the send data into the aux channel data registers */
408                 for (i = 0; i < send_bytes; i += 4)
409                         I915_WRITE(ch_data + i,
410                                    pack_aux(send + i, send_bytes - i));
411
412                 /* Send the command and wait for it to complete */
413                 I915_WRITE(ch_ctl,
414                            DP_AUX_CH_CTL_SEND_BUSY |
415                            DP_AUX_CH_CTL_TIME_OUT_400us |
416                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419                            DP_AUX_CH_CTL_DONE |
420                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
421                            DP_AUX_CH_CTL_RECEIVE_ERROR);
422                 for (;;) {
423                         status = I915_READ(ch_ctl);
424                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425                                 break;
426                         udelay(100);
427                 }
428
429                 /* Clear done status and any errors */
430                 I915_WRITE(ch_ctl,
431                            status |
432                            DP_AUX_CH_CTL_DONE |
433                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
434                            DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                               DP_AUX_CH_CTL_RECEIVE_ERROR))
438                         continue;
439                 if (status & DP_AUX_CH_CTL_DONE)
440                         break;
441         }
442
443         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445                 return -EBUSY;
446         }
447
448         /* Check for timeout or receive error.
449          * Timeouts occur when the sink is not connected
450          */
451         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453                 return -EIO;
454         }
455
456         /* Timeouts occur when the device isn't connected, so they're
457          * "normal" -- don't fill the kernel log with these */
458         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460                 return -ETIMEDOUT;
461         }
462
463         /* Unload any bytes sent back from the other side */
464         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466         if (recv_bytes > recv_size)
467                 recv_bytes = recv_size;
468
469         for (i = 0; i < recv_bytes; i += 4)
470                 unpack_aux(I915_READ(ch_data + i),
471                            recv + i, recv_bytes - i);
472
473         return recv_bytes;
474 }
475
476 /* Write data to the aux channel in native mode */
477 static int
478 intel_dp_aux_native_write(struct intel_dp *intel_dp,
479                           uint16_t address, uint8_t *send, int send_bytes)
480 {
481         int ret;
482         uint8_t msg[20];
483         int msg_bytes;
484         uint8_t ack;
485
486         intel_dp_check_edp(intel_dp);
487         if (send_bytes > 16)
488                 return -1;
489         msg[0] = AUX_NATIVE_WRITE << 4;
490         msg[1] = address >> 8;
491         msg[2] = address & 0xff;
492         msg[3] = send_bytes - 1;
493         memcpy(&msg[4], send, send_bytes);
494         msg_bytes = send_bytes + 4;
495         for (;;) {
496                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497                 if (ret < 0)
498                         return ret;
499                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500                         break;
501                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502                         udelay(100);
503                 else
504                         return -EIO;
505         }
506         return send_bytes;
507 }
508
509 /* Write a single byte to the aux channel in native mode */
510 static int
511 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512                             uint16_t address, uint8_t byte)
513 {
514         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 }
516
517 /* read bytes from a native aux channel */
518 static int
519 intel_dp_aux_native_read(struct intel_dp *intel_dp,
520                          uint16_t address, uint8_t *recv, int recv_bytes)
521 {
522         uint8_t msg[4];
523         int msg_bytes;
524         uint8_t reply[20];
525         int reply_bytes;
526         uint8_t ack;
527         int ret;
528
529         intel_dp_check_edp(intel_dp);
530         msg[0] = AUX_NATIVE_READ << 4;
531         msg[1] = address >> 8;
532         msg[2] = address & 0xff;
533         msg[3] = recv_bytes - 1;
534
535         msg_bytes = 4;
536         reply_bytes = recv_bytes + 1;
537
538         for (;;) {
539                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540                                       reply, reply_bytes);
541                 if (ret == 0)
542                         return -EPROTO;
543                 if (ret < 0)
544                         return ret;
545                 ack = reply[0];
546                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547                         memcpy(recv, reply + 1, ret - 1);
548                         return ret - 1;
549                 }
550                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551                         udelay(100);
552                 else
553                         return -EIO;
554         }
555 }
556
557 static int
558 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
559                     uint8_t write_byte, uint8_t *read_byte)
560 {
561         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
562         struct intel_dp *intel_dp = container_of(adapter,
563                                                 struct intel_dp,
564                                                 adapter);
565         uint16_t address = algo_data->address;
566         uint8_t msg[5];
567         uint8_t reply[2];
568         unsigned retry;
569         int msg_bytes;
570         int reply_bytes;
571         int ret;
572
573         intel_dp_check_edp(intel_dp);
574         /* Set up the command byte */
575         if (mode & MODE_I2C_READ)
576                 msg[0] = AUX_I2C_READ << 4;
577         else
578                 msg[0] = AUX_I2C_WRITE << 4;
579
580         if (!(mode & MODE_I2C_STOP))
581                 msg[0] |= AUX_I2C_MOT << 4;
582
583         msg[1] = address >> 8;
584         msg[2] = address;
585
586         switch (mode) {
587         case MODE_I2C_WRITE:
588                 msg[3] = 0;
589                 msg[4] = write_byte;
590                 msg_bytes = 5;
591                 reply_bytes = 1;
592                 break;
593         case MODE_I2C_READ:
594                 msg[3] = 0;
595                 msg_bytes = 4;
596                 reply_bytes = 2;
597                 break;
598         default:
599                 msg_bytes = 3;
600                 reply_bytes = 1;
601                 break;
602         }
603
604         for (retry = 0; retry < 5; retry++) {
605                 ret = intel_dp_aux_ch(intel_dp,
606                                       msg, msg_bytes,
607                                       reply, reply_bytes);
608                 if (ret < 0) {
609                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
610                         return ret;
611                 }
612
613                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
614                 case AUX_NATIVE_REPLY_ACK:
615                         /* I2C-over-AUX Reply field is only valid
616                          * when paired with AUX ACK.
617                          */
618                         break;
619                 case AUX_NATIVE_REPLY_NACK:
620                         DRM_DEBUG_KMS("aux_ch native nack\n");
621                         return -EREMOTEIO;
622                 case AUX_NATIVE_REPLY_DEFER:
623                         udelay(100);
624                         continue;
625                 default:
626                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
627                                   reply[0]);
628                         return -EREMOTEIO;
629                 }
630
631                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
632                 case AUX_I2C_REPLY_ACK:
633                         if (mode == MODE_I2C_READ) {
634                                 *read_byte = reply[1];
635                         }
636                         return reply_bytes - 1;
637                 case AUX_I2C_REPLY_NACK:
638                         DRM_DEBUG_KMS("aux_i2c nack\n");
639                         return -EREMOTEIO;
640                 case AUX_I2C_REPLY_DEFER:
641                         DRM_DEBUG_KMS("aux_i2c defer\n");
642                         udelay(100);
643                         break;
644                 default:
645                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
646                         return -EREMOTEIO;
647                 }
648         }
649
650         DRM_ERROR("too many retries, giving up\n");
651         return -EREMOTEIO;
652 }
653
654 static int
655 intel_dp_i2c_init(struct intel_dp *intel_dp,
656                   struct intel_connector *intel_connector, const char *name)
657 {
658         int     ret;
659
660         DRM_DEBUG_KMS("i2c_init %s\n", name);
661         intel_dp->algo.running = false;
662         intel_dp->algo.address = 0;
663         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
664
665         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
666         intel_dp->adapter.owner = THIS_MODULE;
667         intel_dp->adapter.class = I2C_CLASS_DDC;
668         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
669         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
670         intel_dp->adapter.algo_data = &intel_dp->algo;
671         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
672
673         ironlake_edp_panel_vdd_on(intel_dp);
674         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
675         ironlake_edp_panel_vdd_off(intel_dp, false);
676         return ret;
677 }
678
679 static bool
680 intel_dp_mode_fixup(struct drm_encoder *encoder,
681                     const struct drm_display_mode *mode,
682                     struct drm_display_mode *adjusted_mode)
683 {
684         struct drm_device *dev = encoder->dev;
685         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
686         struct intel_connector *intel_connector = intel_dp->attached_connector;
687         int lane_count, clock;
688         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
689         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
690         int bpp, mode_rate;
691         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
692
693         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
694                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
695                                        adjusted_mode);
696                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
697                                         mode, adjusted_mode);
698         }
699
700         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
701                 return false;
702
703         DRM_DEBUG_KMS("DP link computation with max lane count %i "
704                       "max bw %02x pixel clock %iKHz\n",
705                       max_lane_count, bws[max_clock], adjusted_mode->clock);
706
707         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
708                 return false;
709
710         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
711         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
712
713         for (clock = 0; clock <= max_clock; clock++) {
714                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
715                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
716
717                         if (mode_rate <= link_avail) {
718                                 intel_dp->link_bw = bws[clock];
719                                 intel_dp->lane_count = lane_count;
720                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
721                                 DRM_DEBUG_KMS("DP link bw %02x lane "
722                                                 "count %d clock %d bpp %d\n",
723                                        intel_dp->link_bw, intel_dp->lane_count,
724                                        adjusted_mode->clock, bpp);
725                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
726                                               mode_rate, link_avail);
727                                 return true;
728                         }
729                 }
730         }
731
732         return false;
733 }
734
735 struct intel_dp_m_n {
736         uint32_t        tu;
737         uint32_t        gmch_m;
738         uint32_t        gmch_n;
739         uint32_t        link_m;
740         uint32_t        link_n;
741 };
742
743 static void
744 intel_reduce_ratio(uint32_t *num, uint32_t *den)
745 {
746         while (*num > 0xffffff || *den > 0xffffff) {
747                 *num >>= 1;
748                 *den >>= 1;
749         }
750 }
751
752 static void
753 intel_dp_compute_m_n(int bpp,
754                      int nlanes,
755                      int pixel_clock,
756                      int link_clock,
757                      struct intel_dp_m_n *m_n)
758 {
759         m_n->tu = 64;
760         m_n->gmch_m = (pixel_clock * bpp) >> 3;
761         m_n->gmch_n = link_clock * nlanes;
762         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
763         m_n->link_m = pixel_clock;
764         m_n->link_n = link_clock;
765         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
766 }
767
768 void
769 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
770                  struct drm_display_mode *adjusted_mode)
771 {
772         struct drm_device *dev = crtc->dev;
773         struct intel_encoder *encoder;
774         struct drm_i915_private *dev_priv = dev->dev_private;
775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
776         int lane_count = 4;
777         struct intel_dp_m_n m_n;
778         int pipe = intel_crtc->pipe;
779         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
780
781         /*
782          * Find the lane count in the intel_encoder private
783          */
784         for_each_encoder_on_crtc(dev, crtc, encoder) {
785                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
786
787                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
788                     intel_dp->base.type == INTEL_OUTPUT_EDP)
789                 {
790                         lane_count = intel_dp->lane_count;
791                         break;
792                 }
793         }
794
795         /*
796          * Compute the GMCH and Link ratios. The '3' here is
797          * the number of bytes_per_pixel post-LUT, which we always
798          * set up for 8-bits of R/G/B, or 3 bytes total.
