]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/ext4/inode.c
MAINTAINERS: delete Srinidhi from ux500
[linux-imx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned long long status;
557
558 #ifdef ES_AGGRESSIVE_TEST
559                 if (retval != map->m_len) {
560                         printk("ES len assertion failed for inode: %lu "
561                                "retval %d != map->m_len %d "
562                                "in %s (lookup)\n", inode->i_ino, retval,
563                                map->m_len, __func__);
564                 }
565 #endif
566
567                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
570                     ext4_find_delalloc_range(inode, map->m_lblk,
571                                              map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ret = ext4_es_insert_extent(inode, map->m_lblk,
574                                             map->m_len, map->m_pblk, status);
575                 if (ret < 0)
576                         retval = ret;
577         }
578         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
579                 up_read((&EXT4_I(inode)->i_data_sem));
580
581 found:
582         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
583                 int ret = check_block_validity(inode, map);
584                 if (ret != 0)
585                         return ret;
586         }
587
588         /* If it is only a block(s) look up */
589         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
590                 return retval;
591
592         /*
593          * Returns if the blocks have already allocated
594          *
595          * Note that if blocks have been preallocated
596          * ext4_ext_get_block() returns the create = 0
597          * with buffer head unmapped.
598          */
599         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600                 return retval;
601
602         /*
603          * Here we clear m_flags because after allocating an new extent,
604          * it will be set again.
605          */
606         map->m_flags &= ~EXT4_MAP_FLAGS;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655         if (retval > 0) {
656                 int ret;
657                 unsigned long long status;
658
659 #ifdef ES_AGGRESSIVE_TEST
660                 if (retval != map->m_len) {
661                         printk("ES len assertion failed for inode: %lu "
662                                "retval %d != map->m_len %d "
663                                "in %s (allocation)\n", inode->i_ino, retval,
664                                map->m_len, __func__);
665                 }
666 #endif
667
668                 /*
669                  * If the extent has been zeroed out, we don't need to update
670                  * extent status tree.
671                  */
672                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
673                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
674                         if (ext4_es_is_written(&es))
675                                 goto has_zeroout;
676                 }
677                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
678                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
679                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
680                     ext4_find_delalloc_range(inode, map->m_lblk,
681                                              map->m_lblk + map->m_len - 1))
682                         status |= EXTENT_STATUS_DELAYED;
683                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
684                                             map->m_pblk, status);
685                 if (ret < 0)
686                         retval = ret;
687         }
688
689 has_zeroout:
690         up_write((&EXT4_I(inode)->i_data_sem));
691         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
692                 int ret = check_block_validity(inode, map);
693                 if (ret != 0)
694                         return ret;
695         }
696         return retval;
697 }
698
699 /* Maximum number of blocks we map for direct IO at once. */
700 #define DIO_MAX_BLOCKS 4096
701
702 static int _ext4_get_block(struct inode *inode, sector_t iblock,
703                            struct buffer_head *bh, int flags)
704 {
705         handle_t *handle = ext4_journal_current_handle();
706         struct ext4_map_blocks map;
707         int ret = 0, started = 0;
708         int dio_credits;
709
710         if (ext4_has_inline_data(inode))
711                 return -ERANGE;
712
713         map.m_lblk = iblock;
714         map.m_len = bh->b_size >> inode->i_blkbits;
715
716         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
717                 /* Direct IO write... */
718                 if (map.m_len > DIO_MAX_BLOCKS)
719                         map.m_len = DIO_MAX_BLOCKS;
720                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
721                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
722                                             dio_credits);
723                 if (IS_ERR(handle)) {
724                         ret = PTR_ERR(handle);
725                         return ret;
726                 }
727                 started = 1;
728         }
729
730         ret = ext4_map_blocks(handle, inode, &map, flags);
731         if (ret > 0) {
732                 map_bh(bh, inode->i_sb, map.m_pblk);
733                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
735                 ret = 0;
736         }
737         if (started)
738                 ext4_journal_stop(handle);
739         return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743                    struct buffer_head *bh, int create)
744 {
745         return _ext4_get_block(inode, iblock, bh,
746                                create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750  * `handle' can be NULL if create is zero
751  */
752 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
753                                 ext4_lblk_t block, int create, int *errp)
754 {
755         struct ext4_map_blocks map;
756         struct buffer_head *bh;
757         int fatal = 0, err;
758
759         J_ASSERT(handle != NULL || create == 0);
760
761         map.m_lblk = block;
762         map.m_len = 1;
763         err = ext4_map_blocks(handle, inode, &map,
764                               create ? EXT4_GET_BLOCKS_CREATE : 0);
765
766         /* ensure we send some value back into *errp */
767         *errp = 0;
768
769         if (create && err == 0)
770                 err = -ENOSPC;  /* should never happen */
771         if (err < 0)
772                 *errp = err;
773         if (err <= 0)
774                 return NULL;
775
776         bh = sb_getblk(inode->i_sb, map.m_pblk);
777         if (unlikely(!bh)) {
778                 *errp = -ENOMEM;
779                 return NULL;
780         }
781         if (map.m_flags & EXT4_MAP_NEW) {
782                 J_ASSERT(create != 0);
783                 J_ASSERT(handle != NULL);
784
785                 /*
786                  * Now that we do not always journal data, we should
787                  * keep in mind whether this should always journal the
788                  * new buffer as metadata.  For now, regular file
789                  * writes use ext4_get_block instead, so it's not a
790                  * problem.
791                  */
792                 lock_buffer(bh);
793                 BUFFER_TRACE(bh, "call get_create_access");
794                 fatal = ext4_journal_get_create_access(handle, bh);
795                 if (!fatal && !buffer_uptodate(bh)) {
796                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797                         set_buffer_uptodate(bh);
798                 }
799                 unlock_buffer(bh);
800                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801                 err = ext4_handle_dirty_metadata(handle, inode, bh);
802                 if (!fatal)
803                         fatal = err;
804         } else {
805                 BUFFER_TRACE(bh, "not a new buffer");
806         }
807         if (fatal) {
808                 *errp = fatal;
809                 brelse(bh);
810                 bh = NULL;
811         }
812         return bh;
813 }
814
815 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
816                                ext4_lblk_t block, int create, int *err)
817 {
818         struct buffer_head *bh;
819
820         bh = ext4_getblk(handle, inode, block, create, err);
821         if (!bh)
822                 return bh;
823         if (buffer_uptodate(bh))
824                 return bh;
825         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
826         wait_on_buffer(bh);
827         if (buffer_uptodate(bh))
828                 return bh;
829         put_bh(bh);
830         *err = -EIO;
831         return NULL;
832 }
833
834 int ext4_walk_page_buffers(handle_t *handle,
835                            struct buffer_head *head,
836                            unsigned from,
837                            unsigned to,
838                            int *partial,
839                            int (*fn)(handle_t *handle,
840                                      struct buffer_head *bh))
841 {
842         struct buffer_head *bh;
843         unsigned block_start, block_end;
844         unsigned blocksize = head->b_size;
845         int err, ret = 0;
846         struct buffer_head *next;
847
848         for (bh = head, block_start = 0;
849              ret == 0 && (bh != head || !block_start);
850              block_start = block_end, bh = next) {
851                 next = bh->b_this_page;
852                 block_end = block_start + blocksize;
853                 if (block_end <= from || block_start >= to) {
854                         if (partial && !buffer_uptodate(bh))
855                                 *partial = 1;
856                         continue;
857                 }
858                 err = (*fn)(handle, bh);
859                 if (!ret)
860                         ret = err;
861         }
862         return ret;
863 }
864
865 /*
866  * To preserve ordering, it is essential that the hole instantiation and
867  * the data write be encapsulated in a single transaction.  We cannot
868  * close off a transaction and start a new one between the ext4_get_block()
869  * and the commit_write().  So doing the jbd2_journal_start at the start of
870  * prepare_write() is the right place.
871  *
872  * Also, this function can nest inside ext4_writepage().  In that case, we
873  * *know* that ext4_writepage() has generated enough buffer credits to do the
874  * whole page.  So we won't block on the journal in that case, which is good,
875  * because the caller may be PF_MEMALLOC.
876  *
877  * By accident, ext4 can be reentered when a transaction is open via
878  * quota file writes.  If we were to commit the transaction while thus
879  * reentered, there can be a deadlock - we would be holding a quota
880  * lock, and the commit would never complete if another thread had a
881  * transaction open and was blocking on the quota lock - a ranking
882  * violation.
883  *
884  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
885  * will _not_ run commit under these circumstances because handle->h_ref
886  * is elevated.  We'll still have enough credits for the tiny quotafile
887  * write.
888  */
889 int do_journal_get_write_access(handle_t *handle,
890                                 struct buffer_head *bh)
891 {
892         int dirty = buffer_dirty(bh);
893         int ret;
894
895         if (!buffer_mapped(bh) || buffer_freed(bh))
896                 return 0;
897         /*
898          * __block_write_begin() could have dirtied some buffers. Clean
899          * the dirty bit as jbd2_journal_get_write_access() could complain
900          * otherwise about fs integrity issues. Setting of the dirty bit
901          * by __block_write_begin() isn't a real problem here as we clear
902          * the bit before releasing a page lock and thus writeback cannot
903          * ever write the buffer.
904          */
905         if (dirty)
906                 clear_buffer_dirty(bh);
907         ret = ext4_journal_get_write_access(handle, bh);
908         if (!ret && dirty)
909                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
910         return ret;
911 }
912
913 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
914                    struct buffer_head *bh_result, int create);
915 static int ext4_write_begin(struct file *file, struct address_space *mapping,
916                             loff_t pos, unsigned len, unsigned flags,
917                             struct page **pagep, void **fsdata)
918 {
919         struct inode *inode = mapping->host;
920         int ret, needed_blocks;
921         handle_t *handle;
922         int retries = 0;
923         struct page *page;
924         pgoff_t index;
925         unsigned from, to;
926
927         trace_ext4_write_begin(inode, pos, len, flags);
928         /*
929          * Reserve one block more for addition to orphan list in case
930          * we allocate blocks but write fails for some reason
931          */
932         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
933         index = pos >> PAGE_CACHE_SHIFT;
934         from = pos & (PAGE_CACHE_SIZE - 1);
935         to = from + len;
936
937         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
938                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
939                                                     flags, pagep);
940                 if (ret < 0)
941                         return ret;
942                 if (ret == 1)
943                         return 0;
944         }
945
946         /*
947          * grab_cache_page_write_begin() can take a long time if the
948          * system is thrashing due to memory pressure, or if the page
949          * is being written back.  So grab it first before we start
950          * the transaction handle.  This also allows us to allocate
951          * the page (if needed) without using GFP_NOFS.
952          */
953 retry_grab:
954         page = grab_cache_page_write_begin(mapping, index, flags);
955         if (!page)
956                 return -ENOMEM;
957         unlock_page(page);
958
959 retry_journal:
960         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
961         if (IS_ERR(handle)) {
962                 page_cache_release(page);
963                 return PTR_ERR(handle);
964         }
965
966         lock_page(page);
967         if (page->mapping != mapping) {
968                 /* The page got truncated from under us */
969                 unlock_page(page);
970                 page_cache_release(page);
971                 ext4_journal_stop(handle);
972                 goto retry_grab;
973         }
974         wait_on_page_writeback(page);
975
976         if (ext4_should_dioread_nolock(inode))
977                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
978         else
979                 ret = __block_write_begin(page, pos, len, ext4_get_block);
980
981         if (!ret && ext4_should_journal_data(inode)) {
982                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
983                                              from, to, NULL,
984                                              do_journal_get_write_access);
985         }
986
987         if (ret) {
988                 unlock_page(page);
989                 /*
990                  * __block_write_begin may have instantiated a few blocks
991                  * outside i_size.  Trim these off again. Don't need
992                  * i_size_read because we hold i_mutex.
993                  *
994                  * Add inode to orphan list in case we crash before
995                  * truncate finishes
996                  */
997                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
998                         ext4_orphan_add(handle, inode);
999
1000                 ext4_journal_stop(handle);
1001                 if (pos + len > inode->i_size) {
1002                         ext4_truncate_failed_write(inode);
1003                         /*
1004                          * If truncate failed early the inode might
1005                          * still be on the orphan list; we need to
1006                          * make sure the inode is removed from the
1007                          * orphan list in that case.
1008                          */
1009                         if (inode->i_nlink)
1010                                 ext4_orphan_del(NULL, inode);
1011                 }
1012
1013                 if (ret == -ENOSPC &&
1014                     ext4_should_retry_alloc(inode->i_sb, &retries))
1015                         goto retry_journal;
1016                 page_cache_release(page);
1017                 return ret;
1018         }
1019         *pagep = page;
1020         return ret;
1021 }
1022
1023 /* For write_end() in data=journal mode */
1024 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1025 {
1026         int ret;
1027         if (!buffer_mapped(bh) || buffer_freed(bh))
1028                 return 0;
1029         set_buffer_uptodate(bh);
1030         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1031         clear_buffer_meta(bh);
1032         clear_buffer_prio(bh);
1033         return ret;
1034 }
1035
1036 /*
1037  * We need to pick up the new inode size which generic_commit_write gave us
1038  * `file' can be NULL - eg, when called from page_symlink().
1039  *
1040  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1041  * buffers are managed internally.
1042  */
1043 static int ext4_write_end(struct file *file,
1044                           struct address_space *mapping,
1045                           loff_t pos, unsigned len, unsigned copied,
1046                           struct page *page, void *fsdata)
1047 {
1048         handle_t *handle = ext4_journal_current_handle();
1049         struct inode *inode = mapping->host;
1050         int ret = 0, ret2;
1051         int i_size_changed = 0;
1052
1053         trace_ext4_write_end(inode, pos, len, copied);
1054         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1055                 ret = ext4_jbd2_file_inode(handle, inode);
1056                 if (ret) {
1057                         unlock_page(page);
1058                         page_cache_release(page);
1059                         goto errout;
1060                 }
1061         }
1062
1063         if (ext4_has_inline_data(inode)) {
1064                 ret = ext4_write_inline_data_end(inode, pos, len,
1065                                                  copied, page);
1066                 if (ret < 0)
1067                         goto errout;
1068                 copied = ret;
1069         } else
1070                 copied = block_write_end(file, mapping, pos,
1071                                          len, copied, page, fsdata);
1072
1073         /*
1074          * No need to use i_size_read() here, the i_size
1075          * cannot change under us because we hole i_mutex.
1076          *
1077          * But it's important to update i_size while still holding page lock:
1078          * page writeout could otherwise come in and zero beyond i_size.
1079          */
1080         if (pos + copied > inode->i_size) {
1081                 i_size_write(inode, pos + copied);
1082                 i_size_changed = 1;
1083         }
1084
1085         if (pos + copied > EXT4_I(inode)->i_disksize) {
1086                 /* We need to mark inode dirty even if
1087                  * new_i_size is less that inode->i_size
1088                  * but greater than i_disksize. (hint delalloc)
1089                  */
1090                 ext4_update_i_disksize(inode, (pos + copied));
1091                 i_size_changed = 1;
1092         }
1093         unlock_page(page);
1094         page_cache_release(page);
1095
1096         /*
1097          * Don't mark the inode dirty under page lock. First, it unnecessarily
1098          * makes the holding time of page lock longer. Second, it forces lock
1099          * ordering of page lock and transaction start for journaling
1100          * filesystems.
1101          */
1102         if (i_size_changed)
1103                 ext4_mark_inode_dirty(handle, inode);
1104
1105         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1106                 /* if we have allocated more blocks and copied
1107                  * less. We will have blocks allocated outside
1108                  * inode->i_size. So truncate them
1109                  */
1110                 ext4_orphan_add(handle, inode);
1111 errout:
1112         ret2 = ext4_journal_stop(handle);
1113         if (!ret)
1114                 ret = ret2;
1115
1116         if (pos + len > inode->i_size) {
1117                 ext4_truncate_failed_write(inode);
1118                 /*
1119                  * If truncate failed early the inode might still be
1120                  * on the orphan list; we need to make sure the inode
1121                  * is removed from the orphan list in that case.
1122                  */
1123                 if (inode->i_nlink)
1124                         ext4_orphan_del(NULL, inode);
1125         }
1126
1127         return ret ? ret : copied;
1128 }
1129
1130 static int ext4_journalled_write_end(struct file *file,
1131                                      struct address_space *mapping,
1132                                      loff_t pos, unsigned len, unsigned copied,
1133                                      struct page *page, void *fsdata)
1134 {
1135         handle_t *handle = ext4_journal_current_handle();
1136         struct inode *inode = mapping->host;
1137         int ret = 0, ret2;
1138         int partial = 0;
1139         unsigned from, to;
1140         loff_t new_i_size;
1141
1142         trace_ext4_journalled_write_end(inode, pos, len, copied);
1143         from = pos & (PAGE_CACHE_SIZE - 1);
1144         to = from + len;
1145
1146         BUG_ON(!ext4_handle_valid(handle));
1147
1148         if (ext4_has_inline_data(inode))
1149                 copied = ext4_write_inline_data_end(inode, pos, len,
1150                                                     copied, page);
1151         else {
1152                 if (copied < len) {
1153                         if (!PageUptodate(page))
1154                                 copied = 0;
1155                         page_zero_new_buffers(page, from+copied, to);
1156                 }
1157
1158                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1159                                              to, &partial, write_end_fn);
1160                 if (!partial)
1161                         SetPageUptodate(page);
1162         }
1163         new_i_size = pos + copied;
1164         if (new_i_size > inode->i_size)
1165                 i_size_write(inode, pos+copied);
1166         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1167         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1168         if (new_i_size > EXT4_I(inode)->i_disksize) {
1169                 ext4_update_i_disksize(inode, new_i_size);
1170                 ret2 = ext4_mark_inode_dirty(handle, inode);
1171                 if (!ret)
1172                         ret = ret2;
1173         }
1174
1175         unlock_page(page);
1176         page_cache_release(page);
1177         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1178                 /* if we have allocated more blocks and copied
1179                  * less. We will have blocks allocated outside
1180                  * inode->i_size. So truncate them
1181                  */
1182                 ext4_orphan_add(handle, inode);
1183
1184         ret2 = ext4_journal_stop(handle);
1185         if (!ret)
1186                 ret = ret2;
1187         if (pos + len > inode->i_size) {
1188                 ext4_truncate_failed_write(inode);
1189                 /*
1190                  * If truncate failed early the inode might still be
1191                  * on the orphan list; we need to make sure the inode
1192                  * is removed from the orphan list in that case.
