]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/ctree.c
5bf4c39e2ad625f2e90bfbbc765fd4e13db47a2b
[linux-imx.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid,
278                             (unsigned long)btrfs_header_fsid(cow),
279                             BTRFS_FSID_SIZE);
280
281         WARN_ON(btrfs_header_generation(buf) > trans->transid);
282         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284         else
285                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287         if (ret)
288                 return ret;
289
290         btrfs_mark_buffer_dirty(cow);
291         *cow_ret = cow;
292         return 0;
293 }
294
295 enum mod_log_op {
296         MOD_LOG_KEY_REPLACE,
297         MOD_LOG_KEY_ADD,
298         MOD_LOG_KEY_REMOVE,
299         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301         MOD_LOG_MOVE_KEYS,
302         MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306         int dst_slot;
307         int nr_items;
308 };
309
310 struct tree_mod_root {
311         u64 logical;
312         u8 level;
313 };
314
315 struct tree_mod_elem {
316         struct rb_node node;
317         u64 index;              /* shifted logical */
318         u64 seq;
319         enum mod_log_op op;
320
321         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322         int slot;
323
324         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325         u64 generation;
326
327         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328         struct btrfs_disk_key key;
329         u64 blockptr;
330
331         /* this is used for op == MOD_LOG_MOVE_KEYS */
332         struct tree_mod_move move;
333
334         /* this is used for op == MOD_LOG_ROOT_REPLACE */
335         struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340         read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345         read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350         write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355         write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366         seq &= 0xffffffff00000000ull;
367         seq += 1ull << 32;
368         atomic64_set(&fs_info->tree_mod_seq, seq);
369         return seq;
370 }
371
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385         return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393         return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405                            struct seq_list *elem)
406 {
407         u64 seq;
408
409         tree_mod_log_write_lock(fs_info);
410         spin_lock(&fs_info->tree_mod_seq_lock);
411         if (!elem->seq) {
412                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414         }
415         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417         tree_mod_log_write_unlock(fs_info);
418
419         return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423                             struct seq_list *elem)
424 {
425         struct rb_root *tm_root;
426         struct rb_node *node;
427         struct rb_node *next;
428         struct seq_list *cur_elem;
429         struct tree_mod_elem *tm;
430         u64 min_seq = (u64)-1;
431         u64 seq_putting = elem->seq;
432
433         if (!seq_putting)
434                 return;
435
436         spin_lock(&fs_info->tree_mod_seq_lock);
437         list_del(&elem->list);
438         elem->seq = 0;
439
440         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441                 if (cur_elem->seq < min_seq) {
442                         if (seq_putting > cur_elem->seq) {
443                                 /*
444                                  * blocker with lower sequence number exists, we
445                                  * cannot remove anything from the log
446                                  */
447                                 spin_unlock(&fs_info->tree_mod_seq_lock);
448                                 return;
449                         }
450                         min_seq = cur_elem->seq;
451                 }
452         }
453         spin_unlock(&fs_info->tree_mod_seq_lock);
454
455         /*
456          * anything that's lower than the lowest existing (read: blocked)
457          * sequence number can be removed from the tree.
458          */
459         tree_mod_log_write_lock(fs_info);
460         tm_root = &fs_info->tree_mod_log;
461         for (node = rb_first(tm_root); node; node = next) {
462                 next = rb_next(node);
463                 tm = container_of(node, struct tree_mod_elem, node);
464                 if (tm->seq > min_seq)
465                         continue;
466                 rb_erase(node, tm_root);
467                 kfree(tm);
468         }
469         tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm || !tm->seq);
489
490         tm_root = &fs_info->tree_mod_log;
491         new = &tm_root->rb_node;
492         while (*new) {
493                 cur = container_of(*new, struct tree_mod_elem, node);
494                 parent = *new;
495                 if (cur->index < tm->index)
496                         new = &((*new)->rb_left);
497                 else if (cur->index > tm->index)
498                         new = &((*new)->rb_right);
499                 else if (cur->seq < tm->seq)
500                         new = &((*new)->rb_left);
501                 else if (cur->seq > tm->seq)
502                         new = &((*new)->rb_right);
503                 else {
504                         kfree(tm);
505                         return -EEXIST;
506                 }
507         }
508
509         rb_link_node(&tm->node, parent, new);
510         rb_insert_color(&tm->node, tm_root);
511         return 0;
512 }
513
514 /*
515  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516  * returns zero with the tree_mod_log_lock acquired. The caller must hold
517  * this until all tree mod log insertions are recorded in the rb tree and then
518  * call tree_mod_log_write_unlock() to release.
519  */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521                                     struct extent_buffer *eb) {
522         smp_mb();
523         if (list_empty(&(fs_info)->tree_mod_seq_list))
524                 return 1;
525         if (eb && btrfs_header_level(eb) == 0)
526                 return 1;
527
528         tree_mod_log_write_lock(fs_info);
529         if (list_empty(&fs_info->tree_mod_seq_list)) {
530                 /*
531                  * someone emptied the list while we were waiting for the lock.
532                  * we must not add to the list when no blocker exists.
533                  */
534                 tree_mod_log_write_unlock(fs_info);
535                 return 1;
536         }
537
538         return 0;
539 }
540
541 /*
542  * This allocates memory and gets a tree modification sequence number.
543  *
544  * Returns <0 on error.
545  * Returns >0 (the added sequence number) on success.
546  */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548                                  struct tree_mod_elem **tm_ret)
549 {
550         struct tree_mod_elem *tm;
551
552         /*
553          * once we switch from spin locks to something different, we should
554          * honor the flags parameter here.
555          */
556         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557         if (!tm)
558                 return -ENOMEM;
559
560         spin_lock(&fs_info->tree_mod_seq_lock);
561         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562         spin_unlock(&fs_info->tree_mod_seq_lock);
563
564         return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569                           struct extent_buffer *eb, int slot,
570                           enum mod_log_op op, gfp_t flags)
571 {
572         int ret;
573         struct tree_mod_elem *tm;
574
575         ret = tree_mod_alloc(fs_info, flags, &tm);
576         if (ret < 0)
577                 return ret;
578
579         tm->index = eb->start >> PAGE_CACHE_SHIFT;
580         if (op != MOD_LOG_KEY_ADD) {
581                 btrfs_node_key(eb, &tm->key, slot);
582                 tm->blockptr = btrfs_node_blockptr(eb, slot);
583         }
584         tm->op = op;
585         tm->slot = slot;
586         tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588         return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593                              struct extent_buffer *eb, int slot,
594                              enum mod_log_op op, gfp_t flags)
595 {
596         int ret;
597
598         if (tree_mod_dont_log(fs_info, eb))
599                 return 0;
600
601         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603         tree_mod_log_write_unlock(fs_info);
604         return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609                         int slot, enum mod_log_op op)
610 {
611         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616                              struct extent_buffer *eb, int slot,
617                              enum mod_log_op op)
618 {
619         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624                          struct extent_buffer *eb, int dst_slot, int src_slot,
625                          int nr_items, gfp_t flags)
626 {
627         struct tree_mod_elem *tm;
628         int ret;
629         int i;
630
631         if (tree_mod_dont_log(fs_info, eb))
632                 return 0;
633
634         /*
635          * When we override something during the move, we log these removals.
636          * This can only happen when we move towards the beginning of the
637          * buffer, i.e. dst_slot < src_slot.
638          */
639         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642                 BUG_ON(ret < 0);
643         }
644
645         ret = tree_mod_alloc(fs_info, flags, &tm);
646         if (ret < 0)
647                 goto out;
648
649         tm->index = eb->start >> PAGE_CACHE_SHIFT;
650         tm->slot = src_slot;
651         tm->move.dst_slot = dst_slot;
652         tm->move.nr_items = nr_items;
653         tm->op = MOD_LOG_MOVE_KEYS;
654
655         ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657         tree_mod_log_write_unlock(fs_info);
658         return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664         int i;
665         u32 nritems;
666         int ret;
667
668         if (btrfs_header_level(eb) == 0)
669                 return;
670
671         nritems = btrfs_header_nritems(eb);
672         for (i = nritems - 1; i >= 0; i--) {
673                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675                 BUG_ON(ret < 0);
676         }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681                          struct extent_buffer *old_root,
682                          struct extent_buffer *new_root, gfp_t flags,
683                          int log_removal)
684 {
685         struct tree_mod_elem *tm;
686         int ret;
687
688         if (tree_mod_dont_log(fs_info, NULL))
689                 return 0;
690
691         if (log_removal)
692                 __tree_mod_log_free_eb(fs_info, old_root);
693
694         ret = tree_mod_alloc(fs_info, flags, &tm);
695         if (ret < 0)
696                 goto out;
697
698         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699         tm->old_root.logical = old_root->start;
700         tm->old_root.level = btrfs_header_level(old_root);
701         tm->generation = btrfs_header_generation(old_root);
702         tm->op = MOD_LOG_ROOT_REPLACE;
703
704         ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706         tree_mod_log_write_unlock(fs_info);
707         return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712                       int smallest)
713 {
714         struct rb_root *tm_root;
715         struct rb_node *node;
716         struct tree_mod_elem *cur = NULL;
717         struct tree_mod_elem *found = NULL;
718         u64 index = start >> PAGE_CACHE_SHIFT;
719
720         tree_mod_log_read_lock(fs_info);
721         tm_root = &fs_info->tree_mod_log;
722         node = tm_root->rb_node;
723         while (node) {
724                 cur = container_of(node, struct tree_mod_elem, node);
725                 if (cur->index < index) {
726                         node = node->rb_left;
727                 } else if (cur->index > index) {
728                         node = node->rb_right;
729                 } else if (cur->seq < min_seq) {
730                         node = node->rb_left;
731                 } else if (!smallest) {
732                         /* we want the node with the highest seq */
733                         if (found)
734                                 BUG_ON(found->seq > cur->seq);
735                         found = cur;
736                         node = node->rb_left;
737                 } else if (cur->seq > min_seq) {
738                         /* we want the node with the smallest seq */
739                         if (found)
740                                 BUG_ON(found->seq < cur->seq);
741                         found = cur;
742                         node = node->rb_right;
743                 } else {
744                         found = cur;
745                         break;
746                 }
747         }
748         tree_mod_log_read_unlock(fs_info);
749
750         return found;
751 }
752
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760                            u64 min_seq)
761 {
762         return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773         return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778                      struct extent_buffer *src, unsigned long dst_offset,
779                      unsigned long src_offset, int nr_items)
780 {
781         int ret;
782         int i;
783
784         if (tree_mod_dont_log(fs_info, NULL))
785                 return;
786
787         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788                 tree_mod_log_write_unlock(fs_info);
789                 return;
790         }
791
792         for (i = 0; i < nr_items; i++) {
793                 ret = tree_mod_log_insert_key_locked(fs_info, src,
794                                                 i + src_offset,
795                                                 MOD_LOG_KEY_REMOVE);
796                 BUG_ON(ret < 0);
797                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798                                                      i + dst_offset,
799                                                      MOD_LOG_KEY_ADD);
800                 BUG_ON(ret < 0);
801         }
802
803         tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808                      int dst_offset, int src_offset, int nr_items)
809 {
810         int ret;
811         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812                                        nr_items, GFP_NOFS);
813         BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818                           struct extent_buffer *eb, int slot, int atomic)
819 {
820         int ret;
821
822         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823                                            MOD_LOG_KEY_REPLACE,
824                                            atomic ? GFP_ATOMIC : GFP_NOFS);
825         BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831         if (tree_mod_dont_log(fs_info, eb))
832                 return;
833
834         __tree_mod_log_free_eb(fs_info, eb);
835
836         tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841                               struct extent_buffer *new_root_node,
842                               int log_removal)
843 {
844         int ret;
845         ret = tree_mod_log_insert_root(root->fs_info, root->node,
846                                        new_root_node, GFP_NOFS, log_removal);
847         BUG_ON(ret < 0);
848 }
849
850 /*
851  * check if the tree block can be shared by multiple trees
852  */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854                               struct extent_buffer *buf)
855 {
856         /*
857          * Tree blocks not in refernece counted trees and tree roots
858          * are never shared. If a block was allocated after the last
859          * snapshot and the block was not allocated by tree relocation,
860          * we know the block is not shared.
861          */
862         if (root->ref_cows &&
863             buf != root->node && buf != root->commit_root &&
864             (btrfs_header_generation(buf) <=
865              btrfs_root_last_snapshot(&root->root_item) ||
866              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867                 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869         if (root->ref_cows &&
870             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871                 return 1;
872 #endif
873         return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877                                        struct btrfs_root *root,
878                                        struct extent_buffer *buf,
879                                        struct extent_buffer *cow,
880                                        int *last_ref)
881 {
882         u64 refs;
883         u64 owner;
884         u64 flags;
885         u64 new_flags = 0;
886         int ret;
887
888         /*
889          * Backrefs update rules:
890          *
891          * Always use full backrefs for extent pointers in tree block
892          * allocated by tree relocation.
893          *
894          * If a shared tree block is no longer referenced by its owner
895          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896          * use full backrefs for extent pointers in tree block.
897          *
898          * If a tree block is been relocating
899          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900          * use full backrefs for extent pointers in tree block.
901          * The reason for this is some operations (such as drop tree)
902          * are only allowed for blocks use full backrefs.
903          */
904
905         if (btrfs_block_can_be_shared(root, buf)) {
906                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907                                                btrfs_header_level(buf), 1,
908                                                &refs, &flags);
909                 if (ret)
910                         return ret;
911                 if (refs == 0) {
912                         ret = -EROFS;
913                         btrfs_std_error(root->fs_info, ret);
914                         return ret;
915                 }
916         } else {
917                 refs = 1;
918                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921                 else
922                         flags = 0;
923         }
924
925         owner = btrfs_header_owner(buf);
926         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929         if (refs > 1) {
930                 if ((owner == root->root_key.objectid ||
931                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934                         BUG_ON(ret); /* -ENOMEM */
935
936                         if (root->root_key.objectid ==
937                             BTRFS_TREE_RELOC_OBJECTID) {
938                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939                                 BUG_ON(ret); /* -ENOMEM */
940                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941                                 BUG_ON(ret); /* -ENOMEM */
942                         }
943                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944                 } else {
945
946                         if (root->root_key.objectid ==
947                             BTRFS_TREE_RELOC_OBJECTID)
948                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949                         else
950                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951                         BUG_ON(ret); /* -ENOMEM */
952                 }
953                 if (new_flags != 0) {
954                         int level = btrfs_header_level(buf);
955
956                         ret = btrfs_set_disk_extent_flags(trans, root,
957                                                           buf->start,
958                                                           buf->len,
959                                                           new_flags, level, 0);
960                         if (ret)
961                                 return ret;
962                 }
963         } else {
964                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965                         if (root->root_key.objectid ==
966                             BTRFS_TREE_RELOC_OBJECTID)
967                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968                         else
969                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970                         BUG_ON(ret); /* -ENOMEM */
971                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972                         BUG_ON(ret); /* -ENOMEM */
973                 }
974                 clean_tree_block(trans, root, buf);
975                 *last_ref = 1;
976         }
977         return 0;
978 }
979
980 /*
981  * does the dirty work in cow of a single block.  The parent block (if
982  * supplied) is updated to point to the new cow copy.  The new buffer is marked
983  * dirty and returned locked.  If you modify the block it needs to be marked
984  * dirty again.
985  *
986  * search_start -- an allocation hint for the new block
987  *
988  * empty_size -- a hint that you plan on doing more cow.  This is the size in
989  * bytes the allocator should try to find free next to the block it returns.
990  * This is just a hint and may be ignored by the allocator.
991  */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993                              struct btrfs_root *root,
994                              struct extent_buffer *buf,
995                              struct extent_buffer *parent, int parent_slot,
996                              struct extent_buffer **cow_ret,
997                              u64 search_start, u64 empty_size)
998 {
999         struct btrfs_disk_key disk_key;
1000         struct extent_buffer *cow;
1001         int level, ret;
1002         int last_ref = 0;
1003         int unlock_orig = 0;
1004         u64 parent_start;
1005
1006         if (*cow_ret == buf)
1007                 unlock_orig = 1;
1008
1009         btrfs_assert_tree_locked(buf);
1010
1011         WARN_ON(root->ref_cows && trans->transid !=
1012                 root->fs_info->running_transaction->transid);
1013         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015         level = btrfs_header_level(buf);
1016
1017         if (level == 0)
1018                 btrfs_item_key(buf, &disk_key, 0);
1019         else
1020                 btrfs_node_key(buf, &disk_key, 0);
1021
1022         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023                 if (parent)
1024                         parent_start = parent->start;
1025                 else
1026                         parent_start = 0;
1027         } else
1028                 parent_start = 0;
1029
1030         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031                                      root->root_key.objectid, &disk_key,
1032                                      level, search_start, empty_size);
1033         if (IS_ERR(cow))
1034                 return PTR_ERR(cow);
1035
1036         /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039         btrfs_set_header_bytenr(cow, cow->start);
1040         btrfs_set_header_generation(cow, trans->transid);
1041         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043                                      BTRFS_HEADER_FLAG_RELOC);
1044         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046         else
1047                 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049         write_extent_buffer(cow, root->fs_info->fsid,
1050                             (unsigned long)btrfs_header_fsid(cow),
1051                             BTRFS_FSID_SIZE);
1052
1053         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054         if (ret) {
1055                 btrfs_abort_transaction(trans, root, ret);
1056                 return ret;
1057         }
1058
1059         if (root->ref_cows)
1060                 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062         if (buf == root->node) {
1063                 WARN_ON(parent && parent != buf);
1064                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066                         parent_start = buf->start;
1067                 else
1068                         parent_start = 0;
1069
1070                 extent_buffer_get(cow);
1071                 tree_mod_log_set_root_pointer(root, cow, 1);
1072                 rcu_assign_pointer(root->node, cow);
1073
1074                 btrfs_free_tree_block(trans, root, buf, parent_start,
1075                                       last_ref);
1076                 free_extent_buffer(buf);
1077                 add_root_to_dirty_list(root);
1078         } else {
1079                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                         parent_start = parent->start;
1081                 else
1082                         parent_start = 0;
1083
1084                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086                                         MOD_LOG_KEY_REPLACE);
1087                 btrfs_set_node_blockptr(parent, parent_slot,
1088                                         cow->start);
1089                 btrfs_set_node_ptr_generation(parent, parent_slot,
1090                                               trans->transid);
1091                 btrfs_mark_buffer_dirty(parent);
1092                 if (last_ref)
1093                         tree_mod_log_free_eb(root->fs_info, buf);
1094                 btrfs_free_tree_block(trans, root, buf, parent_start,
1095                                       last_ref);
1096         }
1097         if (unlock_orig)
1098                 btrfs_tree_unlock(buf);
1099         free_extent_buffer_stale(buf);
1100         btrfs_mark_buffer_dirty(cow);
1101         *cow_ret = cow;
1102         return 0;
1103 }
1104
1105 /*
1106  * returns the logical address of the oldest predecessor of the given root.
1107  * entries older than time_seq are ignored.
1108  */
1109 static struct tree_mod_elem *
1110 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1111                            struct extent_buffer *eb_root, u64 time_seq)
1112 {
1113         struct tree_mod_elem *tm;
1114         struct tree_mod_elem *found = NULL;
1115         u64 root_logical = eb_root->start;
1116         int looped = 0;
1117
1118         if (!time_seq)
1119                 return 0;
1120
1121         /*
1122          * the very last operation that's logged for a root is the replacement
1123          * operation (if it is replaced at all). this has the index of the *new*
1124          * root, making it the very first operation that's logged for this root.
1125          */
1126         while (1) {
1127                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1128                                                 time_seq);
1129                 if (!looped && !tm)
1130                         return 0;
1131                 /*
1132                  * if there are no tree operation for the oldest root, we simply
1133                  * return it. this should only happen if that (old) root is at
1134                  * level 0.
1135                  */
1136                 if (!tm)
1137                         break;
1138
1139                 /*
1140                  * if there's an operation that's not a root replacement, we
1141                  * found the oldest version of our root. normally, we'll find a
1142                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1143                  */
1144                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1145                         break;
1146
1147                 found = tm;
1148                 root_logical = tm->old_root.logical;
1149                 looped = 1;
1150         }
1151
1152         /* if there's no old root to return, return what we found instead */
1153         if (!found)
1154                 found = tm;
1155
1156         return found;
1157 }
1158
1159 /*
1160  * tm is a pointer to the first operation to rewind within eb. then, all
1161  * previous operations will be rewinded (until we reach something older than
1162  * time_seq).