799          */
800         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
801                              mode->clock, adjusted_mode->clock, &m_n);
802
803         if (IS_HASWELL(dev)) {
804                 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
805                            TU_SIZE(m_n.tu) | m_n.gmch_m);
806                 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
807                 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
808                 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
809         } else if (HAS_PCH_SPLIT(dev)) {
810                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
811                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
812                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
813                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
814         } else if (IS_VALLEYVIEW(dev)) {
815                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
816                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
817                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
818                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
819         } else {
820                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
821                            TU_SIZE(m_n.tu) | m_n.gmch_m);
822                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
823                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
824                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
825         }
826 }
827
828 void intel_dp_init_link_config(struct intel_dp *intel_dp)
829 {
830         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
831         intel_dp->link_configuration[0] = intel_dp->link_bw;
832         intel_dp->link_configuration[1] = intel_dp->lane_count;
833         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
834         /*
835          * Check for DPCD version > 1.1 and enhanced framing support
836          */
837         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
838             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
839                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
840         }
841 }
842
843 static void
844 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
845                   struct drm_display_mode *adjusted_mode)
846 {
847         struct drm_device *dev = encoder->dev;
848         struct drm_i915_private *dev_priv = dev->dev_private;
849         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
850         struct drm_crtc *crtc = intel_dp->base.base.crtc;
851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
852
853         /*
854          * There are four kinds of DP registers:
855          *
856          *      IBX PCH
857          *      SNB CPU
858          *      IVB CPU
859          *      CPT PCH
860          *
861          * IBX PCH and CPU are the same for almost everything,
862          * except that the CPU DP PLL is configured in this
863          * register
864          *
865          * CPT PCH is quite different, having many bits moved
866          * to the TRANS_DP_CTL register instead. That
867          * configuration happens (oddly) in ironlake_pch_enable
868          */
869
870         /* Preserve the BIOS-computed detected bit. This is
871          * supposed to be read-only.
872          */
873         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
874
875         /* Handle DP bits in common between all three register formats */
876         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
877
878         switch (intel_dp->lane_count) {
879         case 1:
880                 intel_dp->DP |= DP_PORT_WIDTH_1;
881                 break;
882         case 2:
883                 intel_dp->DP |= DP_PORT_WIDTH_2;
884                 break;
885         case 4:
886                 intel_dp->DP |= DP_PORT_WIDTH_4;
887                 break;
888         }
889         if (intel_dp->has_audio) {
890                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
891                                  pipe_name(intel_crtc->pipe));
892                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
893                 intel_write_eld(encoder, adjusted_mode);
894         }
895
896         intel_dp_init_link_config(intel_dp);
897
898         /* Split out the IBX/CPU vs CPT settings */
899
900         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
901                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
902                         intel_dp->DP |= DP_SYNC_HS_HIGH;
903                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
904                         intel_dp->DP |= DP_SYNC_VS_HIGH;
905                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
906
907                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
908                         intel_dp->DP |= DP_ENHANCED_FRAMING;
909
910                 intel_dp->DP |= intel_crtc->pipe << 29;
911
912                 /* don't miss out required setting for eDP */
913                 if (adjusted_mode->clock < 200000)
914                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
915                 else
916                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
917         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
918                 intel_dp->DP |= intel_dp->color_range;
919
920                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
921                         intel_dp->DP |= DP_SYNC_HS_HIGH;
922                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
923                         intel_dp->DP |= DP_SYNC_VS_HIGH;
924                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
925
926                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
927                         intel_dp->DP |= DP_ENHANCED_FRAMING;
928
929                 if (intel_crtc->pipe == 1)
930                         intel_dp->DP |= DP_PIPEB_SELECT;
931
932                 if (is_cpu_edp(intel_dp)) {
933                         /* don't miss out required setting for eDP */
934                         if (adjusted_mode->clock < 200000)
935                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
936                         else
937                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
938                 }
939         } else {
940                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
941         }
942 }
943
944 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
945 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
946
947 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
948 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
949
950 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
951 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
952
953 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
954                                        u32 mask,
955                                        u32 value)
956 {
957         struct drm_device *dev = intel_dp->base.base.dev;
958         struct drm_i915_private *dev_priv = dev->dev_private;
959
960         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
961                       mask, value,
962                       I915_READ(PCH_PP_STATUS),
963                       I915_READ(PCH_PP_CONTROL));
964
965         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
966                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
967                           I915_READ(PCH_PP_STATUS),
968                           I915_READ(PCH_PP_CONTROL));
969         }
970 }
971
972 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
973 {
974         DRM_DEBUG_KMS("Wait for panel power on\n");
975         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
976 }
977
978 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
979 {
980         DRM_DEBUG_KMS("Wait for panel power off time\n");
981         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
982 }
983
984 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
985 {
986         DRM_DEBUG_KMS("Wait for panel power cycle\n");
987         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
988 }
989
990
991 /* Read the current pp_control value, unlocking the register if it
992  * is locked
993  */
994
995 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
996 {
997         u32     control = I915_READ(PCH_PP_CONTROL);
998
999         control &= ~PANEL_UNLOCK_MASK;
1000         control |= PANEL_UNLOCK_REGS;
1001         return control;
1002 }
1003
1004 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1005 {
1006         struct drm_device *dev = intel_dp->base.base.dev;
1007         struct drm_i915_private *dev_priv = dev->dev_private;
1008         u32 pp;
1009
1010         if (!is_edp(intel_dp))
1011                 return;
1012         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1013
1014         WARN(intel_dp->want_panel_vdd,
1015              "eDP VDD already requested on\n");
1016
1017         intel_dp->want_panel_vdd = true;
1018
1019         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1020                 DRM_DEBUG_KMS("eDP VDD already on\n");
1021                 return;
1022         }
1023
1024         if (!ironlake_edp_have_panel_power(intel_dp))