1193                  */
1194                 if (inode->i_nlink)
1195                         ext4_orphan_del(NULL, inode);
1196         }
1197
1198         return ret ? ret : copied;
1199 }
1200
1201 /*
1202  * Reserve a metadata for a single block located at lblock
1203  */
1204 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1205 {
1206         int retries = 0;
1207         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1208         struct ext4_inode_info *ei = EXT4_I(inode);
1209         unsigned int md_needed;
1210         ext4_lblk_t save_last_lblock;
1211         int save_len;
1212
1213         /*
1214          * recalculate the amount of metadata blocks to reserve
1215          * in order to allocate nrblocks
1216          * worse case is one extent per block
1217          */
1218 repeat:
1219         spin_lock(&ei->i_block_reservation_lock);
1220         /*
1221          * ext4_calc_metadata_amount() has side effects, which we have
1222          * to be prepared undo if we fail to claim space.
1223          */
1224         save_len = ei->i_da_metadata_calc_len;
1225         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1226         md_needed = EXT4_NUM_B2C(sbi,
1227                                  ext4_calc_metadata_amount(inode, lblock));
1228         trace_ext4_da_reserve_space(inode, md_needed);
1229
1230         /*
1231          * We do still charge estimated metadata to the sb though;
1232          * we cannot afford to run out of free blocks.
1233          */
1234         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1235                 ei->i_da_metadata_calc_len = save_len;
1236                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1237                 spin_unlock(&ei->i_block_reservation_lock);
1238                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1239                         cond_resched();
1240                         goto repeat;
1241                 }
1242                 return -ENOSPC;
1243         }
1244         ei->i_reserved_meta_blocks += md_needed;
1245         spin_unlock(&ei->i_block_reservation_lock);
1246
1247         return 0;       /* success */
1248 }
1249
1250 /*
1251  * Reserve a single cluster located at lblock
1252  */
1253 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1254 {
1255         int retries = 0;
1256         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1257         struct ext4_inode_info *ei = EXT4_I(inode);
1258         unsigned int md_needed;
1259         int ret;
1260         ext4_lblk_t save_last_lblock;
1261         int save_len;
1262
1263         /*
1264          * We will charge metadata quota at writeout time; this saves
1265          * us from metadata over-estimation, though we may go over by
1266          * a small amount in the end.  Here we just reserve for data.
1267          */
1268         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1269         if (ret)
1270                 return ret;
1271
1272         /*
1273          * recalculate the amount of metadata blocks to reserve
1274          * in order to allocate nrblocks
1275          * worse case is one extent per block
1276          */
1277 repeat:
1278         spin_lock(&ei->i_block_reservation_lock);
1279         /*
1280          * ext4_calc_metadata_amount() has side effects, which we have
1281          * to be prepared undo if we fail to claim space.
1282          */
1283         save_len = ei->i_da_metadata_calc_len;
1284         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285         md_needed = EXT4_NUM_B2C(sbi,
1286                                  ext4_calc_metadata_amount(inode, lblock));
1287         trace_ext4_da_reserve_space(inode, md_needed);
1288
1289         /*
1290          * We do still charge estimated metadata to the sb though;
1291          * we cannot afford to run out of free blocks.
1292          */
1293         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1294                 ei->i_da_metadata_calc_len = save_len;
1295                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1298                         cond_resched();
1299                         goto repeat;
1300                 }
1301                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1302                 return -ENOSPC;
1303         }
1304         ei->i_reserved_data_blocks++;
1305         ei->i_reserved_meta_blocks += md_needed;
1306         spin_unlock(&ei->i_block_reservation_lock);
1307
1308         return 0;       /* success */
1309 }
1310
1311 static void ext4_da_release_space(struct inode *inode, int to_free)
1312 {
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315
1316         if (!to_free)
1317                 return;         /* Nothing to release, exit */
1318
1319         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1320
1321         trace_ext4_da_release_space(inode, to_free);
1322         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1323                 /*
1324                  * if there aren't enough reserved blocks, then the
1325                  * counter is messed up somewhere.  Since this
1326                  * function is called from invalidate page, it's
1327                  * harmless to return without any action.
1328                  */
1329                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1330                          "ino %lu, to_free %d with only %d reserved "
1331                          "data blocks", inode->i_ino, to_free,
1332                          ei->i_reserved_data_blocks);
1333                 WARN_ON(1);
1334                 to_free = ei->i_reserved_data_blocks;
1335         }
1336         ei->i_reserved_data_blocks -= to_free;
1337
1338         if (ei->i_reserved_data_blocks == 0) {
1339                 /*
1340                  * We can release all of the reserved metadata blocks
1341                  * only when we have written all of the delayed
1342                  * allocation blocks.
1343                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1344                  * i_reserved_data_blocks, etc. refer to number of clusters.
1345                  */
1346                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1347                                    ei->i_reserved_meta_blocks);
1348                 ei->i_reserved_meta_blocks = 0;
1349                 ei->i_da_metadata_calc_len = 0;
1350         }
1351
1352         /* update fs dirty data blocks counter */
1353         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1354
1355         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1356
1357         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1358 }
1359
1360 static void ext4_da_page_release_reservation(struct page *page,
1361                                              unsigned int offset,
1362                                              unsigned int length)
1363 {
1364         int to_release = 0;
1365         struct buffer_head *head, *bh;
1366         unsigned int curr_off = 0;
1367         struct inode *inode = page->mapping->host;
1368         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1369         unsigned int stop = offset + length;
1370         int num_clusters;
1371         ext4_fsblk_t lblk;
1372
1373         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1374
1375         head = page_buffers(page);
1376         bh = head;
1377         do {
1378                 unsigned int next_off = curr_off + bh->b_size;
1379
1380                 if (next_off > stop)
1381                         break;
1382
1383                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1384                         to_release++;
1385                         clear_buffer_delay(bh);
1386                 }
1387                 curr_off = next_off;
1388         } while ((bh = bh->b_this_page) != head);
1389
1390         if (to_release) {
1391                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392                 ext4_es_remove_extent(inode, lblk, to_release);
1393         }
1394
1395         /* If we have released all the blocks belonging to a cluster, then we
1396          * need to release the reserved space for that cluster. */
1397         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1398         while (num_clusters > 0) {
1399                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1400                         ((num_clusters - 1) << sbi->s_cluster_bits);
1401                 if (sbi->s_cluster_ratio == 1 ||
1402                     !ext4_find_delalloc_cluster(inode, lblk))
1403                         ext4_da_release_space(inode, 1);
1404
1405                 num_clusters--;
1406         }
1407 }
1408
1409 /*
1410  * Delayed allocation stuff
1411  */
1412
1413 struct mpage_da_data {
1414         struct inode *inode;
1415         struct writeback_control *wbc;
1416
1417         pgoff_t first_page;     /* The first page to write */
1418         pgoff_t next_page;      /* Current page to examine */
1419         pgoff_t last_page;      /* Last page to examine */
1420         /*
1421          * Extent to map - this can be after first_page because that can be
1422          * fully mapped. We somewhat abuse m_flags to store whether the extent
1423          * is delalloc or unwritten.
1424          */
1425         struct ext4_map_blocks map;
1426         struct ext4_io_submit io_submit;        /* IO submission data */
1427 };
1428
1429 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1430                                        bool invalidate)
1431 {
1432         int nr_pages, i;
1433         pgoff_t index, end;
1434         struct pagevec pvec;
1435         struct inode *inode = mpd->inode;
1436         struct address_space *mapping = inode->i_mapping;
1437
1438         /* This is necessary when next_page == 0. */
1439         if (mpd->first_page >= mpd->next_page)
1440                 return;
1441
1442         index = mpd->first_page;
1443         end   = mpd->next_page - 1;
1444         if (invalidate) {
1445                 ext4_lblk_t start, last;
1446                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448                 ext4_es_remove_extent(inode, start, last - start + 1);
1449         }
1450
1451         pagevec_init(&pvec, 0);
1452         while (index <= end) {
1453                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1454                 if (nr_pages == 0)
1455                         break;
1456                 for (i = 0; i < nr_pages; i++) {
1457                         struct page *page = pvec.pages[i];
1458                         if (page->index > end)
1459                                 break;
1460                         BUG_ON(!PageLocked(page));
1461                         BUG_ON(PageWriteback(page));
1462                         if (invalidate) {
1463                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1464                                 ClearPageUptodate(page);
1465                         }
1466                         unlock_page(page);
1467                 }
1468                 index = pvec.pages[nr_pages - 1]->index + 1;
1469                 pagevec_release(&pvec);
1470         }
1471 }
1472
1473 static void ext4_print_free_blocks(struct inode *inode)
1474 {
1475         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476         struct super_block *sb = inode->i_sb;
1477         struct ext4_inode_info *ei = EXT4_I(inode);
1478
1479         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1480                EXT4_C2B(EXT4_SB(inode->i_sb),
1481                         ext4_count_free_clusters(sb)));
1482         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1483         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1484                (long long) EXT4_C2B(EXT4_SB(sb),
1485                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1486         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1487                (long long) EXT4_C2B(EXT4_SB(sb),
1488                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1489         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1490         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1491                  ei->i_reserved_data_blocks);
1492         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1493                ei->i_reserved_meta_blocks);
1494         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1495                ei->i_allocated_meta_blocks);
1496         return;
1497 }
1498
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1500 {
1501         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1502 }
1503
1504 /*
1505  * This function is grabs code from the very beginning of
1506  * ext4_map_blocks, but assumes that the caller is from delayed write
1507  * time. This function looks up the requested blocks and sets the
1508  * buffer delay bit under the protection of i_data_sem.
1509  */
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511                               struct ext4_map_blocks *map,
1512                               struct buffer_head *bh)
1513 {
1514         struct extent_status es;
1515         int retval;
1516         sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518         struct ext4_map_blocks orig_map;
1519
1520         memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1522
1523         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524                 invalid_block = ~0;
1525
1526         map->m_flags = 0;
1527         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528                   "logical block %lu\n", inode->i_ino, map->m_len,
1529                   (unsigned long) map->m_lblk);
1530
1531         /* Lookup extent status tree firstly */
1532         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533                 ext4_es_lru_add(inode);
1534                 if (ext4_es_is_hole(&es)) {
1535                         retval = 0;
1536                         down_read((&EXT4_I(inode)->i_data_sem));
1537                         goto add_delayed;
1538                 }
1539
1540                 /*
1541                  * Delayed extent could be allocated by fallocate.
1542                  * So we need to check it.
1543                  */
1544                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1545                         map_bh(bh, inode->i_sb, invalid_block);
1546                         set_buffer_new(bh);
1547                         set_buffer_delay(bh);
1548                         return 0;
1549                 }
1550
1551                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1552                 retval = es.es_len - (iblock - es.es_lblk);
1553                 if (retval > map->m_len)
1554                         retval = map->m_len;
1555                 map->m_len = retval;
1556                 if (ext4_es_is_written(&es))
1557                         map->m_flags |= EXT4_MAP_MAPPED;
1558                 else if (ext4_es_is_unwritten(&es))
1559                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1560                 else
1561                         BUG_ON(1);
1562
1563 #ifdef ES_AGGRESSIVE_TEST
1564                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1565 #endif
1566                 return retval;
1567         }
1568
1569         /*
1570          * Try to see if we can get the block without requesting a new
1571          * file system block.
1572          */
1573         down_read((&EXT4_I(inode)->i_data_sem));
1574         if (ext4_has_inline_data(inode)) {
1575                 /*
1576                  * We will soon create blocks for this page, and let
1577                  * us pretend as if the blocks aren't allocated yet.
1578                  * In case of clusters, we have to handle the work
1579                  * of mapping from cluster so that the reserved space
1580                  * is calculated properly.
1581                  */
1582                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1583                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1584                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1585                 retval = 0;
1586         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1587                 retval = ext4_ext_map_blocks(NULL, inode, map,
1588                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1589         else
1590                 retval = ext4_ind_map_blocks(NULL, inode, map,
1591                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592
1593 add_delayed:
1594         if (retval == 0) {
1595                 int ret;
1596                 /*
1597                  * XXX: __block_prepare_write() unmaps passed block,
1598                  * is it OK?
1599                  */
1600                 /*
1601                  * If the block was allocated from previously allocated cluster,
1602                  * then we don't need to reserve it again. However we still need
1603                  * to reserve metadata for every block we're going to write.
1604                  */
1605                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1606                         ret = ext4_da_reserve_space(inode, iblock);
1607                         if (ret) {
1608                                 /* not enough space to reserve */
1609                                 retval = ret;
1610                                 goto out_unlock;
1611                         }
1612                 } else {
1613                         ret = ext4_da_reserve_metadata(inode, iblock);
1614                         if (ret) {
1615                                 /* not enough space to reserve */
1616                                 retval = ret;
1617                                 goto out_unlock;
1618                         }
1619                 }
1620
1621                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1622                                             ~0, EXTENT_STATUS_DELAYED);
1623                 if (ret) {
1624                         retval = ret;
1625                         goto out_unlock;
1626                 }
1627
1628                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1629                  * and it should not appear on the bh->b_state.
1630                  */
1631                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1632
1633                 map_bh(bh, inode->i_sb, invalid_block);
1634                 set_buffer_new(bh);
1635                 set_buffer_delay(bh);
1636         } else if (retval > 0) {
1637                 int ret;
1638                 unsigned long long status;
1639
1640 #ifdef ES_AGGRESSIVE_TEST
1641                 if (retval != map->m_len) {
1642                         printk("ES len assertion failed for inode: %lu "
1643                                "retval %d != map->m_len %d "
1644                                "in %s (lookup)\n", inode->i_ino, retval,
1645                                map->m_len, __func__);
1646                 }
1647 #endif
1648
1649                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1650                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1651                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1652                                             map->m_pblk, status);
1653                 if (ret != 0)
1654                         retval = ret;
1655         }
1656
1657 out_unlock:
1658         up_read((&EXT4_I(inode)->i_data_sem));
1659
1660         return retval;
1661 }
1662
1663 /*
1664  * This is a special get_blocks_t callback which is used by
1665  * ext4_da_write_begin().  It will either return mapped block or
1666  * reserve space for a single block.
1667  *
1668  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1669  * We also have b_blocknr = -1 and b_bdev initialized properly
1670  *
1671  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1672  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1673  * initialized properly.
1674  */
1675 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1676                            struct buffer_head *bh, int create)
1677 {
1678         struct ext4_map_blocks map;
1679         int ret = 0;
1680
1681         BUG_ON(create == 0);
1682         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1683
1684         map.m_lblk = iblock;
1685         map.m_len = 1;
1686
1687         /*
1688          * first, we need to know whether the block is allocated already
1689          * preallocated blocks are unmapped but should treated
1690          * the same as allocated blocks.
1691          */
1692         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1693         if (ret <= 0)
1694                 return ret;
1695
1696         map_bh(bh, inode->i_sb, map.m_pblk);
1697         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1698
1699         if (buffer_unwritten(bh)) {
1700                 /* A delayed write to unwritten bh should be marked
1701                  * new and mapped.  Mapped ensures that we don't do
1702                  * get_block multiple times when we write to the same
1703                  * offset and new ensures that we do proper zero out
1704                  * for partial write.
1705                  */
1706                 set_buffer_new(bh);
1707                 set_buffer_mapped(bh);
1708         }
1709         return 0;
1710 }
1711
1712 static int bget_one(handle_t *handle, struct buffer_head *bh)
1713 {
1714         get_bh(bh);
1715         return 0;
1716 }
1717
1718 static int bput_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720         put_bh(bh);
1721         return 0;
1722 }
1723
1724 static int __ext4_journalled_writepage(struct page *page,
1725                                        unsigned int len)
1726 {
1727         struct address_space *mapping = page->mapping;
1728         struct inode *inode = mapping->host;
1729         struct buffer_head *page_bufs = NULL;
1730         handle_t *handle = NULL;
1731         int ret = 0, err = 0;
1732         int inline_data = ext4_has_inline_data(inode);
1733         struct buffer_head *inode_bh = NULL;
1734
1735         ClearPageChecked(page);
1736
1737         if (inline_data) {
1738                 BUG_ON(page->index != 0);
1739                 BUG_ON(len > ext4_get_max_inline_size(inode));
1740                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1741                 if (inode_bh == NULL)
1742                         goto out;
1743         } else {
1744                 page_bufs = page_buffers(page);
1745                 if (!page_bufs) {
1746                         BUG();
1747                         goto out;
1748                 }
1749                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1750                                        NULL, bget_one);
1751         }
1752         /* As soon as we unlock the page, it can go away, but we have
1753          * references to buffers so we are safe */
1754         unlock_page(page);
1755
1756         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1757                                     ext4_writepage_trans_blocks(inode));
1758         if (IS_ERR(handle)) {
1759                 ret = PTR_ERR(handle);
1760                 goto out;
1761         }
1762
1763         BUG_ON(!ext4_handle_valid(handle));
1764
1765         if (inline_data) {
1766                 ret = ext4_journal_get_write_access(handle, inode_bh);
1767
1768                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1769
1770         } else {
1771                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772                                              do_journal_get_write_access);
1773
1774                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775                                              write_end_fn);
1776         }
1777         if (ret == 0)
1778                 ret = err;
1779         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1780         err = ext4_journal_stop(handle);
1781         if (!ret)
1782                 ret = err;
1783
1784         if (!ext4_has_inline_data(inode))
1785                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1786                                        NULL, bput_one);
1787         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1788 out:
1789         brelse(inode_bh);
1790         return ret;
1791 }
1792
1793 /*
1794  * Note that we don't need to start a transaction unless we're journaling data
1795  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1796  * need to file the inode to the transaction's list in ordered mode because if
1797  * we are writing back data added by write(), the inode is already there and if
1798  * we are writing back data modified via mmap(), no one guarantees in which
1799  * transaction the data will hit the disk. In case we are journaling data, we
1800  * cannot start transaction directly because transaction start ranks above page
1801  * lock so we have to do some magic.
