]> rtime.felk.cvut.cz Git - linux-imx.git/blob - arch/x86/platform/efi/efi.c
Merge branch 'pm-omap'
[linux-imx.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53
54 #define EFI_DEBUG       1
55
56 #define EFI_MIN_RESERVE 5120
57
58 #define EFI_DUMMY_GUID \
59         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62
63 struct efi __read_mostly efi = {
64         .mps        = EFI_INVALID_TABLE_ADDR,
65         .acpi       = EFI_INVALID_TABLE_ADDR,
66         .acpi20     = EFI_INVALID_TABLE_ADDR,
67         .smbios     = EFI_INVALID_TABLE_ADDR,
68         .sal_systab = EFI_INVALID_TABLE_ADDR,
69         .boot_info  = EFI_INVALID_TABLE_ADDR,
70         .hcdp       = EFI_INVALID_TABLE_ADDR,
71         .uga        = EFI_INVALID_TABLE_ADDR,
72         .uv_systab  = EFI_INVALID_TABLE_ADDR,
73 };
74 EXPORT_SYMBOL(efi);
75
76 struct efi_memory_map memmap;
77
78 static struct efi efi_phys __initdata;
79 static efi_system_table_t efi_systab __initdata;
80
81 unsigned long x86_efi_facility;
82
83 /*
84  * Returns 1 if 'facility' is enabled, 0 otherwise.
85  */
86 int efi_enabled(int facility)
87 {
88         return test_bit(facility, &x86_efi_facility) != 0;
89 }
90 EXPORT_SYMBOL(efi_enabled);
91
92 static bool __initdata disable_runtime = false;
93 static int __init setup_noefi(char *arg)
94 {
95         disable_runtime = true;
96         return 0;
97 }
98 early_param("noefi", setup_noefi);
99
100 int add_efi_memmap;
101 EXPORT_SYMBOL(add_efi_memmap);
102
103 static int __init setup_add_efi_memmap(char *arg)
104 {
105         add_efi_memmap = 1;
106         return 0;
107 }
108 early_param("add_efi_memmap", setup_add_efi_memmap);
109
110 static bool efi_no_storage_paranoia;
111
112 static int __init setup_storage_paranoia(char *arg)
113 {
114         efi_no_storage_paranoia = true;
115         return 0;
116 }
117 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
118
119
120 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
121 {
122         unsigned long flags;
123         efi_status_t status;
124
125         spin_lock_irqsave(&rtc_lock, flags);
126         status = efi_call_virt2(get_time, tm, tc);
127         spin_unlock_irqrestore(&rtc_lock, flags);
128         return status;
129 }
130
131 static efi_status_t virt_efi_set_time(efi_time_t *tm)
132 {
133         unsigned long flags;
134         efi_status_t status;
135
136         spin_lock_irqsave(&rtc_lock, flags);
137         status = efi_call_virt1(set_time, tm);
138         spin_unlock_irqrestore(&rtc_lock, flags);
139         return status;
140 }
141
142 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
143                                              efi_bool_t *pending,
144                                              efi_time_t *tm)
145 {
146         unsigned long flags;
147         efi_status_t status;
148
149         spin_lock_irqsave(&rtc_lock, flags);
150         status = efi_call_virt3(get_wakeup_time,
151                                 enabled, pending, tm);
152         spin_unlock_irqrestore(&rtc_lock, flags);
153         return status;
154 }
155
156 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
157 {
158         unsigned long flags;
159         efi_status_t status;
160
161         spin_lock_irqsave(&rtc_lock, flags);
162         status = efi_call_virt2(set_wakeup_time,
163                                 enabled, tm);
164         spin_unlock_irqrestore(&rtc_lock, flags);
165         return status;
166 }
167
168 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
169                                           efi_guid_t *vendor,
170                                           u32 *attr,
171                                           unsigned long *data_size,
172                                           void *data)
173 {
174         return efi_call_virt5(get_variable,
175                               name, vendor, attr,
176                               data_size, data);
177 }
178
179 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
180                                                efi_char16_t *name,
181                                                efi_guid_t *vendor)
182 {
183         return efi_call_virt3(get_next_variable,
184                               name_size, name, vendor);
185 }
186
187 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
188                                           efi_guid_t *vendor,
189                                           u32 attr,
190                                           unsigned long data_size,
191                                           void *data)
192 {
193         return efi_call_virt5(set_variable,
194                               name, vendor, attr,
195                               data_size, data);
196 }
197
198 static efi_status_t virt_efi_query_variable_info(u32 attr,