1163  */
1164 static void
1165 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1166                       u64 time_seq, struct tree_mod_elem *first_tm)
1167 {
1168         u32 n;
1169         struct rb_node *next;
1170         struct tree_mod_elem *tm = first_tm;
1171         unsigned long o_dst;
1172         unsigned long o_src;
1173         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1174
1175         n = btrfs_header_nritems(eb);
1176         tree_mod_log_read_lock(fs_info);
1177         while (tm && tm->seq >= time_seq) {
1178                 /*
1179                  * all the operations are recorded with the operator used for
1180                  * the modification. as we're going backwards, we do the
1181                  * opposite of each operation here.
1182                  */
1183                 switch (tm->op) {
1184                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1185                         BUG_ON(tm->slot < n);
1186                         /* Fallthrough */
1187                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1188                 case MOD_LOG_KEY_REMOVE:
1189                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1190                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1191                         btrfs_set_node_ptr_generation(eb, tm->slot,
1192                                                       tm->generation);
1193                         n++;
1194                         break;
1195                 case MOD_LOG_KEY_REPLACE:
1196                         BUG_ON(tm->slot >= n);
1197                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1198                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1199                         btrfs_set_node_ptr_generation(eb, tm->slot,
1200                                                       tm->generation);
1201                         break;
1202                 case MOD_LOG_KEY_ADD:
1203                         /* if a move operation is needed it's in the log */
1204                         n--;
1205                         break;
1206                 case MOD_LOG_MOVE_KEYS:
1207                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1208                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1209                         memmove_extent_buffer(eb, o_dst, o_src,
1210                                               tm->move.nr_items * p_size);
1211                         break;
1212                 case MOD_LOG_ROOT_REPLACE:
1213                         /*
1214                          * this operation is special. for roots, this must be
1215                          * handled explicitly before rewinding.
1216                          * for non-roots, this operation may exist if the node
1217                          * was a root: root A -> child B; then A gets empty and
1218                          * B is promoted to the new root. in the mod log, we'll
1219                          * have a root-replace operation for B, a tree block
1220                          * that is no root. we simply ignore that operation.
1221                          */
1222                         break;
1223                 }
1224                 next = rb_next(&tm->node);
1225                 if (!next)
1226                         break;
1227                 tm = container_of(next, struct tree_mod_elem, node);
1228                 if (tm->index != first_tm->index)
1229                         break;
1230         }
1231         tree_mod_log_read_unlock(fs_info);
1232         btrfs_set_header_nritems(eb, n);
1233 }
1234
1235 /*
1236  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1237  * is returned. If rewind operations happen, a fresh buffer is returned. The
1238  * returned buffer is always read-locked. If the returned buffer is not the
1239  * input buffer, the lock on the input buffer is released and the input buffer
1240  * is freed (its refcount is decremented).
1241  */
1242 static struct extent_buffer *
1243 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1244                     u64 time_seq)
1245 {
1246         struct extent_buffer *eb_rewin;
1247         struct tree_mod_elem *tm;
1248
1249         if (!time_seq)
1250                 return eb;
1251
1252         if (btrfs_header_level(eb) == 0)
1253                 return eb;
1254
1255         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1256         if (!tm)
1257                 return eb;
1258
1259         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1260                 BUG_ON(tm->slot != 0);
1261                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1262                                                 fs_info->tree_root->nodesize);
1263                 BUG_ON(!eb_rewin);
1264                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1265                 btrfs_set_header_backref_rev(eb_rewin,
1266                                              btrfs_header_backref_rev(eb));
1267                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1268                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1269         } else {
1270                 eb_rewin = btrfs_clone_extent_buffer(eb);
1271                 BUG_ON(!eb_rewin);
1272         }
1273
1274         extent_buffer_get(eb_rewin);
1275         btrfs_tree_read_unlock(eb);
1276         free_extent_buffer(eb);
1277
1278         extent_buffer_get(eb_rewin);
1279         btrfs_tree_read_lock(eb_rewin);
1280         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1281         WARN_ON(btrfs_header_nritems(eb_rewin) >
1282                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1283
1284         return eb_rewin;
1285 }
1286
1287 /*
1288  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1289  * value. If there are no changes, the current root->root_node is returned. If
1290  * anything changed in between, there's a fresh buffer allocated on which the
1291  * rewind operations are done. In any case, the returned buffer is read locked.
1292  * Returns NULL on error (with no locks held).
1293  */
1294 static inline struct extent_buffer *
1295 get_old_root(struct btrfs_root *root, u64 time_seq)
1296 {
1297         struct tree_mod_elem *tm;
1298         struct extent_buffer *eb = NULL;
1299         struct extent_buffer *eb_root;
1300         struct extent_buffer *old;
1301         struct tree_mod_root *old_root = NULL;
1302         u64 old_generation = 0;
1303         u64 logical;
1304         u32 blocksize;
1305
1306         eb_root = btrfs_read_lock_root_node(root);
1307         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1308         if (!tm)
1309                 return eb_root;
1310
1311         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1312                 old_root = &tm->old_root;
1313                 old_generation = tm->generation;
1314                 logical = old_root->logical;
1315         } else {
1316                 logical = eb_root->start;
1317         }
1318
1319         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1320         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1321                 btrfs_tree_read_unlock(eb_root);
1322                 free_extent_buffer(eb_root);
1323                 blocksize = btrfs_level_size(root, old_root->level);
1324                 old = read_tree_block(root, logical, blocksize, 0);
1325                 if (!old || !extent_buffer_uptodate(old)) {
1326                         free_extent_buffer(old);
1327                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1328                                 logical);
1329                         WARN_ON(1);
1330                 } else {
1331                         eb = btrfs_clone_extent_buffer(old);
1332                         free_extent_buffer(old);
1333                 }
1334         } else if (old_root) {
1335                 btrfs_tree_read_unlock(eb_root);
1336                 free_extent_buffer(eb_root);
1337                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1338         } else {
1339                 eb = btrfs_clone_extent_buffer(eb_root);
1340                 btrfs_tree_read_unlock(eb_root);
1341                 free_extent_buffer(eb_root);
1342         }
1343
1344         if (!eb)
1345                 return NULL;
1346         extent_buffer_get(eb);
1347         btrfs_tree_read_lock(eb);
1348         if (old_root) {
1349                 btrfs_set_header_bytenr(eb, eb->start);
1350                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1351                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1352                 btrfs_set_header_level(eb, old_root->level);
1353                 btrfs_set_header_generation(eb, old_generation);
1354         }
1355         if (tm)
1356                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1357         else
1358                 WARN_ON(btrfs_header_level(eb) != 0);
1359         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1360
1361         return eb;
1362 }
1363
1364 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1365 {
1366         struct tree_mod_elem *tm;
1367         int level;
1368         struct extent_buffer *eb_root = btrfs_root_node(root);
1369
1370         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1371         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1372                 level = tm->old_root.level;
1373         } else {
1374                 level = btrfs_header_level(eb_root);
1375         }
1376         free_extent_buffer(eb_root);
1377
1378         return level;
1379 }
1380
1381 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1382                                    struct btrfs_root *root,
1383                                    struct extent_buffer *buf)
1384 {
1385         /* ensure we can see the force_cow */
1386         smp_rmb();
1387
1388         /*
1389          * We do not need to cow a block if
1390          * 1) this block is not created or changed in this transaction;
1391          * 2) this block does not belong to TREE_RELOC tree;
1392          * 3) the root is not forced COW.
1393          *
1394          * What is forced COW:
1395          *    when we create snapshot during commiting the transaction,
1396          *    after we've finished coping src root, we must COW the shared
1397          *    block to ensure the metadata consistency.
1398          */
1399         if (btrfs_header_generation(buf) == trans->transid &&
1400             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1401             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1402               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1403             !root->force_cow)
1404                 return 0;
1405         return 1;
1406 }
1407
1408 /*
1409  * cows a single block, see __btrfs_cow_block for the real work.
1410  * This version of it has extra checks so that a block isn't cow'd more than
1411  * once per transaction, as long as it hasn't been written yet
1412  */
1413 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1414                     struct btrfs_root *root, struct extent_buffer *buf,
1415                     struct extent_buffer *parent, int parent_slot,
1416                     struct extent_buffer **cow_ret)
1417 {
1418         u64 search_start;
1419         int ret;
1420
1421         if (trans->transaction != root->fs_info->running_transaction)
1422                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1423                        (unsigned long long)trans->transid,
1424                        (unsigned long long)
1425                        root->fs_info->running_transaction->transid);
1426
1427         if (trans->transid != root->fs_info->generation)
1428                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1429                        (unsigned long long)trans->transid,
1430                        (unsigned long long)root->fs_info->generation);
1431
1432         if (!should_cow_block(trans, root, buf)) {
1433                 *cow_ret = buf;
1434                 return 0;
1435         }
1436
1437         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1438
1439         if (parent)
1440                 btrfs_set_lock_blocking(parent);
1441         btrfs_set_lock_blocking(buf);
1442
1443         ret = __btrfs_cow_block(trans, root, buf, parent,
1444                                  parent_slot, cow_ret, search_start, 0);
1445
1446         trace_btrfs_cow_block(root, buf, *cow_ret);
1447
1448         return ret;
1449 }
1450
1451 /*
1452  * helper function for defrag to decide if two blocks pointed to by a
1453  * node are actually close by
1454  */
1455 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1456 {
1457         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1458                 return 1;
1459         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1460                 return 1;
1461         return 0;
1462 }
1463
1464 /*
1465  * compare two keys in a memcmp fashion
1466  */
1467 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1468 {
1469         struct btrfs_key k1;
1470
1471         btrfs_disk_key_to_cpu(&k1, disk);
1472
1473         return btrfs_comp_cpu_keys(&k1, k2);
1474 }
1475
1476 /*
1477  * same as comp_keys only with two btrfs_key's
1478  */
1479 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1480 {
1481         if (k1->objectid > k2->objectid)
1482                 return 1;
1483         if (k1->objectid < k2->objectid)
1484                 return -1;
1485         if (k1->type > k2->type)
1486                 return 1;
1487         if (k1->type < k2->type)
1488                 return -1;
1489         if (k1->offset > k2->offset)
1490                 return 1;
1491         if (k1->offset < k2->offset)
1492                 return -1;
1493         return 0;
1494 }
1495
1496 /*
1497  * this is used by the defrag code to go through all the
1498  * leaves pointed to by a node and reallocate them so that
1499  * disk order is close to key order
1500  */
1501 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1502                        struct btrfs_root *root, struct extent_buffer *parent,
1503                        int start_slot, u64 *last_ret,
1504                        struct btrfs_key *progress)
1505 {
1506         struct extent_buffer *cur;
1507         u64 blocknr;
1508         u64 gen;
1509         u64 search_start = *last_ret;
1510         u64 last_block = 0;
1511         u64 other;
1512         u32 parent_nritems;
1513         int end_slot;
1514         int i;
1515         int err = 0;
1516         int parent_level;
1517         int uptodate;
1518         u32 blocksize;
1519         int progress_passed = 0;
1520         struct btrfs_disk_key disk_key;
1521
1522         parent_level = btrfs_header_level(parent);
1523
1524         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1525         WARN_ON(trans->transid != root->fs_info->generation);
1526
1527         parent_nritems = btrfs_header_nritems(parent);
1528         blocksize = btrfs_level_size(root, parent_level - 1);
1529         end_slot = parent_nritems;
1530
1531         if (parent_nritems == 1)
1532                 return 0;
1533
1534         btrfs_set_lock_blocking(parent);
1535
1536         for (i = start_slot; i < end_slot; i++) {
1537                 int close = 1;
1538
1539                 btrfs_node_key(parent, &disk_key, i);
1540                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1541                         continue;
1542
1543                 progress_passed = 1;
1544                 blocknr = btrfs_node_blockptr(parent, i);
1545                 gen = btrfs_node_ptr_generation(parent, i);
1546                 if (last_block == 0)
1547                         last_block = blocknr;
1548
1549                 if (i > 0) {
1550                         other = btrfs_node_blockptr(parent, i - 1);
1551                         close = close_blocks(blocknr, other, blocksize);
1552                 }
1553                 if (!close && i < end_slot - 2) {
1554                         other = btrfs_node_blockptr(parent, i + 1);
1555                         close = close_blocks(blocknr, other, blocksize);
1556                 }
1557                 if (close) {
1558                         last_block = blocknr;
1559                         continue;
1560                 }
1561
1562                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1563                 if (cur)
1564                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1565                 else
1566                         uptodate = 0;
1567                 if (!cur || !uptodate) {
1568                         if (!cur) {
1569                                 cur = read_tree_block(root, blocknr,
1570                                                          blocksize, gen);
1571                                 if (!cur || !extent_buffer_uptodate(cur)) {
1572                                         free_extent_buffer(cur);
1573                                         return -EIO;
1574                                 }
1575                         } else if (!uptodate) {
1576                                 err = btrfs_read_buffer(cur, gen);
1577                                 if (err) {
1578                                         free_extent_buffer(cur);
1579                                         return err;
1580                                 }
1581                         }
1582                 }
1583                 if (search_start == 0)
1584                         search_start = last_block;
1585
1586                 btrfs_tree_lock(cur);
1587                 btrfs_set_lock_blocking(cur);
1588                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1589                                         &cur, search_start,
1590                                         min(16 * blocksize,
1591                                             (end_slot - i) * blocksize));
1592                 if (err) {
1593                         btrfs_tree_unlock(cur);
1594                         free_extent_buffer(cur);
1595                         break;
1596                 }
1597                 search_start = cur->start;
1598                 last_block = cur->start;
1599                 *last_ret = search_start;
1600                 btrfs_tree_unlock(cur);
1601                 free_extent_buffer(cur);
1602         }
1603         return err;
1604 }
1605
1606 /*
1607  * The leaf data grows from end-to-front in the node.
1608  * this returns the address of the start of the last item,
1609  * which is the stop of the leaf data stack
1610  */
1611 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1612                                          struct extent_buffer *leaf)
1613 {
1614         u32 nr = btrfs_header_nritems(leaf);
1615         if (nr == 0)
1616                 return BTRFS_LEAF_DATA_SIZE(root);
1617         return btrfs_item_offset_nr(leaf, nr - 1);
1618 }
1619
1620
1621 /*
1622  * search for key in the extent_buffer.  The items start at offset p,
1623  * and they are item_size apart.  There are 'max' items in p.
1624  *
1625  * the slot in the array is returned via slot, and it points to
1626  * the place where you would insert key if it is not found in
1627  * the array.
1628  *
1629  * slot may point to max if the key is bigger than all of the keys
1630  */
1631 static noinline int generic_bin_search(struct extent_buffer *eb,
1632                                        unsigned long p,
1633                                        int item_size, struct btrfs_key *key,
1634                                        int max, int *slot)
1635 {
1636         int low = 0;
1637         int high = max;
1638         int mid;
1639         int ret;
1640         struct btrfs_disk_key *tmp = NULL;
1641         struct btrfs_disk_key unaligned;
1642         unsigned long offset;
1643         char *kaddr = NULL;
1644         unsigned long map_start = 0;
1645         unsigned long map_len = 0;
1646         int err;
1647
1648         while (low < high) {
1649                 mid = (low + high) / 2;
1650                 offset = p + mid * item_size;
1651
1652                 if (!kaddr || offset < map_start ||
1653                     (offset + sizeof(struct btrfs_disk_key)) >
1654                     map_start + map_len) {
1655
1656                         err = map_private_extent_buffer(eb, offset,
1657                                                 sizeof(struct btrfs_disk_key),
1658                                                 &kaddr, &map_start, &map_len);
1659
1660                         if (!err) {
1661                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1662                                                         map_start);
1663                         } else {
1664                                 read_extent_buffer(eb, &unaligned,
1665                                                    offset, sizeof(unaligned));
1666                                 tmp = &unaligned;
1667                         }
1668
1669                 } else {
1670                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1671                                                         map_start);
1672                 }
1673                 ret = comp_keys(tmp, key);
1674
1675                 if (ret < 0)
1676                         low = mid + 1;
1677                 else if (ret > 0)
1678                         high = mid;
1679                 else {
1680                         *slot = mid;
1681                         return 0;
1682                 }
1683         }
1684         *slot = low;
1685         return 1;
1686 }
1687
1688 /*
1689  * simple bin_search frontend that does the right thing for
1690  * leaves vs nodes
1691  */
1692 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1693                       int level, int *slot)
1694 {
1695         if (level == 0)
1696                 return generic_bin_search(eb,
1697                                           offsetof(struct btrfs_leaf, items),
1698                                           sizeof(struct btrfs_item),
1699                                           key, btrfs_header_nritems(eb),
1700                                           slot);
1701         else
1702                 return generic_bin_search(eb,
1703                                           offsetof(struct btrfs_node, ptrs),
1704                                           sizeof(struct btrfs_key_ptr),
1705                                           key, btrfs_header_nritems(eb),
1706                                           slot);
1707 }
1708
1709 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1710                      int level, int *slot)
1711 {
1712         return bin_search(eb, key, level, slot);
1713 }
1714
1715 static void root_add_used(struct btrfs_root *root, u32 size)
1716 {
1717         spin_lock(&root->accounting_lock);
1718         btrfs_set_root_used(&root->root_item,
1719                             btrfs_root_used(&root->root_item) + size);
1720         spin_unlock(&root->accounting_lock);
1721 }
1722
1723 static void root_sub_used(struct btrfs_root *root, u32 size)
1724 {
1725         spin_lock(&root->accounting_lock);
1726         btrfs_set_root_used(&root->root_item,
1727                             btrfs_root_used(&root->root_item) - size);
1728         spin_unlock(&root->accounting_lock);
1729 }
1730
1731 /* given a node and slot number, this reads the blocks it points to.  The
1732  * extent buffer is returned with a reference taken (but unlocked).
1733  * NULL is returned on error.
1734  */
1735 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1736                                    struct extent_buffer *parent, int slot)
1737 {
1738         int level = btrfs_header_level(parent);
1739         struct extent_buffer *eb;
1740
1741         if (slot < 0)
1742                 return NULL;
1743         if (slot >= btrfs_header_nritems(parent))
1744                 return NULL;
1745
1746         BUG_ON(level == 0);
1747
1748         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1749                              btrfs_level_size(root, level - 1),
1750                              btrfs_node_ptr_generation(parent, slot));
1751         if (eb && !extent_buffer_uptodate(eb)) {
1752                 free_extent_buffer(eb);
1753                 eb = NULL;
1754         }
1755
1756         return eb;
1757 }
1758
1759 /*
1760  * node level balancing, used to make sure nodes are in proper order for
1761  * item deletion.  We balance from the top down, so we have to make sure
1762  * that a deletion won't leave an node completely empty later on.