1802  *
1803  * This function can get called via...
1804  *   - ext4_writepages after taking page lock (have journal handle)
1805  *   - journal_submit_inode_data_buffers (no journal handle)
1806  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1807  *   - grab_page_cache when doing write_begin (have journal handle)
1808  *
1809  * We don't do any block allocation in this function. If we have page with
1810  * multiple blocks we need to write those buffer_heads that are mapped. This
1811  * is important for mmaped based write. So if we do with blocksize 1K
1812  * truncate(f, 1024);
1813  * a = mmap(f, 0, 4096);
1814  * a[0] = 'a';
1815  * truncate(f, 4096);
1816  * we have in the page first buffer_head mapped via page_mkwrite call back
1817  * but other buffer_heads would be unmapped but dirty (dirty done via the
1818  * do_wp_page). So writepage should write the first block. If we modify
1819  * the mmap area beyond 1024 we will again get a page_fault and the
1820  * page_mkwrite callback will do the block allocation and mark the
1821  * buffer_heads mapped.
1822  *
1823  * We redirty the page if we have any buffer_heads that is either delay or
1824  * unwritten in the page.
1825  *
1826  * We can get recursively called as show below.
1827  *
1828  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1829  *              ext4_writepage()
1830  *
1831  * But since we don't do any block allocation we should not deadlock.
1832  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1833  */
1834 static int ext4_writepage(struct page *page,
1835                           struct writeback_control *wbc)
1836 {
1837         int ret = 0;
1838         loff_t size;
1839         unsigned int len;
1840         struct buffer_head *page_bufs = NULL;
1841         struct inode *inode = page->mapping->host;
1842         struct ext4_io_submit io_submit;
1843
1844         trace_ext4_writepage(page);
1845         size = i_size_read(inode);
1846         if (page->index == size >> PAGE_CACHE_SHIFT)
1847                 len = size & ~PAGE_CACHE_MASK;
1848         else
1849                 len = PAGE_CACHE_SIZE;
1850
1851         page_bufs = page_buffers(page);
1852         /*
1853          * We cannot do block allocation or other extent handling in this
1854          * function. If there are buffers needing that, we have to redirty
1855          * the page. But we may reach here when we do a journal commit via
1856          * journal_submit_inode_data_buffers() and in that case we must write
1857          * allocated buffers to achieve data=ordered mode guarantees.
1858          */
1859         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1860                                    ext4_bh_delay_or_unwritten)) {
1861                 redirty_page_for_writepage(wbc, page);
1862                 if (current->flags & PF_MEMALLOC) {
1863                         /*
1864                          * For memory cleaning there's no point in writing only
1865                          * some buffers. So just bail out. Warn if we came here
1866                          * from direct reclaim.
1867                          */
1868                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1869                                                         == PF_MEMALLOC);
1870                         unlock_page(page);
1871                         return 0;
1872                 }
1873         }
1874
1875         if (PageChecked(page) && ext4_should_journal_data(inode))
1876                 /*
1877                  * It's mmapped pagecache.  Add buffers and journal it.  There
1878                  * doesn't seem much point in redirtying the page here.
1879                  */
1880                 return __ext4_journalled_writepage(page, len);
1881
1882         ext4_io_submit_init(&io_submit, wbc);
1883         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884         if (!io_submit.io_end) {
1885                 redirty_page_for_writepage(wbc, page);
1886                 unlock_page(page);
1887                 return -ENOMEM;
1888         }
1889         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1890         ext4_io_submit(&io_submit);
1891         /* Drop io_end reference we got from init */
1892         ext4_put_io_end_defer(io_submit.io_end);
1893         return ret;
1894 }
1895
1896 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1897
1898 /*
1899  * mballoc gives us at most this number of blocks...
1900  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901  * The rest of mballoc seems to handle chunks upto full group size.
1902  */
1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1904
1905 /*
1906  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907  *
1908  * @mpd - extent of blocks
1909  * @lblk - logical number of the block in the file
1910  * @b_state - b_state of the buffer head added
1911  *
1912  * the function is used to collect contig. blocks in same state
1913  */
1914 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1915                                   unsigned long b_state)
1916 {
1917         struct ext4_map_blocks *map = &mpd->map;
1918
1919         /* Don't go larger than mballoc is willing to allocate */
1920         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921                 return 0;
1922
1923         /* First block in the extent? */
1924         if (map->m_len == 0) {
1925                 map->m_lblk = lblk;
1926                 map->m_len = 1;
1927                 map->m_flags = b_state & BH_FLAGS;
1928                 return 1;
1929         }
1930
1931         /* Can we merge the block to our big extent? */
1932         if (lblk == map->m_lblk + map->m_len &&
1933             (b_state & BH_FLAGS) == map->m_flags) {
1934                 map->m_len++;
1935                 return 1;
1936         }
1937         return 0;
1938 }
1939
1940 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1941                                     struct buffer_head *head,
1942                                     struct buffer_head *bh,
1943                                     ext4_lblk_t lblk)
1944 {
1945         struct inode *inode = mpd->inode;
1946         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1947                                                         >> inode->i_blkbits;
1948
1949         do {
1950                 BUG_ON(buffer_locked(bh));
1951
1952                 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1953                     (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1954                     lblk >= blocks) {
1955                         /* Found extent to map? */
1956                         if (mpd->map.m_len)
1957                                 return false;
1958                         if (lblk >= blocks)
1959                                 return true;
1960                         continue;
1961                 }
1962                 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1963                         return false;
1964         } while (lblk++, (bh = bh->b_this_page) != head);
1965         return true;
1966 }
1967
1968 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1969 {
1970         int len;
1971         loff_t size = i_size_read(mpd->inode);
1972         int err;
1973
1974         BUG_ON(page->index != mpd->first_page);
1975         if (page->index == size >> PAGE_CACHE_SHIFT)
1976                 len = size & ~PAGE_CACHE_MASK;
1977         else
1978                 len = PAGE_CACHE_SIZE;
1979         clear_page_dirty_for_io(page);
1980         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1981         if (!err)
1982                 mpd->wbc->nr_to_write--;
1983         mpd->first_page++;
1984
1985         return err;
1986 }
1987
1988 /*
1989  * mpage_map_buffers - update buffers corresponding to changed extent and
1990  *                     submit fully mapped pages for IO
1991  *
1992  * @mpd - description of extent to map, on return next extent to map
1993  *
1994  * Scan buffers corresponding to changed extent (we expect corresponding pages
1995  * to be already locked) and update buffer state according to new extent state.
1996  * We map delalloc buffers to their physical location, clear unwritten bits,
1997  * and mark buffers as uninit when we perform writes to uninitialized extents
1998  * and do extent conversion after IO is finished. If the last page is not fully
1999  * mapped, we update @map to the next extent in the last page that needs
2000  * mapping. Otherwise we submit the page for IO.
2001  */
2002 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2003 {
2004         struct pagevec pvec;
2005         int nr_pages, i;
2006         struct inode *inode = mpd->inode;
2007         struct buffer_head *head, *bh;
2008         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2009         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2010                                                         >> inode->i_blkbits;
2011         pgoff_t start, end;
2012         ext4_lblk_t lblk;
2013         sector_t pblock;
2014         int err;
2015
2016         start = mpd->map.m_lblk >> bpp_bits;
2017         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2018         lblk = start << bpp_bits;
2019         pblock = mpd->map.m_pblk;
2020
2021         pagevec_init(&pvec, 0);
2022         while (start <= end) {
2023                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2024                                           PAGEVEC_SIZE);
2025                 if (nr_pages == 0)
2026                         break;
2027                 for (i = 0; i < nr_pages; i++) {
2028                         struct page *page = pvec.pages[i];
2029
2030                         if (page->index > end)
2031                                 break;
2032                         /* Upto 'end' pages must be contiguous */
2033                         BUG_ON(page->index != start);
2034                         bh = head = page_buffers(page);
2035                         do {
2036                                 if (lblk < mpd->map.m_lblk)
2037                                         continue;
2038                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2039                                         /*
2040                                          * Buffer after end of mapped extent.
2041                                          * Find next buffer in the page to map.
2042                                          */
2043                                         mpd->map.m_len = 0;
2044                                         mpd->map.m_flags = 0;
2045                                         add_page_bufs_to_extent(mpd, head, bh,
2046                                                                 lblk);
2047                                         pagevec_release(&pvec);
2048                                         return 0;
2049                                 }
2050                                 if (buffer_delay(bh)) {
2051                                         clear_buffer_delay(bh);
2052                                         bh->b_blocknr = pblock++;
2053                                 }
2054                                 clear_buffer_unwritten(bh);
2055                         } while (++lblk < blocks &&
2056                                  (bh = bh->b_this_page) != head);
2057
2058                         /*
2059                          * FIXME: This is going to break if dioread_nolock
2060                          * supports blocksize < pagesize as we will try to
2061                          * convert potentially unmapped parts of inode.
2062                          */
2063                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2064                         /* Page fully mapped - let IO run! */
2065                         err = mpage_submit_page(mpd, page);
2066                         if (err < 0) {
2067                                 pagevec_release(&pvec);
2068                                 return err;
2069                         }
2070                         start++;
2071                 }
2072                 pagevec_release(&pvec);
2073         }
2074         /* Extent fully mapped and matches with page boundary. We are done. */
2075         mpd->map.m_len = 0;
2076         mpd->map.m_flags = 0;
2077         return 0;
2078 }
2079
2080 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2081 {
2082         struct inode *inode = mpd->inode;
2083         struct ext4_map_blocks *map = &mpd->map;
2084         int get_blocks_flags;
2085         int err;
2086
2087         trace_ext4_da_write_pages_extent(inode, map);
2088         /*
2089          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2090          * to convert an uninitialized extent to be initialized (in the case
2091          * where we have written into one or more preallocated blocks).  It is
2092          * possible that we're going to need more metadata blocks than
2093          * previously reserved. However we must not fail because we're in
2094          * writeback and there is nothing we can do about it so it might result
2095          * in data loss.  So use reserved blocks to allocate metadata if
2096          * possible.
2097          *
2098          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2099          * in question are delalloc blocks.  This affects functions in many
2100          * different parts of the allocation call path.  This flag exists
2101          * primarily because we don't want to change *many* call functions, so
2102          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2103          * once the inode's allocation semaphore is taken.
2104          */
2105         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2106                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2107         if (ext4_should_dioread_nolock(inode))
2108                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2109         if (map->m_flags & (1 << BH_Delay))
2110                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2111
2112         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2113         if (err < 0)
2114                 return err;
2115         if (map->m_flags & EXT4_MAP_UNINIT) {
2116                 if (!mpd->io_submit.io_end->handle &&
2117                     ext4_handle_valid(handle)) {
2118                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2119                         handle->h_rsv_handle = NULL;
2120                 }
2121                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2122         }
2123
2124         BUG_ON(map->m_len == 0);
2125         if (map->m_flags & EXT4_MAP_NEW) {
2126                 struct block_device *bdev = inode->i_sb->s_bdev;
2127                 int i;
2128
2129                 for (i = 0; i < map->m_len; i++)
2130                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2131         }
2132         return 0;
2133 }
2134
2135 /*
2136  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2137  *                               mpd->len and submit pages underlying it for IO
2138  *
2139  * @handle - handle for journal operations
2140  * @mpd - extent to map
2141  *
2142  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144  * them to initialized or split the described range from larger unwritten
2145  * extent. Note that we need not map all the described range since allocation
2146  * can return less blocks or the range is covered by more unwritten extents. We
2147  * cannot map more because we are limited by reserved transaction credits. On
2148  * the other hand we always make sure that the last touched page is fully
2149  * mapped so that it can be written out (and thus forward progress is
2150  * guaranteed). After mapping we submit all mapped pages for IO.
2151  */
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153                                        struct mpage_da_data *mpd,
2154                                        bool *give_up_on_write)
2155 {
2156         struct inode *inode = mpd->inode;
2157         struct ext4_map_blocks *map = &mpd->map;
2158         int err;
2159         loff_t disksize;
2160
2161         mpd->io_submit.io_end->offset =
2162                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2163         do {
2164                 err = mpage_map_one_extent(handle, mpd);
2165                 if (err < 0) {
2166                         struct super_block *sb = inode->i_sb;
2167
2168                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2169                                 goto invalidate_dirty_pages;
2170                         /*
2171                          * Let the uper layers retry transient errors.
2172                          * In the case of ENOSPC, if ext4_count_free_blocks()
2173                          * is non-zero, a commit should free up blocks.
2174                          */
2175                         if ((err == -ENOMEM) ||
2176                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2177                                 return err;
2178                         ext4_msg(sb, KERN_CRIT,
2179                                  "Delayed block allocation failed for "
2180                                  "inode %lu at logical offset %llu with"
2181                                  " max blocks %u with error %d",
2182                                  inode->i_ino,
2183                                  (unsigned long long)map->m_lblk,
2184                                  (unsigned)map->m_len, -err);
2185                         ext4_msg(sb, KERN_CRIT,
2186                                  "This should not happen!! Data will "
2187                                  "be lost\n");
2188                         if (err == -ENOSPC)
2189                                 ext4_print_free_blocks(inode);
2190                 invalidate_dirty_pages:
2191                         *give_up_on_write = true;
2192                         return err;
2193                 }
2194                 /*
2195                  * Update buffer state, submit mapped pages, and get us new
2196                  * extent to map
2197                  */
2198                 err = mpage_map_and_submit_buffers(mpd);
2199                 if (err < 0)
2200                         return err;
2201         } while (map->m_len);
2202
2203         /* Update on-disk size after IO is submitted */
2204         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205         if (disksize > i_size_read(inode))
2206                 disksize = i_size_read(inode);
2207         if (disksize > EXT4_I(inode)->i_disksize) {
2208                 int err2;
2209
2210                 ext4_update_i_disksize(inode, disksize);
2211                 err2 = ext4_mark_inode_dirty(handle, inode);
2212                 if (err2)
2213                         ext4_error(inode->i_sb,
2214                                    "Failed to mark inode %lu dirty",
2215                                    inode->i_ino);
2216                 if (!err)
2217                         err = err2;
2218         }
2219         return err;
2220 }
2221
2222 /*
2223  * Calculate the total number of credits to reserve for one writepages
2224  * iteration. This is called from ext4_writepages(). We map an extent of
2225  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2226  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2227  * bpp - 1 blocks in bpp different extents.
2228  */
2229 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230 {
2231         int bpp = ext4_journal_blocks_per_page(inode);
2232
2233         return ext4_meta_trans_blocks(inode,
2234                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2235 }
2236
2237 /*
2238  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2239  *                               and underlying extent to map
2240  *
2241  * @mpd - where to look for pages
2242  *
2243  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2244  * IO immediately. When we find a page which isn't mapped we start accumulating
2245  * extent of buffers underlying these pages that needs mapping (formed by
2246  * either delayed or unwritten buffers). We also lock the pages containing
2247  * these buffers. The extent found is returned in @mpd structure (starting at
2248  * mpd->lblk with length mpd->len blocks).
2249  *
2250  * Note that this function can attach bios to one io_end structure which are
2251  * neither logically nor physically contiguous. Although it may seem as an
2252  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2253  * case as we need to track IO to all buffers underlying a page in one io_end.
2254  */
2255 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2256 {
2257         struct address_space *mapping = mpd->inode->i_mapping;
2258         struct pagevec pvec;
2259         unsigned int nr_pages;
2260         pgoff_t index = mpd->first_page;
2261         pgoff_t end = mpd->last_page;
2262         int tag;
2263         int i, err = 0;
2264         int blkbits = mpd->inode->i_blkbits;
2265         ext4_lblk_t lblk;
2266         struct buffer_head *head;
2267
2268         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2269                 tag = PAGECACHE_TAG_TOWRITE;
2270         else
2271                 tag = PAGECACHE_TAG_DIRTY;
2272
2273         pagevec_init(&pvec, 0);
2274         mpd->map.m_len = 0;
2275         mpd->next_page = index;
2276         while (index <= end) {
2277                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2278                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2279                 if (nr_pages == 0)
2280                         goto out;
2281
2282                 for (i = 0; i < nr_pages; i++) {
2283                         struct page *page = pvec.pages[i];
2284
2285                         /*
2286                          * At this point, the page may be truncated or
2287                          * invalidated (changing page->mapping to NULL), or
2288                          * even swizzled back from swapper_space to tmpfs file
2289                          * mapping. However, page->index will not change
2290                          * because we have a reference on the page.
2291                          */
2292                         if (page->index > end)
2293                                 goto out;
2294
2295                         /* If we can't merge this page, we are done. */
2296                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2297                                 goto out;
2298
2299                         lock_page(page);
2300                         /*
2301                          * If the page is no longer dirty, or its mapping no
2302                          * longer corresponds to inode we are writing (which
2303                          * means it has been truncated or invalidated), or the
2304                          * page is already under writeback and we are not doing
2305                          * a data integrity writeback, skip the page
2306                          */
2307                         if (!PageDirty(page) ||
2308                             (PageWriteback(page) &&
2309                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2310                             unlikely(page->mapping != mapping)) {
2311                                 unlock_page(page);
2312                                 continue;
2313                         }
2314
2315                         wait_on_page_writeback(page);
2316                         BUG_ON(PageWriteback(page));
2317
2318                         if (mpd->map.m_len == 0)
2319                                 mpd->first_page = page->index;
2320                         mpd->next_page = page->index + 1;
2321                         /* Add all dirty buffers to mpd */
2322                         lblk = ((ext4_lblk_t)page->index) <<
2323                                 (PAGE_CACHE_SHIFT - blkbits);
2324                         head = page_buffers(page);
2325                         if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2326                                 goto out;
2327                         /* So far everything mapped? Submit the page for IO. */
2328                         if (mpd->map.m_len == 0) {
2329                                 err = mpage_submit_page(mpd, page);
2330                                 if (err < 0)
2331                                         goto out;
2332                         }
2333
2334                         /*
2335                          * Accumulated enough dirty pages? This doesn't apply
2336                          * to WB_SYNC_ALL mode. For integrity sync we have to
2337                          * keep going because someone may be concurrently
2338                          * dirtying pages, and we might have synced a lot of
2339                          * newly appeared dirty pages, but have not synced all
2340                          * of the old dirty pages.