199                                                  u64 *storage_space,
200                                                  u64 *remaining_space,
201                                                  u64 *max_variable_size)
202 {
203         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
204                 return EFI_UNSUPPORTED;
205
206         return efi_call_virt4(query_variable_info, attr, storage_space,
207                               remaining_space, max_variable_size);
208 }
209
210 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
211 {
212         return efi_call_virt1(get_next_high_mono_count, count);
213 }
214
215 static void virt_efi_reset_system(int reset_type,
216                                   efi_status_t status,
217                                   unsigned long data_size,
218                                   efi_char16_t *data)
219 {
220         efi_call_virt4(reset_system, reset_type, status,
221                        data_size, data);
222 }
223
224 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
225                                             unsigned long count,
226                                             unsigned long sg_list)
227 {
228         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
229                 return EFI_UNSUPPORTED;
230
231         return efi_call_virt3(update_capsule, capsules, count, sg_list);
232 }
233
234 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
235                                                 unsigned long count,
236                                                 u64 *max_size,
237                                                 int *reset_type)
238 {
239         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
240                 return EFI_UNSUPPORTED;
241
242         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
243                               reset_type);
244 }
245
246 static efi_status_t __init phys_efi_set_virtual_address_map(
247         unsigned long memory_map_size,
248         unsigned long descriptor_size,
249         u32 descriptor_version,
250         efi_memory_desc_t *virtual_map)
251 {
252         efi_status_t status;
253
254         efi_call_phys_prelog();
255         status = efi_call_phys4(efi_phys.set_virtual_address_map,
256                                 memory_map_size, descriptor_size,
257                                 descriptor_version, virtual_map);
258         efi_call_phys_epilog();
259         return status;
260 }
261
262 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
263                                              efi_time_cap_t *tc)
264 {
265         unsigned long flags;
266         efi_status_t status;
267
268         spin_lock_irqsave(&rtc_lock, flags);
269         efi_call_phys_prelog();
270         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
271                                 virt_to_phys(tc));
272         efi_call_phys_epilog();
273         spin_unlock_irqrestore(&rtc_lock, flags);
274         return status;
275 }
276
277 int efi_set_rtc_mmss(unsigned long nowtime)
278 {
279         efi_status_t    status;
280         efi_time_t      eft;
281         efi_time_cap_t  cap;
282         struct rtc_time tm;
283
284         status = efi.get_time(&eft, &cap);
285         if (status != EFI_SUCCESS) {
286                 pr_err("Oops: efitime: can't read time!\n");
287                 return -1;
288         }
289
290         rtc_time_to_tm(nowtime, &tm);
291         if (!rtc_valid_tm(&tm)) {
292                 eft.year = tm.tm_year + 1900;
293                 eft.month = tm.tm_mon + 1;
294                 eft.day = tm.tm_mday;
295                 eft.minute = tm.tm_min;
296                 eft.second = tm.tm_sec;
297                 eft.nanosecond = 0;
298         } else {
299                 printk(KERN_ERR
300                        "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
301                        __FUNCTION__, nowtime);
302                 return -1;
303         }
304
305         status = efi.set_time(&eft);
306         if (status != EFI_SUCCESS) {
307                 pr_err("Oops: efitime: can't write time!\n");
308                 return -1;
309         }
310         return 0;
311 }
312
313 unsigned long efi_get_time(void)
314 {
315         efi_status_t status;
316         efi_time_t eft;
317         efi_time_cap_t cap;
318
319         status = efi.get_time(&eft, &cap);
320         if (status != EFI_SUCCESS)
321                 pr_err("Oops: efitime: can't read time!\n");
322
323         return mktime(eft.year, eft.month, eft.day, eft.hour,
324                       eft.minute, eft.second);
325 }
326
327 /*
328  * Tell the kernel about the EFI memory map.  This might include
329  * more than the max 128 entries that can fit in the e820 legacy
330  * (zeropage) memory map.