1025                 ironlake_wait_panel_power_cycle(intel_dp);
1026
1027         pp = ironlake_get_pp_control(dev_priv);
1028         pp |= EDP_FORCE_VDD;
1029         I915_WRITE(PCH_PP_CONTROL, pp);
1030         POSTING_READ(PCH_PP_CONTROL);
1031         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1032                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1033
1034         /*
1035          * If the panel wasn't on, delay before accessing aux channel
1036          */
1037         if (!ironlake_edp_have_panel_power(intel_dp)) {
1038                 DRM_DEBUG_KMS("eDP was not running\n");
1039                 msleep(intel_dp->panel_power_up_delay);
1040         }
1041 }
1042
1043 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1044 {
1045         struct drm_device *dev = intel_dp->base.base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         u32 pp;
1048
1049         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1050                 pp = ironlake_get_pp_control(dev_priv);
1051                 pp &= ~EDP_FORCE_VDD;
1052                 I915_WRITE(PCH_PP_CONTROL, pp);
1053                 POSTING_READ(PCH_PP_CONTROL);
1054
1055                 /* Make sure sequencer is idle before allowing subsequent activity */
1056                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1057                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1058
1059                 msleep(intel_dp->panel_power_down_delay);
1060         }
1061 }
1062
1063 static void ironlake_panel_vdd_work(struct work_struct *__work)
1064 {
1065         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1066                                                  struct intel_dp, panel_vdd_work);
1067         struct drm_device *dev = intel_dp->base.base.dev;
1068
1069         mutex_lock(&dev->mode_config.mutex);
1070         ironlake_panel_vdd_off_sync(intel_dp);
1071         mutex_unlock(&dev->mode_config.mutex);
1072 }
1073
1074 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1075 {
1076         if (!is_edp(intel_dp))
1077                 return;
1078
1079         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1080         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1081
1082         intel_dp->want_panel_vdd = false;
1083
1084         if (sync) {
1085                 ironlake_panel_vdd_off_sync(intel_dp);
1086         } else {
1087                 /*
1088                  * Queue the timer to fire a long
1089                  * time from now (relative to the power down delay)
1090                  * to keep the panel power up across a sequence of operations
1091                  */
1092                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1093                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1094         }
1095 }
1096
1097 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1098 {
1099         struct drm_device *dev = intel_dp->base.base.dev;
1100         struct drm_i915_private *dev_priv = dev->dev_private;
1101         u32 pp;
1102
1103         if (!is_edp(intel_dp))
1104                 return;
1105
1106         DRM_DEBUG_KMS("Turn eDP power on\n");
1107
1108         if (ironlake_edp_have_panel_power(intel_dp)) {
1109                 DRM_DEBUG_KMS("eDP power already on\n");
1110                 return;
1111         }
1112
1113         ironlake_wait_panel_power_cycle(intel_dp);
1114
1115         pp = ironlake_get_pp_control(dev_priv);
1116         if (IS_GEN5(dev)) {
1117                 /* ILK workaround: disable reset around power sequence */
1118                 pp &= ~PANEL_POWER_RESET;
1119                 I915_WRITE(PCH_PP_CONTROL, pp);
1120                 POSTING_READ(PCH_PP_CONTROL);
1121         }
1122
1123         pp |= POWER_TARGET_ON;
1124         if (!IS_GEN5(dev))
1125                 pp |= PANEL_POWER_RESET;
1126
1127         I915_WRITE(PCH_PP_CONTROL, pp);
1128         POSTING_READ(PCH_PP_CONTROL);
1129
1130         ironlake_wait_panel_on(intel_dp);
1131
1132         if (IS_GEN5(dev)) {
1133                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1134                 I915_WRITE(PCH_PP_CONTROL, pp);
1135                 POSTING_READ(PCH_PP_CONTROL);
1136         }
1137 }
1138
1139 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1140 {
1141         struct drm_device *dev = intel_dp->base.base.dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         u32 pp;
1144
1145         if (!is_edp(intel_dp))
1146                 return;
1147
1148         DRM_DEBUG_KMS("Turn eDP power off\n");
1149
1150         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1151
1152         pp = ironlake_get_pp_control(dev_priv);
1153         /* We need to switch off panel power _and_ force vdd, for otherwise some
1154          * panels get very unhappy and cease to work. */
1155         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1156         I915_WRITE(PCH_PP_CONTROL, pp);
1157         POSTING_READ(PCH_PP_CONTROL);
1158
1159         intel_dp->want_panel_vdd = false;
1160
1161         ironlake_wait_panel_off(intel_dp);
1162 }
1163
1164 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1165 {
1166         struct drm_device *dev = intel_dp->base.base.dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         int pipe = to_intel_crtc(intel_dp->base.base.crtc)->pipe;
1169         u32 pp;
1170
1171         if (!is_edp(intel_dp))
1172                 return;
1173
1174         DRM_DEBUG_KMS("\n");
1175         /*
1176          * If we enable the backlight right away following a panel power
1177          * on, we may see slight flicker as the panel syncs with the eDP
1178          * link.  So delay a bit to make sure the image is solid before
1179          * allowing it to appear.
1180          */
1181         msleep(intel_dp->backlight_on_delay);
1182         pp = ironlake_get_pp_control(dev_priv);
1183         pp |= EDP_BLC_ENABLE;
1184         I915_WRITE(PCH_PP_CONTROL, pp);
1185         POSTING_READ(PCH_PP_CONTROL);
1186
1187         intel_panel_enable_backlight(dev, pipe);
1188 }
1189
1190 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1191 {
1192         struct drm_device *dev = intel_dp->base.base.dev;
1193         struct drm_i915_private *dev_priv = dev->dev_private;
1194         u32 pp;
1195
1196         if (!is_edp(intel_dp))
1197                 return;
1198
1199         intel_panel_disable_backlight(dev);
1200
1201         DRM_DEBUG_KMS("\n");
1202         pp = ironlake_get_pp_control(dev_priv);
1203         pp &= ~EDP_BLC_ENABLE;
1204         I915_WRITE(PCH_PP_CONTROL, pp);
1205         POSTING_READ(PCH_PP_CONTROL);
1206         msleep(intel_dp->backlight_off_delay);
1207 }
1208
1209 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1210 {
1211         struct drm_device *dev = intel_dp->base.base.dev;
1212         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         u32 dpa_ctl;
1215
1216         assert_pipe_disabled(dev_priv,
1217                              to_intel_crtc(crtc)->pipe);
1218
1219         DRM_DEBUG_KMS("\n");
1220         dpa_ctl = I915_READ(DP_A);
1221         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1222         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1223
1224         /* We don't adjust intel_dp->DP while tearing down the link, to
1225          * facilitate link retraining (e.g. after hotplug). Hence clear all
1226          * enable bits here to ensure that we don't enable too much. */
1227         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1228         intel_dp->DP |= DP_PLL_ENABLE;
1229         I915_WRITE(DP_A, intel_dp->DP);
1230         POSTING_READ(DP_A);
1231         udelay(200);
1232 }
1233
1234 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1235 {
1236         struct drm_device *dev = intel_dp->base.base.dev;
1237         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239         u32 dpa_ctl;
1240
1241         assert_pipe_disabled(dev_priv,
1242                              to_intel_crtc(crtc)->pipe);
1243
1244         dpa_ctl = I915_READ(DP_A);
1245         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1246              "dp pll off, should be on\n");
1247         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1248
1249         /* We can't rely on the value tracked for the DP register in
1250          * intel_dp->DP because link_down must not change that (otherwise link
1251          * re-training will fail. */
1252         dpa_ctl &= ~DP_PLL_ENABLE;
1253         I915_WRITE(DP_A, dpa_ctl);
1254         POSTING_READ(DP_A);
1255         udelay(200);
1256 }
1257
1258 /* If the sink supports it, try to set the power state appropriately */
1259 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1260 {
1261         int ret, i;
1262
1263         /* Should have a valid DPCD by this point */
1264         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1265                 return;
1266
1267         if (mode != DRM_MODE_DPMS_ON) {
1268                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1269                                                   DP_SET_POWER_D3);
1270                 if (ret != 1)
1271                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1272         } else {
1273                 /*
1274                  * When turning on, we need to retry for 1ms to give the sink
1275                  * time to wake up.