2341                          */
2342                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2343                             mpd->next_page - mpd->first_page >=
2344                                                         mpd->wbc->nr_to_write)
2345                                 goto out;
2346                 }
2347                 pagevec_release(&pvec);
2348                 cond_resched();
2349         }
2350         return 0;
2351 out:
2352         pagevec_release(&pvec);
2353         return err;
2354 }
2355
2356 static int __writepage(struct page *page, struct writeback_control *wbc,
2357                        void *data)
2358 {
2359         struct address_space *mapping = data;
2360         int ret = ext4_writepage(page, wbc);
2361         mapping_set_error(mapping, ret);
2362         return ret;
2363 }
2364
2365 static int ext4_writepages(struct address_space *mapping,
2366                            struct writeback_control *wbc)
2367 {
2368         pgoff_t writeback_index = 0;
2369         long nr_to_write = wbc->nr_to_write;
2370         int range_whole = 0;
2371         int cycled = 1;
2372         handle_t *handle = NULL;
2373         struct mpage_da_data mpd;
2374         struct inode *inode = mapping->host;
2375         int needed_blocks, rsv_blocks = 0, ret = 0;
2376         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2377         bool done;
2378         struct blk_plug plug;
2379         bool give_up_on_write = false;
2380
2381         trace_ext4_writepages(inode, wbc);
2382
2383         /*
2384          * No pages to write? This is mainly a kludge to avoid starting
2385          * a transaction for special inodes like journal inode on last iput()
2386          * because that could violate lock ordering on umount
2387          */
2388         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2389                 return 0;
2390
2391         if (ext4_should_journal_data(inode)) {
2392                 struct blk_plug plug;
2393                 int ret;
2394
2395                 blk_start_plug(&plug);
2396                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397                 blk_finish_plug(&plug);
2398                 return ret;
2399         }
2400
2401         /*
2402          * If the filesystem has aborted, it is read-only, so return
2403          * right away instead of dumping stack traces later on that
2404          * will obscure the real source of the problem.  We test
2405          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406          * the latter could be true if the filesystem is mounted
2407          * read-only, and in that case, ext4_writepages should
2408          * *never* be called, so if that ever happens, we would want
2409          * the stack trace.
2410          */
2411         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2412                 return -EROFS;
2413
2414         if (ext4_should_dioread_nolock(inode)) {
2415                 /*
2416                  * We may need to convert upto one extent per block in
2417                  * the page and we may dirty the inode.
2418                  */
2419                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2420         }
2421
2422         /*
2423          * If we have inline data and arrive here, it means that
2424          * we will soon create the block for the 1st page, so
2425          * we'd better clear the inline data here.
2426          */
2427         if (ext4_has_inline_data(inode)) {
2428                 /* Just inode will be modified... */
2429                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2430                 if (IS_ERR(handle)) {
2431                         ret = PTR_ERR(handle);
2432                         goto out_writepages;
2433                 }
2434                 BUG_ON(ext4_test_inode_state(inode,
2435                                 EXT4_STATE_MAY_INLINE_DATA));
2436                 ext4_destroy_inline_data(handle, inode);
2437                 ext4_journal_stop(handle);
2438         }
2439
2440         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2441                 range_whole = 1;
2442
2443         if (wbc->range_cyclic) {
2444                 writeback_index = mapping->writeback_index;
2445                 if (writeback_index)
2446                         cycled = 0;
2447                 mpd.first_page = writeback_index;
2448                 mpd.last_page = -1;
2449         } else {
2450                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2451                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2452         }
2453
2454         mpd.inode = inode;
2455         mpd.wbc = wbc;
2456         ext4_io_submit_init(&mpd.io_submit, wbc);
2457 retry:
2458         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2459                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2460         done = false;
2461         blk_start_plug(&plug);
2462         while (!done && mpd.first_page <= mpd.last_page) {
2463                 /* For each extent of pages we use new io_end */
2464                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2465                 if (!mpd.io_submit.io_end) {
2466                         ret = -ENOMEM;
2467                         break;
2468                 }
2469
2470                 /*
2471                  * We have two constraints: We find one extent to map and we
2472                  * must always write out whole page (makes a difference when
2473                  * blocksize < pagesize) so that we don't block on IO when we
2474                  * try to write out the rest of the page. Journalled mode is
2475                  * not supported by delalloc.
2476                  */
2477                 BUG_ON(ext4_should_journal_data(inode));
2478                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2479
2480                 /* start a new transaction */
2481                 handle = ext4_journal_start_with_reserve(inode,
2482                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2483                 if (IS_ERR(handle)) {
2484                         ret = PTR_ERR(handle);
2485                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2486                                "%ld pages, ino %lu; err %d", __func__,
2487                                 wbc->nr_to_write, inode->i_ino, ret);
2488                         /* Release allocated io_end */
2489                         ext4_put_io_end(mpd.io_submit.io_end);
2490                         break;
2491                 }
2492
2493                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2494                 ret = mpage_prepare_extent_to_map(&mpd);
2495                 if (!ret) {
2496                         if (mpd.map.m_len)
2497                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2498                                         &give_up_on_write);
2499                         else {
2500                                 /*
2501                                  * We scanned the whole range (or exhausted
2502                                  * nr_to_write), submitted what was mapped and
2503                                  * didn't find anything needing mapping. We are
2504                                  * done.
2505                                  */
2506                                 done = true;
2507                         }
2508                 }
2509                 ext4_journal_stop(handle);
2510                 /* Submit prepared bio */
2511                 ext4_io_submit(&mpd.io_submit);
2512                 /* Unlock pages we didn't use */
2513                 mpage_release_unused_pages(&mpd, give_up_on_write);
2514                 /* Drop our io_end reference we got from init */
2515                 ext4_put_io_end(mpd.io_submit.io_end);
2516
2517                 if (ret == -ENOSPC && sbi->s_journal) {
2518                         /*
2519                          * Commit the transaction which would
2520                          * free blocks released in the transaction
2521                          * and try again
2522                          */
2523                         jbd2_journal_force_commit_nested(sbi->s_journal);
2524                         ret = 0;
2525                         continue;
2526                 }
2527                 /* Fatal error - ENOMEM, EIO... */
2528                 if (ret)
2529                         break;
2530         }
2531         blk_finish_plug(&plug);
2532         if (!ret && !cycled) {
2533                 cycled = 1;
2534                 mpd.last_page = writeback_index - 1;
2535                 mpd.first_page = 0;
2536                 goto retry;
2537         }
2538
2539         /* Update index */
2540         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2541                 /*
2542                  * Set the writeback_index so that range_cyclic
2543                  * mode will write it back later
2544                  */
2545                 mapping->writeback_index = mpd.first_page;
2546
2547 out_writepages:
2548         trace_ext4_writepages_result(inode, wbc, ret,
2549                                      nr_to_write - wbc->nr_to_write);
2550         return ret;
2551 }
2552
2553 static int ext4_nonda_switch(struct super_block *sb)
2554 {
2555         s64 free_clusters, dirty_clusters;
2556         struct ext4_sb_info *sbi = EXT4_SB(sb);
2557
2558         /*
2559          * switch to non delalloc mode if we are running low
2560          * on free block. The free block accounting via percpu
2561          * counters can get slightly wrong with percpu_counter_batch getting
2562          * accumulated on each CPU without updating global counters
2563          * Delalloc need an accurate free block accounting. So switch
2564          * to non delalloc when we are near to error range.
2565          */
2566         free_clusters =
2567                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2568         dirty_clusters =
2569                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2570         /*
2571          * Start pushing delalloc when 1/2 of free blocks are dirty.
2572          */
2573         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2574                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2575
2576         if (2 * free_clusters < 3 * dirty_clusters ||
2577             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2578                 /*
2579                  * free block count is less than 150% of dirty blocks
2580                  * or free blocks is less than watermark
2581                  */
2582                 return 1;
2583         }
2584         return 0;
2585 }
2586
2587 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2588                                loff_t pos, unsigned len, unsigned flags,
2589                                struct page **pagep, void **fsdata)
2590 {
2591         int ret, retries = 0;
2592         struct page *page;
2593         pgoff_t index;
2594         struct inode *inode = mapping->host;
2595         handle_t *handle;
2596
2597         index = pos >> PAGE_CACHE_SHIFT;
2598
2599         if (ext4_nonda_switch(inode->i_sb)) {
2600                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2601                 return ext4_write_begin(file, mapping, pos,
2602                                         len, flags, pagep, fsdata);
2603         }
2604         *fsdata = (void *)0;
2605         trace_ext4_da_write_begin(inode, pos, len, flags);
2606
2607         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2608                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2609                                                       pos, len, flags,
2610                                                       pagep, fsdata);
2611                 if (ret < 0)
2612                         return ret;
2613                 if (ret == 1)
2614                         return 0;
2615         }
2616
2617         /*
2618          * grab_cache_page_write_begin() can take a long time if the
2619          * system is thrashing due to memory pressure, or if the page
2620          * is being written back.  So grab it first before we start
2621          * the transaction handle.  This also allows us to allocate
2622          * the page (if needed) without using GFP_NOFS.
2623          */
2624 retry_grab:
2625         page = grab_cache_page_write_begin(mapping, index, flags);
2626         if (!page)
2627                 return -ENOMEM;
2628         unlock_page(page);
2629
2630         /*
2631          * With delayed allocation, we don't log the i_disksize update
2632          * if there is delayed block allocation. But we still need
2633          * to journalling the i_disksize update if writes to the end
2634          * of file which has an already mapped buffer.
2635          */
2636 retry_journal:
2637         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2638         if (IS_ERR(handle)) {
2639                 page_cache_release(page);
2640                 return PTR_ERR(handle);
2641         }
2642
2643         lock_page(page);
2644         if (page->mapping != mapping) {
2645                 /* The page got truncated from under us */
2646                 unlock_page(page);
2647                 page_cache_release(page);
2648                 ext4_journal_stop(handle);
2649                 goto retry_grab;
2650         }
2651         /* In case writeback began while the page was unlocked */
2652         wait_on_page_writeback(page);
2653
2654         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2655         if (ret < 0) {
2656                 unlock_page(page);
2657                 ext4_journal_stop(handle);
2658                 /*
2659                  * block_write_begin may have instantiated a few blocks
2660                  * outside i_size.  Trim these off again. Don't need
2661                  * i_size_read because we hold i_mutex.
2662                  */
2663                 if (pos + len > inode->i_size)
2664                         ext4_truncate_failed_write(inode);
2665
2666                 if (ret == -ENOSPC &&
2667                     ext4_should_retry_alloc(inode->i_sb, &retries))
2668                         goto retry_journal;
2669
2670                 page_cache_release(page);
2671                 return ret;
2672         }
2673
2674         *pagep = page;
2675         return ret;
2676 }
2677
2678 /*
2679  * Check if we should update i_disksize
2680  * when write to the end of file but not require block allocation
2681  */
2682 static int ext4_da_should_update_i_disksize(struct page *page,
2683                                             unsigned long offset)
2684 {
2685         struct buffer_head *bh;
2686         struct inode *inode = page->mapping->host;
2687         unsigned int idx;
2688         int i;
2689
2690         bh = page_buffers(page);
2691         idx = offset >> inode->i_blkbits;
2692
2693         for (i = 0; i < idx; i++)
2694                 bh = bh->b_this_page;
2695
2696         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2697                 return 0;
2698         return 1;
2699 }
2700
2701 static int ext4_da_write_end(struct file *file,
2702                              struct address_space *mapping,
2703                              loff_t pos, unsigned len, unsigned copied,
2704                              struct page *page, void *fsdata)
2705 {
2706         struct inode *inode = mapping->host;
2707         int ret = 0, ret2;
2708         handle_t *handle = ext4_journal_current_handle();
2709         loff_t new_i_size;
2710         unsigned long start, end;
2711         int write_mode = (int)(unsigned long)fsdata;
2712
2713         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2714                 return ext4_write_end(file, mapping, pos,
2715                                       len, copied, page, fsdata);
2716
2717         trace_ext4_da_write_end(inode, pos, len, copied);
2718         start = pos & (PAGE_CACHE_SIZE - 1);
2719         end = start + copied - 1;
2720
2721         /*
2722          * generic_write_end() will run mark_inode_dirty() if i_size
2723          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2724          * into that.
2725          */
2726         new_i_size = pos + copied;
2727         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2728                 if (ext4_has_inline_data(inode) ||
2729                     ext4_da_should_update_i_disksize(page, end)) {
2730                         down_write(&EXT4_I(inode)->i_data_sem);
2731                         if (new_i_size > EXT4_I(inode)->i_disksize)
2732                                 EXT4_I(inode)->i_disksize = new_i_size;
2733                         up_write(&EXT4_I(inode)->i_data_sem);
2734                         /* We need to mark inode dirty even if
2735                          * new_i_size is less that inode->i_size
2736                          * bu greater than i_disksize.(hint delalloc)
2737                          */
2738                         ext4_mark_inode_dirty(handle, inode);
2739                 }
2740         }
2741
2742         if (write_mode != CONVERT_INLINE_DATA &&
2743             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2744             ext4_has_inline_data(inode))
2745                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2746                                                      page);
2747         else
2748                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2749                                                         page, fsdata);
2750
2751         copied = ret2;
2752         if (ret2 < 0)
2753                 ret = ret2;
2754         ret2 = ext4_journal_stop(handle);
2755         if (!ret)
2756                 ret = ret2;
2757
2758         return ret ? ret : copied;
2759 }
2760
2761 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2762                                    unsigned int length)
2763 {
2764         /*
2765          * Drop reserved blocks
2766          */
2767         BUG_ON(!PageLocked(page));
2768         if (!page_has_buffers(page))
2769                 goto out;
2770
2771         ext4_da_page_release_reservation(page, offset, length);
2772
2773 out:
2774         ext4_invalidatepage(page, offset, length);
2775
2776         return;
2777 }
2778
2779 /*
2780  * Force all delayed allocation blocks to be allocated for a given inode.
2781  */
2782 int ext4_alloc_da_blocks(struct inode *inode)
2783 {
2784         trace_ext4_alloc_da_blocks(inode);
2785
2786         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2787             !EXT4_I(inode)->i_reserved_meta_blocks)
2788                 return 0;
2789
2790         /*
2791          * We do something simple for now.  The filemap_flush() will
2792          * also start triggering a write of the data blocks, which is
2793          * not strictly speaking necessary (and for users of
2794          * laptop_mode, not even desirable).  However, to do otherwise
2795          * would require replicating code paths in:
2796          *
2797          * ext4_writepages() ->
2798          *    write_cache_pages() ---> (via passed in callback function)
2799          *        __mpage_da_writepage() -->
2800          *           mpage_add_bh_to_extent()
2801          *           mpage_da_map_blocks()
2802          *
2803          * The problem is that write_cache_pages(), located in
2804          * mm/page-writeback.c, marks pages clean in preparation for
2805          * doing I/O, which is not desirable if we're not planning on
2806          * doing I/O at all.
2807          *
2808          * We could call write_cache_pages(), and then redirty all of
2809          * the pages by calling redirty_page_for_writepage() but that
2810          * would be ugly in the extreme.  So instead we would need to
2811          * replicate parts of the code in the above functions,
2812          * simplifying them because we wouldn't actually intend to
2813          * write out the pages, but rather only collect contiguous
2814          * logical block extents, call the multi-block allocator, and
2815          * then update the buffer heads with the block allocations.
2816          *
2817          * For now, though, we'll cheat by calling filemap_flush(),
2818          * which will map the blocks, and start the I/O, but not
2819          * actually wait for the I/O to complete.
2820          */
2821         return filemap_flush(inode->i_mapping);
2822 }
2823
2824 /*
2825  * bmap() is special.  It gets used by applications such as lilo and by
2826  * the swapper to find the on-disk block of a specific piece of data.
2827  *
2828  * Naturally, this is dangerous if the block concerned is still in the
2829  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2830  * filesystem and enables swap, then they may get a nasty shock when the
2831  * data getting swapped to that swapfile suddenly gets overwritten by
2832  * the original zero's written out previously to the journal and
2833  * awaiting writeback in the kernel's buffer cache.
2834  *
2835  * So, if we see any bmap calls here on a modified, data-journaled file,
2836  * take extra steps to flush any blocks which might be in the cache.
2837  */
2838 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2839 {
2840         struct inode *inode = mapping->host;
2841         journal_t *journal;
2842         int err;
2843
2844         /*
2845          * We can get here for an inline file via the FIBMAP ioctl
2846          */
2847         if (ext4_has_inline_data(inode))
2848                 return 0;
2849
2850         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2851                         test_opt(inode->i_sb, DELALLOC)) {
2852                 /*
2853                  * With delalloc we want to sync the file
2854                  * so that we can make sure we allocate
2855                  * blocks for file
2856                  */
2857                 filemap_write_and_wait(mapping);
2858         }
2859
2860         if (EXT4_JOURNAL(inode) &&
2861             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2862                 /*
2863                  * This is a REALLY heavyweight approach, but the use of
2864                  * bmap on dirty files is expected to be extremely rare:
2865                  * only if we run lilo or swapon on a freshly made file
2866                  * do we expect this to happen.
2867                  *
2868                  * (bmap requires CAP_SYS_RAWIO so this does not
2869                  * represent an unprivileged user DOS attack --- we'd be
2870                  * in trouble if mortal users could trigger this path at
2871                  * will.)
2872                  *
2873                  * NB. EXT4_STATE_JDATA is not set on files other than
2874                  * regular files.  If somebody wants to bmap a directory
2875                  * or symlink and gets confused because the buffer
2876                  * hasn't yet been flushed to disk, they deserve
2877                  * everything they get.