331  */
332
333 static void __init do_add_efi_memmap(void)
334 {
335         void *p;
336
337         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
338                 efi_memory_desc_t *md = p;
339                 unsigned long long start = md->phys_addr;
340                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
341                 int e820_type;
342
343                 switch (md->type) {
344                 case EFI_LOADER_CODE:
345                 case EFI_LOADER_DATA:
346                 case EFI_BOOT_SERVICES_CODE:
347                 case EFI_BOOT_SERVICES_DATA:
348                 case EFI_CONVENTIONAL_MEMORY:
349                         if (md->attribute & EFI_MEMORY_WB)
350                                 e820_type = E820_RAM;
351                         else
352                                 e820_type = E820_RESERVED;
353                         break;
354                 case EFI_ACPI_RECLAIM_MEMORY:
355                         e820_type = E820_ACPI;
356                         break;
357                 case EFI_ACPI_MEMORY_NVS:
358                         e820_type = E820_NVS;
359                         break;
360                 case EFI_UNUSABLE_MEMORY:
361                         e820_type = E820_UNUSABLE;
362                         break;
363                 default:
364                         /*
365                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
366                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
367                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368                          */
369                         e820_type = E820_RESERVED;
370                         break;
371                 }
372                 e820_add_region(start, size, e820_type);
373         }
374         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
375 }
376
377 int __init efi_memblock_x86_reserve_range(void)
378 {
379         struct efi_info *e = &boot_params.efi_info;
380         unsigned long pmap;
381
382 #ifdef CONFIG_X86_32
383         /* Can't handle data above 4GB at this time */
384         if (e->efi_memmap_hi) {
385                 pr_err("Memory map is above 4GB, disabling EFI.\n");
386                 return -EINVAL;
387         }
388         pmap =  e->efi_memmap;
389 #else
390         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
391 #endif
392         memmap.phys_map         = (void *)pmap;
393         memmap.nr_map           = e->efi_memmap_size /
394                                   e->efi_memdesc_size;
395         memmap.desc_size        = e->efi_memdesc_size;
396         memmap.desc_version     = e->efi_memdesc_version;
397
398         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
399
400         return 0;
401 }
402
403 #if EFI_DEBUG
404 static void __init print_efi_memmap(void)
405 {
406         efi_memory_desc_t *md;
407         void *p;
408         int i;
409
410         for (p = memmap.map, i = 0;
411              p < memmap.map_end;
412              p += memmap.desc_size, i++) {
413                 md = p;
414                 pr_info("mem%02u: type=%u, attr=0x%llx, "
415                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
416                         i, md->type, md->attribute, md->phys_addr,
417                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
418                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
419         }
420 }
421 #endif  /*  EFI_DEBUG  */
422
423 void __init efi_reserve_boot_services(void)
424 {
425         void *p;
426
427         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
428                 efi_memory_desc_t *md = p;
429                 u64 start = md->phys_addr;
430                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
431
432                 if (md->type != EFI_BOOT_SERVICES_CODE &&
433                     md->type != EFI_BOOT_SERVICES_DATA)
434                         continue;
435                 /* Only reserve where possible:
436                  * - Not within any already allocated areas
437                  * - Not over any memory area (really needed, if above?)