1276                  */
1277                 for (i = 0; i < 3; i++) {
1278                         ret = intel_dp_aux_native_write_1(intel_dp,
1279                                                           DP_SET_POWER,
1280                                                           DP_SET_POWER_D0);
1281                         if (ret == 1)
1282                                 break;
1283                         msleep(1);
1284                 }
1285         }
1286 }
1287
1288 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1289                                   enum pipe *pipe)
1290 {
1291         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1292         struct drm_device *dev = encoder->base.dev;
1293         struct drm_i915_private *dev_priv = dev->dev_private;
1294         u32 tmp = I915_READ(intel_dp->output_reg);
1295
1296         if (!(tmp & DP_PORT_EN))
1297                 return false;
1298
1299         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1300                 *pipe = PORT_TO_PIPE_CPT(tmp);
1301         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1302                 *pipe = PORT_TO_PIPE(tmp);
1303         } else {
1304                 u32 trans_sel;
1305                 u32 trans_dp;
1306                 int i;
1307
1308                 switch (intel_dp->output_reg) {
1309                 case PCH_DP_B:
1310                         trans_sel = TRANS_DP_PORT_SEL_B;
1311                         break;
1312                 case PCH_DP_C:
1313                         trans_sel = TRANS_DP_PORT_SEL_C;
1314                         break;
1315                 case PCH_DP_D:
1316                         trans_sel = TRANS_DP_PORT_SEL_D;
1317                         break;
1318                 default:
1319                         return true;
1320                 }
1321
1322                 for_each_pipe(i) {
1323                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1324                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1325                                 *pipe = i;
1326                                 return true;
1327                         }
1328                 }
1329         }
1330
1331         DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1332
1333         return true;
1334 }
1335
1336 static void intel_disable_dp(struct intel_encoder *encoder)
1337 {
1338         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1339
1340         /* Make sure the panel is off before trying to change the mode. But also
1341          * ensure that we have vdd while we switch off the panel. */
1342         ironlake_edp_panel_vdd_on(intel_dp);
1343         ironlake_edp_backlight_off(intel_dp);
1344         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1345         ironlake_edp_panel_off(intel_dp);
1346
1347         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1348         if (!is_cpu_edp(intel_dp))
1349                 intel_dp_link_down(intel_dp);
1350 }
1351
1352 static void intel_post_disable_dp(struct intel_encoder *encoder)
1353 {
1354         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1355
1356         if (is_cpu_edp(intel_dp)) {
1357                 intel_dp_link_down(intel_dp);
1358                 ironlake_edp_pll_off(intel_dp);
1359         }
1360 }
1361
1362 static void intel_enable_dp(struct intel_encoder *encoder)
1363 {
1364         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1365         struct drm_device *dev = encoder->base.dev;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1368
1369         if (WARN_ON(dp_reg & DP_PORT_EN))
1370                 return;
1371
1372         ironlake_edp_panel_vdd_on(intel_dp);
1373         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1374         intel_dp_start_link_train(intel_dp);
1375         ironlake_edp_panel_on(intel_dp);
1376         ironlake_edp_panel_vdd_off(intel_dp, true);
1377         intel_dp_complete_link_train(intel_dp);
1378         ironlake_edp_backlight_on(intel_dp);
1379 }
1380
1381 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1382 {
1383         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1384
1385         if (is_cpu_edp(intel_dp))
1386                 ironlake_edp_pll_on(intel_dp);
1387 }
1388
1389 /*
1390  * Native read with retry for link status and receiver capability reads for
1391  * cases where the sink may still be asleep.
1392  */
1393 static bool
1394 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1395                                uint8_t *recv, int recv_bytes)
1396 {
1397         int ret, i;
1398
1399         /*
1400          * Sinks are *supposed* to come up within 1ms from an off state,
1401          * but we're also supposed to retry 3 times per the spec.
1402          */
1403         for (i = 0; i < 3; i++) {
1404                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1405                                                recv_bytes);
1406                 if (ret == recv_bytes)
1407                         return true;
1408                 msleep(1);
1409         }
1410
1411         return false;
1412 }
1413
1414 /*
1415  * Fetch AUX CH registers 0x202 - 0x207 which contain
1416  * link status information
1417  */
1418 static bool
1419 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1420 {
1421         return intel_dp_aux_native_read_retry(intel_dp,
1422                                               DP_LANE0_1_STATUS,
1423                                               link_status,
1424                                               DP_LINK_STATUS_SIZE);
1425 }
1426
1427 #if 0
1428 static char     *voltage_names[] = {
1429         "0.4V", "0.6V", "0.8V", "1.2V"
1430 };
1431 static char     *pre_emph_names[] = {
1432         "0dB", "3.5dB", "6dB", "9.5dB"
1433 };
1434 static char     *link_train_names[] = {
1435         "pattern 1", "pattern 2", "idle", "off"
1436 };
1437 #endif
1438
1439 /*
1440  * These are source-specific values; current Intel hardware supports
1441  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1442  */
1443
1444 static uint8_t
1445 intel_dp_voltage_max(struct intel_dp *intel_dp)
1446 {
1447         struct drm_device *dev = intel_dp->base.base.dev;
1448
1449         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1450                 return DP_TRAIN_VOLTAGE_SWING_800;
1451         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1452                 return DP_TRAIN_VOLTAGE_SWING_1200;
1453         else
1454                 return DP_TRAIN_VOLTAGE_SWING_800;
1455 }
1456
1457 static uint8_t
1458 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1459 {
1460         struct drm_device *dev = intel_dp->base.base.dev;
1461
1462         if (IS_HASWELL(dev)) {
1463                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1464                 case DP_TRAIN_VOLTAGE_SWING_400:
1465                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1466                 case DP_TRAIN_VOLTAGE_SWING_600:
1467                         return DP_TRAIN_PRE_EMPHASIS_6;
1468                 case DP_TRAIN_VOLTAGE_SWING_800:
1469                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1470                 case DP_TRAIN_VOLTAGE_SWING_1200:
1471                 default:
1472                         return DP_TRAIN_PRE_EMPHASIS_0;
1473                 }
1474         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1475                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1476                 case DP_TRAIN_VOLTAGE_SWING_400:
1477                         return DP_TRAIN_PRE_EMPHASIS_6;
1478                 case DP_TRAIN_VOLTAGE_SWING_600:
1479                 case DP_TRAIN_VOLTAGE_SWING_800:
1480                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1481                 default:
1482                         return DP_TRAIN_PRE_EMPHASIS_0;
1483                 }
1484         } else {
1485                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1486                 case DP_TRAIN_VOLTAGE_SWING_400:
1487                         return DP_TRAIN_PRE_EMPHASIS_6;
1488                 case DP_TRAIN_VOLTAGE_SWING_600:
1489                         return DP_TRAIN_PRE_EMPHASIS_6;
1490                 case DP_TRAIN_VOLTAGE_SWING_800:
1491                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1492                 case DP_TRAIN_VOLTAGE_SWING_1200:
1493                 default:
1494                         return DP_TRAIN_PRE_EMPHASIS_0;
1495                 }
1496         }
1497 }
1498
1499 static void
1500 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1501 {
1502         uint8_t v = 0;
1503         uint8_t p = 0;
1504         int lane;
1505         uint8_t voltage_max;
1506         uint8_t preemph_max;
1507
1508         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1509                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1510                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1511
1512                 if (this_v > v)
1513                         v = this_v;
1514                 if (this_p > p)
1515                         p = this_p;
1516         }
1517
1518         voltage_max = intel_dp_voltage_max(intel_dp);
1519         if (v >= voltage_max)
1520                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1521
1522         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1523         if (p >= preemph_max)
1524                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1525
1526         for (lane = 0; lane < 4; lane++)
1527                 intel_dp->train_set[lane] = v | p;
1528 }
1529
1530 static uint32_t
1531 intel_dp_signal_levels(uint8_t train_set)
1532 {
1533         uint32_t        signal_levels = 0;
1534
1535         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1536         case DP_TRAIN_VOLTAGE_SWING_400:
1537         default:
1538                 signal_levels |= DP_VOLTAGE_0_4;
1539                 break;
1540         case DP_TRAIN_VOLTAGE_SWING_600:
1541                 signal_levels |= DP_VOLTAGE_0_6;
1542                 break;
1543         case DP_TRAIN_VOLTAGE_SWING_800:
1544                 signal_levels |= DP_VOLTAGE_0_8;
1545                 break;
1546         case DP_TRAIN_VOLTAGE_SWING_1200:
1547                 signal_levels |= DP_VOLTAGE_1_2;
1548                 break;
1549         }
1550         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1551         case DP_TRAIN_PRE_EMPHASIS_0:
1552         default:
1553                 signal_levels |= DP_PRE_EMPHASIS_0;
1554                 break;
1555         case DP_TRAIN_PRE_EMPHASIS_3_5:
1556                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1557                 break;
1558         case DP_TRAIN_PRE_EMPHASIS_6:
1559                 signal_levels |= DP_PRE_EMPHASIS_6;
1560                 break;
1561         case DP_TRAIN_PRE_EMPHASIS_9_5:
1562                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1563                 break;
1564         }
1565         return signal_levels;
1566 }
1567
1568 /* Gen6's DP voltage swing and pre-emphasis control */
1569 static uint32_t
1570 intel_gen6_edp_signal_levels(uint8_t train_set)
1571 {
1572         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1573                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1574         switch (signal_levels) {
1575         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1576         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1577                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1578         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1580         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1581         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1582                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1583         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1586         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1587         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1588                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1589         default:
1590                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1591                               "0x%x\n", signal_levels);
1592                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593         }
1594 }
1595
1596 /* Gen7's DP voltage swing and pre-emphasis control */
1597 static uint32_t
1598 intel_gen7_edp_signal_levels(uint8_t train_set)
1599 {
1600         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1601                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1602         switch (signal_levels) {
1603         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1604                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1605         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1607         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1608                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1609
1610         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1611                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1612         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1613                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1614
1615         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1616                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1617         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1618                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1619
1620         default:
1621                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1622                               "0x%x\n", signal_levels);
1623                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1624         }
1625 }
1626
1627 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1628 static uint32_t
1629 intel_dp_signal_levels_hsw(uint8_t train_set)
1630 {
1631         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1632                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1633         switch (signal_levels) {
1634         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1635                 return DDI_BUF_EMP_400MV_0DB_HSW;
1636         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1637                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1638         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1639                 return DDI_BUF_EMP_400MV_6DB_HSW;