2878                  */
2879
2880                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2881                 journal = EXT4_JOURNAL(inode);
2882                 jbd2_journal_lock_updates(journal);
2883                 err = jbd2_journal_flush(journal);
2884                 jbd2_journal_unlock_updates(journal);
2885
2886                 if (err)
2887                         return 0;
2888         }
2889
2890         return generic_block_bmap(mapping, block, ext4_get_block);
2891 }
2892
2893 static int ext4_readpage(struct file *file, struct page *page)
2894 {
2895         int ret = -EAGAIN;
2896         struct inode *inode = page->mapping->host;
2897
2898         trace_ext4_readpage(page);
2899
2900         if (ext4_has_inline_data(inode))
2901                 ret = ext4_readpage_inline(inode, page);
2902
2903         if (ret == -EAGAIN)
2904                 return mpage_readpage(page, ext4_get_block);
2905
2906         return ret;
2907 }
2908
2909 static int
2910 ext4_readpages(struct file *file, struct address_space *mapping,
2911                 struct list_head *pages, unsigned nr_pages)
2912 {
2913         struct inode *inode = mapping->host;
2914
2915         /* If the file has inline data, no need to do readpages. */
2916         if (ext4_has_inline_data(inode))
2917                 return 0;
2918
2919         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2920 }
2921
2922 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2923                                 unsigned int length)
2924 {
2925         trace_ext4_invalidatepage(page, offset, length);
2926
2927         /* No journalling happens on data buffers when this function is used */
2928         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2929
2930         block_invalidatepage(page, offset, length);
2931 }
2932
2933 static int __ext4_journalled_invalidatepage(struct page *page,
2934                                             unsigned int offset,
2935                                             unsigned int length)
2936 {
2937         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2938
2939         trace_ext4_journalled_invalidatepage(page, offset, length);
2940
2941         /*
2942          * If it's a full truncate we just forget about the pending dirtying
2943          */
2944         if (offset == 0 && length == PAGE_CACHE_SIZE)
2945                 ClearPageChecked(page);
2946
2947         return jbd2_journal_invalidatepage(journal, page, offset, length);
2948 }
2949
2950 /* Wrapper for aops... */
2951 static void ext4_journalled_invalidatepage(struct page *page,
2952                                            unsigned int offset,
2953                                            unsigned int length)
2954 {
2955         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2956 }
2957
2958 static int ext4_releasepage(struct page *page, gfp_t wait)
2959 {
2960         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2961
2962         trace_ext4_releasepage(page);
2963
2964         /* Page has dirty journalled data -> cannot release */
2965         if (PageChecked(page))
2966                 return 0;
2967         if (journal)
2968                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2969         else
2970                 return try_to_free_buffers(page);
2971 }
2972
2973 /*
2974  * ext4_get_block used when preparing for a DIO write or buffer write.
2975  * We allocate an uinitialized extent if blocks haven't been allocated.
2976  * The extent will be converted to initialized after the IO is complete.
2977  */
2978 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2979                    struct buffer_head *bh_result, int create)
2980 {
2981         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2982                    inode->i_ino, create);
2983         return _ext4_get_block(inode, iblock, bh_result,
2984                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2985 }
2986
2987 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2988                    struct buffer_head *bh_result, int create)
2989 {
2990         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2991                    inode->i_ino, create);
2992         return _ext4_get_block(inode, iblock, bh_result,
2993                                EXT4_GET_BLOCKS_NO_LOCK);
2994 }
2995
2996 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2997                             ssize_t size, void *private, int ret,
2998                             bool is_async)
2999 {
3000         struct inode *inode = file_inode(iocb->ki_filp);
3001         ext4_io_end_t *io_end = iocb->private;
3002
3003         /* if not async direct IO just return */
3004         if (!io_end) {
3005                 inode_dio_done(inode);
3006                 if (is_async)
3007                         aio_complete(iocb, ret, 0);
3008                 return;
3009         }
3010
3011         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3012                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3013                   iocb->private, io_end->inode->i_ino, iocb, offset,
3014                   size);
3015
3016         iocb->private = NULL;
3017         io_end->offset = offset;
3018         io_end->size = size;
3019         if (is_async) {
3020                 io_end->iocb = iocb;
3021                 io_end->result = ret;
3022         }
3023         ext4_put_io_end_defer(io_end);
3024 }
3025
3026 /*
3027  * For ext4 extent files, ext4 will do direct-io write to holes,
3028  * preallocated extents, and those write extend the file, no need to
3029  * fall back to buffered IO.
3030  *
3031  * For holes, we fallocate those blocks, mark them as uninitialized
3032  * If those blocks were preallocated, we mark sure they are split, but
3033  * still keep the range to write as uninitialized.
3034  *
3035  * The unwritten extents will be converted to written when DIO is completed.
3036  * For async direct IO, since the IO may still pending when return, we
3037  * set up an end_io call back function, which will do the conversion
3038  * when async direct IO completed.
3039  *
3040  * If the O_DIRECT write will extend the file then add this inode to the
3041  * orphan list.  So recovery will truncate it back to the original size
3042  * if the machine crashes during the write.
3043  *
3044  */
3045 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3046                               const struct iovec *iov, loff_t offset,
3047                               unsigned long nr_segs)
3048 {
3049         struct file *file = iocb->ki_filp;
3050         struct inode *inode = file->f_mapping->host;
3051         ssize_t ret;
3052         size_t count = iov_length(iov, nr_segs);
3053         int overwrite = 0;
3054         get_block_t *get_block_func = NULL;
3055         int dio_flags = 0;
3056         loff_t final_size = offset + count;
3057         ext4_io_end_t *io_end = NULL;
3058
3059         /* Use the old path for reads and writes beyond i_size. */
3060         if (rw != WRITE || final_size > inode->i_size)
3061                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3062
3063         BUG_ON(iocb->private == NULL);
3064
3065         /*
3066          * Make all waiters for direct IO properly wait also for extent
3067          * conversion. This also disallows race between truncate() and
3068          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3069          */
3070         if (rw == WRITE)
3071                 atomic_inc(&inode->i_dio_count);
3072
3073         /* If we do a overwrite dio, i_mutex locking can be released */
3074         overwrite = *((int *)iocb->private);
3075
3076         if (overwrite) {
3077                 down_read(&EXT4_I(inode)->i_data_sem);
3078                 mutex_unlock(&inode->i_mutex);
3079         }
3080
3081         /*
3082          * We could direct write to holes and fallocate.
3083          *
3084          * Allocated blocks to fill the hole are marked as
3085          * uninitialized to prevent parallel buffered read to expose
3086          * the stale data before DIO complete the data IO.
3087          *
3088          * As to previously fallocated extents, ext4 get_block will
3089          * just simply mark the buffer mapped but still keep the
3090          * extents uninitialized.
3091          *
3092          * For non AIO case, we will convert those unwritten extents
3093          * to written after return back from blockdev_direct_IO.
3094          *
3095          * For async DIO, the conversion needs to be deferred when the
3096          * IO is completed. The ext4 end_io callback function will be
3097          * called to take care of the conversion work.  Here for async
3098          * case, we allocate an io_end structure to hook to the iocb.
3099          */
3100         iocb->private = NULL;
3101         ext4_inode_aio_set(inode, NULL);
3102         if (!is_sync_kiocb(iocb)) {
3103                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3104                 if (!io_end) {
3105                         ret = -ENOMEM;
3106                         goto retake_lock;
3107                 }
3108                 io_end->flag |= EXT4_IO_END_DIRECT;
3109                 /*
3110                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3111                  */
3112                 iocb->private = ext4_get_io_end(io_end);
3113                 /*
3114                  * we save the io structure for current async direct
3115                  * IO, so that later ext4_map_blocks() could flag the
3116                  * io structure whether there is a unwritten extents
3117                  * needs to be converted when IO is completed.
3118                  */
3119                 ext4_inode_aio_set(inode, io_end);
3120         }
3121
3122         if (overwrite) {
3123                 get_block_func = ext4_get_block_write_nolock;
3124         } else {
3125                 get_block_func = ext4_get_block_write;
3126                 dio_flags = DIO_LOCKING;
3127         }
3128         ret = __blockdev_direct_IO(rw, iocb, inode,
3129                                    inode->i_sb->s_bdev, iov,
3130                                    offset, nr_segs,
3131                                    get_block_func,
3132                                    ext4_end_io_dio,
3133                                    NULL,
3134                                    dio_flags);
3135
3136         /*
3137          * Put our reference to io_end. This can free the io_end structure e.g.
3138          * in sync IO case or in case of error. It can even perform extent
3139          * conversion if all bios we submitted finished before we got here.
3140          * Note that in that case iocb->private can be already set to NULL
3141          * here.
3142          */
3143         if (io_end) {
3144                 ext4_inode_aio_set(inode, NULL);
3145                 ext4_put_io_end(io_end);
3146                 /*
3147                  * When no IO was submitted ext4_end_io_dio() was not
3148                  * called so we have to put iocb's reference.
3149                  */
3150                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3151                         WARN_ON(iocb->private != io_end);
3152                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3153                         WARN_ON(io_end->iocb);
3154                         /*
3155                          * Generic code already did inode_dio_done() so we
3156                          * have to clear EXT4_IO_END_DIRECT to not do it for
3157                          * the second time.
3158                          */
3159                         io_end->flag = 0;
3160                         ext4_put_io_end(io_end);
3161                         iocb->private = NULL;
3162                 }
3163         }
3164         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3165                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3166                 int err;
3167                 /*
3168                  * for non AIO case, since the IO is already
3169                  * completed, we could do the conversion right here
3170                  */
3171                 err = ext4_convert_unwritten_extents(NULL, inode,
3172                                                      offset, ret);
3173                 if (err < 0)
3174                         ret = err;
3175                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3176         }
3177
3178 retake_lock:
3179         if (rw == WRITE)
3180                 inode_dio_done(inode);
3181         /* take i_mutex locking again if we do a ovewrite dio */
3182         if (overwrite) {
3183                 up_read(&EXT4_I(inode)->i_data_sem);
3184                 mutex_lock(&inode->i_mutex);
3185         }
3186
3187         return ret;
3188 }
3189
3190 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3191                               const struct iovec *iov, loff_t offset,
3192                               unsigned long nr_segs)
3193 {
3194         struct file *file = iocb->ki_filp;
3195         struct inode *inode = file->f_mapping->host;
3196         ssize_t ret;
3197
3198         /*
3199          * If we are doing data journalling we don't support O_DIRECT
3200          */
3201         if (ext4_should_journal_data(inode))
3202                 return 0;
3203
3204         /* Let buffer I/O handle the inline data case. */
3205         if (ext4_has_inline_data(inode))
3206                 return 0;
3207
3208         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3209         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3210                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3211         else
3212                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3213         trace_ext4_direct_IO_exit(inode, offset,
3214                                 iov_length(iov, nr_segs), rw, ret);
3215         return ret;
3216 }
3217
3218 /*
3219  * Pages can be marked dirty completely asynchronously from ext4's journalling
3220  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3221  * much here because ->set_page_dirty is called under VFS locks.  The page is
3222  * not necessarily locked.
3223  *
3224  * We cannot just dirty the page and leave attached buffers clean, because the
3225  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3226  * or jbddirty because all the journalling code will explode.
3227  *
3228  * So what we do is to mark the page "pending dirty" and next time writepage
3229  * is called, propagate that into the buffers appropriately.
3230  */
3231 static int ext4_journalled_set_page_dirty(struct page *page)
3232 {
3233         SetPageChecked(page);
3234         return __set_page_dirty_nobuffers(page);
3235 }
3236
3237 static const struct address_space_operations ext4_aops = {
3238         .readpage               = ext4_readpage,
3239         .readpages              = ext4_readpages,
3240         .writepage              = ext4_writepage,
3241         .writepages             = ext4_writepages,
3242         .write_begin            = ext4_write_begin,
3243         .write_end              = ext4_write_end,
3244         .bmap                   = ext4_bmap,
3245         .invalidatepage         = ext4_invalidatepage,
3246         .releasepage            = ext4_releasepage,
3247         .direct_IO              = ext4_direct_IO,
3248         .migratepage            = buffer_migrate_page,
3249         .is_partially_uptodate  = block_is_partially_uptodate,
3250         .error_remove_page      = generic_error_remove_page,
3251 };
3252
3253 static const struct address_space_operations ext4_journalled_aops = {
3254         .readpage               = ext4_readpage,
3255         .readpages              = ext4_readpages,
3256         .writepage              = ext4_writepage,
3257         .writepages             = ext4_writepages,
3258         .write_begin            = ext4_write_begin,
3259         .write_end              = ext4_journalled_write_end,
3260         .set_page_dirty         = ext4_journalled_set_page_dirty,
3261         .bmap                   = ext4_bmap,
3262         .invalidatepage         = ext4_journalled_invalidatepage,
3263         .releasepage            = ext4_releasepage,
3264         .direct_IO              = ext4_direct_IO,
3265         .is_partially_uptodate  = block_is_partially_uptodate,
3266         .error_remove_page      = generic_error_remove_page,
3267 };
3268
3269 static const struct address_space_operations ext4_da_aops = {
3270         .readpage               = ext4_readpage,
3271         .readpages              = ext4_readpages,
3272         .writepage              = ext4_writepage,
3273         .writepages             = ext4_writepages,
3274         .write_begin            = ext4_da_write_begin,
3275         .write_end              = ext4_da_write_end,
3276         .bmap                   = ext4_bmap,
3277         .invalidatepage         = ext4_da_invalidatepage,
3278         .releasepage            = ext4_releasepage,
3279         .direct_IO              = ext4_direct_IO,
3280         .migratepage            = buffer_migrate_page,
3281         .is_partially_uptodate  = block_is_partially_uptodate,
3282         .error_remove_page      = generic_error_remove_page,
3283 };
3284
3285 void ext4_set_aops(struct inode *inode)
3286 {
3287         switch (ext4_inode_journal_mode(inode)) {
3288         case EXT4_INODE_ORDERED_DATA_MODE:
3289                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3290                 break;
3291         case EXT4_INODE_WRITEBACK_DATA_MODE:
3292                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3293                 break;
3294         case EXT4_INODE_JOURNAL_DATA_MODE:
3295                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3296                 return;
3297         default:
3298                 BUG();
3299         }
3300         if (test_opt(inode->i_sb, DELALLOC))
3301                 inode->i_mapping->a_ops = &ext4_da_aops;
3302         else
3303                 inode->i_mapping->a_ops = &ext4_aops;
3304 }
3305
3306 /*
3307  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3308  * up to the end of the block which corresponds to `from'.
3309  * This required during truncate. We need to physically zero the tail end
3310  * of that block so it doesn't yield old data if the file is later grown.
3311  */
3312 int ext4_block_truncate_page(handle_t *handle,
3313                 struct address_space *mapping, loff_t from)
3314 {
3315         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3316         unsigned length;
3317         unsigned blocksize;
3318         struct inode *inode = mapping->host;
3319
3320         blocksize = inode->i_sb->s_blocksize;
3321         length = blocksize - (offset & (blocksize - 1));
3322
3323         return ext4_block_zero_page_range(handle, mapping, from, length);
3324 }
3325
3326 /*
3327  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3328  * starting from file offset 'from'.  The range to be zero'd must
3329  * be contained with in one block.  If the specified range exceeds
3330  * the end of the block it will be shortened to end of the block
3331  * that cooresponds to 'from'
3332  */
3333 int ext4_block_zero_page_range(handle_t *handle,
3334                 struct address_space *mapping, loff_t from, loff_t length)
3335 {
3336         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3338         unsigned blocksize, max, pos;
3339         ext4_lblk_t iblock;
3340         struct inode *inode = mapping->host;
3341         struct buffer_head *bh;
3342         struct page *page;
3343         int err = 0;
3344
3345         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3346                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3347         if (!page)
3348                 return -ENOMEM;
3349
3350         blocksize = inode->i_sb->s_blocksize;
3351         max = blocksize - (offset & (blocksize - 1));
3352
3353         /*
3354          * correct length if it does not fall between
3355          * 'from' and the end of the block
3356          */
3357         if (length > max || length < 0)
3358                 length = max;
3359
3360         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3361
3362         if (!page_has_buffers(page))
3363                 create_empty_buffers(page, blocksize, 0);
3364
3365         /* Find the buffer that contains "offset" */
3366         bh = page_buffers(page);
3367         pos = blocksize;
3368         while (offset >= pos) {
3369                 bh = bh->b_this_page;
3370                 iblock++;
3371                 pos += blocksize;
3372         }
3373         if (buffer_freed(bh)) {
3374                 BUFFER_TRACE(bh, "freed: skip");
3375                 goto unlock;
3376         }
3377         if (!buffer_mapped(bh)) {
3378                 BUFFER_TRACE(bh, "unmapped");
3379                 ext4_get_block(inode, iblock, bh, 0);
3380                 /* unmapped? It's a hole - nothing to do */
3381                 if (!buffer_mapped(bh)) {
3382                         BUFFER_TRACE(bh, "still unmapped");
3383                         goto unlock;
3384                 }
3385         }
3386
3387         /* Ok, it's mapped. Make sure it's up-to-date */
3388         if (PageUptodate(page))
3389                 set_buffer_uptodate(bh);
3390
3391         if (!buffer_uptodate(bh)) {
3392                 err = -EIO;
3393                 ll_rw_block(READ, 1, &bh);
3394                 wait_on_buffer(bh);
3395                 /* Uhhuh. Read error. Complain and punt. */
3396                 if (!buffer_uptodate(bh))
3397                         goto unlock;
3398         }
3399         if (ext4_should_journal_data(inode)) {
3400                 BUFFER_TRACE(bh, "get write access");
3401                 err = ext4_journal_get_write_access(handle, bh);
3402                 if (err)
3403                         goto unlock;
3404         }
3405         zero_user(page, offset, length);
3406         BUFFER_TRACE(bh, "zeroed end of block");
3407
3408         if (ext4_should_journal_data(inode)) {
3409                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3410         } else {
3411                 err = 0;
3412                 mark_buffer_dirty(bh);
3413                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414                         err = ext4_jbd2_file_inode(handle, inode);
3415         }
3416
3417 unlock:
3418         unlock_page(page);
3419         page_cache_release(page);
3420         return err;
3421 }
3422
3423 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3424                              loff_t lstart, loff_t length)
3425 {
3426         struct super_block *sb = inode->i_sb;
3427         struct address_space *mapping = inode->i_mapping;
3428         unsigned partial_start, partial_end;
3429         ext4_fsblk_t start, end;
3430         loff_t byte_end = (lstart + length - 1);
3431         int err = 0;
3432
3433         partial_start = lstart & (sb->s_blocksize - 1);
3434         partial_end = byte_end & (sb->s_blocksize - 1);
3435
3436         start = lstart >> sb->s_blocksize_bits;
3437         end = byte_end >> sb->s_blocksize_bits;
3438
3439         /* Handle partial zero within the single block */
3440         if (start == end &&
3441             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3442                 err = ext4_block_zero_page_range(handle, mapping,
3443                                                  lstart, length);
3444                 return err;
3445         }
3446         /* Handle partial zero out on the start of the range */
3447         if (partial_start) {
3448                 err = ext4_block_zero_page_range(handle, mapping,
3449                                                  lstart, sb->s_blocksize);
3450                 if (err)
3451                         return err;
3452         }
3453         /* Handle partial zero out on the end of the range */
3454         if (partial_end != sb->s_blocksize - 1)
3455                 err = ext4_block_zero_page_range(handle, mapping,
3456                                                  byte_end - partial_end,
3457                                                  partial_end + 1);
3458         return err;
3459 }
3460
3461 int ext4_can_truncate(struct inode *inode)
3462 {
3463         if (S_ISREG(inode->i_mode))
3464                 return 1;
3465         if (S_ISDIR(inode->i_mode))
3466                 return 1;
3467         if (S_ISLNK(inode->i_mode))
3468                 return !ext4_inode_is_fast_symlink(inode);
3469         return 0;
3470 }
3471
3472 /*
3473  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3474  * associated with the given offset and length
3475  *
3476  * @inode:  File inode
3477  * @offset: The offset where the hole will begin
3478  * @len:    The length of the hole
3479  *
3480  * Returns: 0 on success or negative on failure
3481  */
3482
3483 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3484 {
3485         struct super_block *sb = inode->i_sb;
3486         ext4_lblk_t first_block, stop_block;
3487         struct address_space *mapping = inode->i_mapping;
3488         loff_t first_block_offset, last_block_offset;
3489         handle_t *handle;
3490         unsigned int credits;
3491         int ret = 0;
3492
3493         if (!S_ISREG(inode->i_mode))
3494                 return -EOPNOTSUPP;
3495
3496         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3497                 /* TODO: Add support for bigalloc file systems */
3498                 return -EOPNOTSUPP;
3499         }
3500
3501         trace_ext4_punch_hole(inode, offset, length);
3502
3503         /*
3504          * Write out all dirty pages to avoid race conditions
3505          * Then release them.