438                  * - Not within any part of the kernel
439                  * - Not the bios reserved area
440                 */
441                 if ((start+size >= __pa_symbol(_text)
442                                 && start <= __pa_symbol(_end)) ||
443                         !e820_all_mapped(start, start+size, E820_RAM) ||
444                         memblock_is_region_reserved(start, size)) {
445                         /* Could not reserve, skip it */
446                         md->num_pages = 0;
447                         memblock_dbg("Could not reserve boot range "
448                                         "[0x%010llx-0x%010llx]\n",
449                                                 start, start+size-1);
450                 } else
451                         memblock_reserve(start, size);
452         }
453 }
454
455 void __init efi_unmap_memmap(void)
456 {
457         clear_bit(EFI_MEMMAP, &x86_efi_facility);
458         if (memmap.map) {
459                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
460                 memmap.map = NULL;
461         }
462 }
463
464 void __init efi_free_boot_services(void)
465 {
466         void *p;
467
468         if (!efi_is_native())
469                 return;
470
471         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
472                 efi_memory_desc_t *md = p;
473                 unsigned long long start = md->phys_addr;
474                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
475
476                 if (md->type != EFI_BOOT_SERVICES_CODE &&
477                     md->type != EFI_BOOT_SERVICES_DATA)
478                         continue;
479
480                 /* Could not reserve boot area */
481                 if (!size)
482                         continue;
483
484                 free_bootmem_late(start, size);
485         }
486
487         efi_unmap_memmap();
488 }
489
490 static int __init efi_systab_init(void *phys)
491 {
492         if (efi_enabled(EFI_64BIT)) {
493                 efi_system_table_64_t *systab64;
494                 u64 tmp = 0;
495
496                 systab64 = early_ioremap((unsigned long)phys,
497                                          sizeof(*systab64));
498                 if (systab64 == NULL) {
499                         pr_err("Couldn't map the system table!\n");
500                         return -ENOMEM;
501                 }
502
503                 efi_systab.hdr = systab64->hdr;
504                 efi_systab.fw_vendor = systab64->fw_vendor;
505                 tmp |= systab64->fw_vendor;
506                 efi_systab.fw_revision = systab64->fw_revision;
507                 efi_systab.con_in_handle = systab64->con_in_handle;
508                 tmp |= systab64->con_in_handle;
509                 efi_systab.con_in = systab64->con_in;
510                 tmp |= systab64->con_in;
511                 efi_systab.con_out_handle = systab64->con_out_handle;
512                 tmp |= systab64->con_out_handle;
513                 efi_systab.con_out = systab64->con_out;
514                 tmp |= systab64->con_out;
515                 efi_systab.stderr_handle = systab64->stderr_handle;
516                 tmp |= systab64->stderr_handle;
517                 efi_systab.stderr = systab64->stderr;
518                 tmp |= systab64->stderr;
519                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
520                 tmp |= systab64->runtime;
521                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
522                 tmp |= systab64->boottime;
523                 efi_systab.nr_tables = systab64->nr_tables;
524                 efi_systab.tables = systab64->tables;
525                 tmp |= systab64->tables;
526
527                 early_iounmap(systab64, sizeof(*systab64));
528 #ifdef CONFIG_X86_32
529                 if (tmp >> 32) {
530                         pr_err("EFI data located above 4GB, disabling EFI.\n");
531                         return -EINVAL;
532                 }
533 #endif
534         } else {
535                 efi_system_table_32_t *systab32;
536
537                 systab32 = early_ioremap((unsigned long)phys,
538                                          sizeof(*systab32));
539                 if (systab32 == NULL) {
540                         pr_err("Couldn't map the system table!\n");
541                         return -ENOMEM;
542                 }
543
544                 efi_systab.hdr = systab32->hdr;
545                 efi_systab.fw_vendor = systab32->fw_vendor;
546                 efi_systab.fw_revision = systab32->fw_revision;
547                 efi_systab.con_in_handle = systab32->con_in_handle;
548                 efi_systab.con_in = systab32->con_in;
549                 efi_systab.con_out_handle = systab32->con_out_handle;
550                 efi_systab.con_out = systab32->con_out;
551                 efi_systab.stderr_handle = systab32->stderr_handle;
552                 efi_systab.stderr = systab32->stderr;
553                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
554                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
555                 efi_systab.nr_tables = systab32->nr_tables;
556                 efi_systab.tables = systab32->tables;
557
558                 early_iounmap(systab32, sizeof(*systab32));
559         }
560
561         efi.systab = &efi_systab;
562
563         /*
564          * Verify the EFI Table
565          */
566         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
567                 pr_err("System table signature incorrect!\n");
568                 return -EINVAL;
569         }
570         if ((efi.systab->hdr.revision >> 16) == 0)
571                 pr_err("Warning: System table version "
572                        "%d.%02d, expected 1.00 or greater!\n",
573                        efi.systab->hdr.revision >> 16,
574                        efi.systab->hdr.revision & 0xffff);
575
576         return 0;
577 }
578
579 static int __init efi_config_init(u64 tables, int nr_tables)
580 {
581         void *config_tables, *tablep;
582         int i, sz;
583
584         if (efi_enabled(EFI_64BIT))
585                 sz = sizeof(efi_config_table_64_t);
586         else
587                 sz = sizeof(efi_config_table_32_t);
588
589         /*
590          * Let's see what config tables the firmware passed to us.