1763  */
1764 static noinline int balance_level(struct btrfs_trans_handle *trans,
1765                          struct btrfs_root *root,
1766                          struct btrfs_path *path, int level)
1767 {
1768         struct extent_buffer *right = NULL;
1769         struct extent_buffer *mid;
1770         struct extent_buffer *left = NULL;
1771         struct extent_buffer *parent = NULL;
1772         int ret = 0;
1773         int wret;
1774         int pslot;
1775         int orig_slot = path->slots[level];
1776         u64 orig_ptr;
1777
1778         if (level == 0)
1779                 return 0;
1780
1781         mid = path->nodes[level];
1782
1783         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1784                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1785         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1786
1787         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1788
1789         if (level < BTRFS_MAX_LEVEL - 1) {
1790                 parent = path->nodes[level + 1];
1791                 pslot = path->slots[level + 1];
1792         }
1793
1794         /*
1795          * deal with the case where there is only one pointer in the root
1796          * by promoting the node below to a root
1797          */
1798         if (!parent) {
1799                 struct extent_buffer *child;
1800
1801                 if (btrfs_header_nritems(mid) != 1)
1802                         return 0;
1803
1804                 /* promote the child to a root */
1805                 child = read_node_slot(root, mid, 0);
1806                 if (!child) {
1807                         ret = -EROFS;
1808                         btrfs_std_error(root->fs_info, ret);
1809                         goto enospc;
1810                 }
1811
1812                 btrfs_tree_lock(child);
1813                 btrfs_set_lock_blocking(child);
1814                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1815                 if (ret) {
1816                         btrfs_tree_unlock(child);
1817                         free_extent_buffer(child);
1818                         goto enospc;
1819                 }
1820
1821                 tree_mod_log_set_root_pointer(root, child, 1);
1822                 rcu_assign_pointer(root->node, child);
1823
1824                 add_root_to_dirty_list(root);
1825                 btrfs_tree_unlock(child);
1826
1827                 path->locks[level] = 0;
1828                 path->nodes[level] = NULL;
1829                 clean_tree_block(trans, root, mid);
1830                 btrfs_tree_unlock(mid);
1831                 /* once for the path */
1832                 free_extent_buffer(mid);
1833
1834                 root_sub_used(root, mid->len);
1835                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1836                 /* once for the root ptr */
1837                 free_extent_buffer_stale(mid);
1838                 return 0;
1839         }
1840         if (btrfs_header_nritems(mid) >
1841             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1842                 return 0;
1843
1844         left = read_node_slot(root, parent, pslot - 1);
1845         if (left) {
1846                 btrfs_tree_lock(left);
1847                 btrfs_set_lock_blocking(left);
1848                 wret = btrfs_cow_block(trans, root, left,
1849                                        parent, pslot - 1, &left);
1850                 if (wret) {
1851                         ret = wret;
1852                         goto enospc;
1853                 }
1854         }
1855         right = read_node_slot(root, parent, pslot + 1);
1856         if (right) {
1857                 btrfs_tree_lock(right);
1858                 btrfs_set_lock_blocking(right);
1859                 wret = btrfs_cow_block(trans, root, right,
1860                                        parent, pslot + 1, &right);
1861                 if (wret) {
1862                         ret = wret;
1863                         goto enospc;
1864                 }
1865         }
1866
1867         /* first, try to make some room in the middle buffer */
1868         if (left) {
1869                 orig_slot += btrfs_header_nritems(left);
1870                 wret = push_node_left(trans, root, left, mid, 1);
1871                 if (wret < 0)
1872                         ret = wret;
1873         }
1874
1875         /*
1876          * then try to empty the right most buffer into the middle
1877          */
1878         if (right) {
1879                 wret = push_node_left(trans, root, mid, right, 1);
1880                 if (wret < 0 && wret != -ENOSPC)
1881                         ret = wret;
1882                 if (btrfs_header_nritems(right) == 0) {
1883                         clean_tree_block(trans, root, right);
1884                         btrfs_tree_unlock(right);
1885                         del_ptr(root, path, level + 1, pslot + 1);
1886                         root_sub_used(root, right->len);
1887                         btrfs_free_tree_block(trans, root, right, 0, 1);
1888                         free_extent_buffer_stale(right);
1889                         right = NULL;
1890                 } else {
1891                         struct btrfs_disk_key right_key;
1892                         btrfs_node_key(right, &right_key, 0);
1893                         tree_mod_log_set_node_key(root->fs_info, parent,
1894                                                   pslot + 1, 0);
1895                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1896                         btrfs_mark_buffer_dirty(parent);
1897                 }
1898         }
1899         if (btrfs_header_nritems(mid) == 1) {
1900                 /*
1901                  * we're not allowed to leave a node with one item in the
1902                  * tree during a delete.  A deletion from lower in the tree
1903                  * could try to delete the only pointer in this node.
1904                  * So, pull some keys from the left.
1905                  * There has to be a left pointer at this point because
1906                  * otherwise we would have pulled some pointers from the
1907                  * right
1908                  */
1909                 if (!left) {
1910                         ret = -EROFS;
1911                         btrfs_std_error(root->fs_info, ret);
1912                         goto enospc;
1913                 }
1914                 wret = balance_node_right(trans, root, mid, left);
1915                 if (wret < 0) {
1916                         ret = wret;
1917                         goto enospc;
1918                 }
1919                 if (wret == 1) {
1920                         wret = push_node_left(trans, root, left, mid, 1);
1921                         if (wret < 0)
1922                                 ret = wret;
1923                 }
1924                 BUG_ON(wret == 1);
1925         }
1926         if (btrfs_header_nritems(mid) == 0) {
1927                 clean_tree_block(trans, root, mid);
1928                 btrfs_tree_unlock(mid);
1929                 del_ptr(root, path, level + 1, pslot);
1930                 root_sub_used(root, mid->len);
1931                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1932                 free_extent_buffer_stale(mid);
1933                 mid = NULL;
1934         } else {
1935                 /* update the parent key to reflect our changes */
1936                 struct btrfs_disk_key mid_key;
1937                 btrfs_node_key(mid, &mid_key, 0);
1938                 tree_mod_log_set_node_key(root->fs_info, parent,
1939                                           pslot, 0);
1940                 btrfs_set_node_key(parent, &mid_key, pslot);
1941                 btrfs_mark_buffer_dirty(parent);
1942         }
1943
1944         /* update the path */
1945         if (left) {
1946                 if (btrfs_header_nritems(left) > orig_slot) {
1947                         extent_buffer_get(left);
1948                         /* left was locked after cow */
1949                         path->nodes[level] = left;
1950                         path->slots[level + 1] -= 1;
1951                         path->slots[level] = orig_slot;
1952                         if (mid) {
1953                                 btrfs_tree_unlock(mid);
1954                                 free_extent_buffer(mid);
1955                         }
1956                 } else {
1957                         orig_slot -= btrfs_header_nritems(left);
1958                         path->slots[level] = orig_slot;
1959                 }
1960         }
1961         /* double check we haven't messed things up */
1962         if (orig_ptr !=
1963             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1964                 BUG();
1965 enospc:
1966         if (right) {
1967                 btrfs_tree_unlock(right);
1968                 free_extent_buffer(right);
1969         }
1970         if (left) {
1971                 if (path->nodes[level] != left)
1972                         btrfs_tree_unlock(left);
1973                 free_extent_buffer(left);
1974         }
1975         return ret;
1976 }
1977
1978 /* Node balancing for insertion.  Here we only split or push nodes around
1979  * when they are completely full.  This is also done top down, so we
1980  * have to be pessimistic.
1981  */
1982 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1983                                           struct btrfs_root *root,
1984                                           struct btrfs_path *path, int level)
1985 {
1986         struct extent_buffer *right = NULL;
1987         struct extent_buffer *mid;
1988         struct extent_buffer *left = NULL;
1989         struct extent_buffer *parent = NULL;
1990         int ret = 0;
1991         int wret;
1992         int pslot;
1993         int orig_slot = path->slots[level];
1994
1995         if (level == 0)
1996                 return 1;
1997
1998         mid = path->nodes[level];
1999         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2000
2001         if (level < BTRFS_MAX_LEVEL - 1) {
2002                 parent = path->nodes[level + 1];
2003                 pslot = path->slots[level + 1];
2004         }
2005
2006         if (!parent)
2007                 return 1;
2008
2009         left = read_node_slot(root, parent, pslot - 1);
2010
2011         /* first, try to make some room in the middle buffer */
2012         if (left) {
2013                 u32 left_nr;
2014
2015                 btrfs_tree_lock(left);
2016                 btrfs_set_lock_blocking(left);
2017
2018                 left_nr = btrfs_header_nritems(left);
2019                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2020                         wret = 1;
2021                 } else {
2022                         ret = btrfs_cow_block(trans, root, left, parent,
2023                                               pslot - 1, &left);
2024                         if (ret)
2025                                 wret = 1;
2026                         else {
2027                                 wret = push_node_left(trans, root,
2028                                                       left, mid, 0);
2029                         }
2030                 }
2031                 if (wret < 0)
2032                         ret = wret;
2033                 if (wret == 0) {
2034                         struct btrfs_disk_key disk_key;
2035                         orig_slot += left_nr;
2036                         btrfs_node_key(mid, &disk_key, 0);
2037                         tree_mod_log_set_node_key(root->fs_info, parent,
2038                                                   pslot, 0);
2039                         btrfs_set_node_key(parent, &disk_key, pslot);
2040                         btrfs_mark_buffer_dirty(parent);
2041                         if (btrfs_header_nritems(left) > orig_slot) {
2042                                 path->nodes[level] = left;
2043                                 path->slots[level + 1] -= 1;
2044                                 path->slots[level] = orig_slot;
2045                                 btrfs_tree_unlock(mid);
2046                                 free_extent_buffer(mid);
2047                         } else {
2048                                 orig_slot -=
2049                                         btrfs_header_nritems(left);
2050                                 path->slots[level] = orig_slot;
2051                                 btrfs_tree_unlock(left);
2052                                 free_extent_buffer(left);
2053                         }
2054                         return 0;
2055                 }
2056                 btrfs_tree_unlock(left);
2057                 free_extent_buffer(left);
2058         }
2059         right = read_node_slot(root, parent, pslot + 1);
2060
2061         /*
2062          * then try to empty the right most buffer into the middle
2063          */
2064         if (right) {
2065                 u32 right_nr;
2066
2067                 btrfs_tree_lock(right);
2068                 btrfs_set_lock_blocking(right);
2069
2070                 right_nr = btrfs_header_nritems(right);
2071                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2072                         wret = 1;
2073                 } else {
2074                         ret = btrfs_cow_block(trans, root, right,
2075                                               parent, pslot + 1,
2076                                               &right);
2077                         if (ret)
2078                                 wret = 1;
2079                         else {
2080                                 wret = balance_node_right(trans, root,
2081                                                           right, mid);
2082                         }
2083                 }
2084                 if (wret < 0)
2085                         ret = wret;
2086                 if (wret == 0) {
2087                         struct btrfs_disk_key disk_key;
2088
2089                         btrfs_node_key(right, &disk_key, 0);
2090                         tree_mod_log_set_node_key(root->fs_info, parent,
2091                                                   pslot + 1, 0);
2092                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2093                         btrfs_mark_buffer_dirty(parent);
2094
2095                         if (btrfs_header_nritems(mid) <= orig_slot) {
2096                                 path->nodes[level] = right;
2097                                 path->slots[level + 1] += 1;
2098                                 path->slots[level] = orig_slot -
2099                                         btrfs_header_nritems(mid);
2100                                 btrfs_tree_unlock(mid);
2101                                 free_extent_buffer(mid);
2102                         } else {
2103                                 btrfs_tree_unlock(right);
2104                                 free_extent_buffer(right);
2105                         }
2106                         return 0;
2107                 }
2108                 btrfs_tree_unlock(right);
2109                 free_extent_buffer(right);
2110         }
2111         return 1;
2112 }
2113
2114 /*
2115  * readahead one full node of leaves, finding things that are close
2116  * to the block in 'slot', and triggering ra on them.
2117  */
2118 static void reada_for_search(struct btrfs_root *root,
2119                              struct btrfs_path *path,
2120                              int level, int slot, u64 objectid)
2121 {
2122         struct extent_buffer *node;
2123         struct btrfs_disk_key disk_key;
2124         u32 nritems;
2125         u64 search;
2126         u64 target;
2127         u64 nread = 0;
2128         u64 gen;
2129         int direction = path->reada;
2130         struct extent_buffer *eb;
2131         u32 nr;
2132         u32 blocksize;
2133         u32 nscan = 0;
2134
2135         if (level != 1)
2136                 return;
2137
2138         if (!path->nodes[level])
2139                 return;
2140
2141         node = path->nodes[level];
2142
2143         search = btrfs_node_blockptr(node, slot);
2144         blocksize = btrfs_level_size(root, level - 1);
2145         eb = btrfs_find_tree_block(root, search, blocksize);
2146         if (eb) {
2147                 free_extent_buffer(eb);
2148                 return;
2149         }
2150
2151         target = search;
2152
2153         nritems = btrfs_header_nritems(node);
2154         nr = slot;
2155
2156         while (1) {
2157                 if (direction < 0) {
2158                         if (nr == 0)
2159                                 break;
2160                         nr--;
2161                 } else if (direction > 0) {
2162                         nr++;
2163                         if (nr >= nritems)
2164                                 break;
2165                 }
2166                 if (path->reada < 0 && objectid) {
2167                         btrfs_node_key(node, &disk_key, nr);
2168                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2169                                 break;
2170                 }
2171                 search = btrfs_node_blockptr(node, nr);
2172                 if ((search <= target && target - search <= 65536) ||
2173                     (search > target && search - target <= 65536)) {
2174                         gen = btrfs_node_ptr_generation(node, nr);
2175                         readahead_tree_block(root, search, blocksize, gen);
2176                         nread += blocksize;
2177                 }
2178                 nscan++;
2179                 if ((nread > 65536 || nscan > 32))
2180                         break;
2181         }
2182 }
2183
2184 static noinline void reada_for_balance(struct btrfs_root *root,
2185                                        struct btrfs_path *path, int level)
2186 {
2187         int slot;
2188         int nritems;
2189         struct extent_buffer *parent;
2190         struct extent_buffer *eb;
2191         u64 gen;
2192         u64 block1 = 0;
2193         u64 block2 = 0;
2194         int blocksize;
2195
2196         parent = path->nodes[level + 1];
2197         if (!parent)
2198                 return;
2199
2200         nritems = btrfs_header_nritems(parent);
2201         slot = path->slots[level + 1];
2202         blocksize = btrfs_level_size(root, level);
2203
2204         if (slot > 0) {
2205                 block1 = btrfs_node_blockptr(parent, slot - 1);
2206                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2207                 eb = btrfs_find_tree_block(root, block1, blocksize);
2208                 /*
2209                  * if we get -eagain from btrfs_buffer_uptodate, we
2210                  * don't want to return eagain here.  That will loop
2211                  * forever
2212                  */
2213                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2214                         block1 = 0;
2215                 free_extent_buffer(eb);
2216         }
2217         if (slot + 1 < nritems) {
2218                 block2 = btrfs_node_blockptr(parent, slot + 1);
2219                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2220                 eb = btrfs_find_tree_block(root, block2, blocksize);
2221                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2222                         block2 = 0;
2223                 free_extent_buffer(eb);
2224         }
2225
2226         if (block1)
2227                 readahead_tree_block(root, block1, blocksize, 0);
2228         if (block2)
2229                 readahead_tree_block(root, block2, blocksize, 0);
2230 }
2231
2232
2233 /*
2234  * when we walk down the tree, it is usually safe to unlock the higher layers
2235  * in the tree.  The exceptions are when our path goes through slot 0, because
2236  * operations on the tree might require changing key pointers higher up in the
2237  * tree.
2238  *
2239  * callers might also have set path->keep_locks, which tells this code to keep
2240  * the lock if the path points to the last slot in the block.  This is part of
2241  * walking through the tree, and selecting the next slot in the higher block.
2242  *
2243  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2244  * if lowest_unlock is 1, level 0 won't be unlocked
2245  */
2246 static noinline void unlock_up(struct btrfs_path *path, int level,
2247                                int lowest_unlock, int min_write_lock_level,
2248                                int *write_lock_level)
2249 {
2250         int i;
2251         int skip_level = level;
2252         int no_skips = 0;
2253         struct extent_buffer *t;
2254
2255         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2256                 if (!path->nodes[i])
2257                         break;
2258                 if (!path->locks[i])
2259                         break;
2260                 if (!no_skips && path->slots[i] == 0) {
2261                         skip_level = i + 1;
2262                         continue;
2263                 }
2264                 if (!no_skips && path->keep_locks) {
2265                         u32 nritems;
2266                         t = path->nodes[i];
2267                         nritems = btrfs_header_nritems(t);
2268                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2269                                 skip_level = i + 1;
2270                                 continue;
2271                         }
2272                 }
2273                 if (skip_level < i && i >= lowest_unlock)
2274                         no_skips = 1;
2275
2276                 t = path->nodes[i];
2277                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2278                         btrfs_tree_unlock_rw(t, path->locks[i]);
2279                         path->locks[i] = 0;
2280                         if (write_lock_level &&
2281                             i > min_write_lock_level &&
2282                             i <= *write_lock_level) {
2283                                 *write_lock_level = i - 1;
2284                         }
2285                 }
2286         }
2287 }
2288
2289 /*
2290  * This releases any locks held in the path starting at level and
2291  * going all the way up to the root.
2292  *
2293  * btrfs_search_slot will keep the lock held on higher nodes in a few
2294  * corner cases, such as COW of the block at slot zero in the node.  This
2295  * ignores those rules, and it should only be called when there are no
2296  * more updates to be done higher up in the tree.
2297  */
2298 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2299 {
2300         int i;
2301
2302         if (path->keep_locks)
2303                 return;
2304
2305         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2306                 if (!path->nodes[i])
2307                         continue;
2308                 if (!path->locks[i])
2309                         continue;
2310                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2311                 path->locks[i] = 0;
2312         }
2313 }
2314
2315 /*
2316  * helper function for btrfs_search_slot.  The goal is to find a block
2317  * in cache without setting the path to blocking.  If we find the block
2318  * we return zero and the path is unchanged.
2319  *
2320  * If we can't find the block, we set the path blocking and do some
2321  * reada.  -EAGAIN is returned and the search must be repeated.
2322  */
2323 static int
2324 read_block_for_search(struct btrfs_trans_handle *trans,
2325                        struct btrfs_root *root, struct btrfs_path *p,
2326                        struct extent_buffer **eb_ret, int level, int slot,
2327                        struct btrfs_key *key, u64 time_seq)
2328 {
2329         u64 blocknr;
2330         u64 gen;
2331         u32 blocksize;
2332         struct extent_buffer *b = *eb_ret;
2333         struct extent_buffer *tmp;
2334         int ret;
2335
2336         blocknr = btrfs_node_blockptr(b, slot);
2337         gen = btrfs_node_ptr_generation(b, slot);
2338         blocksize = btrfs_level_size(root, level - 1);
2339
2340         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2341         if (tmp) {
2342                 /* first we do an atomic uptodate check */
2343                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2344                         *eb_ret = tmp;
2345                         return 0;
2346                 }
2347
2348                 /* the pages were up to date, but we failed
2349                  * the generation number check.  Do a full
2350                  * read for the generation number that is correct.
2351                  * We must do this without dropping locks so
2352                  * we can trust our generation number
2353                  */
2354                 btrfs_set_path_blocking(p);
2355
2356                 /* now we're allowed to do a blocking uptodate check */
2357                 ret = btrfs_read_buffer(tmp, gen);
2358                 if (!ret) {
2359                         *eb_ret = tmp;
2360                         return 0;
2361                 }
2362                 free_extent_buffer(tmp);
2363                 btrfs_release_path(p);
2364                 return -EIO;
2365         }
2366
2367         /*
2368          * reduce lock contention at high levels
2369          * of the btree by dropping locks before
2370          * we read.  Don't release the lock on the current
2371          * level because we need to walk this node to figure
2372          * out which blocks to read.
2373          */
2374         btrfs_unlock_up_safe(p, level + 1);
2375         btrfs_set_path_blocking(p);
2376
2377         free_extent_buffer(tmp);
2378         if (p->reada)
2379                 reada_for_search(root, p, level, slot, key->objectid);
2380
2381         btrfs_release_path(p);
2382
2383         ret = -EAGAIN;
2384         tmp = read_tree_block(root, blocknr, blocksize, 0);
2385         if (tmp) {
2386                 /*
2387                  * If the read above didn't mark this buffer up to date,
2388                  * it will never end up being up to date.  Set ret to EIO now
2389                  * and give up so that our caller doesn't loop forever
2390                  * on our EAGAINs.
2391                  */
2392                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2393                         ret = -EIO;
2394                 free_extent_buffer(tmp);
2395         }
2396         return ret;
2397 }
2398
2399 /*
2400  * helper function for btrfs_search_slot.  This does all of the checks
2401  * for node-level blocks and does any balancing required based on
2402  * the ins_len.
2403  *
2404  * If no extra work was required, zero is returned.  If we had to
2405  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2406  * start over
2407  */
2408 static int
2409 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2410                        struct btrfs_root *root, struct btrfs_path *p,
2411                        struct extent_buffer *b, int level, int ins_len,
2412                        int *write_lock_level)
2413 {
2414         int ret;
2415         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2416             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2417                 int sret;
2418
2419                 if (*write_lock_level < level + 1) {
2420                         *write_lock_level = level + 1;
2421                         btrfs_release_path(p);
2422                         goto again;
2423                 }
2424
2425                 btrfs_set_path_blocking(p);
2426                 reada_for_balance(root, p, level);
2427                 sret = split_node(trans, root, p, level);
2428                 btrfs_clear_path_blocking(p, NULL, 0);
2429
2430                 BUG_ON(sret > 0);
2431                 if (sret) {
2432                         ret = sret;
2433                         goto done;
2434                 }
2435                 b = p->nodes[level];
2436         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2437                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2438                 int sret;
2439
2440                 if (*write_lock_level < level + 1) {
2441                         *write_lock_level = level + 1;
2442                         btrfs_release_path(p);
2443                         goto again;
2444                 }
2445
2446                 btrfs_set_path_blocking(p);
2447                 reada_for_balance(root, p, level);
2448                 sret = balance_level(trans, root, p, level);
2449                 btrfs_clear_path_blocking(p, NULL, 0);
2450
2451                 if (sret) {
2452                         ret = sret;
2453                         goto done;
2454                 }
2455                 b = p->nodes[level];
2456                 if (!b) {
2457                         btrfs_release_path(p);
2458                         goto again;
2459                 }
2460                 BUG_ON(btrfs_header_nritems(b) == 1);
2461         }
2462         return 0;
2463
2464 again:
2465         ret = -EAGAIN;
2466 done:
2467         return ret;
2468 }
2469
2470 /*
2471  * look for key in the tree.  path is filled in with nodes along the way
2472  * if key is found, we return zero and you can find the item in the leaf
2473  * level of the path (level 0)
2474  *
2475  * If the key isn't found, the path points to the slot where it should
2476  * be inserted, and 1 is returned.  If there are other errors during the
2477  * search a negative error number is returned.