3506          */
3507         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3508                 ret = filemap_write_and_wait_range(mapping, offset,
3509                                                    offset + length - 1);
3510                 if (ret)
3511                         return ret;
3512         }
3513
3514         mutex_lock(&inode->i_mutex);
3515         /* It's not possible punch hole on append only file */
3516         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3517                 ret = -EPERM;
3518                 goto out_mutex;
3519         }
3520         if (IS_SWAPFILE(inode)) {
3521                 ret = -ETXTBSY;
3522                 goto out_mutex;
3523         }
3524
3525         /* No need to punch hole beyond i_size */
3526         if (offset >= inode->i_size)
3527                 goto out_mutex;
3528
3529         /*
3530          * If the hole extends beyond i_size, set the hole
3531          * to end after the page that contains i_size
3532          */
3533         if (offset + length > inode->i_size) {
3534                 length = inode->i_size +
3535                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3536                    offset;
3537         }
3538
3539         first_block_offset = round_up(offset, sb->s_blocksize);
3540         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3541
3542         /* Now release the pages and zero block aligned part of pages*/
3543         if (last_block_offset > first_block_offset)
3544                 truncate_pagecache_range(inode, first_block_offset,
3545                                          last_block_offset);
3546
3547         /* Wait all existing dio workers, newcomers will block on i_mutex */
3548         ext4_inode_block_unlocked_dio(inode);
3549         inode_dio_wait(inode);
3550
3551         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552                 credits = ext4_writepage_trans_blocks(inode);
3553         else
3554                 credits = ext4_blocks_for_truncate(inode);
3555         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3556         if (IS_ERR(handle)) {
3557                 ret = PTR_ERR(handle);
3558                 ext4_std_error(sb, ret);
3559                 goto out_dio;
3560         }
3561
3562         ret = ext4_zero_partial_blocks(handle, inode, offset,
3563                                        length);
3564         if (ret)
3565                 goto out_stop;
3566
3567         first_block = (offset + sb->s_blocksize - 1) >>
3568                 EXT4_BLOCK_SIZE_BITS(sb);
3569         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3570
3571         /* If there are no blocks to remove, return now */
3572         if (first_block >= stop_block)
3573                 goto out_stop;
3574
3575         down_write(&EXT4_I(inode)->i_data_sem);
3576         ext4_discard_preallocations(inode);
3577
3578         ret = ext4_es_remove_extent(inode, first_block,
3579                                     stop_block - first_block);
3580         if (ret) {
3581                 up_write(&EXT4_I(inode)->i_data_sem);
3582                 goto out_stop;
3583         }
3584
3585         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3586                 ret = ext4_ext_remove_space(inode, first_block,
3587                                             stop_block - 1);
3588         else
3589                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3590                                             stop_block);
3591
3592         ext4_discard_preallocations(inode);
3593         up_write(&EXT4_I(inode)->i_data_sem);
3594         if (IS_SYNC(inode))
3595                 ext4_handle_sync(handle);
3596         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3597         ext4_mark_inode_dirty(handle, inode);
3598 out_stop:
3599         ext4_journal_stop(handle);
3600 out_dio:
3601         ext4_inode_resume_unlocked_dio(inode);
3602 out_mutex:
3603         mutex_unlock(&inode->i_mutex);
3604         return ret;
3605 }
3606
3607 /*
3608  * ext4_truncate()
3609  *
3610  * We block out ext4_get_block() block instantiations across the entire
3611  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3612  * simultaneously on behalf of the same inode.
3613  *
3614  * As we work through the truncate and commit bits of it to the journal there
3615  * is one core, guiding principle: the file's tree must always be consistent on
3616  * disk.  We must be able to restart the truncate after a crash.
3617  *
3618  * The file's tree may be transiently inconsistent in memory (although it
3619  * probably isn't), but whenever we close off and commit a journal transaction,
3620  * the contents of (the filesystem + the journal) must be consistent and
3621  * restartable.  It's pretty simple, really: bottom up, right to left (although
3622  * left-to-right works OK too).
3623  *
3624  * Note that at recovery time, journal replay occurs *before* the restart of
3625  * truncate against the orphan inode list.
3626  *
3627  * The committed inode has the new, desired i_size (which is the same as
3628  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3629  * that this inode's truncate did not complete and it will again call
3630  * ext4_truncate() to have another go.  So there will be instantiated blocks
3631  * to the right of the truncation point in a crashed ext4 filesystem.  But
3632  * that's fine - as long as they are linked from the inode, the post-crash
3633  * ext4_truncate() run will find them and release them.
3634  */
3635 void ext4_truncate(struct inode *inode)
3636 {
3637         struct ext4_inode_info *ei = EXT4_I(inode);
3638         unsigned int credits;
3639         handle_t *handle;
3640         struct address_space *mapping = inode->i_mapping;
3641
3642         /*
3643          * There is a possibility that we're either freeing the inode
3644          * or it completely new indode. In those cases we might not
3645          * have i_mutex locked because it's not necessary.
3646          */
3647         if (!(inode->i_state & (I_NEW|I_FREEING)))
3648                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3649         trace_ext4_truncate_enter(inode);
3650
3651         if (!ext4_can_truncate(inode))
3652                 return;
3653
3654         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3655
3656         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3657                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3658
3659         if (ext4_has_inline_data(inode)) {
3660                 int has_inline = 1;
3661
3662                 ext4_inline_data_truncate(inode, &has_inline);
3663                 if (has_inline)
3664                         return;
3665         }
3666
3667         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668                 credits = ext4_writepage_trans_blocks(inode);
3669         else
3670                 credits = ext4_blocks_for_truncate(inode);
3671
3672         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673         if (IS_ERR(handle)) {
3674                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675                 return;
3676         }
3677
3678         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3679                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3680
3681         /*
3682          * We add the inode to the orphan list, so that if this
3683          * truncate spans multiple transactions, and we crash, we will
3684          * resume the truncate when the filesystem recovers.  It also
3685          * marks the inode dirty, to catch the new size.
3686          *
3687          * Implication: the file must always be in a sane, consistent
3688          * truncatable state while each transaction commits.
3689          */
3690         if (ext4_orphan_add(handle, inode))
3691                 goto out_stop;
3692
3693         down_write(&EXT4_I(inode)->i_data_sem);
3694
3695         ext4_discard_preallocations(inode);
3696
3697         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3698                 ext4_ext_truncate(handle, inode);
3699         else
3700                 ext4_ind_truncate(handle, inode);
3701
3702         up_write(&ei->i_data_sem);
3703
3704         if (IS_SYNC(inode))
3705                 ext4_handle_sync(handle);
3706
3707 out_stop:
3708         /*
3709          * If this was a simple ftruncate() and the file will remain alive,
3710          * then we need to clear up the orphan record which we created above.
3711          * However, if this was a real unlink then we were called by
3712          * ext4_delete_inode(), and we allow that function to clean up the
3713          * orphan info for us.
3714          */
3715         if (inode->i_nlink)
3716                 ext4_orphan_del(handle, inode);
3717
3718         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3719         ext4_mark_inode_dirty(handle, inode);
3720         ext4_journal_stop(handle);
3721
3722         trace_ext4_truncate_exit(inode);
3723 }
3724
3725 /*
3726  * ext4_get_inode_loc returns with an extra refcount against the inode's
3727  * underlying buffer_head on success. If 'in_mem' is true, we have all
3728  * data in memory that is needed to recreate the on-disk version of this
3729  * inode.
3730  */
3731 static int __ext4_get_inode_loc(struct inode *inode,
3732                                 struct ext4_iloc *iloc, int in_mem)
3733 {
3734         struct ext4_group_desc  *gdp;
3735         struct buffer_head      *bh;
3736         struct super_block      *sb = inode->i_sb;
3737         ext4_fsblk_t            block;
3738         int                     inodes_per_block, inode_offset;
3739
3740         iloc->bh = NULL;
3741         if (!ext4_valid_inum(sb, inode->i_ino))
3742                 return -EIO;
3743
3744         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746         if (!gdp)
3747                 return -EIO;
3748
3749         /*
3750          * Figure out the offset within the block group inode table
3751          */
3752         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3753         inode_offset = ((inode->i_ino - 1) %
3754                         EXT4_INODES_PER_GROUP(sb));
3755         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757
3758         bh = sb_getblk(sb, block);
3759         if (unlikely(!bh))
3760                 return -ENOMEM;
3761         if (!buffer_uptodate(bh)) {
3762                 lock_buffer(bh);
3763
3764                 /*
3765                  * If the buffer has the write error flag, we have failed
3766                  * to write out another inode in the same block.  In this
3767                  * case, we don't have to read the block because we may
3768                  * read the old inode data successfully.
3769                  */
3770                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771                         set_buffer_uptodate(bh);
3772
3773                 if (buffer_uptodate(bh)) {
3774                         /* someone brought it uptodate while we waited */
3775                         unlock_buffer(bh);
3776                         goto has_buffer;
3777                 }
3778
3779                 /*
3780                  * If we have all information of the inode in memory and this
3781                  * is the only valid inode in the block, we need not read the
3782                  * block.
3783                  */
3784                 if (in_mem) {
3785                         struct buffer_head *bitmap_bh;
3786                         int i, start;
3787
3788                         start = inode_offset & ~(inodes_per_block - 1);
3789
3790                         /* Is the inode bitmap in cache? */
3791                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3792                         if (unlikely(!bitmap_bh))
3793                                 goto make_io;
3794
3795                         /*
3796                          * If the inode bitmap isn't in cache then the
3797                          * optimisation may end up performing two reads instead
3798                          * of one, so skip it.
3799                          */
3800                         if (!buffer_uptodate(bitmap_bh)) {
3801                                 brelse(bitmap_bh);
3802                                 goto make_io;
3803                         }
3804                         for (i = start; i < start + inodes_per_block; i++) {
3805                                 if (i == inode_offset)
3806                                         continue;
3807                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3808                                         break;
3809                         }
3810                         brelse(bitmap_bh);
3811                         if (i == start + inodes_per_block) {
3812                                 /* all other inodes are free, so skip I/O */
3813                                 memset(bh->b_data, 0, bh->b_size);
3814                                 set_buffer_uptodate(bh);
3815                                 unlock_buffer(bh);
3816                                 goto has_buffer;
3817                         }
3818                 }
3819
3820 make_io:
3821                 /*
3822                  * If we need to do any I/O, try to pre-readahead extra
3823                  * blocks from the inode table.
3824                  */
3825                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826                         ext4_fsblk_t b, end, table;
3827                         unsigned num;
3828                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3829
3830                         table = ext4_inode_table(sb, gdp);
3831                         /* s_inode_readahead_blks is always a power of 2 */
3832                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3833                         if (table > b)
3834                                 b = table;
3835                         end = b + ra_blks;
3836                         num = EXT4_INODES_PER_GROUP(sb);
3837                         if (ext4_has_group_desc_csum(sb))
3838                                 num -= ext4_itable_unused_count(sb, gdp);
3839                         table += num / inodes_per_block;
3840                         if (end > table)
3841                                 end = table;
3842                         while (b <= end)
3843                                 sb_breadahead(sb, b++);
3844                 }
3845
3846                 /*
3847                  * There are other valid inodes in the buffer, this inode
3848                  * has in-inode xattrs, or we don't have this inode in memory.
3849                  * Read the block from disk.
3850                  */
3851                 trace_ext4_load_inode(inode);
3852                 get_bh(bh);
3853                 bh->b_end_io = end_buffer_read_sync;
3854                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3855                 wait_on_buffer(bh);
3856                 if (!buffer_uptodate(bh)) {
3857                         EXT4_ERROR_INODE_BLOCK(inode, block,
3858                                                "unable to read itable block");
3859                         brelse(bh);
3860                         return -EIO;
3861                 }
3862         }
3863 has_buffer:
3864         iloc->bh = bh;
3865         return 0;
3866 }
3867
3868 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3869 {
3870         /* We have all inode data except xattrs in memory here. */
3871         return __ext4_get_inode_loc(inode, iloc,
3872                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3873 }
3874
3875 void ext4_set_inode_flags(struct inode *inode)
3876 {
3877         unsigned int flags = EXT4_I(inode)->i_flags;
3878
3879         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3880         if (flags & EXT4_SYNC_FL)
3881                 inode->i_flags |= S_SYNC;
3882         if (flags & EXT4_APPEND_FL)
3883                 inode->i_flags |= S_APPEND;
3884         if (flags & EXT4_IMMUTABLE_FL)
3885                 inode->i_flags |= S_IMMUTABLE;
3886         if (flags & EXT4_NOATIME_FL)
3887                 inode->i_flags |= S_NOATIME;
3888         if (flags & EXT4_DIRSYNC_FL)
3889                 inode->i_flags |= S_DIRSYNC;
3890 }
3891
3892 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3893 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3894 {
3895         unsigned int vfs_fl;
3896         unsigned long old_fl, new_fl;
3897
3898         do {
3899                 vfs_fl = ei->vfs_inode.i_flags;
3900                 old_fl = ei->i_flags;
3901                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3902                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3903                                 EXT4_DIRSYNC_FL);
3904                 if (vfs_fl & S_SYNC)
3905                         new_fl |= EXT4_SYNC_FL;
3906                 if (vfs_fl & S_APPEND)
3907                         new_fl |= EXT4_APPEND_FL;
3908                 if (vfs_fl & S_IMMUTABLE)
3909                         new_fl |= EXT4_IMMUTABLE_FL;
3910                 if (vfs_fl & S_NOATIME)
3911                         new_fl |= EXT4_NOATIME_FL;
3912                 if (vfs_fl & S_DIRSYNC)
3913                         new_fl |= EXT4_DIRSYNC_FL;
3914         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3915 }
3916
3917 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3918                                   struct ext4_inode_info *ei)
3919 {
3920         blkcnt_t i_blocks ;
3921         struct inode *inode = &(ei->vfs_inode);
3922         struct super_block *sb = inode->i_sb;
3923
3924         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3926                 /* we are using combined 48 bit field */
3927                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3928                                         le32_to_cpu(raw_inode->i_blocks_lo);
3929                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3930                         /* i_blocks represent file system block size */
3931                         return i_blocks  << (inode->i_blkbits - 9);
3932                 } else {
3933                         return i_blocks;
3934                 }
3935         } else {
3936                 return le32_to_cpu(raw_inode->i_blocks_lo);
3937         }
3938 }
3939
3940 static inline void ext4_iget_extra_inode(struct inode *inode,
3941                                          struct ext4_inode *raw_inode,
3942                                          struct ext4_inode_info *ei)
3943 {
3944         __le32 *magic = (void *)raw_inode +
3945                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3946         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3947                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3948                 ext4_find_inline_data_nolock(inode);
3949         } else
3950                 EXT4_I(inode)->i_inline_off = 0;
3951 }
3952
3953 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3954 {
3955         struct ext4_iloc iloc;
3956         struct ext4_inode *raw_inode;
3957         struct ext4_inode_info *ei;
3958         struct inode *inode;
3959         journal_t *journal = EXT4_SB(sb)->s_journal;
3960         long ret;
3961         int block;
3962         uid_t i_uid;
3963         gid_t i_gid;
3964
3965         inode = iget_locked(sb, ino);
3966         if (!inode)
3967                 return ERR_PTR(-ENOMEM);
3968         if (!(inode->i_state & I_NEW))
3969                 return inode;
3970
3971         ei = EXT4_I(inode);
3972         iloc.bh = NULL;
3973
3974         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3975         if (ret < 0)
3976                 goto bad_inode;
3977         raw_inode = ext4_raw_inode(&iloc);
3978
3979         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3980                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3981                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3982                     EXT4_INODE_SIZE(inode->i_sb)) {
3983                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3984                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3985                                 EXT4_INODE_SIZE(inode->i_sb));
3986                         ret = -EIO;
3987                         goto bad_inode;
3988                 }
3989         } else
3990                 ei->i_extra_isize = 0;
3991
3992         /* Precompute checksum seed for inode metadata */
3993         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3995                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3996                 __u32 csum;
3997                 __le32 inum = cpu_to_le32(inode->i_ino);
3998                 __le32 gen = raw_inode->i_generation;
3999                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4000                                    sizeof(inum));
4001                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002                                               sizeof(gen));
4003         }
4004
4005         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4006                 EXT4_ERROR_INODE(inode, "checksum invalid");
4007                 ret = -EIO;
4008                 goto bad_inode;
4009         }
4010
4011         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4012         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4013         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4014         if (!(test_opt(inode->i_sb, NO_UID32))) {
4015                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4016                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4017         }
4018         i_uid_write(inode, i_uid);
4019         i_gid_write(inode, i_gid);
4020         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4021
4022         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4023         ei->i_inline_off = 0;
4024         ei->i_dir_start_lookup = 0;
4025         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4026         /* We now have enough fields to check if the inode was active or not.