591          */
592         config_tables = early_ioremap(tables, nr_tables * sz);
593         if (config_tables == NULL) {
594                 pr_err("Could not map Configuration table!\n");
595                 return -ENOMEM;
596         }
597
598         tablep = config_tables;
599         pr_info("");
600         for (i = 0; i < efi.systab->nr_tables; i++) {
601                 efi_guid_t guid;
602                 unsigned long table;
603
604                 if (efi_enabled(EFI_64BIT)) {
605                         u64 table64;
606                         guid = ((efi_config_table_64_t *)tablep)->guid;
607                         table64 = ((efi_config_table_64_t *)tablep)->table;
608                         table = table64;
609 #ifdef CONFIG_X86_32
610                         if (table64 >> 32) {
611                                 pr_cont("\n");
612                                 pr_err("Table located above 4GB, disabling EFI.\n");
613                                 early_iounmap(config_tables,
614                                               efi.systab->nr_tables * sz);
615                                 return -EINVAL;
616                         }
617 #endif
618                 } else {
619                         guid = ((efi_config_table_32_t *)tablep)->guid;
620                         table = ((efi_config_table_32_t *)tablep)->table;
621                 }
622                 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
623                         efi.mps = table;
624                         pr_cont(" MPS=0x%lx ", table);
625                 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
626                         efi.acpi20 = table;
627                         pr_cont(" ACPI 2.0=0x%lx ", table);
628                 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
629                         efi.acpi = table;
630                         pr_cont(" ACPI=0x%lx ", table);
631                 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
632                         efi.smbios = table;
633                         pr_cont(" SMBIOS=0x%lx ", table);
634 #ifdef CONFIG_X86_UV
635                 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
636                         efi.uv_systab = table;
637                         pr_cont(" UVsystab=0x%lx ", table);
638 #endif
639                 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
640                         efi.hcdp = table;
641                         pr_cont(" HCDP=0x%lx ", table);
642                 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
643                         efi.uga = table;
644                         pr_cont(" UGA=0x%lx ", table);
645                 }
646                 tablep += sz;
647         }
648         pr_cont("\n");
649         early_iounmap(config_tables, efi.systab->nr_tables * sz);
650         return 0;
651 }
652
653 static int __init efi_runtime_init(void)
654 {
655         efi_runtime_services_t *runtime;
656
657         /*
658          * Check out the runtime services table. We need to map
659          * the runtime services table so that we can grab the physical
660          * address of several of the EFI runtime functions, needed to
661          * set the firmware into virtual mode.
662          */
663         runtime = early_ioremap((unsigned long)efi.systab->runtime,
664                                 sizeof(efi_runtime_services_t));
665         if (!runtime) {
666                 pr_err("Could not map the runtime service table!\n");
667                 return -ENOMEM;
668         }
669         /*
670          * We will only need *early* access to the following
671          * two EFI runtime services before set_virtual_address_map
672          * is invoked.
673          */
674         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
675         efi_phys.set_virtual_address_map =
676                 (efi_set_virtual_address_map_t *)
677                 runtime->set_virtual_address_map;
678         /*
679          * Make efi_get_time can be called before entering
680          * virtual mode.