1640         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1641                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1642
1643         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1644                 return DDI_BUF_EMP_600MV_0DB_HSW;
1645         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1646                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1647         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1648                 return DDI_BUF_EMP_600MV_6DB_HSW;
1649
1650         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1651                 return DDI_BUF_EMP_800MV_0DB_HSW;
1652         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1653                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1654         default:
1655                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1656                               "0x%x\n", signal_levels);
1657                 return DDI_BUF_EMP_400MV_0DB_HSW;
1658         }
1659 }
1660
1661 static bool
1662 intel_dp_set_link_train(struct intel_dp *intel_dp,
1663                         uint32_t dp_reg_value,
1664                         uint8_t dp_train_pat)
1665 {
1666         struct drm_device *dev = intel_dp->base.base.dev;
1667         struct drm_i915_private *dev_priv = dev->dev_private;
1668         int ret;
1669         uint32_t temp;
1670
1671         if (IS_HASWELL(dev)) {
1672                 temp = I915_READ(DP_TP_CTL(intel_dp->port));
1673
1674                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1675                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1676                 else
1677                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1678
1679                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1680                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1681                 case DP_TRAINING_PATTERN_DISABLE:
1682                         temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1683                         I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1684
1685                         if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1686                                       DP_TP_STATUS_IDLE_DONE), 1))
1687                                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1688
1689                         temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1690                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1691
1692                         break;
1693                 case DP_TRAINING_PATTERN_1:
1694                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1695                         break;
1696                 case DP_TRAINING_PATTERN_2:
1697                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1698                         break;
1699                 case DP_TRAINING_PATTERN_3:
1700                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1701                         break;
1702                 }
1703                 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1704
1705         } else if (HAS_PCH_CPT(dev) &&
1706                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1707                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1708
1709                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1710                 case DP_TRAINING_PATTERN_DISABLE:
1711                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1712                         break;
1713                 case DP_TRAINING_PATTERN_1:
1714                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1715                         break;
1716                 case DP_TRAINING_PATTERN_2:
1717                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1718                         break;
1719                 case DP_TRAINING_PATTERN_3:
1720                         DRM_ERROR("DP training pattern 3 not supported\n");
1721                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1722                         break;
1723                 }
1724
1725         } else {
1726                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1727
1728                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1729                 case DP_TRAINING_PATTERN_DISABLE:
1730                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1731                         break;
1732                 case DP_TRAINING_PATTERN_1:
1733                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1734                         break;
1735                 case DP_TRAINING_PATTERN_2:
1736                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1737                         break;
1738                 case DP_TRAINING_PATTERN_3:
1739                         DRM_ERROR("DP training pattern 3 not supported\n");
1740                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1741                         break;
1742                 }
1743         }
1744
1745         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1746         POSTING_READ(intel_dp->output_reg);
1747
1748         intel_dp_aux_native_write_1(intel_dp,
1749                                     DP_TRAINING_PATTERN_SET,
1750                                     dp_train_pat);
1751
1752         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1753             DP_TRAINING_PATTERN_DISABLE) {
1754                 ret = intel_dp_aux_native_write(intel_dp,
1755                                                 DP_TRAINING_LANE0_SET,
1756                                                 intel_dp->train_set,
1757                                                 intel_dp->lane_count);
1758                 if (ret != intel_dp->lane_count)
1759                         return false;
1760         }
1761
1762         return true;
1763 }
1764
1765 /* Enable corresponding port and start training pattern 1 */
1766 void
1767 intel_dp_start_link_train(struct intel_dp *intel_dp)
1768 {
1769         struct drm_encoder *encoder = &intel_dp->base.base;
1770         struct drm_device *dev = encoder->dev;
1771         int i;
1772         uint8_t voltage;
1773         bool clock_recovery = false;
1774         int voltage_tries, loop_tries;
1775         uint32_t DP = intel_dp->DP;
1776
1777         if (IS_HASWELL(dev))
1778                 intel_ddi_prepare_link_retrain(encoder);
1779
1780         /* Write the link configuration data */
1781         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1782                                   intel_dp->link_configuration,
1783                                   DP_LINK_CONFIGURATION_SIZE);
1784
1785         DP |= DP_PORT_EN;
1786
1787         memset(intel_dp->train_set, 0, 4);
1788         voltage = 0xff;
1789         voltage_tries = 0;
1790         loop_tries = 0;
1791         clock_recovery = false;
1792         for (;;) {
1793                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1794                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1795                 uint32_t    signal_levels;
1796
1797                 if (IS_HASWELL(dev)) {
1798                         signal_levels = intel_dp_signal_levels_hsw(
1799                                                         intel_dp->train_set[0]);
1800                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1801                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1802                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1803                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1804                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1805                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1806                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1807                 } else {
1808                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1809                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1810                 }
1811                 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1812                               signal_levels);
1813
1814                 /* Set training pattern 1 */
1815                 if (!intel_dp_set_link_train(intel_dp, DP,
1816                                              DP_TRAINING_PATTERN_1 |
1817                                              DP_LINK_SCRAMBLING_DISABLE))
1818                         break;
1819
1820                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1821                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1822                         DRM_ERROR("failed to get link status\n");
1823                         break;
1824                 }
1825
1826                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1827                         DRM_DEBUG_KMS("clock recovery OK\n");
1828                         clock_recovery = true;
1829                         break;
1830                 }
1831
1832                 /* Check to see if we've tried the max voltage */
1833                 for (i = 0; i < intel_dp->lane_count; i++)
1834                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1835                                 break;
1836                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1837                         if (++loop_tries == 5) {
1838                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1839                                 break;
1840                         }
1841                         memset(intel_dp->train_set, 0, 4);
1842                         voltage_tries = 0;
1843                         continue;
1844                 }
1845
1846                 /* Check to see if we've tried the same voltage 5 times */
1847                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1848                         voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1849                         voltage_tries = 0;
1850                 } else
1851                         ++voltage_tries;
1852
1853                 /* Compute new intel_dp->train_set as requested by target */
1854                 intel_get_adjust_train(intel_dp, link_status);
1855         }
1856
1857         intel_dp->DP = DP;
1858 }
1859
1860 void
1861 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1862 {
1863         struct drm_device *dev = intel_dp->base.base.dev;
1864         bool channel_eq = false;
1865         int tries, cr_tries;
1866         uint32_t DP = intel_dp->DP;
1867
1868         /* channel equalization */
1869         tries = 0;
1870         cr_tries = 0;
1871         channel_eq = false;
1872         for (;;) {
1873                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1874                 uint32_t    signal_levels;
1875                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1876
1877                 if (cr_tries > 5) {
1878                         DRM_ERROR("failed to train DP, aborting\n");
1879                         intel_dp_link_down(intel_dp);
1880                         break;
1881                 }
1882
1883                 if (IS_HASWELL(dev)) {
1884                         signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1885                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1886                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1887                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1888                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1889                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1890                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1891                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1892                 } else {
1893                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1894                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1895                 }
1896
1897                 /* channel eq pattern */
1898                 if (!intel_dp_set_link_train(intel_dp, DP,
1899                                              DP_TRAINING_PATTERN_2 |
1900                                              DP_LINK_SCRAMBLING_DISABLE))
1901                         break;
1902
1903                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1904                 if (!intel_dp_get_link_status(intel_dp, link_status))
1905                         break;
1906
1907                 /* Make sure clock is still ok */
1908                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1909                         intel_dp_start_link_train(intel_dp);
1910                         cr_tries++;
1911                         continue;
1912                 }
1913
1914                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1915                         channel_eq = true;
1916                         break;
1917                 }
1918
1919                 /* Try 5 times, then try clock recovery if that fails */
1920                 if (tries > 5) {
1921                         intel_dp_link_down(intel_dp);
1922                         intel_dp_start_link_train(intel_dp);
1923                         tries = 0;
1924                         cr_tries++;
1925                         continue;
1926                 }
1927
1928                 /* Compute new intel_dp->train_set as requested by target */
1929                 intel_get_adjust_train(intel_dp, link_status);
1930                 ++tries;
1931         }
1932
1933         if (channel_eq)
1934                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1935
1936         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1937 }
1938
1939 static void
1940 intel_dp_link_down(struct intel_dp *intel_dp)
1941 {
1942         struct drm_device *dev = intel_dp->base.base.dev;
1943         struct drm_i915_private *dev_priv = dev->dev_private;
1944         uint32_t DP = intel_dp->DP;
1945
1946         /*
1947          * DDI code has a strict mode set sequence and we should try to respect
1948          * it, otherwise we might hang the machine in many different ways. So we
1949          * really should be disabling the port only on a complete crtc_disable
1950          * sequence. This function is just called under two conditions on DDI
1951          * code:
1952          * - Link train failed while doing crtc_enable, and on this case we
1953          *   really should respect the mode set sequence and wait for a
1954          *   crtc_disable.