4027          * This is needed because nfsd might try to access dead inodes
4028          * the test is that same one that e2fsck uses
4029          * NeilBrown 1999oct15
4030          */
4031         if (inode->i_nlink == 0) {
4032                 if ((inode->i_mode == 0 ||
4033                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4034                     ino != EXT4_BOOT_LOADER_INO) {
4035                         /* this inode is deleted */
4036                         ret = -ESTALE;
4037                         goto bad_inode;
4038                 }
4039                 /* The only unlinked inodes we let through here have
4040                  * valid i_mode and are being read by the orphan
4041                  * recovery code: that's fine, we're about to complete
4042                  * the process of deleting those.
4043                  * OR it is the EXT4_BOOT_LOADER_INO which is
4044                  * not initialized on a new filesystem. */
4045         }
4046         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4047         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4048         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4049         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4050                 ei->i_file_acl |=
4051                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4052         inode->i_size = ext4_isize(raw_inode);
4053         ei->i_disksize = inode->i_size;
4054 #ifdef CONFIG_QUOTA
4055         ei->i_reserved_quota = 0;
4056 #endif
4057         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4058         ei->i_block_group = iloc.block_group;
4059         ei->i_last_alloc_group = ~0;
4060         /*
4061          * NOTE! The in-memory inode i_data array is in little-endian order
4062          * even on big-endian machines: we do NOT byteswap the block numbers!
4063          */
4064         for (block = 0; block < EXT4_N_BLOCKS; block++)
4065                 ei->i_data[block] = raw_inode->i_block[block];
4066         INIT_LIST_HEAD(&ei->i_orphan);
4067
4068         /*
4069          * Set transaction id's of transactions that have to be committed
4070          * to finish f[data]sync. We set them to currently running transaction
4071          * as we cannot be sure that the inode or some of its metadata isn't
4072          * part of the transaction - the inode could have been reclaimed and
4073          * now it is reread from disk.
4074          */
4075         if (journal) {
4076                 transaction_t *transaction;
4077                 tid_t tid;
4078
4079                 read_lock(&journal->j_state_lock);
4080                 if (journal->j_running_transaction)
4081                         transaction = journal->j_running_transaction;
4082                 else
4083                         transaction = journal->j_committing_transaction;
4084                 if (transaction)
4085                         tid = transaction->t_tid;
4086                 else
4087                         tid = journal->j_commit_sequence;
4088                 read_unlock(&journal->j_state_lock);
4089                 ei->i_sync_tid = tid;
4090                 ei->i_datasync_tid = tid;
4091         }
4092
4093         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4094                 if (ei->i_extra_isize == 0) {
4095                         /* The extra space is currently unused. Use it. */
4096                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4097                                             EXT4_GOOD_OLD_INODE_SIZE;
4098                 } else {
4099                         ext4_iget_extra_inode(inode, raw_inode, ei);
4100                 }
4101         }
4102
4103         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4104         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4105         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4106         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4107
4108         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4110                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4111                         inode->i_version |=
4112                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113         }
4114
4115         ret = 0;
4116         if (ei->i_file_acl &&
4117             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4118                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119                                  ei->i_file_acl);
4120                 ret = -EIO;
4121                 goto bad_inode;
4122         } else if (!ext4_has_inline_data(inode)) {
4123                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4124                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125                             (S_ISLNK(inode->i_mode) &&
4126                              !ext4_inode_is_fast_symlink(inode))))
4127                                 /* Validate extent which is part of inode */
4128                                 ret = ext4_ext_check_inode(inode);
4129                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4130                            (S_ISLNK(inode->i_mode) &&
4131                             !ext4_inode_is_fast_symlink(inode))) {
4132                         /* Validate block references which are part of inode */
4133                         ret = ext4_ind_check_inode(inode);
4134                 }
4135         }
4136         if (ret)
4137                 goto bad_inode;
4138
4139         if (S_ISREG(inode->i_mode)) {
4140                 inode->i_op = &ext4_file_inode_operations;
4141                 inode->i_fop = &ext4_file_operations;
4142                 ext4_set_aops(inode);
4143         } else if (S_ISDIR(inode->i_mode)) {
4144                 inode->i_op = &ext4_dir_inode_operations;
4145                 inode->i_fop = &ext4_dir_operations;
4146         } else if (S_ISLNK(inode->i_mode)) {
4147                 if (ext4_inode_is_fast_symlink(inode)) {
4148                         inode->i_op = &ext4_fast_symlink_inode_operations;
4149                         nd_terminate_link(ei->i_data, inode->i_size,
4150                                 sizeof(ei->i_data) - 1);
4151                 } else {
4152                         inode->i_op = &ext4_symlink_inode_operations;
4153                         ext4_set_aops(inode);
4154                 }
4155         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4156               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4157                 inode->i_op = &ext4_special_inode_operations;
4158                 if (raw_inode->i_block[0])
4159                         init_special_inode(inode, inode->i_mode,
4160                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4161                 else
4162                         init_special_inode(inode, inode->i_mode,
4163                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4164         } else if (ino == EXT4_BOOT_LOADER_INO) {
4165                 make_bad_inode(inode);
4166         } else {
4167                 ret = -EIO;
4168                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4169                 goto bad_inode;
4170         }
4171         brelse(iloc.bh);
4172         ext4_set_inode_flags(inode);
4173         unlock_new_inode(inode);
4174         return inode;
4175
4176 bad_inode:
4177         brelse(iloc.bh);
4178         iget_failed(inode);
4179         return ERR_PTR(ret);
4180 }
4181
4182 static int ext4_inode_blocks_set(handle_t *handle,
4183                                 struct ext4_inode *raw_inode,
4184                                 struct ext4_inode_info *ei)
4185 {
4186         struct inode *inode = &(ei->vfs_inode);
4187         u64 i_blocks = inode->i_blocks;
4188         struct super_block *sb = inode->i_sb;
4189
4190         if (i_blocks <= ~0U) {
4191                 /*
4192                  * i_blocks can be represented in a 32 bit variable
4193                  * as multiple of 512 bytes
4194                  */
4195                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4196                 raw_inode->i_blocks_high = 0;
4197                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4198                 return 0;
4199         }
4200         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4201                 return -EFBIG;
4202
4203         if (i_blocks <= 0xffffffffffffULL) {
4204                 /*
4205                  * i_blocks can be represented in a 48 bit variable
4206                  * as multiple of 512 bytes
4207                  */
4208                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4211         } else {
4212                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4213                 /* i_block is stored in file system block size */
4214                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4215                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4216                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217         }
4218         return 0;
4219 }
4220
4221 /*
4222  * Post the struct inode info into an on-disk inode location in the
4223  * buffer-cache.  This gobbles the caller's reference to the
4224  * buffer_head in the inode location struct.
4225  *
4226  * The caller must have write access to iloc->bh.
4227  */
4228 static int ext4_do_update_inode(handle_t *handle,
4229                                 struct inode *inode,
4230                                 struct ext4_iloc *iloc)
4231 {
4232         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4233         struct ext4_inode_info *ei = EXT4_I(inode);
4234         struct buffer_head *bh = iloc->bh;
4235         int err = 0, rc, block;
4236         int need_datasync = 0;
4237         uid_t i_uid;
4238         gid_t i_gid;
4239
4240         /* For fields not not tracking in the in-memory inode,
4241          * initialise them to zero for new inodes. */
4242         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4243                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4244
4245         ext4_get_inode_flags(ei);
4246         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4247         i_uid = i_uid_read(inode);
4248         i_gid = i_gid_read(inode);
4249         if (!(test_opt(inode->i_sb, NO_UID32))) {
4250                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4251                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4252 /*
4253  * Fix up interoperability with old kernels. Otherwise, old inodes get
4254  * re-used with the upper 16 bits of the uid/gid intact
4255  */
4256                 if (!ei->i_dtime) {
4257                         raw_inode->i_uid_high =
4258                                 cpu_to_le16(high_16_bits(i_uid));
4259                         raw_inode->i_gid_high =
4260                                 cpu_to_le16(high_16_bits(i_gid));
4261                 } else {
4262                         raw_inode->i_uid_high = 0;
4263                         raw_inode->i_gid_high = 0;
4264                 }
4265         } else {
4266                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4267                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4268                 raw_inode->i_uid_high = 0;
4269                 raw_inode->i_gid_high = 0;
4270         }
4271         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4272
4273         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4274         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4275         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4276         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4277
4278         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4279                 goto out_brelse;
4280         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4281         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4282         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4283             cpu_to_le32(EXT4_OS_HURD))
4284                 raw_inode->i_file_acl_high =
4285                         cpu_to_le16(ei->i_file_acl >> 32);
4286         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4287         if (ei->i_disksize != ext4_isize(raw_inode)) {
4288                 ext4_isize_set(raw_inode, ei->i_disksize);
4289                 need_datasync = 1;
4290         }
4291         if (ei->i_disksize > 0x7fffffffULL) {
4292                 struct super_block *sb = inode->i_sb;
4293                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4294                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4295                                 EXT4_SB(sb)->s_es->s_rev_level ==
4296                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4297                         /* If this is the first large file
4298                          * created, add a flag to the superblock.
4299                          */
4300                         err = ext4_journal_get_write_access(handle,
4301                                         EXT4_SB(sb)->s_sbh);
4302                         if (err)
4303                                 goto out_brelse;
4304                         ext4_update_dynamic_rev(sb);
4305                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4306                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307                         ext4_handle_sync(handle);
4308                         err = ext4_handle_dirty_super(handle, sb);
4309                 }
4310         }
4311         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313                 if (old_valid_dev(inode->i_rdev)) {
4314                         raw_inode->i_block[0] =
4315                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4316                         raw_inode->i_block[1] = 0;
4317                 } else {
4318                         raw_inode->i_block[0] = 0;
4319                         raw_inode->i_block[1] =
4320                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4321                         raw_inode->i_block[2] = 0;
4322                 }
4323         } else if (!ext4_has_inline_data(inode)) {
4324                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4325                         raw_inode->i_block[block] = ei->i_data[block];
4326         }
4327
4328         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4329         if (ei->i_extra_isize) {
4330                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4331                         raw_inode->i_version_hi =
4332                         cpu_to_le32(inode->i_version >> 32);
4333                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4334         }
4335
4336         ext4_inode_csum_set(inode, raw_inode, ei);
4337
4338         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4339         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4340         if (!err)
4341                 err = rc;
4342         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4343
4344         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4345 out_brelse:
4346         brelse(bh);
4347         ext4_std_error(inode->i_sb, err);
4348         return err;
4349 }
4350
4351 /*
4352  * ext4_write_inode()
4353  *
4354  * We are called from a few places:
4355  *
4356  * - Within generic_file_write() for O_SYNC files.
4357  *   Here, there will be no transaction running. We wait for any running
4358  *   transaction to commit.
4359  *
4360  * - Within sys_sync(), kupdate and such.
4361  *   We wait on commit, if tol to.
4362  *
4363  * - Within prune_icache() (PF_MEMALLOC == true)
4364  *   Here we simply return.  We can't afford to block kswapd on the
4365  *   journal commit.
4366  *
4367  * In all cases it is actually safe for us to return without doing anything,
4368  * because the inode has been copied into a raw inode buffer in
4369  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4370  * knfsd.
4371  *
4372  * Note that we are absolutely dependent upon all inode dirtiers doing the
4373  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4374  * which we are interested.
4375  *
4376  * It would be a bug for them to not do this.  The code:
4377  *
4378  *      mark_inode_dirty(inode)
4379  *      stuff();
4380  *      inode->i_size = expr;
4381  *
4382  * is in error because a kswapd-driven write_inode() could occur while
4383  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4384  * will no longer be on the superblock's dirty inode list.
4385  */
4386 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4387 {
4388         int err;
4389
4390         if (current->flags & PF_MEMALLOC)
4391                 return 0;
4392
4393         if (EXT4_SB(inode->i_sb)->s_journal) {
4394                 if (ext4_journal_current_handle()) {
4395                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4396                         dump_stack();
4397                         return -EIO;
4398                 }
4399
4400                 if (wbc->sync_mode != WB_SYNC_ALL)
4401                         return 0;
4402
4403                 err = ext4_force_commit(inode->i_sb);
4404         } else {
4405                 struct ext4_iloc iloc;
4406
4407                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4408                 if (err)
4409                         return err;
4410                 if (wbc->sync_mode == WB_SYNC_ALL)
4411                         sync_dirty_buffer(iloc.bh);
4412                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4413                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4414                                          "IO error syncing inode");
4415                         err = -EIO;
4416                 }
4417                 brelse(iloc.bh);
4418         }
4419         return err;
4420 }
4421
4422 /*
4423  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4424  * buffers that are attached to a page stradding i_size and are undergoing
4425  * commit. In that case we have to wait for commit to finish and try again.
4426  */
4427 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428 {
4429         struct page *page;
4430         unsigned offset;
4431         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4432         tid_t commit_tid = 0;
4433         int ret;
4434
4435         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4436         /*
4437          * All buffers in the last page remain valid? Then there's nothing to
4438          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4439          * blocksize case
4440          */
4441         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4442                 return;
4443         while (1) {
4444                 page = find_lock_page(inode->i_mapping,
4445                                       inode->i_size >> PAGE_CACHE_SHIFT);
4446                 if (!page)
4447                         return;
4448                 ret = __ext4_journalled_invalidatepage(page, offset,
4449                                                 PAGE_CACHE_SIZE - offset);
4450                 unlock_page(page);
4451                 page_cache_release(page);
4452                 if (ret != -EBUSY)
4453                         return;
4454                 commit_tid = 0;
4455                 read_lock(&journal->j_state_lock);
4456                 if (journal->j_committing_transaction)
4457                         commit_tid = journal->j_committing_transaction->t_tid;
4458                 read_unlock(&journal->j_state_lock);
4459                 if (commit_tid)
4460                         jbd2_log_wait_commit(journal, commit_tid);
4461         }
4462 }
4463
4464 /*
4465  * ext4_setattr()
4466  *
4467  * Called from notify_change.
4468  *
4469  * We want to trap VFS attempts to truncate the file as soon as
4470  * possible.  In particular, we want to make sure that when the VFS
4471  * shrinks i_size, we put the inode on the orphan list and modify
4472  * i_disksize immediately, so that during the subsequent flushing of
4473  * dirty pages and freeing of disk blocks, we can guarantee that any
4474  * commit will leave the blocks being flushed in an unused state on
4475  * disk.  (On recovery, the inode will get truncated and the blocks will
4476  * be freed, so we have a strong guarantee that no future commit will
4477  * leave these blocks visible to the user.)
4478  *
4479  * Another thing we have to assure is that if we are in ordered mode
4480  * and inode is still attached to the committing transaction, we must
4481  * we start writeout of all the dirty pages which are being truncated.
4482  * This way we are sure that all the data written in the previous
4483  * transaction are already on disk (truncate waits for pages under
4484  * writeback).
4485  *
4486  * Called with inode->i_mutex down.