681          */
682         efi.get_time = phys_efi_get_time;
683         early_iounmap(runtime, sizeof(efi_runtime_services_t));
684
685         return 0;
686 }
687
688 static int __init efi_memmap_init(void)
689 {
690         /* Map the EFI memory map */
691         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
692                                    memmap.nr_map * memmap.desc_size);
693         if (memmap.map == NULL) {
694                 pr_err("Could not map the memory map!\n");
695                 return -ENOMEM;
696         }
697         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
698
699         if (add_efi_memmap)
700                 do_add_efi_memmap();
701
702         return 0;
703 }
704
705 void __init efi_init(void)
706 {
707         efi_char16_t *c16;
708         char vendor[100] = "unknown";
709         int i = 0;
710         void *tmp;
711
712 #ifdef CONFIG_X86_32
713         if (boot_params.efi_info.efi_systab_hi ||
714             boot_params.efi_info.efi_memmap_hi) {
715                 pr_info("Table located above 4GB, disabling EFI.\n");
716                 return;
717         }
718         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
719 #else
720         efi_phys.systab = (efi_system_table_t *)
721                           (boot_params.efi_info.efi_systab |
722                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
723 #endif
724
725         if (efi_systab_init(efi_phys.systab))
726                 return;
727
728         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
729
730         /*
731          * Show what we know for posterity
732          */
733         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
734         if (c16) {
735                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
736                         vendor[i] = *c16++;
737                 vendor[i] = '\0';
738         } else
739                 pr_err("Could not map the firmware vendor!\n");
740         early_iounmap(tmp, 2);
741
742         pr_info("EFI v%u.%.02u by %s\n",
743                 efi.systab->hdr.revision >> 16,
744                 efi.systab->hdr.revision & 0xffff, vendor);
745
746         if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
747                 return;
748
749         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
750
751         /*
752          * Note: We currently don't support runtime services on an EFI
753          * that doesn't match the kernel 32/64-bit mode.
754          */
755
756         if (!efi_is_native())
757                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
758         else {
759                 if (disable_runtime || efi_runtime_init())
760                         return;
761                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
762         }
763
764         if (efi_memmap_init())
765                 return;
766
767         set_bit(EFI_MEMMAP, &x86_efi_facility);
768
769 #ifdef CONFIG_X86_32
770         if (efi_is_native()) {
771                 x86_platform.get_wallclock = efi_get_time;
772                 x86_platform.set_wallclock = efi_set_rtc_mmss;
773         }
774 #endif
775
776 #if EFI_DEBUG
777         print_efi_memmap();
778 #endif
779 }
780
781 void __init efi_late_init(void)
782 {
783         efi_bgrt_init();
784 }
785
786 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
787 {
788         u64 addr, npages;
789
790         addr = md->virt_addr;
791         npages = md->num_pages;
792
793         memrange_efi_to_native(&addr, &npages);
794
795         if (executable)
796                 set_memory_x(addr, npages);
797         else
798                 set_memory_nx(addr, npages);
799 }
800
801 static void __init runtime_code_page_mkexec(void)
802 {
803         efi_memory_desc_t *md;
804         void *p;
805
806         /* Make EFI runtime service code area executable */
807         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
808                 md = p;
809
810                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
811                         continue;
812
813                 efi_set_executable(md, true);
814         }
815 }
816
817 /*
818  * We can't ioremap data in EFI boot services RAM, because we've already mapped
819  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
820  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
821  */
822 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
823 {
824         void *p;
825         if (WARN_ON(!memmap.map))
826                 return NULL;
827         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
828                 efi_memory_desc_t *md = p;
829                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
830                 u64 end = md->phys_addr + size;
831                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
832                     md->type != EFI_BOOT_SERVICES_CODE &&
833                     md->type != EFI_BOOT_SERVICES_DATA)
834                         continue;
835                 if (!md->virt_addr)
836                         continue;
837                 if (phys_addr >= md->phys_addr && phys_addr < end) {
838                         phys_addr += md->virt_addr - md->phys_addr;
839                         return (__force void __iomem *)(unsigned long)phys_addr;
840                 }
841         }
842         return NULL;
843 }
844
845 void efi_memory_uc(u64 addr, unsigned long size)
846 {
847         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
848         u64 npages;
849
850         npages = round_up(size, page_shift) / page_shift;
851         memrange_efi_to_native(&addr, &npages);
852         set_memory_uc(addr, npages);
853 }
854
855 /*
856  * This function will switch the EFI runtime services to virtual mode.
857  * Essentially, look through the EFI memmap and map every region that
858  * has the runtime attribute bit set in its memory descriptor and update
859  * that memory descriptor with the virtual address obtained from ioremap().