1955          * - Someone turned the monitor off and intel_dp_check_link_status
1956          *   called us. We don't need to disable the whole port on this case, so
1957          *   when someone turns the monitor on again,
1958          *   intel_ddi_prepare_link_retrain will take care of redoing the link
1959          *   train.
1960          */
1961         if (IS_HASWELL(dev))
1962                 return;
1963
1964         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1965                 return;
1966
1967         DRM_DEBUG_KMS("\n");
1968
1969         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1970                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1971                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1972         } else {
1973                 DP &= ~DP_LINK_TRAIN_MASK;
1974                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1975         }
1976         POSTING_READ(intel_dp->output_reg);
1977
1978         msleep(17);
1979
1980         if (HAS_PCH_IBX(dev) &&
1981             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1982                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1983
1984                 /* Hardware workaround: leaving our transcoder select
1985                  * set to transcoder B while it's off will prevent the
1986                  * corresponding HDMI output on transcoder A.
1987                  *
1988                  * Combine this with another hardware workaround:
1989                  * transcoder select bit can only be cleared while the
1990                  * port is enabled.
1991                  */
1992                 DP &= ~DP_PIPEB_SELECT;
1993                 I915_WRITE(intel_dp->output_reg, DP);
1994
1995                 /* Changes to enable or select take place the vblank
1996                  * after being written.
1997                  */
1998                 if (crtc == NULL) {
1999                         /* We can arrive here never having been attached
2000                          * to a CRTC, for instance, due to inheriting
2001                          * random state from the BIOS.
2002                          *
2003                          * If the pipe is not running, play safe and
2004                          * wait for the clocks to stabilise before
2005                          * continuing.
2006                          */
2007                         POSTING_READ(intel_dp->output_reg);
2008                         msleep(50);
2009                 } else
2010                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2011         }
2012
2013         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2014         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2015         POSTING_READ(intel_dp->output_reg);
2016         msleep(intel_dp->panel_power_down_delay);
2017 }
2018
2019 static bool
2020 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2021 {
2022         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2023                                            sizeof(intel_dp->dpcd)) == 0)
2024                 return false; /* aux transfer failed */
2025
2026         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2027                 return false; /* DPCD not present */
2028
2029         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2030               DP_DWN_STRM_PORT_PRESENT))
2031                 return true; /* native DP sink */
2032
2033         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2034                 return true; /* no per-port downstream info */
2035
2036         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2037                                            intel_dp->downstream_ports,
2038                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2039                 return false; /* downstream port status fetch failed */
2040
2041         return true;
2042 }
2043
2044 static void
2045 intel_dp_probe_oui(struct intel_dp *intel_dp)
2046 {
2047         u8 buf[3];
2048
2049         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2050                 return;
2051
2052         ironlake_edp_panel_vdd_on(intel_dp);
2053
2054         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2055                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2056                               buf[0], buf[1], buf[2]);
2057
2058         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2059                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2060                               buf[0], buf[1], buf[2]);
2061
2062         ironlake_edp_panel_vdd_off(intel_dp, false);
2063 }
2064
2065 static bool
2066 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2067 {
2068         int ret;
2069
2070         ret = intel_dp_aux_native_read_retry(intel_dp,
2071                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2072                                              sink_irq_vector, 1);
2073         if (!ret)
2074                 return false;
2075
2076         return true;
2077 }
2078
2079 static void
2080 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2081 {
2082         /* NAK by default */
2083         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2084 }
2085
2086 /*
2087  * According to DP spec
2088  * 5.1.2:
2089  *  1. Read DPCD
2090  *  2. Configure link according to Receiver Capabilities
2091  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2092  *  4. Check link status on receipt of hot-plug interrupt
2093  */
2094
2095 static void
2096 intel_dp_check_link_status(struct intel_dp *intel_dp)
2097 {
2098         u8 sink_irq_vector;
2099         u8 link_status[DP_LINK_STATUS_SIZE];
2100
2101         if (!intel_dp->base.connectors_active)
2102                 return;
2103
2104         if (WARN_ON(!intel_dp->base.base.crtc))
2105                 return;
2106
2107         /* Try to read receiver status if the link appears to be up */
2108         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2109                 intel_dp_link_down(intel_dp);
2110                 return;
2111         }
2112
2113         /* Now read the DPCD to see if it's actually running */
2114         if (!intel_dp_get_dpcd(intel_dp)) {
2115                 intel_dp_link_down(intel_dp);
2116                 return;
2117         }
2118
2119         /* Try to read the source of the interrupt */
2120         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2121             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2122                 /* Clear interrupt source */
2123                 intel_dp_aux_native_write_1(intel_dp,
2124                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2125                                             sink_irq_vector);
2126
2127                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2128                         intel_dp_handle_test_request(intel_dp);
2129                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2130                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2131         }
2132
2133         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2134                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2135                               drm_get_encoder_name(&intel_dp->base.base));
2136                 intel_dp_start_link_train(intel_dp);
2137                 intel_dp_complete_link_train(intel_dp);
2138         }
2139 }
2140
2141 /* XXX this is probably wrong for multiple downstream ports */
2142 static enum drm_connector_status
2143 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2144 {
2145         uint8_t *dpcd = intel_dp->dpcd;
2146         bool hpd;
2147         uint8_t type;
2148
2149         if (!intel_dp_get_dpcd(intel_dp))
2150                 return connector_status_disconnected;
2151
2152         /* if there's no downstream port, we're done */
2153         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2154                 return connector_status_connected;
2155
2156         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2157         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2158         if (hpd) {
2159                 uint8_t reg;
2160                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2161                                                     &reg, 1))
2162                         return connector_status_unknown;
2163                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2164                                               : connector_status_disconnected;
2165         }
2166
2167         /* If no HPD, poke DDC gently */
2168         if (drm_probe_ddc(&intel_dp->adapter))
2169                 return connector_status_connected;
2170
2171         /* Well we tried, say unknown for unreliable port types */
2172         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2173         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2174                 return connector_status_unknown;
2175
2176         /* Anything else is out of spec, warn and ignore */
2177         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2178         return connector_status_disconnected;
2179 }
2180
2181 static enum drm_connector_status
2182 ironlake_dp_detect(struct intel_dp *intel_dp)
2183 {
2184         enum drm_connector_status status;
2185
2186         /* Can't disconnect eDP, but you can close the lid... */
2187         if (is_edp(intel_dp)) {
2188                 status = intel_panel_detect(intel_dp->base.base.dev);
2189                 if (status == connector_status_unknown)
2190                         status = connector_status_connected;
2191                 return status;
2192         }
2193
2194         return intel_dp_detect_dpcd(intel_dp);
2195 }
2196
2197 static enum drm_connector_status
2198 g4x_dp_detect(struct intel_dp *intel_dp)
2199 {
2200         struct drm_device *dev = intel_dp->base.base.dev;
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         uint32_t bit;
2203
2204         switch (intel_dp->output_reg) {
2205         case DP_B:
2206                 bit = DPB_HOTPLUG_LIVE_STATUS;
2207                 break;
2208         case DP_C:
2209                 bit = DPC_HOTPLUG_LIVE_STATUS;
2210                 break;
2211         case DP_D:
2212                 bit = DPD_HOTPLUG_LIVE_STATUS;
2213                 break;
2214         default:
2215                 return connector_status_unknown;
2216         }
2217
2218         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2219                 return connector_status_disconnected;
2220
2221         return intel_dp_detect_dpcd(intel_dp);
2222 }
2223
2224 static struct edid *
2225 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2226 {
2227         struct intel_connector *intel_connector = to_intel_connector(connector);
2228
2229         /* use cached edid if we have one */
2230         if (intel_connector->edid) {
2231                 struct edid *edid;
2232                 int size;
2233
2234                 /* invalid edid */
2235                 if (IS_ERR(intel_connector->edid))
2236                         return NULL;
2237
2238                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2239                 edid = kmalloc(size, GFP_KERNEL);
2240                 if (!edid)
2241                         return NULL;
2242
2243                 memcpy(edid, intel_connector->edid, size);
2244                 return edid;
2245         }
2246
2247         return drm_get_edid(connector, adapter);
2248 }
2249
2250 static int
2251 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2252 {
2253         struct intel_connector *intel_connector = to_intel_connector(connector);
2254
2255         /* use cached edid if we have one */
2256         if (intel_connector->edid) {
2257                 /* invalid edid */
2258                 if (IS_ERR(intel_connector->edid))
2259                         return 0;
2260
2261                 return intel_connector_update_modes(connector,
2262                                                     intel_connector->edid);
2263         }
2264
2265         return intel_ddc_get_modes(connector, adapter);
2266 }
2267
2268
2269 /**
2270  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2271  *
2272  * \return true if DP port is connected.