2478  *
2479  * if ins_len > 0, nodes and leaves will be split as we walk down the
2480  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2481  * possible)
2482  */
2483 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2484                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2485                       ins_len, int cow)
2486 {
2487         struct extent_buffer *b;
2488         int slot;
2489         int ret;
2490         int err;
2491         int level;
2492         int lowest_unlock = 1;
2493         int root_lock;
2494         /* everything at write_lock_level or lower must be write locked */
2495         int write_lock_level = 0;
2496         u8 lowest_level = 0;
2497         int min_write_lock_level;
2498
2499         lowest_level = p->lowest_level;
2500         WARN_ON(lowest_level && ins_len > 0);
2501         WARN_ON(p->nodes[0] != NULL);
2502
2503         if (ins_len < 0) {
2504                 lowest_unlock = 2;
2505
2506                 /* when we are removing items, we might have to go up to level
2507                  * two as we update tree pointers  Make sure we keep write
2508                  * for those levels as well
2509                  */
2510                 write_lock_level = 2;
2511         } else if (ins_len > 0) {
2512                 /*
2513                  * for inserting items, make sure we have a write lock on
2514                  * level 1 so we can update keys
2515                  */
2516                 write_lock_level = 1;
2517         }
2518
2519         if (!cow)
2520                 write_lock_level = -1;
2521
2522         if (cow && (p->keep_locks || p->lowest_level))
2523                 write_lock_level = BTRFS_MAX_LEVEL;
2524
2525         min_write_lock_level = write_lock_level;
2526
2527 again:
2528         /*
2529          * we try very hard to do read locks on the root
2530          */
2531         root_lock = BTRFS_READ_LOCK;
2532         level = 0;
2533         if (p->search_commit_root) {
2534                 /*
2535                  * the commit roots are read only
2536                  * so we always do read locks
2537                  */
2538                 b = root->commit_root;
2539                 extent_buffer_get(b);
2540                 level = btrfs_header_level(b);
2541                 if (!p->skip_locking)
2542                         btrfs_tree_read_lock(b);
2543         } else {
2544                 if (p->skip_locking) {
2545                         b = btrfs_root_node(root);
2546                         level = btrfs_header_level(b);
2547                 } else {
2548                         /* we don't know the level of the root node
2549                          * until we actually have it read locked
2550                          */
2551                         b = btrfs_read_lock_root_node(root);
2552                         level = btrfs_header_level(b);
2553                         if (level <= write_lock_level) {
2554                                 /* whoops, must trade for write lock */
2555                                 btrfs_tree_read_unlock(b);
2556                                 free_extent_buffer(b);
2557                                 b = btrfs_lock_root_node(root);
2558                                 root_lock = BTRFS_WRITE_LOCK;
2559
2560                                 /* the level might have changed, check again */
2561                                 level = btrfs_header_level(b);
2562                         }
2563                 }
2564         }
2565         p->nodes[level] = b;
2566         if (!p->skip_locking)
2567                 p->locks[level] = root_lock;
2568
2569         while (b) {
2570                 level = btrfs_header_level(b);
2571
2572                 /*
2573                  * setup the path here so we can release it under lock
2574                  * contention with the cow code
2575                  */
2576                 if (cow) {
2577                         /*
2578                          * if we don't really need to cow this block
2579                          * then we don't want to set the path blocking,
2580                          * so we test it here
2581                          */
2582                         if (!should_cow_block(trans, root, b))
2583                                 goto cow_done;
2584
2585                         btrfs_set_path_blocking(p);
2586
2587                         /*
2588                          * must have write locks on this node and the
2589                          * parent
2590                          */
2591                         if (level > write_lock_level ||
2592                             (level + 1 > write_lock_level &&
2593                             level + 1 < BTRFS_MAX_LEVEL &&
2594                             p->nodes[level + 1])) {
2595                                 write_lock_level = level + 1;
2596                                 btrfs_release_path(p);
2597                                 goto again;
2598                         }
2599
2600                         err = btrfs_cow_block(trans, root, b,
2601                                               p->nodes[level + 1],
2602                                               p->slots[level + 1], &b);
2603                         if (err) {
2604                                 ret = err;
2605                                 goto done;
2606                         }
2607                 }
2608 cow_done:
2609                 BUG_ON(!cow && ins_len);
2610
2611                 p->nodes[level] = b;
2612                 btrfs_clear_path_blocking(p, NULL, 0);
2613
2614                 /*
2615                  * we have a lock on b and as long as we aren't changing
2616                  * the tree, there is no way to for the items in b to change.
2617                  * It is safe to drop the lock on our parent before we
2618                  * go through the expensive btree search on b.
2619                  *
2620                  * If cow is true, then we might be changing slot zero,
2621                  * which may require changing the parent.  So, we can't
2622                  * drop the lock until after we know which slot we're
2623                  * operating on.
2624                  */
2625                 if (!cow)
2626                         btrfs_unlock_up_safe(p, level + 1);
2627
2628                 ret = bin_search(b, key, level, &slot);
2629
2630                 if (level != 0) {
2631                         int dec = 0;
2632                         if (ret && slot > 0) {
2633                                 dec = 1;
2634                                 slot -= 1;
2635                         }
2636                         p->slots[level] = slot;
2637                         err = setup_nodes_for_search(trans, root, p, b, level,
2638                                              ins_len, &write_lock_level);
2639                         if (err == -EAGAIN)
2640                                 goto again;
2641                         if (err) {
2642                                 ret = err;
2643                                 goto done;
2644                         }
2645                         b = p->nodes[level];
2646                         slot = p->slots[level];
2647
2648                         /*
2649                          * slot 0 is special, if we change the key
2650                          * we have to update the parent pointer
2651                          * which means we must have a write lock
2652                          * on the parent
2653                          */
2654                         if (slot == 0 && cow &&
2655                             write_lock_level < level + 1) {
2656                                 write_lock_level = level + 1;
2657                                 btrfs_release_path(p);
2658                                 goto again;
2659                         }
2660
2661                         unlock_up(p, level, lowest_unlock,
2662                                   min_write_lock_level, &write_lock_level);
2663
2664                         if (level == lowest_level) {
2665                                 if (dec)
2666                                         p->slots[level]++;
2667                                 goto done;
2668                         }
2669
2670                         err = read_block_for_search(trans, root, p,
2671                                                     &b, level, slot, key, 0);
2672                         if (err == -EAGAIN)
2673                                 goto again;
2674                         if (err) {
2675                                 ret = err;
2676                                 goto done;
2677                         }
2678
2679                         if (!p->skip_locking) {
2680                                 level = btrfs_header_level(b);
2681                                 if (level <= write_lock_level) {
2682                                         err = btrfs_try_tree_write_lock(b);
2683                                         if (!err) {
2684                                                 btrfs_set_path_blocking(p);
2685                                                 btrfs_tree_lock(b);
2686                                                 btrfs_clear_path_blocking(p, b,
2687                                                                   BTRFS_WRITE_LOCK);
2688                                         }
2689                                         p->locks[level] = BTRFS_WRITE_LOCK;
2690                                 } else {
2691                                         err = btrfs_try_tree_read_lock(b);
2692                                         if (!err) {
2693                                                 btrfs_set_path_blocking(p);
2694                                                 btrfs_tree_read_lock(b);
2695                                                 btrfs_clear_path_blocking(p, b,
2696                                                                   BTRFS_READ_LOCK);
2697                                         }
2698                                         p->locks[level] = BTRFS_READ_LOCK;
2699                                 }
2700                                 p->nodes[level] = b;
2701                         }
2702                 } else {
2703                         p->slots[level] = slot;
2704                         if (ins_len > 0 &&
2705                             btrfs_leaf_free_space(root, b) < ins_len) {
2706                                 if (write_lock_level < 1) {
2707                                         write_lock_level = 1;
2708                                         btrfs_release_path(p);
2709                                         goto again;
2710                                 }
2711
2712                                 btrfs_set_path_blocking(p);
2713                                 err = split_leaf(trans, root, key,
2714                                                  p, ins_len, ret == 0);
2715                                 btrfs_clear_path_blocking(p, NULL, 0);
2716
2717                                 BUG_ON(err > 0);
2718                                 if (err) {
2719                                         ret = err;
2720                                         goto done;
2721                                 }
2722                         }
2723                         if (!p->search_for_split)
2724                                 unlock_up(p, level, lowest_unlock,
2725                                           min_write_lock_level, &write_lock_level);
2726                         goto done;
2727                 }
2728         }
2729         ret = 1;
2730 done:
2731         /*
2732          * we don't really know what they plan on doing with the path
2733          * from here on, so for now just mark it as blocking
2734          */
2735         if (!p->leave_spinning)
2736                 btrfs_set_path_blocking(p);
2737         if (ret < 0)
2738                 btrfs_release_path(p);
2739         return ret;
2740 }
2741
2742 /*
2743  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2744  * current state of the tree together with the operations recorded in the tree
2745  * modification log to search for the key in a previous version of this tree, as
2746  * denoted by the time_seq parameter.
2747  *
2748  * Naturally, there is no support for insert, delete or cow operations.
2749  *
2750  * The resulting path and return value will be set up as if we called
2751  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2752  */
2753 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2754                           struct btrfs_path *p, u64 time_seq)
2755 {
2756         struct extent_buffer *b;
2757         int slot;
2758         int ret;
2759         int err;
2760         int level;
2761         int lowest_unlock = 1;
2762         u8 lowest_level = 0;
2763
2764         lowest_level = p->lowest_level;
2765         WARN_ON(p->nodes[0] != NULL);
2766
2767         if (p->search_commit_root) {
2768                 BUG_ON(time_seq);
2769                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2770         }
2771
2772 again:
2773         b = get_old_root(root, time_seq);
2774         level = btrfs_header_level(b);
2775         p->locks[level] = BTRFS_READ_LOCK;
2776
2777         while (b) {
2778                 level = btrfs_header_level(b);
2779                 p->nodes[level] = b;
2780                 btrfs_clear_path_blocking(p, NULL, 0);
2781
2782                 /*
2783                  * we have a lock on b and as long as we aren't changing
2784                  * the tree, there is no way to for the items in b to change.
2785                  * It is safe to drop the lock on our parent before we
2786                  * go through the expensive btree search on b.
2787                  */
2788                 btrfs_unlock_up_safe(p, level + 1);
2789
2790                 ret = bin_search(b, key, level, &slot);
2791
2792                 if (level != 0) {
2793                         int dec = 0;
2794                         if (ret && slot > 0) {
2795                                 dec = 1;
2796                                 slot -= 1;
2797                         }
2798                         p->slots[level] = slot;
2799                         unlock_up(p, level, lowest_unlock, 0, NULL);
2800
2801                         if (level == lowest_level) {
2802                                 if (dec)
2803                                         p->slots[level]++;
2804                                 goto done;
2805                         }
2806
2807                         err = read_block_for_search(NULL, root, p, &b, level,
2808                                                     slot, key, time_seq);
2809                         if (err == -EAGAIN)
2810                                 goto again;
2811                         if (err) {
2812                                 ret = err;
2813                                 goto done;
2814                         }
2815
2816                         level = btrfs_header_level(b);
2817                         err = btrfs_try_tree_read_lock(b);
2818                         if (!err) {
2819                                 btrfs_set_path_blocking(p);
2820                                 btrfs_tree_read_lock(b);
2821                                 btrfs_clear_path_blocking(p, b,
2822                                                           BTRFS_READ_LOCK);
2823                         }
2824                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2825                         p->locks[level] = BTRFS_READ_LOCK;
2826                         p->nodes[level] = b;
2827                 } else {
2828                         p->slots[level] = slot;
2829                         unlock_up(p, level, lowest_unlock, 0, NULL);
2830                         goto done;
2831                 }
2832         }
2833         ret = 1;
2834 done:
2835         if (!p->leave_spinning)
2836                 btrfs_set_path_blocking(p);
2837         if (ret < 0)
2838                 btrfs_release_path(p);
2839
2840         return ret;
2841 }
2842
2843 /*
2844  * helper to use instead of search slot if no exact match is needed but
2845  * instead the next or previous item should be returned.
2846  * When find_higher is true, the next higher item is returned, the next lower
2847  * otherwise.
2848  * When return_any and find_higher are both true, and no higher item is found,
2849  * return the next lower instead.
2850  * When return_any is true and find_higher is false, and no lower item is found,
2851  * return the next higher instead.
2852  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2853  * < 0 on error
2854  */
2855 int btrfs_search_slot_for_read(struct btrfs_root *root,
2856                                struct btrfs_key *key, struct btrfs_path *p,
2857                                int find_higher, int return_any)
2858 {
2859         int ret;
2860         struct extent_buffer *leaf;
2861
2862 again:
2863         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2864         if (ret <= 0)
2865                 return ret;
2866         /*
2867          * a return value of 1 means the path is at the position where the
2868          * item should be inserted. Normally this is the next bigger item,
2869          * but in case the previous item is the last in a leaf, path points
2870          * to the first free slot in the previous leaf, i.e. at an invalid
2871          * item.
2872          */
2873         leaf = p->nodes[0];
2874
2875         if (find_higher) {
2876                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2877                         ret = btrfs_next_leaf(root, p);
2878                         if (ret <= 0)
2879                                 return ret;
2880                         if (!return_any)
2881                                 return 1;
2882                         /*
2883                          * no higher item found, return the next
2884                          * lower instead
2885                          */
2886                         return_any = 0;
2887                         find_higher = 0;
2888                         btrfs_release_path(p);
2889                         goto again;
2890                 }
2891         } else {
2892                 if (p->slots[0] == 0) {
2893                         ret = btrfs_prev_leaf(root, p);
2894                         if (ret < 0)
2895                                 return ret;
2896                         if (!ret) {
2897                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2898                                 return 0;
2899                         }
2900                         if (!return_any)
2901                                 return 1;
2902                         /*
2903                          * no lower item found, return the next
2904                          * higher instead
2905                          */
2906                         return_any = 0;
2907                         find_higher = 1;
2908                         btrfs_release_path(p);
2909                         goto again;
2910                 } else {
2911                         --p->slots[0];
2912                 }
2913         }
2914         return 0;
2915 }
2916
2917 /*
2918  * adjust the pointers going up the tree, starting at level
2919  * making sure the right key of each node is points to 'key'.
2920  * This is used after shifting pointers to the left, so it stops
2921  * fixing up pointers when a given leaf/node is not in slot 0 of the
2922  * higher levels
2923  *
2924  */
2925 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2926                            struct btrfs_disk_key *key, int level)
2927 {
2928         int i;
2929         struct extent_buffer *t;
2930
2931         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2932                 int tslot = path->slots[i];
2933                 if (!path->nodes[i])
2934                         break;
2935                 t = path->nodes[i];
2936                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2937                 btrfs_set_node_key(t, key, tslot);
2938                 btrfs_mark_buffer_dirty(path->nodes[i]);
2939                 if (tslot != 0)
2940                         break;
2941         }
2942 }
2943
2944 /*
2945  * update item key.
2946  *
2947  * This function isn't completely safe. It's the caller's responsibility
2948  * that the new key won't break the order
2949  */
2950 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2951                              struct btrfs_key *new_key)
2952 {
2953         struct btrfs_disk_key disk_key;
2954         struct extent_buffer *eb;
2955         int slot;
2956
2957         eb = path->nodes[0];
2958         slot = path->slots[0];
2959         if (slot > 0) {
2960                 btrfs_item_key(eb, &disk_key, slot - 1);
2961                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2962         }
2963         if (slot < btrfs_header_nritems(eb) - 1) {
2964                 btrfs_item_key(eb, &disk_key, slot + 1);
2965                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2966         }
2967
2968         btrfs_cpu_key_to_disk(&disk_key, new_key);
2969         btrfs_set_item_key(eb, &disk_key, slot);
2970         btrfs_mark_buffer_dirty(eb);
2971         if (slot == 0)
2972                 fixup_low_keys(root, path, &disk_key, 1);
2973 }
2974
2975 /*
2976  * try to push data from one node into the next node left in the
2977  * tree.
2978  *
2979  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2980  * error, and > 0 if there was no room in the left hand block.
2981  */
2982 static int push_node_left(struct btrfs_trans_handle *trans,
2983                           struct btrfs_root *root, struct extent_buffer *dst,
2984                           struct extent_buffer *src, int empty)
2985 {
2986         int push_items = 0;
2987         int src_nritems;
2988         int dst_nritems;
2989         int ret = 0;
2990
2991         src_nritems = btrfs_header_nritems(src);
2992         dst_nritems = btrfs_header_nritems(dst);
2993         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2994         WARN_ON(btrfs_header_generation(src) != trans->transid);
2995         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2996
2997         if (!empty && src_nritems <= 8)
2998                 return 1;
2999
3000         if (push_items <= 0)
3001                 return 1;
3002
3003         if (empty) {
3004                 push_items = min(src_nritems, push_items);
3005                 if (push_items < src_nritems) {
3006                         /* leave at least 8 pointers in the node if
3007                          * we aren't going to empty it
3008                          */
3009                         if (src_nritems - push_items < 8) {
3010                                 if (push_items <= 8)
3011                                         return 1;
3012                                 push_items -= 8;
3013                         }
3014                 }
3015         } else
3016                 push_items = min(src_nritems - 8, push_items);
3017
3018         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3019                              push_items);
3020         copy_extent_buffer(dst, src,
3021                            btrfs_node_key_ptr_offset(dst_nritems),
3022                            btrfs_node_key_ptr_offset(0),
3023                            push_items * sizeof(struct btrfs_key_ptr));
3024
3025         if (push_items < src_nritems) {
3026                 /*
3027                  * don't call tree_mod_log_eb_move here, key removal was already
3028                  * fully logged by tree_mod_log_eb_copy above.
3029                  */
3030                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3031                                       btrfs_node_key_ptr_offset(push_items),
3032                                       (src_nritems - push_items) *
3033                                       sizeof(struct btrfs_key_ptr));
3034         }
3035         btrfs_set_header_nritems(src, src_nritems - push_items);
3036         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3037         btrfs_mark_buffer_dirty(src);
3038         btrfs_mark_buffer_dirty(dst);
3039
3040         return ret;
3041 }
3042
3043 /*
3044  * try to push data from one node into the next node right in the
3045  * tree.
3046  *
3047  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3048  * error, and > 0 if there was no room in the right hand block.
3049  *
3050  * this will  only push up to 1/2 the contents of the left node over
3051  */
3052 static int balance_node_right(struct btrfs_trans_handle *trans,
3053                               struct btrfs_root *root,
3054                               struct extent_buffer *dst,
3055                               struct extent_buffer *src)
3056 {
3057         int push_items = 0;
3058         int max_push;
3059         int src_nritems;
3060         int dst_nritems;
3061         int ret = 0;
3062
3063         WARN_ON(btrfs_header_generation(src) != trans->transid);
3064         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3065
3066         src_nritems = btrfs_header_nritems(src);
3067         dst_nritems = btrfs_header_nritems(dst);
3068         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3069         if (push_items <= 0)
3070                 return 1;
3071
3072         if (src_nritems < 4)
3073                 return 1;
3074
3075         max_push = src_nritems / 2 + 1;
3076         /* don't try to empty the node */
3077         if (max_push >= src_nritems)
3078                 return 1;
3079
3080         if (max_push < push_items)
3081                 push_items = max_push;
3082
3083         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3084         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3085                                       btrfs_node_key_ptr_offset(0),
3086                                       (dst_nritems) *
3087                                       sizeof(struct btrfs_key_ptr));
3088
3089         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3090                              src_nritems - push_items, push_items);
3091         copy_extent_buffer(dst, src,
3092                            btrfs_node_key_ptr_offset(0),
3093                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3094                            push_items * sizeof(struct btrfs_key_ptr));
3095
3096         btrfs_set_header_nritems(src, src_nritems - push_items);
3097         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3098
3099         btrfs_mark_buffer_dirty(src);
3100         btrfs_mark_buffer_dirty(dst);
3101
3102         return ret;
3103 }
3104
3105 /*
3106  * helper function to insert a new root level in the tree.
3107  * A new node is allocated, and a single item is inserted to
3108  * point to the existing root
3109  *
3110  * returns zero on success or < 0 on failure.