860  * This enables the runtime services to be called without having to
861  * thunk back into physical mode for every invocation.
862  */
863 void __init efi_enter_virtual_mode(void)
864 {
865         efi_memory_desc_t *md, *prev_md = NULL;
866         efi_status_t status;
867         unsigned long size;
868         u64 end, systab, start_pfn, end_pfn;
869         void *p, *va, *new_memmap = NULL;
870         int count = 0;
871
872         efi.systab = NULL;
873
874         /*
875          * We don't do virtual mode, since we don't do runtime services, on
876          * non-native EFI
877          */
878
879         if (!efi_is_native()) {
880                 efi_unmap_memmap();
881                 return;
882         }
883
884         /* Merge contiguous regions of the same type and attribute */
885         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
886                 u64 prev_size;
887                 md = p;
888
889                 if (!prev_md) {
890                         prev_md = md;
891                         continue;
892                 }
893
894                 if (prev_md->type != md->type ||
895                     prev_md->attribute != md->attribute) {
896                         prev_md = md;
897                         continue;
898                 }
899
900                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
901
902                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
903                         prev_md->num_pages += md->num_pages;
904                         md->type = EFI_RESERVED_TYPE;
905                         md->attribute = 0;
906                         continue;
907                 }
908                 prev_md = md;
909         }
910
911         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
912                 md = p;
913                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
914                     md->type != EFI_BOOT_SERVICES_CODE &&
915                     md->type != EFI_BOOT_SERVICES_DATA)
916                         continue;
917
918                 size = md->num_pages << EFI_PAGE_SHIFT;
919                 end = md->phys_addr + size;
920
921                 start_pfn = PFN_DOWN(md->phys_addr);
922                 end_pfn = PFN_UP(end);
923                 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
924                         va = __va(md->phys_addr);
925
926                         if (!(md->attribute & EFI_MEMORY_WB))
927                                 efi_memory_uc((u64)(unsigned long)va, size);
928                 } else
929                         va = efi_ioremap(md->phys_addr, size,
930                                          md->type, md->attribute);
931
932                 md->virt_addr = (u64) (unsigned long) va;
933
934                 if (!va) {
935                         pr_err("ioremap of 0x%llX failed!\n",
936                                (unsigned long long)md->phys_addr);
937                         continue;
938                 }
939
940                 systab = (u64) (unsigned long) efi_phys.systab;
941                 if (md->phys_addr <= systab && systab < end) {
942                         systab += md->virt_addr - md->phys_addr;
943                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
944                 }
945                 new_memmap = krealloc(new_memmap,
946                                       (count + 1) * memmap.desc_size,
947                                       GFP_KERNEL);
948                 memcpy(new_memmap + (count * memmap.desc_size), md,
949                        memmap.desc_size);
950                 count++;
951         }
952
953         BUG_ON(!efi.systab);
954
955         status = phys_efi_set_virtual_address_map(
956                 memmap.desc_size * count,
957                 memmap.desc_size,
958                 memmap.desc_version,
959                 (efi_memory_desc_t *)__pa(new_memmap));
960
961         if (status != EFI_SUCCESS) {
962                 pr_alert("Unable to switch EFI into virtual mode "
963                          "(status=%lx)!\n", status);
964                 panic("EFI call to SetVirtualAddressMap() failed!");
965         }
966
967         /*
968          * Now that EFI is in virtual mode, update the function
969          * pointers in the runtime service table to the new virtual addresses.
970          *
971          * Call EFI services through wrapper functions.