2273  * \return false if DP port is disconnected.
2274  */
2275 static enum drm_connector_status
2276 intel_dp_detect(struct drm_connector *connector, bool force)
2277 {
2278         struct intel_dp *intel_dp = intel_attached_dp(connector);
2279         struct drm_device *dev = intel_dp->base.base.dev;
2280         enum drm_connector_status status;
2281         struct edid *edid = NULL;
2282
2283         intel_dp->has_audio = false;
2284
2285         if (HAS_PCH_SPLIT(dev))
2286                 status = ironlake_dp_detect(intel_dp);
2287         else
2288                 status = g4x_dp_detect(intel_dp);
2289
2290         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2291                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2292                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2293                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2294
2295         if (status != connector_status_connected)
2296                 return status;
2297
2298         intel_dp_probe_oui(intel_dp);
2299
2300         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2301                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2302         } else {
2303                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2304                 if (edid) {
2305                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2306                         kfree(edid);
2307                 }
2308         }
2309
2310         return connector_status_connected;
2311 }
2312
2313 static int intel_dp_get_modes(struct drm_connector *connector)
2314 {
2315         struct intel_dp *intel_dp = intel_attached_dp(connector);
2316         struct intel_connector *intel_connector = to_intel_connector(connector);
2317         struct drm_device *dev = intel_dp->base.base.dev;
2318         int ret;
2319
2320         /* We should parse the EDID data and find out if it has an audio sink
2321          */
2322
2323         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2324         if (ret)
2325                 return ret;
2326
2327         /* if eDP has no EDID, fall back to fixed mode */
2328         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2329                 struct drm_display_mode *mode;
2330                 mode = drm_mode_duplicate(dev,
2331                                           intel_connector->panel.fixed_mode);
2332                 if (mode) {
2333                         drm_mode_probed_add(connector, mode);
2334                         return 1;
2335                 }
2336         }
2337         return 0;
2338 }
2339
2340 static bool
2341 intel_dp_detect_audio(struct drm_connector *connector)
2342 {
2343         struct intel_dp *intel_dp = intel_attached_dp(connector);
2344         struct edid *edid;
2345         bool has_audio = false;
2346
2347         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2348         if (edid) {
2349                 has_audio = drm_detect_monitor_audio(edid);
2350                 kfree(edid);
2351         }
2352
2353         return has_audio;
2354 }
2355
2356 static int
2357 intel_dp_set_property(struct drm_connector *connector,
2358                       struct drm_property *property,
2359                       uint64_t val)
2360 {
2361         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2362         struct intel_dp *intel_dp = intel_attached_dp(connector);
2363         int ret;
2364
2365         ret = drm_connector_property_set_value(connector, property, val);
2366         if (ret)
2367                 return ret;
2368
2369         if (property == dev_priv->force_audio_property) {
2370                 int i = val;
2371                 bool has_audio;
2372
2373                 if (i == intel_dp->force_audio)
2374                         return 0;
2375
2376                 intel_dp->force_audio = i;
2377
2378                 if (i == HDMI_AUDIO_AUTO)
2379                         has_audio = intel_dp_detect_audio(connector);
2380                 else
2381                         has_audio = (i == HDMI_AUDIO_ON);
2382
2383                 if (has_audio == intel_dp->has_audio)
2384                         return 0;
2385
2386                 intel_dp->has_audio = has_audio;
2387                 goto done;
2388         }
2389
2390         if (property == dev_priv->broadcast_rgb_property) {
2391                 if (val == !!intel_dp->color_range)
2392                         return 0;
2393
2394                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2395                 goto done;
2396         }
2397
2398         return -EINVAL;
2399
2400 done:
2401         if (intel_dp->base.base.crtc) {
2402                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2403                 intel_set_mode(crtc, &crtc->mode,
2404                                crtc->x, crtc->y, crtc->fb);
2405         }
2406
2407         return 0;
2408 }
2409
2410 static void
2411 intel_dp_destroy(struct drm_connector *connector)
2412 {
2413         struct drm_device *dev = connector->dev;
2414         struct intel_dp *intel_dp = intel_attached_dp(connector);
2415         struct intel_connector *intel_connector = to_intel_connector(connector);
2416
2417         if (!IS_ERR_OR_NULL(intel_connector->edid))
2418                 kfree(intel_connector->edid);
2419
2420         if (is_edp(intel_dp)) {
2421                 intel_panel_destroy_backlight(dev);
2422                 intel_panel_fini(&intel_connector->panel);
2423         }
2424
2425         drm_sysfs_connector_remove(connector);
2426         drm_connector_cleanup(connector);
2427         kfree(connector);
2428 }
2429
2430 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2431 {
2432         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2433
2434         i2c_del_adapter(&intel_dp->adapter);
2435         drm_encoder_cleanup(encoder);
2436         if (is_edp(intel_dp)) {
2437                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2438                 ironlake_panel_vdd_off_sync(intel_dp);
2439         }
2440         kfree(intel_dp);
2441 }
2442
2443 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2444         .mode_fixup = intel_dp_mode_fixup,
2445         .mode_set = intel_dp_mode_set,
2446         .disable = intel_encoder_noop,
2447 };
2448
2449 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2450         .mode_fixup = intel_dp_mode_fixup,
2451         .mode_set = intel_ddi_mode_set,
2452         .disable = intel_encoder_noop,
2453 };
2454
2455 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2456         .dpms = intel_connector_dpms,
2457         .detect = intel_dp_detect,
2458         .fill_modes = drm_helper_probe_single_connector_modes,
2459         .set_property = intel_dp_set_property,
2460         .destroy = intel_dp_destroy,
2461 };
2462
2463 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2464         .get_modes = intel_dp_get_modes,
2465         .mode_valid = intel_dp_mode_valid,
2466         .best_encoder = intel_best_encoder,
2467 };
2468
2469 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2470         .destroy = intel_dp_encoder_destroy,
2471 };
2472
2473 static void
2474 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2475 {
2476         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2477
2478         intel_dp_check_link_status(intel_dp);
2479 }
2480
2481 /* Return which DP Port should be selected for Transcoder DP control */
2482 int
2483 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2484 {
2485         struct drm_device *dev = crtc->dev;
2486         struct intel_encoder *encoder;
2487
2488         for_each_encoder_on_crtc(dev, crtc, encoder) {
2489                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490
2491                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2492                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2493                         return intel_dp->output_reg;
2494         }
2495
2496         return -1;
2497 }
2498
2499 /* check the VBT to see whether the eDP is on DP-D port */
2500 bool intel_dpd_is_edp(struct drm_device *dev)
2501 {
2502         struct drm_i915_private *dev_priv = dev->dev_private;
2503         struct child_device_config *p_child;
2504         int i;
2505
2506         if (!dev_priv->child_dev_num)
2507                 return false;
2508
2509         for (i = 0; i < dev_priv->child_dev_num; i++) {
2510                 p_child = dev_priv->child_dev + i;
2511
2512                 if (p_child->dvo_port == PORT_IDPD &&
2513                     p_child->device_type == DEVICE_TYPE_eDP)
2514                         return true;
2515         }
2516         return false;
2517 }
2518
2519 static void
2520 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2521 {
2522         intel_attach_force_audio_property(connector);
2523         intel_attach_broadcast_rgb_property(connector);
2524 }
2525
2526 static void
2527 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2528                                     struct intel_dp *intel_dp)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         struct edp_power_seq cur, vbt, spec, final;
2532         u32 pp_on, pp_off, pp_div, pp;
2533
2534         /* Workaround: Need to write PP_CONTROL with the unlock key as
2535          * the very first thing. */
2536         pp = ironlake_get_pp_control(dev_priv);
2537         I915_WRITE(PCH_PP_CONTROL, pp);
2538
2539         pp_on = I915_READ(PCH_PP_ON_DELAYS);
2540         pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2541         pp_div = I915_READ(PCH_PP_DIVISOR);
2542
2543         /* Pull timing values out of registers */
2544         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2545                 PANEL_POWER_UP_DELAY_SHIFT;
2546
2547         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2548                 PANEL_LIGHT_ON_DELAY_SHIFT;
2549
2550         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2551                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2552
2553         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2554                 PANEL_POWER_DOWN_DELAY_SHIFT;
2555
2556         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2557                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2558
2559         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2560                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2561
2562         vbt = dev_priv->edp.pps;
2563
2564         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2565          * our hw here, which are all in 100usec. */
2566         spec.t1_t3 = 210 * 10;
2567         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2568         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2569         spec.t10 = 500 * 10;
2570         /* This one is special and actually in units of 100ms, but zero
2571          * based in the hw (so we need to add 100 ms). But the sw vbt
2572          * table multiplies it with 1000 to make it in units of 100usec,
2573          * too. */
2574         spec.t11_t12 = (510 + 100) * 10;
2575
2576         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2577                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2578