4487  */
4488 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4489 {
4490         struct inode *inode = dentry->d_inode;
4491         int error, rc = 0;
4492         int orphan = 0;
4493         const unsigned int ia_valid = attr->ia_valid;
4494
4495         error = inode_change_ok(inode, attr);
4496         if (error)
4497                 return error;
4498
4499         if (is_quota_modification(inode, attr))
4500                 dquot_initialize(inode);
4501         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4502             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4503                 handle_t *handle;
4504
4505                 /* (user+group)*(old+new) structure, inode write (sb,
4506                  * inode block, ? - but truncate inode update has it) */
4507                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4508                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4509                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4510                 if (IS_ERR(handle)) {
4511                         error = PTR_ERR(handle);
4512                         goto err_out;
4513                 }
4514                 error = dquot_transfer(inode, attr);
4515                 if (error) {
4516                         ext4_journal_stop(handle);
4517                         return error;
4518                 }
4519                 /* Update corresponding info in inode so that everything is in
4520                  * one transaction */
4521                 if (attr->ia_valid & ATTR_UID)
4522                         inode->i_uid = attr->ia_uid;
4523                 if (attr->ia_valid & ATTR_GID)
4524                         inode->i_gid = attr->ia_gid;
4525                 error = ext4_mark_inode_dirty(handle, inode);
4526                 ext4_journal_stop(handle);
4527         }
4528
4529         if (attr->ia_valid & ATTR_SIZE) {
4530
4531                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4532                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533
4534                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4535                                 return -EFBIG;
4536                 }
4537         }
4538
4539         if (S_ISREG(inode->i_mode) &&
4540             attr->ia_valid & ATTR_SIZE &&
4541             (attr->ia_size < inode->i_size)) {
4542                 handle_t *handle;
4543
4544                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4545                 if (IS_ERR(handle)) {
4546                         error = PTR_ERR(handle);
4547                         goto err_out;
4548                 }
4549                 if (ext4_handle_valid(handle)) {
4550                         error = ext4_orphan_add(handle, inode);
4551                         orphan = 1;
4552                 }
4553                 EXT4_I(inode)->i_disksize = attr->ia_size;
4554                 rc = ext4_mark_inode_dirty(handle, inode);
4555                 if (!error)
4556                         error = rc;
4557                 ext4_journal_stop(handle);
4558
4559                 if (ext4_should_order_data(inode)) {
4560                         error = ext4_begin_ordered_truncate(inode,
4561                                                             attr->ia_size);
4562                         if (error) {
4563                                 /* Do as much error cleanup as possible */
4564                                 handle = ext4_journal_start(inode,
4565                                                             EXT4_HT_INODE, 3);
4566                                 if (IS_ERR(handle)) {
4567                                         ext4_orphan_del(NULL, inode);
4568                                         goto err_out;
4569                                 }
4570                                 ext4_orphan_del(handle, inode);
4571                                 orphan = 0;
4572                                 ext4_journal_stop(handle);
4573                                 goto err_out;
4574                         }
4575                 }
4576         }
4577
4578         if (attr->ia_valid & ATTR_SIZE) {
4579                 if (attr->ia_size != inode->i_size) {
4580                         loff_t oldsize = inode->i_size;
4581
4582                         i_size_write(inode, attr->ia_size);
4583                         /*
4584                          * Blocks are going to be removed from the inode. Wait
4585                          * for dio in flight.  Temporarily disable
4586                          * dioread_nolock to prevent livelock.
4587                          */
4588                         if (orphan) {
4589                                 if (!ext4_should_journal_data(inode)) {
4590                                         ext4_inode_block_unlocked_dio(inode);
4591                                         inode_dio_wait(inode);
4592                                         ext4_inode_resume_unlocked_dio(inode);
4593                                 } else
4594                                         ext4_wait_for_tail_page_commit(inode);
4595                         }
4596                         /*
4597                          * Truncate pagecache after we've waited for commit
4598                          * in data=journal mode to make pages freeable.
4599                          */
4600                         truncate_pagecache(inode, oldsize, inode->i_size);
4601                 }
4602                 ext4_truncate(inode);
4603         }
4604
4605         if (!rc) {
4606                 setattr_copy(inode, attr);
4607                 mark_inode_dirty(inode);
4608         }
4609
4610         /*
4611          * If the call to ext4_truncate failed to get a transaction handle at
4612          * all, we need to clean up the in-core orphan list manually.
4613          */
4614         if (orphan && inode->i_nlink)
4615                 ext4_orphan_del(NULL, inode);
4616
4617         if (!rc && (ia_valid & ATTR_MODE))
4618                 rc = ext4_acl_chmod(inode);
4619
4620 err_out:
4621         ext4_std_error(inode->i_sb, error);
4622         if (!error)
4623                 error = rc;
4624         return error;
4625 }
4626
4627 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4628                  struct kstat *stat)
4629 {
4630         struct inode *inode;
4631         unsigned long long delalloc_blocks;
4632
4633         inode = dentry->d_inode;
4634         generic_fillattr(inode, stat);
4635
4636         /*
4637          * We can't update i_blocks if the block allocation is delayed
4638          * otherwise in the case of system crash before the real block
4639          * allocation is done, we will have i_blocks inconsistent with
4640          * on-disk file blocks.
4641          * We always keep i_blocks updated together with real
4642          * allocation. But to not confuse with user, stat
4643          * will return the blocks that include the delayed allocation
4644          * blocks for this file.
4645          */
4646         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4647                                 EXT4_I(inode)->i_reserved_data_blocks);
4648
4649         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4650         return 0;
4651 }
4652
4653 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4654                                    int pextents)
4655 {
4656         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4657                 return ext4_ind_trans_blocks(inode, lblocks);
4658         return ext4_ext_index_trans_blocks(inode, pextents);
4659 }
4660
4661 /*
4662  * Account for index blocks, block groups bitmaps and block group
4663  * descriptor blocks if modify datablocks and index blocks
4664  * worse case, the indexs blocks spread over different block groups
4665  *
4666  * If datablocks are discontiguous, they are possible to spread over
4667  * different block groups too. If they are contiguous, with flexbg,
4668  * they could still across block group boundary.
4669  *
4670  * Also account for superblock, inode, quota and xattr blocks
4671  */
4672 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4673                                   int pextents)
4674 {
4675         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4676         int gdpblocks;
4677         int idxblocks;
4678         int ret = 0;
4679
4680         /*
4681          * How many index blocks need to touch to map @lblocks logical blocks
4682          * to @pextents physical extents?
4683          */
4684         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4685
4686         ret = idxblocks;
4687
4688         /*
4689          * Now let's see how many group bitmaps and group descriptors need
4690          * to account
4691          */
4692         groups = idxblocks + pextents;
4693         gdpblocks = groups;
4694         if (groups > ngroups)
4695                 groups = ngroups;
4696         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4697                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4698
4699         /* bitmaps and block group descriptor blocks */
4700         ret += groups + gdpblocks;
4701
4702         /* Blocks for super block, inode, quota and xattr blocks */
4703         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4704
4705         return ret;
4706 }
4707
4708 /*
4709  * Calculate the total number of credits to reserve to fit
4710  * the modification of a single pages into a single transaction,
4711  * which may include multiple chunks of block allocations.
4712  *
4713  * This could be called via ext4_write_begin()
4714  *
4715  * We need to consider the worse case, when
4716  * one new block per extent.
4717  */
4718 int ext4_writepage_trans_blocks(struct inode *inode)
4719 {
4720         int bpp = ext4_journal_blocks_per_page(inode);
4721         int ret;
4722
4723         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4724
4725         /* Account for data blocks for journalled mode */
4726         if (ext4_should_journal_data(inode))
4727                 ret += bpp;
4728         return ret;
4729 }
4730
4731 /*
4732  * Calculate the journal credits for a chunk of data modification.
4733  *
4734  * This is called from DIO, fallocate or whoever calling
4735  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4736  *
4737  * journal buffers for data blocks are not included here, as DIO
4738  * and fallocate do no need to journal data buffers.
4739  */
4740 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4741 {
4742         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4743 }
4744
4745 /*
4746  * The caller must have previously called ext4_reserve_inode_write().
4747  * Give this, we know that the caller already has write access to iloc->bh.
4748  */
4749 int ext4_mark_iloc_dirty(handle_t *handle,
4750                          struct inode *inode, struct ext4_iloc *iloc)
4751 {
4752         int err = 0;
4753
4754         if (IS_I_VERSION(inode))
4755                 inode_inc_iversion(inode);
4756
4757         /* the do_update_inode consumes one bh->b_count */
4758         get_bh(iloc->bh);
4759
4760         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4761         err = ext4_do_update_inode(handle, inode, iloc);
4762         put_bh(iloc->bh);
4763         return err;
4764 }
4765
4766 /*
4767  * On success, We end up with an outstanding reference count against
4768  * iloc->bh.  This _must_ be cleaned up later.
4769  */
4770
4771 int
4772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4773                          struct ext4_iloc *iloc)
4774 {
4775         int err;
4776
4777         err = ext4_get_inode_loc(inode, iloc);
4778         if (!err) {
4779                 BUFFER_TRACE(iloc->bh, "get_write_access");
4780                 err = ext4_journal_get_write_access(handle, iloc->bh);
4781                 if (err) {
4782                         brelse(iloc->bh);
4783                         iloc->bh = NULL;
4784                 }
4785         }
4786         ext4_std_error(inode->i_sb, err);
4787         return err;
4788 }
4789
4790 /*
4791  * Expand an inode by new_extra_isize bytes.
4792  * Returns 0 on success or negative error number on failure.
4793  */
4794 static int ext4_expand_extra_isize(struct inode *inode,
4795                                    unsigned int new_extra_isize,
4796                                    struct ext4_iloc iloc,
4797                                    handle_t *handle)
4798 {
4799         struct ext4_inode *raw_inode;
4800         struct ext4_xattr_ibody_header *header;
4801
4802         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4803                 return 0;
4804
4805         raw_inode = ext4_raw_inode(&iloc);
4806
4807         header = IHDR(inode, raw_inode);
4808
4809         /* No extended attributes present */
4810         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4811             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4812                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4813                         new_extra_isize);
4814                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4815                 return 0;
4816         }
4817
4818         /* try to expand with EAs present */
4819         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4820                                           raw_inode, handle);
4821 }
4822
4823 /*
4824  * What we do here is to mark the in-core inode as clean with respect to inode
4825  * dirtiness (it may still be data-dirty).
4826  * This means that the in-core inode may be reaped by prune_icache
4827  * without having to perform any I/O.  This is a very good thing,
4828  * because *any* task may call prune_icache - even ones which
4829  * have a transaction open against a different journal.
4830  *
4831  * Is this cheating?  Not really.  Sure, we haven't written the
4832  * inode out, but prune_icache isn't a user-visible syncing function.
4833  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4834  * we start and wait on commits.
4835  */
4836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4837 {
4838         struct ext4_iloc iloc;
4839         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840         static unsigned int mnt_count;
4841         int err, ret;
4842
4843         might_sleep();
4844         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4845         err = ext4_reserve_inode_write(handle, inode, &iloc);
4846         if (ext4_handle_valid(handle) &&
4847             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4848             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4849                 /*
4850                  * We need extra buffer credits since we may write into EA block
4851                  * with this same handle. If journal_extend fails, then it will
4852                  * only result in a minor loss of functionality for that inode.
4853                  * If this is felt to be critical, then e2fsck should be run to
4854                  * force a large enough s_min_extra_isize.
4855                  */
4856                 if ((jbd2_journal_extend(handle,
4857                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4858                         ret = ext4_expand_extra_isize(inode,
4859                                                       sbi->s_want_extra_isize,
4860                                                       iloc, handle);
4861                         if (ret) {
4862                                 ext4_set_inode_state(inode,
4863                                                      EXT4_STATE_NO_EXPAND);
4864                                 if (mnt_count !=
4865                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4866                                         ext4_warning(inode->i_sb,
4867                                         "Unable to expand inode %lu. Delete"
4868                                         " some EAs or run e2fsck.",
4869                                         inode->i_ino);
4870                                         mnt_count =
4871                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4872                                 }
4873                         }
4874                 }
4875         }
4876         if (!err)
4877                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4878         return err;
4879 }
4880
4881 /*
4882  * ext4_dirty_inode() is called from __mark_inode_dirty()
4883  *
4884  * We're really interested in the case where a file is being extended.
4885  * i_size has been changed by generic_commit_write() and we thus need
4886  * to include the updated inode in the current transaction.
4887  *
4888  * Also, dquot_alloc_block() will always dirty the inode when blocks
4889  * are allocated to the file.
4890  *
4891  * If the inode is marked synchronous, we don't honour that here - doing
4892  * so would cause a commit on atime updates, which we don't bother doing.
4893  * We handle synchronous inodes at the highest possible level.
4894  */
4895 void ext4_dirty_inode(struct inode *inode, int flags)
4896 {
4897         handle_t *handle;
4898
4899         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4900         if (IS_ERR(handle))
4901                 goto out;
4902
4903         ext4_mark_inode_dirty(handle, inode);
4904
4905         ext4_journal_stop(handle);
4906 out:
4907         return;
4908 }
4909
4910 #if 0
4911 /*
4912  * Bind an inode's backing buffer_head into this transaction, to prevent
4913  * it from being flushed to disk early.  Unlike
4914  * ext4_reserve_inode_write, this leaves behind no bh reference and
4915  * returns no iloc structure, so the caller needs to repeat the iloc
4916  * lookup to mark the inode dirty later.
4917  */
4918 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4919 {
4920         struct ext4_iloc iloc;
4921
4922         int err = 0;
4923         if (handle) {
4924                 err = ext4_get_inode_loc(inode, &iloc);
4925                 if (!err) {
4926                         BUFFER_TRACE(iloc.bh, "get_write_access");
4927                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4928                         if (!err)
4929                                 err = ext4_handle_dirty_metadata(handle,
4930                                                                  NULL,
4931                                                                  iloc.bh);
4932                         brelse(iloc.bh);
4933                 }
4934         }
4935         ext4_std_error(inode->i_sb, err);
4936         return err;
4937 }
4938 #endif
4939
4940 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4941 {
4942         journal_t *journal;
4943         handle_t *handle;
4944         int err;
4945
4946         /*
4947          * We have to be very careful here: changing a data block's
4948          * journaling status dynamically is dangerous.  If we write a
4949          * data block to the journal, change the status and then delete
4950          * that block, we risk forgetting to revoke the old log record
4951          * from the journal and so a subsequent replay can corrupt data.
4952          * So, first we make sure that the journal is empty and that
4953          * nobody is changing anything.
4954          */
4955
4956         journal = EXT4_JOURNAL(inode);
4957         if (!journal)
4958                 return 0;
4959         if (is_journal_aborted(journal))
4960                 return -EROFS;
4961         /* We have to allocate physical blocks for delalloc blocks
4962          * before flushing journal. otherwise delalloc blocks can not
4963          * be allocated any more. even more truncate on delalloc blocks
4964          * could trigger BUG by flushing delalloc blocks in journal.
4965          * There is no delalloc block in non-journal data mode.
4966          */
4967         if (val && test_opt(inode->i_sb, DELALLOC)) {
4968                 err = ext4_alloc_da_blocks(inode);
4969                 if (err < 0)
4970                         return err;
4971         }
4972
4973         /* Wait for all existing dio workers */
4974         ext4_inode_block_unlocked_dio(inode);
4975         inode_dio_wait(inode);
4976
4977         jbd2_journal_lock_updates(journal);
4978
4979         /*
4980          * OK, there are no updates running now, and all cached data is
4981          * synced to disk.  We are now in a completely consistent state
4982          * which doesn't have anything in the journal, and we know that
4983          * no filesystem updates are running, so it is safe to modify
4984          * the inode's in-core data-journaling state flag now.
4985          */
4986
4987         if (val)
4988                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4989         else {
4990                 jbd2_journal_flush(journal);
4991                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992         }
4993         ext4_set_aops(inode);
4994
4995         jbd2_journal_unlock_updates(journal);
4996         ext4_inode_resume_unlocked_dio(inode);
4997
4998         /* Finally we can mark the inode as dirty. */
4999
5000         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5001         if (IS_ERR(handle))
5002                 return PTR_ERR(handle);
5003
5004         err = ext4_mark_inode_dirty(handle, inode);
5005         ext4_handle_sync(handle);
5006         ext4_journal_stop(handle);
5007         ext4_std_error(inode->i_sb, err);
5008
5009         return err;
5010 }
5011
5012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5013 {
5014         return !buffer_mapped(bh);
5015 }
5016
5017 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5018 {
5019         struct page *page = vmf->page;
5020         loff_t size;
5021         unsigned long len;
5022         int ret;
5023         struct file *file = vma->vm_file;
5024         struct inode *inode = file_inode(file);
5025         struct address_space *mapping = inode->i_mapping;
5026         handle_t *handle;
5027         get_block_t *get_block;
5028         int retries = 0;
5029
5030         sb_start_pagefault(inode->i_sb);
5031         file_update_time(vma->vm_file);
5032         /* Delalloc case is easy... */
5033         if (test_opt(inode->i_sb, DELALLOC) &&
5034             !ext4_should_journal_data(inode) &&
5035             !ext4_nonda_switch(inode->i_sb)) {
5036                 do {
5037                         ret = __block_page_mkwrite(vma, vmf,
5038                                                    ext4_da_get_block_prep);
5039                 } while (ret == -ENOSPC &&
5040                        ext4_should_retry_alloc(inode->i_sb, &retries));
5041                 goto out_ret;
5042         }
5043
5044         lock_page(page);
5045         size = i_size_read(inode);
5046         /* Page got truncated from under us? */
5047         if (page->mapping != mapping || page_offset(page) > size) {
5048                 unlock_page(page);
5049                 ret = VM_FAULT_NOPAGE;
5050                 goto out;
5051         }
5052
5053         if (page->index == size >> PAGE_CACHE_SHIFT)
5054                 len = size & ~PAGE_CACHE_MASK;
5055         else
5056                 len = PAGE_CACHE_SIZE;
5057         /*
5058          * Return if we have all the buffers mapped. This avoids the need to do
5059          * journal_start/journal_stop which can block and take a long time
5060          */
5061         if (page_has_buffers(page)) {
5062                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5063                                             0, len, NULL,
5064                                             ext4_bh_unmapped)) {
5065                         /* Wait so that we don't change page under IO */
5066                         wait_for_stable_page(page);
5067                         ret = VM_FAULT_LOCKED;
5068                         goto out;
5069                 }
5070         }
5071         unlock_page(page);
5072         /* OK, we need to fill the hole... */
5073         if (ext4_should_dioread_nolock(inode))
5074                 get_block = ext4_get_block_write;
5075         else
5076                 get_block = ext4_get_block;
5077 retry_alloc:
5078         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5079                                     ext4_writepage_trans_blocks(inode));
5080         if (IS_ERR(handle)) {
5081                 ret = VM_FAULT_SIGBUS;
5082                 goto out;
5083         }
5084         ret = __block_page_mkwrite(vma, vmf, get_block);
5085         if (!ret && ext4_should_journal_data(inode)) {
5086                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5087                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5088                         unlock_page(page);
5089                         ret = VM_FAULT_SIGBUS;
5090                         ext4_journal_stop(handle);
5091                         goto out;
5092                 }
5093                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5094         }
5095         ext4_journal_stop(handle);
5096         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5097                 goto retry_alloc;
5098 out_ret:
5099         ret = block_page_mkwrite_return(ret);
5100 out:
5101         sb_end_pagefault(inode->i_sb);
5102         return ret;
5103 }