972          */
973         efi.runtime_version = efi_systab.hdr.revision;
974         efi.get_time = virt_efi_get_time;
975         efi.set_time = virt_efi_set_time;
976         efi.get_wakeup_time = virt_efi_get_wakeup_time;
977         efi.set_wakeup_time = virt_efi_set_wakeup_time;
978         efi.get_variable = virt_efi_get_variable;
979         efi.get_next_variable = virt_efi_get_next_variable;
980         efi.set_variable = virt_efi_set_variable;
981         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
982         efi.reset_system = virt_efi_reset_system;
983         efi.set_virtual_address_map = NULL;
984         efi.query_variable_info = virt_efi_query_variable_info;
985         efi.update_capsule = virt_efi_update_capsule;
986         efi.query_capsule_caps = virt_efi_query_capsule_caps;
987         if (__supported_pte_mask & _PAGE_NX)
988                 runtime_code_page_mkexec();
989
990         kfree(new_memmap);
991
992         /* clean DUMMY object */
993         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
994                          EFI_VARIABLE_NON_VOLATILE |
995                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
996                          EFI_VARIABLE_RUNTIME_ACCESS,
997                          0, NULL);
998 }
999
1000 /*
1001  * Convenience functions to obtain memory types and attributes
1002  */
1003 u32 efi_mem_type(unsigned long phys_addr)
1004 {
1005         efi_memory_desc_t *md;
1006         void *p;
1007
1008         if (!efi_enabled(EFI_MEMMAP))
1009                 return 0;
1010
1011         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1012                 md = p;
1013                 if ((md->phys_addr <= phys_addr) &&
1014                     (phys_addr < (md->phys_addr +
1015                                   (md->num_pages << EFI_PAGE_SHIFT))))
1016                         return md->type;
1017         }
1018         return 0;
1019 }
1020
1021 u64 efi_mem_attributes(unsigned long phys_addr)
1022 {
1023         efi_memory_desc_t *md;
1024         void *p;
1025
1026         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1027                 md = p;
1028                 if ((md->phys_addr <= phys_addr) &&
1029                     (phys_addr < (md->phys_addr +
1030                                   (md->num_pages << EFI_PAGE_SHIFT))))
1031                         return md->attribute;
1032         }
1033         return 0;
1034 }
1035
1036 /*
1037  * Some firmware has serious problems when using more than 50% of the EFI
1038  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1039  * we never use more than this safe limit.
1040  *
1041  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1042  * store.
1043  */
1044 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1045 {
1046         efi_status_t status;
1047         u64 storage_size, remaining_size, max_size;
1048
1049         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1050                 return 0;
1051
1052         status = efi.query_variable_info(attributes, &storage_size,
1053                                          &remaining_size, &max_size);
1054         if (status != EFI_SUCCESS)
1055                 return status;
1056
1057         /*
1058          * Some firmware implementations refuse to boot if there's insufficient
1059          * space in the variable store. We account for that by refusing the
1060          * write if permitting it would reduce the available space to under
1061          * 5KB. This figure was provided by Samsung, so should be safe.
1062          */
1063         if ((remaining_size - size < EFI_MIN_RESERVE) &&
1064                 !efi_no_storage_paranoia) {
1065
1066                 /*
1067                  * Triggering garbage collection may require that the firmware
1068                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
1069                  * that by attempting to use more space than is available.
1070                  */
1071                 unsigned long dummy_size = remaining_size + 1024;
1072                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1073
1074                 if (!dummy)
1075                         return EFI_OUT_OF_RESOURCES;
1076
1077                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1078                                           EFI_VARIABLE_NON_VOLATILE |
1079                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
1080                                           EFI_VARIABLE_RUNTIME_ACCESS,
1081                                           dummy_size, dummy);
1082
1083                 if (status == EFI_SUCCESS) {
1084                         /*
1085                          * This should have failed, so if it didn't make sure
1086                          * that we delete it...
1087                          */
1088                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1089                                          EFI_VARIABLE_NON_VOLATILE |
1090                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1091                                          EFI_VARIABLE_RUNTIME_ACCESS,
1092                                          0, dummy);
1093                 }
1094
1095                 kfree(dummy);
1096
1097                 /*
1098                  * The runtime code may now have triggered a garbage collection
1099                  * run, so check the variable info again
1100                  */
1101                 status = efi.query_variable_info(attributes, &storage_size,
1102                                                  &remaining_size, &max_size);
1103
1104                 if (status != EFI_SUCCESS)
1105                         return status;
1106
1107                 /*
1108                  * There still isn't enough room, so return an error
1109                  */
1110                 if (remaining_size - size < EFI_MIN_RESERVE)
1111                         return EFI_OUT_OF_RESOURCES;
1112         }
1113
1114         return EFI_SUCCESS;
1115 }
1116 EXPORT_SYMBOL_GPL(efi_query_variable_store);