3111  */
3112 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3113                            struct btrfs_root *root,
3114                            struct btrfs_path *path, int level)
3115 {
3116         u64 lower_gen;
3117         struct extent_buffer *lower;
3118         struct extent_buffer *c;
3119         struct extent_buffer *old;
3120         struct btrfs_disk_key lower_key;
3121
3122         BUG_ON(path->nodes[level]);
3123         BUG_ON(path->nodes[level-1] != root->node);
3124
3125         lower = path->nodes[level-1];
3126         if (level == 1)
3127                 btrfs_item_key(lower, &lower_key, 0);
3128         else
3129                 btrfs_node_key(lower, &lower_key, 0);
3130
3131         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3132                                    root->root_key.objectid, &lower_key,
3133                                    level, root->node->start, 0);
3134         if (IS_ERR(c))
3135                 return PTR_ERR(c);
3136
3137         root_add_used(root, root->nodesize);
3138
3139         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3140         btrfs_set_header_nritems(c, 1);
3141         btrfs_set_header_level(c, level);
3142         btrfs_set_header_bytenr(c, c->start);
3143         btrfs_set_header_generation(c, trans->transid);
3144         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3145         btrfs_set_header_owner(c, root->root_key.objectid);
3146
3147         write_extent_buffer(c, root->fs_info->fsid,
3148                             (unsigned long)btrfs_header_fsid(c),
3149                             BTRFS_FSID_SIZE);
3150
3151         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3152                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3153                             BTRFS_UUID_SIZE);
3154
3155         btrfs_set_node_key(c, &lower_key, 0);
3156         btrfs_set_node_blockptr(c, 0, lower->start);
3157         lower_gen = btrfs_header_generation(lower);
3158         WARN_ON(lower_gen != trans->transid);
3159
3160         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3161
3162         btrfs_mark_buffer_dirty(c);
3163
3164         old = root->node;
3165         tree_mod_log_set_root_pointer(root, c, 0);
3166         rcu_assign_pointer(root->node, c);
3167
3168         /* the super has an extra ref to root->node */
3169         free_extent_buffer(old);
3170
3171         add_root_to_dirty_list(root);
3172         extent_buffer_get(c);
3173         path->nodes[level] = c;
3174         path->locks[level] = BTRFS_WRITE_LOCK;
3175         path->slots[level] = 0;
3176         return 0;
3177 }
3178
3179 /*
3180  * worker function to insert a single pointer in a node.
3181  * the node should have enough room for the pointer already
3182  *
3183  * slot and level indicate where you want the key to go, and
3184  * blocknr is the block the key points to.
3185  */
3186 static void insert_ptr(struct btrfs_trans_handle *trans,
3187                        struct btrfs_root *root, struct btrfs_path *path,
3188                        struct btrfs_disk_key *key, u64 bytenr,
3189                        int slot, int level)
3190 {
3191         struct extent_buffer *lower;
3192         int nritems;
3193         int ret;
3194
3195         BUG_ON(!path->nodes[level]);
3196         btrfs_assert_tree_locked(path->nodes[level]);
3197         lower = path->nodes[level];
3198         nritems = btrfs_header_nritems(lower);
3199         BUG_ON(slot > nritems);
3200         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3201         if (slot != nritems) {
3202                 if (level)
3203                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3204                                              slot, nritems - slot);
3205                 memmove_extent_buffer(lower,
3206                               btrfs_node_key_ptr_offset(slot + 1),
3207                               btrfs_node_key_ptr_offset(slot),
3208                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3209         }
3210         if (level) {
3211                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3212                                               MOD_LOG_KEY_ADD);
3213                 BUG_ON(ret < 0);
3214         }
3215         btrfs_set_node_key(lower, key, slot);
3216         btrfs_set_node_blockptr(lower, slot, bytenr);
3217         WARN_ON(trans->transid == 0);
3218         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3219         btrfs_set_header_nritems(lower, nritems + 1);
3220         btrfs_mark_buffer_dirty(lower);
3221 }
3222
3223 /*
3224  * split the node at the specified level in path in two.
3225  * The path is corrected to point to the appropriate node after the split
3226  *
3227  * Before splitting this tries to make some room in the node by pushing
3228  * left and right, if either one works, it returns right away.
3229  *
3230  * returns 0 on success and < 0 on failure
3231  */
3232 static noinline int split_node(struct btrfs_trans_handle *trans,
3233                                struct btrfs_root *root,
3234                                struct btrfs_path *path, int level)
3235 {
3236         struct extent_buffer *c;
3237         struct extent_buffer *split;
3238         struct btrfs_disk_key disk_key;
3239         int mid;
3240         int ret;
3241         u32 c_nritems;
3242
3243         c = path->nodes[level];
3244         WARN_ON(btrfs_header_generation(c) != trans->transid);
3245         if (c == root->node) {
3246                 /*
3247                  * trying to split the root, lets make a new one
3248                  *
3249                  * tree mod log: We don't log_removal old root in
3250                  * insert_new_root, because that root buffer will be kept as a
3251                  * normal node. We are going to log removal of half of the
3252                  * elements below with tree_mod_log_eb_copy. We're holding a
3253                  * tree lock on the buffer, which is why we cannot race with
3254                  * other tree_mod_log users.
3255                  */
3256                 ret = insert_new_root(trans, root, path, level + 1);
3257                 if (ret)
3258                         return ret;
3259         } else {
3260                 ret = push_nodes_for_insert(trans, root, path, level);
3261                 c = path->nodes[level];
3262                 if (!ret && btrfs_header_nritems(c) <
3263                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3264                         return 0;
3265                 if (ret < 0)
3266                         return ret;
3267         }
3268
3269         c_nritems = btrfs_header_nritems(c);
3270         mid = (c_nritems + 1) / 2;
3271         btrfs_node_key(c, &disk_key, mid);
3272
3273         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3274                                         root->root_key.objectid,
3275                                         &disk_key, level, c->start, 0);
3276         if (IS_ERR(split))
3277                 return PTR_ERR(split);
3278
3279         root_add_used(root, root->nodesize);
3280
3281         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3282         btrfs_set_header_level(split, btrfs_header_level(c));
3283         btrfs_set_header_bytenr(split, split->start);
3284         btrfs_set_header_generation(split, trans->transid);
3285         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3286         btrfs_set_header_owner(split, root->root_key.objectid);
3287         write_extent_buffer(split, root->fs_info->fsid,
3288                             (unsigned long)btrfs_header_fsid(split),
3289                             BTRFS_FSID_SIZE);
3290         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3291                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3292                             BTRFS_UUID_SIZE);
3293
3294         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3295         copy_extent_buffer(split, c,
3296                            btrfs_node_key_ptr_offset(0),
3297                            btrfs_node_key_ptr_offset(mid),
3298                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3299         btrfs_set_header_nritems(split, c_nritems - mid);
3300         btrfs_set_header_nritems(c, mid);
3301         ret = 0;
3302
3303         btrfs_mark_buffer_dirty(c);
3304         btrfs_mark_buffer_dirty(split);
3305
3306         insert_ptr(trans, root, path, &disk_key, split->start,
3307                    path->slots[level + 1] + 1, level + 1);
3308
3309         if (path->slots[level] >= mid) {
3310                 path->slots[level] -= mid;
3311                 btrfs_tree_unlock(c);
3312                 free_extent_buffer(c);
3313                 path->nodes[level] = split;
3314                 path->slots[level + 1] += 1;
3315         } else {
3316                 btrfs_tree_unlock(split);
3317                 free_extent_buffer(split);
3318         }
3319         return ret;
3320 }
3321
3322 /*
3323  * how many bytes are required to store the items in a leaf.  start
3324  * and nr indicate which items in the leaf to check.  This totals up the
3325  * space used both by the item structs and the item data
3326  */
3327 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3328 {
3329         struct btrfs_item *start_item;
3330         struct btrfs_item *end_item;
3331         struct btrfs_map_token token;
3332         int data_len;
3333         int nritems = btrfs_header_nritems(l);
3334         int end = min(nritems, start + nr) - 1;
3335
3336         if (!nr)
3337                 return 0;
3338         btrfs_init_map_token(&token);
3339         start_item = btrfs_item_nr(l, start);
3340         end_item = btrfs_item_nr(l, end);
3341         data_len = btrfs_token_item_offset(l, start_item, &token) +
3342                 btrfs_token_item_size(l, start_item, &token);
3343         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3344         data_len += sizeof(struct btrfs_item) * nr;
3345         WARN_ON(data_len < 0);
3346         return data_len;
3347 }
3348
3349 /*
3350  * The space between the end of the leaf items and
3351  * the start of the leaf data.  IOW, how much room
3352  * the leaf has left for both items and data
3353  */
3354 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3355                                    struct extent_buffer *leaf)
3356 {
3357         int nritems = btrfs_header_nritems(leaf);
3358         int ret;
3359         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3360         if (ret < 0) {
3361                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3362                        "used %d nritems %d\n",
3363                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3364                        leaf_space_used(leaf, 0, nritems), nritems);
3365         }
3366         return ret;
3367 }
3368
3369 /*
3370  * min slot controls the lowest index we're willing to push to the
3371  * right.  We'll push up to and including min_slot, but no lower
3372  */
3373 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3374                                       struct btrfs_root *root,
3375                                       struct btrfs_path *path,
3376                                       int data_size, int empty,
3377                                       struct extent_buffer *right,
3378                                       int free_space, u32 left_nritems,
3379                                       u32 min_slot)
3380 {
3381         struct extent_buffer *left = path->nodes[0];
3382         struct extent_buffer *upper = path->nodes[1];
3383         struct btrfs_map_token token;
3384         struct btrfs_disk_key disk_key;
3385         int slot;
3386         u32 i;
3387         int push_space = 0;
3388         int push_items = 0;
3389         struct btrfs_item *item;
3390         u32 nr;
3391         u32 right_nritems;
3392         u32 data_end;
3393         u32 this_item_size;
3394
3395         btrfs_init_map_token(&token);
3396
3397         if (empty)
3398                 nr = 0;
3399         else
3400                 nr = max_t(u32, 1, min_slot);
3401
3402         if (path->slots[0] >= left_nritems)
3403                 push_space += data_size;
3404
3405         slot = path->slots[1];
3406         i = left_nritems - 1;
3407         while (i >= nr) {
3408                 item = btrfs_item_nr(left, i);
3409
3410                 if (!empty && push_items > 0) {
3411                         if (path->slots[0] > i)
3412                                 break;
3413                         if (path->slots[0] == i) {
3414                                 int space = btrfs_leaf_free_space(root, left);
3415                                 if (space + push_space * 2 > free_space)
3416                                         break;
3417                         }
3418                 }
3419
3420                 if (path->slots[0] == i)
3421                         push_space += data_size;
3422
3423                 this_item_size = btrfs_item_size(left, item);
3424                 if (this_item_size + sizeof(*item) + push_space > free_space)
3425                         break;
3426
3427                 push_items++;
3428                 push_space += this_item_size + sizeof(*item);
3429                 if (i == 0)
3430                         break;
3431                 i--;
3432         }
3433
3434         if (push_items == 0)
3435                 goto out_unlock;
3436
3437         WARN_ON(!empty && push_items == left_nritems);
3438
3439         /* push left to right */
3440         right_nritems = btrfs_header_nritems(right);
3441
3442         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3443         push_space -= leaf_data_end(root, left);
3444
3445         /* make room in the right data area */
3446         data_end = leaf_data_end(root, right);
3447         memmove_extent_buffer(right,
3448                               btrfs_leaf_data(right) + data_end - push_space,
3449                               btrfs_leaf_data(right) + data_end,
3450                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3451
3452         /* copy from the left data area */
3453         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3454                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3455                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3456                      push_space);
3457
3458         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3459                               btrfs_item_nr_offset(0),
3460                               right_nritems * sizeof(struct btrfs_item));
3461
3462         /* copy the items from left to right */
3463         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3464                    btrfs_item_nr_offset(left_nritems - push_items),
3465                    push_items * sizeof(struct btrfs_item));
3466
3467         /* update the item pointers */
3468         right_nritems += push_items;
3469         btrfs_set_header_nritems(right, right_nritems);
3470         push_space = BTRFS_LEAF_DATA_SIZE(root);
3471         for (i = 0; i < right_nritems; i++) {
3472                 item = btrfs_item_nr(right, i);
3473                 push_space -= btrfs_token_item_size(right, item, &token);
3474                 btrfs_set_token_item_offset(right, item, push_space, &token);
3475         }
3476
3477         left_nritems -= push_items;
3478         btrfs_set_header_nritems(left, left_nritems);
3479
3480         if (left_nritems)
3481                 btrfs_mark_buffer_dirty(left);
3482         else
3483                 clean_tree_block(trans, root, left);
3484
3485         btrfs_mark_buffer_dirty(right);
3486
3487         btrfs_item_key(right, &disk_key, 0);
3488         btrfs_set_node_key(upper, &disk_key, slot + 1);
3489         btrfs_mark_buffer_dirty(upper);
3490
3491         /* then fixup the leaf pointer in the path */
3492         if (path->slots[0] >= left_nritems) {
3493                 path->slots[0] -= left_nritems;
3494                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3495                         clean_tree_block(trans, root, path->nodes[0]);
3496                 btrfs_tree_unlock(path->nodes[0]);
3497                 free_extent_buffer(path->nodes[0]);
3498                 path->nodes[0] = right;
3499                 path->slots[1] += 1;
3500         } else {
3501                 btrfs_tree_unlock(right);
3502                 free_extent_buffer(right);
3503         }
3504         return 0;
3505
3506 out_unlock:
3507         btrfs_tree_unlock(right);
3508         free_extent_buffer(right);
3509         return 1;
3510 }
3511
3512 /*
3513  * push some data in the path leaf to the right, trying to free up at
3514  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3515  *
3516  * returns 1 if the push failed because the other node didn't have enough
3517  * room, 0 if everything worked out and < 0 if there were major errors.
3518  *
3519  * this will push starting from min_slot to the end of the leaf.  It won't
3520  * push any slot lower than min_slot
3521  */
3522 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3523                            *root, struct btrfs_path *path,
3524                            int min_data_size, int data_size,
3525                            int empty, u32 min_slot)
3526 {
3527         struct extent_buffer *left = path->nodes[0];
3528         struct extent_buffer *right;
3529         struct extent_buffer *upper;
3530         int slot;
3531         int free_space;
3532         u32 left_nritems;
3533         int ret;
3534
3535         if (!path->nodes[1])
3536                 return 1;
3537
3538         slot = path->slots[1];
3539         upper = path->nodes[1];
3540         if (slot >= btrfs_header_nritems(upper) - 1)
3541                 return 1;
3542
3543         btrfs_assert_tree_locked(path->nodes[1]);
3544
3545         right = read_node_slot(root, upper, slot + 1);
3546         if (right == NULL)
3547                 return 1;
3548
3549         btrfs_tree_lock(right);
3550         btrfs_set_lock_blocking(right);
3551
3552         free_space = btrfs_leaf_free_space(root, right);
3553         if (free_space < data_size)
3554                 goto out_unlock;
3555
3556         /* cow and double check */
3557         ret = btrfs_cow_block(trans, root, right, upper,
3558                               slot + 1, &right);
3559         if (ret)
3560                 goto out_unlock;
3561
3562         free_space = btrfs_leaf_free_space(root, right);
3563         if (free_space < data_size)
3564                 goto out_unlock;
3565
3566         left_nritems = btrfs_header_nritems(left);
3567         if (left_nritems == 0)
3568                 goto out_unlock;
3569
3570         return __push_leaf_right(trans, root, path, min_data_size, empty,
3571                                 right, free_space, left_nritems, min_slot);
3572 out_unlock:
3573         btrfs_tree_unlock(right);
3574         free_extent_buffer(right);
3575         return 1;
3576 }
3577
3578 /*
3579  * push some data in the path leaf to the left, trying to free up at
3580  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3581  *
3582  * max_slot can put a limit on how far into the leaf we'll push items.  The
3583  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3584  * items
3585  */
3586 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3587                                      struct btrfs_root *root,
3588                                      struct btrfs_path *path, int data_size,
3589                                      int empty, struct extent_buffer *left,
3590                                      int free_space, u32 right_nritems,
3591                                      u32 max_slot)
3592 {
3593         struct btrfs_disk_key disk_key;
3594         struct extent_buffer *right = path->nodes[0];
3595         int i;
3596         int push_space = 0;
3597         int push_items = 0;
3598         struct btrfs_item *item;
3599         u32 old_left_nritems;
3600         u32 nr;
3601         int ret = 0;
3602         u32 this_item_size;
3603         u32 old_left_item_size;
3604         struct btrfs_map_token token;
3605
3606         btrfs_init_map_token(&token);
3607
3608         if (empty)
3609                 nr = min(right_nritems, max_slot);
3610         else
3611                 nr = min(right_nritems - 1, max_slot);
3612
3613         for (i = 0; i < nr; i++) {
3614                 item = btrfs_item_nr(right, i);
3615
3616                 if (!empty && push_items > 0) {
3617                         if (path->slots[0] < i)
3618                                 break;
3619                         if (path->slots[0] == i) {
3620                                 int space = btrfs_leaf_free_space(root, right);
3621                                 if (space + push_space * 2 > free_space)
3622                                         break;
3623                         }
3624                 }
3625
3626                 if (path->slots[0] == i)
3627                         push_space += data_size;
3628
3629                 this_item_size = btrfs_item_size(right, item);
3630                 if (this_item_size + sizeof(*item) + push_space > free_space)
3631                         break;
3632
3633                 push_items++;
3634                 push_space += this_item_size + sizeof(*item);
3635         }
3636
3637         if (push_items == 0) {
3638                 ret = 1;
3639                 goto out;
3640         }
3641         if (!empty && push_items == btrfs_header_nritems(right))
3642                 WARN_ON(1);
3643
3644         /* push data from right to left */
3645         copy_extent_buffer(left, right,
3646                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3647                            btrfs_item_nr_offset(0),
3648                            push_items * sizeof(struct btrfs_item));
3649
3650         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3651                      btrfs_item_offset_nr(right, push_items - 1);
3652
3653         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3654                      leaf_data_end(root, left) - push_space,
3655                      btrfs_leaf_data(right) +
3656                      btrfs_item_offset_nr(right, push_items - 1),
3657                      push_space);
3658         old_left_nritems = btrfs_header_nritems(left);
3659         BUG_ON(old_left_nritems <= 0);
3660
3661         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3662         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3663                 u32 ioff;
3664
3665                 item = btrfs_item_nr(left, i);
3666
3667                 ioff = btrfs_token_item_offset(left, item, &token);
3668                 btrfs_set_token_item_offset(left, item,
3669                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3670                       &token);
3671         }
3672         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3673
3674         /* fixup right node */
3675         if (push_items > right_nritems)
3676                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3677                        right_nritems);
3678
3679         if (push_items < right_nritems) {
3680                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3681                                                   leaf_data_end(root, right);
3682                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3683                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3684                                       btrfs_leaf_data(right) +
3685                                       leaf_data_end(root, right), push_space);
3686
3687                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3688                               btrfs_item_nr_offset(push_items),
3689                              (btrfs_header_nritems(right) - push_items) *
3690                              sizeof(struct btrfs_item));
3691         }
3692         right_nritems -= push_items;
3693         btrfs_set_header_nritems(right, right_nritems);
3694         push_space = BTRFS_LEAF_DATA_SIZE(root);
3695         for (i = 0; i < right_nritems; i++) {
3696                 item = btrfs_item_nr(right, i);
3697
3698                 push_space = push_space - btrfs_token_item_size(right,
3699                                                                 item, &token);
3700                 btrfs_set_token_item_offset(right, item, push_space, &token);
3701         }
3702
3703         btrfs_mark_buffer_dirty(left);
3704         if (right_nritems)
3705                 btrfs_mark_buffer_dirty(right);
3706         else
3707                 clean_tree_block(trans, root, right);
3708
3709         btrfs_item_key(right, &disk_key, 0);
3710         fixup_low_keys(root, path, &disk_key, 1);
3711
3712         /* then fixup the leaf pointer in the path */
3713         if (path->slots[0] < push_items) {
3714                 path->slots[0] += old_left_nritems;
3715                 btrfs_tree_unlock(path->nodes[0]);
3716                 free_extent_buffer(path->nodes[0]);
3717                 path->nodes[0] = left;
3718                 path->slots[1] -= 1;
3719         } else {
3720                 btrfs_tree_unlock(left);
3721                 free_extent_buffer(left);
3722                 path->slots[0] -= push_items;
3723         }
3724         BUG_ON(path->slots[0] < 0);
3725         return ret;
3726 out:
3727         btrfs_tree_unlock(left);
3728         free_extent_buffer(left);
3729         return ret;
3730 }
3731
3732 /*
3733  * push some data in the path leaf to the left, trying to free up at
3734  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3735  *
3736  * max_slot can put a limit on how far into the leaf we'll push items.  The
3737  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3738  * items
3739  */
3740 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3741                           *root, struct btrfs_path *path, int min_data_size,
3742                           int data_size, int empty, u32 max_slot)
3743 {
3744         struct extent_buffer *right = path->nodes[0];
3745         struct extent_buffer *left;
3746         int slot;
3747         int free_space;
3748         u32 right_nritems;
3749         int ret = 0;
3750
3751         slot = path->slots[1];
3752         if (slot == 0)
3753                 return 1;
3754         if (!path->nodes[1])
3755                 return 1;
3756
3757         right_nritems = btrfs_header_nritems(right);
3758         if (right_nritems == 0)
3759                 return 1;
3760
3761         btrfs_assert_tree_locked(path->nodes[1]);
3762
3763         left = read_node_slot(root, path->nodes[1], slot - 1);
3764         if (left == NULL)
3765                 return 1;
3766
3767         btrfs_tree_lock(left);
3768         btrfs_set_lock_blocking(left);
3769
3770         free_space = btrfs_leaf_free_space(root, left);
3771         if (free_space < data_size) {
3772                 ret = 1;
3773                 goto out;
3774         }
3775
3776         /* cow and double check */
3777         ret = btrfs_cow_block(trans, root, left,
3778                               path->nodes[1], slot - 1, &left);
3779         if (ret) {
3780                 /* we hit -ENOSPC, but it isn't fatal here */
3781                 if (ret == -ENOSPC)
3782                         ret = 1;
3783                 goto out;
3784         }
3785
3786         free_space = btrfs_leaf_free_space(root, left);
3787         if (free_space < data_size) {
3788                 ret = 1;
3789                 goto out;
3790         }
3791
3792         return __push_leaf_left(trans, root, path, min_data_size,
3793                                empty, left, free_space, right_nritems,
3794                                max_slot);
3795 out:
3796         btrfs_tree_unlock(left);
3797         free_extent_buffer(left);
3798         return ret;
3799 }
3800
3801 /*
3802  * split the path's leaf in two, making sure there is at least data_size
3803  * available for the resulting leaf level of the path.