2579         /* Use the max of the register settings and vbt. If both are
2580          * unset, fall back to the spec limits. */
2581 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2582                                        spec.field : \
2583                                        max(cur.field, vbt.field))
2584         assign_final(t1_t3);
2585         assign_final(t8);
2586         assign_final(t9);
2587         assign_final(t10);
2588         assign_final(t11_t12);
2589 #undef assign_final
2590
2591 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2592         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2593         intel_dp->backlight_on_delay = get_delay(t8);
2594         intel_dp->backlight_off_delay = get_delay(t9);
2595         intel_dp->panel_power_down_delay = get_delay(t10);
2596         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2597 #undef get_delay
2598
2599         /* And finally store the new values in the power sequencer. */
2600         pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2601                 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2602         pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2603                  (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2604         /* Compute the divisor for the pp clock, simply match the Bspec
2605          * formula. */
2606         pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2607                         << PP_REFERENCE_DIVIDER_SHIFT;
2608         pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2609                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2610
2611         /* Haswell doesn't have any port selection bits for the panel
2612          * power sequencer any more. */
2613         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2614                 if (is_cpu_edp(intel_dp))
2615                         pp_on |= PANEL_POWER_PORT_DP_A;
2616                 else
2617                         pp_on |= PANEL_POWER_PORT_DP_D;
2618         }
2619
2620         I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2621         I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2622         I915_WRITE(PCH_PP_DIVISOR, pp_div);
2623
2624
2625         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2626                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2627                       intel_dp->panel_power_cycle_delay);
2628
2629         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2630                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2631
2632         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2633                       I915_READ(PCH_PP_ON_DELAYS),
2634                       I915_READ(PCH_PP_OFF_DELAYS),
2635                       I915_READ(PCH_PP_DIVISOR));
2636 }
2637
2638 void
2639 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2640 {
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct drm_connector *connector;
2643         struct intel_dp *intel_dp;
2644         struct intel_encoder *intel_encoder;
2645         struct intel_connector *intel_connector;
2646         struct drm_display_mode *fixed_mode = NULL;
2647         const char *name = NULL;
2648         int type;
2649
2650         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2651         if (!intel_dp)
2652                 return;
2653
2654         intel_dp->output_reg = output_reg;
2655         intel_dp->port = port;
2656         /* Preserve the current hw state. */
2657         intel_dp->DP = I915_READ(intel_dp->output_reg);
2658
2659         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2660         if (!intel_connector) {
2661                 kfree(intel_dp);
2662                 return;
2663         }
2664         intel_encoder = &intel_dp->base;
2665         intel_dp->attached_connector = intel_connector;
2666
2667         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2668                 if (intel_dpd_is_edp(dev))
2669                         intel_dp->is_pch_edp = true;
2670
2671         /*
2672          * FIXME : We need to initialize built-in panels before external panels.
2673          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2674          */
2675         if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2676                 type = DRM_MODE_CONNECTOR_eDP;
2677                 intel_encoder->type = INTEL_OUTPUT_EDP;
2678         } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2679                 type = DRM_MODE_CONNECTOR_eDP;
2680                 intel_encoder->type = INTEL_OUTPUT_EDP;
2681         } else {
2682                 type = DRM_MODE_CONNECTOR_DisplayPort;
2683                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2684         }
2685
2686         connector = &intel_connector->base;
2687         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2688         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2689
2690         connector->polled = DRM_CONNECTOR_POLL_HPD;
2691
2692         intel_encoder->cloneable = false;
2693
2694         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2695                           ironlake_panel_vdd_work);
2696
2697         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2698
2699         connector->interlace_allowed = true;
2700         connector->doublescan_allowed = 0;
2701
2702         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2703                          DRM_MODE_ENCODER_TMDS);
2704
2705         if (IS_HASWELL(dev))
2706                 drm_encoder_helper_add(&intel_encoder->base,
2707                                        &intel_dp_helper_funcs_hsw);
2708         else
2709                 drm_encoder_helper_add(&intel_encoder->base,
2710                                        &intel_dp_helper_funcs);
2711
2712         intel_connector_attach_encoder(intel_connector, intel_encoder);
2713         drm_sysfs_connector_add(connector);
2714
2715         if (IS_HASWELL(dev)) {
2716                 intel_encoder->enable = intel_enable_ddi;
2717                 intel_encoder->pre_enable = intel_ddi_pre_enable;
2718                 intel_encoder->disable = intel_disable_ddi;
2719                 intel_encoder->post_disable = intel_ddi_post_disable;
2720                 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2721         } else {
2722                 intel_encoder->enable = intel_enable_dp;
2723                 intel_encoder->pre_enable = intel_pre_enable_dp;
2724                 intel_encoder->disable = intel_disable_dp;
2725                 intel_encoder->post_disable = intel_post_disable_dp;
2726                 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2727         }
2728         intel_connector->get_hw_state = intel_connector_get_hw_state;
2729
2730         /* Set up the DDC bus. */
2731         switch (port) {
2732         case PORT_A:
2733                 name = "DPDDC-A";
2734                 break;
2735         case PORT_B:
2736                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2737                 name = "DPDDC-B";
2738                 break;
2739         case PORT_C:
2740                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2741                 name = "DPDDC-C";
2742                 break;
2743         case PORT_D:
2744                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2745                 name = "DPDDC-D";
2746                 break;
2747         default:
2748                 WARN(1, "Invalid port %c\n", port_name(port));
2749                 break;
2750         }
2751
2752         if (is_edp(intel_dp))
2753                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2754
2755         intel_dp_i2c_init(intel_dp, intel_connector, name);
2756
2757         /* Cache DPCD and EDID for edp. */
2758         if (is_edp(intel_dp)) {
2759                 bool ret;
2760                 struct drm_display_mode *scan;
2761                 struct edid *edid;
2762
2763                 ironlake_edp_panel_vdd_on(intel_dp);
2764                 ret = intel_dp_get_dpcd(intel_dp);
2765                 ironlake_edp_panel_vdd_off(intel_dp, false);
2766
2767                 if (ret) {
2768                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2769                                 dev_priv->no_aux_handshake =
2770                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2771                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2772                 } else {
2773                         /* if this fails, presume the device is a ghost */
2774                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2775                         intel_dp_encoder_destroy(&intel_dp->base.base);
2776                         intel_dp_destroy(&intel_connector->base);
2777                         return;
2778                 }
2779
2780                 ironlake_edp_panel_vdd_on(intel_dp);
2781                 edid = drm_get_edid(connector, &intel_dp->adapter);
2782                 if (edid) {
2783                         if (drm_add_edid_modes(connector, edid)) {
2784                                 drm_mode_connector_update_edid_property(connector, edid);
2785                                 drm_edid_to_eld(connector, edid);
2786                         } else {
2787                                 kfree(edid);
2788                                 edid = ERR_PTR(-EINVAL);
2789                         }
2790                 } else {
2791                         edid = ERR_PTR(-ENOENT);
2792                 }
2793                 intel_connector->edid = edid;
2794
2795                 /* prefer fixed mode from EDID if available */
2796                 list_for_each_entry(scan, &connector->probed_modes, head) {
2797                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2798                                 fixed_mode = drm_mode_duplicate(dev, scan);
2799                                 break;
2800                         }
2801                 }
2802
2803                 /* fallback to VBT if available for eDP */
2804                 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2805                         fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2806                         if (fixed_mode)
2807                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2808                 }
2809
2810                 ironlake_edp_panel_vdd_off(intel_dp, false);
2811         }
2812
2813         intel_encoder->hot_plug = intel_dp_hot_plug;
2814
2815         if (is_edp(intel_dp)) {
2816                 intel_panel_init(&intel_connector->panel, fixed_mode);
2817                 intel_panel_setup_backlight(connector);
2818         }
2819
2820         intel_dp_add_properties(intel_dp, connector);
2821
2822         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2823          * 0xd.  Failure to do so will result in spurious interrupts being
2824          * generated on the port when a cable is not attached.
2825          */
2826         if (IS_G4X(dev) && !IS_GM45(dev)) {
2827                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2828                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2829         }
2830 }