3804  */
3805 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3806                                     struct btrfs_root *root,
3807                                     struct btrfs_path *path,
3808                                     struct extent_buffer *l,
3809                                     struct extent_buffer *right,
3810                                     int slot, int mid, int nritems)
3811 {
3812         int data_copy_size;
3813         int rt_data_off;
3814         int i;
3815         struct btrfs_disk_key disk_key;
3816         struct btrfs_map_token token;
3817
3818         btrfs_init_map_token(&token);
3819
3820         nritems = nritems - mid;
3821         btrfs_set_header_nritems(right, nritems);
3822         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3823
3824         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3825                            btrfs_item_nr_offset(mid),
3826                            nritems * sizeof(struct btrfs_item));
3827
3828         copy_extent_buffer(right, l,
3829                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3830                      data_copy_size, btrfs_leaf_data(l) +
3831                      leaf_data_end(root, l), data_copy_size);
3832
3833         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3834                       btrfs_item_end_nr(l, mid);
3835
3836         for (i = 0; i < nritems; i++) {
3837                 struct btrfs_item *item = btrfs_item_nr(right, i);
3838                 u32 ioff;
3839
3840                 ioff = btrfs_token_item_offset(right, item, &token);
3841                 btrfs_set_token_item_offset(right, item,
3842                                             ioff + rt_data_off, &token);
3843         }
3844
3845         btrfs_set_header_nritems(l, mid);
3846         btrfs_item_key(right, &disk_key, 0);
3847         insert_ptr(trans, root, path, &disk_key, right->start,
3848                    path->slots[1] + 1, 1);
3849
3850         btrfs_mark_buffer_dirty(right);
3851         btrfs_mark_buffer_dirty(l);
3852         BUG_ON(path->slots[0] != slot);
3853
3854         if (mid <= slot) {
3855                 btrfs_tree_unlock(path->nodes[0]);
3856                 free_extent_buffer(path->nodes[0]);
3857                 path->nodes[0] = right;
3858                 path->slots[0] -= mid;
3859                 path->slots[1] += 1;
3860         } else {
3861                 btrfs_tree_unlock(right);
3862                 free_extent_buffer(right);
3863         }
3864
3865         BUG_ON(path->slots[0] < 0);
3866 }
3867
3868 /*
3869  * double splits happen when we need to insert a big item in the middle
3870  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3871  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3872  *          A                 B                 C
3873  *
3874  * We avoid this by trying to push the items on either side of our target
3875  * into the adjacent leaves.  If all goes well we can avoid the double split
3876  * completely.
3877  */
3878 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3879                                           struct btrfs_root *root,
3880                                           struct btrfs_path *path,
3881                                           int data_size)
3882 {
3883         int ret;
3884         int progress = 0;
3885         int slot;
3886         u32 nritems;
3887
3888         slot = path->slots[0];
3889
3890         /*
3891          * try to push all the items after our slot into the
3892          * right leaf
3893          */
3894         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3895         if (ret < 0)
3896                 return ret;
3897
3898         if (ret == 0)
3899                 progress++;
3900
3901         nritems = btrfs_header_nritems(path->nodes[0]);
3902         /*
3903          * our goal is to get our slot at the start or end of a leaf.  If
3904          * we've done so we're done
3905          */
3906         if (path->slots[0] == 0 || path->slots[0] == nritems)
3907                 return 0;
3908
3909         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3910                 return 0;
3911
3912         /* try to push all the items before our slot into the next leaf */
3913         slot = path->slots[0];
3914         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3915         if (ret < 0)
3916                 return ret;
3917
3918         if (ret == 0)
3919                 progress++;
3920
3921         if (progress)
3922                 return 0;
3923         return 1;
3924 }
3925
3926 /*
3927  * split the path's leaf in two, making sure there is at least data_size
3928  * available for the resulting leaf level of the path.
3929  *
3930  * returns 0 if all went well and < 0 on failure.
3931  */
3932 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3933                                struct btrfs_root *root,
3934                                struct btrfs_key *ins_key,
3935                                struct btrfs_path *path, int data_size,
3936                                int extend)
3937 {
3938         struct btrfs_disk_key disk_key;
3939         struct extent_buffer *l;
3940         u32 nritems;
3941         int mid;
3942         int slot;
3943         struct extent_buffer *right;
3944         int ret = 0;
3945         int wret;
3946         int split;
3947         int num_doubles = 0;
3948         int tried_avoid_double = 0;
3949
3950         l = path->nodes[0];
3951         slot = path->slots[0];
3952         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3953             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3954                 return -EOVERFLOW;
3955
3956         /* first try to make some room by pushing left and right */
3957         if (data_size && path->nodes[1]) {
3958                 wret = push_leaf_right(trans, root, path, data_size,
3959                                        data_size, 0, 0);
3960                 if (wret < 0)
3961                         return wret;
3962                 if (wret) {
3963                         wret = push_leaf_left(trans, root, path, data_size,
3964                                               data_size, 0, (u32)-1);
3965                         if (wret < 0)
3966                                 return wret;
3967                 }
3968                 l = path->nodes[0];
3969
3970                 /* did the pushes work? */
3971                 if (btrfs_leaf_free_space(root, l) >= data_size)
3972                         return 0;
3973         }
3974
3975         if (!path->nodes[1]) {
3976                 ret = insert_new_root(trans, root, path, 1);
3977                 if (ret)
3978                         return ret;
3979         }
3980 again:
3981         split = 1;
3982         l = path->nodes[0];
3983         slot = path->slots[0];
3984         nritems = btrfs_header_nritems(l);
3985         mid = (nritems + 1) / 2;
3986
3987         if (mid <= slot) {
3988                 if (nritems == 1 ||
3989                     leaf_space_used(l, mid, nritems - mid) + data_size >
3990                         BTRFS_LEAF_DATA_SIZE(root)) {
3991                         if (slot >= nritems) {
3992                                 split = 0;
3993                         } else {
3994                                 mid = slot;
3995                                 if (mid != nritems &&
3996                                     leaf_space_used(l, mid, nritems - mid) +
3997                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3998                                         if (data_size && !tried_avoid_double)
3999                                                 goto push_for_double;
4000                                         split = 2;
4001                                 }
4002                         }
4003                 }
4004         } else {
4005                 if (leaf_space_used(l, 0, mid) + data_size >
4006                         BTRFS_LEAF_DATA_SIZE(root)) {
4007                         if (!extend && data_size && slot == 0) {
4008                                 split = 0;
4009                         } else if ((extend || !data_size) && slot == 0) {
4010                                 mid = 1;
4011                         } else {
4012                                 mid = slot;
4013                                 if (mid != nritems &&
4014                                     leaf_space_used(l, mid, nritems - mid) +
4015                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4016                                         if (data_size && !tried_avoid_double)
4017                                                 goto push_for_double;
4018                                         split = 2 ;
4019                                 }
4020                         }
4021                 }
4022         }
4023
4024         if (split == 0)
4025                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4026         else
4027                 btrfs_item_key(l, &disk_key, mid);
4028
4029         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4030                                         root->root_key.objectid,
4031                                         &disk_key, 0, l->start, 0);
4032         if (IS_ERR(right))
4033                 return PTR_ERR(right);
4034
4035         root_add_used(root, root->leafsize);
4036
4037         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4038         btrfs_set_header_bytenr(right, right->start);
4039         btrfs_set_header_generation(right, trans->transid);
4040         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4041         btrfs_set_header_owner(right, root->root_key.objectid);
4042         btrfs_set_header_level(right, 0);
4043         write_extent_buffer(right, root->fs_info->fsid,
4044                             (unsigned long)btrfs_header_fsid(right),
4045                             BTRFS_FSID_SIZE);
4046
4047         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4048                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4049                             BTRFS_UUID_SIZE);
4050
4051         if (split == 0) {
4052                 if (mid <= slot) {
4053                         btrfs_set_header_nritems(right, 0);
4054                         insert_ptr(trans, root, path, &disk_key, right->start,
4055                                    path->slots[1] + 1, 1);
4056                         btrfs_tree_unlock(path->nodes[0]);
4057                         free_extent_buffer(path->nodes[0]);
4058                         path->nodes[0] = right;
4059                         path->slots[0] = 0;
4060                         path->slots[1] += 1;
4061                 } else {
4062                         btrfs_set_header_nritems(right, 0);
4063                         insert_ptr(trans, root, path, &disk_key, right->start,
4064                                           path->slots[1], 1);
4065                         btrfs_tree_unlock(path->nodes[0]);
4066                         free_extent_buffer(path->nodes[0]);
4067                         path->nodes[0] = right;
4068                         path->slots[0] = 0;
4069                         if (path->slots[1] == 0)
4070                                 fixup_low_keys(root, path, &disk_key, 1);
4071                 }
4072                 btrfs_mark_buffer_dirty(right);
4073                 return ret;
4074         }
4075
4076         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4077
4078         if (split == 2) {
4079                 BUG_ON(num_doubles != 0);
4080                 num_doubles++;
4081                 goto again;
4082         }
4083
4084         return 0;
4085
4086 push_for_double:
4087         push_for_double_split(trans, root, path, data_size);
4088         tried_avoid_double = 1;
4089         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4090                 return 0;
4091         goto again;
4092 }
4093
4094 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4095                                          struct btrfs_root *root,
4096                                          struct btrfs_path *path, int ins_len)
4097 {
4098         struct btrfs_key key;
4099         struct extent_buffer *leaf;
4100         struct btrfs_file_extent_item *fi;
4101         u64 extent_len = 0;
4102         u32 item_size;
4103         int ret;
4104
4105         leaf = path->nodes[0];
4106         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4107
4108         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4109                key.type != BTRFS_EXTENT_CSUM_KEY);
4110
4111         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4112                 return 0;
4113
4114         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4115         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4116                 fi = btrfs_item_ptr(leaf, path->slots[0],
4117                                     struct btrfs_file_extent_item);
4118                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4119         }
4120         btrfs_release_path(path);
4121
4122         path->keep_locks = 1;
4123         path->search_for_split = 1;
4124         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4125         path->search_for_split = 0;
4126         if (ret < 0)
4127                 goto err;
4128
4129         ret = -EAGAIN;
4130         leaf = path->nodes[0];
4131         /* if our item isn't there or got smaller, return now */
4132         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4133                 goto err;
4134
4135         /* the leaf has  changed, it now has room.  return now */
4136         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4137                 goto err;
4138
4139         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4140                 fi = btrfs_item_ptr(leaf, path->slots[0],
4141                                     struct btrfs_file_extent_item);
4142                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4143                         goto err;
4144         }
4145
4146         btrfs_set_path_blocking(path);
4147         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4148         if (ret)
4149                 goto err;
4150
4151         path->keep_locks = 0;
4152         btrfs_unlock_up_safe(path, 1);
4153         return 0;
4154 err:
4155         path->keep_locks = 0;
4156         return ret;
4157 }
4158
4159 static noinline int split_item(struct btrfs_trans_handle *trans,
4160                                struct btrfs_root *root,
4161                                struct btrfs_path *path,
4162                                struct btrfs_key *new_key,
4163                                unsigned long split_offset)
4164 {
4165         struct extent_buffer *leaf;
4166         struct btrfs_item *item;
4167         struct btrfs_item *new_item;
4168         int slot;
4169         char *buf;
4170         u32 nritems;
4171         u32 item_size;
4172         u32 orig_offset;
4173         struct btrfs_disk_key disk_key;
4174
4175         leaf = path->nodes[0];
4176         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4177
4178         btrfs_set_path_blocking(path);
4179
4180         item = btrfs_item_nr(leaf, path->slots[0]);
4181         orig_offset = btrfs_item_offset(leaf, item);
4182         item_size = btrfs_item_size(leaf, item);
4183
4184         buf = kmalloc(item_size, GFP_NOFS);
4185         if (!buf)
4186                 return -ENOMEM;
4187
4188         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4189                             path->slots[0]), item_size);
4190
4191         slot = path->slots[0] + 1;
4192         nritems = btrfs_header_nritems(leaf);
4193         if (slot != nritems) {
4194                 /* shift the items */
4195                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4196                                 btrfs_item_nr_offset(slot),
4197                                 (nritems - slot) * sizeof(struct btrfs_item));
4198         }
4199
4200         btrfs_cpu_key_to_disk(&disk_key, new_key);
4201         btrfs_set_item_key(leaf, &disk_key, slot);
4202
4203         new_item = btrfs_item_nr(leaf, slot);
4204
4205         btrfs_set_item_offset(leaf, new_item, orig_offset);
4206         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4207
4208         btrfs_set_item_offset(leaf, item,
4209                               orig_offset + item_size - split_offset);
4210         btrfs_set_item_size(leaf, item, split_offset);
4211
4212         btrfs_set_header_nritems(leaf, nritems + 1);
4213
4214         /* write the data for the start of the original item */
4215         write_extent_buffer(leaf, buf,
4216                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4217                             split_offset);
4218
4219         /* write the data for the new item */
4220         write_extent_buffer(leaf, buf + split_offset,
4221                             btrfs_item_ptr_offset(leaf, slot),
4222                             item_size - split_offset);
4223         btrfs_mark_buffer_dirty(leaf);
4224
4225         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4226         kfree(buf);
4227         return 0;
4228 }
4229
4230 /*
4231  * This function splits a single item into two items,
4232  * giving 'new_key' to the new item and splitting the
4233  * old one at split_offset (from the start of the item).
4234  *
4235  * The path may be released by this operation.  After
4236  * the split, the path is pointing to the old item.  The
4237  * new item is going to be in the same node as the old one.
4238  *
4239  * Note, the item being split must be smaller enough to live alone on
4240  * a tree block with room for one extra struct btrfs_item
4241  *
4242  * This allows us to split the item in place, keeping a lock on the
4243  * leaf the entire time.
4244  */
4245 int btrfs_split_item(struct btrfs_trans_handle *trans,
4246                      struct btrfs_root *root,
4247                      struct btrfs_path *path,
4248                      struct btrfs_key *new_key,
4249                      unsigned long split_offset)
4250 {
4251         int ret;
4252         ret = setup_leaf_for_split(trans, root, path,
4253                                    sizeof(struct btrfs_item));
4254         if (ret)
4255                 return ret;
4256
4257         ret = split_item(trans, root, path, new_key, split_offset);
4258         return ret;
4259 }
4260
4261 /*
4262  * This function duplicate a item, giving 'new_key' to the new item.
4263  * It guarantees both items live in the same tree leaf and the new item
4264  * is contiguous with the original item.
4265  *
4266  * This allows us to split file extent in place, keeping a lock on the
4267  * leaf the entire time.
4268  */
4269 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4270                          struct btrfs_root *root,
4271                          struct btrfs_path *path,
4272                          struct btrfs_key *new_key)
4273 {
4274         struct extent_buffer *leaf;
4275         int ret;
4276         u32 item_size;
4277
4278         leaf = path->nodes[0];
4279         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4280         ret = setup_leaf_for_split(trans, root, path,
4281                                    item_size + sizeof(struct btrfs_item));
4282         if (ret)
4283                 return ret;
4284
4285         path->slots[0]++;
4286         setup_items_for_insert(root, path, new_key, &item_size,
4287                                item_size, item_size +
4288                                sizeof(struct btrfs_item), 1);
4289         leaf = path->nodes[0];
4290         memcpy_extent_buffer(leaf,
4291                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4292                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4293                              item_size);
4294         return 0;
4295 }
4296
4297 /*
4298  * make the item pointed to by the path smaller.  new_size indicates
4299  * how small to make it, and from_end tells us if we just chop bytes
4300  * off the end of the item or if we shift the item to chop bytes off
4301  * the front.
4302  */
4303 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4304                          u32 new_size, int from_end)
4305 {
4306         int slot;
4307         struct extent_buffer *leaf;
4308         struct btrfs_item *item;
4309         u32 nritems;
4310         unsigned int data_end;
4311         unsigned int old_data_start;
4312         unsigned int old_size;
4313         unsigned int size_diff;
4314         int i;
4315         struct btrfs_map_token token;
4316
4317         btrfs_init_map_token(&token);
4318
4319         leaf = path->nodes[0];
4320         slot = path->slots[0];
4321
4322         old_size = btrfs_item_size_nr(leaf, slot);
4323         if (old_size == new_size)
4324                 return;
4325
4326         nritems = btrfs_header_nritems(leaf);
4327         data_end = leaf_data_end(root, leaf);
4328
4329         old_data_start = btrfs_item_offset_nr(leaf, slot);
4330
4331         size_diff = old_size - new_size;
4332
4333         BUG_ON(slot < 0);
4334         BUG_ON(slot >= nritems);
4335
4336         /*
4337          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4338          */
4339         /* first correct the data pointers */
4340         for (i = slot; i < nritems; i++) {
4341                 u32 ioff;
4342                 item = btrfs_item_nr(leaf, i);
4343
4344                 ioff = btrfs_token_item_offset(leaf, item, &token);
4345                 btrfs_set_token_item_offset(leaf, item,
4346                                             ioff + size_diff, &token);
4347         }
4348
4349         /* shift the data */
4350         if (from_end) {
4351                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4352                               data_end + size_diff, btrfs_leaf_data(leaf) +
4353                               data_end, old_data_start + new_size - data_end);
4354         } else {
4355                 struct btrfs_disk_key disk_key;
4356                 u64 offset;
4357
4358                 btrfs_item_key(leaf, &disk_key, slot);
4359
4360                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4361                         unsigned long ptr;
4362                         struct btrfs_file_extent_item *fi;
4363
4364                         fi = btrfs_item_ptr(leaf, slot,
4365                                             struct btrfs_file_extent_item);
4366                         fi = (struct btrfs_file_extent_item *)(
4367                              (unsigned long)fi - size_diff);
4368
4369                         if (btrfs_file_extent_type(leaf, fi) ==
4370                             BTRFS_FILE_EXTENT_INLINE) {
4371                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4372                                 memmove_extent_buffer(leaf, ptr,
4373                                       (unsigned long)fi,
4374                                       offsetof(struct btrfs_file_extent_item,
4375                                                  disk_bytenr));
4376                         }
4377                 }
4378
4379                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4380                               data_end + size_diff, btrfs_leaf_data(leaf) +
4381                               data_end, old_data_start - data_end);
4382
4383                 offset = btrfs_disk_key_offset(&disk_key);
4384                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4385                 btrfs_set_item_key(leaf, &disk_key, slot);
4386                 if (slot == 0)
4387                         fixup_low_keys(root, path, &disk_key, 1);
4388         }
4389
4390         item = btrfs_item_nr(leaf, slot);
4391         btrfs_set_item_size(leaf, item, new_size);
4392         btrfs_mark_buffer_dirty(leaf);
4393
4394         if (btrfs_leaf_free_space(root, leaf) < 0) {
4395                 btrfs_print_leaf(root, leaf);
4396                 BUG();
4397         }
4398 }
4399
4400 /*
4401  * make the item pointed to by the path bigger, data_size is the added size.
4402  */
4403 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4404                        u32 data_size)
4405 {
4406         int slot;
4407         struct extent_buffer *leaf;
4408         struct btrfs_item *item;
4409         u32 nritems;
4410         unsigned int data_end;
4411         unsigned int old_data;
4412         unsigned int old_size;
4413         int i;
4414         struct btrfs_map_token token;
4415
4416         btrfs_init_map_token(&token);
4417
4418         leaf = path->nodes[0];
4419
4420         nritems = btrfs_header_nritems(leaf);
4421         data_end = leaf_data_end(root, leaf);
4422
4423         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4424                 btrfs_print_leaf(root, leaf);
4425                 BUG();
4426         }
4427         slot = path->slots[0];
4428         old_data = btrfs_item_end_nr(leaf, slot);
4429
4430         BUG_ON(slot < 0);
4431         if (slot >= nritems) {
4432                 btrfs_print_leaf(root, leaf);
4433                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4434                        slot, nritems);
4435                 BUG_ON(1);
4436         }
4437
4438         /*
4439          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4440          */
4441         /* first correct the data pointers */
4442         for (i = slot; i < nritems; i++) {
4443                 u32 ioff;
4444                 item = btrfs_item_nr(leaf, i);
4445
4446                 ioff = btrfs_token_item_offset(leaf, item, &token);
4447                 btrfs_set_token_item_offset(leaf, item,
4448                                             ioff - data_size, &token);
4449         }
4450
4451         /* shift the data */
4452         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4453                       data_end - data_size, btrfs_leaf_data(leaf) +
4454                       data_end, old_data - data_end);
4455
4456         data_end = old_data;
4457         old_size = btrfs_item_size_nr(leaf, slot);
4458         item = btrfs_item_nr(leaf, slot);
4459         btrfs_set_item_size(leaf, item, old_size + data_size);
4460         btrfs_mark_buffer_dirty(leaf);
4461
4462         if (btrfs_leaf_free_space(root, leaf) < 0) {
4463                 btrfs_print_leaf(root, leaf);
4464                 BUG();
4465         }
4466 }
4467
4468 /*
4469  * this is a helper for btrfs_insert_empty_items, the main goal here is
4470  * to save stack depth by doing the bulk of the work in a function
4471  * that doesn't call btrfs_search_slot
4472  */
4473 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4474                             struct btrfs_key *cpu_key, u32 *data_size,
4475                             u32 total_data, u32 total_size, int nr)
4476 {
4477         struct btrfs_item *item;
4478         int i;
4479         u32 nritems;
4480         unsigned int data_end;
4481         struct btrfs_disk_key disk_key;
4482         struct extent_buffer *leaf;
4483         int slot;
4484         struct btrfs_map_token token;
4485
4486         btrfs_init_map_token(&token);
4487
4488         leaf = path->nodes[0];
4489         slot = path->slots[0];
4490
4491         nritems = btrfs_header_nritems(leaf);
4492         data_end = leaf_data_end(root, leaf);
4493
4494         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4495                 btrfs_print_leaf(root, leaf);
4496                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4497                        total_size, btrfs_leaf_free_space(root, leaf));
4498                 BUG();
4499         }
4500
4501         if (slot != nritems) {
4502                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4503
4504                 if (old_data < data_end) {
4505                         btrfs_print_leaf(root, leaf);
4506                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4507                                slot, old_data, data_end);
4508                         BUG_ON(1);
4509                 }
4510                 /*
4511                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4512                  */
4513                 /* first correct the data pointers */
4514                 for (i = slot; i < nritems; i++) {
4515                         u32 ioff;
4516
4517                         item = btrfs_item_nr(leaf, i);
4518                         ioff = btrfs_token_item_offset(leaf, item, &token);
4519                         btrfs_set_token_item_offset(leaf, item,
4520                                                     ioff - total_data, &token);
4521                 }
4522                 /* shift the items */
4523                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4524                               btrfs_item_nr_offset(slot),
4525                               (nritems - slot) * sizeof(struct btrfs_item));
4526
4527                 /* shift the data */
4528                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4529                               data_end - total_data, btrfs_leaf_data(leaf) +
4530                               data_end, old_data - data_end);
4531                 data_end = old_data;
4532         }
4533
4534         /* setup the item for the new data */
4535         for (i = 0; i < nr; i++) {
4536                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4537                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4538                 item = btrfs_item_nr(leaf, slot + i);
4539                 btrfs_set_token_item_offset(leaf, item,
4540                                             data_end - data_size[i], &token);
4541                 data_end -= data_size[i];
4542                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4543         }
4544
4545         btrfs_set_header_nritems(leaf, nritems + nr);
4546
4547         if (slot == 0) {
4548                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4549                 fixup_low_keys(root, path, &disk_key, 1);
4550         }
4551         btrfs_unlock_up_safe(path, 1);
4552         btrfs_mark_buffer_dirty(leaf);
4553
4554         if (btrfs_leaf_free_space(root, leaf) < 0) {
4555                 btrfs_print_leaf(root, leaf);
4556                 BUG();
4557         }
4558 }
4559
4560 /*
4561  * Given a key and some data, insert items into the tree.
4562  * This does all the path init required, making room in the tree if needed.
4563  */
4564 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4565                             struct btrfs_root *root,
4566                             struct btrfs_path *path,
4567                             struct btrfs_key *cpu_key, u32 *data_size,
4568                             int nr)
4569 {
4570         int ret = 0;
4571         int slot;
4572         int i;
4573         u32 total_size = 0;
4574         u32 total_data = 0;
4575
4576         for (i = 0; i < nr; i++)
4577                 total_data += data_size[i];
4578
4579         total_size = total_data + (nr * sizeof(struct btrfs_item));
4580         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4581         if (ret == 0)
4582                 return -EEXIST;
4583         if (ret < 0)
4584                 return ret;
4585
4586         slot = path->slots[0];
4587         BUG_ON(slot < 0);
4588
4589         setup_items_for_insert(root, path, cpu_key, data_size,
4590                                total_data, total_size, nr);
4591         return 0;
4592 }
4593
4594 /*
4595  * Given a key and some data, insert an item into the tree.
4596  * This does all the path init required, making room in the tree if needed.
4597  */
4598 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4599                       *root, struct btrfs_key *cpu_key, void *data, u32
4600                       data_size)
4601 {
4602         int ret = 0;
4603         struct btrfs_path *path;
4604         struct extent_buffer *leaf;
4605         unsigned long ptr;
4606
4607         path = btrfs_alloc_path();
4608         if (!path)
4609                 return -ENOMEM;
4610         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4611         if (!ret) {
4612                 leaf = path->nodes[0];
4613                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4614                 write_extent_buffer(leaf, data, ptr, data_size);
4615                 btrfs_mark_buffer_dirty(leaf);
4616         }
4617         btrfs_free_path(path);
4618         return ret;
4619 }
4620
4621 /*
4622  * delete the pointer from a given node.
4623  *
4624  * the tree should have been previously balanced so the deletion does not
4625  * empty a node.
4626  */
4627 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4628                     int level, int slot)
4629 {
4630         struct extent_buffer *parent = path->nodes[level];
4631         u32 nritems;
4632         int ret;
4633
4634         nritems = btrfs_header_nritems(parent);
4635         if (slot != nritems - 1) {
4636                 if (level)
4637                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4638                                              slot + 1, nritems - slot - 1);
4639                 memmove_extent_buffer(parent,
4640                               btrfs_node_key_ptr_offset(slot),
4641                               btrfs_node_key_ptr_offset(slot + 1),
4642                               sizeof(struct btrfs_key_ptr) *
4643                               (nritems - slot - 1));
4644         } else if (level) {
4645                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4646                                               MOD_LOG_KEY_REMOVE);
4647                 BUG_ON(ret < 0);
4648         }
4649
4650         nritems--;
4651         btrfs_set_header_nritems(parent, nritems);
4652         if (nritems == 0 && parent == root->node) {
4653                 BUG_ON(btrfs_header_level(root->node) != 1);
4654                 /* just turn the root into a leaf and break */
4655                 btrfs_set_header_level(root->node, 0);
4656         } else if (slot == 0) {
4657                 struct btrfs_disk_key disk_key;
4658
4659                 btrfs_node_key(parent, &disk_key, 0);
4660                 fixup_low_keys(root, path, &disk_key, level + 1);
4661         }
4662         btrfs_mark_buffer_dirty(parent);
4663 }
4664
4665 /*
4666  * a helper function to delete the leaf pointed to by path->slots[1] and
4667  * path->nodes[1].
4668  *
4669  * This deletes the pointer in path->nodes[1] and frees the leaf
4670  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4671  *
4672  * The path must have already been setup for deleting the leaf, including
4673  * all the proper balancing.  path->nodes[1] must be locked.
4674  */
4675 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4676                                     struct btrfs_root *root,
4677                                     struct btrfs_path *path,
4678                                     struct extent_buffer *leaf)
4679 {
4680         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4681         del_ptr(root, path, 1, path->slots[1]);
4682
4683         /*
4684          * btrfs_free_extent is expensive, we want to make sure we
4685          * aren't holding any locks when we call it
4686          */
4687         btrfs_unlock_up_safe(path, 0);
4688
4689         root_sub_used(root, leaf->len);
4690
4691         extent_buffer_get(leaf);
4692         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4693         free_extent_buffer_stale(leaf);
4694 }
4695 /*
4696  * delete the item at the leaf level in path.  If that empties
4697  * the leaf, remove it from the tree
4698  */
4699 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4700                     struct btrfs_path *path, int slot, int nr)
4701 {
4702         struct extent_buffer *leaf;
4703         struct btrfs_item *item;
4704         int last_off;
4705         int dsize = 0;
4706         int ret = 0;
4707         int wret;
4708         int i;
4709         u32 nritems;
4710         struct btrfs_map_token token;
4711
4712         btrfs_init_map_token(&token);
4713
4714         leaf = path->nodes[0];
4715         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4716
4717         for (i = 0; i < nr; i++)
4718                 dsize += btrfs_item_size_nr(leaf, slot + i);
4719
4720         nritems = btrfs_header_nritems(leaf);
4721
4722         if (slot + nr != nritems) {
4723                 int data_end = leaf_data_end(root, leaf);
4724
4725                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4726                               data_end + dsize,
4727                               btrfs_leaf_data(leaf) + data_end,
4728                               last_off - data_end);
4729
4730                 for (i = slot + nr; i < nritems; i++) {
4731                         u32 ioff;
4732
4733                         item = btrfs_item_nr(leaf, i);
4734                         ioff = btrfs_token_item_offset(leaf, item, &token);
4735                         btrfs_set_token_item_offset(leaf, item,
4736                                                     ioff + dsize, &token);
4737                 }
4738
4739                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4740                               btrfs_item_nr_offset(slot + nr),
4741                               sizeof(struct btrfs_item) *
4742                               (nritems - slot - nr));
4743         }
4744         btrfs_set_header_nritems(leaf, nritems - nr);
4745         nritems -= nr;
4746
4747         /* delete the leaf if we've emptied it */
4748         if (nritems == 0) {
4749                 if (leaf == root->node) {
4750                         btrfs_set_header_level(leaf, 0);
4751                 } else {
4752                         btrfs_set_path_blocking(path);
4753                         clean_tree_block(trans, root, leaf);
4754                         btrfs_del_leaf(trans, root, path, leaf);
4755                 }
4756         } else {
4757                 int used = leaf_space_used(leaf, 0, nritems);
4758                 if (slot == 0) {
4759                         struct btrfs_disk_key disk_key;
4760
4761                         btrfs_item_key(leaf, &disk_key, 0);
4762                         fixup_low_keys(root, path, &disk_key, 1);
4763                 }
4764
4765                 /* delete the leaf if it is mostly empty */
4766                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4767                         /* push_leaf_left fixes the path.
4768                          * make sure the path still points to our leaf
4769                          * for possible call to del_ptr below
4770                          */
4771                         slot = path->slots[1];
4772                         extent_buffer_get(leaf);
4773
4774                         btrfs_set_path_blocking(path);
4775                         wret = push_leaf_left(trans, root, path, 1, 1,
4776                                               1, (u32)-1);
4777                         if (wret < 0 && wret != -ENOSPC)
4778                                 ret = wret;
4779
4780                         if (path->nodes[0] == leaf &&
4781                             btrfs_header_nritems(leaf)) {
4782                                 wret = push_leaf_right(trans, root, path, 1,
4783                                                        1, 1, 0);
4784                                 if (wret < 0 && wret != -ENOSPC)
4785                                         ret = wret;
4786                         }
4787
4788                         if (btrfs_header_nritems(leaf) == 0) {
4789                                 path->slots[1] = slot;
4790                                 btrfs_del_leaf(trans, root, path, leaf);
4791                                 free_extent_buffer(leaf);
4792                                 ret = 0;
4793                         } else {
4794                                 /* if we're still in the path, make sure
4795                                  * we're dirty.  Otherwise, one of the
4796                                  * push_leaf functions must have already
4797                                  * dirtied this buffer
4798                                  */
4799                                 if (path->nodes[0] == leaf)
4800                                         btrfs_mark_buffer_dirty(leaf);
4801                                 free_extent_buffer(leaf);
4802                         }
4803                 } else {
4804                         btrfs_mark_buffer_dirty(leaf);
4805                 }
4806         }
4807         return ret;
4808 }
4809
4810 /*
4811  * search the tree again to find a leaf with lesser keys
4812  * returns 0 if it found something or 1 if there are no lesser leaves.
4813  * returns < 0 on io errors.
4814  *
4815  * This may release the path, and so you may lose any locks held at the
4816  * time you call it.
4817  */
4818 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4819 {
4820         struct btrfs_key key;
4821         struct btrfs_disk_key found_key;
4822         int ret;
4823
4824         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4825
4826         if (key.offset > 0)
4827                 key.offset--;
4828         else if (key.type > 0)
4829                 key.type--;
4830         else if (key.objectid > 0)
4831                 key.objectid--;
4832         else
4833                 return 1;
4834
4835         btrfs_release_path(path);
4836         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4837         if (ret < 0)
4838                 return ret;
4839         btrfs_item_key(path->nodes[0], &found_key, 0);
4840         ret = comp_keys(&found_key, &key);
4841         if (ret < 0)
4842                 return 0;
4843         return 1;
4844 }
4845
4846 /*
4847  * A helper function to walk down the tree starting at min_key, and looking
4848  * for nodes or leaves that are have a minimum transaction id.
4849  * This is used by the btree defrag code, and tree logging
4850  *
4851  * This does not cow, but it does stuff the starting key it finds back
4852  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4853  * key and get a writable path.
4854  *
4855  * This does lock as it descends, and path->keep_locks should be set
4856  * to 1 by the caller.
4857  *
4858  * This honors path->lowest_level to prevent descent past a given level
4859  * of the tree.
4860  *
4861  * min_trans indicates the oldest transaction that you are interested
4862  * in walking through.  Any nodes or leaves older than min_trans are
4863  * skipped over (without reading them).
4864  *
4865  * returns zero if something useful was found, < 0 on error and 1 if there
4866  * was nothing in the tree that matched the search criteria.
4867  */
4868 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4869                          struct btrfs_key *max_key,
4870                          struct btrfs_path *path,
4871                          u64 min_trans)
4872 {
4873         struct extent_buffer *cur;
4874         struct btrfs_key found_key;
4875         int slot;
4876         int sret;
4877         u32 nritems;
4878         int level;
4879         int ret = 1;
4880
4881         WARN_ON(!path->keep_locks);
4882 again:
4883         cur = btrfs_read_lock_root_node(root);
4884         level = btrfs_header_level(cur);
4885         WARN_ON(path->nodes[level]);
4886         path->nodes[level] = cur;
4887         path->locks[level] = BTRFS_READ_LOCK;
4888
4889         if (btrfs_header_generation(cur) < min_trans) {
4890                 ret = 1;
4891                 goto out;
4892         }
4893         while (1) {
4894                 nritems = btrfs_header_nritems(cur);
4895                 level = btrfs_header_level(cur);
4896                 sret = bin_search(cur, min_key, level, &slot);
4897
4898                 /* at the lowest level, we're done, setup the path and exit */
4899                 if (level == path->lowest_level) {
4900                         if (slot >= nritems)
4901                                 goto find_next_key;
4902                         ret = 0;
4903                         path->slots[level] = slot;
4904                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4905                         goto out;
4906                 }
4907                 if (sret && slot > 0)
4908                         slot--;
4909                 /*
4910                  * check this node pointer against the min_trans parameters.
4911                  * If it is too old, old, skip to the next one.
4912                  */
4913                 while (slot < nritems) {
4914                         u64 blockptr;
4915                         u64 gen;
4916
4917                         blockptr = btrfs_node_blockptr(cur, slot);
4918                         gen = btrfs_node_ptr_generation(cur, slot);
4919                         if (gen < min_trans) {
4920                                 slot++;
4921                                 continue;
4922                         }
4923                         break;
4924                 }
4925 find_next_key:
4926                 /*
4927                  * we didn't find a candidate key in this node, walk forward
4928                  * and find another one
4929                  */
4930                 if (slot >= nritems) {
4931                         path->slots[level] = slot;
4932                         btrfs_set_path_blocking(path);
4933                         sret = btrfs_find_next_key(root, path, min_key, level,
4934                                                   min_trans);
4935                         if (sret == 0) {
4936                                 btrfs_release_path(path);
4937                                 goto again;
4938                         } else {
4939                                 goto out;
4940                         }
4941                 }
4942                 /* save our key for returning back */
4943                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4944                 path->slots[level] = slot;
4945                 if (level == path->lowest_level) {
4946                         ret = 0;
4947                         unlock_up(path, level, 1, 0, NULL);
4948                         goto out;
4949                 }
4950                 btrfs_set_path_blocking(path);
4951                 cur = read_node_slot(root, cur, slot);
4952                 BUG_ON(!cur); /* -ENOMEM */
4953
4954                 btrfs_tree_read_lock(cur);
4955
4956                 path->locks[level - 1] = BTRFS_READ_LOCK;
4957                 path->nodes[level - 1] = cur;
4958                 unlock_up(path, level, 1, 0, NULL);
4959                 btrfs_clear_path_blocking(path, NULL, 0);
4960         }
4961 out:
4962         if (ret == 0)
4963                 memcpy(min_key, &found_key, sizeof(found_key));
4964         btrfs_set_path_blocking(path);
4965         return ret;
4966 }
4967
4968 static void tree_move_down(struct btrfs_root *root,
4969                            struct btrfs_path *path,
4970                            int *level, int root_level)
4971 {
4972         BUG_ON(*level == 0);
4973         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4974                                         path->slots[*level]);
4975         path->slots[*level - 1] = 0;
4976         (*level)--;
4977 }
4978
4979 static int tree_move_next_or_upnext(struct btrfs_root *root,
4980                                     struct btrfs_path *path,
4981                                     int *level, int root_level)
4982 {
4983         int ret = 0;
4984         int nritems;
4985         nritems = btrfs_header_nritems(path->nodes[*level]);
4986
4987         path->slots[*level]++;
4988
4989         while (path->slots[*level] >= nritems) {
4990                 if (*level == root_level)
4991                         return -1;
4992
4993                 /* move upnext */
4994                 path->slots[*level] = 0;
4995                 free_extent_buffer(path->nodes[*level]);
4996                 path->nodes[*level] = NULL;
4997                 (*level)++;
4998                 path->slots[*level]++;
4999
5000                 nritems = btrfs_header_nritems(path->nodes[*level]);
5001                 ret = 1;
5002         }
5003         return ret;
5004 }
5005
5006 /*
5007  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5008  * or down.
5009  */
5010 static int tree_advance(struct btrfs_root *root,
5011                         struct btrfs_path *path,
5012                         int *level, int root_level,
5013                         int allow_down,
5014                         struct btrfs_key *key)
5015 {
5016         int ret;
5017
5018         if (*level == 0 || !allow_down) {
5019                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5020         } else {
5021                 tree_move_down(root, path, level, root_level);
5022                 ret = 0;
5023         }
5024         if (ret >= 0) {
5025                 if (*level == 0)
5026                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5027                                         path->slots[*level]);
5028                 else
5029                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5030                                         path->slots[*level]);
5031         }
5032         return ret;
5033 }
5034
5035 static int tree_compare_item(struct btrfs_root *left_root,
5036                              struct btrfs_path *left_path,
5037                              struct btrfs_path *right_path,
5038                              char *tmp_buf)
5039 {
5040         int cmp;
5041         int len1, len2;
5042         unsigned long off1, off2;
5043
5044         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5045         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5046         if (len1 != len2)
5047                 return 1;
5048
5049         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5050         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5051                                 right_path->slots[0]);
5052
5053         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5054
5055         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5056         if (cmp)
5057                 return 1;
5058         return 0;
5059 }
5060
5061 #define ADVANCE 1
5062 #define ADVANCE_ONLY_NEXT -1
5063
5064 /*
5065  * This function compares two trees and calls the provided callback for
5066  * every changed/new/deleted item it finds.
5067  * If shared tree blocks are encountered, whole subtrees are skipped, making
5068  * the compare pretty fast on snapshotted subvolumes.
5069  *
5070  * This currently works on commit roots only. As commit roots are read only,
5071  * we don't do any locking. The commit roots are protected with transactions.
5072  * Transactions are ended and rejoined when a commit is tried in between.
5073  *
5074  * This function checks for modifications done to the trees while comparing.
5075  * If it detects a change, it aborts immediately.
5076  */
5077 int btrfs_compare_trees(struct btrfs_root *left_root,
5078                         struct btrfs_root *right_root,
5079                         btrfs_changed_cb_t changed_cb, void *ctx)
5080 {
5081         int ret;
5082         int cmp;
5083         struct btrfs_trans_handle *trans = NULL;
5084         struct btrfs_path *left_path = NULL;
5085         struct btrfs_path *right_path = NULL;
5086         struct btrfs_key left_key;
5087         struct btrfs_key right_key;
5088         char *tmp_buf = NULL;
5089         int left_root_level;
5090         int right_root_level;
5091         int left_level;
5092         int right_level;
5093         int left_end_reached;
5094         int right_end_reached;
5095         int advance_left;
5096         int advance_right;
5097         u64 left_blockptr;
5098         u64 right_blockptr;
5099         u64 left_start_ctransid;
5100         u64 right_start_ctransid;
5101         u64 ctransid;
5102
5103         left_path = btrfs_alloc_path();
5104         if (!left_path) {
5105                 ret = -ENOMEM;
5106                 goto out;
5107         }
5108         right_path = btrfs_alloc_path();
5109         if (!right_path) {
5110                 ret = -ENOMEM;
5111                 goto out;
5112         }
5113
5114         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5115         if (!tmp_buf) {
5116                 ret = -ENOMEM;
5117                 goto out;
5118         }
5119
5120         left_path->search_commit_root = 1;
5121         left_path->skip_locking = 1;
5122         right_path->search_commit_root = 1;
5123         right_path->skip_locking = 1;
5124
5125         spin_lock(&left_root->root_item_lock);
5126         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5127         spin_unlock(&left_root->root_item_lock);
5128
5129         spin_lock(&right_root->root_item_lock);
5130         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5131         spin_unlock(&right_root->root_item_lock);
5132
5133         trans = btrfs_join_transaction(left_root);
5134         if (IS_ERR(trans)) {
5135                 ret = PTR_ERR(trans);
5136                 trans = NULL;
5137                 goto out;
5138         }
5139
5140         /*
5141          * Strategy: Go to the first items of both trees. Then do
5142          *
5143          * If both trees are at level 0
5144          *   Compare keys of current items
5145          *     If left < right treat left item as new, advance left tree
5146          *       and repeat
5147          *     If left > right treat right item as deleted, advance right tree
5148          *       and repeat
5149          *     If left == right do deep compare of items, treat as changed if
5150          *       needed, advance both trees and repeat
5151          * If both trees are at the same level but not at level 0
5152          *   Compare keys of current nodes/leafs
5153          *     If left < right advance left tree and repeat
5154          *     If left > right advance right tree and repeat
5155          *     If left == right compare blockptrs of the next nodes/leafs
5156          *       If they match advance both trees but stay at the same level
5157          *         and repeat
5158          *       If they don't match advance both trees while allowing to go
5159          *         deeper and repeat
5160          * If tree levels are different
5161          *   Advance the tree that needs it and repeat
5162          *
5163          * Advancing a tree means:
5164          *   If we are at level 0, try to go to the next slot. If that's not
5165          *   possible, go one level up and repeat. Stop when we found a level
5166          *   where we could go to the next slot. We may at this point be on a
5167          *   node or a leaf.
5168          *
5169          *   If we are not at level 0 and not on shared tree blocks, go one
5170          *   level deeper.
5171          *
5172          *   If we are not at level 0 and on shared tree blocks, go one slot to
5173          *   the right if possible or go up and right.
5174          */
5175
5176         left_level = btrfs_header_level(left_root->commit_root);
5177         left_root_level = left_level;
5178         left_path->nodes[left_level] = left_root->commit_root;
5179         extent_buffer_get(left_path->nodes[left_level]);
5180
5181         right_level = btrfs_header_level(right_root->commit_root);
5182         right_root_level = right_level;
5183         right_path->nodes[right_level] = right_root->commit_root;
5184         extent_buffer_get(right_path->nodes[right_level]);
5185
5186         if (left_level == 0)
5187                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5188                                 &left_key, left_path->slots[left_level]);
5189         else
5190                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5191                                 &left_key, left_path->slots[left_level]);
5192         if (right_level == 0)
5193                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5194                                 &right_key, right_path->slots[right_level]);
5195         else
5196                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5197                                 &right_key, right_path->slots[right_level]);
5198
5199         left_end_reached = right_end_reached = 0;
5200         advance_left = advance_right = 0;
5201
5202         while (1) {
5203                 /*
5204                  * We need to make sure the transaction does not get committed
5205                  * while we do anything on commit roots. This means, we need to
5206                  * join and leave transactions for every item that we process.
5207                  */
5208                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5209                         btrfs_release_path(left_path);
5210                         btrfs_release_path(right_path);
5211
5212                         ret = btrfs_end_transaction(trans, left_root);
5213                         trans = NULL;
5214                         if (ret < 0)
5215                                 goto out;
5216                 }
5217                 /* now rejoin the transaction */
5218                 if (!trans) {
5219                         trans = btrfs_join_transaction(left_root);
5220                         if (IS_ERR(trans)) {
5221                                 ret = PTR_ERR(trans);
5222                                 trans = NULL;
5223                                 goto out;
5224                         }
5225
5226                         spin_lock(&left_root->root_item_lock);
5227                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5228                         spin_unlock(&left_root->root_item_lock);
5229                         if (ctransid != left_start_ctransid)
5230                                 left_start_ctransid = 0;
5231
5232                         spin_lock(&right_root->root_item_lock);
5233                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5234                         spin_unlock(&right_root->root_item_lock);
5235                         if (ctransid != right_start_ctransid)
5236                                 right_start_ctransid = 0;
5237
5238                         if (!left_start_ctransid || !right_start_ctransid) {
5239                                 WARN(1, KERN_WARNING
5240                                         "btrfs: btrfs_compare_tree detected "
5241                                         "a change in one of the trees while "
5242                                         "iterating. This is probably a "
5243                                         "bug.\n");
5244                                 ret = -EIO;
5245                                 goto out;
5246                         }
5247
5248                         /*
5249                          * the commit root may have changed, so start again
5250                          * where we stopped
5251                          */
5252                         left_path->lowest_level = left_level;
5253                         right_path->lowest_level = right_level;
5254                         ret = btrfs_search_slot(NULL, left_root,
5255                                         &left_key, left_path, 0, 0);
5256                         if (ret < 0)
5257                                 goto out;
5258                         ret = btrfs_search_slot(NULL, right_root,
5259                                         &right_key, right_path, 0, 0);
5260                         if (ret < 0)
5261                                 goto out;
5262                 }
5263
5264                 if (advance_left && !left_end_reached) {
5265                         ret = tree_advance(left_root, left_path, &left_level,
5266                                         left_root_level,
5267                                         advance_left != ADVANCE_ONLY_NEXT,
5268                                         &left_key);
5269                         if (ret < 0)
5270                                 left_end_reached = ADVANCE;
5271                         advance_left = 0;
5272                 }
5273                 if (advance_right && !right_end_reached) {
5274                         ret = tree_advance(right_root, right_path, &right_level,
5275                                         right_root_level,
5276                                         advance_right != ADVANCE_ONLY_NEXT,
5277                                         &right_key);
5278                         if (ret < 0)
5279                                 right_end_reached = ADVANCE;
5280                         advance_right = 0;
5281                 }
5282
5283                 if (left_end_reached && right_end_reached) {
5284                         ret = 0;
5285                         goto out;
5286                 } else if (left_end_reached) {
5287                         if (right_level == 0) {
5288                                 ret = changed_cb(left_root, right_root,
5289                                                 left_path, right_path,
5290                                                 &right_key,
5291                                                 BTRFS_COMPARE_TREE_DELETED,
5292                                                 ctx);
5293                                 if (ret < 0)
5294                                         goto out;
5295                         }
5296                         advance_right = ADVANCE;
5297                         continue;
5298                 } else if (right_end_reached) {
5299                         if (left_level == 0) {
5300                                 ret = changed_cb(left_root, right_root,
5301                                                 left_path, right_path,
5302                                                 &left_key,
5303                                                 BTRFS_COMPARE_TREE_NEW,
5304                                                 ctx);
5305                                 if (ret < 0)
5306                                         goto out;
5307                         }
5308                         advance_left = ADVANCE;
5309                         continue;
5310                 }
5311
5312                 if (left_level == 0 && right_level == 0) {
5313                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5314                         if (cmp < 0) {
5315                                 ret = changed_cb(left_root, right_root,
5316                                                 left_path, right_path,
5317                                                 &left_key,
5318                                                 BTRFS_COMPARE_TREE_NEW,
5319                                                 ctx);
5320                                 if (ret < 0)
5321                                         goto out;
5322                                 advance_left = ADVANCE;
5323                         } else if (cmp > 0) {
5324                                 ret = changed_cb(left_root, right_root,
5325                                                 left_path, right_path,
5326                                                 &right_key,
5327                                                 BTRFS_COMPARE_TREE_DELETED,
5328                                                 ctx);
5329                                 if (ret < 0)
5330                                         goto out;
5331                                 advance_right = ADVANCE;
5332                         } else {
5333                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5334                                 ret = tree_compare_item(left_root, left_path,
5335                                                 right_path, tmp_buf);
5336                                 if (ret) {
5337                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5338                                         ret = changed_cb(left_root, right_root,
5339                                                 left_path, right_path,
5340                                                 &left_key,
5341                                                 BTRFS_COMPARE_TREE_CHANGED,
5342                                                 ctx);
5343                                         if (ret < 0)
5344                                                 goto out;
5345                                 }
5346                                 advance_left = ADVANCE;
5347                                 advance_right = ADVANCE;
5348                         }
5349                 } else if (left_level == right_level) {
5350                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5351                         if (cmp < 0) {
5352                                 advance_left = ADVANCE;
5353                         } else if (cmp > 0) {
5354                                 advance_right = ADVANCE;
5355                         } else {
5356                                 left_blockptr = btrfs_node_blockptr(
5357                                                 left_path->nodes[left_level],
5358                                                 left_path->slots[left_level]);
5359                                 right_blockptr = btrfs_node_blockptr(
5360                                                 right_path->nodes[right_level],
5361                                                 right_path->slots[right_level]);
5362                                 if (left_blockptr == right_blockptr) {
5363                                         /*
5364                                          * As we're on a shared block, don't
5365                                          * allow to go deeper.
5366                                          */
5367                                         advance_left = ADVANCE_ONLY_NEXT;
5368                                         advance_right = ADVANCE_ONLY_NEXT;
5369                                 } else {
5370                                         advance_left = ADVANCE;
5371                                         advance_right = ADVANCE;
5372                                 }
5373                         }
5374                 } else if (left_level < right_level) {
5375                         advance_right = ADVANCE;
5376                 } else {
5377                         advance_left = ADVANCE;
5378                 }
5379         }
5380
5381 out:
5382         btrfs_free_path(left_path);
5383         btrfs_free_path(right_path);
5384         kfree(tmp_buf);
5385
5386         if (trans) {
5387                 if (!ret)
5388                         ret = btrfs_end_transaction(trans, left_root);
5389                 else
5390                         btrfs_end_transaction(trans, left_root);
5391         }
5392
5393         return ret;
5394 }
5395
5396 /*
5397  * this is similar to btrfs_next_leaf, but does not try to preserve
5398  * and fixup the path.  It looks for and returns the next key in the
5399  * tree based on the current path and the min_trans parameters.
5400  *
5401  * 0 is returned if another key is found, < 0 if there are any errors
5402  * and 1 is returned if there are no higher keys in the tree
5403  *
5404  * path->keep_locks should be set to 1 on the search made before
5405  * calling this function.
5406  */
5407 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5408                         struct btrfs_key *key, int level, u64 min_trans)
5409 {
5410         int slot;
5411         struct extent_buffer *c;
5412
5413         WARN_ON(!path->keep_locks);
5414         while (level < BTRFS_MAX_LEVEL) {
5415                 if (!path->nodes[level])
5416                         return 1;
5417
5418                 slot = path->slots[level] + 1;
5419                 c = path->nodes[level];
5420 next:
5421                 if (slot >= btrfs_header_nritems(c)) {
5422                         int ret;
5423                         int orig_lowest;
5424                         struct btrfs_key cur_key;
5425                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5426                             !path->nodes[level + 1])
5427                                 return 1;
5428
5429                         if (path->locks[level + 1]) {
5430                                 level++;
5431                                 continue;
5432                         }
5433
5434                         slot = btrfs_header_nritems(c) - 1;
5435                         if (level == 0)
5436                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5437                         else
5438                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5439
5440                         orig_lowest = path->lowest_level;
5441                         btrfs_release_path(path);
5442                         path->lowest_level = level;
5443                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5444                                                 0, 0);
5445                         path->lowest_level = orig_lowest;
5446                         if (ret < 0)
5447                                 return ret;
5448
5449                         c = path->nodes[level];
5450                         slot = path->slots[level];
5451                         if (ret == 0)
5452                                 slot++;
5453                         goto next;
5454                 }
5455
5456                 if (level == 0)
5457                         btrfs_item_key_to_cpu(c, key, slot);
5458                 else {
5459                         u64 gen = btrfs_node_ptr_generation(c, slot);
5460
5461                         if (gen < min_trans) {
5462                                 slot++;
5463                                 goto next;
5464                         }
5465                         btrfs_node_key_to_cpu(c, key, slot);
5466                 }
5467                 return 0;
5468         }
5469         return 1;
5470 }
5471
5472 /*
5473  * search the tree again to find a leaf with greater keys
5474  * returns 0 if it found something or 1 if there are no greater leaves.
5475  * returns < 0 on io errors.
5476  */
5477 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5478 {
5479         return btrfs_next_old_leaf(root, path, 0);
5480 }
5481
5482 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5483                         u64 time_seq)
5484 {
5485         int slot;
5486         int level;
5487         struct extent_buffer *c;
5488         struct extent_buffer *next;
5489         struct btrfs_key key;
5490         u32 nritems;
5491         int ret;
5492         int old_spinning = path->leave_spinning;
5493         int next_rw_lock = 0;
5494
5495         nritems = btrfs_header_nritems(path->nodes[0]);
5496         if (nritems == 0)
5497                 return 1;
5498
5499         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5500 again:
5501         level = 1;
5502         next = NULL;
5503         next_rw_lock = 0;
5504         btrfs_release_path(path);
5505
5506         path->keep_locks = 1;
5507         path->leave_spinning = 1;
5508
5509         if (time_seq)
5510                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5511         else
5512                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5513         path->keep_locks = 0;
5514
5515         if (ret < 0)
5516                 return ret;
5517
5518         nritems = btrfs_header_nritems(path->nodes[0]);
5519         /*
5520          * by releasing the path above we dropped all our locks.  A balance
5521          * could have added more items next to the key that used to be
5522          * at the very end of the block.  So, check again here and
5523          * advance the path if there are now more items available.
5524          */
5525         if (nritems > 0 && path->slots[0] < nritems - 1) {
5526                 if (ret == 0)
5527                         path->slots[0]++;
5528                 ret = 0;
5529                 goto done;
5530         }
5531
5532         while (level < BTRFS_MAX_LEVEL) {
5533                 if (!path->nodes[level]) {
5534                         ret = 1;
5535                         goto done;
5536                 }
5537
5538                 slot = path->slots[level] + 1;
5539                 c = path->nodes[level];
5540                 if (slot >= btrfs_header_nritems(c)) {
5541                         level++;
5542                         if (level == BTRFS_MAX_LEVEL) {
5543                                 ret = 1;
5544                                 goto done;
5545                         }
5546                         continue;
5547                 }
5548
5549                 if (next) {
5550                         btrfs_tree_unlock_rw(next, next_rw_lock);
5551                         free_extent_buffer(next);
5552                 }
5553
5554                 next = c;
5555                 next_rw_lock = path->locks[level];
5556                 ret = read_block_for_search(NULL, root, path, &next, level,
5557                                             slot, &key, 0);
5558                 if (ret == -EAGAIN)
5559                         goto again;
5560
5561                 if (ret < 0) {
5562                         btrfs_release_path(path);
5563                         goto done;
5564                 }
5565
5566                 if (!path->skip_locking) {
5567                         ret = btrfs_try_tree_read_lock(next);
5568                         if (!ret && time_seq) {
5569                                 /*
5570                                  * If we don't get the lock, we may be racing
5571                                  * with push_leaf_left, holding that lock while
5572                                  * itself waiting for the leaf we've currently
5573                                  * locked. To solve this situation, we give up
5574                                  * on our lock and cycle.
5575                                  */
5576                                 free_extent_buffer(next);
5577                                 btrfs_release_path(path);
5578                                 cond_resched();
5579                                 goto again;
5580                         }
5581                         if (!ret) {
5582                                 btrfs_set_path_blocking(path);
5583                                 btrfs_tree_read_lock(next);
5584                                 btrfs_clear_path_blocking(path, next,
5585                                                           BTRFS_READ_LOCK);
5586                         }
5587                         next_rw_lock = BTRFS_READ_LOCK;
5588                 }
5589                 break;
5590         }
5591         path->slots[level] = slot;
5592         while (1) {
5593                 level--;
5594                 c = path->nodes[level];
5595                 if (path->locks[level])
5596                         btrfs_tree_unlock_rw(c, path->locks[level]);
5597
5598                 free_extent_buffer(c);
5599                 path->nodes[level] = next;
5600                 path->slots[level] = 0;
5601                 if (!path->skip_locking)
5602                         path->locks[level] = next_rw_lock;
5603                 if (!level)
5604                         break;
5605
5606                 ret = read_block_for_search(NULL, root, path, &next, level,
5607                                             0, &key, 0);
5608                 if (ret == -EAGAIN)
5609                         goto again;
5610
5611                 if (ret < 0) {
5612                         btrfs_release_path(path);
5613                         goto done;
5614                 }
5615
5616                 if (!path->skip_locking) {
5617                         ret = btrfs_try_tree_read_lock(next);
5618                         if (!ret) {
5619                                 btrfs_set_path_blocking(path);
5620                                 btrfs_tree_read_lock(next);
5621                                 btrfs_clear_path_blocking(path, next,
5622                                                           BTRFS_READ_LOCK);
5623                         }
5624                         next_rw_lock = BTRFS_READ_LOCK;
5625                 }
5626         }
5627         ret = 0;
5628 done:
5629         unlock_up(path, 0, 1, 0, NULL);
5630         path->leave_spinning = old_spinning;
5631         if (!old_spinning)
5632                 btrfs_set_path_blocking(path);
5633
5634         return ret;
5635 }
5636
5637 /*
5638  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5639  * searching until it gets past min_objectid or finds an item of 'type'
5640  *
5641  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5642  */
5643 int btrfs_previous_item(struct btrfs_root *root,
5644                         struct btrfs_path *path, u64 min_objectid,
5645                         int type)
5646 {
5647         struct btrfs_key found_key;
5648         struct extent_buffer *leaf;
5649         u32 nritems;
5650         int ret;
5651
5652         while (1) {
5653                 if (path->slots[0] == 0) {
5654                         btrfs_set_path_blocking(path);
5655                         ret = btrfs_prev_leaf(root, path);
5656                         if (ret != 0)
5657                                 return ret;
5658                 } else {
5659                         path->slots[0]--;
5660                 }
5661                 leaf = path->nodes[0];
5662                 nritems = btrfs_header_nritems(leaf);
5663                 if (nritems == 0)
5664                         return 1;
5665                 if (path->slots[0] == nritems)
5666                         path->slots[0]--;
5667
5668                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5669                 if (found_key.objectid < min_objectid)
5670                         break;
5671                 if (found_key.type == type)
5672                         return 0;
5673                 if (found_key.objectid == min_objectid &&
5674                     found_key.type < type)
5675                         break;
5676         }
5677         return 1;
5678 }